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ALTERNATING DIRECTION IMPLICIT METHODS FOR PARABOLIC 

EQUATIONS WITH A MIXED DERIVATIVE 

RICHARD M. BEAM+ and R. F. WARMING? 

Abstract. Alternating direction implicit (ADI) schemes for two- 

dimensional parabolic equations with a mixed derivative are constructed by 

using the class of all A,-stable linear two-step methods in conjunction with 

the method of approximate factorization. The mixed derivative is treated with 

an explicit two-step method which is compatible with an implicit A,-stable 

method. The parameter space for which the resulting AD1 schemes are second- 

order accurate and unconditionally stable is determined. Some numerical 

examples are given. 
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1. In t roduc t ion .  When an a l t e r n a t i n g  d i r e c t i o n  i m p l i c i t  (ADI) method i s  

a p p l i e d  t o  a  p a r a b o l i c  equa t ion ,  f o r  example, 

(1. l a )  

where 

(1. l b )  

( l . l c , d )  a , c  > 0 , b2  < 4ac , 

i t  reduces t h e  computat ional  problem t o  a  sequence of one-dimensional (matr ix)  

i n v e r s i o n  problems. I f  t h e  mixed d e r i v a t i v e  a2/axay of t h e  o p e r a t o r  L  

were absent  (b = 0 ) ,  an AD1 method would reduce t h e  o p e r a t o r  (1 - L)  t o  t h e  

product  of two one-dimensional s p a t i a l  ope ra to r s .  I n  t h e  method of  Douglas 

and Gunn 193, t h e  mixed d e r i v a t i v e  is  kept  i m p l i c i t  and t h e i r  scheme r e q u i r e s  

fou r  i nve r s ions ;  t h a t  i s ,  t h e  ope ra to r  ( 1  - L) i s  reduced t o  f o u r  one- 

dimensional  ope ra to r s .  The two a d d i t i o n a l  i nve r s ions  a r e  t h e  d i r e c t  r e s u l t  of 

keeping t h e  mixed d e r i v a t i v e  i m p l i c i t .  Simpler and more e f f i c i e n t  schemes 

can be ob ta ined  i f  t h e  mixed d e r i v a t i v e  i s  eva lua ted  e x p l i c i t y .  Perhaps 

n o t  s o  obvious i s  t h e  s t a b i l i t y  of t h e s e  s imp le r  schemes. I n  f a c t ,  i t  i s  



rather surprising that one can develop unconditionally stable algorithms for 

(1.1) by computing the mixed derivative explicitly and the derivatives 

a2/ax2 and a2/ay2 implicitly. McKee and Mitchell [15] surveyed two-level, 

first-order accurate (in time) schemes and devised a new first-order accurate, 

unconditionally stable scheme for (1.1). Iyengar and Jain [12] generalized 

the method of McKee and Mitchell and presented a three-level, second-order 

accurate scheme for (1.1); however, the implementation of the scheme is com- 

plicated by the explicit computation of fourth differences although the origi- 

nal partial differential equation (1.1) contains only second derivatives. 

The present authors constructed a second-order accurate AD1 algorithm for 

the compressible Navier-Stokes equations [I]. When the algorithm is applied 

to the model equation (1.1), it leads to a simple three-level unconditionally 

stable scheme which is easy to implement. In a recent paper [20] we combined 

A-stable linear multistep methods (LMMs) and approximate factorization to 

construct a large class of multilevel unconditionally stable AD1 schemes for 

a model partial differential equation with both convective (hyperbolic) and 

diffusive (parabolic) terms; that is, 

where a,b,c satisfy (l.lc,d) and cl, c2 are real constants. The general 

formulation of [20] is second-order accurate if b = 0 but first-order accu- 

rate in time if the mixed derivative is included. In both [I] and [20], the 

mixed derivative is treated explicitly. The purpose of the present paper is 

to modify and combine the algorithms of [I] and 1201 to obtain a general, 

second-order accurate, unconditionally stable algorithm for the model parabolic 

equation (1.1). In a companion paper [21] we apply the method to derive a 



noniterative AD1 algorithm for a hyperbolic-parabolic system of nonlinear 

equations with mixed derivatives. 

The development and analysis of numerical methods for ordinary differen- 

tial equations (ODEs) is more advanced than that for partial differential 

equations (PDEs). Therefore, it seems plausible to capitalize on this fact by 

making use of known results from the theory of difference methods for ODEs to 

construct methods for PDEs. For example, the time differencing schemes used 

to construct implicit methods for PDEs are invariably LMMs although this fact 

is seldom noted. Since a great deal is known about the properties of LMMs 

(see, e. g. , [6, l o ] ) ,  one can use this information to advantage when attempting 

to construct schemes for PDEs. With these observations in mind we use Sec. 2 

as a review of the theory and notation for linear multistep methods including 

A-stability, A,-stability, and one-leg methods. In addition, we introduce the 

notion of an LMM combining two different LMMs - one implicit and the other 

explicit. In Sec. 3 we investigate the stability of an implicit method for 

(1.1) obtained by using an A,-stable LMM as the time differencing method. We 

then modify the scheme by treating the mixed derivative explicitly and rein- 

vestigate the stability properties. The method of approximate factorization 

is applied in Sec. 4 to obtain an unconditionally stable, second-order accurate, 

multistep AD1 scheme in the p(E) formulation. In Sec. 5 we construct a gen- 

eral approximate factorization method for all second-order, two-step schemes 

and discuss the parameter space for unconditional stability. Details of the 

stability analyses are given in the Appendices A and B. In Sec. 6 a simple 

modification is given for the case of time-dependent coefficients a,b,c. 

Numerical examples are given in Sec. 7 and some concluding remarks in Sec. 8. 



2. P re l imina r i e s .  I n  t h i s  s e c t i o n  we b r i e f l y  review t h e  theory  of 

l i n e a r  m u l t i s t e p  methods (LMMs) and t h e  r e l a t e d  one-leg (mul t i s t ep )  methods. 

I n  a d d i t i o n ,  we in t roduce  combined LMMs. 

2.1. L inear  mu l t i s t ep  methods. A l i n e a r  k-step method f o r  t h e  f i r s t -  

o r d e r  o rd ina ry  d i f f e r e n t i a l  equat ion  

i s  def ined  by t h e  d i f f e r e n c e  equat ion 

where p and u a r e  t h e  genera t ing  polynomials, 

and E i s  t h e  s h i f t  ope ra to r ,  t h a t  is, 

I n  (2.2),  un i s  t h e  numerical s o l u t i o n  a t  t h e  po in t  t = tn = nAt, A t  i s  t h e  

time s t e p ,  and f n  = f  (un, t n ) .  The method i s  e x p l i c i t  i f  Bk = 0 and i m p l i c i t  

otherwise.  Consistency and normal iza t ion  a r e  expressed by t h e  r e l a t i o n s :  

A s  an example of an  LMM, t h e  most gene ra l  c o n s i s t e n t  two-step method 

( i . e . ,  k = 2 i n  (2.3)) can be  w r i t t e n  a s  

where (8,S,4) a r e  a r b i t r a r y  r e a l  numbers. The o p e r a t o r s .  p(E) and a(E) a r e  



For the class of all two-step methods that are at least second-order accurate, 

the parameters (8,5,+) are related by 

and consequently, a(E) can be rewritten in terms of the two parameters (8,C) as 

Some well-known implicit second-order methods and their corresponding values 

(8,5,@) are listed in Table 1. Linear one-step methods are a subclass of (2.6) 

obtained by setting 5 = + = 0 :  

where we have shifted the time index down by one. The trapezoidal formula 

(0,= 1'/2 in (2.10)) 

is the only second-order accurate one-step method. When the trapezoidal for- 

mula is applied to a parabolic equation, the resulting algorithm is usually 

called Crank-Nicolson. 

The linear stability of an LMM is analyzed by applying it to the linear 

test equation 

where X is a complex constant. The stability is determined by the location 

of the roots of the characteristic equation, 

(2.13) ~ ( 5 )  - AAtu(5) = 0 , 

relative to the unit circle in the complex plane. The stability region of an 

LMM consists of the set of all values of AAt for which the characteristic 

equation (2.13) satisfies the root condition; that is, its roots cR all 
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s a t i s f y  I<,( 5 1 and t h e  r o o t s  of u n i t  modulus a r e  simple. An LMM i s  s a i d  

t o  be A-stable i f  i t s  s t a b i l i t y  reg ion  con ta ins  a l l  of t h e  l e f t  h a l f  of t h e  

complex Ant plane inc luding  t h e  imaginary a x i s  [4] .  A simple t e s t  f o r  

A - s t a b i l i t y  can be formulated i n  terms of p o s i t i v e  r e a l  func t ions  [7 ] .  By 

apply ing  the  t e s t  t o  t h e  l i n e a r  two-step method (2 .6) ,  one f i n d s  t h a t  t h e  

method i s  A-stable i f  and only i f  

An LMM i s  s a i d  t o  be A,-stable i f  t h e  reg ion  of s t a b i l i t y  con ta ins  t h e  nega- 

t i v e  r e a l  a x i s  of t h e  complex X A t  p lane ,  t h a t  is ,  t h e  i n t e r v a l  (-a, 01. 

Again, by applying t h e  theory of p o s i t i v e  r e a l  func t ions ,  one f i n d s  t h a t  LMM 

(2.6) i s  A,-stable i f  and only  i f  

( 2 . 1 5 ~ )  O r e + $ .  

The d e t a i l s  of t he  a n a l y s i s  f o r  ob ta in ing  t h e s e  i n e q u a l i t i e s  a r e  descr ibed  i n  

[21] .  For f i r s t - o r d e r  accu ra t e  schemes, t h e  i n e q u a l i t y  ( 2 . 1 5 ~ )  is  less s t r i n -  

gent  than  ( 2 . 1 4 ~ ) .  This  i s  no t  s u r p r i s i n g  s i n c e  A,-s tabi l i ty  i s  a  weaker 

requirement than  A-s t ab i l i t y .  However, f o r  t h e  c l a s s  of a l l  second-order 

methods, t h e  parameters  (8,5,$) a r e  r e l a t e d  by (2.8), and both  s e t s  of inequal-  

i t i e s  (2.14) and (2.15) reduce t o  

(2.16aYb) C ; 5 2 0 - 1 ,  1 
5 1 - 7 .  



The parameter space (€1~5) for which the class of two-step, second-order methods 

is A-stable, happens to coincide with the parameter space for which the class 

is A,-stable and is shown by the shaded region of Fig. 1. The methods listed 

in Table 1 and indicated by the symbols in Fig. 1 are both Ao- and A-stable. 

Dahlquist has proved that the order of accuracy of an A-stable LMM 

cannot exceed two [4]. On the other hand, Cryer [3] has proved there exist 

A,-stable LMMs of arbitrarily high order. Since the eigenvalue associated 

with the parabolic equation (1.1) is real and negative, the application of an 

A,-stable LMM will yield an unconditionally stable scheme, that is, no stabil- 

ity restriction on the size of At. 

In this paper we restrict our attention to second-order accurate LMMs. 

This limitation is motivated by two practical considerations. First, conven- 

tional techniques for constructing alternating direction implicit (all 

A-stable and Ao-stable LMMs are implicit [4,3]) schemes generally impose a 

second-order-temporal accuracy limitation independent of the accuracy of the 

LMM chosen as the time differencing approximation. The reason for this will 

become apparent in Sec. 4. In principle, by altering conventional proce- 

dures, AD1 schemes of temporal order greater than 2 can be constructed for 

PDEs where Ao-stable LMMs are appropriate; however, the unconditional stabil- 

ity of the higher order AD1 schemes is an open question. The second practical 

consideration is computer storage. Even if the question of unconditional 

stability is answered in the affirmative, the scheme must be at least a three- 

step method since the two-step method (2.6) contains no A,-stable third-order 

subclass. 

2.2. One-leg (multistep) methods. A class of methods closely related to 

LMMs is the one-leg (multistep) methods. The one-leg (k-step) method [5] 

8 



corresponding t o  (2.2) i s  

(2.17) p (E)cn = ~ t f  (o(E)cn, o ( ~ ) t ~ >  

An 
where u denotes  t h e  one-leg method s o l u t i o n .  Formally,  t h e  one-leg method 

(2.17) can be  obta ined  by s h i f t i n g  t h e  ope ra to r  o(E) i n s i d e  t h e  argument 

pa ren thes i s  of f n  = f (un, t n )  i n  t h e  l i n e a r  mu l t i s t ep  formula (2.2).  A s  an  

example, t h e  t r a p e z o i d a l  formula (2.11) i s  an  LMM and t h e  i m p l i c i t  midpoint 

r u l e ,  

i s  t h e  corresponding one-leg method. Dahlquist  [ 5 ]  has  proved t h e  fo l lowing  

theorem r e l a t i n g  s o l u t i o n s  of a one-leg method and an LMM: Let  { i n )  be a 

v e c t o r  sequence t h a t  s a t i s f i e s  t h e  one-leg d i f f e r e n c e  equat ion  (2.17) and s e t  

n u = o(E);;" . 
Then (un) s a t i s f i e s  t h e  LMM d i f f e r e n c e  formula (2.2).  

It should be noted t h a t  LMMs and one-leg methods a r e  equiva len t  when 

app l i ed  t o  t h e  l i n e a r  t e s t  equat ion (2.12) and, consequently,  t h e  r e s u l t s  of 

l i n e a r  s t a b i l i t y  a n a l y s i s  a r e  t h e  same f o r  both. However, one-leg methods 

s imp l i fy  non l inea r  s t a b i l i t y  a n a l y s i s  [5]  and, i n  a d d i t i o n ,  they  a r e  more 

r e l i a b l e  t han  LMMs when used wi th  r a p i d l y  vary ing  i n t e g r a t i o n  s t e p  s i z e s  [17] .  

A s  app l i ed  i n  t h i s  paper,  t h e  one-leg formulat ion makes i t  easy  t o  cons t ruc t  

an AD1 scheme f o r  t h e  pa rabo l i c  Equation (1.1) wi th  time-dependent c o e f f i -  

c i e n t s .  

2 . 3 .  Combined l i n e a r  mu l t i s t ep  methods. I f  t h e  func t ion  f ( u )  of t h e  

d i f f e r e n t i a l  equat ion  (2.1) is s p l i t  i n t o  a sum, t h a t  i s ,  



we can c o n s t r u c t  an  i n t e g r a t i o n  formula by combining two d i f f e r e n t  LMMs. For 

example, 

(2.20) p ( ~ ) u ~  =  to^ ( E ) ~ C  + A ~ o ~ ( E ) ~ :  , 

where the  s u b s c r i p t s  on o l  and a2 i n d i c a t e  t h a t  t h e  c o e f f i c i e n t s  B j  of t h e  

gene ra t ing  polynomial (2.3b) d i f f e r  f o r  t h e  two func t ions  f l  and f 2 .  The 

analogous s p l i t  one-leg method (2.17) i s  

3. Uncondit ional ly s t a b l e  schemes. I n  t h i s  s e c t i o n  we examine t h e  s t a -  

b i l i t y  of an i m p l i c i t  method f o r  t h e  pa rabo l i c  equat ion  (1.1) where t h e  time 

. , d i f f e r e n c i n g  approximation i s  an A,-stable LMM. Next we modify t h e  scheme 

by t r e a t i n g  t h e  mixed d e r i v a t i v e  e x p l i c i t l y  and determine t h e  c r i t e r i a  f o r  

uncondi t iona l  s t a b i l i t y .  Although not  e s s e n t i a l  t o  t h e  f i n a l  goa l  of con- 

s t r u c t i n g  uncondi t iona l ly  s t a b l e  AD1 schemes wi th  t h e  mixed d e r i v a t i v e  com- 

puted e x p l i c i t l y ,  t h i s  i n t e rmed ia t e  a n a l y s i s  does i s o l a t e  t h e  s t a b i l i t y  con- 

s t r a i n t s  due t o  t h e  a p p l i c a t i o n  of combined LMMs and those  due t o  approximate 

f a c t o r i z a t i o n .  Furthermore, t h e  nonfactored scheme is  formulated s o  t h a t  t h e  

AD1 v a r i a n t  fo l lows  d i r e c t l y  (Sec. 4 ) .  

Numerical methods f o r  so lv ing  t h e  pa rabo l i c  equat ion  (1.1) can be obtained 

by a  d i r e c t  a p p l i c a t i o n  of t h e  LMM (2.2). Since our  i n t e r e s t  is i n  cons t ruc t -  

i n g  uncondi t iona l ly  s t a b l e  schemes, w e  assume t h a t  t h e  LMM i s  A,-stable. By 

comparing (1.1) and (2.1) ,  we i d e n t i f y  

f (u) = Lu = 
a2  

where L is a l i n e a r  d i f f e r e n t i a l  ope ra to r .  For s i m p l i c i t y  we assume t h a t  

t h e  c o e f f i c i e n t s  a , b , c  a r e  independent of time. The case  of time-dependent 



c o e f f i c i e n t s  is  considered i n  Sec. 6.  I n s e r t i o n  of (3.1) i n t o  (2 .2)  y i e l d s  

To ana lyze  t h e  s t a b i l i t y  of (3.2) we assume a s o l u t i o n  f o r  t h e  PDE (1.1) 

(with cons tan t  c o e f f i c i e n t s )  of t h e  form 

(3.3) u ( x , y , t )  = v ( t ) e  
~ ( K ~ x + K ~ Y )  

where v ( t )  is  t h e  Four i e r  c o e f f i c i e n t  and K ~ ,  K~ a r e  t h e  Four i e r  v a r i a b l e s  

(wave numbers). S u b s t i t u t i o n  of ( 3 . 3 )  i n t o  (1.1) y i e l d s  an ODE f o r  v ( t ) :  

where 

(3.4b) 

The q u a d r a t i c  form i n  t h e  pa ren thes i s  of (3.4b) is p o s i t i v e  d e f i n i t e  i f  and 

only i f  t h e  i n e q u a l i t i e s  ( l . l c , d )  a r e  s a t i s f i e d .  These c o n s t r a i n t s  cons t i -  

t u t e  t h e  p a r a b o l i c i t y  condi t ion  of t h e  PDE and ensure  t h a t  t h e  s o l u t i o n  of 

(3.4) i s  damped w i t h  time. To complete t h e  s t a b i l i t y  a n a l y s i s  of t h e  PDE 

scheme (3.2) ,  we need only cons ider  t h e  s t a b i l i t y  of t h e  LMMs (2.2) appl ied  t o  

(3.4) wi th  X < 0. Since we assumed t h a t  (2.2) i s  A,-stable, t h e  PDE scheme 

(3.2)  i s  uncondi t iona l ly  s t a b l e .  I n  p r a c t i c e ,  t h e  s p a t i a l  d e r i v a t i v e s  i n  (3.2) 

a r e  rep laced  by appropr i a t e  d i f f e r e n c e  quo t i en t s ;  however, a s  shown a t  t h e  end 

of Appendix By c e n t r a l  s p a t i a l  d i s c r e t i z a t i o n  does not  a l t e r  t h e  uncondi t iona l  

s t a b i l i t y  c r i t e r i a  obtained by assuming s p a t i a l l y  continuous s o l u t i o n s .  

For t h e  one-step methods (2.10), t h e  scheme (3.2) reduces t o  

With c e n t r a l  s p a t i a l  d i f f e r e n c e  approximations, (3.5) i s  i d e n t i c a l  t o  a  

scheme suggested by Lax and Richtmyer 1131. Thei r  paper  appeared about t h e  

11 



same t ime t h e  o r i g i n a l  AD1 methods were proposed by Peaceman and Rachford [18]  

and Douglas [8] .  The f i r s t  AD1 methods [8 ,  181 d id  not  inc lude  a mixed der iv-  

a t i v e  term and i t s  presence prec ludes  t h e  cons t ruc t ion  of an  e f f i c i e n t  AD1 

method. A simple way of circumventing t h i s  d i f f i c u l t y  i s  t o  t r e a t  t h e  mixed 

d e r i v a t i v e  e x p l i c i t l y .  One might expect ,  however, t h a t  t h i s  would have an  

adverse  e f f e c t  on t h e  uncondi t iona l  s t a b i l i t y  of t h e  algori thm. This  s t a b i l i t y  

ques t ion  i s  considered i n  t h e  remainder of t h i s  s e c t i o n .  

Consider t h e  combined LMM (2.20) where u l  and o2 a r e  def ined  a s  fol lows.  

Let (2.2)  r ep re sen t  a second-order A,-stable LMM and d e f i n e  

(3.6a,b) o l ( E ) = o ( E )  , u2(E) = u e ( E )  , 

where oe(E) i s  a second-order e x p l i c i t  LMM ( i . e . ,  B = 0 i n  t h e  gene ra t ing  
k 

polynomial (2.3b)) w i th  t h e  same genera t ing  polynomial p(5)  a s  f o r  t h e  

A,-stable LMM. With t h e s e  d e f i n i t i o n s ,  (2.20) becomes 

Henceforth,  i n  r e f e rence  t o  a combined i m p l i c i t - e x p l i c i t  method such a s  ( 3 . 7 ) ,  

we r e f e r  t o  t h e  LMM t h a t  d e f i n e s  p(E) and a(E) a s  t h e  genera t ing  LMM. The 

l i n e a r  s t a b i l i t y  p r o p e r t i e s  of (3.7) f o r  second-order two-step methods a r e  

examined i n  Appendix A. 

For d i d a c t i c  purposes i n  t h i s  s e c t i o n  and p r a c t i c a l  reasons i n  t h e  fo l -  

lowing s e c t i o n ,  we r e w r i t e  t h e  LMM (3.7) as 

where 

w = B / a  
k k '  

The parameter o is  def ined  s o  t h a t  t h e  ope ra to r  o ( E ) -  wp(E) on t h e  r igh thand 

s i d e  of (3.8) is  a t  l e a s t  one degree lower than t h e  ope ra to r  p ( E ) o n  the  

12 



lef t -hand s ide .  This  can r e a d i l y  be seen  by us ing  t h e  d e f i n i t i o n s  (2.3) and 

w r i t i n g  out  t h e  h ighes t  degree term of t h e  ope ra to r  

Consequently, t h e  right-hand s i d e  of (3.8) can be computed e x p l i c i t l y ,  t h a t  

is ,  from known d a t a  when advancing t h e  numerical  s o l u t i o n  from n+k-1 t o  

n+k . 
F i n a l l y ,  t o  apply t h e  combined scheme (3.8) t o  t h e  PDE (1 .1) ,  we s p l i t  t h e  

l i n e a r  d i f f e r e n t i a l  ope ra to r  of ( 3 . 1 ) ,  i . e . ,  

a a 2~ 
f l ( u )  = ( a K +  c  -)u and f 2 ( u )  = b  - 

ax2 ay axay 

By s u b s t i t u t i n g  (3.11) i n t o  (3.8) ,  we ob ta in  

a 2  u e ( ~ ) u n  . [o(E) - o p ( ~ ) ] u "  + Atb - 
axay 

This  formula is  i m p l i c i t  f o r  uxx and u  and e x p l i c i t  f o r  u  
YY xy' 

Remark: The scheme (3.12) wi th  t h e  s imples t  eva lua t ion  of t h e  r i g h t -  

hand s i d e  has  ae(E) given by 

(3.13) ae(E) = - w ( E ) l u n  , 

i n  which c a s e  

Unfortunately,  t h e  method wi th  u,(E) def ined  by (3.13) i s  only f i r s t - o r d e r  

accu ra t e .  

For t h e  s t a b i l i t y  a n a l y s i s  of (3.12), we cons ider  t h e  second-order, two- 

s t e p  methods where p (E) and u(E) a r e  def ined  by (2.7a) and (2.9) and t h e  



e x p l i c i t  ope ra to r  ae(E) i s  obta ined  from (2.9) by s e t t i n g  8 = 0, 

The d e t a i l s  of t h e  s t a b i l i t y  a n a l y s i s  a r e  given i n  Appendix A. Scheme (3.12) 

i s  found t o  be uncond i t i ona l ly  s t a b l e  f o r  a l l  va lues  of a ,b , c  s a t i s f y i n g  

e q u a l i t i e s  ( l . l c , d )  i f  and only  i f  

The va lues  of t h e  parameters  ( 0 , E )  s a t i s f y i n g  t h e s e  i n e q u a l i t i e s  a r e  shown by 

t h e  shaded reg ion  of Fig.  2. I n e q u a l i t y  (3.16a) is  more r e s t r i c t i v e  than  

(2.16a) f o r  t h e  genera t ing  second-order, two-step method t o  be A - s t a b l e  
0 

( s ee  Fig. 1 ) .  Methods t h a t  f a l l  i n  t he  reg ion  between the  l i n e s  

(3.17) 5 = 2 8 - 1  and E = 8 - 1  

and above 5 = - 112 a r e  not  uncondi t iona l ly  s t a b l e  f o r  a l l  va lues  of t h e  

c o e f f i c i e n t  b  s a t i s f y i n g  i n e q u a l i t y  (1 . ld) .  Note t h a t ,  w i th  t h e  except ion 

of t h e  two-step t r a p e z o i d a l  formula, none of t h e  methods l i s t e d  i n  Table 1 

f a l l s  i n  t h e  shaded reg ion  of Fig. 2. 

Remark: It i s  of i n t e r e s t  t o  no te  t h a t  t h e  e x p l i c i t  ope ra to r  (3.15) can 

a l s o  be obta ined  from t h e  i m p l i c i t  ope ra to r  (2.9) app l i ed  t o  f n ,  

by us ing  l i n e a r  e x t r a p o l a t i o n ,  t h a t  is ,  

fn+2 = 2fn+' - f n  + 0 ( d t 2 )  , 
£n+2 t o  approximate . Although t h e  use  of l i n e a r  e x t r a p o l a t i o n  might sound 

r a t h e r  d i s r epu tab le ,  t h e  a p p l i c a t i o n  of an  e x p l i c i t  INM does no t .  

I n  t h e  fo l lowing  s e c t i o n  we f i n d  t h e  r a t h e r  remarkable r e s u l t  t h a t  an  

approximate f a c t o r i z a t i o n  of t h e  lef t -hand s i d e  of (3.12) i n t o  a  product of 

one-dimensional o p e r a t o r s  r e s t o r e s  most of t h e  parameter space (8,E) f o r  
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uncondi t iona l  s t a b i l i t y  l o s t  by t h e  e x p l i c i t  t rea tment  of t h e  mixed 

d e r i v a t i v e .  

4. An AD1 scheme: t h e  p(E) o r  A formulat ion.  I n  t h e  procedure sug- 

ges ted  i n  [20]  f o r  designing AD1 schemes, t h e  i m p l i c i t  ope ra to r  t o  be inve r t ed  

i s  cons t ruc t ed  so  t h a t  t h e  unknown v a r i a b l e  t o  be determined a t  each t ime s t e p  

n 
i s  p(E)u . I n  t h e  absence of a mixed d e r i v a t i v e  t h i s  choice  ensures  t h a t  

approximate f a c t o r i z a t i o n  i n t o  a product of one-dimensional ope ra to r s  does 

no t  upset  e i t h e r  t h e  temporal accuracy (second-order) o r  t h e  uncondi t iona l  

s t a b i l i t y  of t h e  scheme. I n  t h i s  s e c t i o n  we cons t ruc t  an  AD1 scheme i n  t h e  

p(E) formulat ion wi th  t h e  mixed d e r i v a t i v e  t r e a t e d  e x p l i c i t l y  w i t h  second- 

o r d e r  accuracy and examine t h e  s t a b i l i t y  of t h e  r e s u l t i n g  algori thm. 

I f  t h e  s p a t i a l  d e r i v a t i v e s  appearing i n  (3.12) a r e  rep laced  by appropr i a t e  

d i f f e r e n c e  q u o t i e n t s ,  then  one ob ta ins  i n  genera l  an enormous l i n e a r  system t o  

s o l v e  f o r  p ( ~ ) u " .  This  d i f f i c u l t y  can be overcome by an  approximate f ac to r -  

i z a t i o n  of t h e  lef t -hand s i d e  of (3.12) which reduces t h e  problem t o  a  product 

of one-dimensional s p a t i a l  ope ra to r s ;  t h a t  i s ,  

Comparison of t h e  lef t -hand s i d e s  of (4.1) and (3.12) shows t h a t  they  d i f f e r  

by t h e  cross-product term 

n But by expanding P ( E ) U ~  i n  a Taylor s e r i e s  about u  and us ing  t h e  consis-  

tency and normal iza t ion  cond i t i ons  (2.5a,b),  one o b t a i n s  



Consequently,  t h e  cross-product t e r m  (4.2) 

i s  a  t h i rd -o rde r  term and t h e  formal accuracy of t h e  scheme (3.12) i s  not  

upse t  by t h e  approximate f a c t o r i z a t i o n  (4.1). 

I n  p r a c t i c e ,  t h e  second-order, two-step methods de f ined  by (2.7a) and 

(2.9) a r e  of primary i n t e r e s t  and i n  t h e  remainder of  t h i s  s e c t i o n  we l i m i t  

our  a t t e n t i o n  t o  t h e s e  methods. The e x p l i c i t  o p e r a t o r  ae(E) is  given by 

(3.15). I n  numerical  a lgor i thms  f o r  p a r t i a l  d i f f e r e n t i a l  equa t ions  i t  i s  

convent iona l  t o  u se  n+l a s  t h e  most advanced t i m e  l e v e l ;  hence, we mu l t i p ly  

(4.1) by E l .  The s h i f t e d  d i f f e r e n c e  o p e r a t o r s  f o r  t h e  second-order, two- 

s t e p  method can be  w r i t t e n  a s  

(4.5a) nun = ~ - l p  ( E ) u ~  = ( 1  + S)E - (1 + 25) + S E - ~ I U ~  , 

(4.5b) = [(l + 5)A - 5v]un , 

( 4 . 5 ~ )  = ( 1  + S)un+l - (1  + 2 6 ) ~ "  + Sun-', 

where t h e  symbols A and V a r e  c l a s s i c a l  forward and backward d i f f e r e n c e  

o p e r a t o r s  def ined  by 



(4.8) 
n+ 1 n n n n-1 

dun = u - u  , Vu = u  - u  

As a notational convenience, we have denoted the operator E-'~(E) by A .  

From (4.5) and (4.6) there follows 

where 

The factored scheme (4.1) becomes 

The computational sequence to implement the factored scheme (4.11) as an AD1 

method is not unique, but an obvious choice is 

AU* = RHS (4.11) , 

(4.12~) (1 + E)un+l = nun + (1 + 26)un - Eun-l , 

where hu* is a dummy temporal difference. 

Remark: If the first-order explicit method with ae(E) defined by (3.13) 

were used rather than a second-order method, the right-hand side of (4.1) 

would be the same as (3.14). In this case, the right-hand side of (4.11) 

would be replaced by 



where we have used (4.9).  Although t h e  r e s u l t i n g  scheme i s  f i r s t - o r d e r  accu- 

r a t e  i n  t ime f o r  t h e  mixed d e r i v a t i v e ,  i t  is  uncond i t i ona l ly  s t a b l e  f o r  va lues  

of (8,E) i n  t h e  shaded reg ion  of Fig.  1. This  r e s u l t  was e s t a b l i s h e d  i n  [20, 

Appendix A] by c o n s t r u c t i n g  t h e  scheme s o  t h a t  t h e  c h a r a c t e r i s t i c  equa t ion  

(which determines t h e  s t a b i l i t y  of  t h e  method) f o r  t h e  f a c t o r e d  p a r t i a l  d i f -  

f e r ence  equa t ion  had t h e  same form a s  t h e  c h a r a c t e r i s t i c  equa t ion  (2.13) f o r  

t h e  o rd ina ry  d i f f e r e n t i a l  equat ion.  

The scheme (4.11) i s  second-order a c c u r a t e  i n  t h e  mixed d e r i v a t i v e  bu t  

t h e  c h a r a c t e r i s t i c  equa t ion  no longer  has  t h e  form (2.13). Consequently,  t h e  

s t a b i l i t y  a n a l y s i s  must be  redone i n  a  less e l e g a n t  manner t han  i n  [20]  and i s  

c a r r i e d  o u t  i n  Appendix B. The s t a b i l i t y  a n a l y s i s  of  Appendix B i s  f o r  t h e  

gene ra l  two-step AD1 scheme developed i n  t h e  fo l lowing  s e c t i o n .  The A for -  

mulat ion (4.11) is  a  s p e c i a l  c a se  of t h e  gene ra l  two-step scheme and i s  found 

t o  be  uncond i t i ona l ly  s t a b l e  f o r  a l l  va lues  of a , b , c  s a t i s f y i n g  i n e q u a l i t i e s  

( l . l c , d )  i f  and only  i f  

The parameter  space  (8,E) s a t i s f y i n g  t h e s e  i n e q u a l i t i e s  i s  shown by t h e  shaded 

reg ion  of  Fig. 3. The i n e q u a l i t y  (4.14a) i s  more s t r i n g e n t  than (2.16a) ,  and 

methods t h a t  f a l l  i n  t h e  r eg ion  between t h e  curves  

5 = 2 0 - 1  and 0 =  2 ( 1  + 512 
3  + 45 

and above 5 = - 112 a r e  n o t  uncond i t i ona l ly  s t a b l e  f o r  a l l  va lues  of t h e  

c o e f f i c i e n t  b  s a t i s f y i n g  i n e q u a l i t y  ( 1 . l d ) .  This  i nc ludes  such popular  

schemes a s  t h e  t r a p e z o i d a l  formula and Lees method ( see ,  e .g . ,  [ 2 ] ) .  However, 

t h e r e  remains a  l a r g e  c l a s s  of uncond i t i ona l ly  s t a b l e  methods i nc lud ing ,  e . g . ,  

t h e  backward d i f f e r e n t i a t i o n  formula ( s ee  Table  1 ) .  



5. A gene ra l  two-step AD1 scheme. I n  t h e  AD1 formulat ion descr ibed  i n  

t he  previous s e c t i o n  i t  i s  e s s e n t i a l  t h a t  t h e  unknown v a r i a b l e  be  a t  l e a s t  a  

f i r s t  d i f f e r e n c e  t o  ensure  t h a t  t he  approximate f a c t o r i z a t i o n  does no t  degrade 

t h e  second-order accuracy of t h e  scheme; f o r  example, t h e  unknown v a r i a b l e  

n 
E-'p (E)un = Au i s  an approximation t o  A t  ( au / a t )  ( s ee  Eq. (4 .3)) .  The choice  

of  unknown v a r i a b l e  is n o t  unique and i n  f a c t  t h e  most gene ra l  form of a  f i r s t  

d i f f e r e n c e  us ing  d a t a  from t h e  t h r e e  l e v e l s  n-1, n ,  n+l can be w r i t t e n  a s  

where A and V a r e  t h e  forward and backward ope ra to r s  def ined  by (4.8) and a  

i s  an  a r b i t r a r y  r e a l  cons tan t .  The undivided d i f f e r e n c e  (5.1) is a second 

d i f f e r e n c e  i f  a  = 1 and a f i r s t  d i f f e r e n c e  otherwise.  The most a c c u r a t e  

f i r s t  d i f f e r e n c e  i s  f o r  a  = -1. 

5.1. General formulat ion.  A gene ra l  formulat ion of two-step AD1 schemes 

is obta ined  i f  we choose (A - av)un a s  t h e  unknown v a r i a b l e .  We f i r s t  r e w r i t e  

t h e  LMM ( 3 . 7 )  i n  a  convenient form f o r  t h e  cons t ruc t ion  of an  AD1 scheme wi th  

(A - av)un a s  t h e  unknown v a r i a b l e .  Mul t ip ly ing  ( 3 . 7 )  by E-' and i n s e r t i n g  

t h e  o p e r a t o r s  E-lp(E), E-lo(E), and E-~CI,(E) def ined  by (4.5b), (4.6b),  and 

(4.7b),  one can r e w r i t e  t h e  r e s u l t i n g  two-step method a s  

A f t e r  s u b t r a c t i n g  avun - a w ~ t v f ?  from both s i d e s ,  t h e r e  fo l lows  



(5.3) (A- av)un - wAt(A - a ~ ) f y  = - 1 A t  + E; [l + (i - 8  +f)V](fy + fy) 

Using (3 .  l l ) ,  one o b t a i n s  

The s p a t i a l l y  f a c t o r e d  form of (5.4) i s  

which can be implemented a s  

The s t a b i l i t y  a n a l y s i s  f o r  t h e  gene ra l  f a c t o r e d  scheme (5.5) is given i n  

Appendix B. The scheme is found t o  be uncond i t i ona l ly  s t a b l e  f o r  a l l  va lues  

of a , b , c  s a t i s f y i n g  i n e q u a l i t i e s  ( l c , d )  i f  and only  i f  

The parameter  space ( € 1 ~ 5 )  s a t i s f y i n g  t h e s e  i n e q u a l i t i e s  i s  i n d i c a t e d  i n  F ig .  4 

f o r  s e v e r a l  va lues  of a .  For a  given value '  of a ,  t h e  s t a b l e  range  is  t o  t h e  

r i g h t  of  t h e  curve l abe l ed  w i th  t h a t  va lue  of a  and above t h e  curve 

5 = - 1/2 .  The e x t e n t  of t h e  (8,5) parameter space f o r  uncondi t iona l  

2 0 



s t a b i l i t y  i s  a monotone inc reas ing  func t ion  of a i n  t h e  range [-1,1] w i t h  

t h e  sma l l e s t  reg ion  f o r  a = -1 and t h e  l a r g e s t  f o r  a = +l. I n e q u a l i t y  (5.7a) 

i s  more s t r i n g e n t  than  (2.16a) a s  i s  apparent  i n  Fig.  4. Along t h e  l i n e  

5 = 0, i n e q u a l i t y  (5.7a) becomes 

and t h e  sma l l e s t  allowed va lue  f o r  8 occurs  when a = 1, i n  which c a s e  (5.8) 

becomes 

Along t h e  lower s t a b i l i t y  boundary 5 = - 112, i n e q u a l i t y  (5.7a) becomes 

which i s  independent of t h e  parameter a. A s  a  consequence of inequal i -  

t i e s  (5.9) and (5.10), such popular i m p l i c i t  methods a s  t h e  t r a p e z o i d a l  for -  

mula (9 = 112, 5  = 0)  and Lees method (8 = 113, 5  = - 112) a r e  not  uncondi- 

t i o n a l l y  s t a b l e  f o r  a l l  va lues  of t h e  c o e f f i c i e n t  b  s a t i s f y i n g  

i n e q u a l i t y  (1. l d )  . 
I f  t h e  parameter a i s  chosen t o  be  5 / ( 1  + E ) ,  scheme (5.5) reduces t o  

t h e  A formulat ion of Sec. 4. This  AD1 method has  t h e  p e c u l i a r  proper ty  t h a t  

t h e  unknown v a r i a b l e  depends on t h e  parameter 5 ,  t h a t  is,  on t h e  p a r t i c u l a r  

LMM chosen. The parameter space (9,5) f o r  which t h e  A formulat ion i s  uncon- 

d i t i o n a l l y  s t a b l e  i s  shown by t h e  shaded reg ion  of Fig. 2  and t h e  ex t en t  of 

t h e  reg ion  is n e a r l y  as l a r g e  a s  t h a t  f o r  (5.5) wi th  a = 1. 

5.2. Spec ia l  ca ses  of genera l  formulat ion.  Various cons tan t  va lues  of 

a i n  t h e  range [-1,1] produce use fu l  and i n t e r e s t i n g  a lgor i thms and we con- 

s i d e r  s e v e r a l  i n  g r e a t e r  d e t a i l .  The schemes a r e  named according t o  t h e  
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c l a s s i c a l  d i f f e r e n c e  o p e r a t o r  represen ted  by (5.1) f o r  t h e  chosen va lues  of 

a .  

5.2a. The A fo rmula t ion  (a  = 0 ) .  I f  a i s  chosen t o  be ze ro ,  t h e  

gene ra l  scheme (5.5) reduces t o  

which we c a l l  t h e  A fo rmula t ion  [1,19]  s i n c e  Aun i s  t h e  unknown v a r i a b l e .  

The parameter space f o r  uncondi t iona l  s t a b i l i t y  i s  given by t h e  i nequa l i -  

t ies  (5.7a,b)  w i th  a  = 0 and is  shown g r a p h i c a l l y  i n  Fig.  4. 

5.2b. The €i2 fo rmula t ion  (a = 1 ) .  I n  t h e  gene ra l  AD1 formula t ion  (5.5) 

t h e  unknown v a r i a b l e  (A - av)un i s  an  approximation t o  A t ( au / a t )  i f  a # 1 

( s e e  Eq. (5 .1)) .  A l e s s  n a t u r a l  choice  f o r  t h e  unknown v a r i a b l e  f o r  a  f i r s t -  

o r d e r  ( temporal)  d i f f e r e n t i a l  equa t ion  i s  t h e  second d i f f e r e n c e  ob ta ined  when 

a = 1. I n  t h i s  case ,  (5.1) becomes 

where t h e  c l a s s i c a l  second d i f f e r e n c e  ope ra to r  62 i s  def ined  by 

(5.13) n  n - 1 .  82un = un+' - 2u + u 

The p o s s i b i l i t y  of us ing  62un a s  t h e  unknown v a r i a b l e  does n o t  a r i s e  f o r  

l i n e a r  one-step methods (e .g . ,  t h e  t r a p e z o i d a l  formula (2.11)) s i n c e  t h e s e  

methods on ly  involve  two time l e v e l s .  



If a is set equal to one in the general two-step scheme (5.5), we 

obtain 

At =-  a2  + b -  a + c ";)b + (i + i)VIun - A VU" . 
+ i  (a, axay ay 

A possible advantage of the 62 formulation is that the cross-term error 

introduced by the approximate factorization is one order higher than in the 

general (A - aV) formulation with a 2 1. By comparing the left-hand sides 

of ( 5 . 4 2  and (5.5), we find they differ by 

which, for a = 1, becomes 

= o(~t4) , 

where we have used (5.12). The cross-term error for the A = E-'~ (E) formula- 

tion is given by (4.4). The parameter space for which the 6 2  formulation is 

unconditionally stable is given by inequalities (5.7aYb) with a = 1 and is 

shown graphically in Fig. 4. 

A distinct disadvantage of the d2 formulation occurs when it is applied 

to convective (hyperbolic) model equations as briefly discussed in Section 8. 

5.2~. The 2p6 formulation (a = -1). As a final special case of the 

generalized formulation we choose a = -1, that is, 

(5.16) A - a V = A + V = 2 p € i Y  

where 2 is the classical central difference operator 

(5.17) 2v6un = ,p+l - ,n-1 
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The scheme (5.5) becomes 

The parameter space for unconditional stability of this formulation is given 

by inequalities (5.7a,b) with a = -1, 

(5.19) 0 1 1 + E ,  
1 

5 1 -- 2 

which is identical to the stability space for the unfactored scheme (3.12) 

(see inequality (3.16) and Fig. 2). 

5.3. Algorithm selection. From the class of unconditionally stable 

methods one can choose a scheme with properties that are desirable with regard 

to computer storage, computational simplicity, and temporal behavior when 

applied to stiff problems and/or problems with nonsmooth data. The choice 

generally requires a compromise. 

Consider, for example, the A formulation (4.11) of Sec. 4. The compu- 

tation of the right-hand side of (4.11) is obviously simplified if we set 

(5.20) s -  w + - =  l o .  2 

Since w  = 0/(1 + 5 ) ,  this equation can be rewritten as 

(5.21) 0 = (E + I)(E +$) ; 

it is plotted in Fig. 3. Another variant is obtained by rewriting the right- 

hand side of (4.11) as 



where we have used (4.9a). The calculation of (5.22) is simplified if we let 

i 

which can be rewritten as 

it is also plotted in Fig. 3. If in addition, we choose 5 = - 112, then 

(5.22) becomes simply 

RHS (4.11) = At a - ( 
In this special case, each spatial derivative on the right-hand side of (4.11) 

requires evaluation at only a single time level. The time differencing 

(8 = 112, 5 = - 112) corresponds to the two-step trapezoidal formula (see 

Table 1). A,- and A-stable methods along the bottom boundary 5 = - 1/2 of 

Fig. 1 are "symmetric" schemes. These methods have the unfortunate property 

that the modulus of at least one root of the characteristic equation (2.13) 

approaches 1 as XAt + a. Consequently, these methods can produce slowly 

decaying numerical oscillations when applied to stiff problems. This 

observation illustrates that computational simplicity should not provide the 

sole basis for selecting a time-differencing scheme. 

The computation of the right-hand side of the A formulation (5.11) is 

obviously simplified if we set 

This special case of the A formulation was given by the authors in [I; see 



Eq. (4.2)]. The A formulation is particularly attractive for its simplicity 

in programming logic and minimal computing storage requirements. Finally, the 

62u formulation (5.14) has the computational advantage that all spatial 

derivatives on the right-hand side operate on the same function, that is, 

[I + (5 + 1/2)v]un. For the special case 5 = - 1/2, the function is con- 
n veniently u . 

Although considerations of computer storage and computational simplicity 

may not be particularly important for the simple model equation (1.1), they 

are of primary concern when one deals with more complicated parabolic equa- 

tions such as the compressible Navier-Stokes equations (see, e.g., [1,21]). 

5.4. General formulation with no mixed derivative. It is important to 

note that if b 5 0, that is, there is no mixed derivative, then inequali- 

ties (5.7) are replaced by 

and the general two-step AD1 formula (5.5) is unconditionally stable for the 

same values of (8,C) as for the original second-order, two-step method (see 

inequalities (2.16) and Fig. 1). In the absence of mixed derivatives, the 

natural extension of (5.5) to three spatial dimensions is also unconditionally 

stable for values of (a,B,C) satisfying inequalities (5.27). 

It is appropriate to mention the relation between the Douglas-Gunn method 

[ 9 ,  Sec. 31 for multilevel difference schemes and the general two-step AD1 

scheme (5.6) in the absence of a mixed derivative, that is, b = 0. The dif- 

ference (5.1) corresponds to the difference 

(5.28a) u n+i n+l - u* 
in the Douglas-Gunn development where 



Hence, on comparing (5.28) and (5. I ) ,  one f i n d s  t h a t  

(5.29) ~ $ ~ = l + a ,  

Douglas and Gunn g ive  a  formal procedure f o r  devis ing  an  AD1 scheme from a 

f u l l y  i m p l i c i t  scheme suppl ied  by t h e  user .  For example, cons ider  t h e  second- 

o r d e r ,  two-step method ((3.2)  wi th  b = 0 ) ,  where p(E) and a(E) a r e  def ined  

by (2.7a) and (2.9) and (8,5) s a t i s f y  i n e q u a l i t i e s  (2.16). I f  we apply t h e  

formulas (3.7) of [ 9 ] ,  we o b t a i n  an AD1 a lgor i thm t h a t  can be  shown t o  be 

equiva len t  t o  (5.6). The r e s u l t i n g  scheme i s  uncondi t iona l ly  s t a b l e  f o r  

-1 < a 5 1 s i n c e  t h e  LMM i s  A,-stable. Reca l l  t h a t  t h e  d i scuss ion  of t h i s  

paragraph is  only  f o r  t h e  case  of no mixed d e r i v a t i v e .  

6. Time-dependent c o e f f i c i e n t s .  I f  t h e  c o e f f i c i e n t s  a , b , c  of t h e  PDE 

(1.1) a r e  func t ions  of t ime, a  d i f f i c u l t y  a r i s e s  when we i n s e r t  (3.11) i n t o  

(3.8) s i n c e  

This  i s  n o t  an  e q u a l i t y  because t h e  t ime dependence of t h e  c o e f f i c i e n t s  cannot 

be neglec ted  when t h e  temporal-difference ope ra to r  p(E) i s  appl ied .  This  

problem can be  avoided i f  we begin wi th  t h e  one-leg method (2.21) i n s t e a d  of 

t h e  convent iona l  LMM. 

With u l  and u2 defined by (3.6),  t h e  one-leg method (2.21) i s  

For t h e  PDE (1.1) we i d e n t i f y  f l  and f 2  a s  (3.11) and ob ta in  



- 
where t and f e  a r e  d e f i n e d  by 

- - 
(6 .4a ,b )  t = u ( E ) t n  , n te = ue ( E ) t  . 

I f  (6 .3)  i s  modi f i ed  t o  t h e  p r e f a c t o r e d  form by s u b t r a c t i n g  

from each s i d e ,  we o b t a i n  

a 
(6 .5)  (l - A t )  - +  ax2 c  

The p r e f a c t o r e d  form (6 .5)  i s  i d e n t i c a l  t o  (3.12) where a ,  c ,  and b  are 

- 
e v a l u a t e d  a t  t and te d e f i n e d  by (6 .4 ) .  Consequent ly ,  t h e  f a c t o r e d  scheme 

(4.1) is v a l i d  f o r  time-dependent c o e f f i c i e n t s  p rov ided  a , c , b  a r e  e v a l u a t e d  

- 
a t  t h e  a p p r o p r i a t e  t imes  t and te. 

For  second-order ,  two-step mzthods, t h e  s h i f t e d - d i f f e r e n c e  o p e r a t o r s  a r e  

d e f i n e d  by (4.6) and (4 .7 ) .  F o r  t h i s  c a s e  

and hence t h e  time-dependent c o e f f i c i e n t s  a , b , c  a r e  a l l  e v a l u a t e d  a t  t h e  

same t ime  which we d e n o t e  by 



Therefore, the AD1 scheme (4.12) is valid for time-dependent coefficients 

evaluated at t*. Likewise, the same statement applies to the general two- 

step AD1 scheme (5.6). 

7. Numerical examples. In this section the AD1 methods of the previous 

sections are used to solve the parabolic equation (1.1) for a test problem 

with variable coefficients. The purpose of these numerical experiments is not 

to find the optimum scheme but to demonstrate by numerical example that each 

of the formulations - A, A, and ti2 - achieves the purported second-order 

accuracy. In addition, we demonstrate the detrimental effect on the accuracy 

if the mixed derivative is treated with a first-order-accurate method or the 

variable coefficients are not evaluated at the proper time level. 

For the example problem, the coefficients are 

(7. la) 

(7. lb) 

(7. lc) 

An exact solution is 

Numerical solutions were computed on the unit square (0 5 x, y 5 1) with the 

initial and boundary values computed from (7.2). For example, the initial 

condition is 

(7.3) u(x,y,O) = x2y + xy2 , 0 2 x, y 5 1 . 
This model problem is a variant of an example given by McKee and Mitchell [15] 

modified so that the coefficients a,b,c are time-dependent. 

29 



In  t h e  numerical  computations of t h i s  s e c t i o n ,  t h e  s p a t i a l  d e r i v a t i v e s  

were approximated by t h e  fo l lowing  c e n t r a l  d i f f e r e n c e  approximat ions  

(7.4) + 0(Ax2) , 

(7.5) 

2Q - ( ~ l s > ~ ( ~ a ) ~  
(7.6) axay 

- 
AXAY q j  ,k + o(nx2,ny2)  

where x = jAx and y  = kAy. Here 6  and p a r e  c l a s s i c a l  f i n i t e - d i f f e r e n c e  

o p e r a t o r s  de f ined  by 

and hence 

Consider ,  f o r  example, t h e  A fo rmula t ion  (4.12). With t h e  s p a t i a l  

d e r i v a t i v e s  rep laced  by t h e  c e n t r a l - d i f f e r e n c e  q u o t i e n t s  (7 .4)- (7 .6) ,  t h e  

x- and y-operators  on t h e  lef t -hand s i d e  of (4.12a,b) each r e q u i r e s  t h e  solu-  

t i o n  of a t r i d i a g o n a l  system. There i s  a  well-known and h i g h l y  e f f i c i e n t  

s o l u t i o n  a l g o r i t h m  f o r  t r i d i a g o n a l  systems ( see ,  e . g . ,  [ l l ,  p. 551).  The 

s o l u t i o n  o f  t h e  x-operator  (4.12a) (a long each y-constant l i n e )  r e q u i r e s  

t h e  dummy temporal  d i f f e r e n c e  Au* a long  t h e  l e f t  and r i g h t  boundar ies .  I n  

problems cons idered  i n  t h i s  s e c t i o n ,  we assume t h a t  u ( t )  i s  given on t h e  

boundar ies ,  and consequent ly  A *  can be  determined by an  e x p l i c i t  c a l c u l a -  

t i o n  u s i n g  (4.12b) a p p l i e d  a long  both  t h e  l e f t -  and right-hand boundar ies .  



This  i s  t h e  i n i t i a l  c a l c u l a t i o n  made when advancing t h e  s o l u t i o n  from n t o  

n+l. Appl ica t ion  of t h e  gene ra l  two-step AD1 scheme ( 5 . 6 )  r e q u i r e s  an  analo-  

gous computation of a dummy temporal d i f f e r e n c e  a long  t h e  l e f t  and r i g h t  

boundaries  . 
Since t h e  a lgor i thms considered i n  t h i s  paper a r e ,  i n  gene ra l ,  two-step 

(temporal) schemes, a s o l u t i o n  a t  t = A t  i s  needed toge the r  w i t h  t h e  i n i t i a l  

cond i t i on  t o  s t a r t  t h e  computation. For t h e  numerical examples computed 

h e r e i n ,  t h e  exac t  s o l u t i o n  (7.2) a t  t = A t  was used t o  provide t h e  addi-  

t i o n a l  l e v e l  of da t a .  I n  p r a c t i c e ,  one can use  (4.12) a s  a one-step method on 

t h e  f i r s t  t ime s t ep .  This i s  accomplished by r ep lac ing  t h e  right-hand s i d e  of 

(4.11) by (4.13) and choosing 0 = 1 / 2 ,  5 = 0. 

The numerical d i f f e r e n t i a t i o n  formulas (7.4) and (7.5) a r e  exac t  ( i .  e.  , 

t h e  t r u n c a t i o n  e r r o r  is  zero)  f o r  a polynomial of degree not  exceeding t h r e e  

and (7.6) i s  exac t  f o r  a polynomial of degree no t  exceeding two. Since t h e  

exac t  s o l u t i o n  (7.2) is  a quadra t i c  polynomial of degree two i n  each s p a t i a l  

v a r i a b l e ,  t h e  numerical  s o l u t i o n  of an  unfactored a lgor i thm would have t h e  

p e c u l i a r  proper ty  t h a t  t h e r e  would be no s p a t i a l  d i s c r e t i z a t i o n  e r r o r .  Con- 

sequent ly ,  t h e  e r r o r  i n  a numerical s o l u t i o n  f o r  t h e  example problem (7.1) 

c o n s i s t s  of t h e  temporal d i s c r e t i z a t i o n  e r r o r  and t h e  cross-product e r r o r  term 

from t h e  approximate f :>c tor iza t ion  ( see ,  e. g., Eq. (4 .4) ) ,  and, of course,  

roundoff e r r o r .  

For each numerical experiment, we compute t h e  L2 norm of t h e  e r r o r  

n which i s  def ined  a s  follows. A t  a given time, t = t = nAt, t h e  e r r o r  e 
j ,k 

a t  each g r i d  po in t  i s  def ined  by 



n n 
where u 

j , k  
i s  t h e  numerical  s o l u t i o n  and u(jAx,kAy,t ) i s  t h e  a n a l y t i c a l  

s o l u t i o n .  The Euclidean o r  L2 norm of t h e  e r r o r  i s  def ined  by 

L2 e r r o r  = [(e Ae:,Jk] ' " 
j=l  k=1 

where J and K a r e  t h e  t o t a l  number of g r i d  p o i n t s  i n  t h e  x- and y-d i rec t ions .  

The second-order backward d i f f e r e n t i a t i o n  method (8 = 1, 5 = 1 / 2 )  ( s ee  

Table 1 )  was chosen a s  t h e  genera t ing  LMM f o r  t h e  f i r s t  computational exper i -  

ment. The L2 e r r o r s  f o r  t h e  A ,  A ,  and 6 2  formula t ions  (algori thms (4 ,12 ) ,  

(5.11),  and (5.14))  a r e  shown i n  Table 2.  Each computation was c a r r i e d  out  t o  

a given time ( t  = 1 .0 )  wi th  a  f i x e d  r a t i o  of A ~ / A X  = 1.0.  The computations 

were repea ted  wi th  succes s ive ly  sma l l e r  va lues  of A t  s o  t h a t  t h e  L2 r a t e  
+. 

could be computed. (The L p  r a t e  i s  t h e  s l o p e  of a log-log graph of t h e  L2 

e r r o r  vs.  A t .  For a  second-order method without round-off e r r o r ,  t h e  L2 

r a t e  should approach two a s  A t  -t 0.)  The r e s u l t s  show t h e  second-order accu- 

racy  of  t h e  methods. Since t h e  same t ime-differencing method was used f o r  

each computation, t h e  d i f f e r e n c e s  i n  t h e  L2 e r r o r  ( f o r  a given At) r e s u l t  

from t h e  cross-product e r r o r  of t h e  approximate f a c t o r i z a t i o n .  

The next  numerical experiment demonstrates t h e  de t r imen ta l  e f f e c t  on t h e  

accuracy i f  t h e  mixed d e r i v a t i v e  i s  t r e a t e d  with f i r s t - o r d e r  accuracy. The 

e r r o r s  l i s t e d  i n  Table 3 were computed us ing  t h e  A formula t ion  w i t h  t h e  back- 

ward d i f f e r e n t i a t i o n  method a s  t h e  genera t ing  LMM. For r e f e rence ,  t h e  r e s u l t s  

l i s t e d  under column (1) a r e  repea ted  from Table 2.  The L2 e r r o r s  and r a t e s  

t abu la t ed  under column (2) were obtained us ing  (4.12) but  wi th  t h e  right-hand 

s i d e  of (4.11) rep laced  by (4.13), t h a t  is,  a  f i r s t - o r d e r  temporal t rea tment  

f o r  t he  mixed d e r i v a t i v e .  The degrada t ion  i n  accuracy i s  obvious. 



Column (3) of Table 3  shows t h e  d e t e r i o r a t i o n  i n  accuracy when the  time- 

dependent c o e f f i c i e n t s  a , b , c  a r e  no t  eva lua ted  a t  t h e  proper  t ime l e v e l .  

The c o e f f i c i e n t s  should be  evaluated a t  t* defined by (6.7) and hence f o r  

t h e  backward d i f f e r e n t i a t i o n  method (5 = 112) t* = tn + A t .  I n  ob ta in ing  t h e  

L2 e r r o r s  l i s t e d  i n  column ( 3 ) ,  t he  c o e f f i c i e n t s  were eva lua ted  a t  tn r a t h e r  

than  t* and t h e  l o s s  of accuracy i s  apparent .  

It i s  important t o  n o t e  f o r  5 = 0  t h a t  t h e  ope ra to r  A def ined  by (4.5) 

i n  t h e  A formulat ion becomes 

n  hun = AU . 
Consequently, t h e  A and A formulat ions a r e  i d e n t i c a l  i f  5 = 0. (Reca l l  

t h a t  t h e  A a lgor i thm i s  given by (5.6) wi th  a = 0. )  An advantage of t h e  A 

n- 1 
formula t ion  i s  t h a t  u  i s  not  needed t o  compute u  i n  t h e  f i n a l  s t e p  

( 5 . 6 ~ ) ;  hence, t h e  A form gene ra l ly  r e q u i r e s  t h e  l e a s t  amount of s to rage .  

On t h e  o t h e r  hand, t h e  A formulat ion f o r  5 # 0  has a  s i g n i f i c a n t l y  

reduced parameter space (8,C) f o r  uncondi t iona l  s t a b i l i t y  when app l i ed  t o  

hyperbol ic  problems (see Sec. 8 and [20, Sec. 91). Consequently, because t h e  

A and A formula t ions  a r e  i d e n t i c a l  f o r  5 = 0,  t h i s  subc la s s  of schemes has  

t h e  s i m p l i c i t y  of t h e  A form and t h e  robus tness  of t h e  A form. Table 4  

compares t h e  L2 e r r o r  and r a t e  f o r  s e v e r a l  schemes wi th  5  = 0. For a  

f i x e d  va lue  of 5 i n  t h e  reg ion  of Ao-s t ab i l i t y  ( see  Fig. I ) ,  t h e  e r r o r  con- 

s t a n t  i s  a  monotone inc reas ing  func t ion  of 0 .  This  i s  v e r i f i e d  by comparing 

t h e  L2 e r r o r s  f o r  a  given va lue  of A t  i n  Table 4. 

According t o  t h e  s t a b i l i t y  a n a l y s i s  of  Appendix B y  methods t h a t  f a l l  i n  

t h e  reg ion  between t h e  curves (4.15) a r e  no t  uncondi t iona l ly  s t a b l e  i n  t h e  A 

formula t ion  (4.11) f o r  a l l  va lues  of t h e  c o e f f i c i e n t  b  s a t i s f y i n g  i n e q u a l i t y  

l l d  The l a s t  numerical experiment v e r i f i e s  t h i s  r e s u l t  f o r  t h e  LMM 



methods l i s t e d  i n  Table  1. The parameters  used i n  t h e  computation a r e  l i s t e d  

i n  t h e  cap t ion  of Table 5. The l o s s  of uncond i t i ona l  s t a b i l i t y  f o r  t h e  t r ape -  

z o i d a l  formula and Lees method i s  apparent  from t h e  l a r g e  e r r o r  f o r  t h e s e  two 

methods l i s t e d  i n  Table  5. 

8. Concluding remarks. I n  t h i s  paper we combine t h e  c l a s s  of a l l  

A,-stable second-order l i n e a r  two-step methods and t h e  method of approximate 

f a c t o r i z a t i o n  t o  c o n s t r u c t  uncond i t i ona l ly  s t a b l e  AD1 methods f o r  p a r a b o l i c  

equa t ions  ( i n  two space dimensions) w i t h  a  mixed d e r i v a t i v e .  For computat ional  

s i m p l i c i t y  t h e  mixed d e r i v a t i v e  i s  t r e a t e d  e x p l i c i t y .  

I n  t h e  a p p l i c a t i o n  of t h e  approximate f a c t o r i z a t i o n  method w e  cons ider  

s e v e r a l  d i f f e r e n t  s o l u t i o n  v a r i a b l e s .  I n  Sec. 4  we fo l low [20]  and s e l e c t  

p ( ~ ) u ~  a s  t h e  unknown v a r i a b l e .  This  choice  provides  a  n a t u r a l  framework f o r  

c o n s t r u c t i n g  uncond i t i ona l ly  s t a b l e  AD1 methods f o r  p a r a b o l i c  PDEs by combin- 

i n g  A,-stable LMMs w i t h  approximate f a c t o r i z a t i o n .  The choice  of  t h e  unknown 

v a r i a b l e  i s  not unique and f o r  completeness we d e r i v e  a gene ra l  two-step AD1 

scheme wi th  (A - av)un a s  t h e  unknown v a r i a b l e  i n  Sec. 5. The gene ra l  formu- 

l a t i o n  c o n t a i n s  a  parameter a  i n  a d d i t i o n  t o  t h e  parameters  ( 8 , t )  of  t h e  

second-order,  two-step method. The parameter space ( a ,8 ,5 )  f o r  uncondi t iona l  

s t a b i l i t y  i s  determined i n  Appendix B. Seve ra l  gene ra l  obse rva t ions  can be 

made regard ing  t h e  s t a b i l i t y  of t h e s e  schemes: (1) For a  given va lue  of a  

i n  t h e  range [-1,1] ,  t h e  parameter space (8,5)  f o r  uncondi t iona l  s t a b i l i t y  i s  

reduced from t h a t  of t h e  unfac tored  i m p l i c i t  a lgo r i t hm (3.2) (compare F i g .  1 

w i t h  F igs .  3 and 4 ) ,  but  i s  increased  from t h a t  of t h e  unfac tored  i m p l i c i t -  

e x p l i c i t  ( i . e . ,  e x p l i c i t  t rea tment  of mixed d e r i v a t i v e )  a lgor i thm (3.12) 

(compare F ig .  2 w i t h  F igs .  3  and 4 ) .  (2) For any allowed va lue  of a ,  t h e  

reduced parameter  space  excludes t h e  f a m i l i a r  (one-step) t r a p e z o i d a l  formula 

3 4 



and the Lees type scheme (see Table 1). (3) The 62u formulation retains the 

largest parameter space for unconditional stability. (4) The p(E) or A 

formulation has the peculiar property that a = 5/(1 + 51, that is, a depends 

on the particular LMM chosen. The extent of the parameter space for uncondi- 

tional stability (Fig. 3) is nearly as large as for the 62 formulation 

(Fig. 4 with a = 1). (5) Although not considered in this paper, it can be 

shown that if the general (A - aV) formulation is applied to the model convec- 

tion equation 

then only the p (E) formulation (i. e. , a = 51 (1 + 5) retains the same param- 
eter space (shaded region of Fig. 1) for unconditional stability as the gen- 

erating A-stable LMM. In fact, the 62 formulation has no parameter values 

(€I,<) for which the scheme is unconditionally stable. 

The emphasis of this paper is on the construction of unconditionally 

stable second-order accurate AD1 methods for the model parabolic equation (1.1). 

By following the approach outlined herein (i.e., the use of A,-stable LMMs 

in conjunction with the method of approximate factorization) one can easily 

construct algorithms for multidimensional nonlinear parabolic systems. For 

some auspicious reason, the parameter space ( 8 , E )  for which the class of 

second-order two-step methods is A,-stable happens to coincide with the 

parameter space for which this class of methods is A-stable. Consequently, 

one can use the class of time-differencing schemes of this paper to design 

second-order AD1 algorithms for mixed hyperbolic-parabolic systems of nonlinear 

equations. A noniterative algorithm in the A-form for nonlinear systems was 

considered in [l] and a general development for the p ( E )  formulation is in a 

companion paper [21]. 
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Appendix A. S t a b i l i t y  a n a l y s i s  of combined LMMs. I n  t h i s  appendix we 

examine t h e  s t a b i l i t y  of t h e  combined LMM (3.7) appl ied  t o  t h e  model s p l i t  
I 

ODE : 

du 
(A. l a , b )  - -  

d t  
- X I U  + A2u ; A 1  < 0, X 1  + X 2  I 0 , 

where A 1  and A 2  a r e  r e a l  cons t an t s .  I n  a d d i t i o n ,  we i n v e s t i g a t e  t h e  s t a b i l -  

i t y  of t h e  unfactored scheme (3.12) f o r  t h e  PDE (1.1).  The a n a l y s i s  i s  f o r  

t h e  c l a s s  of a l l  second-order, two-step methods. 

Consider t h e  combined LMM (3.7) where p ( E ) ,  a ( E ) ,  and oe(E) a r e  def ined  

by (2.7a) ,  (2 .9) ,  and (3.15). I f  we apply t h i s  scheme t o  t h e  model equa- 

t i o n  (A.l) w i th  f l  = Xlu and f 2  = A2u, we o b t a i n  a d i f f e r e n c e  equat ion  

whose c h a r a c t e r i s t i c  equat ion  is  

(A. 2) a2c2  + a l c  + a. = 0 , 

where 

(A. 3a)  a, = ( 1  + 5) - B X I A t  , 

(A. 3b) 

(A. 3c)  

Equation (A. 2)  i s  a von Neumann polynomial [16] ,  t h a t  is ,  1 C 1 5 1, i f  and only 

i f  

(A. 4a) a0 I. a2 , 
and 

(A. 4b) - (a2  + a o )  I a l  5 a 2  + a. , 

where without  l o s s  of g e n e r a l i t y  a 2  i s  assumed t o  be p o s i t i v e .  The inequal-  

i t i e s  (A. l b )  and (A.4) l e a d  t o  t h e  fo l lowing  condi t ions  f o r  t h e  s t a b i l i t y  of 

t h e  combined two-step scheme: 



I n  p a r t i c u l a r ,  t h e  cond i t i ons  f o r  A,-s tabi l i ty  a r e  

Note t h a t  f o r  t h e  s p e c i a l  ca se  A 2  = 0, (A.6b) becomes 5 < 28 - 1 and condi- 

t i o n s  (A.6) reduce t o  (2.16). 

For t h e  s t a b i l i t y  a n a l y s i s  of t h e  unfactored scheme (3.12) f o r  t h e  PDE 

(1.1) we need only cons ider  t h e  s t a b i l i t y  of t h e  l i n e a r  two-step scheme (3.7) 

app l i ed  t o  t h e  ODE (3.4) f o r  t h e  Four ie r  c o e f f i c i e n t ,  I n  t h i s  appendix we 

cons ider  on ly  t h e  s p a t i a l l y  continuous s o l u t i o n ;  however, t h e  r e s u l t s  a r e  

a p p l i c a b l e  t o  t h e  s p a t i a l l y  d i s c r e t e  ca se  ( see  l a s t  paragraph of Appendix B) .  

The condi t ions  on t h e  parameters (8,5) f o r  t h e  uncondi t iona l  s t a b i l i t y  of 

(3.12) can b e  der ived  from t h e  Ao-s tab i l i ty  requirements (A.6) and t h e  r e l a -  

t ions  

(A. 7a ,b)  XI = - ( a 1 2  + C K ~ ~ )  , A 2  = - ~ K ~ K ~  , 

obta ined  by comparing (A.l) and (3.4b). There fol lows 

(A. 8a ,  b )  

The i n e q u a l i t i e s  (A.8aYb) toge the r  wi th  ( l . l c , d )  imply 

(A. 9a ,b)  1 
6 2 -- 2 ,  F S 8 - 1 .  

I n e q u a l i t y  (A.9b) i s  more r e s t r i c t i v e  than  t h e  i n e q u a l i t y  (2.16a) f o r  t h e  

gene ra t ing  two-step method (2.6) t o  be  A,-stable. Consequently, we have t h e  

r e s u l t  t h a t  t h e  second-order e x p l i c i t  t rea tment  of t h e  mixed d e r i v a t i v e  

reduces the parameter space (0,C) f o r  which t h e  unfactored scheme (3.12) i s  

uncondi t iona l ly  s t a b l e  ( see  Fig.  2 ) .  



Appendix B. S t a b i l i t y  a n a l y s i s  f o r  two-step AD1 schemes. I n  t h i s  appen- 

d i x  we perform a  l i n e a r  s t a b i l i t y  a n a l y s i s  f o r  t h e  f a c t o r e d  scheme (5.5). W e  

assume t h a t  un i s  s p a t i a l l y  cont inuous and seek  a  s o l u t i o n  of  t h e  form 

where vn i s  t h e  F o u r i e r  c o e f f i c i e n t  and K I ,  K~ a r e  t h e  Four i e r  v a r i a b l e s .  

P r i o r  t o  an  a c t u a l  numerical  computation, t h e  s p a t i a l  d e r i v a t i v e s  a r e  rep laced  

by a p p r o p r i a t e  d i f f e r e n c e  q u o t i e n t s ;  however, a s  i nd i ca t ed  a t  t h e  end of  t h i s  

appendix, t h e  s t a b i l i t y  proof f o r  t h e  s p a t i a l l y  d i s c r e t e  c a s e  r e q u i r e s  on ly  a 

minor mod i f i ca t i on  of t h e  fo l lowing  s t a b i l i t y  proof .  

By s u b s t i t u t i n g  (B.l)  i n t o  (5.5),  we f i n d  t h a t  t h e  Four i e r  c o e f f i c i e n t  

s a t i s f i e s  

where we have def ined  

and w = 0/(1 + 5). The a m p l i f i c a t i o n  f a c t o r  i s  def ined  by 

(B. 4 )  n+ 1  n  
v  = 5v , 

and consequent ly  i t  fo l lows  from (B.2) t h a t  5  s a t i s f i e s  t h e  q u a d r a t i c  

equa t ion  

03.5) a2c2  + a15 + a. = 0 , 

where 

(B. 6a) a, = (1  + A) ( 1  + C) , 



(B. 6c) 

- B - a(A+ C) + -- 1 a). 

In the one-dimensional case (b = c = 0 in Eq. (1.1) and B = C = 0 in 

(B.5)), the roots of the quadratic (B.5) have modulus bounded by unity for 

those values of (8,E) shown in the shaded region of Fig. 1, that is, 

(B. 7a,b) 

This one-dimensional result follows from the analysis [ZO] .  Note that a 

only enters as a parameter in the two-dimensional factored algorithm (5.5). 

(Recall that (5.2) and (5.3) are actually identical.) One can easily verify 

that the coefficients (B.6) do not depend on a if B = C = 0. We must 

determine if there are additional restrictions on the parameters (8,E) for the 

unconditional stability of the factored scheme (5.5) for arbitrary values of 

a,b,c subject only to the parabolicity conditions 

(B. 8a,b) a > O ,  b 2 < 4 a c  

of the partial differential equation (1.1). Since the one-dimensional problem 

(b = c = 0) is a special case of the two-dimensional problem, we need not con- 

sider values of (8,C) outside the domain (B.7). Hence w > 0, A and C as 

defined by (B.3) are positive, and 

(B. 9) A + B + C =-+bt(ar12 + bklk2 + ckZ2) > 0 , 
2 .  

since the positive definiteness of this quadratic form was the condition which 

led originally to (B.8). 

The coefficients (B.6) of the quadratic (B.5) are real and consequently 

the roots 5 satisfy 151 5 1 if and only if the inequalities (A.4) of 

Appendix A are satisfied. If we insert a. and a2 as given by (B.6) into 

(A. 4a), there follows 



(B. 10) 0s- + (1 - u)AC (A+ B + C )  , 
1 + 5  

which is satisfied for all allowable A,B,C if and only if 

(B. 11) u s l .  

(Recall that the parameters 8 and E. are required to satisfy inequalities 

(B.7).) Likewise the left inequality of (A.4b) is satisfied. If the coeffi- 

cients (B.6) are inserted into the right inequality of (A.4b) one obtains 

(B. 12) 

The determination of necessary and sufficient conditions for this inequality 

is simplified if it is rewritten as 

where we have used the definitions (B.3) and defined: 

(B. 14a,b) kl = & K ~  , 

It can be shown that necessary and sufficient conditions for the polynomial P 

in kl , k2 defined by 

(B. 15) P = e, (k ,k , )2  + e2klk2 + e3 + e,+k12 + e5k2* 

to be positive semidefinite (i.e., P 1 0 for all real kl,k2) are 

(B. 16a) el, e3, e,,~ eg 1 0 Y 

(B. 16b) le21 2 G  + 2 1 G  . 
Comparison of (B.15) and (B.13) leads to the conditions 

(B. 17e) 



Inequalities (B. 17a,b,c,d) are satisfied by virtue of inequalities (B. 71, 

(B. 8a), and (B.ll) plus the constraint: 

(B. 18) - 1 s ~ ~ .  

Inequality (B.17e) can be rewritten as 

(B. 19) 

which is satisfied for all allowable a,b,c (see inequalities (B.8)) if and 

only if 

(B. 20) 

(B. 21) 

Hence the final inequalities which must be satisfied are (B.7b), (~.11), (B.lS), 

and (B.21). 

In the above stability analysis we assumed that the spatial derivatives 

were continuous. Since in practice the spatial derivatives are replaced by 

discrete difference quotients, it remains to consider the spatially discrete 

case. If, for example, the spatial derivatives in (5.5) are replaced by the 

second-order difference quotients (7.4)-(7.6), then the stability analysis 

proceeds as above with the exception that the exponential in (B.l) is replaced 

by 

(B. 22) 

where x = jAx, y = kAy. If we make the following correspondence 

(B. 23a,b) 



(B. 24) 
1 2 

B -+ B cos 7 cos - 
2 '  

where 

= K ~ A X  , O 2  = K ~ A ~  , 

between t h e  parameters  f o r  t h e  d i s c r e t e  and continuous case ,  then  t h e  ampl i f i -  

c a t i o n  f a c t o r  f o r  t h e  d i s c r e t e  case  s a t i s f i e s  t h e  same quadra t i c  (B.5) wi th  

c o e f f i c i e n t s  (B.6). Since t h e  s t a b i l i t y  reg ion  def ined  by i n e q u a l i t i e s  (B.7b), 

(B.11), (B.18), and (B.21) i s  v a l i d  f o r  a r b i t r a r y  va lues  of K~ and K~ and 

(B. 25) 

we o b t a i n  t h e  same s t a b i l i t y  range f o r  t h e  d i s c r e t e  case.  I f  one uses  a  non- 

centered  approximation f o r  t he  mixed d e r i v a t i v e  such a s  

(B. 26) 

where 

t h e  only modi f ica t ion  necessary  i n  t h e  s t a b i l i t y  a n a l y s i s  i s  replacement of 

(B. 24) by 

(B. 27) 
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TABLE 1 

P a r t i a l  l i s t  of  second-order two-step methods. 

1 - 
2 

1 

- 
3 

3 - 
4 

- 
2 

8 6  

0 

- 
2 

1 1  -- 
2 

0 

1 1  -- 
2 

4 

0 

0 

-- 
3 

-- I 
4  

1 -- 
2 

Method 

One-step t r a p e z o i d a l  formula 

Backward d i f f e r e n t i a t i o n  

Lees t ype  [14] 

Adams t y p e  [17] 

Two-step t r a p e z o i d a l  formula 

Symbol i n  
Fig.  1 

rn 

v 

+ 

A 



TABLE 2 

Lp error of the A, A, and 62 formulations at t = 1.0. 

At = 

Ax = Ay 

0.2 

0.1 

0.05 

0.025 

Number of 

time steps 

5 

10 

20 

4 0 

A ~ / A X ~  

5 

10 

20 

40 

A formulation A formular ion 
. 
L2 error 

0.785~10'~ 

0.193~10'~ 

0.479~10'~ 

0.119~10'~ 

L2 error 

0.107~10'~ 

0.266~10-~ 

0.649~10-~ 

0.160~10-~ 

6 formulation 

L2 rate 

2.02 

2.01 

2.01 

L2 rate 

2.01 

2.03 

2.03 

L2 error 

0.134~10-~ 

0.452~10-~ 
- 

0.137~10'~ 
- 

0.372~10-~ 

L2 rate 

1.57 

1.72 

1.89 



TABLE 3 

Numerical experiments illustrating (1) second-order A formulation, (2) degradation in 

accuracy when mixed derivative is computed with a first-order method, (3) deterioration 

in accuracy when time-dependent coefficients are not evaluated at proper time level. 

A t =  

Ax = Ay 

0.2 

0.1 

0.05 

0.025 

Numberof 

time steps 

5 

10 

2 0 

4 0 

At'*x2 

5 

10 

20 

40 

(1) 

L~ error 

0.758~10-~ 

0.193~10-~ 

0.479~10'~ 

0.119~10-~ 

L~ rate 

2.02 

2.01 

2.01 

(2) 

L~ error 

0.585~10'~ 

0.389~10'~ 

0.216~10'~ 

0.113~10'~ 

(3) 

L~ rate 

0.59 

0.85 

0.94 

L~ error 

0.907~10'~ 

0.275~10-~ 

0.888~10-~ 

0.320~10'~ 

L~ rate 

1.72 

1.63 

1.47 



TABLE 4 

L2 e r r o r  of t h e  A formula t ion  f o r  5 = 0  and s e v e r a l  va lues  of  8 a t  t = 1.0.  

A t  = 

Ax = Ay 

0.2 

0 . 1  

0.05 

0.025 

Number of 

t i m e  s t e p s  

5  

1 0  

20 

40 

A ~ I A X ~  

5  

1 0  

20 

40 

5 = 0, 8 = 213 
. 

L2 e r r o r  

0 . 7 0 5 ~ 1 0 ' ~  

0 . 1 6 9 ~ 1 0 ' ~  

0 . 4 1 5 ~ 1 0 ' ~  

0.102xl0'~ 

L2 r a t e  

2.06 

2.03 

2.02 

5 = 0, 8 = 314 5 = 0 ,  (3 = 312 

L2 e r r o r  

0 . 8 7 1 ~ 1 0 ' ~  

0 . 2 0 8 ~ 1 0 ' ~  

0 . 5 1 1 ~ 1 0 - ~  

0 . 1 2 6 ~ 1 0 ' ~  

L2 e r r o r  

0 . 2 6 2 ~ 1 0 - ~  

0.726x10-~ 

0 . 1 8 1 ~ 1 0 - ~  

0.448x10-~ 

L2 r a t e  

2.07 

2.03 

2.02 

L2 r a t e  

1 .85 

2.00 

2.01 



TABLE 5 

L2 e r r o r  of A formula t ion  (4.11) 

a t  t = 1.0. Parameters  a r e  

Ax = Ay = 0.025, A t  = 0.005, number 

of t ime s t e p s  = 200, 

One-step t r a p e z o i d a l  1 0 . 2 4 6 ~ 1 0 ~  

Method 

Backward d i f f e r e n t i a t i o n  0.479x10'~ 1 

L2 e r r o r  

Lees type  1 0 . 4 0 5 ~ 1 0 ~ ~  

Two-step t r a p e z o i d a l  1 0 . 7 7 2 ~ 1 0 - ~  

Adams type  0 . 5 0 5 ~ 1 0 ' ~  



FIGURE CAPTIONS 

FIG. 1. A,- and A-stable domain of the parameters (8,E) for the class of all 

second-order two-step methods. Symbols denote methods listed in Table 1. 

FIG. 2. Unconditionally stable domain of the parameters (8,E) for the unfac- 

tored scheme (3.12) with p (E), u(E), and ue(E) defined by (2.7a), (2.91, 

and (3.15). 

FIG. 3. Unconditionally stable domain of the parameters (€I,€,) for the fac- 

tored A formulation (4.11). 

FIG. 4. Unconditionally stable domain of the parameters (8,E) for the fac- 

tored general formulation (5.5) for several values of a. 



Figure 1.- A,- and A-stable domain of the parameters (8,S) for the class of all 
second-order two-step methods. Symbols denote methods listed in Table 1. 



Figure 2.- Unconditionally stable domain of the parameters ( 8 , ~ )  for the 
unfactored scheme (3.12) with p (E), a(E), and cre(E) defined by (2.7a), 
( 2 . 9 ) ,  and (3.15). 



Figure 3.- Unconditionally stable domain of the parameters (8.5) for the fac- 
tored A formulation (4.11). 
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Figure 4.- Unconditionally stable domain of the parameters ( 0 , 5 )  for the fac- 
tored general formulation (5.5) for several values of a. 

. .. 
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