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ALTERNATING DIRECTION IMPLICIT METHODS FOR PARABOLIC

EQUATIONS WITH A MIXED DERIVATIVE

RICHARD M. BEAMT and R. F. WARMING'

Abstract. Alternating direction implicit (ADI) schemes for two-

dimensional parabolic equations with a mixed derivative are constructed by

using the class of all A, -stable linear two-step methods in conjunction with

the method of approximate factorization.

The mixed derivative is treated with

an explicit two-step method which is compatible with an implicit A, -stable

method. The parameter space for which the resulting ADI schemes are second-

order accurate and unconditionally stable is determined.

examples are given.
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1. Introduction. When an alternating direction implicit (ADI) method is

applied to a parabolic equation, for example,

(l.la) _a—l_li}_{a—’tLt)- = Lu(x,y,t) )
where

32 32 32
(1-lb) L= a(x,Y9t) 5‘;5 + b(X,y,t) axay + C(Xay’t) ? ’
(1l.1c,d) a,c > 0, b2 < 4ac ,

it reduces the computational problem to a sequence of one-dimensional (matrix)
inversion problems. If the mixed derivative 82/8x8y of the operator L
were absent (b = 0), an ADI method would reduce the operator (1 - L) to the
product of two one-dimensional spatial operators. In the method of Douglas
and Gunn {9], the mixed derivative is kept implicit and their scheme requires
four inversions; that is, the operator (1 - L) is reduced to four one-
dimensional operators. The two additional inversions are the direct result of
keeping the mixed derivative implicit. Simpler and more efficient schemes

can be obtained if the mixed derivative is evaluated explicity. Perhaps

not so obvious is the stability of these simpler schemes. In fact, it is




rather surprising that one can develop unconditionally stable algorithms for
(1.1) by computing the mixed derivative explicitly and the derivatives

32/3x2 and 82/3y2 implicitly. McKee and Mitchell [15] surveyed two-level,
first-order accurate (in time) schemes and devised a new first-order accurate,
unconditionally stable scheme for (1.1). Iyengar and Jain [12] generalized
the method of McKee and Mitchell and presented a three-level, second-order
accurate scheme for (1.1); however, the implementation of the scheme is com-
plicated by the explicit computation of fourth differences although the origi-
nal partial differential equation (1.1) contains only second derivatives.

The present authors constructed a second-order accurate ADI algorithm for
the compressible Navier-Stokes equations [1]. When the algorithm is applied
to the model equation (1.1), it leads to a simple three-level unconditionally
stable scheme which is easy to implement. In a recent paper [20] we combined
A-stable linear multistep methods (LMMs) and approximate factorization to
construct a large class of multilevel unconditionally stable ADI schemes for
a model partial differential equation with both convective (hyperbolic) and
diffusive'(parabolic) terms; that is, -

32 92 32 p) 3
o2 + b 3x3y + c 8y2 - €1 3% c2-5§ »

where a,b,c satisfy (1.1lc,d) and cys €, are real constants. The general
%ormulation of [20] is second-order accurate if b = 0 but first-order accu-
rate in time if the mixed derivative is included. 1In both [1] and [20], the
mixed derivative is treated explicitly. The purpose of the present paper is
to modify and combine the algorithms of [1] and [20] to obtain a general,
second-order accurate, unconditionally stable algorithm for the model parabolic

equation (1.1). 1In a companion paper [21] we apply the method to derive a




noniterative ADI algorithm for a hyperbolic-parabolic system of nonlinear
equations with mixed derivatives.

The development and analysis of numerical methods for ordinary differen-
tial equations (ODEs) is more advanced than that for partial differential
equations (PDEs). Therefore, it seems plausible to capitalize on this fact by
making use of known results from the theory of difference methods for ODEs to
construct methods for PDEs. For example, the time differencing schemes used
to construct implicit methods for PDEs are invariably IMMs although this fact
is seldom noted. Since a great deal is known about the properties of LMMs
(see, e.g., [6,10]), one can use this information to advantage when attempting
to construct schemes for PDEs. With these observations in mind we use Sec. 2
as a review of the theory and notation for linear multistep methods including
A-stability, A,-stability, and one-leg methods. In addition, we introduce the
notion of an LMM combining two different LMMs ~ one implicit and the other
explicit. In Sec. 3 we invesfigate the stability of an implicit method for
(1.1) obtained by using an Ay-stable LMM as the time differencing method. We
then modify the scheme by treating the mixed derivative explicitly and rein-—
vestigate the stability properties. The method of approximate factorization
is applied in Sec. 4 to obtain an unconditionally stable, second-order accurate,
multistep ADI scheme in the p(E) formulation. In Sec. 5 we construct a gen-
eral approximate factorization method for all second-order, two-step schemes
and discuss the parameter space for unconditional stability. Details of the
stability analyses are given in the Appendices A and B. In Sec, 6 a simple
modification is given for the case of time-dependent coefficients a,b,c.

Numerical examples are given in Sec. 7 and some concluding remarks in Sec. 8.




2. Preliminaries. In this section we briefly review the theory of

linear multistep methods (LMMs) and the related one-leg (multistep) methods.
In addition, we introduce combined LMMs.

2.1. Linear multistep methods. A linear k-step method for the first-

order ordinary differential equation

(2.1) Lo f@e) , w0 =y,

is defined by the difference equation

(2.2) © e (EMW" = Ato(E)E" ,
where p and ¢ are the generating polynomials,

k

k
(2.3a,b) 0 (2) Zajc, o (%) stjr, ,
=0

j=0

and E dis the shift operator, that is,

(2.4) Eu" = un+1 .

In (2.2), u! is the numerical solution at the point t = t® = nAt, At is the
time step, and £ = £f(u",t"). The method is.explicit if B, = 0 and implicit

otherwise. Consistency and normalization are expressed by the relations:

k
(2.5a,b,c) a, =0, jaj = g, =1.

=~
=

j=0 =0 3=0
As an example of an LMM, the most general consistent two-step method
(i.e., k = 2 1in (2.3)) can be written as

(2.6) @+ £)u™2 - (@ + 26)u™ !+ eu® = at[of™2 + (1 - 6 + ¢)E™T! - 4£7)

where (8,£,¢) are arbitrary real numbers. The operators - p(E) and o(E) are

(2.7a) p (E)

(1+8)E2 -~ (1 +20)E+ ¢,

(2.7b) o(E) = 6E2 + (1 - 6 + ¢)E - ¢ .




For the class of all two-step methods that are at least second-order accurate,

the parameters (6,£,¢) are related by
1
(2.8) ¢=E—9+—2-,
and consequently, o(E) can be rewritten in terms of the two parameters (6,§) as

)

Some well-known implicit second-order methods and their corresponding values

(2.9) o(E) = gE2 + (g - 28 + %)E - (g -0+

N

(6,8,¢) are listed in Table 1. Linear one-step methods are a subclass of (2.6)
obtained by setting & = ¢ = O:

(2.10) oo = aepee™ 4 (a1 - 9)E™

where we have shifted the time index down by one. The trapezoidal formula

(6:= 1/2° in (2.10))

(2.11) N LR . %} (™ 4 £y

is the only second-order accurate one-step method. When the trapezoidal for-
mula is applied to a parabolic equation, the resulting algorithm is usually
called Crank-Nicolson.

The linear stability of an IMM is analyzed by applying it to the linear

test equation

(2.12) g% = Ju ,

where A is a complex constant. The stability is determined by the location
of the roots of the characteristic equation,

(2.13) p(g) - Abto(z) = 0,

relative to the unit circle in the complex plane. The stability region of an
LMM consists of the set of all values of AAt for which the characteristic

equation (2.13) satisfies the root condition; that is, its roots Ly, all




satisfy ngl < 1 and the roots of unit modulus are simple. An IMM is said
to be A-stable if its stability region contains all of the left half of the
complex AAt plane including the imaginary axis [4]. A simple test for
A-stability can be formulated in terms of positive real functions [7]. By
applying the test to the linear two-step method (2.6), one finds that the

method is A-stable if and only if

(2.14a) 6> ¢ +% ,
(2.14D) £ > -1,
(2.14¢) gse+¢-%.

An IMM is said to be A -stable if the region of stability contains the nega-
tive real axis of the complex MAAt plane, that is, the interval (-=, 0],
Again, by applying the theory of positive real functions, one finds that LMM

(2.6) is A,-stable if and only if

(2.152) 820 +7,
(2.15b) £ 2 -% ,
(2.15¢) 0<06+4¢.

The details of the analysis for obtaining these inequalities are described in
[21]. For first-order accurate schemes, the inequality (2.15c) is less strin-
gent than (2.14c). This is not surprising since A, -stability is a weaker
requirement than A-stability. However, for the class of all second-order
methods, the parameters (8,£,¢) are related by (2.8), and both sets of inequal-
ities (2.14) and (2.15) reduce to

1

(2.16a,b) £E<20-1, £ > -5 -




The parameter space (6,£) for which the class of two-step, second-order methods
is A-stable, happens to coincide with the parameter space for which the class
is A,-stable and is shown by the shaded region of Fig, 1. The methods listed
in Table 1 and indicated by the symbols in Fig. 1 are both A,- and A-stable.

Dahlquist has proved that the order of accuracy of an A-stable LMM
cannot exceed two [4]. On the other hand, Cryer [3] has proved there exist
Agy-stable LMMs of arbitrarily high order. Since the eigenvalue associated
with the parabolic equation (1.1) is real and negative, the application of an
A,-stable LMM will yield an unconditionally stable scheme, that is, no stabil-
ity restriction on the size of At.

In this paper we restrict our attention to second-order accurate LMMs.
This limitation is motivated by two practical considerations., First, conven-
tional techniques for constructing alternating direction implicit (all
A-stable and Ao—stable IMMs are implicit [4,3]) schemes generally impose a
second-order-temporal accuracy limitation independent of the accuracy of the
LMM chosen as the time differencing approximation. The reason for this will
become apparent in Sec. 4. In principle, by altering conventional proce-
dures, ADI schemes of temporal order greater than 2 can be constructed for
PDEs where A,-stable LMMs are appropriate; however, the unconditional stabil-
ity of the higher order ADI schemes is an open question. The second practical
consideration is computer storage. Even if the question of unconditional
stability is answered in the affirmative, the scheme must be at least a three-

step method since the two-step method (2.6) contains no A -stable third-order

subclass,

2.2. One-leg (multistep) methods. A class of methods closely related to

IMMs is the one-leg (multistep) methods. The one-leg (k-step) method [5]

8




corresponding to (2.2) is

(2.17) 0 (E)a" = atf(o(E)G", o(E)e™

where 4" denotes the one-leg method solution. Formally, the one-leg method
(2.17) can be obtained by shifting the operator o(E) inside the argument
parenthesis of £ = f(un,tn) in the linear multistep formula (2.2). As an
example, the trapezoidal formula (2.11) is an IMM and the implicit midpoint

rule,

~n+1 IS o}
(2.18) antl _ogn o Atf(ﬂ———ii;g— , " +-%§) ,

is the corresponding one~leg method. Dahlquist [5] has proved the following
theorem relating solutions of a one-leg method and an LMM: Let {3"} be a
vector sequencebthat satisfies the one-leg difference equation (2.17) and set

ot = g(B)a" .

Then {u"} satisfies the LMM difference formula (2.2).

It should be noted that LMMs and one-leg methods are equivalent when
applied to the linear test equation (2.12) and, consequently, the results of
linear stébility analysis are the same for both. However, one~leg methods
simplify nonlinear stability analysis [5] and, in addition, they are more
reliable than IMMs when used with rapidly varyiﬁg integration step sizes [17].
As applied in this paper, the one-leg formulation makes it easy to construct
an ADI scheme for the parabolic Equation (1.1) with time-dependent coeffi-

cients.

2.3. Combined linear multistep methods. If the function £f(u) of the

differential equation (2.1) is split into a sum, that is,

(2.19) B fu,t) = £, t) + £5(u,t) ,



we can construct an integration formula by combining two different LMMs. For
example,

(2.20) p(E)u” = Mo, (E)f] + bto,(E)ER

where the subscripts on o, and o, indicate that the coefficients Bj of the

generating polynomial (2.3b) differ for the two functions £, and f,. The

analogous split one-leg method (2.17) is

(2.21)  p(E)E" = Atfy (o) (B)Q", oy (EDE™) + Atf, (0, (B)E", o, (B)E™) .

3. Unconditionally stable schemes. In this section we examine the sta-

bility of an implicit method for the parabolic equation (1.1) where the time
differencing approximation is an A, -stable ILMM. Next we modify the scheme
by treating the mixed derivative explicitly and determine the criteria for
unconditional stability. Although not essential to the final goal of con-
structing unconditionally stable ADI schemes with the mixed derivative com-
puted explicitly, this intermediate analysis does isolate the stability con-
straints due to the application of combined IMMs and those due to approximate
factorization. Furthermore, the nonfactored scheme is formulated so that the
ADI variant follows directly (Sec. 4).

Numerical methods for solving the parabolic equation (1.1) can be obtained
by a direct application of the LMM (2.2). Since our interest is in construct-
ing unconditionally stable schemes, we assume that the LMM is A,-stable, By

comparing (1.1) and (2.1), we identify

2 2 2
(3.1) f(u)=Lu=(a—3—+bL—+ca—)u

where L is a linear differential operator. For simplicity we assume that

the coefficients a,b,c are independent of time. The case of time-dependent

10




coefficients is considered in Sec. 6. Insertion of (3.1) into (2.2) yields

n _ 32 32 32 n
(3.2) p(E)u = At(a -~ + b 3%3y + c ayz)cI(E)u .

To analyze the stability of (3.2) we assume a solution for the PDE (1.1)

(with constant coefficients) of the form

i +
(3.3) uGx,y,t) = v(p)et (K1x¥K2y)
where v(t) is the Fourier coefficient and kg, K, are the Fourier variables

(wave numbers). Substitution of (3.3) into (1.1) yields an ODE for v(t):

(3. 4a) rFri v o,
where
(3. 4Db) A = =(akq? + bryk, + cky?) .

The quadratic form in the parenthesis of (3.4b) is positive definite if and
only if the inequalities (1l.1lc,d) are satisfied. These constraints consti-
tute the parabolicity condition of the PDE and ensure that the solution of
(3.4) is damped with time. To complete the stability analysis of the PDE
scheme (3.2), we need only consider the stability of the LMMs (2.2) applied to
(3.4) with A < 0. Since we assumed that (2.2) is A,-stable, the PDE scheme
(3.2) is unconditionally stable. In practice, the spatial derivatives in (3.2)
are replaced by appropriate difference quotients; however, as shown at the end
of Appendix B, central spatial discretization does not alter the unconditional
stability criteria obtained by assuming spatially continuous solutions.

For the one-step methods (2.10), the scheme (3.2) reduces to

n+1 n ( 32 52
a

(3.5) u - u = At +b

52 n+1l n
3;5 5x0y + c 8y2>[eu + (1 -6)u] .

With central spatial difference approximations, (3.5) is identical to a

scheme suggested by Lax and Richtmyer {13]. Their paper appeared about the

11




same time the original ADI methods were proposed by Peaceman and Rachford [18]
and Douglas [8]. The first ADI methods [8, 18] did not include a mixed deriv-
ative term and its presence precludes the construction of an efficient ADI
method. A simple way of circumventing this difficulty is to treat the mixed
derivative explicitly. One might expect, however, that this would have an
adverse effect on the unconditional stability of the algorithm. This stability
question is considered in the remainder of this section.

Consider the combined ILMM (2.20) where o, and 0, are defined as follows.
Let (2.2) represent a second-order A, -stable IMM and define

(3.6a,b) 0,(E) = o(E) , 0,(E) = 0(E) ,

where o, (E) is a second-order explicit LMM (i.e., Bk = 0 in the generating
polynomial (2.3b)) with the same generating polynomial p(z) as for the

A,-stable LMM. With these definitions, (2.20) becomes
(3.7) p(E)u" = Ato(E)f) + Ato (E)fy .

Henceforth, in reference to a combined implicit-explicit method such as (3.7),
we refer to the LMM that defines p(E) and o(E) as the generating LMM. The
linear stability properties of (3.7) for second-order two-step methods are
examined in Appendix A.

For didactic purposes in this section and practical reasons in the fol-

lowing section, we rewrite the IMM (3.7) as

(3.8) p(E)u” - wAtp (E)EY = At[o(E) - wp(E)]f] + Atog(E)fS ,
where
3.9 w = Bk/ak~

The parameter w is defined so that the operator o(E) - wp(E) on the righthand

side of (3.8) is at least one degree lower than the operator p(E) on the

12




left-hand side. This can readily be seen by using the definitions (2,3) and

writing out the highest degree term of the operator

B
-1
(3.10) o(E) - wp(E) = |8, _, —-35 k
k
Consequently, the right-hand side of (3.8) can be computed explicitly, that
is, from known data when advancing the numerical solution from n+k-1 to
n+k.
Finally, to apply the combined scheme (3.8) to the PDE (1.1), we split the

linear differential operator of (3.1), i.e.,

3%u
oxdy °

_ 32 32
(3.11) fl(u) = {a—+ c—Ju and f2(u) =b

By substituting (3.11) into (3.8), we obtain
2 2
(3.12) 1 - wAt{a JLE + C—E—— p(E)un
9x ayz

52 32 n 32 n
= L+ 2 - + - .
At(a ) c ay2>[O(E) wp (E) Ju Atb 5%0y oe(E)u

This formula is implicit for Uy and Uy and explicit for Uyy
Remark: The scheme (3.12) with the simplest evaluation of the right-
hand side has 0,(E) given by

(3.13) 0o(E) = [0(E) - wp(E)]ul ,

in which case

(3.14) RHS(3.12) = atfa 25 + b 22 4 o 22 [0(E) - wp(E)]u™
2 9Xdy 3y2 '

X
Unfortunately, the method with o,(E) defined by (3.13) is only first-order
accurate.
For the stability analysis of (3.12), we consider the second-order, two-

step methods where p(E) and o(E) are defined by (2.7a) and (2.9) and the

13



explicit operator oe(E) is obtained from (2,9) by setting 6 = O,

- 3\ - i
(3.15) 0o (E) = (g + Z)E (& + 2) :

The details of the stability analysis are given in Appendix A. Scheme (3.12)
is found to be unconditionally stable for all values of a,b,c satisfying
equalities (l.1c,d) if and only if

(3.16a,b) £g§<06-1, £ 2 —%-.

The values of the parameters (8,f) satisfying these inequalities are shown by
the shaded region of Fig. 2. Inequality (3.16a) is more restrictive than
(2.16a) for the generating second-order, two-step method to be Ao—stable
(see Fig. 1). Methods that fall in the region between the lines
(3.17) £ =208-1 and E=86-1
and above £ = - 1/2 are not unconditionally stable for all values of the
coefficient b satisfying inequality (1.1d). Note that, with the exception
of the two-step trapezoidal formula, none of the methods listed in Table 1
falls in the shaded region of Fig. 2.

Remark: It is of interest to note that the explicit operator (3.15) can

also be obtained from the implicit operator (2.9) applied to fn,

G(E)E" = o™t 4 (g - 20 + %)f“+1 - (g -0+ %)fn ,

by using linear extrapolation, that is,
£72 2 2™ | My 0ae?)
+2
to approximate £, Although the use of linear extrapolation might sound
rather disreputable, the application of an explicit LMM does not.
In the following section we find the rather remarkable result that an

approximate factorization of the left-hand side of (3.12) into a product of

one-dimensional operators restores most of the parameter space (8,£) for

14




unconditional stability lost by the explicit treatment of the mixed

derivative.

4. An ADI scheme: the p(E) or A formulation. In the procedure sug-

gested in [20] for designing ADI schemes, the implicit operator to be inverted
is constructed so that the unknown variable to be determined at each time step
is p(E)un. In the absence of a mixed derivative this choice ensures that
approximate factorization into a product of one-dimensional operators does

not upset either the temporal accuracy (second-order) or the unconditional
stability of the scheme. In this section we construct an ADI scheme in the
p(E) formulation with the mixed derivative treated explicitly with second-
order accuracy and examine the stability of the resulting algorithm.

If the spatial derivatives appearing in (3.12) are replaced by appropriate
difference quotients, then one obtains in general an enormous linear system to
solve for p(E)un. This difficulty can be overcome by an approximate factor-
ization of the left-hand side of (3.12) which reduces the problem to a product

of one-dimensional spatial operators; that is,

( 32 ( 52
(4.1) 1 - wAta ———) 1 - wAtce ———) (E)u
9x2 ay
2

At(% in +c —ji)[o(E) - wp(E)]u + Atb Og (E)u .
Ix? 3y

Comparison of the left-hand sides of (4.1) and (3.12) shows that they differ

by the cross-product term

2 2
(4.2) w2At?a JiE-c JLE o (E)u"™ .
9X ay .

But by expanding p(E)u"™ in a Taylor series about u" and using the consis-

tency and normalization conditions (2.5a,b), one obtains

15




n
(4.3) o (B)u” = At %ﬁ;-+ oat®™™y . o

v
=

Consequently, the cross-product term (4.2)

2 2
w2At3a 25 ¢ 25 2 M4 ocact
ax2 _ ay2 Ot

2 2
2,.0_ 0 3 n
3x%  ay?

(4.4)

0(atd)
is a third-order term and the formal accuracy of the scheme (3.12) is not
upset by the approximate factorization (4.1).

In practice, the second-order, two-step methods defined by (2.7a) and
(2.9) are of primary interest and in the remainder of this section we limit
our attention to these methods. The explicit operator ce(E) is given by
(3.15). In numerical algorithms for partial differential equations it is
conventional to use n+l as the most advanced time level; hence, we multiply
(4.1) by E-!. The shifted difference operators for the second-order, two-

step method can be written as

(4.5a) A = ETlp(E)u™ = [(1 + E)E - (1 + 28) + g1,

(4.5b) = [(1+ &4 - gv]u®,

(4.5¢) = 1+ 5 -+ 20 + gu? !,

(4.6a) E-lg(E)u" = FeE + (5 - 20 + %) - (g -0 + %)E—l]un ,
(4.6b) ' = |1+ 6+ (g -8 +%)v]u“ ,

(4.7a) E Lo, (B)u" = (g + %) - (g + %)E_l]un ,

(4.7b) = {1 + (g + %—)V:lun ,

where the symbols A and V are classical forward and backward difference

operators defined by

16




(4.8) Au’ = u -u , Vu =u -u .
As a notational convenience, we have denoted the operator E~1p(E) by A.

From (4.5) and (4.6) there follows

(4.9a) E"1[0(E) - wp(E)]u" = [(g - +—§-) - (g - fl)E'l]un
(4.9b) - [1 + (g -+ %’)V]un ,

where

(4.10) 0=z " F

The factored scheme (4.1) becomes

32 32\, n
(4.11) 1 - wAta — {1 - wAtc-——E Au
ax2 9y

32 92 1\ | n 92 1\ | n
= At(a E + c 8y2>[1 + (E - w+ 2)V]u + Atb 3%0y [l + <E + 2)V]u .

The computational sequence to implement the factored scheme (4.11) as an ADI

method is not unique, but an obvious choice is

2
(4.12a) Q.— wAta JiE)Au* = RHS (4.11) ,
9x
32 n *
(4.12b) 1 - wAte —=]JAu = Au” ,
3y2
(4.12¢) 1+ )u™ = A+ @+ 20 - g™,

where Au* is a dummy temporal difference.

Remark: If the first-order explicit method with oe(E)'defined by (3.13)
were used rather than a second-order method, the right-hand side of (4.1).
would be the same as (3.14). 1In this case, the right-hand side of (4.11)

would be replaced by

32 32 32 1 n
(4.13) At(a ™) + b 53y + c Byz)[l + (€ - w+ 2)V]u
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where we have used (4.9). Although the resulting scheme is first-order accu-
rate in time for the mixed derivative, it is unconditionally stable for values
of (6,&) in the shaded region of Fig. 1. This result was established in [20,
Appendix A] by constructing the scheme so that the characteristic equation
(which determines the stability of the method) for the factored partial dif-
ference equation had the same form as the characteristic equation (2.13) for
the ordinary differential equation.

The scheme (4.11) is second-order accurate in the mixed derivative but
the characteristic equation no longer has the form (2.13). Consequently, the
stability analysis must be redone in a less elegant manner than in [20] and is
carried out in Appendix B. The stability analysis of Appendix B is for the
general two-step ADI scheme developed in the following section. The A for-
mulation (4.11) is a special case of the general two-step scheme and is found
to be unconditionally stable for all values of a,b,c satisfying inequalities

(1.1c,d) if and only if

2(1 + £)2 1
(4-14a,b) 6 > 3+ 4& ’ E 2 2 .

The parameter space (8,f) satisfying these inequalities is shown by the shaded
region of Fig. 3. The inequality (4.14a) is more stringent than (2.16a), and

methods that fall in the region between the curves

2(1 + E)z

4.15 = - =LA T S)

( ) £ 26 1 and 0 3 A

and above £ = - 1/2 are not unconditionally stable for all values of the

coefficient b satisfying inequality (1.1d). This includes such popular
schemes as the trapezoidal formula and Lees method (see, e.g., [2]). However,
there remains a large class of unconditionally stable methods including, e.g.,

the backward differentiation formula (see Table 1).
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5. A general two-step ADI scheme. In the ADI formulation described in

the previous section it is essential that the unknown variable be at least a
first difference to ensure that the approximate factorization does not degrade
the second-order accuracy of the scheme; for example, the unknown variable
Elp(Eu® = A is an approximation to At(3u/dt) (see Eq. (4.3)). The choice
of unknown variable is not unique and in fact the most general form of a first
difference using data from the three levels n-1, n, n+tl can be written as

un+1 n-1 (A - aV)un

(5.1) - (1 + a)un + au

n 2 42,1
Ju At< 3<u 3
(1 - a)At et 1+ o) T2 5.2 + 0(At®) ,

where A and V are the forward and backward operators defined by (4.8) and «
is an arbitrary real constant. The undivided difference (5.1) is a second

difference if o = 1 and a first difference otherwise. The most accurate

first difference is for o = -1,

3.1. General formulation. A general formulation of two-step ADI schemes

is obtained if we choose (A - aV)u" as the unknown variable. We first rewrite
the LMM (3.7) in a convenient form for the construction of an ADI scheme with
A - oaV)un as the unknown variable. Multiplying (3.7) by E-! and inserting
the operators E~lp(E), E-lo(E), and E'loe(E)‘defined by (4.5b), (4.6b), and

(4.7b), one can rewrite the resulting two-step method as

(5.2) du® - watag)™ = A ; [1 + (g -0+ -%)V](f? + £3)
n 3 n
+ wAtVE, + Vu

1 +£

After subtracting aVu" - awAtVf? from both sides, there follows
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A 1
(5.3) (a-au® - wht(s - aDE] = 75 [1 + (g -8 +5> Vj,(f? + fg‘)

n n 4 n
+ wAtVEy + awAtVE; +<1 Y E a)Vu .

Using (3.11), one obtains

82 32 n
(5.4) [l - wAt(a B_XE + c —B?)](A - aV)u

At 52 32 32 1) n
= -8+ =W
T+ ¢ (% 2 +b Bxdy + c 7y 1+ (E 8 >N

32 n 32 32 n g n
< = __ + [—— - .
+ wAtb %3y Vu + awAt(a ) + c 3y2)vu (l ¥ T a]Vu
The spatially factored form of (5.4) is
32 32 n _
(5.5) 1 - wita — {1 - wAtc — (A - aV)u = RHS(5.4) ,
ox oy
which can be implemented as
32 *
(5.6a) 1 - wAta —= J(A - aV)u™ = RHS(5.4) ,
9x?
32 n *
(5.6b) 1 - wAte — (A - aV}u = (A - aV)u
8y2
(5.6c) un+1 = (A - aV)un + (1 + a)un - ocun_1

The stability analysis for the general factored scheme (5.5) is given in
Appendix B. The scheme is found to be unconditionally stable for all values

of a,b,c satisfying inequalities (lc,d) if and only if

(5.7a,b,c) 6 2 2(1 + E) ) £ > —%— ’ -1 L azZ 1.
A+ 0)dA + 28)
2 +\/ T+¢

The parameter space (0,£) satisfying these inequalities is indicated in Fig. 4
for several values of a. For a given value of a, the stable range is to the
right of the curve labeled with that value of o and above the curve
£ = - 1/2. The extent of the (8,f£) parameter space for unconditional
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stability is a monotone increasing function of & in the range [-1,1] with
the smallest region for o = -1 and the largest for a = +1. Inequality (5.7a)
is more stringent than (2.16a) as is apparent in Fig, 4. Along the line

£ = 0, inequality (5.7a) becomes

(5.8) 8 Z.;i:—%;i:j; s (E = 0),

and the smallest allowed value for © occurs when o = 1, in which case (5.8)

becomes
(5.9) 6> ——=0.586 , (£=0).
1+ /1/2
Along the lower stability boundary £ = - 1/2, inequality (5.7a) becomes
1 1
(5.10) 8 2 5 (% = - E)’

which is independent of the parameter «. As a consequence of inequali-
ties (5.9) and (5.10), such popular implicit methods as the trapezoidal for-
mula (6 = 1/2, £ = 0) and Lees method (6 = 1/3, £ = - 1/2) are not uncondi-
tionally stable for all values of the coefficient b satisfying

inequality (1.1d).

If the parameter o 1is chosen to be E/(1 + &), scheme (5.5) reduces to
the A formulation of Sec. 4. This ADI method has the peculiar property that
the unknown variable depends on the parameter &, that is, on the particular
LMM chosen. The parameter space (0,£) for which the A formulation is uncon-
ditionally stable is shown by the shaded region of Fig. 2 and the extent of

the region is nearly as large as that for (5.5) with o = 1,

5.2. Special cases of general formulation. Various constant values of

o¢ in the range [-1,1] produce useful and interesting algorithms and we con-
sider several in greater detail. The schemes are named according to the
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classical difference operator represented by (5.1) for the chosen values of

.

5.2a. The A formulation (o = 0). If a 1is chosen to be zero, the

general scheme (5.5) reduces to

At 32 32 32 1 n
= + -6+ =)
T (a — +b iy T C 8y2>[l + (& ) 2) ]u

n g n
+
axay "¢ tixe Vo

+ wAtb

which we call the A formulation [1,19] since Au"™ is the unknown variable.
The parameter space for unconditional stability is given by the inequali-

ties (5.7a,b) with o = 0 and is shown graphically in Fig. 4.

5.2b. The 62 formulation (¢ = 1). In the general ADI formulation (5.5)

the unknown variable (A - aV)un is an approximation to At(du/dt) if o % 1
(see Eq. (5.1)). A less natural choice for the unknown variable for a first-
order (temporal) differential equation is the second difference obtained when
a =1, In this case, (5.1) becomes

o

2
(5.12) (A - V)u™ = §2u° = A2 83_7 + 0(ALY)
t

where the classical second difference operator &2 is defined by

n n+i

(5.13) §2u" = u - 2"+ un_l *

The possibility of using 62u™ as the unknown variable does not arise for
linear one-step methods (e.g., the trapezoidal formula (2.11)) since these

methods only involve two time levels.
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If o is set equal to one in the general two-step scheme (5.5), we

obtain

’ 2 2
(5.14) (1 - whta —3—2—) (1 ~ whte 3—2)62un
9x dy

_ At 32 32 32 1\, | n 1 n
=T+ (% a2 + b 3x0y + c Byz)[l + (% + 2)%]u T+¢ Vu .

A possible advantage of the 82 formulation is that the cross-term error

introduced by the approximate factorization is one order higher than in the
general (A - aV) formulation with o # 1. By comparing the left-hand sides

of (5.4) and (5.5), we find they differ by

2 2
w2At2a i c 9 a - aV)un .
2 2
9x oy
which, for o = 1, becomes
2 2 2 2 52,0
(5.15) w2At?a jLE c Ji—-dzun = w2At4a 3 c d LI 0(at>) ,
ax ay2 0x2  ay? at?
= o(at")

where we have used (5.12). The cross-term error for the A = E-lp(E) formula-
tion is given by (4.4). The parameter space for which the 62 formulation is ...
unconditionally stable is given by inequalities (5.7a,b) with o =1 and is

shown graphically in Fig. 4.

A distinct disadvantage of the 62 formulation occurs when it is applied

to convective (hyperbolic) model equations as briefly discussed in Section 8.

5.2c. The 2upé8 formulation (a

-1). As a final special case of the

generalized formulation we choose «a -1, that is,"
(5.16) A-aV=A+7V=2us,
where 2u8 1s the classical central difference operator

(5.17) 2usu? = o0t - yn-1



The scheme (5.5) becomes

5.18) (1 - wara 22Y(1 - wate 32 )y ou®
) 9x2 3y2

_ At 32 52 32 1) n
_1+5(a3x2+baxay+c3y2)[l+(g 26+2Vu

32 n,1l+28 m
3%y 1+

+ 2wAtb

The parameter space for unconditional stability of this formulation is given

by inequalities (5.7a,b) with o = -1,
(5.19) 8 >1+¢, E 2 ~%,

which is identical to the stability space for the unfactored scheme (3.12)

(see inequality (3.16) and Fig. 2).

5.3. Algorithm selection. From the class of unconditionally stable

methods one can choose a scheme with properties that are desirable with regard
to computer storage, computational simplicity, and temporal behavior when
applied to stiff problems and/or problems with nonsmooth data. The choice
generally requires a compromise.

Consider, for example, the A formulation (4.11) of Sec. 4, The compu-

tation of the right-hand side of (4.11) is obviously simplified if we set
1
(5.20) E—w+-2—=0.
Since w = 8/(1 + &), this equation can be rewritten as
_ 1
(5.21) 8 = (£ + l)(E +'2‘) H

it is plotted in Fig. 3. Another variant is obtained by rewriting the right-

hand side of (4.11) as
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2 2 3 1\ - o
(5.22) RHS(4.11) = At(a :—xz +c :—yz-) [(5 - 0w +5)- <g - +7)E 1]un R

32 1 n
+ Atb %3y [1 + <£ + 2)V:'u ,

where we have used (4.9a). The calculation of (5.22) is simplified if we let

(5.23) g"w"'%:(),

which can be rewritten as
3
(5.24) 6 = (E+l)(€+§),

it is also plotted in Fig. 3. If in addition, we choose & = - 1/2, then

(5.22) becomes simply

_ 32 32 \ n-1 32y
(5.25) RHS(4.11) = At(a 3}{—2 + c Byz)u + Atb %3y .

In this special case, each spatial derivative on the right-hand side of (4.11)
requires evaluation at only a single time level. The time differencing

(6 = 1/2, £ = - 1/2) corresponds to the two-step trapezoidal formula (see
Table 1). A, - and A-stable methods along the bottom boundary £ = - 1/2 of
Fig. 1 are "symmetric" schemes. These methods have the unfortunate property
that the modulus of at least one root of the characteristic equation (2.13)
approaches 1 as AAt » =, Consequently, these methods can produce slowly
decaying numerical oscillations when applied to stiff problems. This
observation illustrates that computational simplicity should not provide the

sole basis for selecting a time-differencing scheme.
The computation of the right-hand side of the A formulation (5.11) is

obviously simplified if we set
‘ 1
(5.26) £E-6+ 2= 0.

This special case of the A formulation was given by the authors in [1; see
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Eq. (4.2)]. The A formulation is particularly attractive for its simplicity
in programming logic and minimal computing storage requirements. Finally, the
§2u formulation (5.14) has the computational advantage that all spatial
derivatives on the right-hand side operate on the same function, that is,
[T+ (&8 + 1/2)V]u". TFor the special case £ = -~ 1/2, the function is con-
veniently u,

Although considerations of computer storage and computational simplicity
may not be particularly important for the simple model equation (1.1), they
are of primary concern when one deals with more complicated parabolic equa-

tions such as the compressible Navier-Stokes equations (see, e.g., [1,21]).

5.4. General formulation with no mixed derivative. It is important to

note that if b = 0, that is, there is no mixed derivative, then inequali-
ties (5.7) are replaced by

(5.27) £<20-1, E£2-3, -lgasl,

and the general two-step ADI formula (5.5) is unconditionally stable for the
same values of (8,f) as for the original second-order, two-step method (see
inequalities (2.16) and Fig. 1). In the absence of mixed derivatives, the
natural extension of (5.5) to three spatial dimensions is also unconditionally
stable for values of (a,0,£) satisfying inequalities (5.27).

It is appropriate to mention the relation between the Douglas-Gunn method
[9, Sec. 3] for multilevel difference schemes and the general two-step ADI
scheme (5.65 in the absence of a mixed derivative, that is, b = 0. The dif-

ference (5.1) corresponds to the difference

(5.28a) L u:+1

in the Douglas-Gunn development where
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nt+l _ n n-1 -
(5.28b) u, C = dpu + u s $g ¥4, =1.

Hence, on comparing (5.28) and.(5.l), one finds that

(5.29) ¢0 =1+a, ¢, = -a .

Douglas and Gunn give a formal procedure for devising an ADI scheme from a
fully implicit scheme supplied by the user. For example, consider the second-
order, two-step method ((3.2) with b = 0), where p(E) and o(E) are defined
by (2.7a) and (2.9) and (6,f) satisfy inequalities (2,16). If we apply the
formulas (3.7) of [9], we obtain an ADI algorithm that can be shown to be
equivalent to (5.6). The resulting scheme is unconditionally stable for

-1 <o <1 since the LMM is A -stable. Recall that the discussion of this

paragraph is only for the case of no mixed derivative.

6. Time-dependent coefficients. If the coefficients a,b,c of the PDE

(1.1) are functions of time, a difficulty arises when we insert (3.11) into

(3.8) since

n, 32u" n. 32u" 32 32
(6.1) p(E)[a(t ) axl;- + e(t)) V]’G [a(t“) ;;2_ + c(t™) Ey_Z 0 (E)u® .

This is not an equality because the time dependence of the coefficients cannot
be neglected when the temporal-difference operator p(E) is applied. This
problem can be avoided if we begin with the one-leg method (2.21) instead of
the conventional LMM.

With o, and o, defined by (3.6), the one-leg method (2,21) is
(6.2) p(B)E" = atf (a(B)E",0(B)E™) + Atf, (o (E)G",0, (E)E™

For the PDE (1.1) we identify £, and f2 as (3.11) and obtain
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v . - 92 7 . 32 .
(6.3) O(E)un = At [a(t) 5—; + c(t) E}I—Z-]O(E)un

+ At|b(E)) 2 o (E)a"
e’ 3xdy] e ?

where T and t, are defined by
(6.4a,b) t=oE", T, = o (E)t".
If (6.3) is modified to the prefactored form by subtracting
wAt[%(E) Jf% + c (%) iz%]p(E)ﬁn
9x oy
from each side, we obtain

-, 32 —. 32 .
(6.5) {1 - wAt[}(t) 3;5 + ¢ (%) 5;?] p(E)un

-y 02 = 92 ~n
= At[a(t) _B-X—Z + ¢ (%) EF [0(E) - wp(E)]lu

52
9%X9Yy

+ Atb(Eg) 0. (B)&" .

The prefactored form (6.5) is identical to (3.12) where a, c, and b are
evaluated at t and Ee defined by (6.4). Consequently, the factored scheme
(4.1) is valid for time-dependent coefficients provided a,c,b are evaluated
at the appropriate times T and ..

For second-order, two~step methods, the shifted-difference operators are

defined by (4.6) and (4.7). TFor this case

(6.6a) E-t

1

EloE) ™ = ™ + (g + %)At ,

—-1ic
(6.6b) E-lt,

]

E-lo (B)t" = " + (g + %—)At ,

and hence the time-dependent coefficients a,b,c are all evaluated at the

same time which we denote by
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6.7) : % = %+ (% + %)At .

Therefore, the ADI scheme (4.12) is valid for time-dependent coefficients
*

evaluated at t”. Likewise, the same statement applies to the general two-

step ADI scheme (5.6).

7. Numerical examples. In this section the ADI methods of the previous

sections are used to solve the parabolic equation (1.1) for a test problem
with variable coefficients. The purpose of these numerical experiments is not
to find the optimum scheme but to demonstrate by numerical example that each
of the formulations — A, A, and 82 — achieves the purported second-order
accuracy. In addition, we demonstrate the detrimental effect on the accuracy
if the mixed derivative is treated with a first-order-accurate method or the
variable coefficients are not evaluated at the proper time level.

For the example problem, the coefficients are

(7.1a) a(x,y,t) = (-%-x2 + yz)(l + t2) |
(7.1b) b(x,y,t) = -(x2 + y2)(1 + £2) ,
(7.1c) v c(x,y,t) = (xz +'% yz)(l +t2) .

An exact solution is

(7.2) u(x,y,t) = (x%y + xyz)exp{-@_+-%;)t]

Numerical solutions were computed on the unit square (0 £ x, vy < 1) with the
initial and boundary values computed from (7.2). For example, the initial
condition is

(7.3) u(x,y,0) = x%y + xy? , 0<x, y<1.

This model problem is a variant of an example given by McKee and Mitchell [15]

modified so that the coefficients a,b,c are time-dependent.
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Tn the numerical computations of this section, the spatial derivatives

were approximated by the following central difference approximations

§2Q,

2 Wk
7.4y 23 = E2 i 0wx?)
9xX j,k Ax
§2 Q,
. 2 k
3s
S = . S LY T3
Wik Y
(u8), (us) -
_9Q - _x "y 2 Au2
(7.6) 50y Axby Qj,k + 0(Ax%,Ay4)

1
andy Qa1 T Y, k-1 T Yo T Qogk-1)

where X = jAx and y = kAy. Here & and u are classical finite-difference
operators defined by
85 = Qui/o 7 Yozo 0 QT Qg T QLyy, o

and hence

Q'+l - ZQJ + Qj-—l ’

§2Q.
XQJ ]

2(u6)ij Qj+1 - Q._,» etc.

J

Consider, for example, the A formulation (4.12). With the spatial
derivatives replaced by the central-difference quotients (7.4)-(7.6), the
x- and y-operators on the left-hand side of (4.12a,b) each requires the solu-
tion of a tridiagonal system. There is a well-known and highly efficient
solution algorithm for tridiagonal systems (see, e.g., [11l, p. 55]). The
solution of the =x-operator (4.12a) (along each y-constant line) requires
the dummy temporal difference Au* along the left and right boundaries. 1In
problems considered in this section, we assume that wu(t) is given on the

boundaries, and consequently Au* can be determined by an explicit calcula-

tion using (4.12b) applied along both the left- and right-hand boundaries.
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This is the initial calculation made when advancing the solution from n to
ntl. Application of the general two-step ADI scheme (5.6) requires an analo-
gous computation of a dummy temporal difference along the left and right
boundaries.

Since the algorithms considered in this paper are, in general, two-step
(temporal) schemes, a solution at t = At is needed together with the initial
condition to start the computation. For the numerical examples computed
herein, the exact solution (7.2) at t = At was used to provide the addi-
tional level of data. In practice, one can use (4.12) as a one-step method on
the first time step. This is accomplished by replacing the right-hand side of
(4.11) by (4.13) and choosing 6 = 1/2, £ = 0.

The numerical differentiation formulas (7.4) and (7.5) are exact (i.e.,
the truncation error is zero) for a polynomial of degree not exceeding three
and (7.6) is exact for a polynomial of degree not exceeding two. Since the
exact solution (7.2) is a quadratic polynomial of degree two in each spatial
variable, the numerical solution of an unfactored algorithm would have the
peculiar property that there would be no spatial discretization error. Con-
sequently, the error in a numerical solution for the example problem (7.1)
consists of the temporal discretization error and the cross-product error term
from the approximate foctorization (see, e.g., Eq. (4.4)), and, of course,
roundoff error.

For each numerical experiment, we compute the L, norm of the error

which is defined as follows. At a given time, t = th = nAt, the error ej Kk
’

at each grid point is defined by

(7.7) e. , = ul . - u(jox, kAy, t™) ,

ik ik
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n, . .
where u? " is the numerical solution and u(jAx,kAy,t ) is the analytical

b

solution. The Euclidean or L, norm of the error is defined by

J K 1/2

(7.8) L, error = E E e§,k JK

j=1 k=1
where J and K are the total number of grid points in the x- and y-directions.

The second-order backward differentiation method (6 = 1, £ = 1/2) (see
Table 1) was chosen as the generating LMM for the first computational experi-
ment. The L, errors for the A, A, and 82 formulations (algorithms (4,12),
(5.11), and (5.14)) are shown in Table 2. Each computation was carried out to
a given time (t = 1.0) with a fixed ratio of At/Ax = 1;0: The computations
were repeated with successive}y smaller values of At so thét the L, rate
could be computed. (The Lz.ﬁfate is the slope of a log-log graph of the L,
error vs. At. For a second-order method without round-off error, the L,
rate should approach two as At > 0.) The results show the second-order accu-
racy of the methods. Since the same time-differencing method was used for
each computation, the differences in the L, error (for a given At) result
from the cross-product error of the approximate factorization.

The next numerical experiment demonstrates the detrimental effect on the
accuracy if the mixed derivative is treated with first-order accuracy. The
errors listed in Table 3 were computed using the A formulation with the back-
ward differentiation method as the generating LMM. For reference, the results
listed under column (1) are repeated from Table 2. The L, errors and rates
tabulated under column (2) were obtained using (4.12) but with the right-hand
side of (4.11) replaced by (4.13), that is, a first-order temporal treatment

for the mixed derivative. The degradation in accuracy is obvious.

32




Column (3) of Table 3 shows the deterioration in accuracy when the time-
dependent coefficients a,b,c are not evaluated at the proper time level.
The coefficients should be evaluated at t* defined by (6.7) and hence for
the backward differentiation method (£ = 1/2) t* = t® + At. 1In obtaining the
L, errors listed in column (3), the coefficients were evaluated at t"  rather
than t* and the loss of accuracy is apparent.

It is important to note for & = 0 that the operator A defined by (4.5)

in the A formulation becomes

Aun = Au” .

Consequently, the A and A formulations are identical if & = 0. (Recall
that the A algorithm is given by (5.6) with o = 0.) An advantage of the A
formulation is that un-1 is not needed to compute un+1 in the final step
(5.6c); hence, the A form generally requires the least amount of storage.
On the other hand, the A formulation for & # 0 has a significantly
reduced parameter space (6,8) for unconditional stability when applied to
hyperbolic problems (see Sec. 8 and [20, Sec. 9]). Consequently, because the
A and A formulations are identical for & = 0, this subclass of schemes has
the simplicity of the A form and the robustness of the A form. Table &4
compares the L2 error and rate for several schemes with £ = 0. For a
fixed value of £ 1in the region of A, -stability (see Fig. 1), the error con-
stant is a monotone increasing function of 6. This is verified by comparing
the L, errors for a given value of At in Table 4.

According to the stability analysis of Appendix B, methods that fall in
the region between the curves (4.15) are not unconditionally stable in the A

formulation (4.11) for all values of the coefficient b satisfying inequality

(1.1d). The last numerical experiment verifies this result for the LMM
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methods listed in Table 1. The parameters used in the computation are listed
in the caption of Table 5. The loss of unconditional stability for the trape-
zoidal formula and Lees method is apparent from the large error for these two

methods listed in Table 5.

8. Concluding remarks. 1In this paper we combine the class of all

A, -stable second-order linear two-step methods and the method of approximate
factorization to construct unconditionally stable ADI methods for parabolic
equations (in two space dimensions) with a mixed derivative. TFor computational
simplicity the mixed derivative is treated explicity.

In the application of the approximate factorization method we consider
several different solution variables. In Sec. 4 we follow [20] and select
p(E)un as the unknown variable. This choice provides a natural framework for
constructing unconditionally stable ADI methods for parabolic PDEs by combin-
ing A -stable LMMs with approximate factorization. The choice of the unknown
variable is not unique and for completeness we derive a general two-step ADI
scheme with (A - aV)un as the unknown variable in Sec. 5. The general formu-
lation contains a parameter o« in addition to the parameters (6,£) of the
second-order, two-step method. The parameter space (a,9,&£) for unconditional
stability is determined in Appendix B. Several general observations can be
made regarding the stability of these schemes: (1) For a given value of «
in the range [-1,1], the parameter space (8,£) for unconditional stability is
reduced from that of the unfactored implicit algorithm (3.2) (compare Fig. 1
with Figs. 3 and 4), but is increased from that of the unfactored implicit-
explicit (di.e., explicit treatment of mixed derivative) algorithm (3.12)
(compare Fig. 2 with Figs. 3 and 4). (2) For any allowed value of a, the

reduced parameter space excludes the familiar (one-step) trapezoidal formula
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and the Lees type scheme (see Table 1). (3) The §2u formulation retains the
largest parameter space for unconditional stability. (4) The p(E) or A
formulation has the peculiar property that o = /(1 + &), that is, o depends
on the particular LMM chosen. The extent of the parameter space for uncondi-
tional stability (Fig. 3) is nearly as large as for the &2 formulation

(Fig. 4 with o = 1). (5) Although not considered in this paper, it can be
shown that if the general (A - aV) formulation is applied to the model convec-
tion equation

(8.1) ou du Ju

ot . 1 9x ~ %2 %y
then only the p(E) formulation (i.e., o« = /(1 + £) retains the same param-
eter space (shaded region of Fig. 1) for unconditional stability as the gen-
erating A-stable LMM. In fact, the 82 formulation has no parameter values
(6,&) for which the scheme is unconditionally stable,

The emphasis of this paper is on the construction of unconditionally
stable second-order accurate ADI methods for the model parabolic equation (1.1).
By following the approach outlined herein (i.e., the use of A,-stable LMMs
in conjunction with the method of approximate factorization) one can easily
construct algorithms for multidimensional nonlinear parabolic systems, For
some auspicious reason, the parameter space (6,£) for which the class of
second-order two-step methods is A, -stable happens to coincide with the
parameter space for which this class of methods is A-stable. Consequently,
one can use the class of time-differencing schemes of this paper to design
second-order ADI algorithms for mixed hyperbolic-parabolic systems of nonlinear
equations. A noniterative algorithm in the A-form for nonlinear systems was
considered in [1] and a general development for the p(E) formulation is in a
companion paper [21].
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Appendix A. Stability analysis of combined LMMs. In this appendix we

examine the stability of the combined LMM (3.7) applied to the model split
ODE:

(A.1a,b) g% =Au+Au; A <0, Ay + A, 20,

where A; and X, are real constants. In addition, we investigate the stabil-
ity of the unfactored scheme (3.12) for the PDE (1.1). The analysis is for
the class of all second-order, two-step methods.

Consider the combined LMM (3.7) where p(E), o(E), and oe(E) are defined
by (2.7a), (2.9), and (3.15). If we apply this scheme to the model equa-
tion (A.1) with £, = X\ju and £, = A,u, we obtain a difference equation

whose characteristic equation is

(A.2) a,t2 + a;z+a; =0,

where

(A. 3a) a, = (L +¢&) - 6x,At,

(A.3b) a; = -(1 + 28) - (g - 20 + —g—))\lAt - (g + —-;’-)AZAt :
(A 3c) a, = £+ (s; -0+ 5 )oe + (g + %)AzAt :

Equation (A.2) is a von Neumann polynomial [16], that is, lcl < 1, if and only

if

(A. 4a) ag £ a,

and

(A.4b) —(a2 + ao) £a; <a,+ a; »

where without loss of generality a, 1s assumed to be positive. The inequal-
ities (A.1b) and (A.4) lead to the following conditions for the stability of

the combined two-step scheme:
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(A.5a,b) £ 2 -3, 0< (1+28)+ (1-26+E)AAt+ (1+ )0t .

N

In particular, the conditions for A,-stability are

(1 -20 + &) A
1+ £ 1

(A.6a,b) £ 2 —%-, Ay 2 -

Note that for the special case A, = 0, (A.6b) becomes & < 26 - 1 and condi-
tions (A.6) reduce to (2.16).

For the stability analysis of the unfactored scheme (3.12) for the PDE
(1.1) we need only consider the stability of the linear two~step scheme (3.7)
applied to the ODE (3.4) for the Fourier coefficient. In this appendix we
consider only the spatially continuous solution; however, the results are
applicable to the spatially discrete case (see last paragraph of Appendix B).
The conditions on the parameters (6,f) for the unconditional stability of
(3.12) can be derived from the Ao—stability requirements (A.6) and the rela-
tions

(A.7a,b) l‘l = _(aK12 + CK22) Py Az = "bKle ’
obtained by comparing (A.l) and (3.4b). There follows

(A.8a,b) E

-

1 -26+¢)
2 2 TR )

v
|
N

(a|<12 + CK22) .
The inequalities (A.8a,b) together with (1.lc,d) imply

(A- gasb) E, 2 -

N =

’ 556_1-

Inequality (A.9b) is more restrictive than the inequality (2.16a) for the
generating two-step method (2.6) to be A,-stable. Consequently, we have the
result that the second-order explicit treatment ;f the mixed derivative
reduces the parameter space (8,&) for which the unfactored scheme (3,12) is

unconditionally stable (see Fig. 2).
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Appendix B. Stability analysis for two-step ADI schemes. 1In this appen-

dix we perform a linear stability analysis for the factored scheme (5.5). We
assume that u" is spatially continuous and seek a solution of the form

(B.1) Gt = 0 ei(le + sz)

where V! 1is the Fourier coefficient and K1sK, are the Fourier variables.
Prior to an actual numerical computation, the spatial derivatives are replaced
by appropriate difference quotients; however, as indicated at the end of this
appendix, the stability proof for the spatially discrete case requires only a
minor modification of the following stability proof.

By substituting (B.1) into (5.5), we find that the Fourier coefficient

satisfies

(B.2) (1 + A + C)(A - av)v? = --% (A+B+ c)[} + (% -6+ l)é]v“

2
n n 3 n
BVv - a(A + C)Vv + (l e Q)Vv ,
where we have defined
(B.3) A= wAtaKl2 , B = wAtbk,k, , C= mAtCK22

and w = 6/(1 + £). The amplification factor is defined by

(B.4) N

and consequently it follows from (B.2) that { satisfies the quadratic

equation
(B.5) azcz +az+a, =0,
where
(B.6a) a, = (1+A)(1+0),
_ 1 3
a; = - 1 +a)(+A)3A+0C) +-6 (E -0 + §>(A + B + C)
(B.6b)

+B+a(A+C)—(1§_€-—a),

38




2=+ 0@ +0) -5 (E-0+ A+ +0
(B.6c)

-B-a(A+0C)+ (1 i E ) .

In the one-dimensional case (b =c = 0 in Eq. (1.1) and B=C =0 in
(B.5)), the roots of the quadratic (B.5) have modulus bounded by unity for
those values of (6,%) shown in the shaded region of Fig. 1, that is,

(B.7a,b) E<2w-1, £»-+.7

N

This one-dimensional result follows from the analysis [20]. Note that «a

only enters as a parameter in the two-dimensional factored algorithm (5.5).
(Recall that (5.2) and (5.3) are actually identical.) One can easily verify
that the coefficients (B.6) do not depend on o if B =C = 0. We must
determine if there are additional restrictions on the parameters (8,%) for the
unconditional stability of the factored scheme (5.5) for arbitrary values of
a,b,c subject only to the parabolicity conditions

(B.8a,b) a>0, b2 < 4ac

of the partial differential equation (1.1). Since the one-dimensional problem
(b =c =0) is a special case of the two~dimensional problem, we need not con-
sider values of (8,%) outside the domain (B.7). Hence w > 0, A and C as
defined by (B.3) are positive, and

(8.9) A+ B+ C =pitfax;? + beyky + ek,?) > 0,

since the positive definitene;; 6f:this quadratic form was the condition which
led originally to (B.8).

The coefficients (B.6) of the quadratic (B.5) are real and consequently
the roots [ satisfy ICI <1 if and only if the inequalities (A.4) of
Appendix A are satisfied. If we insert ap and a, as given by (B.6) into
(A.4a), there follows
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1
1+ 8

(B.10) 0 < + (1 - a)AC +%(E;+%)(A+B+C) ,

which is satisfied for all allowable A,B,C if and only if

(B.11) a<1l.

(Recall that the parameters 6 and & are required to satisfy inequalities
(B.7).) Likewise the left inequality of (A.4b) is satisfied. If the coeffi-
cients (B.6) are inserted into the right inequality of (A.4b) one obtains

1 1+ 2¢ 1
(B.12) 05(l+a)AC—wB+l+g+(2 w)(A+C).

The determination of necessary and sufficient conditions for this inequality
is simplified if it is rewritten as

1+ 2¢

1
(B.13) 0 < (1 + a)ac(kky)? - < bkiky + 5

1 2 2

+ (2 w)(akl + Ck2 )
where we have used the definitions (B.3) and defined:

(B.1l4a,b) ky = YuwAt «y , ky = Yubt k, .

It can be shown that necessary and sufficient conditions for the polynomial
in ky,k, defined by

= 2 2 2
(B.15) P = e;(kky)® + ekik, + eg + ek + eck,

to be positive semidefinite (i.e., P

v

0 for all real k;,k,) are

(B.1l6a) ey, €3, €, €g

Iv

0,

(B.16b) le, |

IA

2/e1e3 + 2»’eue5 .

Comparison of (B.15) and (B.13) leads to the conditions

(B.17a,b) (L +a)ac 20, 1+t 20,
(B.17¢c,d) (2 - l)a >0, ( - -l)c >0,
w W
(B.17e) bl ¢ 2v/a + wyac 1228 4 1Y’
. 5l < a)ac T - =) ac




Inequalities (B.l7a,b,c,d) are satisfied by virtue of inequalities (B.7),
(B.8a), and (B.11) plus the constraint:
(B.18) -1 <o .

Inequality (B.1l7e) can be rewritten as

1 (L+a)(@ + 28) 1
(B.19) m|b| < 2/a_c[ T ¥ T + {2 -2
which is satisfied for all allowable a,b,c (see inequalities (B.8)) if and
only if

1 (1+ )@ + 28) 1
(B. 20) wsv T E +<2 m),
or
(B.21) 6 > 2(1 + &)

2 + d + o)A + 28)

1 +¢E
Hence the final inequalities which must be satisfied are (B.7b), (B.11l), (B.18),
and (B.21).

In the above stability analysis we assumed that the spatial derivatives
were continuous. Since in practice the spatial derivatives are replaced by
discrete difference quotients, it remains to consider the spatially discrete
case. 1If, for example, the spatial derivatives in (5.5) are replaced by the
second-order difference quotients (7.4)-(7.6), then the stability analysis

proceeds as above with the exception that the exponential in (B.1l) is replaced

by
(B.22) u =Vt ei(Klex+K2kAy).
. 5,k ,
where x = jAx, y = kAy. If we make the following correspondence
2 sin(61/2) 2 sin(62/2)
(B.23a,b) Ky *'-————KE‘-—- s Ky € T ay
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1
(B.24) B + B cos 5 COs & >

where

8, = KIAX s 62 = Ksz s

between the parameters for the discrete and continuous case, then the amplifi-
cation factor for the discrete case satisfies the same quadratic (B.5) with
coefficients (B.6). Since the stability region defined by inequalities (B.7b),

(B.11), (B.18), and (B.21) is valid for arbitrary values of Ky and K, and

81 8o
529 |

B cos - cos 5| < |B| s

we obtain the same stability range for the discrete case. If one uses a non-

centered approximation for the mixed derivative such as

329 -1 2 A2
3%0y ik hxby [VXAy + Axvy]Qj,k + 0(Ax<,Ay°) ,
(B. 26) 1

= Zavdy Q1 T 29k Y Yok T Y,k
*Q, +Q, - Q, \x2, Ay?
where

Aij = Qj+1 - Qj > Vij Qj - Qj—l ’ ete.,

the only modification necessary in the stability analysis is replacement of

(B.24) by

6. - 06
(B.27) B « B cos (—E————Z) .
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TABLE 1

Partial list of second-order two-step methods.

Symbol in
8| & ) Method Fig. 1
1 \
> 0 0 | One~step trapezoidal formula =
1 -% 0 Backward differentiation L
1 1 1
3175 | -3 Lees type [14] v
%’ 0 —%— Adams type [17] ¢
1 1 1 : A
21732 |3 Two-step trapezoidal formula
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Ly

TABLE 2
L, error of the A, A, and 82 formulations at t = 1.0.
At = Number of A formulation A formulation 82 formulation
At/Ax2
Ax = Ay | time steps L, error L, rate | L, error L, rate | L, error L, rate
0.2 5 5 0.785%10~2 0.107x10™! 0.134x10~2
2.02 2.01 1.57
0.1 10 10 0.193x10~2 0.266x102 0.452x10"3
2.01 2.03 1.72
0.05 20 20 0.479%x10™3 0.649x1073 0.137x10~3
2.01 2.03 1.89
0.025 40 40 |0.119x1073 0.160x10~3 0.372x10~%




8%

TABLE 3

Numerical experiments illustrating (1) second-order A formulation, (2) degradation in

accuracy when mixed derivative is computed with a first-order method,

(3) deterioration

in accuracy when time-dependent coefficients are not evaluated at proper time level.

At = Number of (1) (2) (3)
At/Ax? -
Ax = Ay | time steps L, error L, rate L, error L2 rate’| L, error L2 rate

0.2 5 5 0.758x1072 0.585%x10™2 0.907x10~2
. 2.02 0.59 1.72

0.1 10 10 0.193x10"2 0.389x1072 0.275x10~2
2.01 A 0.85 1.63

0.05 20 20 0.479x1073 0.216x10"2 0.888x1073
2.01 0.94 1.47

0.025 40 40 0.119x10~3 0.113x1072 0.320x1073




6%

TABLE 4

L, error of the A formulation for £ = 0 and several values of 6 at t = 1.0.
At = Number of E=0, 6 =2/3 E=0, 8 =3/4 £E=0, 6 =3/2
At/Ax?
Ax = Ay | time steps L, error L, rate| L, error L, rate| L, error L, rate
0.2 5 5 0.705x10~2 0.871x10~2 0.262x10~1
2,06 2.07 1.85
0.1 10 10 0.169x10™2 0.208x102 0.726x10~2
2.03 2.03 2.00
0.05 20 20 0.415x1073 0.511x10"3 0.181x10™2
2,02 2.02 2,01
0.025 40 40 0.102x10~3 0.126x1073 0.448x1073




TABLE 5

error of A formulation (4,11)

[\V]

at t = 1.0. Parameters are
Ax = Ay = 0.025, At = 0.005, number

of time steps = 200,

2 =~
Iaj’klmax At/Ax? = 23,
Method ‘ L2 error
One-step trapezoidal 0.246x102

Backward differentiation| 0.479x10~°

Lees type 0.405x101°
Adams type _ 0.505x107°
Two-step trapezoidal 0.772x10™°
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FIG.

FIG.

FIG.

FIG.

FIGURE CAPTIONS

1. A, - and A-stable domain of the parameters (8,f) for the class of all

second-order two-step methods. Symbols denote methods listed
2. Unconditionally stable domain of the parameters (8,%) for
tored scheme (3.12) with p(E), o(E), and 0o(E) defined by (2
and (3.15).

3. Unconditionally stable domain of the parameters (8,£) for
tored A formulation (4.11).

4. Unconditionally stable domain of the parameters (6,£) for

tored general formulation (5.5) for several values of a.
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in Table 1.

the unfac-

.78), (2-9),

the fac-

the fac-




27

Figure 1.- Ao~ and A-stable domain of the parameters (0,£) for the class of all
second-order two-step methods. Symbols denote methods listed in Table 1.
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Figure 2.- Unconditionally stable domain of the parameters (6,£) for the
unfactored scheme (3.12) with p(E), o(E), and oe(E) defined by (2.7a),
(2.9), and (3.15).
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3~ / o _201+¢)?
3+4¢
£=20 - 1\'
2+
0 =(£+1)(E+1/2)
T 0= (£+1)E +3/2)
| 7}
o 4
_/
7 \
/ £=-1/2

Figure 3.~ Unconditionally stable domain of the parameters (6,f) for the fac-—
tored A formulation (4.11).
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£=-1/2
4

Figure 4.- Unconditionally stable domain of the parameters (6,£) for the fac-
tored general formulation (5.5) for several values of «.
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