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ION BEAM PROBING OF ELECTROSTATIC FIELDS

*
by Hans Persson

Lewis Research Center

SUMMARY

The determination of a cylindrically symmetric, time-independent
electrostatic potential V 1in a magnetic field B with the same sym-
lietry by measurements of the deflection of a "primary" beam of ions is
analyzed and substantiated by examples. Special attention is given to
the requirements on canonlcal angular momentum and total energy set by
an arbitrary, nonmonotone V, to scaling laws obtained by normalization,
and to the analogy with 1onospheric sounding. The inversion procedure
with the Abel analysis of an equivalent problem with a one-dimensional
fictitious potential 1s used 1n a numerical experiment with application
to the NASA Lewis Modified Penning Discharge; the assumed potential can
be well reconstructed by simple means.

Tne determination of V from a study of '"secondary" beams of ions
with increased charge produced by hot plasma electrons 1s also analyzed,
both from a general point of view and with application to the NASA Lewis
SUMMA experiment. Like in the primary beam method there are requirements
on the beam energy set by the penetration of the ions through B, the
possibility of repulsive potentials, and the special requirements set by
the uniqueness in the determination of V and the computational proce-
dure. Simple formulas and geometrical constructions are given for the
minlmum energy necessary to reach the axis, the whole plasma, and any
point 1in the magnetic field.

Tne common, simplifying assumption that V 1is a small perturbation
1s critically and constructively analyzed; an 1iteration scheme for suc-
cessively correcting the orbits and points of ionization for the electro-
static potential 1s suggested, and elaborated in the cylindrically sym-
metric case 1n terms of a nonlinear, weakly singular integral equation
coupled with an empirical relation, and a mapping T in V-space. Condi-
tions are given for T to be contractive, which gives a unique determi-
nation of V, and for the first 1iterate - which corresponds to the simpli-
fied solution - to be a good approximation.

It 1s found that the pertinent smallness quantity € has the physi-
cal significance of the ratio of electrostatic to magnetic force in the
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plasma, or equivalently of E/B-velocity to beam velocity, or equivalently
of electric field times magnetic scale length to twice the geometric mean
of beam energy and minimum necessary beam energy for penetration through
B. The simplified solution is asymptotically correct when ¢ -+ 0, and
for € £ 1 and a suitable O:th 1terate the iteration converges to a

unique limit, the true potential.

A numerical example with low beam energy with application to the
SUMMA experiment illuminates the importance of V; the simplified solu-
tion is found to be unsatisfactory.

1. INTRODUCTION

Beams of charged particles can be used to determine an unknown elec-
tric field. In the first part (sec, 2-3) of the present paper, we shall
discuss a "primary beam method" based upon measurements of beam deflec-
tion, and in the second part (sec. 4-6) we shall analyze a method based
upon a study of the "secondary beams'" of ions in more highly ionized
states produced in the interaction between the primary beam and the hot
electrons of a plasma assumed to be the object of study. Our interest
will mainly be a time-independent electrostatic field directed perpendicu-
lar to a magnetic field B. The first method is - up to now - essentially
limted to cylindrical symmetry, while the second can be used in arbitrary
geometries.

Methods and experiments with studies of deflection with constant
beam energy and variable angular momentum were reported by Stallings
(ref., 1) and by Black and Robinson (ref. 2). A similar approach is found
in the tracing of light rays (Rockett and Deboo, ref. 3). In the first
part of the present paper we shall mainly be concerned with the opposite
case, when the angular momentum is constant and the energy varied. The
general cylindrically symmetric problem of this kind was treated by
Whipple (ref., 4), the special case with vanishing magnetic field by
Dracott (ref. 5), and another special case (with nonzero magnetic field
but the electric field treated as a small perturbation) by Konstantinov
and Tselnik (ref. 6). In the experimental investigations and theoreti-
cal calculations by Kambic (ref. 7), (that also include the secondary
beam method, see below) the unknown potential was parametrized and the
parameters determined, as in the work by Borodkin (ref. 8), Swanson,
et al. (ref. 9), arrived at their conclusions by comparison with solu-
tions of forward problems with deflection in potential wells. A method
for determining the electric field perpendicular to B with a beam par-
allel to B was used by Dow (ref. 10), and for determination of the
electric field parallel to B with a beam parallel to B we wish to
refer to Johansson (ref. 11) and cited references, especially Ehrenberg
and Kentrschynskyj (ref. 12).

The essential beam deflection reference to us is the laboratory re-
port by Whipple (ref. 4). We shall present a derivation of some basic
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relations similar to his, we shall introduce a normalization of the
physical variables, which will allow us to obtain scaling laws and solve
"several problems in one," and we shall substantiate the theory with dis-
cussion and examples, both analytical and numerical, The primary beam
method has similarities with the determination of intermolecular poten-
tials from particle scattering data, and especially with electron density
determinations with radio waves in the ionosphere, and we shall make some
use of this latter analogy.

In the secondary beam method by Jobes and Hickok one utilizes the
change in charge to mass ratio that occurs when hot plasma electrons pro-
duce a sudden change of the charge of primary ions (or mass of molecular
primary ions). Several important plasma quantities can be measured by
studying these "secondaries,'" notably the electrostatic potential (see
for instance ref. 13 and cited references). In a time-independent
electric field the secondaries will, in an invariant way, carry informa-
tion about the plasma potential at the point of ionization (or dissocia-
tion) to a detector placed outside the plasma, without any other distor-
tion than that caused by systematic "errors" and stochastic components,
They also carry information about the location of the point of ionization.
However, this information is 1n general distorted by the magnetic field
and the unknown electric field.

We shall investigate a few factors influencing the requirements on
momentum and energy of the primary beam particles, notably those set by
the need for penetration into and out of the magnetic field, and the
special questions associated with very strong electric fields. It is
customary to make the simplifying assumption that the unknown electric
field is a small perturbation, when experimental data are analyzed; this
allows a determination of the particle orbits - a step in the analysis -
without knowledge of the potential. Kambic (ref. 7), in his investiga-
tions on the NASA Lewis Modified Penning Discharge, encountered a situa-
tion when this simplified approach could not be used. We shall analyze
the conditions for validity and uniqueness of the simplified approach
and a procedure for improving 1t, and establish basic criteria herefor.
The aim will be towards generality, but specialization to cylindrical sym-
metry and the conditions 1in another NASA Lewis experiment - the SUMMA
experiment - will be essential for the analysis. However, it 1s believed
that methods as well as criteria can readily be extended to general
situations.

In section 2 the theory for the primary beam method for probing an
axisymmetric field is displayed, and section 3 contains a simple analyti-
cal example and a numerical experiment, the reconstruction of an assumed
potential, with application to the above mentioned Modified Penning Dis-
charge. In section 4 the secondary beam method is briefly described, the
momentum (and energy) requirement set by a cylindrical magnetic field is
analyzed, and the possible importance of two different smallness quanti-
ties for the electric field 1s tentatively discussed. Section 5 consists
of an analysis of a suggested iteration scheme, applicable to arbitrary
potentials, with no need for parametric representation. The pertinent
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smallness quantity is found as well as the condition for the electric
field to be a perturbation and for the iteration to converge. Section 6
is a numerical illustration of the importance of the electric field.

2. THEORY FOR A PRIMARY BEAM METHOD
A. Formulation

Consider a cylindrically symmetric, time-independent magnetic field
B, whose strength may vary with the distance r from the axis of sym-
metry; B = B(r). See figure 1, in which B 1is directed outwards from
the paper, at least on and near the axis. An ion orbit has been drawn in
the figure. With such a field, the magnetic vector potential A has only
one component, A, which is positive. The gun 1is located at the point
(r1,91) and the getector at (rp,¢2). The angle ¢, can be varied. The
electric field is assumed to be derivable from a cylindrically symmetric,
conservative potential V(r), which 1s supposed to be known between 1y
and ry. (Usually, we shall consider the case that it 1s a constant
that may be put equal to zero.) We wish to determine the function V(r)
from measurements of ¢5 - ¢;, the change in polar angle, for ions with
mass m and charge q 1injected with various energies in various direc-
tions.

The velocity components are denoted by v, and Vo and ¢ 1is the
net magnetic flux enclosed inside a circle with radius r and center on
the axis. Then the following two expressions hold for the total energy
W, and the canonical angular momentum L, - the two constants of motion:

1 2.1 2
Wo =3 mv¢ + 7 W + qV oD
L =mrv, + qrA, = mrv, + a2 (2)
o ¢ ¢ ¢ 27

where we have used the relation 27rAy = ¢, which follows from Stokes'
theorem. With the magnetic field direction given in figure 1, the flux
d 1s certainly positive. From equation (2) vy 1is solved and inserted
into equation (1), which gives

12
my + ¥(rsL) = W (3)

2 )

where
2
w=_1_(L _ﬂ) +qu
(o] i

1s a function of r containing L0 as a parameter. It has been shown
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in the literature (see for instance ref. 14) that the radial motion de-
scribed by equation (3) can be interpreted as a fictitious one-dimensional
motion of the particle (with total emergy W,) in the fictitious or effec-
tive one-dimensional potential Y¥. In addition to the potential energy
associated with the electrostatic field, Y contains a term accounting for
the azimuthal motion,

m 2mr2

2
o 2
The additional term 1s given by the kinetic energy associated with the
azimuthal motion, and it consists of coupled contributions from the cen-
trifugal and magnetic forces.

The two quantities W, and L, can be varied independently by
arranging the variation of the energy and the direction of the beam, But
there 1s only one unknown function V(r) to be determined. By formaliz-
ing the discussions by Dracott and Whipple (refs. 4 and 5), we shall use
this redundance in such a way that the effective potential ¥ governing
the radial motion will be monotonic, d¥/dr < 0, even if the electric
field is not, and even if the magnetic field is allowed to change its
direction 1n the pertinent region of space. This is achieved by choosing
L, sufficiently large. The redundance may also be used to obtain sys-
tematic procedures and direct local measurements of the electric field.

We shall prove that for arbitrarily given ¢(r) and V(r) 1t 1s al-
ways possible to find an L, such that d¥/dr < 0 for all r between
0 (exclusive) and r; and ry. In practice, there is an infinite number
of such L,. Even if, in principle, any of them can be used for determin-
ing an unknown V(r) with an upwards bounded derivative, it may be more
practical to use potentials that are nonmonotonic in regions where V is
already known (compare sec. 3D).

V(r) can be solved from an integral equation of Abel type. The flux
#(r) 1s assumed to be known, as well as the total change in polar angle,
as a function of the total emergy W,, for particles with a constant L,
among those values giving a monotonic fictitious potential V¥. Part of
the Abel 1inversion procedure can be made analytically, and essentially
only quadratures and the solution of an implicit relation are needed.

B. Normalization

In spite of the fact that the immediate intuitive meaning of the
various symbols gets lost, 1t proves to be practical to normalize all
quantities. The analytical work becomes more clear, and only the vari-
ables and parameters pertinent to the solution enter into the calcula-
tions. Every solution of a problem in normalized variables corresponds
to a wide variety of solutions in the original variables, and scaling
laws can be found.
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A convenient basis for the normalization 1s the magnetic flux en-
closed 1nside some radius r,. The quantities r', @', L', v', W' are
introduced as

r' =1
n
o' = o(r')
v _ g9’
L 27
mrl
1 2
v - = ]
W 5 mv
Putting
r/r' = s
| -
LO/L JZO
v¢/v' = u¢

/9" = 1

qV/W' = v
wo/w' =W

YW =y

we obtain the following expressions for the constants of motion and the
fictitious potential:

w_ = u2 + u2 + v
o o T

£ =su, + 1
o}

¢
2 4)



Here, wm is the part of Y owing to the azimuthal motion.

If the electrostatic potential is set equal to zero at r,, the
point of normalization, one gets for r = r,: s =1; u, = Uses Ur = Yoyl
t=1; v=0; ¢ = (& - 1)2. Clearly, Ugg = %9 = 1l; and 25, =1 corre-
sponds to a purely radial injection.

A natural choice of r, 1s the gun location rj (or the detector
location rz). However, if the gun is located outside the magnetic
field, this 1s not possible since ¢' would then be zero, and if @(r;)
is very small (in a certain sense) normalization to r; is impractical,
If the magnetic field changes its direction only once, the corresponding
point may be chosen for the normalization. At that point, ¢ then has
its maximum value.

In any case, the location of the gun will correspond to r;/r, = a,
and that of the detector to r2/rn = B; max(a,B) = v.

C. Monotonic Fictitious Potential

Differentiating (4), one obtains

@ __ 2 N - dr} , dv
S2 (lo ) (go R ds + ds

ds s

Inspection of this expression reveals that for given 1 and v the
momentum 20 can be chosen so large that both parentheses in the first
dy
term are positive. In fact, lim EEE-= ~»o  uniformly in s. Thus, the
R
first term can always be made sufficiently negative to dominate over the
second term, which may be positive, so that dy/ds becomes negative for

all s considered.

For a formal proof, let us put

when s varies 1in the interval (0,Y) and let us consider zo-values at
least fulfilling the condition

o > kg T kyY 6))



Then,
_ 4y _ jL.(g - 1) l.(g -1) + dr| _dv, jL.(g - k) ES_:jiE -kl -x
ds 52 o] s o ds ds "YZ o 1 Y 2 3

Since the first term 1in the right-hand member of the second inequality

tends to infinity with 2,, the latter quantity can be chosen so large

that the same member becomes positive, which implies that
dy
is <0 for all se(0,y)

For the considered #,-values (fulfilling (5) above) this occurs when

(6)

Conditions (5) and (6) contain the maximum magnetic flux, 1ts maxi-
mum rate of decrease with s, and the maximum inwards directed electric
field. By using the most stringent of these two conditions, a suffi-
ciently large value of £, can be determined.

D. Determination of Electrostatic Potential

The rate of change of the azimuthal angle with respect to radius is
do _ 7 - do _ "¢
given by ar - rvr’ in normalized variables by a5 - sur' The total angu-
lar change A¢ 1s obtained by integrating from o to the turning-point
s¢ and then from sy to 8. To be specific, we assume o =8 = 1; if
a and B have other values, the corresponding contributions to A¢ will
be completely known if v 1s known between 1 and v.

Using the symmetry between the inwards and outwards directed motion
and inserting uy = (&, - 7)/s; uy = A (for motion outwards), we
obtain

1
(20 - ~)ds
Ap = 2 - R — (N
s A;o -y
St

where s, 1is defined through wg, - ¥(sy) = 0, which is unique for mono-
tonic Y. Let us denote A¢/2 by f(wo), and in the integral we regard

s as a function of ¢ dinstead of the reverse. (This i1s possible due to
the monotone relation.) We then get



w
(- D(-s"ay
5 = £(w) (8)
2 s o~ k4
(2,-1)

Suppose that f(w ), half the change in polar angle, is known for all
values of the total energy 1n an interval extending from (%, - 1) up to
some maximum value w; ... The canonical angular momentum is supposed to
be constant for all these w, and chosen to furnish a monotonic V.
Then, since T does not contain w,, equation (8) is an Abel integral

equation with the solution

U
20 -1 §§_= ) 14 f(wo)dw0
SZ dv m dy N —
2 o
(20-1)

We then 1ntegrate s from s to 1, whereby ¢y varies from ¢ to
(% - l) One obtains

1 v
8, = 7(q) 4o L £(w )dw %)
SZ ™ T
s (20-1)2 ©

which is a remarkably simple and straightforward solution. It defines s
as a unique and monotonic function of 1y, the latter quantity varying
from (2 - 1) to Wpox. Indeed, denoting the left-hand member of equa-
tion (9) by F(s) and the right—hand member by G(y), the derivative

L2 -
o
2
s

2 _
a5 [F(s) - 6] = -

becomes nonzero (negative) in virtue of the assumption on 20. Thus,

s = s(y) is unique. But the relation between s and ¢ has already
been shown to be one-one. Hence, ¢ = y(s), and G(y) must be a monotonic
function of . Considering (1) = (2 - 1) , P(0) = 4+ and F(0) =

(2, # 0), F and G must have the general appearance shown in figure 2.

Equation (9) takes on the form
F(s) = G(¥) (10)
and corresponding values of s and ¢ can be obtained graphically by

drawing horizontal lines and note the s and ¢ values at the intersec-
tions with the curves, as indicated in figure 2, Then, v is obtained as
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v=y -1
m

In summary, to obtain the electrostatic potential v, the function
F(s) is calculated as an integral of a known function involving the mag-
netic flux and the canonical angular momentum, which must be large
enough, as a parameter. The integral is then put equal to G(y), that
may be called the Abel transform of the function representing half the
change 1n polar angle versus total energy (with constant canonical angu-
lar momentum). This gives 1n implicit form the fictitious potential as
a function of radius. After subtracting the part corresponding to the
azimuthal motion, only the electrostatic potential remains.

3. Examples

For a given shape +(s) of the magnetic field, the part vy (s;lo)
of the fictitious potential 1s uniquely defined as a function of s
by the value of the single parameter f,. The i1nitial value of the
azimuthal velocity of the particles, and the pertinent energy interval
necessary for an 1inversion can be obtained in a simple way from the mag-
netic field strength, the appropriate linear dimension and the mass and
charge of the particles by denormalization, using the formulas of the
preceding section.

We shall 1llustrate the theory by analyzing two examples in nor-
malized variables; the first 1s sufficiently simple to permit analytical
methods to be used, while the second, referring to a particular labora-
tory experiment, requires a numerical treatment.

E]

Among the properties of ,, the following three are generally

valid:

(1) ¥, _ 0, with equality exactly when -~ = &g

(11) X, # 0 implies that wm + @ when s -0

(i11) for orbits through the axis, ¢, = 0. For most physically inter-
esting magnetic fields (with :(s) = o(s) when s -~ 0; typically,
T(s) = O(sz)), we then have u,(0) = 0 when 2, = 0, in contrast to the
property (ii) above. This 1& .aused by the singularity for r = 0 of the
transformation between Cartesian and polar coordinates; one either pre-~
scribes that a negative value of s corresponds to adding 7 to the
polar angle, or the Uy -axis 1s simply regarded as a part of the Yy-curve.

A. Homogeneous Magnetic Field with No Electric Field
For a homogeneous magnetic field we have T = s2 and Yy =[(2,/9 - s]2.

By analyzing the function Un the follewing additional properties may be
derived for injection at s = 1 into a homogeneous B:
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(iv) %, > 1 1mplies dyp,/ds < 0; the fictitious potential is mono-
tonically decreasing; at all points of the orbit the magnetic field and
centrifugal force accelerate the particle away from the axis,

(v) 2, = 1 means that the particle is injected exactly radially,
and VY, has a minimum (=0) at s = 1, the point of injection,

(vi) for -1 < &, < +1 the particle 1s initially accelerated by B
towards the axis,

(vi1) for O < L4 < +1, the positive half of the interval in (vi),

Ym has a minimum Ypin =0 at s = Vi,.

(viii) for -1 < &, < 0, the negative half of the interval in (vi), ¥

m
has a nonzero minimum Y ;. = 4 ° le ! at s = VTa T,
(ix) for 4, = -1 the centrifugal and magnetic forces exactly

cancel initially; Y, has a minimum at s = 1; if the particles have no
radial energy initially, they will simply perform a gyrational motion in
a circle with radius 1 and center at the origin.

(x) &5 < -1 implies that Y, is monotonically decreasing,

Representative examples of the various curves possible are shown in
figure 3. Suppose, for illustration, that a particle has &, = -0.4 and
w, = 3. The pertinent yp-curve 1s then f in figure 3. The 1initial
kinetic energy of the azimuthal motion is then given by the distance
np = 1.96 in the figure; (with the present normalization, this is given
by (&g - 1)2]. The distance mn, which is 1.04, thus represents the ini-
tial kinetic energy of the radial motion. If the particle is initially
moving inwards, it will proceed as far as the point t with s = 0,280,
the intersection between the curve f and the straight line y, = w_,
and then be reflected back out. The radial velocity is simply
u, = i/wo - Yy = /3 - ¥y, and the azimuthal velocity is uy = 25T/s

= (0.4 - 1)/s. 1If w, is smaller than the distance np, the particle
cannot exist at s = 1 and have the potential £. Clearly, in the
present case the potential 1s initially attractive, while for instance
curve h corresponds to a repulsive potential.

For other shapes of B than homogeneous, other types of fictitious
potential curves may appear, especially when B changes its directionm.

The validity of the inversion equation (9) can easily be checked
analytically in the present case,

The left-hand member becomes

R,O—S 9
F(s) = — 3 ds=s-( +1)+ ?f-
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To calculate the right-hand member, the function f(wo) is first
determined from geometrical considerations (see fig. 4). The normalized
gyro radius is found to be u°/2, where u, 1is the normalized initial
velocity. By successively using the cosine and sine theorems, one ob-
tains

Yo
Siné@:i)_ K = TCOSKl
o) 7g CoS -
Yo
1 +-7r + u, sin Kl
By utilizin u =9 =13 u2 =w - (& - 1)2 w_=u one obtains
y & o¢ o} > “or o > 7o ’
2
Cosz éﬁ__ (20 + 1)
2w+ 4%
o o
Thus,
L +1

= Lo _
f(wo) =3 arccos

Vwo + 420

This function is plotted for the special choice of £, = 2 (curve b in
fig. 3), which gives a monotonic potential, in figure 5; the total energy
w, varies between its minimum possible value (2o - 1)2 =1 and 10, 1In
this case, f(w,) 1s monotonic, varying from O to 0.78.

Inserting the above expression for f(w,) and performing a partial
integration, one obtains

g +1 /w -, dw0

(r 1?2 w + 420»/;0 - (g, - D2

i

The substitution

wo= (Ro - l)2 coszi + Y sinzg

often used i1n connection with Abel integrals, transforms the integral to
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9 /2
oy w21V - DT i
G(y) =
n(lo + 1) 1+ B2 tan2g
0
where

Mo+ b

R

The integral is calculated, using integral tables or the calculus of
residues, and 1ts value is found to be =/2(8 + 1). After some algebraic
manipulations, one obtains

F(v) = Y + 420 - (20 + 1)

The equation G(s) = F(¥) then gives

which is exactly the form of ¢ = y, for the assumed, homogeneous mag-
netic field., Thus, the correct result is obtained in this case.

B. The NASA Lewis Modified Penning Discharge

The theory exposed 1in section 2 will now be applied to a practical
case, the NASA Lewis Modified Penning Discharge, in order to illustrate
the procedure and test the accuracy obtainable in the numerical work, To
simulate some of the numerical and experimental errors, the procedure has
been made deliberately coarse. The actual magnetic field and ion species,
and an assumed, physically relevant, nonmonotonic electrostatic potential
are used in the calculations.

First, a sufficiently large canonical momentum is chosen, that gives
a monotonic fictitious potential. Then the function f(w,) representing
half the change in polar angle 1s calculated. The inversion procedure
giving y(s) 1s performed, and the contribution ¢, 1is subtracted. The
difference v = ¢ - Y, 1s then compared with the assumed function, and 1t
is found that a very good agreement can be obtained by simple means,

The discharge is a Penning discharge 1n a magnetic mirror field
(ref. 15). The anode consists of two closely spaced rings, arranged in
a symmetric way parallel to the midplane of the magnetic field. Thus,
in the midplane between the rings the magnetic field is locally cylindri-
cally symmetric. The anode radius is 7.6 centimeters, and at r = 13,5
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centimeters there 1s a grounded mesh screen defining the potential zero
all the way out to the grounded vacuum vessel. A thallium i1on gun
(ref. 7) 1s located 86 centimeters from the axis. This point will be
the mainpoint of normalization in the following calculations.

Normalized to the gun location, the function 7(s) 1s shown in fig-
ure 6. There 1s a change 1in the direction of B with a corresponding
maximum of T at r = 28 centimeters (s = 0.33), but there 1s still a
significant net flux at the gun location.

We assume Tl-ions with mass number 205, and B = 0.47 Vs/m?2 on the
axis, close to the value used as the typical magnetic field by Kambic
(ref. 7) in his measurements mentioned in section 1. The normalization
then yields the following values for the units of length, magnetic flux,
angular momentum, velocity, and energy:

22

r 0.86 m; ' = 2.l7><lO_2 V sec; L' = 5.53x10" VA secz,

1.58x103 m/sec; W'o= 4.97x10717 am

Vl

For the potential V we shall adopt a variation suggested by Roth
(ref. 16); 1ts general character agrees with the potential found experi-
mentally by Kambic (ref. 7). The potential 1s assumed to i1ncrease para-
bolically from zero at r = 0 wup to 10 kV at the anode location, and
fall linearly to zero at and beyond the mesh. The fully drawn curve 1in
figure 7 shows this variation, 1in normalized variables,

To determine a sufficient but not too high value of 12, to give an
everywhere monotonic potential, the following procedure was followed:
All quantities were first temporarily normalized to r = 13.5 centimeters,
the 1nnermost point at which the electric field vanishes identically.
The values of the suprema kj through k3 (sec. 2C) were determined,
and a sufficient value of ¢ was obtained, using the 1nequalities
(5) and (6). This value was then adjusted downwards by trial and
error, and renormalization toc r = 86 centimeters was Cafﬁied out.

It was found that 20 = 5, corresponding to Lo = 2.76x10 VA sec”,
was sufficient, whereas QO = 3 does not give a monotonic Y. The
two curves are shown in figure 8.

Adopting the value ., = 5, the function f(wy) = 49/2 was deter-
mined by graphical calculation of the integral

1
(L. - 1)ds

o

2
svw -
o v

for a limited number (17) of values of the total energy w,. For each
value of w,, the integrable singularity associated with the square root
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in the denominator was controlled by integrating analytically from s,
to a suitably chosen, slightly higher value of s. On this interval,
the rest of the integrand 1s approximately constant.

Figure 9 shows £(w,). We see that f increases rapidly from 0 at
2y - 1)2 = 16 up to an essentially constant value of about 1.3, For
W, > 620 the energy 1s sufficient to allow the particles to enter the
region of electric field, and f decreases to a minimum of 0.7. When
the peak electrostatic potential 1s passed, the particles are turning in
the region of inwards directed electric field. 1In the outer part of that
region ¢ has locally a very small modulus of its derivative due to the
critical choice of &., and f jumps in a discontinuous fashion from 0.9
to a high value, f = 8.25, which takes place for w, = 5740, This is in-
deed typical for particles turning at points where dy/ds is close to
zero, and this 1s suggested (see sec. 3D) to be actively used as a diag-
nostic method. For still larger w,, f(w ) decreases to a minimum and
then tends to its asymptotic value n/2. The particles have a given,
finite azimuthal energy, and in the limit of very high w, the radial
energy becomes very high, and the particles move - essentially uninflu-
enced by the fields - along curves tending to straight lines through the
origin, This gives (A¢/2) = 7/2,

To perform the inversion procedure (see eq., (9)) the function
L - 1)/s2 1s calculated and graphically integrated from a variable
lower limt to the upper limit £. This gives the function F(s), the
left-hand member of equation (9). To calculate the right-hand member
G(y) from the earlier obtained f(w,), the integration was adapted to a
standard Abel inversion program used in spectroscopy, see Lochte-
Holtgreven (ref. 17) and cited references. Putting w, =w
VY =w - r2; G(y) takes on the form

’\/;‘;rnax_(’zo_l)2

(-2yf£) _dy

2 2
vy - r

max — Y 3
max

EN

T
which agrees with the formula in reference 17, if

w
[¢)

- 2, - '
R = l\/wmax - (20 - 1) 1 ) f(wo)dw(')
(25-1)

Thus, an integration of f(w,) was needed, and it was performed
graphically. TFor frequent use it should be simpler to construct a special
program for calculating G(y).
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F(s) was monotonic, but there turned out to appear some deviations
from monotonicity in G. However, monotonic curves could be drawn
fitting the points reasonably well. The equation F(s) = G(y) was then
solved graphically, and Y, was subtracted. Four Abel inversions were
made altogether, corresponding to different values of the maximum beam
energy Wp,.- The points obtained for the potential wv(s) are plotted
in figure 7; the fully drawn curve 1s the assumed potential. Clearly,
it is possible to reconstruct numerically, with good accuracy, a poten-
tial of characteristic shape of relevance to the Modified Penning Dis-
charge. The moderately good agreement around s = 0.15 1s probably due
to the low number of points chosen initially in this region.

Under laboratory conditicns it is usually the energy w and direc-
tion «k of the beam that are varied. It should be noted, tﬁat a varia-
tion of w, with constant ¢, leads to a simultaneous variation of w
and «, according to a definite law. With normalization to the gun posi-
tion, we have ugy = ¢, -1 = /5;'51n Ky, where <37 1s the angle (with
sign) between the gun line of sight and the radius, see figure 1. Thus,

the angle should be varied as

v =1

YW

o

(1 = arcsin

With &, = 5, the value w, = 620 was shown to allow the particles
to reach the outermost part of the electric field regicn, and for W,
greater than 5740 the region immediately inside the electrostatic poten-
tial maximim was accessible. These values of w, correspond to
k1 = 9.3 and 3.0 degrees, respectively.

Even if the data in the numerical experiment above were treated in a
rough way, 20 had the exact value 5.0 throughout the calculations. 1In
practice, however, there will always be a spread i1n x, 1f the beam is
incompletely or incorrectly focused Even 1f all particles move in par-
allel orbits when leaving the gun, there will be a spread i1n the angle of
injection, due to the finite thickness of the beam., This spread is esti-
mated to ¢&/ry, where 6 1s the beam thickness. With § = 3 mllimeters,
r{ = 86 centimeters, this becomes approximately 0.2 degrees, which is
about 3 percent of the interesting interval of 6 to 7 degrees. The spread
can be reduced 1f the beam injected 1s convergent, with 1ts nominal focus
close to the axis of the configuration.

To investigate the influence cf varying ¢,, the function f(wo) was
calculated not only for ¢, = 5.0 (fig. 9) but also for £ = 5.1, corre-
sponding to a 2 percent variation. Apart from the very jump at the point
where |d¥/ds!| 1s small and a variation with « 1s expected, the two

o
curves are almost exactly identical.
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C. Estimate of Necessary Ion Energy

A characteristic of importance for the design and cost of an ion
beam system 1s the maximum ion energy &o with which the system is to
operate. This will be briefly discussed below for the primary beam
method, with special reference to the Modified Penning Discharge. A
corresponding discussion for the secondary beam method, with application
to another laboratory experiment -~ the SUMMA experiment - is found in
sections 4B-C.

(1) First of all, the momentum of the particles must be sufficient
so that they can reach the whole region of interest. The function T,
suitable values of £, and the "region of interest" define a minimum
necessary value of the normalized energy w, as the maximum of

2.2 ; o ; .

Ym = (25~ T) /s=, and for givem 1 and region of interest this value is
the same for all particles, 1rrespective of mass and charge. Details are
found in section 4B.

For given charge q, the unit Pj.., for the mechanical part mv'
of the linear momentum 1s given solely by the units for length and mag-
netic flux as

p! = q¢’
mech ~ 27r'
and the unit for energy by W' = 1/2m (Péech)z, which also contains the
mass m.

A necessary value of W, is then obtained by multiplying W' by
the value of w, found above. Clearly, as heavy particles as possible
should be used 1f the energy is to be kept low. However, an upper limit
of the mass is set by the maximum mass number that can be used. (Since
the system is supposed to analyze the electromagnetic field in a plasma
we do not expect it to be possible to use charged droplets or other "super-
particles'; such entities are expected to interact with the plasma.)

In the Modified Penning Discharge we may obtain a rough estimate by
choosing &, = 0, corresponding to an orbit through the axis. This gives
Vm (1/s)2, which has a maximum value of about 50 (for s = 0,17). With
W' = 4.97x10~19 Nm , this gives the condition Wo 155 eV, which is a
very liberal requirement indeed.

(1i) If there 1s a repulsive potential in a region, the beam energy
must be sufficient to allow the particles to reach that region. This de-
fines an additional requirement on W,, in the present case W, > 10 keV,

(iii) If there is a region of inwards directed electric field (and
the ions are positively charged) an especially high value of %, 1is re-
quired to give a monotonic fictitious potential, which is essential for
the method to work. This puts a requirement on the kinetic energy of the
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beam 1n that region. Especially if the potential energy is high there,
the total energy W, may need to be quite high, as can be seen from the
following dimensional analysis.

The ratio between magnetic and centrifugal force is

qvB

=L
mv2/r P

where p = mv/qB is the formal gyro radius. 1In applications we expect
this ratio to be smaller than unity - but perhaps not very much smaller.
This justifies us to temporarily neglect the magnetic force against the
centrifugal force, at least on a local scale. A monotonic fictitious
potential at a certain radius then means that there are particles such
that the centrifugal force is strong enough to prevent the electric field
from pulling the particles closer to the axis, 1.e., we must at least
have

mV2
Multiplication by r/2 gives
Eﬁ=ﬂ
2 2

If the potential at this point is V_, we must have

~ Er
Yo Q(Vo * T)

where E 1s directed inwards. Clearly, the effect becomes especially
1mportant 1f we have, at a large radius, both a high potential and a
strong_inwards electric field. In the present case, with V, = 104;
V= ar?; E = 2ar; Er = 2V, we obtain

i (10 + 2é—lo)kev = 20 keV

It was found in section 3B that W, = 5700 was enough to probe the
region immediately inside the potential maximum, where V, E, and ~r
are all large. This corresponds to an energy of 17.8 keV, which is a
little lower than the figure above, the difference being due to the in-
fluence of the magnetic field which was neglected above.

With &5 = 5, sufficient energies to probe the region well inside
the point of maximum electrostatic potential, s = 0,088, can be obtained
from the corresponding fictitious potential curve in figure 8. However,
these energles are unnecessarily high (compare sec. 3D),
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It should be observed that even if the magnetic field did not give
rise to any special requirements on the beam energy in the present case,
this is not true in general. Especially if the magnetic field is strong
and its influence extends. over a region much larger than that of the
electric field, the requirement (i) above becomes essential (compare
the example (SUMMA) 1in sec. 40).

(iv) Additional requirements may arise from considerations concern-
ing ion optics, notably focusing, and scattering, but this is not dis-

cussed here.
[

D. Comments

It should be pointed out that a lower beam energy is sufficient if
one uses several values of %, 1n succession. For instance, the ficti-
tious potential curve corresponding to %, = 3 is monotonic for suffi-
ciently small s, and particles may have turning-points inside s = 0.052,
where the value of ¢ is equal to the local maximum at 0.088., If the
potential has been determined from s = 1 inwards as far as s = 0,052,
(e.g., using &, = 5) one can then switch to %, = 3, and the integral
for f(wo) = A¢/2 can be written as

0.052 1
f(wo) = + o
S, 0.052

The second term on the right can be calculated since v is already known
on that interval of integration, and the same term is simply subtracted
from fﬁwo).' Then the same 1nversion scheme is used for the first term.

Py
1]
w

By this change of &_ one needs a lower energy for the probing; for
small s the function W?s; 3) is half the function ¢(s; 5) or less.
(Often Y 1s approximately proportional to Zg.) It should be possible
to develop this method of varying both w, and £, to a systematic pro-
cedure. It is perhaps possible to use it in an infinitesimal way; if v
has been determined in to a certain value of s, we may then proceed in-
wards, using

of of

df=§-w—dwo+-a—g—d20

o o
Here, dw, and df_  would be controlled at the gun and df measured.
One difficulty worth mentioning is that in spite of the occurrence of
s¢ = 8¢(wy,%,) in the lower limit of integration in equation (7), the
derivatives above do not contain any local contributions from s, since
there will be a factor vy - w,, which becomes 0 at s;, in the numerator
and thus the differential expression above does not contain the local
electric field.
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Clearly, one needs to know when ¢ ceases to be monotonic; this can
be done by observing sudden jumps or peaks in f for certain (w,,%.),
as in figure 9 (Y' was not exactly zero in that case, only nearly). It
is easy to show that if ¢'(s ) = 0, £ becomes infinite. Indeed, Taylor's
theorem gives

P(s) = ¥(s) + (s - s )¥'(s,) + (s - st)2 iné—g)

in a neighborhood of S, Using y(s;) = w, and assuming w'(st) =0
we obtain

wo—w=—9"§—g)(s—st)2

Insertion into (7) gives

A¢'— = —_———— e - .
T—f(wo)— +

Clearly, the first integral 1s at least logarithmically infinite, due to
the factor (s - st) in the denominator. This behavior of f 1s analogous
to the singularity of the "equivalent height of reflection" of a radio
wave reflected at an electron density maximum in an ionospheric layer
(ref. 18). Like in the 1onospheric case we expect that the singularity

in practice becomes a pronounced peak.

4, SECONDARY BEAM METHOD
A. Descraption of Method

In the secondary beam method by Hickok and Jobes, see for instance
reference 13, a beam of "primary" ions is sent through a plasma. Due to
collisions with the hot plasma electrons, ions i1n higher ionized states -
"secondary' ions - are produced along the primary beam path through the
plasma.

Due to the small mass of the 1onizing electron, there 1s negligibly
small change of the mechanical momentum of the ion in the collision.
Therefore, its velocity is continuous at the point of 1onization. Thus,
the orbit of the secondary particle is tangent to the primary beam path.
Furthermore, since the charge 1s changed by a specific ratio, usually 2:1,
the electromagnetic force and the inverse of the radius of curvature at
the ionization point will be changed by the same ratio.

The change of charge or, more generally, charge to mass ratio
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(ref. 19) also produces a change in total energy and canonical momentum
of the particle. Due to the continuity of Vv, these changes are given by

AW
o

Aq - v(?i)

Ap = Aq - A(f;)

where p 1s the linear canonical momentum, EE' is the point of ioniza-
tion, and A denotes the difference between the values after and before
the ionization.

By systematically studying the secondary particles thus generated,
1t is possible to draw certain conclusions about the local conditions at
the various points of ionization.

B. Cylindrically Symmetric Case

In a cylindrically symmetric situation the change in canonical angu-
lar momentum and total energy produced by the ionization are given by

@(ri)
ALo = Aq - 2m
AW = aq * V(r)

We notice that the effect of the jonization 1s to change the values of
the two constants of motion, quantities that characterize the motion
essentially completely. This need not be true in the general case, how-
ever,

We shall exclusively deal with transition from singly to doubly
charged positive particles, Aq = 2e - e = e, and in the process of nor-
malization we shall refer to the singly charged species, q = e, Index I
will be used for primaries and II for secondaries. Whenever suitable,
these indices will be dropped for simplification.

In addition to the previously derived formulas

.- loI - 1(8)
1 s
Y1 = “il
wI = wmI + v
“il = Wor V1
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for the primaries, we now also have

) QOII - 271(s)
UoTI s
2
Yn1r = Y11
(11)
Upr = Vppr T2V
u2 = -y
rII - VoIl 11
for the secondaries. Here, KOIT and w.orp are given by
QoII = QoI + T‘(Sl) (12)
Worr = Yor t V(s)) (13)

The same L' and W' have been used in the normalization. The formula
dé¢/ds = u¢/rur has the same form for primaries and secondaries.

In the cylindrically symmetric case the secondary beam method allows
an 1mmediate, unique determination of the potential v(s), at least in
principle. The potential 1s given by the change in total energy accord-
ing to equation (13) above, and the location by the change in £, (eq. (12)).
The primary momentum {,7 1s known from the initial value of the azimuthal
velocity and the magnetic flux enclosed inside the gun location. If the
detector is capable of measuring not only the total energy of the second-
aries but also the azimuthal component of the velocity, the flux 1t(s;)
can be obtained by combining equations (11) and (12) above and putting
s = B, corresponding to the lccation of the detector. One then obtains

t(si) = Bu¢II + 2-(B) - o1

or

T(Sl) = (8u¢II - au¢I) + [27(B) = ()]

where #,71 has been expressed in initial values of flux and azimuthal
velocity. If, in particular, the magnetic field has a unique direction
inside the plasma, s, can be determined from knowledge of 7t(sj). Even
1f 1t has not, it seems that 1t should be possible to use the knowledge
of the beam deflection to distinguish between two = or a few - values of
§; having the same 1.
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It should be pointed out that in practice wuyyy can only be meas-
ured with limited accuracy. Especially if the plasma is very small com-
pared to the extent of the magnetic field, see section 4C below, the
method does not appear to be feasible, but if the plasma fills the major
part of the magnetic field, it should be possible to use this method of
locating the point of 1onization.

If the total beam deflection from gun to detector would be very
sensitive to changes in {;, the same deflection could perhaps be used
to determine the change in £, and hence the quantity sj. However,
this possibility has not yet been investigated in detail.

As with the primary beam method, there are certain requirements on
the 1on energy.

(i') Not only must the momentum of the primaries be sufficient for
penetration into B, but that of the secondaries must also be sufficient
to allow them to move to a place where they can be detected. If the
charge is doubled in the ionization, this requires - for given mass and
magnetic field to pass through - essentially four times as high energy as
with the primaries alone. This additional energy requirement is typical
for the secondary beam method. The energy necessary can be significantly
reduced if the detector can operate in a strong magnetic field (ref. 20).
The above considerations will be substantiated in the example below (see
sec. 4C).

(1i') Repulsive electrostatic potentials have the same kind of im-
portance as in the primary beam method; it should be noted that the poten-
ti1al energy 1s doubled for the secondary beam. On the other hand, an
attractive potential will give the particles a momentum increase facili-
tating their entering and leaving the magnetic field region.

(111') There does not seem to be any requirement directly correspond-
ing to (iii) 1n section 3C, since there is no need for a monotonic ficti-
tious potential in the secondary beam method. However, there may be some
considerations connected witb the actual determination of v that put
requirements on the beam energy, notably if v 1is solved by iteration
(compare sec. 5 below).

C. The SUMMA Experiment

The NASA Lewis SUMMA experiment (ref. 21) is a burnout device using
a discharge in a magnetic mirror field, with two hollow cathodes and two
ring-shaped anodes. In the midplane the configuration is locally cylin-
drically symmetrical. The magnetic field data (ref. 22) show that the
same field changes its direction at a distance of 77.78 centimeters from
the axis, and the flux function - normalized to this point - is shown in
figure 10. In the normalization procedure we assume that the magnetic
field on the axis (in the midplane) is 40 kG - although values up to
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49 kG are planned. The particles are thallium 1ons with mass number 205,
The unit energy W' then becomes 0.3949x10° eV,

An electrostatic potential curve compatible with experimental data
(ref. 23) is also shown in figure 10; 1t corresponds to a potential well
of about 14 kV. It has the functional dependence v = a sin bg/s + ¢
which with the chosen values of a, b, ¢ gives a potential and electric
field that are continuous both on the axis, s = 0, and at the suggested
plasma boundary, s = 0.0243 (r = 1.89 cm).

We shall estimate a minimum energy necessary to probe this plasma.

It 1s necessary that primary particles with %5 = 0 can pass the
maximum of the corresponding fictitious radial potential and that the sec-
ondary particles generated by these primaries can reach the detector.

The reason is that &5 = 0 1s necessary for particles passing through
s = 0, the innermost point of the plasma.

As to the sufficiency for the present energy estimate, one may take
either of two attitudes:

(a) Ly = 0 1s sufficient to consider. Indeed, all values of s in
the plasma are reached by such a beam, and secondaries are generated for
all these values of s, It even turns out that the energy requirement
obtained by considering {, = 0 allows a probing of essentially half the
plasma 1n the present case. However, to keep the detector position even
more at our disposal, we may prefer a more stringent attitude - (b) below.

(b) %2, should be allowed to take a set of values such that the whole
plasma is covered by primary crbits, For the present purpose, we shall
be satisfied with the increased coverage obtained with a set of beams that
have radial turning points for all values between 0 and &, on both sides
of the axis.

In the present case, the requirements set by the attitudes (a) and
(b) do not differ considerably

In what now follows, we shall neglect the influence of the electro-
static potential on the effective potential. This is justified by the
result; the electrostatic potential only has a marginal influence unneces-
sary to consider in the present energy estimate.

The fictitious potential for a A-fold ionized particle with 25 =0
then becomes

ACTIA

The function x(s) is displayed in figure 11. The maximum value is 1,8123

and occurs at s = 0.565 (r = 43.9 cm). Thus, the minimum energy LN
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necessary for a primary particle to reach the center is x .. = 1.8123,
which with the value of W' given above corresponds to 71.6 keV, Using
unnormalized variables, the necessary energy of particles with zero
angular momentum is obtained from formula (3) in section 2A as

2 ® 2
w =3 > - max(—) (14)
8mr

With singly charged ions this energy, expressed in electronvolts, be-
comes

For primary energies 1n an interval above this lower limit, the second-
aries would be trapped inside the magnetic field. Thus, a higher primary
beam energy may be necessary,

Secondaries with 22, = 7(s;) = 0 are produced at s, = 0. These
particles then have %577 = 0, and the potential VY = 4x(s). The energy
necessary to bring these particles out will thus be 4x_ .., corresponding
to about 287 keV, which must be furnished by the primary beam (since the
influence of v was neglected). TFor other secondaries than those with
s; = 0, there is a small positive increment 7T(sj) to £, . It will be
shown below that the magnitude of the fictitious potential maximum will
be smaller for these particles. Thus, the minimum necessary primary ion
energy is 287 keV if both the gun and the detector are located outside
the magnetic field, and attitude (a) above is adopted.

This requirement may be relaxed if the detector is located inside B.
Clearly, it would have to be moved inside s = 0,565, the location of
Xmaxe Lf primary particles with wgy = 1.8123 are considered, the maxi-
mum radius sy of secondaries with {4, 77 = 0 is obtained from the equa-
tion 4x(sy) = 1.8123, which gives s; = 0.1853 (r = 14.4 cm).

We conclude that any lowering of the necessary energy requires that
the detector be moved inside s = 0.565 (r =+ 44 cm), where B » 13 kG,
With unchanged position of the gun, the minimum energy is gradually
lowered from 287 to 71.6 keV if the detector 1s moved as far as s = 0,1853
(r = 14 cm) where B - 37 kG, according to the formula Wy =W -4 . x{(B)
(where 8 1is the detector position). Moving the detector inside 14 centi-
meters does not lead to any decrease in necessary primary energy, unless
the gun is also moved inside 44 centimeters, or some entirely different
arrangement 1is used, like an electric field guiding the beam through B
(ref. 24). -

To see how a requirement on increased coverage of the plasma influ-
ences the minimum beam energy of primaries, we shall now construct, for
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an aribtrary fixed value of w, 1n an interval of admissible values,

an interval of 2, sufficient to give turning points between 0 and §,
on both sides of the axis. Then, a minimum value of w, among the ad-
missible ones will be determined, ‘that is sufficient for probing with all
the corresponding f£,. Let s; be a number -5 and let the admissible
values of w, be given by

2
T(s,) = 1(8)
[v'<a)]2:wo<[ - ] (15)

The reason for this choice will become apparent later.

The condition for radial reflection, w(st) = W,, can be solved for
2. One obtains £, = t(st) t s¢Yw,. For a given w,, this defines two

functions of s;, namely, 1(s{) + st%;; and 1(s¢) - s¢¥w,. The first

of these 1s monotone increasing with s;, since 7' > 0 for s.e[0,8];

and the second is monotone decreasing, provided that

Wy > max [I'(st)]2 = [t'(G)]Z; i.e., if w_, is admissible. Thus,
O<st <6

the interval for £, bounded by the two functions of s, above expands

on both sides, when s; 1is increased, and its maximum extent is reached

for s; = d. Consequently, the turning points of the orbits with £, in

the interval

[o}

1(8) = 8K < g s T(8) + 8

(¢}

form a curve across the plasma, through the axis. This 1s the pertinent
interval for 2£,.

Differentiating ¢ = (¢, - ”}z/sz with respect to s, one gets

o}

o= -, - Dy - s
S

The derivative 1s zero for &, - t = 0, but any such solution of ¢' =0
must correspond to a minimum of Y, since the nonnegative function ¢ is
then equal to zero. A necessary condition for maximum at a point s1
inside or outside the plasma is then

Zo - T(Sl) + slr'(sl) =0 (16)

The second derivative is

wu = - ___(20 - )"+

where T contains the factor &, - v + st'. Putting s = sy and using
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equation (16) above, we obtain

1" _ 2 ' o n <
w (Sl) = q T (Sl)e (Sl) _O

the inequality being a necessary condition for a maximum. The situation
of interest to us is when +'(sp))_0 and -"(sy)< 0. 1Indeed, from fig-

ure 10 1t appears that 7'(sy) < 0 and 7t'"(s;) > 0 would certainly re-
quire sy > 1 and 7(sy) .6 - t(8§) = 0.0022. If 1'(sy) < 0, equa-
tion (16) gives %, > 1(sy), and

¢ - ()Y (r(sl) - r(a)>2
v(s) = (_5—_> 5

and thus, no admissible w, would allow the particles to reach the
point §.

Considering equation (16), the maximum potential may be written
Vpnax = [t'(sy)]4. Thus, it appears that an upper limit for the energy
necessary to reach all points in the magnetic field is set by max(r')z.
The derivative of VY., with respect to &, is 2:'(31) - d/dg, T'(Sl).
Differentiating (16) with respect to {,, one obtains

d _, -
1+ T (sl) =0
o
Hence,
d _ 1 .
dg (Sl) I 0
o 1
and
“nax = - JQ.T'( y - 0
dr_ " s 51
o) 1

since 1'(s,) must be positive. We conclude that the maximum maximorum
of ¢ for various s and various values of &, in its interval is
given with 2, at 1ts minimum value 1(8) - $¥&J, The minimum possible
W, can then be obtained from

T(Sl) - 1(8) +v6¢wo

W =
o] S

1
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. ~(s{) = 1(8)
/G;-= Mwmax = il -39 = T'(Sl) (17

This energy is admissible since it turns out that s; ~ 2§, implying

sy = 98 §. Equation (17) above has an immediate geometric interpreta-
tion: The tangent to the t(s)-curve at the point sj; passes through
the point &, and the square of the direction coefficient of this line,
shown in figure 10, gives the minimum energy w,.

The equation (17) was solved for sy, and [t'(s )]2 was determined.
It was found that w, must at least be equal to 1.9/, W, = 77.8 keV,
for attitude b, which is about 9 percent higher than the attitude a
value of 71.6 keV previously found

No detailed analysis of secondaries in attitude b has been per-
formed.

It must be emphasized that the above estimates are only those neces-
sary for the particle to move into and out of the magnetic field; in a
practical situation other considerations must also be considered, some of
which are discussed in section 5.

It should also be emphasized that even if the electrostatic potential
of 14 kV is smaller or even much smaller than the particle energies of
75 to 350 keV necessary to get particles sufficiently rigid in B, and
hence could be neglected 1n the energy estimate above, this does not imme-
diately mean that electrostatic forces can be neglected compared with mag-
netic forces in the plasma region. The reason is that the electrostatic
forces act over a much smaller scale length, by a factor of the order of
10-2, Indeed, the magnetic force on a 75 keV Tl-ion in a B-field of
40 kG corresponds to a |v « Bl of 8.4 kV/cm, and that of a 350 keV ion to
18 kV/cm. These figures are of the same order as the electric field in
the plasma; the assumed function v(s) corresponds to an average electric
field of 7.4 kV/cm and a maximum field of 12 kV/cm. Even 1f the beam

energy is increased to 1 MeV, the value of |v « B| is only about 31 kV/cm.

In the secondary beam method 1t 1s usually assumed that the electric
field is a small perturbation that 1s neglected when the orbits and points
of ionization are determined. In this way, they can be determined without
knowledge of the potential. The pctential is then determined for each
lonization point by the observed change 1n total energy.

Our conclusion is that the electrostatic force cannot be considered

as a small perturbation, without anything further. One should distinguish
between two different smallness parameters,

ratio between electric and magnetic force, and



ratio between maximum potential and beam energy. Clearly, in the case
of the SUMMA experiment &7 < 1 and €5 <- 1. It will be shown in sec-
tion 5 that the pertinent smallness quantity 1s €7.

Since it 1s desirable to have a low ratio ¢; = E/vB, this can be
achieved by varying the mass number of the probing ions. Indeed, apart
from any other considerations there exists, for each energy within cer-
tain limits, an optimum mass number that corresponds to particles with
sufficient rigidity and highest possible velocity. Using a rough esti-
mate one finds €, = %- %%3 so for given fields E and B and beam
energy W, a small mass 1s favorable. However, the gyro radius must at
least be equal to half the magnetic field radius, say. We then have

oW B

qgB — 2

which defines a lower limit for m. Clearly, for this limit the mass
number M « 1/W, and €7 = qERg/4W. Thus, we then have e = 1/W, in
contrast to the l//ﬁ;variation obtained with constant mass. Using the
figures above, we assume that we have a possible probing with M = 205;
W = 350 keV; vB = 18 kV/cm; E = 10 kV/cm; this gives €7 = 0.56. Rais-
ing the energy to 1.84 MeV and still using thallium ions, €; becomes
0.24., However, 1f the mass number is reduced by approximately the
energy ratio and potassium (M = 39) is used instead, we get ¢7 = 0.11,
which is an 1mprovement.

The interval for &,7 for a 355 keV primary beam (wo = 9) becomes
-0.0707 < 2517 < 0.0758. Using the formulas

2oI - (a)
u¢I(a) = —————— = yw__ sin k

o ol 1

and the values wgyp = 9; o = 43 ~(a) = 0.44, one obtains for the angle
k1, the gun direction:

-2.64°% - g

< -1.74°

Without any lenses or similar arrangement, the interval for sweeping the
entire plasma becomes 0.6°, which 1s about the same as the geometrical
angle of 0.7° occupied by the plasma. In the same way, the angle Ko

at the detector is obtained as

L+ 'f(sl) - 2+(B)

ol
B AT

o}

sin «, =

2




30

To see whether measurements of this angle can be used for determining
1(s,) and thereby s;, the equation 1s varied, whereby 62,7 = 0 (no
consideration of deflections). One obtains

180  S7(s)
s 38

For a reasonable spatial resolution, §t(sj) = 1/10 t(8) = 0.00022. 1t is
found that B = 4, corresponding to a detector location outside the mag-

netic field, gives GKZ = 10'30, and B = 0.2 (detection in a strong B)

gives d&ky = 0.02°,

Consequently, this method of determining the point of ionization does
not seem feasible in the SUMMA. A corresponding estimate for the Modified
Penning Discharge tells that the exit angle would have to be measured with
an accuracy of about 0,1°; it would have been less stringent if the repul-
sive electrostatic potential in this latter experiment had not necessi-
tated a much higher beam energy than that needed for penetration through
the magnetic field.

5. SECONDARY BEAM METHOD; DETERMINATION OF V

In the present section we shall discuss how the unknown potential
can be determined from secondary beam measurements.

To fix the ideas, we shall start by considering the cylindrically
symmetric case; the methods appear to be amenable to extension to the
general case, and the physical implications are expected to persist under
more general conditions.

A. Cylindrically Symmetric Case

The total change 1in polar angle from the primary beam at the gun
(s = o) to the secondary beam detector (s = 8) is given by

Ia = Il + I2 + I3

for particles ionized before reaching the point s;; of closest approach
to the axis, and by

Ib = I1 + 14 + I3

for particles ionized on their way out. Here,
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Si .
L =2 11 ds
Y e
. ST T V1T
tII
8
u
I, = 1T 4
T
st~ Vi1
51
S.
1
u
I, =2 oL 4
sYw -V
ol I
St1

i
the constants of motion 2,7 and w,7 of the primary beam, and func-

tionals of the potential v(s). Each of them has the form

The I, and I, are functions of the point of 1onization s; and

Y

I(sl,zol,wol;v) = K[s,si,kol,wol;v(s)]ds

where Y = max(a,B) as before.

With the gun and detector at fixed positions, corresponding to a
difference in polar angle of magnitude C, the quantities w,; and L1
are varied in a suitable way (by varying the 1on energy and angle of
injection), so that all values of s; between 0 and the plasma boundary
6 are covered., For each (4571, W,1) the potential at the point (or
points) of ionization is measured as the change in total energy
WoII - Wors clearly, this change becomes a (not necessarily one-valued)
function of (%,1,Wwo1). We thus have the nonlinear equations

I(si,Qol,on;v) -C=0 (18)

v(s;) - g® ) =0 (19)

oI’¥o1

This system of equations should be solved for the function v for all
values of its argument between 0 and &,

The method should be determined in each case. One natural sugges-
tion would be to use possible foreknowledge of v to make a model assump-
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tion with a certain number of parameters, like Kambic made for the pri-
mary beam method (ref. 7), another would be to expand v in a suitable
set of functions. In either case, the parameters or expansion coeffi-
cients are determined so as to minimize a sum of squares of left-hand
members of the type above.

At present, however, we shall only tentatively discuss a technique
that has been used by Jobes and Hickok (ref. 13); their technique - like
our suggested improvement of it - is by no means limited to cylindrical
symmetry but works equally well in arbitrary geometries.

Jobes and Hickok use a high beam energy, which makes it reasonable
to attempt to treat the electric field as a small perturbation. This
allows them to find the particle orbits and points of ionization rj
without knowledge of the potential. The latter is then found from the
change in total energy.

In our formalism for the cylindrically symmetric case, this would
correspond to solving the equations

I(s;,% 0) -C=0 (20)

oI’Yor?
V(Si) = g(QOI’on) = O (21)

Here, s is determined from equation (20) and the corresponding value
of v %rom equation (21).

Questions of immediate interest concern the quality and range of
applicability of the Jobes-Hickok approximation (JH-approximation), the
requirements on beam energy and momentum, in relation to the electric
and magnetic fields. It seems especially important to determine in what
sense the electric field should be small. In situations when the method
needs refinements, it is natural to try to improve it by iteration,

B. Iteration Scheme

Both equations (18) and (19) above contain v. If the dependence of
I on v were reasonably strong, we would have a situation similar to
the primary beam method; the change I 1n polar angle would furnish in-
formation on the function v. However, we shall be interested in trying
to adopt the Jobes-Hickok attitude in the form that equation (18) essen-
tlally determines s; (and eq. (19) determines v). We then wish that I
depends strongly on si, which would tend to allow a good determination
of s;, and that I depends weakly on v, in order that the determina-
tion of s; 1s insensitive to our assumption what v is. It seems that
the ratio between the variation of I with v and its partial deriva-
tive with respect to sj is pertinent. To get the correct physical di-
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mension for the variation of the potential, it seems that some gradient
of v would enter into our performance quantity. This will be more
clear in the formal formulation below.

In the iteration both s; and v are iterated, but 2,7 and w,
are not; instead, they are controlled by the conditions at the gun, As
the scheme for iteration, the following is hereby suggested:

I(Si,n’RoI’WoI;Vn-l) -C=20 W 22)

Vn(sl’n) -8 W 1) =0 5 (23)

vn(°) = vn(si,n); Si’nE[O,b]; TR (24)
(n=1,2,3, . . ) p

Thus, starting with a function Voo the nth iterate Vv, 1is obtained
from wv,_; by the procedure:

(a) Imsert v = v,_; in equation (18) and solve for s;; this
gives the iterate Si,n (according to eq. (22)).
(b) The value of v, at the pertinent s; is obtained from equa-

tion 19 (eq. 23). ton

(c) The steps (a) and (b) are repeated to give the potential at all
points of interest. ~This gives the full function v,(s), the next iterate
(eq. (24)).

C. Condition for Local Convergence

In what now follows, we shall specify a way of varying w,; and
%015 we shall assume that the energy w,1; 1is kept constant, and only
291 1is varied (by varying the direction of the injected beam). To be
specific, we shall use I, and the constant value of w,; will be

omitted in the symbols for I and g.

Our nonlinear system of equations then becomes
Ib(si,QOI; v) -C=0 (25)
v(s;) - gt ) =0 (26)

The iteration is understood as a transformation v, = Tv _;, where
T: v »u = Tv 1is defined by the equations
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Ib(si,lol; v) - C=0 27)

u(s;) - gl ) =0 (28)

It is of interest to investigate the condition for this mapping to
be a contraction mapping (ref. 21 ), in which case*the iteration will
converge to a unique limit, the true potential v (if a certain closed-
ness condition is fulfilled). Our discussion will be "local" in the
sense of some suitable norm |- ] on a Banach space of suitably defined
functions v on [O,u]. T 1is then a contraction mapping 1f

[16ull <o« Iisvll; 0 a-1 (29)
and the error in the iteration can fcr instance be estimated by

n
o)

*
||vn - v |l <7 |Ivl - VO|I (30)

where v* 1is the true potential (ref. 21 ). Local convergence means that
there is a ball around v* with an (unknown) radius p, such that con-
vergence prevails within that ball. We shall not define any norm sharply,
but keep a qualitative element, noreshall we investigate any other prop-
erty of T than the inequality (eq. (29)) above; it i1s believed that the
essential physical information can be obFained in this way.

The Frechet differential (ref. 22), supposed to exist, of the func-
tional TI;, in equation (27) must vanish, and so must the variation of
the left-hand member in equation (28). This gives

aIb 3Ib
5;;.(5 ; v) C 6si + EE;;-(sl; v) ° Siol + SIb(si; v) =0 (31)

u'(si)dsi + du(s ) - g' - 6201 =0 (32)

where we have omitted &,7 1in the arguments, and
GIb(sl; v) = Ib(si,kQI; v + 6v) - Ib(si,on; v)

The differential 68,7 is then solved from (3?) and inserted into equa-
tion (31), which gives

BIb ) u'(si)ési + Gu(sl)
5;;’(Si; v)8s; + T (45 V) ° o + 6L, (s;5 v) =0 (33)
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In a practical measurement, the function g'(QoI) is determined em-
pirically. In the present analysis, it can be determineg from the system of
equations (25) and (26), if we insert the true values v  and s;{ of v
and sy, respec&ively. We then take the variation of this system, remem-
bering that &v” = 0, since we are only dealing with the true potential,
when the empirical output function g' 1is to be determined. One obtains

after elimination of &6%,7 in the same way as above,

L
= -

Insertion into equation (33) yields

T,
3—: (s 3 v)Gsi + GIb(sl; v)

G
s, (s 1’ v 52, (555 v)
- [u'(sl)Gsi + 6u(si)] . aIb =-0
V*'(S*) —_ (s*' v*)
i ok i?
ol

This equation gives a genmeral relation among &v (through 6IL;), éu,

and 6s;. In particular, we want to compare Ju and dv with the same
si{; thus we put &s; = 0. This does not seem necessary, but practical.
Solving for du(s,), we then obtain

BIb *

ST (s; v) AL %43 V)
— ' 1 ol
Su = v*'(s)) 5 "3
I N
s, oi3 V % S5V
ol

Since we assume that (s ; v) is 1n an infinitesimal neighborhood of
(s53 v*), the last factor in the right-hand member is equal to unity,
Plus a small quantity that only contributes to the higher-order varia-
tions, which are neglected. Thus, 1t can be replaced by unity, and we
obtain - finally:

élb(s.'
T,

53"‘81’ v

\ Su = v*'(s:) . (34)
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Clearly, this expression for &§u has all the qualitative properties dis-
cussed above.

The endpoint contributions to the derivative 3I}/3s; cancel, due
to the continuity conditions at s and one obtains

i»
B
9 u
?
5;2 = 98 P ds (35)
i i Yo - = U__
i 1 \s"W_ 1 wI
s,
i
Carrying out the differentiation, one obtains
) 1
. B 21 (si) " o) - u ) - 2u¢IIT (Si)
Ib s oll 11 ¢II i s
ds, = 28 (w : )3/2 ds
* . o1l ~ Y11
i
8 ' 1
_ (opp = 2V« 277(8;) - uypysv'(sy)
= ds (36)
s (w -y )3/2
s olI 1T
1

For s; bounded away from s,y and sy, the variations of I
and I3 can easily be calculated by changing the order of the operat}ons
of variation and integration and forming the partial derivative of the
integrands with respect to v. One obtains

@ u¢16v 8 u, v

oI
ds = ds (37)

1 372 372

N 2s(w 1 = ¥ s, 2s (w1 = ¥p)

1

if the true potential is equal to zero for s - §. Furthermore,

5 8 u¢II[26V - Gv(si)]
I, = ds
3 25 (w -y )3/2
oll II
1
8 u Sv B u
2 61l ds - 8v(s,) - 11 ds
s g - V2 : 26(u o - v_)>?
si oll II si oll I1

(38)
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When s; tends to s.7, the point s,y7 will also tend to s,
and 6I; and &I will become infinite, due to the singularity in the
integrand. This will be discussed later om.

Forming &I, is more complicated, due to the inevitable singularity
at the lower limit of integration. We know that ¢1 is monotonic in a
neighborhood of s¢y, and we tentatively assume that Yy is monotonic on
(0,8]. This is fulfilled for the SUMMA numerical problem in section 6,
and no effort has been made to relax this assumption. We may then write
I, as

b(s))
B 2u¢I de

Iy = v

I vw -1

s —— ol I
V(s ;) ds
I"tl
s
1
2ud>I d 2u I
= -2{oy - g spT + 291 " V1 @8 syl )d (39)
i
St1
by a partial integration. Denoting the first term in the right-hand
member by T and the second by J, one obtains
14 =T+ J
614 = 6T + &J

One finds

2u¢16v 2u 1" sv'

6T = | oh o (40)
1.4 0 '
SV1er T Vg s, s(¥p) s,

To form d&J, one can proceed in a fairly straightforward manner,
noticing that if

51

J = F(s,v,v"',v")ds

we have
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1 d dZ
8 = SU)[Fq)—d—SFw"Fd—EFw" ds
s
%0
Sl d
+ [GS - F + Gw(F‘p. Ty Fwn) + Gwl * vaJ (41)
S0

This formula can for instance be dérived, using Taylor's theorem and re-
peated partial integrations (compare ref. 23).

To control the singularity'at Sy, we exclude the limit with an
g-interval, obtaining &J.. Then, 8J is obtained as ¢&J = lim &J..
ey

The Euler expression in the integrand of equation (41) becomes
u¢16v
3
s(w r = V¥p)

/2

which is the same as that obtained by straightforward partial differen-
tiation of the integrand in I,. The endpoint variation becomes

2u, ¢
U, 1V . )
1
SVIor T V1/s te

where (+) denotes a number of terms such that the expression becomes zero
for ¢ = 0.

Consequently,
Si u,-Sv 2u, _0v
8 = l1lim o1 3/2 ds + oI
—-— ' -
ev0 S s(w,p — ¥p) s¥1"¥or1 ~ V1 s, +e

A change to ¢y as integration variable, followed by a partial integra-
tion shows that all contributions that become singular for ¢ - 0

cancel
and one obtains, adding 4T



4u IGV 2u¢I A
81, = ¢ + | 2Vw - ¥
4 splvw . -V of ! S(¢')2
I "ol Il)s, I s
i i
51
2u ., _§
_ 1 é% ( s$} v)ds (42)
o1 T V1 I
St1

The derivation is straightforward but not elegant, Maybe a simpler
derivation can be obtained by using a representation of the integrals in
I;, as derivatives with respect to the mcmenta,* for example,

S,
1
5
L =5t | - 2Vw - ¥y ds
ol s
t1

By insertion of the above expressions for 93I;/ds; (eq. (36)); 61
(eq. (37)); 6I3 (eq. (38)); and 81, (eq. (42)) into the basic expression
for 6u (eq. (34)), and introducing a norm (perhaps ||8v|| = max TGVI, or
[Iévll = max |[Sv| + a - maxldv']), it is possible to determine under what
conditions the iteration will converge to the true potential and particu-
larly also when already the first iterate - the JH solution ~ is a good
approximation. This will be carried out below for the SUMMA experiment.

D. Application to SUMMA Experiment

Using values corresponding to the SUMMA experiment, we shall roughly
estimate the magnitude of the various contributions to &I, and 3I,/3sy
and obtain an approximate criterion for convergence. First we shall
assume s; to be bounded away from sy (and s.y7), then we shall let

s; tend to s¢y. The same kind of criterion is obtained in both cases,
v 8 u¢I ds
Taking (wop - V1) - on/Z we get 68I; ~ — T —
Yol sYw -y
S4 ol I
If the change in polar angle between s; and & 1s typically of the
order of unity, we get
_ Sv
61l L
ol

*
The possibility of such a representation was pointed out to me by
W. F. Ford.
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where k; 1is of the order of unity. Similarly, one obtains

Sv

=K ——
3 2 Vo1

§I

In the first term in &I, (eq. (42)), the ratio

) )
u
Mor ~¥p TL

1s estimated by unity, and g1 by Vw,p/2. The derivative ¢} can be
written

u
LI El_ ¢ '
v = 2u¢1(s +— )+ v

For the SUMMA, the dominating term 1s

2
_ 2u¢I ) Vo1
s s

whence the first term gives a contribution K3 Gv/on. By the same token,
the second term gives Ky Gv/wol, provided that s 8v' ~ §v. The inte-

gral becomes, roughly,
> 2u¢I Sv C Sv
1
Von Sll)I > Yol

Summing up, noticing differences in sign, we obtain
dv
T, - kg g
ol

where k¢ is essentially of the order of unaty.

The first term in 031I;/3s, becomes

8 B
(onI - 2v)21'(sl) e - WOIZT'(si) ds K74T'(Si)
2 3/2 372 ==
s"(worp ~ V1p) VoI ALY B
51 2 54

Near the axis, the magnetic field is approximately homogeneous, so
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r'(si) = 27(sy)/si. Furthermore, T(s)/s?2 1is proportional to the mag-
netic field. Thus, if we disregard the variation in field strength be-
tween s =0 and s = s;, the point of maximum fictitious potential
(sec. 4), we have

T(s;)  1(sy)

2 2
s S1
But
2T(sl)
= VYw
51 00

where w,, 1is the minimum energy necessary for the ions to get into and
out of the magnetic field. Thus,

t .
K74T (Si) K 4 2r(si) 4k Zr(sl) 1

_ 7 7
147 S. vw s% Yw 51 51
ol i ol "i ol
4 YW
_ 7 oo
51" 1

The second term 1n BIb/BS1 becomes

B 8
1
QQIIV (si) 2v (sl) u¢II 2K8v'(si)
s(W oo = )3/2 ® TS I w”"_""""ds T I
. oIl II ° . st ~ Y11 0
i i

The estimates above are inserted in equation (34), which gives

Su

11

®1(s¥y .
v (si)
)
4K7Vwoo 2K8V (Si)
SlVWOI on

Kg ¢

2/ w

00 ol
10 . v!
8; *V (si)

sV (43)

w

1+«
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where we have used the fact that v*'(s;) x v'(sy).

The condition for convergence is, essentially, that the absolute
value of the factor in front of d&v be smaller than unity. Since kg
may well be greater than unity (one gets that impression when dealing
with 8I;), and/or «j9/v'(s;) may be negative, it appears that the
factor after «jg should be greater than a quantity of the order of
unity. In other words, its inverse value should be smaller than a
quantity of the order of unity. At least, this is necessary to insure
rapid convergence. Thus, with

s,v'(s,)
R (44)
Vi .
2 Woo on
we have
K Kq€
Su = ¥ 9x dv = pa +?K oV
“*10 10
Clearly, we have convergence for
€ < K where kK ~ 1

Furthermore, since li{n)oo w =, Su becomes asymptotically O * év, and
Yol

the error estimate 1nequality (30)then yields Ihl - v*|| ~ 0 asymptoti-

cally when Wor e Thus, the Jobes-Hickok approximation vj; (with

Vv, = 0) gives asymptotically the true potential v* in the limit of very

high beam energies (provided that the distance between v* and O is not

greater than the unknown radius of the ball of convergence).

It 1s 1nteresting to study the smallness parameter ¢ for the elec-
tric field. Clearly, 1t is different from ¢, mentioned in section 4,
the ratio between plasma potential and beam energy, in two respects,
First of all, the electric field should not be multiplied by its own
scale length s;, but by that of the magnetic field, s;. This gives much
more stringent requirements for the SUMMA, since the ratio between the
two scale lengths is about 50, Furthermore, this energy should not be
compared with the beam energy, but with the geometric mean of that energy
and the minimum energy necessary for penetration through the magnetic
field. It also appears that the ws% 2-dependence of € can be improved
to a wS%—dependence, if w and w,p are kept approximately alike,

00
when w,; is varied, i.e., if the mass number is varied with WoIs as
was discussed 1in section 4 in connection with e, = E/vB, the ratio be-

tween electric and magnetic forces. Indeed, by normalizing the variables
in ¢; one finds
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One can also express the condition for convergence in terms of the
formal E/B velocity, since

_ v(E/B)

v(beam)
Summing up, we have found the following results:

If the Oth iterate vy 1is (1n an unknown sense) sufficiently (not neces-
sarily infinitesimally) close to the true potential v*, and

(a) The electric force in the plasma is very much smaller than the
magnetic force -(or, alternatively, if the beam velocity is very much
higher than the E/B-velocity) then the Jobes-Hickok solution vy is a
good approximation to v*, asymptotically correct in the limit of infinite
beam energy.

(b) The electric force is not very much smaller than the magnetic,
only smaller (beam velocity smaller than, but comparable with E/B-velocity),
the Jobes-Hickok solution v; 1is not a good approximation to v¥*, but an
lteration, meaning that the orbits and points of ionization are succes-
sively corrected for the electric field, converges to v¥*,

More precise figures than those in the estimate above can easily be
obtained when s, > Sg1s since both 8L, and 09I,/3s; become singular,
and we only need to determine the respective coefficients in front of
the singular parts. This limit in general does not correspond to a fixed
detector position, but 1t is believed to be of interest to substantiate
the discussion above and emphasize the role played by the smallness
parameter e.

By a partial integration in 6I;, we find

u,. Sv
S S S R
' —
SYpo1 T V1 s
Similarly, by using the continuity of u¢ and u, at s,» one finds
u, . ov
613=- ¢I +--o
' -
S¥11"1 ~ Vils
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Equation (24) immediately yields

4 N e
sU1'vor ~ V1 s,

where the dots denote terms that remain finite when
of the contributions above gives

u v v!
or, - |t (4 I
' —
SVpor T Vg I .

Si > StI'

Addition

Since the dominating terms in w'I and ‘VII are —Zu%I/s and

-2ugyp/s, respectively, their ratio will be approximately unity.

o1 - 2ud>I Sv ] .
Ib Su)'I vw - U c
i

ol I]js

The pertinent term in BIb/BSi is

B 2u ' (s.)
oI1° ‘81
“¢II[‘" € " ]
Zs(wo s wII)3/2
S,
1

ds

Thus,

Using Vg7 as integration variable, partial integration, continuity of

velocity, and V] * ¥}1, one obtains

+ !
. (V- _ z“ﬂ_)
¢1 s 1

SUJ' '/—
I WOI - wI
S,
1

Insertion in du and letting s, - sy gives

Su = 2 @ Sv
2vw Tt
ol
1 - — o —
sV
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Analysis of the inequality

gives -1 < e < 1/3, or essentially Iel < 1. Either of these is a condi-
tion on the smallness parameter. And if |e| << 1, the JH-solution is a
good approximation.

E. Comments

There are a few precautions that one should observe, especially if

the iteration is applied when there is a finite distance between v, and
v*.

Multiple secondary orbits to the detector for one single primary
orbit may occur. This was found experimentally and explained theoretically
by Kambic (ref. 7). However, this does not seem to be a problem; one only
gets a little more information from one primary orbit. In any case it
will show up in the solution of the nonlinear boundary-value problem with
a free boundary (step (a) above) for determining s;. The only difficulty
would arise if different iterates for one and the same potential v* were
associated with different number of solutions s; for a given primary
beam (wo1, £571)-

The proper way of varying ¢ and w,y also needs attention. It
should be noted, that 1f a set i (w,1, %,7)} is given, equations (18) and
(19) will in general provide consistent information only if v is the
true potential v* (and the measurements g are correctly performed).
But if v 1is an 1iterate V-1, two or more pairs (201, WOI) correspond-
ing to the same s; = s; ;, may give different values of g (since in
reality they correspond to different si = si under v*). Thus, v, (s; ;)
would not be uniquely defined. It seems natural in such a case to >
choose the arithmetic mean, but 1t may be better to make v,(s) a one-
valued function by using an empirical procedure. In any case, the set
CAN 201)} should be large enough to provide a coverage of the plasma,
not only for v*, but also for the iterates.

It should over again be emphasized, that our convergence analysis
was local around v¥*; the finite differences entering in Banach's fixed-
point theorem and similar theorems (ref. 21) were replaced by infini-
tesimal variations. This does not mean that the method only works in
these cases; there will be a nonzero, finite (or infinitely large) radius
of convergence and uniqueness, although its magnitude is unknown.
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To make sure that a solution cbtained in a practical case does rep-
resent the true solution, it 1s suggested that the Lipschitz-constant o
for T(eq. (29)) is estimated, using a local analysis. With this value
of o or a somewhat larger value, and with any v, chosen (e.g., the
JHi-choice v, = 0), the quantity ||Tvo - v || is calculated. From this,
the requirement on the radius p 1s obtained (from eq. (3.37) in
ref. 21), and 1t is then checked that T is contractive all over the
ball {v| Ilv - voll < pl, with a constant o not larger than the one
obtained from the local analysis. If a larger o would be needed, it
may be tried; one would then require a larger p within which T is

contractive.

These questions, including the definition of a proper norm, seem
worthwhile i1nvestigating, but numerical and/or experimental experience
should be gained first.

Our discussion has been purely deterministic, and the variables
continuous. Needless to say, stochastic elements and discretization will
introduce new problems and possible modifications.

6. PRELIMINARY NUMERICAL EXPERIMENT

A first, tentative numerical experiment was performed with applica-
tion to the SUMMA experiment. To illustrate the influence of the elec-
tric field, to numerically produce output data g, to choose a suitable
value of the constant C giving the detector azimuthal location, and to
compare the Jobes-Hickok solution vy for this value of C with the
true solution v*, the integrals TI,(s,;%;) and Iy(sy; %py) were cal-
culated with a =8 = 4 and wgr = 9, which is just a little more than
Woo T 4 ° Xpagx = 7.24. Two different potentials were used. One was
i1dentically equal to zero. The cther potential - the true potential
(sec. 4C) - and the functional form

V=ui;£+c; 0 <s <8 =0.0243

With a = -0.0015771918; b = 184.91399; ¢ = -0.63355173, v and v' are
continuous, and the well depth is -0,355 (corresponding to -14 kV). See
the solid curve in figure 10. The value of wpr chosen is motivated by
the fact that the quantity e, = eVp,./w, discussed in section 4C is
much smaller than unity, while ¢; = E/vB 1is only marginally smaller
than unity. Indeed, v' (mean) = 0.355/0.0243 = 15 and v' (max) =» 24;
sp = 0.56 (fig. 11); and Ywggwgy = 8.1, which gives &7 = v'sy/2Vwggwgy
equal to 0.52 (mean) or 0.83 (max). Based on the analysis in section 5
we expect that the electric field should have a noticeable influence on
the I-curves, that the JH-solution v; should be different from the true
solution v* but perhaps possible to improve by iteration.
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Twenty-one positive and twenty-one negative, equidistant values of
291 were chosen (distance 0.0032), with the corresponding primary beams
covering the plasma. The value {37 = 0 was excluded due to the singu-
lar behavior of the corresponding potential . The integrals I, and
I, were calculated for 27 equidistant values of sj (distance 0.009).
Only values of sy greater than s.g (or syyy) were considered.

The singularities at sy 77 in I, and s¢y in I, were excluded
by intervals of length €, and the endpoint contributions were taken to
be

and

respectively.

If € 4is too small the integrands in I, and I, become too
large, 1f ¢ 1is too large the Taylor expansion underlying the expressions
for AI, and AI, becomes inapplicable. Several values of € were
tried, and € could typically be varied within one order of Eagnitude
without significant change of the curves. The value ¢ = 107° was used
for V£0 and ¢ = 3x10™> for V = 0, but this difference is not im-
portant.

The result is represented in figure 12(a) to (h). V # 0 corresponds
to (a) to (d), and V =0 to (e) to (h). Positive angular momenta 201
are found in (a), (b), (e), (f), and negative in (c), (d), (g), (h). I,
1s shown in (a), (¢), (e), (g) and Iy in (b), (d), (£), (h). From the
curves the following conclusions can be drawn:

(1) The electric field nas a profound influence on all sets of
curves; the curves are changed completely in spite of the low plasma
potential compared to the beam energy.

(ii) The values of I, and I}, jump by about 27 between
29 = -0.0032 and +0.0032. This 1s due to the coordinate system; if the
201 < 0 curves are shifted vertically by 2w, the two sets fit well to-
gether without intersecting.
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(i1i) Several Ig-curves with V f 0 are essentially horizontal; i.e.,
I, is then essentially independent of sj. Such curves are not suitable
for determination of the potential, since no scanning and no spatial
resolution is obtained.

(iv) Apart from the horizontal I,-curves in (a) and (c), all curves
corresponding to a given &3y have only one intersection with I, = C
or I = C. Furthermore, inspection shows that I, # I, for the same
201 This means that there 1s never more than one secondary beam reach-
ing an arbitrarily located detector, for a given primary beam.

(v) In curves (b), (c), (f), (g) there is what appears to be an
envelope or focal line (or possibly a locus of singular points); the
phenomenon looks like a wave motion with wave fronts reflected against
the envelope, giving effectively two sets of curves. Near Cf the
curves depend only slightly on 20; BI/BQOI * 0. We thus have a kind
of focus; particles sent in different directions appear (for given C
in an interval) to be ionized at one and the same radius.

(v1) When there is an envelope, one and the same value of s; is
obtained for more than one 237 near the envelope.

(vii) Apart from (vi), a given s; 1is associated with exactly one
value of Lo1*

(vi1i) A "hook" at the beginning of the curves 1s often found. This
is believed to correspond to the infinite derivative at s¢1 or sg11
(sec. 5). Since the numerical problem is discretized, the hook does not
always show up.

(ix) It is unclear whether or not the two strange curves in (e) are
due to numerical errors.

In the present numerical experiment we can choose the detector loca-
tion (the value of C) in the most favorable way. This 1s not the case
in practice. Unlike the primary beam method, it 1s not possible to per-
form the experiment with only the magnetic field, since no secondaries
are generated without the plasma. (Maybe it would be possible to perform
a supplementary, primary beam experiment to see 1f the electric field
has an i1mportant influence on the orbits.)

To determine the JH-solution v, we choose
C = -5.8500 = 0.43319 (modulo 2m)

Curves (d) @and some of (b)) provide the output function g, and the
JH-solution is obtained from (h) (and (e)). Table I summarizes the eval-
uations. For the given values of {3y, the true values si are obtained
from the diagrams (with V # 0) as the intersections between the respec-
tive I-curves and the straight line I = C. The output function g(%y7),
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which is also the value of the true potential v* at s; is then ob-
tained either from the analytic representation of v or from figure 10,
The first iterates sy ,1 are then obtained as the intersections between
I=C and the I-curves corresponding to V = 0, and the values of v
at sj ] are also given by g(%31). The points obtained for v; are
marked’1n figure 10, Clearly, the agreement is poor, but there is at

least some qualitative similarity.

The calculations illustrate the necessity to consider the influ-
ence of the electric field on the orbits. It would be interesting to
interpolate a potential v and proceed with the iteratiomns, to try a
higher value of wpp, with or without a simultaneous change of mass, and
to investigate the role played by the focal line and the equation
a [/320]: = 0.

7. CONCLUDING REMARKS

The primary beam method, based upon a study of the total angular
deviation of charged particles and most readily used with cylindrical
symmetry, was found to work satisfactorily in the numerical experiment
with conditions taken from the Modified Penning Discharge laboratory ex-
periment. The necessary beam energy in this case was not set by the mag-
netic field, but by the repulsive electrostatic potential plus the neces-
sity for a sufficiently strong centrifugal force for the unfolding proce-
dure to be unique and effective.

Among important things not treated here we wish to mention the beam
optics, especially the possibility of defocusing when the change in polar
angle is large - which occurs when the gradient of the fictitious poten-
tial is numerically small. However, the calculations with two almost
equal g, ,-values strongly indicate that away from such points defocusing
need not be a problem. Needless to say, influence of random perturba-
tions is of great interest for the practical use of the method, and con-
sideration of more general geometries is also worthwhile. The latter
problem can probably be handled by ray-tracing techniques. The nonlocal
character of the process of deviation of the particles was mentioned,
leading to difficulties to obtain local information about the electric
field by varying the constants of motion by small amounts., However, this
is believed to be a tractable problem.

Advantages of the primary beam method are the low energy necessary
(the secondary beam method requires typically four times as high energy),
the high intensity of the detected particles, and the simplicity of de-
tecting them - one only needs to determine where the beam comes out,

On the other hand, the secondary beam method works readily in dif-
ferent geometries, and may furnish information on other interesting
plasma quantities as well, like density and temperature. Moreover, with
the compact building style of big, modern plasma experiments, the limited
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access may prohibit a determination of the deviations corresponding to a
great number of energies. On the other hand, we saw from section 6 and
figures 12 (a) to (h) that care may be necessary in locating the detector
if an unknown electric field is to be determined, whose influence on the
orbits cannot be neglected, it may be necessary to use a number of de-
tectors at different fixed locatioms,

Throughout the paper we have tried to combine physical interpreta-
tions with the mathematical development, notably in the use of normalized
quantities, a technique that solves many problems in one by revealing the
pertinent quantities determining the nature of the solution. For the
secondary beam method, requirements on beam momentum are thus easily ob-
tained by using the constants of motion. It is a general experience that
this technique will fail to give conditions that are both necessary and
sufficient; the success in the present case is probably due to the fact
that the problem was two dimensional rather than three dimensional.

The nature of the Jobes-Hickok approximation (meaning that the elec-
tric field is neglected when the orbits are determined) was 1lluminated,
and it was found to be valid when the electric force in the plasma is
much smaller than the magnetic (E/B-velocity much smaller than beam ve-
locity). 1In terms of energiles, the electric field should be multiplied
by the scale length of the magnetic field rather than the electric, and
the corresponding energy should not be compared with the beam energy but
with the geometric mean of the same energy and the minimum possible beam
energy. The latter fact opens the possibility that if one wants to
minimize the influence of the electric field, one should use lower mass
numbers when the energy is increased, and in any design this should be
considered in relation to other, more technical requirements.

If the pertinent smallness parameter 1s not negligible small, but
smaller than a quantity of order unity, a true solution may still be
obtained by iteration, by means of the procedure described in the paper.
The conclusions were based upon a local analysis with variations and
contraction mappings. Even if the arguments presented should be strong
and convincing enough, there is room for increased mathematical rigor,
including a precise definition of the norm, consideration of nonlocal
problems, and proper handling of the generally multivalued potential
functions appearing in the iteratioms.

A numerical experiment was performed with application to the SUMMA
experiment; the conditions were marginal in that the smallness parameter
was of the order of unity. The Jobes-Hickok approximation was shown to
be unsatisfactory in this case, and the potential became multivalued,
However, with a suitable empirical definition of a one-valued potential,
the next iterate may well be closer to the assumed function.
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TABLE I. - SECONDARY BEAM METHOD; NUMERICAL EXPERIMENT

[True points of ionization s;, output data g, and
first iterate (Jobes-Hickok solution) Sy .1, for
various values of primary beam canonical’angular
momentum &£,7. Both the true potential v*(si)
and the first iterate Vl(si,l) are given by

8(201)-]

%01 S: g(2 D 85 1
(multiples © ’
of 0.0032)

-1 0.0111 -0.188 0.0024
-2 .0128 -0.148 .0029
-3 .0143 -0.115 .0076
=4 .0160 -0.082 .0076
-5 .0175 -0.053 .0085
-6 .0192 -0.029 .0098
-7 .0208 -0.014 .0109
-8 .0231 -0.001 .0127
-9 .0238 -0.000 .0141
+1 .0069 -0.281 .0053

+2 .0051 ~-0.314 .0059



Detector

Ion gun

Fig 1 - Cylindrically symmetric magnetic field and electrostatic
potential w1th an 1on orbit The 10n gun 1s 1ocated at
the point ( % q%) and the detector at r

(with sign) between the 1nitial veloc1ty an

a The angle
1s called K.

radius vector



FUNCTION F USED TO DETERMINE v

FUNCTION G USED [TO DETERMINE v

s 1 (14711 $
NORMALIZED RADIUS, s FICTITIOUS POTENTIAL, ¢

Fig 2 - General appearance of functions F(s) and G(}) used in the
1nversion. Corresponding values of s and ¢ can be obtained
from F(s) = G() by the graphical construction shown.
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HALF THE CHANGE IN POLAR ANGLE, f, radians

Fig 4 - Geometric determination of f(w,), half the change 1n polar
angle, for an 1on 1n a homogengous magnetic field
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Fig 5 - Half the change 1n polar angle (1n radians) as a function
of normalized energy Wy for homogeneous B and zo = 2
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NORHALIZED ELECTROSTATIC POTENTIAL, v

NORMALIZED MAGNETIC FLUX, T

-4 i | ]
0 01 02 03
NORMALIZED RADIUS, s NORMALIZED RADIUS, s

F1g 10 - Normalized flux functionT(s) and assumed potentialwr(s)
in the SUMMA The straight 1ine (fromd&) 1s tangent to
the 7T -curve at s,, the square of the slope 1s the minimum
normalized primary 1on energy necessary to reach the whole
plasma The points 1n the v-s diagram represent values
reconstructed with the secondary beam method under the
assumption of negligible electric fireld
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