General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
This grant supported research with data obtained with the Copernicus satellite. Some of the data used were obtained before the grant initiation date, while the PI was still on the research staff at Princeton; and the rest were obtained through the Copernicus Guest Investigator program, after the PI's move to the University of Colorado.

The original proposal and the attached T43 form both outline the scientific goals of the study. The T43 form also serves to briefly summarize the results of the past year's research, and to outline the intended research plans under a new NASA grant which is forthcoming.

To expand on the bare-bones information in the T43 form regarding scientific results achieved during the past year, the following few paragraphs describe in somewhat more detail a few of the more outstanding accomplishments.

First, with regard to the interstellar depletion study, two important studies were completed. One, carried out with graduate student Karie Meyers, involved a detailed profile analysis of absorption lines in the ζ Ophiuchi cloud. It was found that refractory elements such as iron are much less depleted in the higher-velocity cloud in the line of sight. This shows that the process which accelerated the cloud to its velocity of some 15 Km/s (LSR) also destroyed the grains, releasing material to the gas phase. This had previously been observed for clouds with much higher velocities, but not for
This grant supported research with data obtained with the **Copernicus** satellite. Some of the data used were obtained before the grant initiation date, while the PI was still on the research staff at Princeton; and the rest were obtained through the **Copernicus** Guest Investigator program, after the PI's move to the University of Colorado.

The original proposal and the attached T43 form both outline the scientific goals of the study. The T43 form also serves to briefly summarize the results of the past year's research, and to outline the intended research plans under a new NASA grant which is forthcoming.

To expand on the bare-bones information in the T43 form regarding scientific results achieved during the past year, the following few paragraphs describe in somewhat more detail a few of the more outstanding accomplishments.

First, with regard to the interstellar depletion study, two important studies were completed. One, carried out with graduate student Karie Meyers, involved a detailed profile analysis of absorption lines in the \(\zeta\) Ophiuchi cloud. It was found that refractory elements such as iron are much less depleted in the higher-velocity cloud in the line of sight. This shows that the process which accelerated the cloud to its velocity of some 15 Km s\(^{-1}\) (LSR) also destroyed the grains, releasing material to the gas phase. This had previously been observed for clouds with much higher velocities, but not for
those with only moderate speeds. These results, soon to appear in the
Astrophysical Journal, will provide valuable constraints for models of
grain destruction in interstellar shocks.

A second depletion study, recently completed in collaboration with
E. B. Jenkins of Princeton, involved an analysis of conditions within the
ρ Ophiuchi cloud complex, where previous analyses of optical data had
shown that grain growth has occurred in the densest regions. The Copernicus
study, soon to be submitted to the Astrophysical Journal, has revealed
that most of the gas in the line of sight is either completely devoid of
heavy elements, or is so dense that even species with low ionization
potentials are in the atomic form. Either interpretation argues for a
dense cloud core. Copernicus data confirm that the grains in this region
are unusually large and that the density is high. This tends to support
the hypothesis that the depletions result from accretion of heavy elements
into grains inside interstellar clouds, in contrast with theories that the
depletions result from the grain formation process.

The important outcome of a number of studies of early-type stars
(e.g. Snow and Hayes 1978; Slettebak and Snow 1978; Snow and Wegner 1979;
Marlbough and Snow 1979) can be summarized simply by saying that variability
is common in the UV spectra of hot stars with winds and/or extended
atmospheres. Every star studied closely shows fluctuations in line profiles.
Continuing analysis of the timescales of these variations and of their
relationship from one ion to another will provide invaluable information
on the winds, their stability, and, ultimately, the nature of their regions.

Several additional studies were completed during the support period, and
these are mentioned in the attached T43 form, both in the description of work completed (item 13b) and in the bibliography (13d).
Analysis of Ultraviolet Spectrophotometric Data from Copernicus

13. BUDGET

a. Strategy: To utilize ultraviolet spectral data from Copernicus in studies of interstellar absorption lines and of stellar and circumstellar lines in hot stars. The interstellar work has been aimed primarily at analyzing the depletions of heavy elements from the gas phase and at elucidating how these depletions depend on physical conditions. This work has utilized line profiles to determine abundances in separate velocity components. Also of interest are interstellar molecular abundances, which are derived from equivalent width measurements; such measurements provide important information on the density of diffuse clouds, which may also be applied to the dark clouds that are characterized by the presence of complex molecules. The stellar and circumstellar research is directed towards hot stars with winds and/or extended atmospheres. Of prime interest is the variability in these winds which appears now to be quite common. Studies of the timescale of the fluctuations and of their effects on the ionization balance can provide valuable insights into the stability of the winds and, ultimately, may help unearth the driving force behind them. Another aspect of the hot star observations has to do with the circumstellar shell absorption lines which appear in the spectra of some stars, particularly the Be stars. These shells may be low-velocity manifestations of the stellar wind phenomena, and it is especially important to understand their relationship to the winds.

b. Progress of past year: Observations were carried out for interstellar abundances, both atomic and molecular, towards a number of stars, as part of a comprehensive survey in which I am participating. The better quality data are being analyzed for profile information and the lesser data are being used in curve-of-growth analyses. One study of profiles (Snow and Meyers, 1979) has been completed, and another (Meyers and Snow, 1979) is well on its way. Molecular observations have been carried out as well, N\textsubscript{2} was sought (Lutz, Owen and Snow, 1978); interstellar C\textsubscript{2} was detected and its rotational excitation utilized to establish limits in interstellar cloud temperatures (Snow, 1978). An extensive search for H\textsubscript{2}O has resulted
in a tentative identification which will produce new information on chemical reaction rates (Snow and Smith, 1979). A detailed analysis of interstellar depletions and grain properties in the ζ Ophiuchi cloud is nearing completion (Snow and Jenkins, 1979). Several papers on stellar wind variability (Snow and Hayes, 1978; Wegner and Snow, 1978; Slettebak and Snow, 1978) and on circumstellar lines (Marlborough and Snow, 1979; Snow, Peters, and Mathieu, 1979) have been completed as well.

c. Plans for coming year: Additional observations are to be carried out, both for the interstellar abundance survey and for studies of extended atmospheres, the latter emphasizing variability in the spectra of Be stars. In addition, analyses of the interstellar depletion data will be continued, with special attention to identifying which grain population is responsible for the depletions.

d. Bibliography:

Title: Analysis of Ultraviolet Spectrophotometric Data from Copernicus

