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/Abstract

This report summarizes the attempts made to apply semidirect
methods to the calculation of three-dimensional viscous flows over
suction holes in laminar flow control surfaces. The attempts were
all unsuccessful, due to either (1) lack of resolution capability,
(2) lack of computer efficiency, or (3) instability.
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INTRODUCTION

Laminar flow control technology has the potential for signi-

ficantly increasing the range and reducing the fuel consumption of

commercial aircraft. With laminar flow control, the viscous drag

of large surfaces such as wings is reduced by stabilizing the

boundary layer, preventing or greatly delaying the transition from
o*
laminar to turbulent flow.

On the conventional laminar flow airfoil, boundary layer sta-

bility is enhanced by overall design of the surface so as to avoid

pressure peaks and their inevitable concomitant, adverse pressure

gradients. In the unconventional LFC technology, further stabili-

zation is achieved by using a suction surface on the wing or fuse-

lage surface to withdraw part of the boundary layer. The suction

may be accomplished through long spanwise slots, a porous surface,

or discrete cylindrical holes.

The first-order prediction of the stabilization resulting

from the surface suction is well understood by the classical

boundary-layer stability theory based on the parallel-flow Orr-

Sommerfeld equation, associated with C. :C. Lin, Tollmien,

Schlichting, and others (e.g., Refs. 1, 2). Second-order effects,

which could be significant for slots, may require the inclusion

of x-dependency, as shown by Saric and Nayfeh (Ref. 3). The dis-

crete hole surface can be manufactured by electron-beam technology

and has structural advantages over slots and economic advantages

over porous surfaces manufactured by sintering techniques.



However, the complicated three-dimensional flow over the cylindri-

cal suction hole could possibly develop a secondary instability

which would not be revealed by the boundary layer stability analy-

sis of the unperturbed boundary layer flow.

In order to study this secondary instability theoretically,

an accurate representation of the three-dimensional flow in the

neighborhood of the suction hole is required. Particularly needed

are accurate values of first and second partial derivatives in the

y-direction normal to the surface and in the spanwise z-direction.

Parametric studies require variation of the inflow boundary-layer

thickness and profile, pressure gradients, hole diameter and span-

wise spacing, skin thickness, and suction rates, as well as purely

numerical parameters such as mesh-size.

The objective of the present work was to develop a computer

code to rapidly and accurately calculate the three-dimensional

viscous flow over the suction holes, using the complete compres-

sible Navier-Stokes equations. The intended technique was to be

an application of the semidirect methods previously developed by

the Principal Investigator.

PREVIOUSLY USED METHODS

The classical method of analysis for viscous flows involves

the calculation of an inviscid flow followed by a boundary layer
\

calculation. This technique has been developed to a high level of
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sophistication in two dimensions and in three dimensions (e.g.,

Refs. 5, 6). With the inclusion of viscous iteration, it can even

be used to calculate mildly separating flows in two dimensions

(Ref. 7). The boundary-layer method appears to be the method of

choice for the suction slot problem. However, the discrete suc-

tion hole introduces added ellipticity in the spanwise direction,

and the boundary layer equations become less dependable and more

difficult to calculate.

The next alternative is to use the parabolic marching equa-

tions... These equations are intermediate between the classical

boundary layer equations and the full Navier-Stokes equations.

This approach has been successfully applied to simple flows in

constant-area ducts (Refs. 8, 9) and is quite economical compared

to time-dependent Navier-Stokes solutions. However, there remains

some questions as to the validity of the procedure in regard to

the treatment of longitudinal pressure gradient terms. The prac-

tical accuracy is suspect in the present case wherein those terms

may vary significantly in the immediate neighborhood of the hole,

which region is the most likely candidate for secondary instability

(Ref. 4).

A third alternative is to use the full Navier-Stokes equations

with no approximations, solved with a conventional time-dependent

or time-like iteration scheme (e.g., Ref. 10), obtaining the de-

sired steady-state solution as the asymptotic limit of the time-

dependent problem. However, three-dimensional time-dependent



calculations of viscous flows are notoriously expensive, especially

for the high resolution in y required for the present problem.

SEMIDIRECT METHODS

The present work involved "semidirect methods" for solving

the full Navier-Stokes equations for the steady-state solution,

using iterative procedures which are not time-dependent or even

time-like. The principal investigator had previously developed

several such methods with considerable success. (See Refs. 11-15.

See also Ref. 16, and similar methods for the transonic inviscid

equations in Refs. 17 and 18.)

The basic concept in semidirect methods is to use the recently

developed fast (direct, or non-iterative) linear equation solvers

to solve linearized steady-state equations, which are then iterated

to remove the non-linearities. This iteration is not time-like,

as shown in Refs. 11-13. Convergence can be obtained in as few as

6 to 8 iterations for some problems, and more typically in 10 to

15 iterations for problems with flow-through computational boun-

daries like the ones of interest here. Each of these iterations

requires computer time comparable to that for a single time-step

in an efficient time-dependent method, i.e. one which uses a direct

elliptic solver .for the Poisson equation. If the more common

iterative methods (ADI, SOR, etc.) are used for the Poisson equa-

tion in a time-dependent method, then the semidirect methods can



sometimes attain a complete steady-state solution with computer

time comparable to that of a single time step.

The basic concept of the semidirect iteration scheme can be

described by reference to a two-dimensional laminar flow problem

using the vorticity transport equation,

?t = -Re V-V£ + V
2?

-»•
where £ is vorticity, Re is the Reynolds number, and V is the vec-

tor velocity. A steady state is assumed, so the time derivative

Ct is set =0. In the Split NOS method proposed here, the velo-
->"k ->Q

city V at the k-th iteration is split into an initial guess V
->

and a perturbation V, not necessarily small. That is,

-*v -K-. •»•
V
K = v° + V

Then the steady-state form of the vorticity transport equation is

solved for the k-th iteration using 0(/fix") centered differences,

as

LUk) = Re ̂ (V1?)*"1

where the linear operator L is defined by

LU) = V2? - Re V-(V°C)

For the present 3D problem, the treatment of the spanwise convec-

tion terms prevented a successful calculation, as will be described

later.
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PARTICULARS OF THE
LFC PROBLEM FORMULATION

For the presently considered LFC problems, the free-stream

pressure is prescribed, so that the primitive (velocity-pressure)

system of variables is recommended. The principal investigator

had also applied the Split NOS method to primitive variables in

incompressible flow with success in 2D. The additional equation

for energy required for the compressible flow solution does not

present any special difficulties, since the boundary conditions

(on heat flux or temperature) are well specified. (Free-convection

problems have recently been calculated by the P.I. using semidirect

methods.) The compressibility correction terms were to be lagged

in the iterations, as are the velocity perturbation terms above.

The work of Ref. 17 on inviscid flow indicates that compressibility

effects in subsonic and slightly supersonic flows are compatible

with a semidirect iteration scheme.

Because the subject problem involved flow-through computation-

al boundaries, rapid convergence requires (Refs. 11-15) that the

linear solver used can accomodate first-derivative (convection)

terms at least in the primary flow direction. Also, accurate re-

solution of derivatives in y requires a fine mesh and possibly

coordinate stretching in y. These requirements dictated that the

commonly available fast Poisson solvers are not applicable to the

proposed solution method.

The EVP method previously developed by the Principal Investi-

gator (Refs. 19, 20) and recently extended to three dimensions



(Ref. 20-23) is applicable to this problem. Three different 3D

linear solvers were utilized in the present investigation; simple

3D marching, 3D marching with a banding approximation, and the 3D

EVP/FFT method. It was intended that the solution to the title

problem would be obtained with the full Navier-Stokes equations,

rather than with some parabolized approximation; this will likely

be significant near the suction hole. The constant-property

approximation was used. This assumption is not necessary for the

semidirect method, but the simplification helped the code debugging

process.

The equations used were the three momenta equations and the

total energy equation, all in conservation form, and a modified

Poisson equation for pressure. It is believed that the use of the

pressure equation, rather than a steady-state continuity equation

for density, would improve the accuracy for the slightly compres-

sible flows of interest, would be compatible with the specification

of the pressure in the external inviscid flow, and would circumvent

the problem associated with the semidirect iteration of the con-

tinuity equation as described in Ref. 12, page 194. The surface

boundary conditions on temperature could be either specified

temperature or heat transfer boundary conditions, including adia-

batic walls. These and other boundary conditions are the same as

would be used in a conventional time-dependent approach. In this

regard, the conventional extrapolation conditions at outflow

boundaries (e.g., Ref. 10) are the simplest to program and to

adapt to a vectorized computer.



The most recent work on semidirect methods for viscous flows

(Ref. 15) indicated no numerical stability limitation on the 2D

iteration scheme up to Re = 107. The steady-state solutions

obtained are the same as those obtained by the usual time-dependent

methods using the same spatial differences, same variables, and

same mesh.

Iterative convergence rates would be improved (even in 2D) if

all the terms possible were retained in the linear operators of

the Split NOS method. However, it was decided to lag in the itera-

tions the terms in the momentum equations which are the departure

from incompressibility and constant viscosity, and those in the

energy (temperature, not total energy) equation which arise from

dissipation effects. This would result in some decreased itera-

tive performance at high M, but would save considerably in storage.

If all the possible terms were included in the linear operator, 5

large matrices at each of the z-wave numbers would have to be

stored and solved by LU decomposition, one for each elliptic equa-

tion for u, v, w, T and P. With the"scheme described above, the

same matrix would serve for u, v, w and T, with a separate matrix

for P., Thus, only 2 matrices would serve for each of the five

variables at each wave number. Also, the 3D EVP/FFT method itself

has a savings of almost \ because of the symmetry in the z-wave,

number (Ref. 23) . Thus, the storage penalty for .'.this method would

only be about 20% of the basic storage required for u, v, w, T and

P. This could be further reduced, by using Hockney's method for

the pressure equation, to about 10%. For large problems to be run



on the STAR 100, the savings in storage would translate into

savings in time spent for page transfers,and would likely decrease

actual computation time more than enough to compensate for the in-

creased number of iterations.

The choice for the mesh for the pressure equation was made.

After considerable investigation, it was decided that a staggered

grid for the pressure is very desirable, even though a non-

staggered grid (in which all variables are defined at the same

locations) is typically used in compressible flow solutions. These

conventional solutions invariably utilize an explicit or an inher-

ent artificial damping for the purpose of shock-capturing and

stabilization. This artificial damping also depresses the parasi-

tic mode that arises from the pressure solution. In the present

case, the solutions would not contain artificial damping. How-

ever, the MAC-type grid was also rejected because of its complex-

ity in 3D, which is especially difficult for the interpolative

coupling between the flow above the plate and the flow in the suc-

tion hole. Also, the MAC grid would require different operators

for u, v, w and T, with the resulting storage and time penalties

mentioned above. Therefore, it was decided to use a grid in which

only pressure is staggered, while u, v, w and T are all defined on

the same grid. There is some penalty in operation count, but the

interpolative coupling problem is tractable and the parasitic

solution mode does not exist.

It was intended to perform the calculations in several grids,

which would be patched together either iteratively or directly.



A cylindrical coordinate grid was to be used, inside the suction hole.

Above the wing surface, a fine-grid and a coarse-grid solution would

be obtained in rectangular coordinates.

The use of the rectangular coordinate system above the wing

surface would allow the streamlines to roughly follow coordinates,

resulting in better accuracy and aiding (it was thought) conver-

gence of the LAD-like iteration in z, as previously described.

The several methods of solution attempted in this work will

be described in detail in the following sections. The motivations

and decisions about these methods are somewhat esoteric because

of their intimate connection with the direct methods used for the

linearized requationst. The characteristics of these linear solvers

are described in detail in Refs. 21-23. It should be realized

that those methods are not easy to program in 3D, and that most

of the P.I.'s time was spent in coding and debugging.

3D MARCHING:
FULL MATRIX AND BANDED APPROXIMATION

The "simple" 3D marching method (Refs. 20, 23) was coded and

tested. Previously, the 3D EVP method had been worked out theore-

tically but had not been validated in an actual computation.

The operation count for the 3D EVP method in its simplest

form is very bad-with initialization for an MxMxM problem requiring

0(M6) operations. It would be necessary to use a banding approxi-,

mation to the full influence coefficient matrix in 3D to make the
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method economical. This banding approximation had been proven in

2D and worked out theoretically in 3D; it was now proven in 3D.

The 2D experience carried over with no surprises to 3D, with only

the usual programming difficulties. The result is the only 3D

elliptic solver with optimal operation count, 0(M3), for repeat

solutions. Initialization requires (MM1*) operations.

The validating experiments with various bandwidths were first

performed by simply zeroing the terms in the full influence coef-

ficient matrix which were outside the band; i.e., the calculations

were performed with a full matrix solution routine with null cal-

culations. Later the code was actually converted to a banded

matrix solver to realize the advantages in operation count and

storage. The relative advantages of using a simple banded matrix

solver vs. a block-banded solver were studied. The former appeared

to be preferable. The available banded matrix solvers were studied

and the IMSL programs were rejected.in favor of the LINPACK pro-

grams written by Prof. Cleve Moler of the University of New Mexico

Math Department. His programs give an estimate of the condition

number of the matrix problem, and are well-designed to avoid

unnecessary accumulation of round-off error, which is critical

in the large 3D problems.

After considerable difficulty with operating systems, the

LINPACK system was set up on both the NOS system and the batch

CDC 6600 system. The latter proved to be necessary because of

the stringent storage limitation on the NOS system.



A large parametric study was then performed of the accuracy

of the solutions. Both the condition number of the matrices and

the maximum error in the field were investigated as functions of

cell aspect ratio, independent mesh dimentions I, J and K, band

width, number of corrective iterations, and dimensionality. Also

studied were the solution time for initialization, solution time

for repeats, and storage.

The adequacy of the banding approximation is much more sensi-

tive to J, the problem size in the marching direction, then had

been previously realized. Also, with KBAND = 1 (a minimal appro-

ximation which includes only the nearest neighbors in the banding

approximation) a 31x31x31 problem does not fit into core in a

CDC 6600, since the storage penalty is about 3•KBAND-M3. A

26x26x26 problem fits, but the condition of the matrix is so poor,

even at cell aspect ratios = 10, that accurate solutions are not

possible. The best problem that fits is 21x21x21 with KBAND = 3,

which gives excellent accuracy of the finite difference solution.

However, it does not seem that this resolution would be adequate

for the LFC problem.

A scheme was then analyzed for effectively doubling the mesh

size by solving on a submesh and using iterative corrections. The

method appears to be useable, but doubles the mesh resolution only

in one direction. It would also be very difficult to code. Fur-

ther, a discussion on 2/16/78 with D. Bushnell indicated that an

0(A4) solution even in a 31x31x41 mesh, while adequate for initial

studies, would hot be adequate for final calculations. The methods



considered are mesh-size limited, i..e., the submesh scheme cannot

be applied recursively in 3D. It thus became evident that high

mesh resolution with the semidirect methods in 3D was going to

be very difficult. High resolution is not a difficulty in 2D, and

the codes in 2D can be arranged to systematically refine the mesh,

but the techniques are not simply extendable to 3D. Thus, the 3D

solutions require different nonlinear iteration methods dictated

by the linear solvers.

3D EVP/FFT
LINEAR SOLVER

The remaining nonlinear iterative methods which were attempted

used the 3D EVP/FFT linear solver. The peculiar properties of this

solver limit the success of the nonlinear iterations, so it is

necessary to describe its characteristics here.

The 3D EVP/FFT method is a combination of the original two-

dimensional EVP method (Ref. 19) and Hockney's method (Ref. 24).

The dependent variable is first Fourier transformed in the z dir-

ection using the Fast Fourier Transform or FFT. Then the EVP

method is used to solve the two-dimensional problem in x and y

for each Fourier component, followed by a reverse transformation.

The operation count for this method for an IxJxK problem is

0il-J'K'lnK) for repeats. Although the Fourier-transformed var-

iable is complex, the required influence coefficient matrix CI

13



(Ref. 23) is real. Further, it is symmetric in the wave number

k , thus reducing the required storage and operation count by
2

almost a factor of %.. The .three-dimensional equations require

storage and initialization of only two CI's, one for the three

velocity components and one for the pressure. The error propoga-

tion characteristics of this three dimensional problem were worked

out in detail (Ref. 23) and found to be applicable to the coordin-

ate and mesh systems of the present problem. This EVP/FFT direct

linear solver retains the ability of the EVP method to handle

variable-coefficient first-f.arid cross-derivative terms in the x-y

plane, although it is restricted to constant-coefficient second-

derivatives in z, as are the more common methods.

TIME-LIKE AND LOCALLY-ONE-
'DIMENSIONAL"METHODS

In the interest of solving the LFC problem as efficiently as

possible, several schemes were considered which fell somewhere

between the semidirect methods and the more conventional time-

like methods.

An obvious approach is to use 2D methods in x-y, iteratively

coupled to the terms in z, by way of a tridiagonal or hopscotch

solution in z. However, there is no reason to expect such a

planar ADI or planar hopscotch method to converge any faster than

a 2D ADI solution, so this approach was discarded, even though



the ease of coding was attractive. Another method which would be

easy to code is a BIR (block-implicit relaxation) method extended

to 3D. Here, the requirement for high resolution would again slow

convergence, so this approach was discarded. Several variants of

a locally-one-dimensional correction scheme were devised and tested.

The first scheme devised ;was an iteration scheme which can be de-

rived as a LOD method with an infinite time step. The first %-

step uses the 3D EVP/FFT linear solution. Then, instead of merely

lagging all the cross flow advection terms, these are used in the

next %-step in a ID correction which includes advection. Part of

the z-diffusion term is needed in the second Jg-step in order for

that term to be elliptic. The method was programmed and tested

with a general weighting factor W in the usual manner, with 0 <_

W <_ 1, to split the z-diffusion terms between the first and second

half-steps. The code also allowed for finite At, for different

At's in the first and second %-steps, and for different numbers

of cycles in the first and second %-steps. For example, the code

accepts a single cycle at At, for the first %-step, and n cycles

at At2 = At,/2 for the second %-step. The experimentation was

performed on a linear constant coefficient 3D advection-diffusion

equation, with input parameters of directional Reynolds numbers,

Rx, Ry, and Rz.

The results were uniformly negative. Extensive parametric

tests were run without discovering a stable combination, even for

a 1-1- Reynolds numbers = 0. This was surprising, and there is always

the possibility of coding errors, but the store of debugging
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techniques and much of the computing budget was exhausted, and the

work proceeded on the premise that these LOD methods are in fact

unstable.

SEMIDIRECT ITERATION WITH
LAGGING SPANWISE - ADVECTION TERMS

The final method which was coded and tested was a combination

of the Split NOS and LAD methods. The linear solver used was the

3D EVP/FFT method, which allows only 32/3z terms in z, and limits

the advection coefficients in the linear operator to u(x,y) and

v(x,y). In earlier published results on the LAD method in 2D [

(which contains no advection terms in the linear operator) conver-

gence was limited to low Re. However, this method was analyzed

(under separate funding) and modified to achieve convergence at

high Re, although at a loss in convergence speed.

The 3D EVP/FFT routine was coded into a CALLable subroutine,

and used as the basis of a fully 3D fluid dynamics solution proce-

dure using the velocity and pressure variables. Extensive experi-

mentation was carried out with this code and with a related 3D

code, developed under separate contract, using the vorticity-

velocity variables. With both codes, tests were conducted on the

simple problem of perturbed 3D Couette flow.

It became evident that the 3D EVP/FFT method would not be

useable for 3D fluid dynamics solutions using semidirect methods.

16'fr'



Instability resulted at all non-zero Reynolds numbers in both

codes, using a variety of boundary conditions. When the pressure

solution was removed from the nonlinear iteration procedure, sta-

bility was slightly improved, but still not useable. With only

the u-component of velocity active, stability was achieved only

through Re = 0(10) . For Re = 15, convergence was obtained but

very slowly and erratically. There always remains the possibility

that the failure was due to coding errors, but the test for only

the u-component is fairly straightforward; i.e., there were no

changes in boundary conditions (except when periodic conditions

were used in the third direction) and no interactions with other

velocity components or pressure. When the equation was linearized,

correct solutions resulted. Also, in 2D, the method is convergent

even for high Re, for the nonlinear equations. It therefore

appears that the instability is inherent in the 3D solution using

the 3D EVP/FFT direct solver. It is conjectured at this time that

the instability is related to the sensitivity of the FFT to small

disturbances.

OTHER LFC APPLICATIONS

The semidirect solution methods still have these possible

applications to the LFC suction boundary-layer control problem.

(1-) 2D solutions can be obtained very rapidly, and with high

resolution. (2) The linear 3D EVP/FFT method can be used for the

"17



direct solution of the pressure field for use with a time-dependent

or time-like solution procedure in 3D.
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