NST-44

TO: XXX/Scientific & Technical Information Division
Attn: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP and Code KSI, the attached NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No. : 3,481,802

Government or Corporate Employee : S. T. Soljerdahl (G. Shellard)

Supplementary Corporate Source (if applicable) :

NASA Patent Case No. : W-623, MFS-10, 946

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable:

YES [] NO []

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words "...with respect to an invention of ..."

Bonnie L. Henderson

Enclosure

(NASA-Case-MFS-10946-1) METHOD AND APPARATUS FOR PREPARING MULTICONDUCTOR CABLE WITH FLAT CONDUCTORS Patent (NASA) 4 P CSCL 13H

Unclas
DECEMBER 2, 1969
G. V. MARCELL

3,481,802

METHOD AND APPARATUS FOR PREPARING MULTI-CONDUCTOR CABLE WITH FLAT CONDUCTORS
Filed Sept. 26, 1966

INVENTOR.
GERALD V. MARCELL

BY
Adams, Cuyrnee
Haugen
ATTORNEYS
The availability of the yieldable, compressible surface together with the softened adhesive bonding film permit the individual conductors to become embedded into the softened adhesive film and thereby arrange some significant flow of the adhesive bonding film around the edge surfaces of the individual conductors. It is the availability of this adhesive along the edge surfaces of the conductors which has been found to provide for a firm establishment of the conductor in a pre-determined point along the surface of the substrate, this arrangement eliminating the danger of relative movement or slippage of the conductors during subsequent processing operations, including, for example, the application of a second or coverlay film over the surfaces of the individual conductors and the substrate member. After the subsequent operations, the adhesive material is cured to its final cured stage.

Therefore, it is an object of the present invention to provide an improved apparatus and technique for preparing electrical cable of the flat type wherein the individual conductors are arranged in a generally parallel, non-distorted pattern, and in high density.

Yet it is a further object of the present invention to provide an improved apparatus and technique for preparing electrical cable utilizing generally flat, ribbon-like conductors, these conductors being arranged in a generally parallel, non-distorted pattern, and in high density.

Other and further objects of the present invention will become apparent to those skilled in the art upon a study of the following specification, appended claims and accompanying drawings, wherein:

FIGURE 1 is a perspective view showing a typical arrangement of apparatus which may be utilized to prepare flexible electrical cable with a plurality of ribbon-like conductors arranged in generally parallel relationship; FIGURE 2 is a detailed view of the nip portion of the laminating rolls of the apparatus shown in FIGURE 1, and illustrating, in section, the nip portion of the rolls, the rolls being shown on a somewhat enlarged scale, with the component portions of the cable being shown on a substantially enlarged scale and with the compressible backing being shown on the bottom roll only; and FIGURE 3 is a detail elevational view of a guide roller taken normal to the roller axis and along the line and in the direction of the arrows 3—3 of FIGURE 1.

In accordance with the preferred modification of the present invention, and with particular attention directed to the apparatus shown in FIGURE 1, the cable-laminating machine generally designated 10 comprises a suitable framing assembly 11 including means for retaining a plurality of supply spool members 12—12 which carry the individual conductors such as the flat ribbon conductors 13—13. The supply spools 12—12 are, of course, journaled for appropriate rotation along the frame member 11. If desired, appropriate drag devices or tension control devices may be employed in combination with the supply spools 12—12 in order to assist in appropriately guiding the individual flat ribbon-like conductors during the encapsulation or mounting process. The assembly 10 further includes a pair of heated rollers which rollers form both the heated surface covered by a yieldable and compressible member, and also conveniently form a pressure nip zone. Also, it will be appreciated that in this aspect, the rollers will be heated, and the dwell time of the substrate material on the surface is sufficient to permit the adhesive bonding film to become moderately softened.
As indicated, a pair of tension regulating systems may be employed in connection with the film supply rolls 15 and 16, such as is shown at 18 and 19. The individual rollers 18 and 19 are arranged to provide the desired tension on the film supply portions of the system. As shown in FIGURE 1, a pair of laminating rollers 21 and 22 are arranged in axially parallel relationship, with the individual rollers 21 and 22 being suitably positioned within the frame 11. Suitable drive means, not shown, are provided for the individual laminating rollers; this drive means preferably comprising a chain drive assembly which will assist in driving the individual rollers 21 and 22 at appropriately controlled speeds so that the individual peripheral velocities are substantially equal. The individual rollers 21 and 22 are preferably provided with means for heating the peripheral surfaces thereof; the heating means preferably including a temperature control system for providing reasonably close control of the surface temperatures.

With attention now being re-directed to the conductor supply arrangement, a guide roller 23 is shown between the laminating rollers 21 and 22 and the individual supply spools 12—12, this guide roller 23 being disposed close to the nip and being provided with appropriately spaced grooves 24—24, these grooves being adapted to receive the individual flat ribbon conductors 13—13, these conductors being spaced apart in accordance with the desired conductor spacings, which spacings is highly desirable from the standpoint of uniform electrical properties.

It will be observed in connection with FIGURE 1 that the substrate and coverlay films pass across the heated laminating rollers 21 and 22 for a distance of about 180 degrees of arc prior to reaching the nip portion of the rollers 21 and 22. In addition, it will be observed that the individual conductors 13—13 move across a distance of about 90 degrees of arc while in contact with the surface of the substrate 15a. With further attention being directed to the nip portion of the laminating rollers, it will be observed that a compressible member 26 is interposed between the surface of the laminating roller 21 and the substrate 15a. This compressible material is necessarily one which is reasonably thermally conductive, and it has been found that blotter paper having a thickness of about .020 inch is preferred. In this connection, the blotter paper is compressible and sufficiently thermally conductive so as to permit compression of the paper with an accompanying transfer of heat therethrough. A compressible material is desired in this application since materials which are merely resilient or deformable may cause anomalous characteristics to occur in the laminated product due to the possible creation of different relative speeds at the surfaces of the individual rollers 21 and 22. It is sometimes desirable for uniformity to utilize a similar or matching material along the top roller, such as, for example, a similar blotter paper roll system as shown at 26c. In order to retain the individual conductors in place on its surface, the substrate 15a is provided with a film of a heat softenable adhesive bonding material along one surface thereof, this film of heat softenable adhesive bonding material being shown at 30. Thus, the adhesive film 30 is provided for the individual laminating rollers 21 and 22 so that the film of heat softenable adhesive bonding material is soften and permits the individual conductors 13—13 to be embedded therein, such as is illustrated in some detail in FIGURE 2. Heat softenable adhesives, such as, for example, polyvinyl chloride adhesives are generally well known and are widely commercially available. It will be recalled that the individual conductors 13—13 are held to the supply spools 12—12 under tension, and thus this tension in the individual conductors 13—13 is reflected in an embedding of the conductors into the adhesive film with a consequent adhesion thereto. Thus, it will be observed that the sequence of events includes an original softening of the adhesive film 30 on the surface of the substrate 15a, this accommodating an embedding of the individual conductors within the adhesive film surface. The adhesive layer 30a enhances the ability of the individual conductors to become embedded in the adhesive film 30 and also enhances the flow of the softened adhesive about the surface of the individual conductors 13—13. At the point of time when these embed 22 conductors laying upon the surface of the substrate 15a enter the nip between the rollers 21 and 22, any tendency for migration of the adhesive film 30 will normally be retarded because of the embedded-disposition of the conductors 13—13 therein. Thus, the coverlay film 16a may be effectively bonded to the surface of the adhesive film 30 without causing movement or motion to occur between the conductors 13—13. Thus, a carefully controlled cable may be produced having lines arranged in parallelly disposed relationship, and in carefully controlled spaced relationship. It will be appreciated that the flat conductor cable having carefully controlled inter-conductor spacings is highly desirable from the standpoint of uniform electrical properties.

It will be appreciated that the specific examples provided herein are for purposes of illustration only, and that those individuals skilled in the art may depart from these specific illustrations without actually departing from the spirit and scope of the present invention.

What is claimed is:

1. An apparatus for producing electrically conductive flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of an insulating substrate member may be prepared. In addition, this electrically conductive flat conductor cable may be provided with a coverlay member to appropriately encapsulate the conductors between a pair of insulating films, as is normally desired in practice. The flat ribbon-like conductors are generally formed of copper having a thickness of from about 1 to 5 mils and having a width of from about 1/4 to about 1/16 inch.

2. The apparatus as defined in claim 1 being particularly characterized in that said substantial arcuate distance is about 90 degrees.
3. A method of preparing electrically conductive flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of an insulating substrate member, within a laminating apparatus having a zone with a pair of pressure members arranged on opposite sides of the nip zone, said method comprising:

(a) moving a first substrate film having a heat softenable adhesive bonding film along one surface thereof along a certain path through a heating zone until said bonding film is softened;

(b) bringing a plurality of tension stressed ribbon-like conductors into contact with said bonding film on said substrate film, and then maintaining the tension stressed contact therebetween while said bonding film is being maintained in softened condition, while said conductors are being urged against said substrate surface by said applied tension stress, and while said substrate is being backed by a yieldable compressible member;

(c) thereafter bringing a coverlay film into superimposed relationship with said substrate and with said conductors; and thereafter

(d) passing said substrate, conductors and coverlay materials through a nip zone to form a laminate structure.

4. The method as set forth in claim 3 being particularly characterized in that said substrate, conductors, and said coverlay film are supplied to said laminating apparatus in roll form, the completed laminate structure being removed from said laminating apparatus and accumulated on a take-up roll.

5. The method as set forth in claim 3 being particularly characterized in that said yieldable compressible member is carried along the surface of one of said pressure members.

6. The method as set forth in claim 3 being particularly characterized in that said substrate is brought into contact with said heated pressure member at a first point of time, and said conductors are brought into contact with the surface of said substrate following a finite lapse of time.

References Cited

UNITED STATES PATENTS

3,068,135 12/1962 Bower 156—179
3,239,396 3/1966 Bohannon 156—52
3,265,548 8/1966 Harkins et al. 156—298 X
3,270,122 8/1966 Binek 156—52 X
3,380,867 4/1968 Morey 156—179

HAROLD ANSHER, Primary Examiner
T. R. SAVOIE, Assistant Examiner

U.S. Cl. X.R.

156—179, 436, 161; 174—117