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GENERALIZATION OF THE MANLEY-ROWE RELATIONS
FOR NON-PERIODIC SIGNALS CONSTRAINED
IN BANDWIDTH WITH FINITE ENERGY

by

Peter Proksch®

General relations for the energy speetral densities of nan-periodic signals constrained in hand-
widili in nonlinear wactanees are derived. It is asumed that the r.inrbc-—\ oltagre chacateristics

of the reactances are polynomials, In addition certain conditions for the frequency bawds of the
_signals must he met.

Ry contrast with the Manley-Rowe relations integials with respeet to frequeney appear
insteadl of Ue ratios power over frcquc ney. The mtcg..m«ls are energy speetral densities divided
by freguencys .

= For parametric deviees inequs alitics can he derived for thie ratios of the encrgy levels in the
differeut cirenits and the limiting freguencies of the energy speetral densitica. “With these in-
equalities it is po~sible to determine limits for the encrgy tovels.

1. Introduction

Maﬁley and Rowe [1l] gave general power relationships for nonlinear reac-
tances. They assumed that the electrical variables consist of sinusoidal
functions with two non—commensurable basic frequencies and all of the comblna-
tion frequencies. These relationships apply for nonlinear reactances with
unique but otherw1se arbitrary characteristics and for arbitrary values of the
power components corresponding to the individual frequencies. Rowe [2] also
showed that the relationships apply for linear reactances which change in time.
Several authors derive the Manley-Rowe relatioﬁships in other ways and have
extended them for the general case of an arbitrary number of incommensurable
basic frequencies [3] - [7]. The most important feature of the Manley-Rowe re-
lationships is the fact that they give a simple explanation for the operation
of parametric amplifiers and mixers and allow one to obtain important informa-
tion about their operation. Manley and Rowe [1] also found relatlonshlps for

the reactive power components which are associated with a nonlinear active re-
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sistants.

In the present paper we will derive relatiomships for the components of
the specgral energy denmsity for nonlinear reactances. We will assume that the
time functions which occur are non~periodic and have a limited frequency band
and that the characteristics of the nonlinear reactances are polynomials. Using
these relationships, we can obtain information about the energy components in
the circuits of parametric circuits if non-periodic electrical variables occur
in them. This seems to be of interest both for stochastic processes (noise)
as well as for communication functions, because for information transmission

one requires non~periodic functiomns.

) In addition to .the assumption on the monlinearity of the reactance accord-
ing to a polynomial, certain assumptions about the position of the componemnts of
the spectral functions of the current and the voltage along the frequency axis

must be satisfied.

If information about the power and energy components is to be obtained
which corresponds to the individual circuits of parametric amplifiers and
mixers, then from this paper we cannot derive equations from the relationships
‘derived.- Instead, we can derive inequalities which can be used to give limits
for the energy components. From the Manley-Rowe relationships, one obtains re-
sults for the power levels only when'if one also assumes that only power com-
ponents occur as individual frequencies due to the use of ideal filters. The
relationships derived in this paper then allow one to derive information when

no ideal filters are used.

2, Sinusoidal Processes

We will briefly describe the relationships when there are sinusoidal
functions with gq non~commensurable basic frequencies w:(lgf;gql
and the infinite number of combingtion'ffeqqencies; before we discuss non-—
periodic time funcétions with limited frequemcy band.’ It is assumed that we

have a nonlinear capacitor, whose voltage depends on the charge as follows

(1)

and ¥ is a qa;prai number., The constant a is said-equal to 1 in the following



because this changes nothing to the results.

We will use the following abbreviation for the combination frequencies

q .
Wy = Oy ngyeeerne = SN0, —ocoZmZco

=1 - (2)

The charge and the current can then be written in the form

gty = '5" Q,,,c\p{_] m,,,r) (3)
= Zh.t'kph Oul) (&)

We are taking a sum of q terms over the subscripts n, to m,. (the.sums are taken

be;weeq_:qﬂquﬁ'&g,

::‘Z'.: -z:- n.:ng-.o&-:}:,-s.z_m - (5)

and we will use the following for the complex Fourier amplitudes of the charge

.and the current

Qm - Q}u, n:, ,ﬂq]‘ - I,'“ =_ I!’Jl. Nipwnea Rfg- «- - (6) X (7_2
“We then obtain the follow1ng “for the voltage from equations (1) and (3)

c sy aTeE () ®
i

Hus Ny

We have the following abbreviations

T % % L% NS
Har Nppr—o0 nnﬁz—m mqr—-z-'—;u
——— - a7
i Q:lu QJI’u. Hia, . 'H.L'q'! ’ '(J,,'“ '_='-.§_:'I_fk{(({)_{ - ,_(_:l:'o') 3 (11)
i=1
isk=r.

For those sum and equations in (8) which have the same frequency W ., Wwe must

have the following according to equation (11)

é Mig= H; (12)

! - Ful
We can summarize these sum terms in the simplest manmer by setting the following

for the subscripts .

Ny == Ry Uap— e — Ny (135

From equation (8) we then obtain

wff) =
= l Z Q'm .* Q;d Q;n’-un—-'-—-m‘-‘xp(j "Jm”
Hy Hu -ﬂ‘u

. .

(14)

UR!‘*“ i dug\,\‘i‘{
03 P - -3



We then cbtain the following for the OR\G““N" QUP\L\T‘{

complex zmplitude of the part of the OF PoO
vo}tage with the frequency W w1 ijz
- . N T
L oUn= —é. ;_Q Qi Qrempsi— e —ne (15) 24 wprey

Here we_have e .
- - < Z-Fig.-1l. ~Greatly simplified replacement
(16) circuit of a parametrie amplifier with
et filters which are tumed to the frequen-
cieslml,wz and 3 + W2,
[

In the case of parametric amplifiers and mixers, components of the charge
and the current only occur at the three frequencies o= 1, Go1 = M2 and i1 =
eo1-~w: .. TFigure 1 shows the greatly simplified replacement cirxcuit for a para--
metric amplifier. Figure 2,a shows the positioms of the spectra of the current,
charge and voltage if we assume quadratic nonlinearities of the capacity (r = 2)
and also that wei<2m, . We also have a second case with an arrangement of the
frequencies along the frequency axis which ils basically different for the one

shown. in Fig. 2,a. For this case we have wea>2me

3. Non-periodic Frequency Band Limited
Processes with a Finite Energy Content.

We will now consider processes which consist of non—periodic and frequency
band limited time processes, in such a manner that the sine function in the time
functions are replaced by equations (3) and (4) in each case. The nonlinearity
of the capac:.ty is again represented by equation (1). The total current through
the nonllnear capacitor. and the corresponding charge can then first be written

in the following form !
git) = gq:-.(f) , )= ;’Zi;.(f) W7y, (18)
where

i1} == A, (1 (19}
Instead of each of the exponential functions in equations (3) and (4), we now
have a time function with a limited frequency band, which has the same subscripts.
_ These time functions are complex. However, since we are only congidering real

processes, we have the following for the components of q(t)

gemlD =gy, ' (20}
and two components with the subscripts n, and -n, can be combined into a real

time function., The corresponding equations also apply for the components of
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all of the other physical variables.

£
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¥rom equations (1) and (17), we = [ ] |
obtain the following for the voltage - &
at the capacitor i
IO . ® s & §§ & §+& ¢ 3
u(ty == 300 3 g, {0} g 8) - {21) Lot i— oo T ~
Hai Nyl R 3 8 £ 3 3 S
W™
By converting the subscripts according -5
to equation (13), u(t) can be decom- E
=] 1. i3 11
posed as follows into components which R R
- ]
will be called  #a () i
wly = St ey @ HE
()= 3 A. Gnaall) " flm. [T/ () {23)

"Fig.' 2, Position of the spectra of cur-
rent, charge and voltage for a capacity
- w1th quadratic nonlinearity, (a) for a
tions, the voltage also shows a non- ° current which consists of three sine
functions with the frequencies

1,0 = ¢ 1 = 9,

~ Compared with the case of sine func-

periodic time function with the same

subscripts as the exponential func- L. gnd mu=e1t+ o

b) for a current which consists of three
L. . . " .-, - non-periodic components which have a
_tial:functions -in.equation(14).. .. --° 1imited frequency band.

tion, instead of each of the exponen-

We w1ll -asgume_ that the:Fourler tr¥ansforms (spectral functions) /l{w).

]",(m) Qfm) Q,,,(m) L (m} and U' (m) correspondmg to the time functions i{): 4,,,(1) Sl qmﬁ)u. _g“
and U' (t) ex:.st._ From equations .(17) -and: (20}, .we —then obtain the follom.ng

Q) = 3 Qule, @l = Qi (— . e, @9
_ Similar results apply for the current and the voltage. Also, we have
. (28)
i) = jo Qo (w). (26)

By using the Fourier transformation "and” applying it to eéuatgon (23), we

obtain the following for the components Ut’li(w) with the help of the convolutio:

" theorem . . e -
Dm(ﬂ}) () )r—l ._ 4 J d'92"
g Nel —OQ

fJ;:l-Qr 9""(-"-2) Hhd Qf:n('Qf) *
Q_::.--..;;.. ea - Meg (‘" -Q° e — Qr) "(—‘27):



If the components q (t) are frequency band limited, then from equation

(27) it can be seen that the compohents u' (t) arealso freéguency-band. kimited,

If for the case shown in Fig. 2,a we have non-pexriodic band 11m1ted tlme
-functions. instead.of sine functions, .then. the spectral functlons I(w) Qﬁn) and
U(w) consist of components with the frequency axis POSltlon shown in Fig. 2,b.
These spectral functions are obtained, for example, if in the replacement cir-
cuit of Fig. 1, the AC voltage sources are replaced by generators which produce

. non-periodic voltages with a limited frequency band. The limited frequencies

of the current ‘components are wiou. ®,00, ®olus @oio. Mige and ®ile , and in Fig.

2,b we have assumed wp,ioc<2w10u Here again there is an additional case with
another configuration along the frequency axis. For this case we have oo, u> 20100,

The 1atgr discussions can be applied to both cases in the same way.

If the frequencies of the sinusoidal functions of the current (Fig. 2,a)
lie in the frequency regions in which the corresponding components of I{w) are
different from zero (Fig. 2,b), then they also will lie in the regions in which
components of U(w) are different from zerc. This is also true for the general
case where to each sine function with a frequency w, 4> We Lave a corresponding
current and voltage component with a limited frequency band.

For the general case we will now investigate the assumptions required
about the position of the components along the frequency axis so that the enexgy
relationgships can be derived. Such assumptions must become the ones used for
-the derivation of the-Manley-Rowe relationships for the case of the sine func~-
tions. This is because the sine functions can be considered in special cases of
the frequency limited functions. ..Manley and Rowe [1] assume non—commensurable
" basic’ frequenc1es and arbltrarf.;bnllnearltles. From the derivation of the
Manley-Rowe relationships [1], one can also see that there the assumption was
first made that two frequencies W and w i,lto which the complex amplitudes
Iﬁi and U&i correspond, are only equal for thejcase when all of the subscripts
n. and mi agree. Therefore, we must have wrﬁ%wm. for n, # m, . For the arbi-
trary nonlinearity case, this assumption can only be satisfied if, just like in
[1], one assumes no commensurable basic frequencies. On the other hand, it is
found that the basic frequencies must be non-commensurable if one restricts omne-
self to nonlinearities deseribed by polynomials and where power components do

not occur for all of the comhination frequencies. This is, for example, the case



for what is showm in Fig. 2.

Starting with the assumptions, we can make the following appropriate as-
sumptions for non-periodic time functions: If all the subscripts D, and m of
,two compoments of the spectral functions of ?urrent and voltage I;iﬂu) orT
Uéi(m) agree, then for these a frequency region exists in which both are differ-
ent from zero. If not all the subscripts coincide, then there are no values of
w for which both I' Gn) and U’ Gu) are different from zero. I1f the frequency
intervals within Wthh I' Gu) and U' Gu) are different from zero are called

w . and mU ni? then these assumptlons can be written in the follow1ng form:

I.ni

_‘T_’I.m n f_i"""- =0 for ni = mi, (28)
L D Wy = 0 for n —.rl m .
i m

i - ﬁ:‘. ?;,.“%EE ‘s
(0/zero set) %?%SOR QUAL\T‘&’

In the following we will investigate the conditions for which these as-
sumptions are satisfied. If we first comnsiden a current, then we can see that
a component I;i(m) does not actually have to correspond to each frequency W 4
Out of the frequencies w ., We cad always find two with an arbitrarily small
separation along the frequency axis. If a frequency region is introduced at
the point of each frequency where the component /I, (w)=0 , then-these regions
will cover one another in such a way that there is mo value of w, where only ome
component I&i(w) is different from zero alone. The assumptions (28) can there~
fore only be satisfied if only certain components I;i(m) are different from

‘zero and the others are zero for all wvalues of w.

Also, a voltage component U;i(w) must not occur for each frequency. This
is only exactly true and possible when the nonlinearity of the capacitor does
not have an arbitrary magnitude but instead is given by a power function or a
polynomial. Otherwise, in the case where only individual components I;iﬁn)

were present, a component Uéi(w) would occur for each frequency W ;e

In order to test whether the assumption (28) is satisfied, the limiting
frequencies of Iéi(w) and Uﬁi(m) must be known. The limiting frequencies of the
components U;i(m}.can,then be determined from those of the components Q;i {(w)
in the following way: According to (27), each component U;iﬁu) in general again

consists of sum terms which are derived by the multiple convolution of components



of Q{w). The basic frequencies of these sum terms can be determined based on the
process during the multiple convelutior. The lower limiting frequency of a sum
térm is found as the algebraic sum of the lower limiting frequeﬁcies of the com-
ponents of Q{w) under the integral sime in (27). For the lower limiting fre-
quency of a component lei(w) along the negative ferquency .axis, we use the
negative upper limiting frequency of Qﬂi(w)'l Similar statements apply for the
upper limiting frequency. If in this way we determine the limiting frequencies
of all the sum terms of Q;xi(w) , then the lowest of all the limiting frequencies
is also the lower limiting frequency of Ugi(w). The highest of all the upper
limiting frequencies is also the upper limiting frequency of U;i(m).
Figure 2,b shows a case where all the assumptions (28) are satisfied.
The limiting frequencies of the voltage components obtained in the above manner
are expressed by the limiting frequencies of the three current components. It
" can be found that the assumptions (28) are only satisfied for this case when the

following relationships apply:

S5
&GE v
AT
OR\G\‘:)OR Q\)p“ Wo10< 2Zminu. Zr00<< Oty
0? v w1,10< 20,14, €10 — @LIx< 1,00 . (29)
In the other case imogh:>2whud , the following relationships must hold:
2w1.00< Godur  O1.00< 201,0us
Wo,10 — 020,14 << (21,00~ (30)
. ";*“3 wilo<2wp1u. @110 L10<< W1,0u
_\.@p?ﬁahqyﬁﬁy
QW ?Cﬁ) .
of 4, Relationships for Spectral Energy Density.

In order to derive relationships which are the generalizations of the
Manley-Rowe relationships to non-periodic frequency band limited time functions,
we will now again consider the gemeral case. According to equation (28), we

have the folléwing for the spectral energy density:

-9-1-: U (w) I*{w) = .2'__ N U} I (o) . (31

M

The components of the spectral energy density in (31) are divided by ® and are
integrated over ®w., In addition, the integrals which are formed are then multi-
plied with a coefficient-nj isj<g). and the sums are formed over the sub-

scripts ni. Using the Parseval equation and using equation (26), we obtain the

following system of q equations after exchanging summation and integration func-
¥



@ Uplo) U (tu)
¥ ¢ ) =
™ M -J . 2no

= (= | Snjul, g hdl.
-0 My (32)

If we substitute the expression from equation (23) for u (t), then we find the
following for the sum on the right side of equation (32), whlch will be called
5:

8= ST upqn N gaall) -
) Gl (33)
We can now show that this sum and therefore the expression on the right side of
equation (32) vanish 1dent1ca11y. For this purpose, .let us assume that we have
-~written dovn T expre551ons Whlch are derived from S as follows: In order to ob-
tain the first r -l expressions, we w111'only cong;@grﬁone_of the. %=1 renamed
quantities . 7
Ri—r — Mpi, Ma—>—ni, 2EFEr .
In thls renaming, all of_ the other-subscripts remiin .unchanged. The last ex-—
pre531on is obtained by the transitions
Rp—>— (M) — nay — *r— Net) s

Ng— Nap— = — Npj—» — ?!.:

and the subsequent renamlng n:L + LRI Since we are only dealing with renamlng of

= e amm—p o

‘the summation subscripts Wthh all run from - ® to + =, the sum remains unchanged
as a whole. If each subscript has a certain value, then however another, sum term
appears in each sum.’ These”éuﬁ'tgrﬁs;-héwéﬁér,.;éree with the sum terms in the
original sum except for the coefflclents nj. This is because in the renaming,

two factors.of the sum terms go “over into one anmother “and the dther-factors-re- -

main unchanged. Therefore, only the coefficients n, are changed.

If we obtaiﬁ.fhE'f-expfessioﬁé;obtaineq to-obtain the original expression
for S, then next to each sum term of the multiple sum we have the coefficient

Hp— Hyp=—— Mg — =°* == Hpf —
— {1y — Hop—ngp— —ny)=0.

The sum of all the expressions is therefore zero. Since this is (r + 1) of S,
S vanishes identically., Therefore, from equation (32), we obtain the following

relationships (a total of q equations) .


http:factors.of

o rl e
ZNI j' L’m(”)hn_(”) dm =0,

"y -_— 2'.':!1) 34
1<5q.r -~ (34)

Out- of ‘the components I' (m) and U' (m), we can sunmarize to each to a
component I Qn) or U Gn), in Whlch all of the subscripts ni only differ by the
sign., n (m) and U \m) are spectral functions of real time functions. Equaw‘
tion (34) can now be converted so that T Qg) and U (w) occur instead of I' iQn)
and U'_.(w). In addltlon, two components of the spectral energy density are

-...

-sm:nmarlzed :mto “one as follows.

T B0} T (oY= U] Lot (@) 5 Gl T oul@) - (35
JIn equation (34) the.integrand-y -must be replaced by’]@l in the denominators=m:«u’
Thls would lead to a change: -in.the -sign-if- wI and wU '. lie'aloné the negative-
frequency axis. Therefore, COEfflClentS must be 1ntroduced which take on the
values +1 or -1 dependine on the position of these frequency regions. Therefore,
equation (34) becomes

@ e LN ((')) I," ("))

F.. .5, T -
H‘:‘_m ”J:.U ne= "?2' —joo 2':': (01 der (?v (36)
-':.-..__15 ;_.g, R T P A
~with 7 : .
e
. ?P‘ :s
= {—:— L if ~w>0. 80T riwa0 R\G\NP‘\’ n\““ q
=1 TR 0<0 g L) 0. 0 =]

w1th the quadratlc nonllneurlty) where the components Il Oﬁu) ™ 0. lﬁn) and
(w) lie along the positive frequency axis, so that the three coefficients

11
e o0° %0.1 and e, ., take on the value + 1, the relationships (36} have the

following form:

25| 00|

U 1(‘9) Ill(m) A=

- ....'m!
% o1 () l(,,(m) dos

@ Cro(o) Liglo) , J‘i" 11(w) Iia{o) o, »—0,
e 2nfo] J

2z o] - (37)

Such a case, for example, occurs in a parametric amplifier.

10



5. VNonlinearity Corresponding to a Polynomial

We will now assume that the characteristic of the nomlinear capacitor is

represented by a polynomial of degree r instead of equation (1):

U= ayq-t @yt arg (38)
We can think of this as a dipole having a characteristic corresponding to r
switching elements switched irn series. Each of these has a characteristic corre~
sponding to a power function which makes up the polynomial. The voltage contri~
‘butions over the switching element with a characteristic (38) is then equal to
the sum of the corresponding components for the individual circuit elements.
If the relationships (34) apply for each of the r switching elements, then
these apply also for. the capacitor with the characteristic (38) because in
equation (32) uﬁi(t) can be replaced by the sum of the corresponding components
from the individual circuit elements and the expressions produced in this way

are then zero. ,
i ‘{:::

s
R ?Q“?““’ﬁ

6. Parametric Amplifiers and Mixers 0? ?

We will now show the information one can obtain using the relationships
obtained'above for parametric circuits. We will consider the case with three
frequency bands limited components of spectral energy density. In the replace~
ment cireuit of Fig. 1, for this case the AC voltage sources must be replaced by
sources for non-periodic and frequency band limited voltages. If we assume that
Teach component~has a real- part which has the same sign for all values of w, we

have ‘the, ‘following

B K n(w) Uip W ()" <
‘Ul go; s ™ .
<‘ \ [ln{m)b,n(u) '<
2x ml .
o :
! \. Il 0(‘”) U: u(w) e
U)I Bu J

, (39)
For example, for a gquadratic nonlinearity we caﬁ usually show that this applies
for a parametriﬁ amplifier. The quantities ¢u£ﬂ and ;a0 are the limiting
frequencies of /Ziole) {iule). Correspondlng relatlonshlps apply for !udm)lnluﬂ

and [;i{m) Clalm) . If the energy components fn the individual circuits are called

11



El,O’ EO,l and El,l’ then we obtain
[B:nl \ Lot} Uig(@) o " | Evol

J
wi,00 J }"]f} : [OF T
i

and the corresponding inequalities fox E0 1 and E1 1 In addition, we have the
- ] > .

following inequalities from equation {37) i

- e Al "
1Bl _ Bl |Be] o [Eaal (40)
1,00 W.1u wi,0u .10

as well as four similar imequalities for E and E or E and E, .. In
0,1 1,1 1,0 0,1
addition, from equation (37) we find that EIIO and EO 1 have the same signs,
e b
whereas El 0 and El 1 have different signs. If one of the three energy com—
3 b}

ponents is known, then from (40) and for additiomal inequalities we obtain the
limits for the contributions of the two others. If instead of the non-periodoc
time function i, ,(t)., we have a ‘sine function with the frequencies 0y 1 then

1,1
in (40), w and o

1.10 must be replaced by
2

1.1u i,1°

me%ﬁ AL ¥

\'\'Y
7. Discussion OF QUN'

First we will show the relationship between rélationships (36) and the
Manley-Rowe equations. For sinusoidal time functions with complex amplitudes

U&i or Iﬁi and the frequencies W, <» we obtain the following spectral functiouns

{ja' ((f)) = b';i o (('J - ")m) “+ L';l: ] (en -1 fl')m) L
C L0y = T, 0w — w,) + I} é{w+ o).

Since the spectral energy density does not exist for the sign functions, then in
this case in equation (36) the quantities U (w) I (m) must be replaced by the
spectral power demsities Uslul 8(o— i)+ L;:Lu5k04-wm) . Then for the inte~

grals in (36), we obtain

_r_| [__:l-_lrru _69') - f”m) - er' [ma(('-' “’u.)]
ol
U AUl (41)

b

.‘,____.-.g

-]

[P

In the denominator on the right side of equation (41), we have the power compo-

nents ?ni and therefore the relationships (36) become the Manley-Rowe relation-

ships: - - ©p
E van E e N gl .
Mo —oa  myr 0 lr'vf:-ooj Oy, 0. 1 5’ éq‘ (42)

12



In the derivation of equation "(36) we assumed a nonlinearity which corre-
sponds to a polynomial, and we show that these relationships do not hold exactly
for a strong nonlinearity. In contrast to this, the Manley-Rowe relationships
apply for a unigue but otherwise arbitrary characteristic if the basic frequen-
cies are non-commensurable [1]. We obtain a number of independent relationships -
equal to the number of non-commensurable frequencies. Manley and Rowe [1] as-
sume two basic frequencies and therefore obtain two relationships, the relation-
ships (42) for q = 2.

Relationships such as (36) and (42) have practical applications in the
case where one wishes to have information.about the energy and. power parts corre-
sponding to the individual subeircuits of & cireuit. ﬁpch infa;mation cannot be
. obtained using the Manley-Rowé relationships (42) without further restrictions.
Manley and Rowe therefore assume that the power components only occur for in—
dividual frequencies, whereas the other components are suppressed by ideal fil-
ters. For example if in each of these circuits of a parametric amplifier there
is only_one power cgmgongpt,,then.We_have'tﬁg folléwiﬁg simple relationship for
" these ‘components: -

Ploi o= Pia T oD Per - P

w1 | ooz =0, w2 -(ul_.*i' (':‘5- =_9 ' (43)
Using equation--(43).-one -can*thén obtain information about the sign and the magni-
tude of the power levels in the three circuits. This is possible because in
~each of the three equatlons, there are only two power levels,- and-each.of. them

_is"equal to the total power corresponding to a 51ngle circuit.

If on the other hand we assume that we have filters with throughput regions
instead of ideal fllters, whlch hﬁye a width which is not equal to zero, then -
" for strong nonlinearities (for e%ample, corresponding to an exponential functiom)
we-have not.only the three frequencies W15 w, and W F + w2, but also all of the
other combination frequencies which fall within the pass range of the filtersy
If we write down the Manley-Rowe relationships for such a case, ther in each of
the relationships we have power components from all of the three circuits-under
"the sum in each relationship. We cannot obtain-information about’ the power
levels in the individual eircuits because the power components in the circuit
cannot be sunmed up and cannot be separated from those in the other circuits,

because we do not have the same coefficients n, in the other components.
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The relationships derived in the present paper, however; -allow one to
obtain -informatioff “dbout the energy components in the individual circuits even
for the case where one does not assume ideal filters. However, certain assump-
tions must be satisfied for the nonlihearity of the reactance and the width-of

".the pass range of the filters.

We would also like to point out that energy relationships such as the ones
derived here can be derived in a similar manner fori’nonlinear capacitances where
q = g{u) is a polynomial, as well as for nonlinear inductances and nonlinear

mechanical systems without.losses.

In addition, we can generalize the relationships of Manley and Rowe.for
the reactance components in a nonlinear active resistance to fréquency “"band-
"limited time functions.  One then obtains rélationships different from (36}

due to the fact that integrands are expressions like
Urilw) 113 () = U3l () dorfo0)

which are the imaginary parts of the spectral energy density components.

In conclusion, we would like to mention that similar relationships to
those uséd here for processes with finite energy can be found for processes

with nonfinite energy content such as those used for a treatment of noise.

Relationships for both cases apply for linear capacitances which vary in time [8]

.(Received Cctober 14, 1977.) BT
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List of symbols used: oF poO

Time function.

- iucll) complex in the subscripts } Current

we ™= dnymy, s ry

Tooh It Tofen Spectral fumctions

gl g, (1), Qlun), Qo). Qg Charge

ufl) 2y, (1), (o), I-.m("’)r Uﬂl("‘)’ I‘.m Voltage R

AMe) Delta function .
© Circular frequency

M ¢ . b -
e = Bur s, e =|_§‘"-'"‘- Frequency intervals
TO e " 0 " Limiting frequencies
]

Copgus (Jage . -
o

5=3 5 - 3

I A --{Zero-set-(eﬁpti} sét')'
? Average of two sets
Complex conjugate
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