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CRACK PROPAGATION IN ALUMINUM SHEETS
REINFORCED WITH BORON-EPOXY

by
G. L. Roderick
ABSTRACT

The Tliterature has shown that crack propagation in cracked
metal sheets can be significantly reduced by bonding an uncracked
reinforcement to the metal sheet. However, cyclic debonding typically
occurs over a localized area near the crack. Herein, an analysis was
developed to predict both the crack growth and debond growth in a
reinforced system. The analysis was based on the use of complex
variable Green's functions for cracked, isotropic sheets and uncracked,
orthotropic sheets to calculate inplane and interlaminar stresses,
stress intensities and strain-energy-release rates. An iterative
solution was developed that used the stress intensities and strain-
energy-release rates to predict crack and debond growths, respectively,
on a cycle-by-cycle basis. The analysis was verified with experiments.

The analysis was used in a parametric study of the effects of
boron-epoxy composite reinforcement on crack propagation in aluminum
sheets. The study showed that the size of the debond area has a
significant effect on the crack propagation in the aluminum. For

small debond areas the crack propagation rate is reduced significantly,
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but these small debonds have a strong tendency to eniarge. Debond

growth is most likely to occur in reinforced systems that have a

cracked metal sheet reinforced with a relatively thin composite sheet.
The analysis predicts crack growth in reinforced systems.

Hence, the analysis can be applied in developing methods to repair

damaged metal structuresand to increase the lives and payloads of metal

structures by selective reinforcement.
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CHAPTER I

THE USE OF COMPOSITE REINFORCEMENT
TO PREVENT FATIGUE FAILURE IN AIRCRAFT

A potential cause of aircraft crashes is fatigue failure. As
shown by Hardrath (1971), most types of civil aircraft have experienced
some form of fatigue problem. In addition Lowndes and Miller (1969)
indicate that fatiqgue failures have frequently occurred in military
aircraft, In some cases the fatigue failures led to loss of lives and
the aircraft. In efforts to eliminate such failures, both government
research laboratories and aircraft manufacturers have studied the
fatigue failure process in depth. These studies showed that the rate
at which the fatigue damage develops in metals is a function of the
stress level in the structure and occurs in three stages: crack
initiation, stable crack propagation, and unstable crack propagation
(catastrophic failure). Although aircraft structures can be designed
to have stresses low enough to prevent fatigue failures, the weight
penalty would be enormous and would make the aircraft uneconomical
to operate. Hence, a trade-off exists between low stresses and low
weight, and weight efficient structures will almost always have
stresses high enough to support fatigue damage accumulation.

Fatigue cracks initiate at local stress concentrations in the
structure The local stress concentrations may be caused by poor

1



2
fatigue design, by manufacturing defects in the material, or by damage
caused by the flight environment. Although methods can be employed to
reduce the occurrence of fatigue crack initiation, the development of
such cracks seems almost 1nevitable.

Once a crack initiates it grows at a stable rate until it reaches
some predictable, critical lTength after which catastrophic failure follows.
Fortunately, 1n aluminum aircraft structures the critical crack length
is large and the crack is easy to detect long before 1t reaches a
critical length. Consequently, fatigue cracks can be tolerated 1n
an aircraft structure as long as the structure 1s 1nspected periodically
to locate cracks before they become critical. Of course, once the
crack is detected it must be repaired before it becomes critical. The
repair can be made by either replacing the component or by repairing
it in situ. Because replacing a component may involve high cost and
keep the aircraft out of service for extended periods of time, repair-
ing the component in situ 1s frequently very desirable.

Basically, a fatigue crack can be repaired by reducing the stress
state in the vicinity of the crack tip. One method of reducing the
stress state is to reinforce the crack with unidirectional composite
(fibers are perpendicular to plane of crack). The composite reinforce-
ment reduces the stress state near the crack tip by two mechanisms.
First, adding the composite reinforcement lowers the overall stress in
the cracked metal by increasing the cross-sectional area and by
providing an alternate, stiffer load path by virtue of the high

modulus of the composite. This reduction in stress can be easily
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calculated by simple strength of materials theory and, hence, is
easy to investigate. The second mechanism comes from the development
of stresses between the metal and composite adherends. Several papers
(Kula et al 1973, E114s 1976, Johnston and Stratton 1975, Ratwani 1977)
have shown that these interlaminar stresses have a profound effect on
crack propagation. These interlaminar stresses reduce the stresses
near the crack tip and, consequently, retard 1ts growth. As will be
shown later, the investigation of these interlaminar stresses requires
a much more extensive analysis than that provided by strength of
materials theory.

Consequently, a need exi1sts for the development of a realistic
fatigue analysis that incorporates the effects of the interlaminar
stresses. Accordingly, the objective of this dissertation was to
develop such an analysis and use it to study the effects of composite
reinforcement on the fatigue life of cracked metallic structure.

To meet this objective the following approach was taken. First,
in Chapter Il the fatigue behavior of the constituents of the reinforced
system was characterized. Next in Chapter III the fatigue behavior of
the reinforced system was studied experimentally. Then, in Chapter IV
with the use of the results of Chapters II and III and complex variable
theory, a static analysis was developed that related applied loads,
adherend thicknesses, debond size, and crack length to crack propagation
rates. Next, in Chapter V the analysis was further developed to predict
both debond and crack growth as a function of applied load cycles. The

accuracy of the analysis was investigated in Chapter VI. Finally, in
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Chapter VII the analysis was used to parametrically study crack
propagation in reinforced systems.
Throughout the development of the analysis many 1tems required
detailed analytical or experimental 1nvestigation. These investigations

were developed and discussed 1n several appendices.



CHAPTER 11
FATIGUE BEHAVIOR OF THE REINFORCED SYSTEM CONSTITUENTS

The reinforced system that will be considered herein 1s composed
of adherends made out of two dissimilar materials, an aluminum sheet
and a composite sheet, that are bonded to each other with a relatively
thin, room-temperature curing adhesive. This system 1s intended to
model the repair of a cracked, aluminum aircraft component that is
repaired by bonding a composite sheet to it. Each of the three
constituents of the system - the metal, the composite, and the adhesive -
exhibits different fatigue behavior and plays an important role in the
fatigue behavior of the reinforced system. Consequently, to analyze
the fatigue process in the system, the fatigue behavior of each of the
constituents needs to be understood. In the following sections the
fatigue behavior of each of the constituents will be discussed and

analysis methods formulated.
Fatigue of Metals

As pointed out by Erodogan (1968), the fatigue process in metals
occurs in three different stages: crack initiation, stable crack
growth, and unstable crack growth (fracture). Current aircraft design
methods focus on the latter two stages of the fatigue process by using
a "Damage Tolerant Design Philosophy" (military specification

5



6
MIL-A-83444). This philosophy, as far as fatigue damage accumulation is
concerned, admits that ini1tial flaws such as cracks, exist i1n aircraft
components that are fatigue critical, i.e. may fail under cyclic loading.
But, the philosophy also assumes that these initial cracks grow stably
and can be detected during periodic inspections before they reach a
critical crack length. Once the damage is detected, 1t can be repaired.
Hence, the validity of this philosophy rests on the accurate prediction
of crack growth rate and critical crack length. Fracture mechanics
theory can be used to determine both crack growth rate and critical
crack lengths.

Fracture mechanics theory was conceived when Griffith (1921)
related fracture to an energy balance as the crack extended. In 1957
Irwin related the stress state at the crack tip to fracture. A
schematic of a crack tip and equations for the stresses very close to
it (Sih and Liebowitz 1968) are shown on figure 1 (additional terms not
shown in the equations have a negligible effect on the stress state
near the crack tip). As may be seen from the equations, as the distance
from the crack tip, r, approaches zero the stresses become infinite.
Consequently, at the crack tip where the stresses are 1nfinite a
singularity exists.] The coefficients of the stress distributions,

k, and k,, are the stress intensity factors which are used
extensively 1n fracture mechanics. The Mode I stress intensity
designated by k, is associated with the stresses that deform

the crack surfaces symmetrically with respect to the original plane of

1In reality infinite stresses cannot exist 1n the material and
local yielding of the material occurs. This local yielding 1s 1gnored
in linear elastic fracture mechanics.



crack

Symmetric loading (Mode I)

ki 0 0 30
o, = cos — [1 - s'n — sin —J+...
X (2r)t 2 2 2
K, 0 0 30
g =——co0s — [1 + sin —sin —]+...
Y (2r)% 2 2 2
ki @ . 0 30
O, = ———; €0S - sin—cos — +...
Y (2r)® 2 2 2
Skew-symmetric loading (Mode II)
k2 0] 0 30
Ox = - = Sin — [2 + €COS — €OS —]+..
(2r)2 2 2 2
ko 0 0 30
o, = — s1n — €OS — CO0S — +...
Y (2r)? 2 2 2
k, 0 0 30
g, = —cos — [1 - sin — s1n —J+...
XY (2r)% 2 2 2

Fig. 1. Stress distribution near crack tip
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the crack while the Mode II stress intensity designated by k, is
associated with stresses that cause shear displacements between the
crack surfaces. In 1960 Sanders showed that the stress intensities
were related to the strain energy release as the crack extended. Hence,
the stress state near the crack tip was related to the Griffith theory
of fracture, and the foundation of fracture mechanics was formed.

The stress intensities can be determined from complex stress
functions determined from the theory of elasticity (Sih and Liebowitz
1968) as

ki - ik =272 1m {(Vz-a & (z2)} (1)

zZ > a

where

z = x + iy and i= /-1

and x and y are the cartesian coordinates and &(z) 1s the complex
stress function as developed by Muskhelishvili (1975) that satisfies

the equations (plane strain or stress)

oy + Oy = 2[0(z) + o(z)] (2)
Zioxy - o t oy, = 2[z0' (z) + v(z)] (3)

where o ’Oy and ny are the stresses 1n the cartesian coordinates

and ¥(z) is another stress function. The two stress functions are
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functions of both the loading conditions and the configuration of the
body and will be discussed in detail in later chapters.

The stress intensities can be related to both crack propagation
rates and critical crack lengths. On the basis of the Griffith theory
of fracture, a critical value of the strain energy release can be found
and hence, according to Sanders (1960) a critical value of the stress
intensity can be found. For the material used in this study, 2024-T3
aluminum, Hudson (1969) showed that the critical value for k1c is
56,000 psi-in%. Hence, with the use of equation (1) and the appropriate
stress functions, the fracture can be predicted.

Cyclic crack growth rates were related to the stress intensity

by Paris (1961) by the empirical formula

da/dN = C(kl)“

where da/dN is the crack propagation rate, C is am empirical
constant and k1 indicates the stress intensity range during cyclic
loading. Forman et al (1967) improved this equation by including the
critical stress intensity klc and the stress ratio R, which is
the ratio of the minimum to maximum stress in the loading cycle,
in the empirical formula

C1(k1)n1

da/dN = (4)
(1-R)k . - k

1

1
where c1 and n1 are empirical constants and kIC = 56,000 psi-inZ.
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For 2024-T3 aluminum Hudson (1969) showed that the constants c, and

n, have the values

3.22 x 10714

O
1]

n. = 3.38

As the previous discussion 1mplies, once the stress functions for
a cracked body are known, the stress intensities can be calculated.
With the stress intensities both the crack propagation rate and critical
crack length can be predicted. The crack propagation rate and critical
crack length can be used in a Damage Tolerant Design Philosophy to
predict life of aircraft components. The 11fe is predicted by first
assuming that the structure contains cracks. The lengths of these
cracks are assumed to be the largest crack detected in the structure
or the largest crack which can be overiooked due to the resolution
of the inspection technique. Then, by using the assumed or detected
crack length and fracture mechanics theory, the number of load cycles
to fracture can be predicted. On the basis of these calculations,
inspection intervals are determined to assure that cracks can be

detected and repaired before they reach a critical length.
Fatigue of Bonded Systems

To perform a realistic fatigue analysis of the reinforced system,
the fatigue behavior of the adhesive in situ, herein called the bond,
must be characterized. Several researchers have shown that the bond
deteriorates when subjected to a cyclic load. Within this disserta-

tion this deterioration will be called debonding. Hoffman and June
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(1973) studied debonding by recording the debond propagation as a func-
tion of applied load cycles. They showed that a myriad of factors
such as type of adhesive, adherend and adhesive thickness, method of
curing, and aging all affect the debonding. Roderick et al (1976)
showed that debonding could occur as failure within the adhesive as a
cohesive failure, between the adhesive and an adherend as an adhesive
failure, or in the composite material. Because of the variety of
failure modes, the analysis of the debonding is difficult. The most
progress 1n analysis of debonding appears to stem from the energy
approach developed by Griffith (1921).

The first application of the energy approach appears to be by
Rippling et al (1964) in the study of fracture toughness of bonded
joints. Since Rippling's paper, Mostovoy and Ripling have published
several other papers on fracture toughness of bonds: Mostovoy and
Rippling 1966, Mostovoy et al 1967, Mostovoy and Rippling 1971. However,
a correlation between the fracture energy and the stress state near
the debond tip has not been made in the bonded systems. Wang et al
(1976) showed that a primary reason for the lack of correlation appears
to be the development of large regions of plastic yielding in the
adhesive. Hence, linear elastic fracture mechanics based on small
yield zones and stress intensities at a crack tip do not appear
applicable to bonded systems.

However, by applying an energy approach, Roderick et al (1975)
showed that the debond propagation rates can be correlated for specimens

with different thickness adherends with a Paris (1961) type equation
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db/dN = c,(G)"2 (5)

where both c, and n, are empirical constants for a specific bond
system and G 1is the strain energy released as the debond extends.

As shown by Roderick et al (1976), the parameters c, and
n, vary for different bonded systems. The bond system used in this
dissertation was 2024-T3 aluminum bonded to unidirectional boron/epoxy
with a room temperature curing adhesive, Shell EA-934. For this system

the empirical constants were determined by methods discussed in

Appendix A and were found as

3.158 x 10°°

(2]
H

3.616

=]
1]

With these constants, a value for the strain energy release rate, G,
and equation (5), the debond growth rate can be predicted. The
calculation of G for debonding in the reinforced system will be

discussed in deta1l in Chapter V.
Fatigue of Composite Materials

The term "composite" may refer to a myriad of systems composed
of a wide spectrum of different types of fibers and matrices. Further-
more, each system may have widely different fatigue characteristics
depending upon the fiber orientations, stacking sequences, and loading
conditions. Durchlaub and Freeman (1974) showed that fatigue damage

in composites may occur perpendicular to, parallel to, or at an
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angle to the loading axis depending upon the fiber orientation. Foye
and Baker (1970) showed that the lives of composite laminates could
vary as much as an order of magnitude by changing their stacking
sequences. Reifsnider et al (1974) showed that changing the frequency
of the applied cyclic load affects both the mode of failure and the
fatigue 1ife As evident from these observations, the fatigue behavior
of composite materials 1s complex.

Currently the understanding of the fatigue process i1n composites
appears primitive although some progress in developing an understanding
has been made. As pointed out by Salkind (1973), fatigue failure 1in
composites can occur in different failure modes such as matrix cracking,
delamination, and fiber fracture. Also, evidence exists that suggests
that the fatigue process 1s a result of primarily matrix deterioration
(Roderick and Whitcomb 1977). If matrix deterioration is the primary
cause of fatigue 1n composites, then the various failure modes could
be explained 1n terms of different stress states in the matrix depend-
ing upon the fiber orientation and stacking sequences of a specific
laminate. Hence, those laminates 1n which the matrix is highly stressed
would most likely degrade under cyclic load while those laminates 1in
which the matrix is lightly stressed would not.

Following this line of thought, composites i1n which the fibers
transmit the load, fiber controlled composites, would have long fatigue
lives while those 1n which the matrix transmits the load, matrix
controlled composites, would have short lives. An example of a fiber
controlled composite 1s a unidirectional laminate loaded along the axis.

On the other hand, an example of a matrix controlled laminate is one
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in which the fibers are at 45° angles to the loading axis. As shown by
Durchlaub and Freeman (1974), the matrix controlled laminate does degrade
rapidly under cyclic loading while the fiber controlled laminate does not.

Two basic approaches to predict the diverse fatigue behavior of
composite materials are currently being developed by researchers. In
the first approach, the laminate behavior is described by a statistical
model (Halpin et al 1972) that relates the static strength and fatigue
life distributions by assuming that the residual strength of the
laminates degrades monotonically (Yang and Liu 1977). Because this
method is based on experimental results, i1t can be applied easily.
However, it does not apply to laminates whose residual strength does

2 with applied load cycles. Also, this

not decrease monotonically
method requires extensive testing every time the stacking sequence or
fiber orientation changes.

The second approach as developed by McLaughlin et al (1975)
couples basic fatigue data on the laminae level with a stress analysis
to predict both the mode of fatigue failure and the fatigue Tlives of
laminates. Because this approach 1s based on laminae data rather than
laminate data, it can be used to predict the fatigue behavior of lami-

nates with different stacking sequences and fiber orientations without

extensive testing.3 The major drawback to this approach is 1ts

Zhurchlaub and Freeman (1974) showed that the residual strength of
notched laminates could increase after fatigue loading.

3The analysis originally proposed by McLaughlin et al did not
consider interlaminar stresses and therefore could not account for
changes in stacking sequences, but incorporation of interlaminar stress-
es into the analysis has been done and will be shown in a NASA
contractors report released in 1978.
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complexity in attempting to develop simple, realistic stress analyses
and a failure criterion on the laminae level.

The state of the art of fatigue analysis, in the author's opinion,
is still in the early stages of development and not yet capable of
reliable life predictions for general laminates. As a consequence
the fatigue behavior of the unidirectional boron/epoxy used in the
present study cannot be described by relatively simple fatigue analyses
as was the case for the cracked metal sheet and the bond system. Accord-
ingly, the fatigue behavior will be determined solely by experimental
data.

Shockey et al (1970) showed that unidirectional boron/epoxy
laminates that were loaded along the fiber axis had an average ultimate
tensile strength of 193 ksi; when these laminates were cycled under
constant amplitude cyclic loading with R = 0.1, they retained
73 percent of their ultimate tensile strength after 107 applied load
cycles. Consequently, in an attempt to prevent failure in the
unidirectional boron/epoxy, stress along the fiber axis (based on
laminate analysis) was kept below 140 ksi.

Having discussed the fatigue behavior of the constituents of the
reinforced system in this chapter, the next chapter deals with the
fatigue behavior of the constituents in situ in the reinforced system.

Hence, the next chapter discusses fatigue tests of reinforced systems.



CHAPTER III
FATIGUE TESTS OF REINFORCED SYSTEMS

To determine the fatigue behavior of the reinforced system, two
large panels were manufactured and tested. The panels shown on
figure 2 were made of 8 x 24 1nch sheets of 2024-T3 aluminum and
unidirectional boron/epoxy. EA-934 room temperature curing adhesive
was used to Join the sheets with the bonding process described in
Appendix A. The primary difference between the panels labeled A and B
on figure 2 was the thickness of the metal and composite adherends. To
simulate a crack, the metal adherend contained a through-the-thickness
narrow slit 0.01 1nch wide and 2 inches long. The slit, which was made
by an electrical discharge process, was centered along the horizontal
centerline of the panels. In both panels the fibers of the unidirec-
tional composite run parallel to the longitudinal axis of the panels.

The panels were tested 1n a 300,000 pound load capacity servo-
hydraulic fatigue machine. Both panels were tested under constant
amplitude loading with R, the ratio of the minimum to maximum stress
in the load cycle, equal to 0.01 at a test frequency of 2.5 Hz.4
For the fatigue tests of both panels the distance between test

machine grips was 16 inches. The maximum loads applied to each panel

4The test frequency was limited to 2.5 Hz instead of the 10 Hz
used to characterize the debond behavior in Appendix A because of
test machine limitations.

16
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during the fatigue tests and the corresponding stresses in the adherends

calculated from membrane laminate theory (see Appendix C) are shown

below.
Panel Maximum Load Stress, psi
1bs metal composite
A 37,600 19,600 58,600
B 22,500 14,600 43,100

During the fatigue tests, crack lengths were measured periodically

with an optical microscope. Table 1 shows the measured crack lengths
and applied load cycles for both tests. The crack lengths are plotted
against the applied load cycles on figure 3. Note that on the fiqure
the abscissa is logarithmic and the ordinate starts at the initial half-
crack length of a = 1.0 inch. The crack propagation rates for the
panels are the slopes of the curves shown on figure 3. These rates

are tabulated in Table 1 and plotted against the half-crack length on
figure 4. As evident from figure 4, the crack growth rate is about

two orders of magnitude larger in Panel A than in Panel B.

The crack propagation rates in these panels is a function of
debonding between the adherends. If the adherends were completely
debonded the crack propagation rate would be much larger than if no
debonding occurred. To 1nvestigate the effect of debond size on
crack propagation rate, the test panels were examined with an ultrasonic
C-scan (details of the C-scan method are discussed in detail by
McMaster 1963) after the half-crack length grew to 1.0 inch. Figure 5

shows the C-scans of the panels. On the figure the dark parts of the
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TABLE 1
CRACK LENGTHS AND CRACK PROPAGATION RATES
Panel A Panel B
half-crack cycles crack cycles crack
length propagation propagation
rate rate
a, in *N da/dN *N da/dN
x 10-5 x 10-5
1.05 44,800
0.236
1.10 1,570 65,940
0.312
1.15 7.57 81,975
0.217
1.20 3,220 105,000
0.33
1.25 9.02 120,130
0.369
1.30 4,440 133,675
0.311
1.35 10.8 149,740
0.328
1.40 5,540 164,980
0.339
1.45 11.6 179,695
0.321
1.50 6,790 195,250
0.277
1.55 12.0 213,310
0.299
1.60 7,790 230,025
0.275
1.65 12.2 248,180
1.70 8,690
1.75 13.0 279,795
0.295
1.80 9,690 296,765
0.323
1.85 13.0 312,260
0.339
1.90 10,680 326,990
0.312
1.95 342,990
2.00

*N - Instead of 1i1sting the number of cycles that caused crack
growth at both crack tips, the average number of cycles is given.
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C-scans are areas where debonding has occurred., As evident from the
figure debonding occurred over an elliptical area. Ratwani (1977)
has observed similar elliptical debonds in metal laminates. The major
axes of the elliptical debonds were nearly equal to the crack length
in the metal adherend of the panels. As measured from figure 5 the
minor axes of the debonds were 3.0 inches and 0.50 inch for Panels A
and B respectively. However, when the C-scans shown on figure 5 were
made, they were distorted along the longitudinal axes of the panels. By
taking into account this distortion, the minor axes of Panels A and
B were found to be 4.0 and 0.67 inches respectively. With these
corrected values of debond length along the minor axes, the ratios of
minor to major axes of the debonds, F = b/a, were found as 1.0 and
0.14 for Panels A and B respectively.

The experiments discussed in this chapter showed that the fatigue
in reinforced systems occurs as collinearcrack growth and debond
growth over an approximately elliptical area. In Chapters IV and V
an analysis will be developed that can model this observed behavior.
In Chapter VI the analysis will be verified by comparing the experimental

results of this chapter with results of the analysis.



CHAPTER IV
STRESS ANALYSIS

As shown in the previous chapter, under cyclic loads the rein-
forced system exhibits both crack and debond growth. Intuitively,
the rate at which the debond and crack propagates is a function of the
stress state and level in the system. Consequently, to predict these
rates a realistic stress analysis is required. For the stress analysis
to be realistic it must predict stresses in the adhesive as well as
in the adherends of the system. Because adhesives typically exhibit
nonlinear behavior (Hughes and Rutherford 1968), the stress analysis
must include nonlinear behavior of the adhesive. The first step in
development of a realistic, nonlinear, elastic stress analysis is the

formulation of a linear elastic stress analysis.
Formulation of Linear Elastic Solution

To formulate an elastic solution, the reinforced system shown in
figure 6 was considered. As shown in figure 6, the system consists of
a cracked metal sheet bonded to a composite sheet with an elliptical
debond between the sheets. The system was subjected to a remote
stress, s. A rigorous stress analysis of this system requires a
three-dimensional formulation. Although a general, exact solution is

not available, finite element or finite difference numerical methods

24
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can be employed to obtain a tractable solution. However, these solutions
are not efficient for analyzing reinforced systems in which the crack
length and debond area are continually changing. An alternate, simple
analysis can be developed by assuming that the adherends are in plane
stress while the adhesive is in pure shear. These assumptions were
first used in an analysis by Volkerson in 1934.

The validity of these assumptions for analysis of the reinforced

system shown in figure 6 was investigated in detail in Appendix B.

As shown in Appendix B with a simple example, the assumption can lead

to errors as much as 100 percent inlthe calculated adhesive stresses

as compared to more rigorous finite element solutions. Evidently,
significant shearing deformation occurs in the adherends of the
reinforced system. The presence of the adherend shearing deformation
violates Volkerson's assumptions, but as shown in Appendix B an
effective shear modulus, Geff’ can be determined and used with the
assumptions to calculate adhesive shearing stresses within a few percent
of the finite element results.

Arin and Erodogan (1972) used Volkerson's assumptions with complex
yariable elasticity theory developed by Muskhelishvili (1953) and
Lekhnitski (1956) to analyze a system similar to that shown in figure 6.
The linear elastic stress analysis developed herein basically follows
the concepts used by Arin and Erodogan, but differs in the formulation
of the Green's functions used in the elasticity solution, the method of
numerical i1ntegration of the Green's functions, and the domain of
integration. To develop the stress analysis, the reinforced system

is free bodied as shown in figure 7 (adhesive layer not shown)
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using Volkerson's assumptions. In the figure the remote stress, s,
refers to the applied load over the total cross sectional area of the
reinforced system. By the use of laminate theory as described in
Appendix C, the inplane stresses oym, cyc, Ovm’ and Ovc (where
the first subscript refers to stress direction and the second subscript
refers to the metal or composite adherend) can be easily calculated. On
figure 7, fyz and fxz indicate shear stresses in the adhesive
layer. Throughout this dissertation the adhesive shear stresses which
will be assumed to act as body forces on the adherends will be frequently
called interlaminar stresses. To form a governing equation, these
interlaminar stresses were related to the displacement of the adherends
in the following manner.

First, the shear strain in the adhesive layer was related to the

displacement in the adherends by the relations

m Cc m Cc (6)

tad

where t_, is the thickness of the adhesive, u and v refer to
displacements in the x and y direction respectively, and the
subscripts m and c¢ refer to the metal and composite adherends
respectively. Next, Hook's law was used to relate the shearing strain

in the adhesive to the interlaminar stresses as

T = GY (7)
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Then, by the use of the effective shear modulus and equations (6) and
(7) the interlaminar stresses can be related to the adherend dis-

placements as

Gars Gorf

fz = _;?_'{um “uch oyt ¢ vy = ve!d (8)

ad ad

Equation (8) can be written for several different points in the
reinforced system to form a system of simultaneous equations. These
simultaneous equations are developed in detail in subsequent sections
of this chapter.

The displacements, u and v, in the adherends were related
to the inplane adherend stresses and the interlaminar stresses by

several functions F, - F, as

U = Fl(omxx,omyy) + Fs(fxz’fyz)

<
1

m Fz(omxx,omyy) + Fs(fxz’fyz)

(9)
u. = Fa(ocxx’ocy_y) + F7(fxz’f_yz)
Ve = Fb(ccxx,ocyy) + Fe(fxz’fyz)

The displacements, F, and F,, 1n the metal adherend due

to the remote stress were calculated in terms of two stress functions

¢(z) and w(z) (Muskhelishvili 1975) by the eguation
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26(u + ivy) = no(z) - w(z) - (z - 2)2(z) (10)

3 -V

where n = for plane stress, i
1+v

/-1, z = x + iy, the bar

over a function or variable denotes the complex conjugate, v

is Poisson's ratio and

om z (om om
(z) = I 22 - a? - - y_oX (11)
¢
2 2 2 2
om z fom om,
w(z) = — V2% - a2 + - - (12)
2 2 2 2
o) do(z) om, o z 1 omyy om
Z = = - -
dz 2 2?2 - a? 2 2 2

(13)

In equations (11) through (13) "a" denotes half the crack length
in the metal sheet. With the use of equation (10), the functions Fl

and F2 were found to be
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no(z) - w(z) - (z - 2)8(z)

F (omxx,omyy) Real

1

n
—
3

({a]

Fz(omxx,omyy) ”
The displacements, F, and F,, in the composite sheet due

to the remote stress were found as follows. First, the constitutive

equations for an orthotropic material were used to relate strainsto

stresses (Lekhnitskil 1968) as

ac \Y Y o]

-—o9oc, ., €,6,=-—0C_ _ +—0C (15)

@]
1l

where Ex and Ey are the modult of elasticity 1n the x and y

directions respectively, and vxy and vyx are Poisson's ratios.
. s . _ du _ v
Then with the definition of strains as € = 3x and ey 5y

equations (15) were integrated to find displacements as

oc Vv
XX yX
= = —_— . —— +
u Fa(ccxx,ccyy) - - ocyy x + h1(y)
X Yy
(16)
) Vyy ocyy
v = Fh(ocxx,ocyy) = ];_'chx + - y + h2(x)

X y
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where hl(y) and h2(x) are arbitrary functions which were set to
zero because of symmetry considerations.
The displacements, F_ and F., 1in the metal adherend
caused by the interlaminar stresses were calculated by assuming
that the interlaminar stresses acted as body forces on the adherends.

With this assumption, the displacements were calculated using Green's

functions in surface integrals as

Fl(fxz’fyz) = ady * aaxy
(17)
FZ(fxz’fyz) = aayx + aayy
where
aa,, = [l 6Dy, (2,2,)(-F,,(z,)1dxdy,
aaxy = ffs Gny(z,zo)[-fyz(zo)]dxody0
(18)
aayx = ffs GDyx(z,zo)[-fxz(zo)]dxodyo
aayy = ffs GDyy(z’Zo)['fyz(zo)]dxodyo

and z, is the location of a point load (see Appendix D) and GDxx’

xy® GDyx’ and GDyy are the Green's functions which were

discussed and derived in Appendix D and found as

GD
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GD,, = co{Real(g(z,zo) + g(z,Eb))}
Gny = ¢ {Real(1{g(z,2,) - g(z,Eb)})}
(19)
60,y = olImala(z,z) + g(2,2())}
60y, = colImg(1(g(z,2y) - 9(2.2,))}
where
9(z,2,) = n[Real{XA(z,2,)} - XC(z,z,)]
+ 0.5[n?XB(2,2,) + XB(z,2,)] + XC(Z,2,)
22, - Eb?
Y2 +(z - 2)B(z,z))
z -2
0
with
2z, - az - I(zo)I(z)
XA(z,zo) = - Log {- ;
2z, + a* - I(zO)I(z)
2z, - a? - I(zo)I(z) z+ 2z, 2
XB(z,zo) = Log ;
2z + a? - I(zO)I(z) z, -z
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2, - 2, I1(z)
XC(z,z2 ) = — (z - 2
0 2 2 0 -
2* -z, I(zo)
: -4z 2nzo z -z, zZ+ z,
B(Z’Zo) - 72\% * * B
- 2 _ 52 - 2
z z, z z, (z zo) (z + zo)
-7 2 _
2, -z, a 2z a + 2z
+ -
- 2 2
ZI(zo)I(z) (z zo) (z + Zo)
z I(zo) I(zo)
B 2 2 —n_Z 2
I(z) z,* -z z," -z
and
1
I(z) = Vz? - a2 €y =

4Gtmﬂ(] + n)

The domain of integration used in equation (18) will be discussed

in a later section,

The displacements, F_(f _,f ) and Fe(f ), in the composite

xz?'yz xz’fyz

adherend caused by the interlaminar stresses were found with an
approach similar to that used for the metal adherend. The functions

were written as
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F(f, ,f,.) = bb, . + bbxy

-n
—~
—
-
-
~—
t

= +
bbyx bbyy

where
bbxx =/ HDxx(zk’wk)fxz(wk)dxodyo
bbxy = ff Hny(Zk’wk)fyz(wk)dxodyo
b?yx = [f HDyx(zk,wk)fXZ(wk)dxody0
bbyy = [/ HDyy(zk,wk)fyz(wk)dxody0
k =1,2
and HDxx’ Hny, HDyx’ and HDyy

composite adherend derived in Appendix D and found to be

HD, ., = 2Rea1{p1C1191(21,w1) +p,C21g (z,,u2)}
HD,, = 2Real{i[p,C129,(2 .w,) + p,C229,(z . ,)1}
HD,, = 2Real{q,C119,(z -w,) + a,C219,(z, v )}
HD, = 2Real[i[q,C217,(z,.w,) + q2c22g2(zz,wz)]]

yy

(20)

are the Green's functionsfor the

(22)
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N
I}

x + sly, Z, = X + S,Ys W1 = XO + slyo,

L3
"

+
X0 szyo

where s, and s, are compiex numbers which are not complex conjugates

of each other and are roots of the equation (Lekhn tski 1968)

y EX 2 Ex
st (— -2 s°+ — =
- vxy - 0
Xy Y
and
2 2
s, (s, Vyy + 1) s,° * Vyy
C11 = C12 =
4rte(s,? - s,?) 4ntc(sl2 - 5,%)
2
sl(szzx)yx + 1) SR
€21 = €22 = -
Ant (s,? - s,%) 4“tc(512 - 5,%)
1 1
= 2 _ = 2 _
PyoT 2 (s,% = vyy) P 72 (5,7 = Vyy)
X p
1 1
- _ 2 - ; 2
W OC T S L E . (T - vy,s,7%)
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Substituting equations (14}, (16), (17), and (20) 1nto equation (9)
and that result into equation (8) yields the governing equation that

was used to formulate a system of simultaneous equations.
Numerical Solution

To solve for the unknown stresses fxz and fyz, the domain of
integration in equations (18) and (21) was separated into three
regions as shown on figure 8. Region A on the figure represents
the portion of the domain where debonding has occurred. In this region
the interlaminar stresses are zero. Region B on the figure represents
the portion of the domain where significant interlaminar stresses
exist. As shown on the figure, this region is divided into smaller
elements. Region C on the figure represents a portion of the domain
where the interlaminar stresses are small and can be neglected. The
size of each of these regions w11l be discussed further in Chapter VI
where convergence of the system is investigated.

The next step 1n the formulation of the simultaneous equations
was to assume that the interlaminar stresses were constant over each
element of region B. With this assumption, the displacements caused
by the i1nterlaminar stresses, equations (17) and (20), were written

as
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n
F.(i) = % AAXX(i,j)[-sz(j)] + AAxy(i,j)[-fyz(j)]
J=1

n
zoOAR (1,00, (3)] + AA

F1) = £ M gyl 20)[-F,,(3)]
3=1
(23)
n
F,(0) = & BB, (1,2)[-F,,(2)] + BB, (1,3)[f,,(§)]
3=1
n
F(i) = T BB, (1,0)[f,,(3)] + BB, (1,3)(f,(3)]
3=1
is the number of elements 1n region B and
AR (1,3) = ST 6D, (2552)dxody,
AAXy(1,j) =[S GDXy(z1,zo)dxody0
AAyx(1,j) =/ GDyx(z1,zo)dxody0
AAyy(i,J) = [/ GDyy(zi,zo)dxody0
(24)

BB, (1,3) = JI HD (2, 5%, )dx,dy,

BBXy(1,J) = [f Hny(zh,Wk)dxody0

BB (1,3)

VX i) HDyx(Zki'wk)dxodyo

BByy(i,j) S/ HD (zh,wk)dxody0 k=12

yy
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where the 1 subscript indicates the point in the x-y plane, z,
where the governing equations (equations (8)) were evaluated. The
j subscript when used in the coefficient of the interlaminar stresses,
fxz and fyz’ indicates the location of the centroid of the element
over which the 1nterlaminar stresses act while the J subscript
used in the interlaminar stresses indicates the value of these stresses
acting on element j. The integrals in equations (24) were evaluated
numerically; the method of integration will be discussed 1n Chapter VI.

Substituting equation (14) and (23) 1in equations (9) and (8) and
evaluating the result at the centroid of each element of region

B lead to a system of 2n simultaneous linear equations where n

is the number of elements 1in region B as

a5 - N
A (153) + BB, (1,3) AR, (1.3) + BB, (1,3)
AR (1,3) + BB (1,3) AR, (1,3) + BByy(hJ)J
] (25)
tad 1 0 F1(1) - F3(1)
+ =
Geff 0 1 F (1) -F (1)

Using Gaussian elimination, this system of linear simultaneous
equations was solved and yielded values of the unknown interlaminar

stresses fxz(J) and fy (7).
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Nonlinear Solution

As shown in Appendix B, the adhesive used in the reinforced
system can exhibit nonlinear stress strain behavior. As shown in the
appendix, the tensile stress strain curve for the adhesive can be
approximated by a bilinear stress strain curve with a change of slope
occurring at about 4200 psi. Because the adhesive in the reinforced
system is assumed to be in a state of pure shear, the data from the
tensile stress strain curve must be related to the adhesive in a
pure shear state. To develop this relationship, a yielding criterion
is required.

For simplicity the criterion developed by Von Mises and given

by Hi11 (1951) as

(g = Opy)" * (o = 050" + (0, = 0,,)°

Xx Uy yy
(26)

where o is the stress at yielding and k0 is a constant, was used to
estimate when the adhesive in the reinforced system would exhibit
nonlinear behav1or.5 For pure tension, as was the case in the bulk

property test described in Appendix B, equation (26) reduces to

5Severa] yield criteria, of which Von Mises' is one of the most
popular, are available in the literature.



e

262 = 6k_2 (27)

For the adhesive in the reinforced system the only stresses present,
according to the Volkerson assumptions, are Oyz and S Hence, in

this case equation (26) reduces to

(ozyz +o%,) = k? (28)
Combining equations (27) and (28) by eliminating k0 y1elds a relation

between tensile and shear yielding as
o2 _+0%2 _=0% /3 (29)

For the bulk property tensile tests oyy was found approximately
at 4200 psi. With this value in equation (29) and the notation for
interlaminar stresses in the reinforced system aninejuality was

developed as

2 2 6
f vz + f X2 > 5.88 x 10 (30)
Equation (30) was used to estimate the initiation of nonlinear behavior
of the adhesive 1n the reinforced system by using fyz and fXZ

from the solution of equation (25). As will be shown in Chapter VII,
equation (30) predicts that nonlinear behavior of the adhesive will

occur in many reinforced systems. The adhesive nonlinearity manifests
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itself in equation (25) as changes in Geff with the magnitude of
applied load. As shown in Appendix B, the Geff for the adhesive
can be either 65,000 ps1 or 36,000 psi. The value Geff takes in the
reinforced system can be determined from equation (30). If equation (30)
is true then Geff = 36,000 ps1 while if equation (30) is false
Geff = 65,000 psi.

By the use of inequality (30) and equation (25), the applied
stress at which Geff of the adhesive changes in the reinforced
system was predicted with the following approach. As shown by equations
(14) and (16) the right hand side of equation (25) is a function of
the applied stress, s (omxx, omyy, OC,y2 ocyy are linear functions

of s). Hence, the solution of equation (25) was written in terms

of the unit solution and the applied stress, s, as
fez(3) = Sfxz(j)umt’ fyz(j) = Sfyz(j)unit (31)

where s 1is the remote applied stress and fxz(j)unit and fyz(J)unit
are the solutions of equation (25) with an applied stress of s = 1.
Substituting equations (31) i1nto equation (30) and solving for s

for each of the elements of region B, 1ead to values of the remote

stress s(j) which cause a change in Geff for element j as

5.88 x 10°
s(3) = : (37)
(fyz(3dynie)** ({;z(‘])unit)2
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The smallest value of s(j) for n elements of region B is the value
of the applied stress, s(l), which causes a change in Geff in
element k. At this value of s(l) all elements except element k
have Geff = 65,000, while element k has Geff = 36,000.
If the value of s(l) is greater than the maximum remote
applied stress, s___, then the solution 1s completely elastic and

max
from equation (31) the interlaminar stresses in the system are given

as
fxz(J) - smaxfxz(‘])umt
(33)
fyz(j) N Smaxfyz(j)um't
However, if s(l) is less than Smax then yi1elding has occurred.6
At the yield point the stress in all of the elements 1s given by
(M) gy = ()
9%z (3) =s fxz(‘])unit(l)
(34)
(1) 5y = (1) ,
9., (3) =s fyz(J)um-t(l)

where the uni1t(1) indicates that the unit stresses were obtained from

an elastic solution where all had the same shear modulus of Geff =

6Yie]ding refers to a change in Geff in the adhesive of the
reinforced system.
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65,000 psi. Once yielding has occurred in element k the shear
modulus of element k takes on the secondary value Geff = 36,000.
Consequently, for the next increment of applied stress the

governing equations (25) must be modified as

1 0]
) ) ) ]
fXZ
¢ ! = | Funit (35)
ad G
[A] + ﬂf. fyz
Gors Geer | | L ]
0 1
| - -

where

w
b (123) 4 B8, (1,5) A (1,3) + B8,

" (1,9)

y
[A] =
AR (1,5) + BB

K(153) AR (1,3) + BB, (1.3)

ol

y

Equation (35) was then used to find a new unit solution after
element k had yielded. The new unit values, fxz(J)unit(z) and
fyz(1)unit(2)’ were then used in egquation (31) and added to equations
(34) to give the stress 1in each element after the second load increment

as

Fz(3) = gxgl)(J) ¥ S(l)fxz(‘])unit(z)

(36)

n
—
=
S
o
(&S]
g
+
w
—
-
N
-+
——
[&F]
o

f,.(3)
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Substituting equations (36) into equation (30) and solving for s(z)
yields the value of s(z) that causesthe next element to yield
as
B +-J 2
(2) o By ~ Mol
S = (37)
2Ao

where

2 2
(J)unit(z * fyz(‘])um't(z)

>
1]

f
0 o4

o
|

=2 gxi‘)(a)fxz(j)unit(z) + 9y§1)(3)fyz(j)unit(z)

0 ggxil)(i)}z + {gyil)(a')}z - 0?13

If the value of s(z) > smax then the stresses after the section

(4
n

increment of load are given by

0. (5) = (s - sy

X2 max fxz(j)unit(Z) *
(38)

<
N
[ 45r)
~—
[}
—
[%2)
3
Qv
x
]
[7a)
<
N
—
Cae
—
o=
=
-l
+
—
N
~——
[fa)
<
N
(&)
~—
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and the total number of load increments is 2. But if s(z) is less
than Smax then the stresses after the second load increment are
given by

302 ) = s, ) nteca) + 9 D)
(38)
9,9 = 5D nieiey + 9ye (D)

The entire process 1s repeated until the sum of all the load increments
equals Smax” The final value of the interlaminar stresses are the final

values of gxz(j) and gyz(J) given as
(m)

fz2(3) =9, '(3)
(40)

£, = 90"

where m is the total number of load i1ncrements.

To obtain the final values for the interlaminar stresses, equation
(40), the system of simultaneous equations (equations (35)) must be
solved for each load increment. To minimize computational effort, a
Gauss Siedel method discussed by McCracken and Dorn (1968) was used to
solve equation (35) after the first unit vector was found by Gaussian
elimination. By the use of unit vectors, fxz(j)unit(k) and
fyz(j)unit(k)’ of the k iteration as initial estimates for the k + 1
unit vectors, the Gauss Siedel method rapidly converges. Consequently,

the method is very efficient in solving for the unit stresses in
successive load increments.
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In this chapter an analysis was developed to determine inter-
laminar stresses in the reinforced system. In the next chapter these
interlaminar stresses will be used to determine crack and debond

growth rates in the reinforced system. The accuracy of the analysis

will be discussed in Chapter VI.



CHAPTER V
FATIGUE ANALYSIS

As shown in Chapter II, fatigue damage 1n the reinforced system
occurred as crack and debond growth. Accordingly, an adequate fatigue
analysis should predict both types of growth. To the author's
knowledge, the only analysis to date that attempts to model this behavior
was developed by Ratwani (1977). Ratwani (1977) analyzes crack and
debond growth in a cracked metal sheet reinforced with an uncracked
metal sheet by using the elastic analysis developed by Erdogan and
Arin (1972) and a maximum strain criterion to predict debond growth.

In contrast, herein, the nonlinear elastic stress analysis developed
in the previous chapter was coupled with a debond propagation equation

based on calculated strain energy release rates.
Crack Growth Rate

To use the crack propagation equation (equation (4)), the stress
intensity must be determined. The stress intensity can be related to
the two stress distributions discussed in Chapter IV: the remote
inplane stresses in the reinforced system and the interlaminar shear
stresses which act near the debond front. The stress intensity can be
found by superimposing the stress intensities from the two stress
distributions.

49
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The stress intensity produced by the remote stresses can be
calcualated by substituting the stress function, &(z), for this
loading case (equation (13)) into equation (1) which related the

stress function to the stress intensity as

k - ik =272 lin /Z - a oM,y z

! z+a —_——
2 2?2 - a?
(41)
1 omyy om, .
2 2 2

which results in

(42)

k =0

2

The stress intensity produced by the interlaminar shearing
stresses, fxz(j) and fyz(j), was found in the following manner.
First, the stress intensity for four point loads acting on a cracked

sheet was found by substituting the stress function

¢(z,zo) = SB(z,zo) + §B(z,20) (D.43)

derived in Appendix D 1nto equation (1) to yield
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ky - ik, = 2/2 lim (/2 -a |[SB(z,z,) + SB(z,z,) (43)
Z > a

Taking the Timit of equation (43) and combining coefficients of the
X and Y 1load components results in
k1 - 1k2 = X[XK(zO) + XK(zo)]

+ 1V[XK(z,) - XK(Z,)]

which leads to

k1 = 2Rea1[XK(zo)]X - ZImg[XK(zo)]Y
(44)
k, = 0
where
vya ZOEB - zzo2 + a? nI(Eb)
XK(zy) = + = (85)
m(1+nlt (zo2 - a%)1(z,) zo2 - a?

Then, with the use of the coefficient of the X and Y 1load

components as Green's functions for the stress intensities, the stress
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intensity caused by the interlaminar stress, fxz(j) and fyz(j),

can be found as

n
k. =232 [fxz(j)ffReal XK(zo) dxody0

: i=1
(46)

+ fyz(j)ffImg(XK(zo)dxodyo]

The domain of integration for equation (46) is, of course, the same as
was discussed in the previous chapter. The method of integration will

be discussed in the next chapter.
Debond Growth Rate

To use the debond propagation equation (equation (5)), the
strain energy release rate must be determined for points along the
debond front., A rigorous determination of the strain energy release
rate is difficult and beyond the scope of this effort. However, an
approximate solution 1s developed in the following paragraphs.

A freebody of a strip was taken from the longitudinal centerline
of the reinforced system as shown in figure 9. The strain energy
release rate for the strip was approximately calculated with the J
integral developed by Rice and given in Liebowitz (1968) as

au1

G=4J = II-('E O.iJE.ide - t.i—37 dS) (47)



Fig. 9.

composite

Freebody for determination of G along debond front

€9



54

where °ij is the stress, EiJ is the strain, T] is the surface

traction, uj is the displacement and T 1is any contour that
contains the debond front and does not pass through a plastic region
of material. Equation (47) can be written in terms of cartesian

coordinates as (Yoder and Griffis 1974)

oV ow
G=f. W -0 — -0 _ —)dz
I')e vy 3y yz 3y
oV ow (48)
+{o, - +o0,_ —)dy
yz 3y 22 3y

where we is the strain energy density and v and w are displacements
in y and z directions respectively.

To apply integral (47) to the freebody shown in figure 9, a path
of integration shown in figure 10 was used to analyze the energy
release rate. The path surrounds the debond front on which no
stresses or traction act, follows the bond line in the metal adherend
on which the interlaminar stresses act, crosses the adhesive which 1s
assumed to have insigificant stresses, and follows the bond 1ine 1n the
composite adherend on which the interlaminar stresses act. The

o v
oVn ) c

—— js the strain i1n the metal adherend, and the — 1s the
dy dy

strain in the composite adherend. With the use of this contour, the
value of G from equation (48) can be written i1n terms of the inter-
laminar stresses, fxz and fyz’ and the strain in the adherends,

Emy and Ecy’ as
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crack

metal
Ki\ /////r——debond front
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contour for integration
composite

Fig. 10. Contour for determination of G for strip
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e )dy (49)

G=/ fyz(ecy T Cmy

With the use of discrete values of the interlaminar stresses and strains
in the adherends, the strain energy release rate G can be approximated

as

(i)} (50)

where Ly represents the length of the discrete elements, i tihe 1ndex

for the elements in the strip, and p the number of elements 1n the

strip.

The interlaminar stresses, fyz(k), were determined from
equation (40). However, the strains in the adherends still need to
be determined. The strains 1n the adherends were determined from the
stresses i1n the adherends according to laminate theory as shown 1in

Appendix C as

(e (5] ] (o ]
€X Ox rEX GX
= C = D}
Ey L Oy Ey Oy
€ c €
X X
| % A | Y] | Y

metal composite
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where matrices C and D are given by equations (C.4) and (C.5)
of Appendix C.
Before equation (51) was used to calculate the strain in the
adherends, the stresses in the adherends were determined.
As shown by Muskelishvili (1975) the stresses in the metal
adherend can be expressed in terms of two functions, &(z) and Q(z),

as

o, = Real{34(z) - Q(z) - (z - 2)o'(2)} (52)
o, = Real{o(z) + Q(z) + (z - 2)2' (2)} (53)
Oy = Imag{d(z) + Q(z) + (z - 2)3'(2)} (54)

Equations (52) - (54) were used to determine the stresses in the metal
adherends caused by both inplane remote stresses and interlaminar
stresses.

For remote inplane stresses, &(z) 1is given by equation (13)

as

om z 1

o(z) = - — [om
2 77 - a 4 Yy

- o] (13)

¢'(2) was found by taking the derivative of &(z) as

om a?

yy
2'(z) = - (55)
) (22 - a2)3/2
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and Q(z) was found by differentiating equation (12) as
om z 1 om

om
Yy Yy X
o(z) = +t—{— - — (56)
2

Z¢ - a 2 2 2

For the interlaminar stresses, &(z) and Y(z) were determined
and substituted in equations (52) - (54) (see Appendix D). The result,

stress in the metal caused by interlaminar stresses, was found as

n

0y = -L SIGS, ., (3) + G5, f (3)}dx dy, (57)
3=
n

o, = -I J/{GS  F,,(3) + G5, f  (3)}dxydy, (58)
=1
n

Oy = T TILES () i p(3) + 65,y F L (3) Hdxydy, (59)
j=1

and GS are the Green's

where Gsxx’ Gsxy’ GS x° GSy

y Y xy)x’ (xy)y
functions for stresses given in Appendix D by equations (D.68)

1Y GS(

through (D.73) respectively. The domain of integration in equations
(57) - (59) is the area of an element shown in region B of figure 8
where 3 denotes the particular element.

Adding equations (52) - (52) and (57) - (59) yielded the stress
in the metal adherend of the reinforced system. This result was then

used in equation (51) to calculate the strain in the metal adherend.
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The inplane stresses in the orthotropic adherend caused by the
remote stresses were calculated with simple laminate theory as shown
in Appendix C.
The inplane stresses in the orthotropic adherend caused by the

interlaminar stresses were found in Appendix F as

n

Oy = LSIUHS,,f,,(3) + HS, f (3)}dx dy, (60)
3=
n

oy = I ]ff{Hs yxFxz(3) * HSy F o (3)ddx dy, (61)
J:
n

Oy = ZII{HS(xy)xfo(j) + Hs(xy)yfyz(‘j)}dxodyo (62)
J=1

functions for an orthotropic solid sheet given in Appendix E by

and Hs(xy)y are the Green's

equations (E.23) - (E.28).

Adding the inplane stresses in the orthotropic adherend caused
by the remote stresses and the interlaminar stresses and substituting
the result into equation (51) yielded the strains in the orthotropic
adherend.

With the strains in the adherends, equation (50) was used to
calculate the strain energy release rate for the debond along the

longitudinal axis of the reinforced system.



60
As indicated in Chapter III, the shape of the debond throughout
the cyclic tests can be approximated by an ellipse. The equation

for a general ellipse is given as
1
y = b[1 - (%)230%) (63)

where a is half the crack length and b is the debond length
measured along the y-axis from the center of the crack. With the use
of equation (63) the overall debond shape was predicted by calculating
the half crack length, a, from equation (4) using the stress
intensity calculated from equation (45) and calculating the debond
length, b, from equation (5) using the strain energy release rate

calculated from equation (50).
Prediction of Crack and Debond Growth

The analysis developed in this dissertation was programmed on
a CDC 6600 computer at NASA-LRC. A discussion of the program, a
sample analysis, and a program listing are given in Appendix F.
A flow chart of key elements of the program is shown in figure 11.

In the next chapter the accuracy of the analysis is investigated
by comparing results of the calculations from the analysis with

experimental results generated in Chapter III.
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Fig. 11. Flow chart for fatigue analysis




CHAPTER VI
ASSESSMENT OF ACCURACY

Before the analysis developed in the previous chapters was used
to study the fatigue behavior of the reinforced systems, the accuracy
of the analysis was assessed. This assessment was based on analytical
convergence studies and studies comparing analytical resultswith

experimental results obtained in Chapter III.
Numerical Integration

A key item in the analysis was the method of integration of the
Green's functions, In theory the Green's functions for both stress
and displacement require integration over an infinite domain. Because
the functions are complicated, a closed form integration 1s difficult
if not impossible to perform. Consequently, a numerical solution was
employed. Two key items in this numerical integration were the domain
of integration and the method of numerical integration.

As shown on figure 8, the infinite domain of integration was
divided into three regions: A, B, and C, Only region B has significant
interlaminar shear stresses which need be integrated. To perform the
integration region B was divided into elements as shown on figure 8.

Each of these elements was bounded by the curves

62
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X = X X = X,
(64)
f2(x)

yi = fi(x) vy

where the functions f, and f, are the form of equation (63) and
reflect the debond shape. For example, the bounding curves for

elements along the debond front are given as

yl(x)=b 1-[?}26

b (65)
y,(x) ]

n
Cann)
o
+
[« 8
o
o
o
1
ey
=)}
+ >
o
e}

where a and b are the half crack length and the debond height
respectively and da and db represent fractions of a and b.

The numerical method of integration used for each element of
the region B was a two-dimensional Simpson's integration. Simpson's
integration was used so that several of the Green's functions given by
equations (19), (22), (D.68) - (D.73), and (E.23) - (E.28) could be
integrated simultaniously by using common values of the complex
functions. In each element the interlaminar stresses were assumed
to be constant and the Green's functions were integrated by using 9 or
18 integration points. Nine integration points were used when the
domain of integration did not contain a singularity while 18 points

were used when a singularity existed within the element.
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In the latter case the domain of the element was divided 1nto
three regions: two of which were analytic and the third, which contained
the singularity, was nonanalytic. The two analytic regions were
integrated with the nine point Simpson's integration scheme. The
nonanalytic region was integrated by separating the Green's functions
into products of analytic and nonanalytic functions. The analytical
portions were expanded 1n a Taylor series and only the first terms,
which were constants, were retained. The singular portion was integrated
analytically 1n the principal value sense (Hilderbrand 1950). The
product of the first term of the Taylor series and the principal
value resulted in an approximate integral value 1n the nonanalytic
region. In general the value of the integral i1n the nonanalytic region
of the element was small in comparison with values 1n the two analytic
regions.

The size of region B shown in figure 8 was deterinined iteratively
by starting with a small region and increasing its size until no
changes occurred in the interlaminar stresses, stress intensity or
strain energy release rate. As an example, Panel B (under a load of
22,500 pounds) discussed 1n Chapter III was modeled as shown in figure
12 with an 1n1t1al crack length of one inch and no debond (b = 0). As
shown in the figure, region B was assumed to be nearly rectangular
with Ny elements along the x-axis and ny elements along the y-axis.
The elements have a width of 0.25 inch and a height of 0.20 inch. The
analysis was performed for values of Ny ranging from four to six and
values of ny ranging from one to six. Test conditions for each of

these possible combinations were notated as
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Fig. 12.

region B
==
Ny
ny, 0.20 in
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Domain B for convergence analysis
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n, n,

4 5 6

conditions

1 1 7 13
2 2 8 14
3 3 9 15
4 4 10 16
5 5 1 17
6 6 12 18

Figure 13 shows the values of interlaminar stresses along the
longitudinal centerline for the different conditions. As evident
from the figure,values of the interlaminar stresses have converged
for values of n, = 4 and ny = 3. Also both the stress intensities
and the strain energy release rates have converged for these values.
Thus, for this sample case the domain of region B 15 about 1 x 0.6 inch.
Similar analyses showed that the length of the domain of region B
along the x-axis is typically the length of the crack. However, as the
adherend thickness or shear modulus of the adhesive changes, the
extent of region B in the y-direction also changes.

With the use of the one-dimensional analysis discussed in
Appendix B, the extent of region B in the y-direction was estimated for

different adherend thicknesses and adhesive moduli in the following

manner. A strip was taken from along the longitudinal centerline of the
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Fig. 13. Convergence of interlaminar shear stresses
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reinforced system as shown in figure 9. Because of the crack the
load 1n this strip must be transferred either to the adjacent metal
via inplane shear stresses or to the composite via interlaminar stresses.
If all the Toad were transferred via the interlaminar stresses, the
interlaminar stresses could be higher and extend over a greater area
than if the inplane stresses were considered. Consequently, the boundary
of the interlaminar stress region calculated from the one-dimensional
analysis, which only considers interlaminar stresses, would be an

upper bound.

From the one-dimensional analysis the shearing stresses are

found by equation (B-12) as

™y) = Koe"/ay (B.12)
where
Gad ] 1 Ssad
O P o L i
ad mEm cEc tadEZVE

Examination of equation (B.12) revealed that the T(y) is a maximum at
y = 0. The shear stresses were assumed to be negligible when they
were smaller than 5 percent of the maximum value. In equation form,

the relationship between y and 95 percent of the maximum inter-

laminar shear stress was expressed as
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Y
0.05 K0 = Koe
Solving for y 1led to
1n(0.05)
ys=-——" (66)
Yo

the distance at which the shear stresses are 95 percent of their
maximum value. As evident from equation (66) the y distance is a
function of the thicknesses and material properties of the adherends
and the adhesive. For the adhesive used in the reinforced system of
Panels A and B two effective shear moduli were found as 65,000 psi
prior to yielding and 26,100 psi after yielding (see Appendix B).
With the use of the latter of these two values to give a conservative
bounds, the y distance for region B of Panel B (see figure 2) as
calculated by equation (66) was found as y = 0.60 in. The estimated
value agrees well with convergence study results shown on figure 13.
The same logic applies to both bonded (b = 0) and debonded systems
(b > 0). Consequently, the domain of region B used in the integration
of the Green's functions was determined by the crack length and
equation (66).

Once the domain of region B was determined, the effect of mesh
refinement within region B was investigated. Figure 14 shows a
comparison of interlaminar stresses calculated (again for Panel B)

using two different mesh sizes in region B. As evident from the figure,
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the interlaminar stresses calculated with the fine mesh can deviate
as much as 16 percent from stresses calculated with the coarse mesh. The
stress intensities and strain energy release rates calculated using

the two different meshes were found as

k1 G
coarse mesh 0.281 1.29
fine mesh 0.280 1.36

The values of k1 and G are not nearly as sensitive to changes in mesh
size as the interlaminar stresses were. The reason for the insensitivity
is most 1ikely because both k1 and G are obtained by integration
schemes that smooth out the effect of local approximations in the
interlaminar stresses. Consequently, the grid can be rather coarse

and still accurately predict both k1 and G. In contrast the values

of the interlaminar stresses require a finer mesh for accurate values.
Because kl and G are used to predict the fatigue behavior of the
reinforced system, a relatively coarse mesh was used in the analysis

without loss of accuracy.
Accuracy of the Analysis

To ascertain the accuracy of the analysis, calculated values of
stresses in the adherends, the stress intensities, and the crack
propagation rates and debond sizes were compared to experimental
results on Panels A and B shown in Chapter IIl. To compare calculated

and experimental values of stresses in the adherends and stress
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intensities, Panels A and B were modeled when the half crack length, a,
reached 2 inches as shown on figure 15. The debond sizes were obtained
from the C-scans of the specimens shown on figure 5. The height of the
grid from the edge of the debond was determined from equation (66).
The crosshatched elements on the figure indicate elements in which the
adhesive has changed modulus (yielded) during each applied load cycle.
The effect of the modulus change on k1 and G wi1ll be discussed 1n
the next chapter.

The values of the crack growth rate for Panels A and B were
calculated for a half-crack length of 2 inches, the debond sizes
observed in figure 5, and the applied loads shown on page 18.

The calculated values and the experimental values, from Chapter II,

of the crack propagation rates are

da/dN, 1n/cycle

Panel calculated experimental
A 2.85 x 107° 1.30 x 1074
B 2.26 x 1074 3.12 x 107%

The difference between the calculated and experimental rates are
within the scatter of the predicted rates for unreinforced metal
sheets (Figge and Newman 1967). Hence, the analysis accurately
predicts the crack growth rate 1f the crack length and debond are
known.

As a further check, the analysis was used to predict the crack

growth 1n Panels A and B. Figure 16 shows the calculated and



S <
S

[ ———
\
V\
in
nonlinear
7\2 elements
“in 122
debond X
. A debond
+=<=— 2 inches —9-' ==— 2 inches —)—I
Panel A Panel B

Fig. 15. Mesh for analysis of Panels A and B

EL



2.0

half-crack length, inches

Panel A

Panel B

calculations

O experiments

applied load cycles

Fig. 16. Experimental and calculated crack lengths as a function of applied load cycles

174



75

experimental half-crack lengths plotted against the number of applied
load cycles. For both panels the analysis gave a conservative prediction
of the crack growth. The calculated and experimental half-crack lengths
agree within a factor of 2. This deviation 1s within the scatter of
crack length prediction of unreinforced metals. Hence, the analysis
appears to accurately predict the crack length as a function of
applied load cycles.

On figure 17 the calculated and experimental crack propagation
rates were plotted against the half-crack length. The calculated
crack propagation rates were within a factor of 2 of the experimental
rates. The largest error occurred in Panel B for a half-crack length
of 2 inches.

The calculated crack lengths and crack propagation rates shown
on figures 16 and 17 are a function of debond growth. On figure 18
the debond aspect ratio, b/a, was plotted against the half-crack
length for the two panels. The symbols on the figure i1ndicate values
of the debond aspect ratio obtained experimentally (see figure 10).
As evident on the figure, the calculations indicated that the debond
aspect ratio increases rapidly, especially for Panel A, before the
half-crack length reaches 0.2 inch. Hence, the debond grows before
the crack does.

Of the two panels, Panel A exhibits the largest debond growth, and
at a half-crack length of 2 inches the predicted debond aspect ratio was
determined experimentally. For Panel B, the analysis predicted a debond

aspect ratio of 0.45 at a half-crack length of 2 inches, In contrast,
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the debond aspect ratio obtained experimentally was about 0.14. The
discrepancy between the calculated and experimental values may be
linked to the magnitude of strain energy release rate as the debond
propagates in Panel B. Values of G 1in Panel B ranged from
0.63 in-1bs/in at a half-crack length of 1 inch to 0.53 indb/in at a
half-crack length of 2 inches (in contrast G values for Panel A
ranged from 6.0 to 2.45 in-1bs/in). The values of G for Panel B
were below values of G used to determine the empirical constants 1n
equation (5). A few exploratory tests of the type performed 1n Appendix
A revealed that a threshold value of G may exist. Below this threshold
value debonding does not occur. Although proving the existence of a
threshold was beyond the scope of this dissertation, 1f it does
exist the analysis of Panel B would predict a debond aspect ratio much
closer to the experimental value.

The comparison between calculated and experimental values of
predicted crack length, crack propagation rate and debond aspect
ratio shown on figures 16 through 18 showed that the analysis has
potential to predict crack growth in metals reinforced with composite
materials. However, a true assessment of the accuracy of the analysis

can be made only after a more extensive data base is developed.



CHAPTER VII
PARAMETRIC STUDIES ON CRACK AND DEBOND GROWTH

To give 1nsight about crack and debond growth in reinforced
systems, the analysis was performed for reinforced systems with
several different adherend thicknesses, debond si1zes, and crack
lengths. The metal adherend thicknesses studied were (.05, 0.10, and
0.15 inch; the composite adherend thicknesses were 0.025, 0.05, and
0.075; the half-crack lengths were 0.5, 1.0, 1.5 inches; and the aspect
ratios of the debond areas were 0.001, 0.5, and 1.0. For the various
combinations of adherend thicknesses, crack lengths, and debond
aspect ratios, the stress intensities, strain energy release rates, and
remote stress that caused nonlinear behavior of the adhesive were
calculated and are shown 1n Table 2.

The first two columns of the table give the metal and adherend
thicknesses, t and tc. The third and fourth columns give the
half-crack length, a, and the debond aspect ratio,b/a. The fifth
column gives the stress intensity in the metal adherend normalized by
the remote stress, k/s. The sixth column gives the strain energy
release rate at the debond front (along the longitudinal centerline)
normalized by the remote stress squared, G/s?. The last column gives
the remote stress that would cause the adhesive layer 1n the reinforced

system to behave nonlinearly.
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TABLE 2

CALCULATED VALUES FOR PARAMETRIC STUDY

t t a b/a k/f G/s? Syreld
(1n) (1n) (in) (1n?) (1n*/1bs) pS1

0.050 0.025 0.50 .001 0.171 12.4E-10 19,600

0.50 .50 0.240 8.2E-10 25,200

0.50 .00 0.289 4,4E-10 25,600

1.00 .001 0.170 12.6E-10 17,600

1.00 .50 0.286 9.5£-10 23,900

1.00 .00 0. 366 4.9E-10 23,600

1.50 .001 0.171 12.4E-10 16,500

1.50 .50 0.322 9.6E-10 23,800

0.025 1.50 .00 0.426 5.1E-10 23,700

0.050 0.50 .001 0.138 7.3E-10 25,000

0.50 .50 0.190 5.6E-10 21,700

0.50 .00 0.230 3.0E-10 29,500

1.00 .001 0.136 7.2E-10 22,800

1.00 .50 0.221 6.0E-10 28,100

1.00 .00 0.286 3.3E-10 27,000

1.50 .001 0.137 7.2E-10 21,100

1.50 .50 0.264 6.0E-10 27,600

0.050 1.50 .00 0.329 3.3E-10 27,200

0.075 0.50 .001 0.125 5.7E-10 28,200

0.050 0.075 0.50 .50 0.170 4.8E-10 33,800
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TABLE 2-Continued

t t. a b/a k/f G's? Syreld
(in) (1n) (in) (in?) (1n*/1bs) pS1

0.050 0.075 0.50 1.00 0.206 2.4E-10 31,900

1.00 0.001 0.123 5.6E-10 26,500

1.00 0.50 0.196 4.7E-10 30,600

1.00 1.00 0.254 2.6E-10 29,100

1.50 0.001 0.123 5 6E-10 23,800

1.50 0.50 0.217 4.8E-10 30,000

0.050 0.075 1.50 1.00 0.291 2.7E-10 29,300

0.100 0.025 0.50 0.001 0.254 41.5E-10 11,200

0.50 0.50 0.334 24 .6E-10 15,700

0.50 1.00 0.385 11.4E-10 17,600

1.00 0.001 0.256 46.1E-10 9,800

1.00 0.50 0.407 28.9E-10 14,200

1.00 1.00 0.498 13.5E-10 15,400

1.50 0.001 0.257 46.2E-10 9,100

1.50 0.50 0.462 29.9E-10 13,700

0.025 1.50 1.00 0.583 14.2E-10 15,100

0.050 0.50 0.001 0.202 23.9E-10 14,600

0.50 0.50 0.263 16.2E-10 18,900

0.50 1.00 0.307 8.1E-10 19,900

1.00 0.001 0.202 25.1e-10 13,100

0.100 0.050 1.00 0.50 0.309 18.5E-10 17,400
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TABLE 2-Continued

to t. a b/a k/f G/s? Syreld
(1n) (n) (in) (in?) (1n*/1bs) ps1

0.100 0.050 1.00 1.00 0.385 9.4E-10 12,379

1.50 0.001 0.201 25.0E-10 16,800

1.50 0.50 0.345 19.0E-10 16,800

0.050 1.50 1.00 0.444 9.9E-10 16,700

0.075 0.50 0.001 0.178 17.6E-10 16,900

0.50 0.50 0.230 12.5E-10 21,300

0.50 1.00 0.269 6.4E-10 21,800

1.00 0.001 0.177 18.0E-10 15,200

1.00 0.50 0.266 14.0E-10 19,400

1.00 1.00 0.333 7.4E-10 18,500

1.50 0.001 0.176 17.9E-10 14,600

1.50 0.50 0.294 14.4E-10 18,600

0.100 0.075 1.50 1.00 0.382 7.4E-10 18,100

0.150 0.025 0.50 0.001 0.313 78.3E-10 8,300

0.50 0.50 0.397 40.9E-10 12,400

0.50 1.00 0.446 18.0E-10 14,800

1.00 0.001 0.323 95.6E-10 7,000

1.00 0.50 0.493 51.3E-10 10,900

1.00 1.00 0.584 22.3E-10 12,500

1.50 0.001 0.325 99.0E-10 6,500

1.50 0.50 0.565 54.1E-10 10,400

0.150 0.025 1.50 1.00 0.689 23.7E-10 12,100
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TABLE 2-Continued

t g a b/a k/f G/s? Syreld
(in) {in) (in) (1n?) (1n*/1bs) psi
0.150 0.050 0.50 0. 001 0.253 46.8E-10 10,600

0.50 0.50 0.318 28.9E-10 14,400
0.50 1.00 0.362 13.9E-10 16,200
1.00 0.001 0.256 52.9E-10 9,400
1.00 0.50 0.379 35.2E-10 12,900
1.00 1.00 0.460 17.1E-10 13,400
1.50 0.001 0.256 53.7E-10 8,700
1.50 0.50 0.425 37.1E-10 12,400
0.150 0.050 1.50 1.00 0.534 18.2E-10 12,900
0.150 0.75 0.50 0.001 0.222 34.4E-10 12,300
0.50 0.50 0.278 22.5E-10 16,100
0.50 1.00 0.318 11.3E-10 17,600
1.00 0.001 0.223 37.3E-10 11,100
1.00 0.50 0.325 26.9E-10 14,500
1.00 1.00 0.397 13.7E-10 14,400
1.50 0.001 0.222 37.6E-10 10,300
1.50 0.50 0.360 28.2E-10 14,000
0.150 0.75 1.50 1.00 0.457 14.5E-10 13,700
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Stress Intensity Factor, Crack Growth Rate

Figures 19, 20, and 21 show the effects of composite adherend
thickness, debond aspect ratio, and crack lengths on stress intensity
for the different thickness metal adherends. On the figures circles,
diamonds and squares represent stress intensity vaiues for 0.025, 0.05,
and 0.075 inch thick composite adherends respectively. Open, half-
shaded, and shaded symbols represent stress intensity values for
debond aspect ratios of 0.0, 0.50, and 1.0 respectively. On the figures
the stress intensity normalized by the remote stress was plotted against
the half-crack length.

For all three metal adherend thicknesses, the figures show
consistent trends. If the debond aspect ratio is small, the stress
intensity is not significantly affected by either the crack length or
the thickness of the composite reinforcement. However, as the
debond size increases, the stress intensities increase significantly
with longer crack lengths and thinner composite reinforcement.

The effects of debond size, composite adherend thickness, and

crack length become more pronounced for the thicier metal adherends.
Strain Energy Release Rate, Debond Propagation

Figures 22, 23, and 24 show the effect of composite adherend
thickness, debond aspect ratio, and crack length on the strain energy
release rate at the debond front (along the longitudinal centerline

of the reinforced system). As on figures 19, 20, and 21, different
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symbols indicate different composite adherend thicknesses, and
different amounts of shading indicate different aspect ratios. On
the figures the strain energy release rate normalized by the remote
stress squared was plotted against the half crack length.

Examination of the figures revealed that for all metal adherend
thicknesses the thickness of the composite had the most pronounced
effect on the strain energy release rate. The thinner the composite
adherend the higher the strain energy release rate and the more
11kely debonding would occur. The debond aspect ratio had the next
most significant effect. The larger the debond aspect ratio the lower
the strain energy release rate. Of all the parameters the crack
length had the smallest effect on the strain energy release rate.

As in the case for stress 1intensities, the effects of debond
size, composite adherend thickness, and crack length are more
pronounced for the thicker metal adherends. In fact on figure 24
the energy release rates for 0.025 inch composite reinforcement with no
debond reinforcing a 0.15 inch metal were so great for all crack
lengths that the energy release rates were off scale i1n the figure.
Evidently, the most severe case for debond occurs with a thick
metal adherend reinforced with a thin composite sheet with no

debonding between adherends,
Nonlinear Effects

Figures 19 through 24 were generated by assuming that the adhesive
behaved 1inearly. Hence, because they were normalized with respect

to the remote stress or its square, they can be used to estimate the
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stress intensity and strain energy release rate for any remote stress
that does not produce nonlinear behavior of the adhesive 1n the
reinforced system. For the different parameters studied, Table 2
gives the values for the remote stresses that cause nonlinear behavior
of the adhesive. As evident from the table nonlinear behavior can
occur at relatively Tow remote stresses. For values in the table,
the lowest value of remote stress to cause nonlinear behavior occurred
for the thickest (0.15 1n) metal adherend with a 1.5 1nch crack that
was reinforced with the thinnest (0.025 1n) composite adherend and no
debond. For this reinforced system a remote stress of 6,000 ps1
caused nonlinear behavior of the adhesive. However, for practical
purposes, the remote stress applied to this system could be as high
as 52,000 psi. To investigate the effects of the nonlinear adhesive
on the crack and debond growth predictions, the analysis was conducted
using the preceding parameters for both a linear adhesive and nonlinear
adhesive.

For the linear analysis an effective shear modulus (see Appendix
B) of 65,000 psi was used, while for the nonlinear analysis an effective
shear modulus of 65,000 ps1 was used unti1l the remote stress reached
6,000 pst1 after which an effective shear modulus of 36,000 psi was
used for nonlinear elements of region B (see page 38). With the use
of the two different analyses, the stress intensity and the strain

energy release were found as
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adhesive k, G
1inear 18,800 26.1
nonlinear 16,700 26.1
percent error 13 0

For this example, the nonlinear analysis predicted the stress
intensity 13 percent below that predicted by the linear analysis.
However, the predicted strain energy release rate was the same for
both analyses.

At first glance the Tinear analysis would then accurately
predict the debond growth and conservatively estimate the crack growth.
But by the use of equations (4) and (5) and the above values the debond
and crack growth rates were found at 4.2 inches/cycle and 1.56E-04
inches/cycle respectively. Hence, the debond propagates much faster
than the crack. As the debond grows, the magnitude of the stress
intensity from the 1inear and nonlinear analysis converges. In fact,
because the debond grows so much faster than the crack, before the
crack extends any appreciable amount the stress intensities from the
two analyses predict the same crack growth rates. In addition, because
the example exhibits the most significant nonlinearity of all the cases
considered 1n Table 2, the linear analysis, and hence figures 19
through 24 can be used to estimate crack and debord growth even when

the adhesive behaves nonlinearly.
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Prediction of Crack and Debond Growth

To predict the crack and debond growth in a reinforced system,
the computer code discussed 1n Appendix F should 1n general be employed.
However, figures 19 through 24 can also be used to estimate both the
debond and crack growth for a variety of reinforcea systems in the
following manner. First, for the given adherend thickness, crack
length, debond size, and remote applied stress, the strain energy

release rate, G, and the stress intensity, k can he estimated

1o
from figures 19 through 24. Then, equaticns (4) and (5}, tre -rack

and debond growth equations, can be used to estimite the number of
applied load cycles to extend the crack by, for example, 10 percent

and to extend the debond length (along the lengitudinal axis of the
reinforced system) by 10 percent. The smallest vaiue of the applied
load cycles required to produce these extensions 1s used with equations
(4) and (5) to predict the extension of crack and debond growth. Next,
these extensions are added to the original crack and debond length

and the entire process 1s repeated until the stress intensity reaches
56,000 ps1-1nl/2 (fracture occurs) or the desired crack length or

number of applied load cycles 1s reached.



CONCLUSIONS

The failure mode of cracked metal sheets that are reinforced
with composite 1s crack propagation in the metal sheet. Analysis of
the crack growth is complicated by the development of a debond near
the crack. Herein, an analysis was developed to predict both the debond
and crack growth 1n a reinforced system. The analysis was predicated
on the use of strain energy release rate to correlate debond growth.
Empirical constants required for the correlation were developed
from simple bonded specimens. The correlating equation for the
debond growth was then used 1n a stress analysis that was based on
complex variable Green's functions which were developed herein for
cracked, 1sotropic sheets and uncracked, orthotropic sheets. The
stress analysis was used to calculate the i1nplane and interlaminar
stresses, the stress intensity at the crack tip, and the strain
energy release rate at the debond front. By the use of the analysis,
an 1terative solution was developed that used the stress intensity and
the strain energy release rate to predict the crack and debond growth
on a cycle-by-cycle basis.

To verify the analysis, tests were conducted on two different
reinforced panels which exhibited different amounts of debonding.

For both panels the predicted crack growth was within the accuracy

of crack growth prediction 1n unreinforced metal sheets. Hence,
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the analysis appears accurate within the bounds of existing fracture
mechanics concepts.

The analysis was used in a parametric study of the effects of
boron/epoxy composite reinforcement on crack propagation in aluminum
sheets. The study showed that the aspect ratio of the debond area
has a significant effect on the crack propagation 1n the aluminum
sheet. For small debonds the crack propagation rate 1s reduced
significantly, but these small debonds have a strong tendency to
enlarge. Debond growth is most 1ikely to occur in reinforced systems
that have a cracked metal sheet that 1s reinforced with a relatively
thin composite sheet.

The analysis can be used to predict crack growth in reinforced
systems. Hence, the analysis can be applied 1n developing methods
to repair damaged metal structure and to 1ncrease lives and payloads

of metal structures by selective reinforcement.



APPENDIX A
DETERMINATION OF DEBOND CONSTANTS

As discussed 1n Chapter II, debonding can be predicted 1n a
bonded system with an equation of the type
Ny
db/dN = ¢, (G) (5)
where G 1s the strain energy release rate and ¢, and n, are
empirical constants. The objective of this appendix 1s to determine

the empirical constants for the reinforced system used 1n the

experimental portion of this dissertation.
Specimen Fabrication

To determine ¢, and n several test specimens with the

29
configuration shown 1in figure A.1 were fabricated. The specimens
consisted of 1-inch wide strips of 0.188 inch thick 2024-T3 aluminum
bonded to 0.03 1nch thick unidirectional boron/epoxy The strips were
bonded with Shell EA-934 room curing adhesive. To maintain a constant
adhesive thickness in the bond, 2 percent by volume of 0.004 inch
diameter glass beads were added to the adhesive prior to bonding.

The process used to bond the aluminum to the composite was as

follows
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SURFACE PREPARATION

Aluminum 2024-T3

1. Vapor degrease - perchlorcethylene condensing vapors for
5 to 10 minutes.

2. Grit blast with 220 grit at 90 psig.

3. Alkaline degrease - QOaklite 164 solution (9 - 11 ounces/
gallon of water) at 190 #10° F for 15 minutes. Rinse
immediately in large quantities of cold running water.

4. Acid etch - place panels in the following solution for
10 minutes at 150° +5° F.

Distilled water 30 parts

Sulfuric acid (conc) 10 parts

Sodium Dichromate 1 part
5. Rinse - rinse panels in clear, deionized running water.
6. Dry - air dry 15 minutes; force dry 10 minutes at 150° F

+10° F.

Boron/epoxy
1. Vapor degrease as above.

2. Grit blast with 220 grit at 30 psig.

BONDING
1. Bond within 4 hours of surface preparation.
2. Coat surfaces of both adherends prior to bonding.
3. Cure at room temperature under 15 psig *2 psig pressure.

4. Record date of bonding.
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The method of surface preparation for the aluminum was taken from
Cagle (1973) while the surface preparation for the boron/epoxy and the
bonding method was developed by the author. The bonding process was
verified with lap-shear strength tests of the bonded system.
As shown in figure A.1 photoelastic material was bonded to the
surface of the boron/epoxy. The photoelastic material enabled tracking

of the debond front in the fatigue tests of the specimens.
Fatigue Tests

The fabricated specimens were tested 1n a servo-hydraulic fatigue
machine with a maximum load capacity of 10,000 pounds. All of the
tests were conducted at a loading frequency of 10 Hz with a ratio of
minimum to maximum load in the load cycle of R = 0.05. Duplicated
tests were conducted for maximum loads of 5,000, 4,000, and 3,000
pounds.

As the specimens were tested, a debond developed at the change
of cross section and propagated between the aluminum and boron/epoxy
adherends. Throughout the tests the location of the debond front
was indicated by an isochromatic that was observed by viewing the
photoelastic material through a polarizing material. The location
of the debond front is plotted against the number of applied load
cycles on figure A.2 for all of the tests. The results of these
tests will be used with a stress analysis to determine the empirical

constants c, and n,.
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Stress Analysis

Because of the change of cross section of the test specimen,
as an axial load, P, 1is applied to it, it bends. As shown by
Timoshenko (1961) the equilibrium equation for a beam that exhibits

both axial and bending deformation can be written as

dMm dw
V=—+pP— (A.1)

dy dy
where V is the shear, M 1is the bending moment, and P is the
tensile axial load. To use equation (A.1) both the moment M and
the axial load P were related to the deflection in the z-direction, w,

with two equations given by Calcote (1969) as

P dv d?w
—=A — -B — (A.2)
A 1 lldyz
dv d?w
M=B,,— -D — (A.3)
lldy lldyz

where A 1is the cross sectional area of the beam and dv/dy 1is the

axial strain of the beam and
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k 1 k , ,
A, = I Qi(z1 - 21_]) By, =— I Q1(zi 21_1)
=1 2 4=
D - Q;(z; - 2;.4) Q o
=— I Q.(z; -z
11 i‘ey i-1 k
3 o 1- (vxyvyx)i

where 1 indicates the layer of a beam with k layers and z is
measured from any reference surface.
Eliminating dv/dy from equations (A.2) and (A.3) yielded an

expression for the moment as

B d2w d?w
- D11 - (A.4)
dy

Substituting equation (A.4) into equation (A.1) and differentiating

once with respect to y, yielded a governing equation as

B2 d*w d?w

q, ={— -Dj,p— +P— (A.5)

where q, is a transverse distributed load acting on the beam.
The boundary conditions for equation (A.5) were determined
from the end conditions of the test specimen installed in the test

machine as shown schematically on figure A.3a. With the assumption
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that the specimen 1s effectively fixed at both ends by the relatively

massive test machine grips the boundary conditions were determined as

w(-d) = 0 w(L) =0

dw(-d) dw(L)

dy dy

At the change 1n cross section of the test specimen a local

moment given as

M= Pe (A.7)

where e, s the distance between centroids of the two cross sections,

was produced. With this moment the beam can be modeled as a symmetric

beam with two different cross sections acted upon by a local moment

M at the change 1n cross section and an axial load P as shown in

figure A.3b. For the model shown 1n figure A.3b, equation (A.5)

was solved with conventional finite difference techniques (Ames 1971).
To verify the analysis, the strains were determined by both the

finite difference analysis and by experiments. The test specimen

shown in figure A.3a was analyzed. In cross section 2 the specimen

was composed of four layers: the metal core, the adhesive layer, the

composite cover, and the photoelastic material. The thickness, moduli,

and Poison's ratio for each of these layers are given as
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layer material thickness elastic Poisson's
(in) modulus ratio
ps1
1 aluminum 0.188 107 0.30
2 adhesive 0.004 600,000 0.40
3 composite 0.030 3 x 107 0.21
4 photoelastic 0.083 390,000 0.36

With the preceding values and the surface of the metal with strain
gages (see figure A.4) as a reference plane A,,» B,;» and D,

were found for section 1 (see figure A.3) as

200,000 1bs

2.1 x 10® 1bs/in B

11 11

>
n

o
n

2,500 1bs/1n

11

and for section 2 as

3 x 10% 1bs/1n B

11 11

392,000 1bs

>
1l

o
1]

- 65,000 1bs/1n

With the use of the previous values and an applied load P of 5,000
pounds as shown on figure A.4, the finite difference method was used
to calculate deflections and curvatures of the beam. With the curva-
tures the strains in the beam were calculated on the surface of the
metal with (Calcote 1969)

1 d?w

- P+B), T,

£ —
0
A, dy
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On figure A.4 the solid line indicates calculated strains on the
surface of the metal adherend while the circles indicate strains
obtained experimentally with strain gages. As evident from the figure.
the comparison is very good. Consequently, the developed stress
analysis is adequate and can be used to calculate the strain energy

release rates as the test specimens debond.
Calculation of Strain Energy Release Rates

The strain energy release rate can be calculated as

Tim AW Al

= — - — (A.8)
Ab >~ 0 Ab Ab

G

where W is the change 1n work done on the system, U 1is the change
in internal strain energy, and Ab 1is a small extension of the
debond. With the assumption that the debond extends at the maximum

applied load, the work done as the debond extends can be calculated as

MW = P{A‘Saxiﬂ + A(Sbending} + MAGo (A.9)

where AGO is the rotation of the beam at the debond front. The

change in internal energy can be calculated as

AU = AUax1a1 * AUbending (A.10)
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Substituting equations(A.9) and (A.10) into equation (A.3) and

rearranging slightly yields the strain energy release rate as

6ax1a1 AUax1a1
G = 1mm P - =
Ab > 0 Ab Ab
(A.T1)
dbend MAOObend AUbend
+ P + ——
Ab Ab Ab

The first two terms,which neglect bending, of equation (A.11) can be

calculated as shown by Roderick et al (1975) as] (for a unit width)

2
6 tCE cP

axial AUax1a17

) = e ———

11m p
Ab - 0 Ab Ab ) 2Emtm (tmEm + LCEC)

(A 12)

The Tast three 1tems, which are due to bending, can be calculated with

the finite difference results in the following manner

First, the axial deflection due to bending 1s calculated as

shown by Den Hartog (1952) as

5 = - 7 —3 dy (A.13)

N

]The flexible adhesive and photoelastic material are neglected
because they have l11ttle effect on the strain energy due to the axial
load



110
where the slope dw/dy was calculated at each nodal point 1n the
finite difference approximation. Between the nodes the slope
was assumed to vary Tinearly. The integration of equation (A.13)
was done piecewise over the length of the beam. The work done

by the moment was expressed as

Moo= — {— (A.14)

u I dy (A.15)

where again the integration was performed 1n a piecewise fashion.

Equations (A.13) through (A.15) were evaluated before and after
a debond extension Ab. The quantities were subtracted to calculate
the last terms of equation (A.11). The result was added to equation
(A.12) to give the strain energy release at the debond front. In
figure A 5 the solid 1ines show the calculated strain energy release
rate plottedagainst th2 debond lengths for values of applied loads of
5,000, 4,000, and 3,000 pounds. The dashed 1ine on the figure shows the
strain energy release rate--neglecting bending--calculated with
equation (A 12) As evident from the figure, when the debond length
15 greater than 0 5 inch or less than 4.5 1inches, the contribution

of bending to the strain energy release rate 1s small. Particularly,
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when the debond length is about 2.5 inches long, the bending contribution
15 zero.2 Consequently, for a debond Tength of 2 51inches, equation

(A.12) can be used to calculate the strain energy release rate
Curve Fit for Empirical Constants

The debond rates for the configuration analyzed were determined
by taking the slope of the curves at a 2.5-inch debond length from
figure A.2. These experimental rates and the corresponding values
of the calculated strain energy release rates are shown in Table A.1.
The values in Table A.1 were used to determine the empirical constants
c, and n, in equation (5) with a least squares fit (Wylie 1966).

To perform the f1t, equation (5) was written as

lTog(db/dN) = log(c,) + n,log(G) (A.16)
As a result of the curve fit, ¢, and n, were found as

c, =3.158 x 107° n = 3.616

Figure A.6 shows the data as points and the fitted equation (5)

as a solid line. As evident from the figure, the equation fits the

2Actua11y, there are also two other debond lengths where the
strain energy release rate 1s zero, but they are located closer to
the ends of the specimen where the analysis may be more inaccurate
than at the 2.5-1nch debond length.
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TABLE A.1

STRAIN ENERGY RELEASE RATES
AND DEBOND PROPAGATION RATES

load strain energy debond rate
release rate, G db/dN
1bs in-1bs/in in/cycle
5,000 2.15 5.60 x 107*
5,000 2.15 5.20 x 107%
4,000 1.38 1.06 x 1074
4,000 1.38 8.00 x 107>
3,000 0.77 1.26 x 107°
3,000 0.77 1.33 x 107°
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data well. With the determined empirical constants, equation (5)
can be used to predict debond propagation rates whenever the strain

energy release rate can be determined.



APPENDIX B
ADHESIVE SHEAR DEFORMATION ASSUMPTION

As mentioned in Chapter IV, the complexity of the analysis
for a reinforced system is significantly reduced by assuming that the
adhesive only undergoes shear deformation while the adherends only
undergo extensional deformations that do not vary through the
adherend thickness. Herein, the validity of these assumptions were
investigated by comparing a one-dimensional solution that was based
on these assumptions with a more rigorous two-dimensional finite
element solution. Before the one-dimensional and two-dimensional
solutions were compared the bulk properties of the adhesive were

determined.
Adhesive Bulk Properties

To determine the bulk properties of the adhesive an appropriate
test specimen was designed and fabricated in several steps. First,
a female plastic mold was made from the specimen shown in figure B.la.
Then, the adhesive liquid base and hardener were combined and cast
into the mold. Next, after curing 24 hours in the mold the adhesive
specimen was removed and cured an additional 5 days before it was
handled. Finally, x-rays were taken of the specimen to locate air

bubbles developed in the molding process. Specimens that contained

116
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large air bubbles in critical areas were scrapped Six test
specimens were fabricated in this manner but only three were acceptable
for testing.

Prior to the testing the specimens were instrumented with strain
gages and linear variable differential transformers (LVDT) as shown
1n figure B.1b. The strain gages were used to obtain the longitudinal
and transverse strain while the LVDT's were used to check the strain
gages (the LVDT's were wired to eliminate bending effects in their
readings while the strain gages would i1nclude bending in their
readings). Discrepancies between the readings would indicate bending
due to poor specimen alignment in the test machine Each 1nstrumented
specimen was placed in a servo-hydraulic test machine with a loading
range of 2,000 pounds and a sensitivity of 10 pounds. Then, each
specimen was loaded to failure at a rate of 80 lbs/sec.

In this manner, the three specimens were tested and the results
were nearly identical for all three of the tests. For all specimens,
the Tongitudinal strain calculated from LVDT's agreed within 1.5 percent
of the longitudinal strain gage reading and indicated the specimens
were aligned properly 1n the test machine. The data obtained from the
strain gages are shown on figure B.2 in the form of a stress-strain
plot. On the figure the heavy solid line indicates the strain 1in the
loading direction €y and the dashed line indicates the strain
transverse to the loading direction g As indicated by the light
solid 1ines on the figure, the stress-strain curve can be approximated

by a bilinear stress-strain curve with a change of slope occurring

at 4,200 ps1.
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In the initial linear region the following values were obtained

from the curve:

Aoy = 3,000 ps1, Aej = 0.005, €y = 0.002

Using these parameters, the Poisson's ratio and the elastic modulus

were calculated as

£ Aoy
vyx = = 0.40 Ey = Z;?— = 600,000 ps1
Yy

bed

2]
<

With the assumption that the adhesive is isotropic the shear modulus

was calculated as

y
G = — = 215,000 psi
2 (1 +v )
yX
Along similar lines, the material parameters 1in the second linear

region were determined as

vxy = 0.28 Ey = 190,000 psi G = 74,000 ps1

The fracture of the specimen occurred at a stress of 6,600
ps1 at an axial strain, €y of 0.0215. With the preceding material
property values for the adhesive, the one-dimensional and two-

dimensional solutions were compared.
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As a test case, the shearing stresses in the adhesive layer

of the specimen shown on figure B.3a (the specimen is symmetric about
the x-y plane) was calculated with both types of solutions for a plane
stress state. Although the solution was for plane stress, for the
self-equilibrating load system shown on figure A.la the stress
distributions are identical for both plane stress and strain states
(Timoshenko (1951)). Consequently, although the tests case considered
a state of plane stress, the results are also applicable to a state of
plane strain which may be more appropriate for a section taken through

the thickness of the reinforced system shown on figure 9.
One-Dimensional Solution

Figure B.3b shows a freebody of the specimen shown in figure B.3a.
On the figure P is half the load in a composite adherend, F(y)
and q(y) are the load in the metal adherend and the shear flow in
the adhesive at any point y, and tm’ 2tc, and tad are the
thicknesses of the metal, composite, and adhesive respectively.
The change in the load F(y) with respect to y 1is the shear
flow in the adhesive layer given as
dF(y)
qly) = —— (B.1)
dy
The shear stress in the adhesive is this shear flow divided by the

width, w, of the specimen, given as

q 1 dF(y)
™My) = — = ——— (B.2)
W w dy
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With the assumption that the adhesive only undergoes shear deformation
and that this deformation does not change through the adhesive thickness,
the shearing stress in the adhesive can be related to the shearing

strain in the adhesive by the constitutive equation as

T(y) = v(y)G,g (8.3)

The shearing strain in the adhesive can be related to the extensional
displacements in the metal, um(y), and the composite, uc(y),

as

y(y) = (B.4)

Substituting equation (B.4) into equation (B.3) and that result into

equation (B.2) yields

dr(y) Gadw

= - B.5
- » valy) - v ()] (8.5)

Equation (B.5) can be differentiated with respect to y to yield

d?F Gw dvi,(y) dv.ly)
- = — - (B.6)
dy td dy dy
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when the derivatives of the extensional displacements u and u.
with respect to Yy are the extensional strains i1n the metal and
composite adherends respectively. These strains were related to the

extensional loads in the adherends by

€= = €. = = (B.7)

where E, and Ec are the moduli of the metal and composite respec-

M
tively. Substituting equations (B.7) into equation (B.6) yielded a

second order, nonhomogeneous differential equation 1n F(y) as

d?F(y)
- aF(y) = 8 (B.8)
dy
where
Gad 1 ]
a = +
tad tmEm tcEc
and
-PGad —sGad
B = =

WtadEctc tadEc
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where s 1is the stress in the composite and Gad is the shear modulus

of the composite.

Solving equation (B.8) yielded a complete solution as

(B.9)

are

(B.10)

y=e F(y) 1s bounded

With the use of these boundary conditions, the constantsin equation

(B.9) were found to be

B
C1=0 C2=a'
Thus, equation (B.9) becomes
stad - /ay
F(y) = 1-e (B.11)
atadEc

By the use of equation (B.2), the shear stress in the adhesive was

calculated from equation (B.11) as
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T(_Y) s — e (B]Z)

Finite Element Solution

A finite element computer program, PLANE, was used to calculate
the shearing stresses in the adhesive layer in the specimen shown in
figure B3.a. PLANE is an elastic-plastic, two-dimensional program
which uses constant strain and linear strain triangular elements.

PLANE was developed by the Grumman Aircraft Corporation for the
National Aeronautics and Space Administration and was documented by
Armen and Levy (1962). The mesh used for the analysis is shown on
figure B.4 and contains 1,522 degrees of freedom. The triangles

are predominately linear strain triangles which allow linear variations
in the stresses and strains through the elements. Each of the adherends
is modeled with several elements through the thickness thus allowing
variations of extensional and shearing stresses through the thickness.
In contrast, the one-dimensional analysis assumed uniform extensional
stresses and no shearing stresses through the thickness of each
adherend. The adhesive layer was modeled by one layer of elements

which allowed 1inear variation in stresses through the adhesive

thickness.
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One-Dimensional Versus Finite Element Solution

To compare the results of the two solutions, the specimen
configuration shown in figure B.3a with a width of w = 1.0 inch

and the following parameters

metal adhesive composite

0.1 1n

thickness t 0.1 in t., = 0.004 in t
m ad

c

19.3 x10% ps1 6., = 215,000 ps1 E. = 30 x 10° psi

modul i E

m ad C

and an applied stress s of 1,000 psi was analyzed with both solutions.
The parameters used in these solution were typical for constituents
used in the reinforced system discussed in Chapter II. The adhesive
shear stress calculated from the one-dimensional solution equation
(B.12) was plotted as a solid line against y (distance from the
edge of the metal adherend) on figure B.5. On the same figure the
circles indicate values of the adhesive shear stress calculated
from the finite element solution. As evident from the figure the
one-dimensional solution gives shear stress values twice as high as
those obtained from the finite element solution near the edge of the
metal adherend (y = 0). Evidently, the shearing deformation of the
adherends which was not accounted for in the one-dimensional solution
has a significant effect on the values of the shear stresses.

To account for the adherend shear deformation and still use the

simplified one-dimensional analysis, an effective shear modulus Geff
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was introduced. The magnitude of Geff was determined by equating
the maximum shear stresses in the adhesive calculated by the finite
element solution to the expression for the maximum shear stress from

the one-dimensional solution from equation (B.12) as

sGad
T = —— (B.13)

max _
Finite Element tadfe o (y=0)

Solving equation (B.13) for G yielded an expression for an

effective shear modulus Geff as

E 1 1
maX(FELC .

SwW tmEm tCEc

T

(B.14)

Gors

With this value for G in equation (B.12) yields a corrected one-
dimensional solution for the adhesive shear stress as

-%iy
sGeffwe

T(y) = ——— (B.15)
tadfec Vo

For the sample analysis, equation (B.14) yielded Geff as 64,000
psi. Using this value for Geff’ equation (B.15) was plotted against
y as a dashed line on figure B.5. The agreement between equation (B.15)
and finite element results indicated by the circles on the figure is

excellent. Consequently, the assumptions made in Chapter IV, that the

adherends only undergo extensional deformation while the adhesive
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only undergoes shear deformation, can be used to accurately predict
shear stresses in the adhesive with a simplified analysis if an
effective shear modulus for the adhesive is used 1n the calculations.

For analysis of the reinforced system shown in figure 2 the
effective moduius was determined for a range of adherend thicknesses
for the adhesive used in the reinforced system both for before
and after the adhesive yields. To determine the values of effective
shear modul1 numerous finite element solutions were run with different
adherend thicknesses for both the initial bulk adhesive shear modulus
of 215,000 psi and the bulk shear modulus after yielding of 74,000
psi, The results of these calculations are given in table B.1. In
the table the maximum shear stress calculated from the finite element
solution and the effective shear modulus are tabulated for the
different adhesive thicknesses.

As shown in table B.1 the value of the effective modulus for the
initial shear modulus of the adhesive does not vary much with adherend
thicknesses. The average value for Geff is about 65,000 psi and
is within 3 percent of any of the calculated values.

Also, as shown in table B.1, the value of the effective modulus
for shear modulus of the adhesive after yielding also has little
variation with adherend thicknesses. The average value in this case
is about 36,000 psi and is within 3.3 percent of any of the calculated
values.

As evident from the previous discussion the reinforced system

can be analyzed by assuming that the adherends only undergo extensional
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deformation while the adhesive only undergoes shearing deformation
if an effective shear modulus of 65,000 psi is used for the adhesive
before the adhesive yields and an effective shear modulus of 36,000 psi

is used for the adhesive after yielding.



TABLE B.1

EFFECTIVE SHEAR MODULI FOR REINFORCED SYSTEM

metal adherend thickness, inches

0.05 0.10 0.15 0.20
Wl T, psi 754 887 957 1,003
S| max
ol Goees psi 66,960 65,200 65,200 65,800
n eff
[V}
E E S Tmax, ps1 841 1,049 1,169 1,251
o
g.; < S| Goppr PS 66,400 64,800 64,400 64,800
e o) ¥ e
<
vl 8 | o T, psi 876 1,124 1,278 1,389
>3k 21 “max
ol 0 o
gwle | 5 Gopes PSI 65,800 64,300 64,000 64,500
TN E
[1+] o
o of Toax PS 897 1,171 1,347 1,479
S| Gggps> PST 66,000 64,300 63,600 64,400
QT ., psi 561 661 710 743
o max
9 S| Ggpps PST 37,100 36,200 35,900 36,100
n i e
p [ =
S 15 S| T .., psi 629 785 871 929
T~ - [e) max
g4 5 S| Gaggs PST 37,100 36,300 35,900 35,800
VO U
Z3lE | B T .., ps? 656 842 953 1,030
n o~ 0 o max
28 | S| G ges Psi 36,900 36,100 35,700 35,500
- £ eff
1} Q
o of T4y PSi 671 876 1,002 1,090
S| Gopps PSI 36,840 36,000 35,400 35,000

eel



APPENDIX C
REMOTE STRESSES IN THE ADHERENDS

For equilibrium to exist, the macroscopic stresses applied to the
reinforced system must be balanced by the stresses in the adherends

of the system. This relationship can be written in vector form as

[~ b [~ [~ .

Sy cme oC, y

Sy A = omyy Ap + Ocyz Ac
s ny omxy-] ICyy .

L system - metal .. Jcomposite

(c.1)

where A represents the area of the reinforced system and Am and

Ac represent the area of each element. For the case where stress

was applied in only the y-direction,

' Sy = 0
s, = applied load/A (c.2)
sxy =0

With strains uniform through the thickness, (C.1) can be rewritten for

a unit width as

134



s (tm + tc) =

where the C and D are the stiffness matrices for an isotropic

135

[clt, + [0lt,

and orthotropic material in plane stress, respectively, as given by

Zienkiewicz (1971) as

-
E vE
0
1 - V2 1 - v?
vE E
[c] = 0
1 - v2 1 - v2
0 0 G
-
Ex vyxEx
— 0
E
EY Yy
vyxEx
(0] = 1 0
E
y
ny Ex
0 0o —— (1 -—w
E E
Yy Y

(C.4)
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with E, ny, and Vyx denoting the extensional modulus, the
shear modulus, and Poisson's coefficient respectively. With simple
matrix algebra, equation (C.3) can be solved and the strains determined.
These strains in turn can be used with the appropriated stiffness

matrices to calculate the stresses in the metal and composite

adherends as

- -
oMy x rsmxx
°1"yy = [c] E"‘yy (C.6)
Gmxy Lemxy
chx ECxx
°ny = [D] ecyy (C.7)




APPENDIX D
GREEN'S FUNCTION FOR THE CRACKED SHEET

The solutions for the interlaminar stresses and the strain energy
release at the debond front developed in Chapters IV and V respectively
require Green's functions for both displacements and stresses. As
pointed out by Dennemeyer (1968), the solution for a concentrated
load acting on a body can be used as a Green's function.

Herein, the solution for four concentrated loads that are
symmetric with respect to a crack in an isotropic sheet was developed.
The solution was based on elasticity theory using complex variable
theory as developed by Muskhelishvili (1975). The solution was
predicted on the assumptions that the cracked sheet is infinite
isotropic, and can be described by a plane stress or strain analysis.
As shown by Muskhelishvili (1975), both the stresses and displacements
in a cracked sheet can be expressed in terms of two stress functions,

#(z) and v z), as

o, = Real{e(z) + o(z) - [zo'(z) + ¥v(2) ]} (D.1)
oy = Real{d(z) + o(z) + z0'(z) + v(z)} (D.2)

137
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Iy = Imag{zd' (z) + ¥z)} (D.3)
2G(u + 1v) = no(z) - 20°(2) - v(z) (D.4)
where Ox’ Oy and Oxy are stresses, u and Vv are displacements,

the bar over the functions denotesthe complex conjugate, 1 1s the

square root of -1 and

d¢(z) dy(z)
o(z) = ¢'(z) = viz) = y'(z) =
dz dz
n =3 - 4y plane strain
3-v
n = plane stress
1+v

1s the Poisson's ratio.

The stress functions, &(z) and vy(z), for the cracked sheet
under four concentrated loads as shown on figure D.l1c were constructed
by superimposing the stress functions for a cracked sheet under two
different loading conditions. The first condition which is shown
on figure D.la has concentrated loads acting on the cracked sheet plus
a stress distribution applied to the crack surface. This stress
distribution was equal to the stress distribution which exists along

the x-ax1s for an uncracked sheet with concentrated loads. This stress
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(a)

Fig. D.1.

= [—

(c)

Superposition method used to formulate Green's functions for a cracked sheet

6l
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distribution closes the crack and, therefore, effectively eliminates
it. As a result, figure D.la represents an uncracked sheet with
concentrated loads acting on it. The second condition which is shown
on figure D.1b is for a stress distribution acting on the surface of a
crack. This stress distribution has the same magnitude, but is
of opposite sign to the stress distribtuion applied to the crack 1n
the first condition. The development of the stress functions for
these two conditions follows.

The stress functions for figure D.la were developed by super-
imposing the solution for single concentrated forces that act in

different quadrants. For a point, z in the first quadrant the

0’
solution was given by Muskhelishvili (1975) as

1 1 Z,
o(z) = -S ——  ¥(z) = 5n -S - (D.5)
z -z, z -z, (z - zo)
where
X+ Y
S = ——
2n(1 + n)tm

and X and Y are the load components 1n the x and y directions
respectively, m = 3.1459, and t, s the thickness of the sheet.

Equations (D.5) were generated for the second, third and fourth
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quadrants by replacing S and z_ with -S and —25, -S and -z,

and S and 25 respectively. These stress functions were then

superimposed to form the functions

1 1 1 1
3(z) = - X CHR (0.6)
z+z, z-14 z+z, z-12
1 1 1 1
viz) = S{n — - -EO - + >
z-1z, z+72, (z - zo) (z + zo)
1 1 1 1
+ S{n - -z, - + —
z -2, z+7z, (z - zo) (z + zo)
(D.7)
where upon differentiation equation (D 6) becomes
1 1 1 1
%' (z) = -S - - S S —
(z + zo) (z - zo) (z + zo) (z - zo)
(D.8)

and upon integration equations (D.6) and (D.7) become
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¢(z) = S [Log(z + z) - Log(z - z) ]

+ S [Log(z + 26) - Log(z - 25) ] (D.9)
1 1
w(z) = S n{LOg(z__z'o)-Log(z+Eo)} +Eo +
Z-2 z+12
0 0
1 1
+ S {n{log(z - z.) - Log(z + z_ )) +z — + —
{ ° 0 9z-72 z+7
0 0
(D.10)

Equations (D.6) through (D.10) are the required stress functions,
derivative, and integrals to compute stresses and displacements from
equations (D.1) through (D.14) for figure D.la.

The stress functions for load condition 2 shown on figure D.1b
were obtained in the following manner. Following Muskhelishvili (1975),
a new stress function Q(z) was introduced which is related to the

previously discussed stress function by the equation

(z) - &(z) - z8'(2) (D.11)

y(z)

where

a()

(z)
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The required stress functions, ®(z) and $(z), can be

determined for pressure acting on a single crack as (Muskhelishvili

1975)
1 I(t)p(t)dt 1 q(t)dt
6,(2) = ——— I + s (D.12)
2nil(z) -a t -z 2ni -a t -z
1 I(t)P(t)dt 1 q(t)dt
ay(z) = ——— /@ - st (D.13)
2nil(z) -a t -2z 2ni -a t -z
with
crack length
I(z) = /22 - a a=
2
and
1 i + -
- + = - — -
P(t) = X (0," +0,") > (Tyy = Tyy)
(D.14)
1 i + _
a(t) == (o, -0,7) - = (T, - T,)

oy and Txy are normal and shearing stresses acting on the crack

surfaces respectively (the plus sign indicates the upper surface of

the crack while the minus sign indicates the lower surface.) P(t)
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and q(t) are total normal and shearing pressures which act on the
crack surfaces. As mentioned previously, the stresses which acts
on the crack surface in figure D.1b is equal to the magnitude but of
opposite sign to the stress caused by four point loads acting on an
uncracked sheet. Therefore, the functions, ¢(z) and w(z), shown
in equations (D.6) and (D.7), which are solutions for point loads on a
continuous sheet, can be used to find P(t) and q(t).

The normal and shearing stresses acting on the crack were
calculated (Muskhelishvili 1975) in terms of equations (D.6), (D.7), and

(D,8), as

oy - iTxy = ¢(z) + o(z) + z0'(z) + V(z2) (D.15)

Substituting equations (D.6), (D.7), and (D.8) into equation (D.15)

yields
oy - iTxy = alz,z)) + a(z,z,) (D.16)
or
oy - iTxy = 2Real (a(z,zo)) (D.17)
where
-4z, z + 26 z -z, 2”26
alz,2y) = S - + - + —
22 - 2,2 (z+2z))2 (z- zo)z z? - zo2
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Equation (D.16) shows that no imaginary term exists. Consequently,
Txy is zero. Also, °y has the same value along the x-axis independent
of the direction in which the x-axis is approached. Consequently,
oy+ = oy’. Therefore, with consideration given to the above statements
and equations (D.14), the total pressures on the crack are

P(t) = alt,z;) + ait,zoj

(D.19)

1]
o

q(t)

As a result of the above simplifications, equations (D.12) and (D.13)
become equal to each other and are expressed as

1 I(t)P(t)

o(z) =(z) = ——+ 8@ — dt (D.20)
2nil(z) -a t -z

The integral in equation (D.20) was evaluated by contour
integration along the contour shown in figure D.2 by using the

Residue theorem given as (Wylie 1960)

J f(z)dz = 2mi T Residues (D.21)
c

where the residue for simple poles is given as

) gM -1

M
Residue = ————— 1im Mo (z - a) f(z)) (D.22)
M-1)1 z-+a }d
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Fig. D.2. Path for contour integration
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The contour shown in figure D.2 can be broken into several sections.

Thus, equation (D.19) becomes

I Mzg)+ 7 Ag)+75 A) - 7 Alg) + 1 Az)
T r T

1 2 3 1-‘l-; I‘S

- f Alg) + S A(r) = 2mi = Res (D.23)
T T

6 7

where

A(z) = dz, g =t+is

On figure D.2 the integral is evaluated along the contour as R

approaches infinity and ¢ approaches zero. Each of the contours

can be expressed as follows.

I(z) P(z)

S A(z) = Vim f ——— dt
r, e+ 0 L -z
let z +a-= aeie dr = iee1ed6
. ie ezeie - 2ace'® P(ee10 - a)e‘ede
“f Alg) = lim ;e 5
I‘l e+ 0 27 €e -a-12z

(D.24)
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likewise for T, let r-a=¢e'®
ie ezeie + Zaseie P(eeie + a)eiede
. f _ . f"lT _
I,ZA(;) = lim n cel®4a-2
e+0
(D.25)
for ra
+
I(t) P(t)dt
; A= s (D.26)
I‘3 -a t -2
likewise
I(t) P(t)dt I(t) P(t)
;S Ag)= @ Y . Jp——— T
Ty -a t-z -a t-z
(D.27)

- +
Noting that Muskhelishvili (1975) showed that I(t) = -I(t) for

z < a, equations (D.26) and (D.27) can be combined to give the

integral on the left hand side of equation (D.20) as

+
I(t) P(t)dt

S Mgy = f Alg)= 2/ — (D. 28)
I‘a F“ -a t -2
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Noting that

f?t) = Iit) forg> a

the sum of the next two segments of the contour integral equals

zero, because

+ +
I(t) P(t)dt I(t) P(t)dt
IoOA@E) = SR A - éa
a

5 t -2z Fs

t -z

so that

fF A(z) + I A(z) =0 (D.29)

5 6

The last contour segment can be evaluated as

I(z) P(z)dz

S A(g) = lim f
r, R > o T -z

Let 7 = Re'®,dr = Rie'o

Ri \lee”O - a2 P(Re'®)do

" f Alz) = lim f
I-‘7 R> oo 0

27

Reie S (D.30)
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Substituting equations (D.24), (D.25), (D.28), (D.29), and (D.30)
into equation (D.23) and rearranging the terms yield the desired

integral as

a I(t) P(t)dt 1 . 15\L2e1e- 2aee1eP(ee1e - a)do
= i ZResidues - 1lim — 7/
-a t -z cs>p02 2" ce'® - a -
1 ievgzeie + 2ace'® P(ee1e - a)e‘ede
=T
- lim - Jf -
c >0 2 ee19 +a-1z2z
1 RifRze21© - a2 p(re™®)do
-lm - J (D.31)
R > w 2 0 Re'® - 2

where P(t) 1is given by equation (D.19). As an example, equation
(D.31) was calculated for the first term of P(t). For this case

the expression to consider was chosen as

(D.32)
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The residuals for expression (D.32) were calculated with equation (D.22).

They become

lim -41(z)z,
Residuals = S
g >z (g +z)(r - 2)
-4I(z;)zo
+ T1m
. (z - z)(z - 2)
L -z,
—41(;)20
+ 1im
(¢ - z)(g + z)
r >z (D.33)

To insure single valuedness of the stress functions, values of I(g)
must be chosen so that they 11e on the same branch. Values of I(z)
will lie on the same branch for all values for ¢ if

I{z)
lim —— =1 (D.34)

g
L+ o
The two possible values of 1(z) are the complex numbers W and W -
Hence, equation (D.34) requires that I(zo) equals W, and that I(-zo)
equals W, or simply that I(zo) = -I(-zo). With the proper values
of I(z) defined according to equation (D.34), equation (D.33)

reduces to
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4s

Residual = - ———— (zI(zo) - zoI(z)) (D.35)
7 2 . 22

o)
In order to evaluate equation (D.31) the 1imits of three
integrals must be taken, The first two integrals involve limits as
e + 0 (equations (D.24) and (D.25)). The evaluation of these limits
is similar for both equations. The 1imits can be obtained by rearranging
the terms in the integrand so that they can be expressed by a simple

binomial series as

nin - 1)
(x + y)n =x"+ nxn']y $—_— xn'zyz...(y2 < x2) (D.36)
2!
or
(1 + x)—] =1+ x + x2+ x3 +... (x2 < 1) (D.37)

With the use of the first term of P(t) as shown in (D.32), as an

example (D.24) can be expressed

-4z ie VL2e216 - 2ace'% %0

-a+ zo)(ee10 -a- zo)(se16 -a-2z)

(D.38)
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0

The term VLeZ1O - 2aee'” 1n equation (D.39) can be expressed in terms

of equation (D.36) as

10
VLeZIO -2ae' = J;—; 2 ee'V - 2a
€e1e
1,
= ifea "2 (1 . —)"
2a
i0 2 290
€e e’e
=1 Veza "2 (1 - . (D.39)
4a 32a?
while the term (€e19 -a+ z)'] can be expressed 1n terms of equation
(D.37) as
1 1
10 - i0
] -a+z ce
0 z - a +1
)
1 ce'® e2e19
= ] - + seo e
z, - a z, - a (z, - a)?

(D.40)
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Substituting equations (D.39), (D.40) and similar expressions for the
remaining terms in the denominator of equation (D.38) into equation

(D.38) yields an expression as

lim 10 ce'® 1 ce'®
2
'420 IO1E c2a e 2 1+ xx 1 - coe
e~+0 2 4a z, - a z, - a
-1 ce'® -1 ee'?
1 + ese ——— + - ae s e1ed®
Zo + a Zo + a Z +a zZ +a
(D.41)

whose 1imit is zero. Equation (D.25) can be evaluated by similar means.
The result for P(t) as shown by (D.32) 1s also zero.

Equation (D.30) can also be evaluated by a Timiting process and
by the use of equations (D.36) and (D.37) as R > «=. For this case,
the integrand has to be arranged in a manner that makes the expansions
for equation (D.36) and (D.37) valid for large values of R. For exam-
ple, for the first term of P(t) as given by (D.37), equation (D.30)

can be expressed as



2 L
a
i (1 Ez;m do
1im
L /" - — A
+ ® 0 i 0
Re T 77290 R TS 7
Re Re (D.42)

By substituting the appropriate expansions for the terms in the integrand
of equation (D.42), the 11mit as R increases without bound gives
the value of equation (D.42) as zero.
Simlarly, equation (D.31) can be evaluated for all terus of
P(t) contained 1n equation (D.19). A1l of these terms were combined,

simplified, and substituted 1nto equation (D.20) to yield

¢(z,zo) = Q(z,zo) =S B(z,zo) + S B(z,zo) (D.43)
where
1 —4z0 ano z -z, z + z,
B(z,zo) = - - + — + - - -
2 _ 2 _ -
2 z Z, z z, (z zo) (z + zo)
-3 2 _ 2 3
2, - 2, a 2z, a® + 2z, l
' ] [
- 2 2
21(20)1(2) (zo z) (z0 +2) !
z I(z.) -
) 0 ) nI(Zo)
1(z) z2- 22 72 - 22 (D.44)



156
With the use of equation (D.43), which shows &(z) and Q(z)

to be equal, and equation (D.11), Y/z) was expressed as

v(z) = o(z) - o(z) - z9'(2) (D.45)

where ¢(z) 1is given by right hand side of equation (D.43). To
evaluate equation (D.45), the derivative of ¢(z) was required. Hence,

the derivative of B(z.zo) was required because

do(z)

= SB'(z,zO) + §B'(z,§b) (D.46)

Using a symbolic manipulation system, MACSYMA (1975), written

in LISP programming language, the derivative of B(z,zo) was found

to be
= 2 25 _ 3
. nz0 320 Z +z2°z 420
B‘(z,zo) = -2z —_ +
2 _ 24y2 _ 3 3
(z z, ) (z0 z) (z0 + 2)
1 1 nI(zo)(aZ?O2 - 2z% + a?z?)
I(z) 2?2 - a? (zo2 - z%)?




_— 2 + - 2 2 - - 2
Z, - 2, z, 2z, 2a z, 2z, 2a
+ +
- 3 + 3
21(20) (zo z) (z0 z)
2 _ 2
z a 2z, zz_+ a
+ -
2 _ 2 - 2 + 2
z a (zo z) (Z0 z)

(D.47)

To complete the evaluation of the functions used in equations
(D.1) through (D.4) for pressure acting on the crack surface, the
integrals of &(z) and vw(z) given by ¢(z) and y{(z) respectively
were determined. As shown by equation (D.45), once ¢(z) is found
p(z) is also determined. To evaluate ¢(z) by integrating (D.43)
the integral of B(z,zo) was determined (evaluation of the integral
of B(z,56) 1s the same as for the integral of B(z,zo) except that
z, 1is replaced by 36).

Many of the terms in B(z,zo) are easy to integrate by using
standard rules of calculus. However, those terms which contain I(z)
in the denominator require some rearrangement before the integration
is attempted. For example, integrals of the type

dz
11(z) = f ——m8 (D.48)
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appear frequently and were 1i1ntegrated as follows. First, a change

of variables was made by letting

Z = asino, dz = acosedo

With the restriction that |z| < a, equation (D.48) became

dz acosodo

11(z) = f = J (D.49)
I(z)(zO - 2) I(z)(z0 - asinQ)

Next, the trigonometric relation sin20 + cos?0 = 1 was used

to express c¢osp 1S

cosQ = —m8M8—— (D.50)

At this point care must be taken to choose the correct value of the
multi-valued function. The correct value was assured by requiring

equation (D.34) to hold. For example, I(z) can be written as

1(z) = Vz2 - a2 = 1V a2 - 2> or - 1\/a2 - 22

but according to equation (D.34)
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so then
I(z) = - i Jaz - 22 or az - 22 = 11(2) (D.51)

Substituting equation (D.51) into equation (D.40) and that result

into equation (D.49) yields the result

dz do

S ————— = S ——— (D.52)
I(z)(zo - 2) z, - asind

which can be inteqrated by using standard integral tables.

Burlington (1973) gives the value of the integral in (D.52) as

- : 2 _ 2
do -1 a+ zos1n0 +\’a z, cos0

z_ - asinod az - 2z 2 zy - sind

(D.53)

Making the appropriate substitutions of

sing = z/a

il(z)/a

C0s0o

2 . 2 = 3
a z, 1I(z°)

gives the result of (D.48) as



dz 1 -a2 + 2z, - I(zo)I(z)
s = - ———— log
I(z)(z0 - 2) zo2 - a2 a(z0 - 2)
(D. 54)

The development of equation (D.54) was restricted to values of
|z| < a. However, for values of |z| > a the substitution z = aCSC ©
can be made and a similar process repeated. The results of this integra-
tion are identical to equation (D.54). Consequently, equation (D.54)

is valid for all values of z (the same can be shown to be true for

all values of zo).
After much labor and simplification the integral of B(z,zo)

was found to be

1
BI(z,zo) = E— Log(z + zo) - Log(zO -2) +n {Log(26 - z) - Log(z+ Eb%

2(z,, - z,) I(z)

+ XI(z,zo) - nXI(z,zo)

(D.55)

where

(zzO - a? - I(z)I(zo))(zo + a)

XI(z,z ) = L
Z:25) = 109 (22, + a* - 1(2)1(z,))(z, - 2)
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Therefore, integration of equation (D.43) can be expressed as

¢(z,zo)=w(z,zo) = f¢(z,zo)dz = fa(z,2,)dz = SBI(z,z,) + §BI(z.§b)

(D.56)

By integrating equation (D.45), y(z) can be expressed in terms of

equation (D.56) as
w(z) = ¢(z) - zo(z2) (D.57)

Therefore, in summary, the functions required to evaluate
equations (D.1) through (D.4) for the cracked metal sheet which has a
stress applied to the crack surface (equal in magnitude but of
opposite sign to the stress along the crack line for a solid sheet)

are given by the equations (D.43), (D.45), (D.56), and (D.57).
Green's Functions for Stress

As mentioned previously, the solution for the cracked sheet is
obtained from superposition of the stresses from the two loading
conditions shown on figure D.la and D.1b. The stress functions
for these two loading conditions, which were developed in the previous
sections, were used to obtain the stresses in each loading condition.
The stresses for the two conditions were then added to form the Green's

function for stresses for the loading condition shown in figure D.lc.
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The stress state for four point loads acting on a solid sheet
shown on figure D.la was found by substituting equation (D.6),
(D.7), and (D.8) into equations (D.1), (D.2), and (D.3). The result

is, in terms of the coefficients of the X and Y point loads:

Real{Gl - G2 - G3}X + Real{G1A - (G2 - G3)}Y

o, =
oy = Real{G1 + G2 + G3}X + Real{G1A + i(G2 - G3)1}Y (D.58)
Opy = Img {G1 + G2 + G3}X + Img {G1A + i(G2 - G3)}Y

where

Real -220 220
Gl = " . T o=, (D.59)
2m(1 + n)tm 2% -z, z® -z,
Real -220 220
GlA = > i " " + — (D.60)
(1 + n)ty, 2? -z, 22 -z
1 2nzo z, + 2 z, - 2

L]
|
+

G2
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1 2nz z +2z 2. -z

n
1
+

G3
2n(1 + n)tln 22 - ¢ 2 (z+Z)2 (z-72))%

(D.62)

The stress state for the stress applied to the crack surface,
as shown on figure D.1b, was found by substituting equations (D.43),
(D.45), and (D.46) into equations (D.1), (D.2), and (D.3). After

several algebraic manipulations, the result was found to be

cx = Real{2G5 - G7} X + Real{2G6 - G8}Y
Gy = Real{2G5 + G7} X + Real{2G6 + G8}Y (D.63)
Oy = M (6G7) X + Img (G8) Y
where
1
G5 = —————— B(z,zo) + B(z,EO) (D.64)
211’(] + n)t
m
i
66 = —mMm B(z,zo) - B(z,zo) (D.65)
2n(1 + n)tm
(z - 2)
G7 = —m8——— B'(z,zo) + B'(z,Eo) (D.66)
2n(1 + )t
m
i(z - 2)
G8 = B'(z,2,) - B'(z,ib) (D.67)

2m(1 + n)tm
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Superimposing the stresses from the two loading conditions by
adding equations (D.58) and (D.63) and taking the coefficients of the
X and Y 1loads for the different stresses yielded six Green's

functions for stress as

6, = Real{6] - 62 - G3 - 2G5 + G7) (D.68)
6S,, = Real{G1A - (G2 - G3) - 266 + 68} (D.69)
65,, = Real{G] + 62 + G3 - 2G5 - &7) (D.70)
65,, = Real{G1A + (62 - G3) - 266 - G8) (D.71)
65 (xy)x = Img {61 + G2 + 63 - 67)} (D.72)
65 (,y)y = 1M {G1A + (G2 - 63 - G8)) (D.73)

where the first index on GS indicates the stress and the second

indicates the load responsible for it. For example, GSyx indicates

the oy stress at point z due to a unit load applied in the x-

direction at point z,.
The Green's functions given by equations (D.68) through (D.73)

were verified with the use of a finite element program developed

by Y. K. Cheung and I. P. King and documented in Zienkiewicz's book

(1971). The finite element model used for the test case is shown in

figure D.3. Because of symmetry only the first quadrant of the cracked
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NN e
, 1.'$_|'"'| crack tip\ c:

in point of load application

Fig. D.3. Finite element mesh used to check Green's functions



166
sheet was modeled; the crack was simulated by freeing the nodes in the
y-direction along the x-axis from the origin to x = 1.5 inches.
Point loads of X =1 and Y =2 were applied to the model at the
point z, = 2.5 + 2.51,

The finite element results were compared to the Green's functions
results. For the comparison, the stresses were calculated along the
line 2z = x + 1.251 by equations (D.68) through (D.73) and with finite
elements. Finite element values of stresses along this line were
taken as the average of two elements midway between y-coordinates of
the nodes. On figure (D.4) the dotted 1ine, dashed line, and solid
1ine indicate Oys cy, and Oy stresses respectively, obtained
with the Green's functions while the symhols represent stresses obtained

from the finite element solution. The comparison was good and verified

the Green's functions within the accuracy of the finite element model.
Green's Functions for Displacements

The displacement field for the solid sheet under four point
loads as shown on figure D.la was found by substituting the stress
functions ¢(z), ¢(z), and y(t) shown in equation (D.8), (D.9),
and (D.10) respectively into equation (D.4)., The result is

26(u + iv) = SFp(z,2z,) + SF,(2,2,) (D.74)

where



stress, psi

15

10
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Fig. D.4.

finite element

2.5 5.0
X, inches

Verification of Green's functions for stresses in a
cracked isotropic sheet
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Fp(z,zo) =2 nRea]{}og(z + zo) - Log(z - zoi}

2 (D.75)

The displacement field for stress on the crack as shown in figure
D.1b was found by substituting the equations for the stress functions
¢(z), ¢(t), and &(z) shown in equations (D.56), (D.57), and
(D.43) into equation (D.4). The result is

2G(u + iv) = SFo(z,zo) + SFo(z,zo) (D.76)
where
Folzs2y) = -n BI(z,z,) + BI(z,2)) - (z - z)B(z,z))  (D.77)
Superimposing the displacement equations for the two preceding
equations yields the displacement field for the load condition shown
on figure D.lc as
2G(u + 1v) = S{Fp(z,zo) - Fo(z,zo%

+5 Fp(z,iﬁ) - Fo(z’iéi} (D.78)
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Equation (D.78) was simplified, after lengthy algebraic manipulations.

The result was found as

26(u + iv) = Sg(z,z,) + §§(z.zo) (D.79)
where
g(z,zo) = n{ze XA(z,zo) - XC(z,zo)}
+ 0.5{52XB(2,56) + XBlz,fb{} + XC(E}zo)
22, - 2,2 o
+2 —_z:;—-—z——z' + (z - Z)B(Z,Zo)
0
with

2z, - a? - I(zO)I(z)

XA(z,zo) = - Log { -
2z, + a? - I(zo)I(z)

zz_ - a?% - I(zo)I(z) zZ+2

) )
XB(z,zo) = Log Z
2z, + a° - I(zo)I(z) z, -2
( | z, -z, I(z)
XC(z,z2,) = —m— zZ-12
o] 2 2 0 -
2* -z 1(z,)



\
+
+

]

B(Z,Zo) = - —
2 [z22 - 22 22 - 22 (z - Zo)2 (z + Zo)2

- 2 _ 2 4
z, - 2, a* - 2z, a® + zz,

+

ZI(zo)I(z) (z - zo)2 (z + zo)2

z I(z,) I(Es)

2 _ 2 7 2. 52
1(z2) z, z z,°- 2
The Green's functions for displacements were obtained from
equation (D.79) by forming coefficients of the X and Y loads

for the u and v displacements. The result was

DG, = c, Real(g(z,z,) + g(z,ig)) (D.80)
Dny = ¢, Rea](i(g(z,zo) - g(z,Eg))) (D.81)
Dny = ¢, Img (g(z,zo) + g(z,Eb)) (D.82)
Dny = ¢, Img (i(g(z,2,) - g(z,Eb))) (D.83)
with
1
c =

0 46t_m(1 + n)
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where the first index of GD 1ndicates the displacement and the
second indicates the load responsible for it.

The Green's functions for displacements given in equations
(D.80) through (D.83) were verified with the finite element model
discussed in the previous section and shown on figure D.3. A
comparison of the displacements calculated from the Green's functions
and the finite element solution 1S shown on figure D.5. The comparison
is made along the Tine 2z = x + 21 where the finite element
displacements are taken from the nodal points of the model. In the
figure the solid and dotted Tines indicate the u and v displacements
calculated with the Green's functions while the symbols represent
values obtained from the finite element solution. The agreement 1s
good and verifies the Green's functions within the accuracy of the

finite element model.
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Lekhnitskii (1968) gives the stress and displacements in an

APPENDIX E

GREEN'S FUNCTION FOR AN UNCRACKED

ORTHOTROPIC SHEET

orthotropic sheet in plane stress in terms of two stress functions,

0,(z,)

where

S

and 9,(z,), as

and

2Real { s, ¢1(z ) +s, ¢z'(zz}

B
{¢ (2,) + 8, (z)}
e

-2Realys,0,'(z,) + sz¢2'(zz}

2 Real

2Rea1{p1¢l(zl) + p2¢2'(22{} - WY tug

2Rea1{qx¢1(zl) + q2¢2(zz)} WX vy

S

2

Ex

ny

-2v

Xy

s? +
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are the roots of the equation.

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)
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where Ex, Ey, ny, and vxy are the elastic moduli and Poisson's
ratio. Leknitskii (1968) proved that the roots, s, and S,»
could not be purely real for real materials but are purely imaginary
or complex. The complex roots occur in conjugate pairs and s, and

s, are distinct roots, 1.e. not complex conjugates. The following

were defined

nyEx
zl=x+sly Zz=X+52~Y Vyx=
E
y
1 1
= — 2 = — 2 _
X X
1 ]
2 — - 2 = _ 2
q, T (1 VxS ) Q, > (1 VxS, ) (E.8)
1y 2%y

Note that Wos  Ugs and v, 1n equation (E.4) and (E.5) are rigid

body rotations and translations respectively and

d@l(zl) de,(z,)

0 '(z)) = — ., ¢,'(z) =

dz1 dz2

The two required stress functions for a point load acting on a

solid, orthotropic sheet were given by Lekhnitskii (1968) as

¢,(z,) = A Logz o,(z,) = B.Logz, (E.9)
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where AC and Bc satisfy the equations (for material axis concurrent

with the axis of orthotropicity)

Y
A +B -A -B. =
¢c ¢ ¢ ¢ 2mt i
-X
+ ...—— ..__ =
S,Ac S Bc slAc sch P
c
(E.10)
2 2 = 27 e 2n -\)X'YY
+ - - =
s1 Ac s2 Bc s1 AC 52 BC e -
c
AC BC Ac Bc vaX
-+t — - = - = =
S S S S 2nt i
1 2 1 2 c

With the use of the preceding equations, stress functions for
point loads acting on a unidirectional boron/epoxy composite were

developed. For this material the material constants are

7 3.0 x 107 psi

m
L]

0.27 x 10" ps? E

G.. = 0.7 x 10° psi V.. = 0.019

Xy Xy

With these material constants, the roots of equation (E.6) were found

to be purely imaginary as



For purely imaginary roots equations, Ac and BC were found from

equations (E.10) as

Ac =Cl1 X+icCl2y (E.11)
Bc =(C21 X+ 1 C22Y (E.12)
where
2 2

52(51 Vyy + 1) sl + Vyy
Cl1 = ; Z Ccl12 = " ;

41rtc(s2 - sl ) 41rtc(s2 - s1 )

2 2
SI(S:Z \)yx + ]) 52 + \)X_Y
c21 = - " " c22 = - ; "
4Trtc(s2 - s ) 4Trtc(s2 - s, )

Using equations (E.11) and (E.12) and translating the origin
so that the singularity occurs at the point z, equations (E.9)

became

¢1(zl,wl) = (C11 X+ 1 C12 Y)log(z - w )
1 1
(E.13)

¢2(zz,w2) (c21 x+ i c22 Y)Log(z2 - w2)
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= + = +
where w1 Xq sly0 w2 Xo szy0

Equations (E.13) were used to construct a solution for four
point loads acting on a solid orthotropic sheet as shown in figure E.1.

The result was
o (z ,w) =2C11 G8(z ,w )X+ 1C12 G9(z ,w)Y
1 1 1 1 1 1 1
(E.14)

o (z ,w) =C21G8(z ,w )X + i C22 G9(z ,w )Y
2 2 2 2 2 20 2

where

G8(z,w) = Log(z - w) - Log(z + w) - Log(z + w) + Log(z - w)

(E.15)

69(z,w) = Log(z - w) + Log(z + w) - Log(z + w) - Log(z - w)

(E.16)

The derivatives of equations (E.14) were found to be

o '(z ,w ) =C116G8'(z ,w )X+ icCl2G9'(z ,w)Y
1 1 1 11 2 2

(E.17)

¢ '(z ,w)
2 2 2

C21 G8'(z ,w )X + i C22 GQ‘(zz,wz)Y
1 1

where
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Fig. E.1. Location of point loads on orthotropic sheet
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2w 2w
G8'(z,w) = + (E.18)
722 - W2 72 - W2
2w 2w
G9'(z,w) = - — (E.19)
z2 - w? 22 - w?

Equations (E.13) and (E.17) can be used in equations (E.1)
through (E.5) to describe the stresses and displacements in the

orthotropic sheet.

Green's Functions for Stresses

The Green's functions for stresses were developed by
substituting equations (E.17) into equations (E.1), (E.2), and (E.3)

to determine the stress state as

Oy = stxx + HSny (E.20)
= + .

qy HSyxX HSyyY (E.21)
= + .22

where the Green's functions are given by
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HS,., = 2Real{s 2 C11 G8' (z , w) +s 2 C21 G8' (z ,w ) (E.23)
XX 1 1 2 2 2

Xy

yX

{s

1

HS_ = 2Rea1{.i{; 2 C12G9' (z ,w ) + s 22269 (z ,w ;}} (E.24)
1 171 2 2’2

HS, . = 2Rea]{ C11 G8' (zl,wl) + C21 G8' (zz,wzi} (E.25)

HS,. = 2Rea1{‘i{C12 G9' (21’w1) + €22 G9' (zz,wz)}} (E.26)

Yy
HS (xy)x = -2Rea1{slc11 68' (z ,w ) +s C21 G8 (zz,wz)} (E.27)
Hs(xy)y = -2Rea1{ 1{51 €12 G9 (21’w1) ts, €22 G9 (22,w2§}(E.28)

To verify these Green's functions, stresses computed with equa-
tions (D.20) through (D.22) were compared to finite element results.
The model used for the finite element solution is 1dentical to that
shown in Appendix D on figure D.3 except that no nodes were freed
along the x-axis to simulate a crack. The finite element program used
is documented by Zienkiewicz (1971) as mentioned in the previous
appendix. However, the program as given by Zienkiewicz does not have
orthotropic capability. Therefore, it was modified by introducing
the orthotropic stiffness matrix for plane stress given by

Zienkiewicz (1971) as
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n nvyx 0
E
y
[p] = — oo 1 0
1-ny y
IX
0 0 M(1 - 2
i_ ( "‘Vy)‘)J
Ey ny
where n = — and m = — in place of the 1sotropic
E E
Yy y

stiffness matrix in the program.

The comparisons between the stresses along the line z = x +
1.25i are shown on figure E.2 on which the dotted 1ine, dashed line,
and solid line indicate the Oy oy, and Oxy stresses respectively
from the Green's functions. The symbols on the figure indicate the
same stresses obtained from the finite element solution. The

comparison was good and verified, within the accuracy of the finite

element model, the accuracy of the Green's functions for stresses.
Green's Functions for Displacements

The Green's functions for displacements were developed by
substituting equations (E.14) into equations (E.4) and (E.5). Because
of the symmetry of the loads the rigid body rotation, W and the

rigid body translations, Uy and v_, are zero in equations (E.4) and

0’
(E.5). The results are

[ =
n

HD, X + HnyY (E.29)

<
n

+ .
HDyxX HDyyY (E.30)
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where the Green's functions are given by

HDxx

2Real {p C11 G8(z ,w ) + p C21 G8(z ,w ;} (E.31)
1 11 2 2 2

HD 2Real{ i {p C12G9(z ,w ) +p €22 G9(z ,w ) (E.32)
xy 1 1 2 2 2

HD,., = 2Real{ q C11 G8(z ,w ) + g C21 G8(z ,w ) (E.33)
yXx 1 11 2 27 2

HD, = 2Real{ i{q €21 G9(z ,w ) +q €22 G9(z ,w ) (E.34)
yy 1 11 2 2 2

With the use of the finite element model shown in figure D.3,
equations (E.31) through (E.34) were verified by comparing the displace-
ments along the line z = X + 21 calculated with equation (E.29)
and (E.30) shown on dotted and dashed line, respectively, on figure
E.3 with the displacements calculated with the finite element program.
The comparison is good and within the accuracy of the finite element
model verifies the Green's functions for displacements in the

uncracked orthotropic sheet.
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ments 1n an uncracked orthotropic sheet



APPENDIX F

COMPUTER PROGRAM TO PREDICT CRACK
AND DEBOND GROWTH

The analysis developed 1n Chapters IV and V to predict crack
growth 1n reinforced systems requires the use of a digital computer
to perform numerical integration and solve large systems of simultaneous
equations. The analysis was programmed 1n FORTRAN IV for use on the
NASA Langley Research Center (LRC) CDC 6600 computing system. However,
no special system routines were used in the program, and the program
should be usable on any computing system that uses a FORTRAN IV
compiler. With the exception of the Gaussian elimination subroutine
SIMQ, the program 1s all original code.

For economical reasons the user should be aware of the central
processing time (CP) and central memory (core) required to execute
the program, The CP time 1s primarily a function of the numerical
integration of the Green's functions. Several integrations are
required for each shear element, 1.e. elements of region B shown on
figure 8. Consequently, the CP time requirement 1s a function of the
number of shear elements and can vary from a few to several thousand
seconds depending upon the number of elements. The core requirements

are also a function of the number of shear elements. Each element
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contains two unknown shear stresses, fxz and fyz' The number of
rows and columns of the square, fully populated coefficient matrix
used to solve for these stresses 1s two times the number of elements.
In the program the dimensions are set for fifty shear elements
(100 unknowns), but the program can accomodate more elements if the
array 29(10,000) in the program 1s enlarged. For fifty elements the
core requirement is 137K octal.

Data are read in the program via a NAMELIST with the following
definitions:

E3 modulus of the cracked sheet

T2 thickness of the cracked sheet

Vi Poisson's ratio of the cracked sheet

E4 modulus of the composite sheet in the y-direction

(1oading-axis)
ES modulus of the composite sheet in the x-direction
'L Poisson's ratio of the composite sheet for a load applied
1n the x-direction

GC shear modulus of the cracked sheet

T4 thickness of the reinforcement sheet

TAD thickness of the adhesive layer

GAD initial effective shear modulus of the adhesive

GAD2 secondary effective shear modulus of the adhesive

SYIELD yield stress of the bulk adhesive in uniaxial tension

Al ini1tial crack length in metal sheet

F initial aspect ratio of the debond ellipse
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NC number of columns of interlaminar sheat elements

NR number of rows of interlaminar shear elements

FCYC final number of applied load cycles

S remote applied stress applied to the reinforced system

in the y-direction

As an example a sample run was made for one iteration. Figure
F.la shows the model prior to the iteration and figure F.1b shows
it after the iteration. The sample NAMELIST input for the run was

as follows;
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SAMPLE INPUT

$INPU E3=1.0E+07,T2=.156,VI=.30,E4=3.0E+07 ,E5=3.0E+06,V4=.02,GC=7.0E+05,
TAD=.004,GAD=65000. ,GAD2=36000. ,SYIELD=4200. ,A1=1.00,F=.001,NC=5,NR=3,
FCYC=10000. ,5=25500. ,7T4=.0208,

$
SAMPLE OUTPUT

MODULUS OF THE CRACKED SHEET .107E+08
THICKNESS OF THE CRACKED SHEET . 156E+00
POISSONS RATIO FOR THE CRACKED SHEET . 300E+00
COMP MODULUS PARALLEL TO LOAD . 300E+08
COMP MODULUS TRANSV TO LOAD . 300E+07
SHEAR MODULUS OF COMPOSITE . 700E+06
COMP POISSONS RATIO TRANSV TO LOAD AXIS . 200E-01
THICKNESS OF THE REINFORCEMENT SHEET . 280E-01
MINOR AXIS HEIGHT IN PER CENT CRACK LENGTH . 100E-02
REMOTE APPLIED STRESS .255E+05
NUMBER OF COLUMNS FOR BOUMDARY POINTS 5
NUMBER OF ROWS FOR BOUNDARY POINTS 3
FINAL NUMBER OF APPLIED LOAD CYCLES . 100E+05
INITIAL CRACK LENGTH . 100E+01
ADHESIVE THICKNESS .400E-02
SHEAR MODULUS OF THE ADHESIVE .650E+05
SECONDARY SHEAR MODULUS AFTER YIELDING . 360E+05
YIELD STRESS OF MODULUS IN UNITAXIAL TENSION .420E+04
METAL SIGM-X= .269E+03 SIGM-Y=  .200E+05

COMPOSITE SIGM-X= -.150E+04 SIGM-Y=  .559E+05

X AND Y DIMENSIONS OF INTEGRATION AREA ARE  .990E+00 .746E+00
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X-COR

.990E-01
.297E+00
.495E+00
.693E+00
.891E+00
. 990E-01
. 297E+00
.495E+00
.693E+00
.891E+00
.990E-01
.297e+00
. 495E+00
.693E+00
.891E+00

. 189E+05

THE YIELD MACROSCOPIC STRESS IS  .716E+04

NODE

b o b ek
PWN~OOONONLWN ~

DEBOND HEIGHT

.125
121
113
.099
.076
.373
.365
.349
.323
. 285
.622
.613
.593
.563
.521

X-COEFFICIENT

.300E+01
.279E+02
. 100E+03
.327E+03
.111E+04
.346E+02
.130E+03
. 328E+03
.806E+03
.191E+04
.916E+02
.293E+03
.560E+03
.983E+03
.180E+04

ELASTIC

Y-COR

. 125E+00
.121E+00
.113E+00
.988E-01
.765E-01
.373E+00
.3656E+00
.349E+00
.323E+00
. 285E+00
.622E+00
.613E+00
.593E+00
.563E+00
.521E+00

Y-COEFFICIENT

.849E+04
.859E+04
.864C+04
.847E+04
.667E+04
.256E+04
.266E+04
.276E+04
.276E+04
.220E+04
117E+04
.119E+04
.117E+04
.108E+04
.807E+03
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WITH PLASTICITY

NODE DEBOND HEIGHT X-COEFFICIENT Y-COEFFICIENT
1 .125 . 207E+01 . 708E+04
2 .212 .213E+02 . 709E+04
3 .13 . 795E+02 . 704E+04
4 .099 . 245E+03 .679E+04
5 .076 .805E+03 .536E+04
6 .373 .438E+02 .312E+04
7 .365 . 156E+03 .321E+04
8 .349 .371E+03 . 325E+04
9 .323 .864E+03 . 315E+04
10 .285 .191E+04 .244E+04
11 .622 . 105E+03 . 165E+04
12 .613 .333E+03 . 165E+04
13 .593 .635E+03 .161E+04
14 .563 . 110E+04 .146E+04
15 .521 . 189E+04 .112E+04
K-BOND K-UNSTIFFEND K-STIFFENED K-FACTOR
-.108E+05 .200E+05 .919E+04 .459E+00

STRESS AND STRAIN IN THE METAL

NODE SI1G-1 SIG-2 SIG-12
1 -.681E+04 .580E+04 -.472E402
6 -.340E+04 .121E+05 -.103E£+03
n -.137e+04 . 154E+05 -.146E+03

NODE EPS-1 EPS-2 EPS-12
1 -.799E-03 .733E-03 -.115E-04
6 -.657E-03 .123E-02 -.250E-04
11 .559E-03 .148E-02 -.354E-04
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STRESS AND STRAIN IN THE COMPOSITE

NODE S1G-1 SIG-2
1 .838E+04 . 105E+06
6 .897E+04 .728E_05
N . 758E+04 . 568E+05
NODE EPS-1 EPS-2
1 .272E-02 . 350E-02
6 .294E-02 .242E-02
n .249E-02 .189E-02

ENERGY RELEASE ON MINOR AXIS IS .597E+01

APPLIED CYCLES=  .990E+01
DA/DN BEFORE CYCLE INCREMENT IS  .181E-04
DB/DN BEFORE CYCLE INCREMENT IS  .202E-01

INCREMENT CYCL = .990e+01 CRACK,LENGTH=

MAX DEBOND HEIGHT=

. 100E+01

.201E+00

SI1G-12

. 742E+03
.252E+03
.301E+03

EPS-12

.674E-04
.360E-04
.430E-04
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PROGRAM COLLS( INPUT ,0UTPUT,TAPE4)

THIS PROGRAM CALCUIATES CRACK AND DEBOND GROWTH IN A
REINFORCED SYSTEM COMPOSED OF A CRACKED METAL

SHEET REINFORCED WITH A UNIDIRECTIONAL BORON/EPOXY
SHEET.

COMMON /ROT/29(10000),D( 100 ) ,NALF
COMMON/BOND2/NE , NL ,NT', X2 ( 100 ), YC( 100 ) , XA( 100 ), YA( 100 ),
1NOP(100)

DIMENSION FTNC(50),FXNCY(50),FA 1(50),FB1(50 )

COMMON /ADHES/TAD,GAD

COMMN /TOP/E3,T2,V1, X , MY, G, CONS,Q, A1, SCON
DIMENSION DR(100),CPR(100),TPR( 100}

COMMON /XL IMIT/DC(2,51),IB(6,51),FF
DIMENSION CM(3,3§,SIG§3),$:RAIN(3) oD( 100 )

I()II;IENSION SM(3,3),am(3,3),MC(3,3), STRESSM( 3 ), STRESSC
103

DIMENSION TSIGM(3),TSIGMT(3), :MM(3,3),MC(3,3)
DIMENSION TOTG(50),SIGMT(3),TSTRAIN{ 3}, STRESS(2,3,50)
1,STRANN(2,3,50)

COMMON /BOT/E4, T4,V4,CX ,CY,GB,C0NB,Q1,GC,ES
COMMON/CTOL/TOL, NC , IR, TX , TY , NBC ( 100 § , IBC

COMMQN /BOND/F,P1, P2, XKF ,XKUNS,XKSTIF

COMMQN /TEC AY/EE , ALPHA1,ALPHA?2

COMPIEX 2,CI,XK

EXTERNAL XK

CI=CMPLX(0.,1.0)
NAMELIST/INPU/E3,T2,F,S,TEST,T4,E4,V4,V1,E5, GC, TAD,GAD
1,NR,NC ,FCYC,

1A1,GAD2, SYIEID

E3~-MODULUS OF THE CRACKED SHEET

T2- HICKNESS OF THE CRACKED SHEET

Vi-IS THE IOISSONS RATIO FOR THE CRACKED SHEET
GC~-SHEAR MODUILUS OF THE REINFORCEMENT SHEET
E4-~-MODULUS OF THE REINFORCEMENT SHEET IN THE IOADING
DIRECTION

E5-MODUIUS OF THE REINFORCEMENT SHEET TRANSVERSE TO
THE LOADING AXIS

V4 IS THE POISSQNS RATIO FOR THE BOTTOM SHEET FOR A
TRANSVERSE IOAD

T4~ THICKNESS OF THE REINFORCEMENT SHEET

F-MINOR AXIS HEIGHT IN PERCENT CRACK LENGTH

S -REMOTE AFr1LIED STRESS

NR-NUMBER OF ROWS OF BOUNDARY 1OINTS

NC-NUMBER OF COLUMNS OF BOUNDARY POINTS

FCYC-FINAL NUMEER OF LOAD CYCLES

A1-INITIAL CRACK LENGTH

K=0
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1000 CONTINUE
READ INPU
MX=NR*NC
M=MX
N=MX
NALF=MX

OUTPUT T™HE INFUT

PRINT 1,E3
FRINT 2,72
PRINT 20, V1
RINT 18,E4
RINT 26,E5
FRINT 27,GC
PRINT 21,V4
PRINT 19,T4
FRINT 3,F
PRINT 7,S
PRINT 30,NC
FRINT 31,MR
PRINT 32,FCYC
PRINT 34,A1
PRINT 24, TAD
FRINT 25, GAD
PRINT 5,GAD2
FRINT 6,SYIEID
P1=2.
P2=2,
T0L=,001
FFP=F
N=2*N
M= 2%
NSQ=1#*1
IF(N.GT.100)500, 501
500 RINT 502,M,N
502 FCRMAT(//* ERRORS -- M (R N EXCEEDS DIMENSIONS BOUNDS
1V=*I110*N=%110//)
GO0 TO 1001
501 CONTINUE
Q=(3.-V1)/(1.4V1)
Q1=(3.=-V4)/(1.4V4)
G=E3/(2.*%(1.4V1))
CONS=1./§12.566*T2 *(14Q ) *G)
SCON=1./(6.2832%( 1+Q )*T2)
GB=E4/(2.%(1.4V4))
CONB=1./(12.566%74 *(14Q1)*GB)
V5=V4*E5/E4
EE=2.7182818
ALPHM:GAD*%1./(T2*E3)+1./(T4*E4))/TAD
ALPHA 1=SQRT( ATFHA1)
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ALPHA2=GAD2*(1./(T2%E3 M+ 1. /(T 4*E4)) /TAD
AIPHA 2=SQRT(AL}HA2)
TY=-ALOG(.05 )/ALPHA?2

C CALCULATE THE REMOTE STRESSES

C
C
C

[eXeoNe!

(oNoNe] QaaQ

aQQ aad

ZERO AILL COMFILIANCE MATRICES

DO 0 I=1,3
DO 30 J=1,3
CM(I,Jd)=0.
CMMéI,Ji:O.
cMc(I,J)=0.

50 CONTIIUE

CAICUILATZ COMPLIANCE FCR METAL SHEET

crmg1,1)=1~33/(1.-v1ﬁ-2)
CMM(1,2)=VICMM(1,1)
CI’II'i§2,1g=CM‘I§1,23
CMM(2,2)=CMM(1,1

GENERATE ™E STIFF MATRIX FOR THE METAL SHEET

CALL INVER(CMM,SMM,DD)

CALCULATE COYPLIANCE FOR COMPOSITE SHEET

M=15/E4

A4=GC/E5
CC=E4/(1.-XT*V4*x 2)
cMc(1,1 ;:Z{N*CC
CMC(1, 2)=XU*V4*CC
cMc(2,1)=cr(1,2)

CMC(2,2§=CC
CMC(3,3)=XI*(1,-XN*V4* 2 }*CC

GENEPATE THE STIFF MATRIX FOR THE COMI'COSITE SHEET

CALL INVER(CNMC,SIC,ID)

Gol:ERATE MACRO STIFFI'ESS MATRIX

51

Do 51 I=1,3

DO 51 J=1,3
Cr(1,J)=CMM(I,J)*T2+CMC(I,TJ)*T4
CONTINUE

CALL INVzR(ClH,M,ID)
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S5IG(2)=8*(T2+T4)

51G(3)=0.0

CALL MULT(SM,SIG,STRAIN)
400 FORMAT( 3£11.3)

SIG§1)=0.0

c
C CAICULATE STRESSES IN EACH LAYER
c
CALI MULT(CMM,STRAIN , STRESSM)
SMX=STRESSH(1)
iY=STRESSIH(2)
CALL MUIT(CHC
scx=smn;«ssc§1§
3CY=STRESSC(2
IRINT 300 ,SKX, MY
300 FORMAT( /* METAL SIGM-X=*E 10.3* SIGM-Y=*E10.3)
PRINT 501, CX ,SCY
301 FORMAT( /> COMVOSITE SIGM-X=*E10.%* SIGH-Y=*E10.3/)

STRAIN,STRESSC)

C
C SET Ur LOOIS FOR RIGHT HAND VECTOR AND COEFFICIENT MATRIX

C

T1=T2

CALL CPAR
C
C IOOF ON INCREMENTS OF LOAD CYCLES
C

TC=0.0

KOUNT=0

1004 CONTINUE
IF( LOUNT.NE.O )ERINT 551 ,KOUNT

551 FORFAT(// 0X* XAXXXXIXXX  TICREMNENT FOR LCAD CYCLES*
1+18%15  KXXXXXXN*/)
TX=.50%A 1
YRIIT 16,TX,TY

16 FORIIAT( /* X AND Y DIMINSIONS OF INTZGRATION ARZA ARE °*

12211.3/)
EOUNT =V OUNT+1
MSAVE=]"
CALL GRID
CALL FGRI.(IT,M)

MA¥E RIGHT HAND SIDI A ULIIT VECTOR FOR USZ VITH YLASTIC
ANAIYSIS

D0 1401 I=1,N
SAVE UNIT RIGHT HAND VECTOR
R(I)=D(I)/S
D(I)=D(I)/S
1401 CCIUTINUE
REWDND 4
1130 FORIAT(11110.3)

Q QaoaoQ
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STCRE QOZFFICIENIT MATRIX ON TATE

Qaa

WRITE(4,1130)(Z29(1),I=1,8Q)

REVIID 4

CALL SIMQ(Z9,D,N,IND)
RETRIVE COEFFICIEIT MATRIX

READ(4,1130)(29(1),I=1,8Q)

SAVE ELASTIC SCLUTIGN

(o XoNe! Q@

DO 1402 I=1,N
DD(I)=D(I)+S
1402 CONITINUE
c
C CALL THE TLASTIC SUBROUTINZ TOFIND INTERLANINAR STRESSES
C AFTER YIZLDING
c
CALL IIASTIC(SYIELD,GAD2,S,IR)
NALF=11/2
FRINT 17
17 FORNAT( /70 WITH LLASTICITY*29X*ELASTIC*)
TRIIT 11
DO 104 I=1,NALT
I =T+1IAIF
*=DC(1,I)
Y=DC(2,I)
FRINT 12,%X,I,Y,D(I),D(IK),ID(I),ID(I+iALF)
104 CONTIIUE

LKT0T=0.
DO 105 J=1,MALTF
%=DC(1,J)
Y=DC(2,J)
Z=X+CI?Y
CALL XTLiTG(Z,J,A1,S11,512,821,822,4%&,3)
XK1=511+512
H2=-(S21+522)
XK TOT=XE¥TOT+XE1
105 CCHNTIIUE

IRINT ™HE STRESS INTENSITIES

Qo

KUNS=SITP-A1¥ .5

LSTF=YIUS+XKTOT

KTF=XI'STIF/KUNS

¢RIIT 14

IRIIT 15, XTCT,XUNS,XKSTITF,XKF
100 CCITLIUL
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F=lISAVE

CALCUIATE STRAI!'S AKD STRESSES AT CCORDINATE POINTS IN
THE ADHEREIDS

Qo

D0 1220 I=1,MX,IC
X=DC(1,I;

Y=DC(2,I

Z=X+CI4Y

DC 1226 KTYv=1,2

CALL VERI(Z,3X, SXY,SXXY,S¢YX, SYY, SYXY,M{,KT'Y}E)

FIRST THREZ TERIS ARE TFOM X-L6ADS THI 1ATTER THREE FROIL
Y-IOADS

QaOQa

SXX+SYX
SXY+SYY
=SXA+ SYXY

TSIGH(1)
TSIRI( 2§
TSIGH( 3

CAICULATE THE STRESSES IN THE COMPOSITE SHEET
CAIL RESIGM(Z,S11,822,512,KTYTE,STRESSIT, STRESSC)
UPERIMPOSE STRESISES

aQQ QQQ

PSIGMT(1)=TSIGM( 1)+S 11
TSIG-ITF;:TSIGM( 23+322
PSIQIT(3)=TSIGM(3)+S 12 \

CAL.CULATZ TIHE CORRESFOIDING STRAINS

QQQ

IF(KETYro.Hm .1)1221,1222
1221 CALI MJLT(SMI!,TSIGIIT,TSTRAIN)
GO TC 1224
1222 CALL MULT(3C,TSIGNMT,TSTRAIN)
1224 CONTINUZ

C
C STORE ALL VAIUES
C

DO 1225 T'=1,3
STRESS(UTYPI,IK ,I)=TSIGMT( IK)
SPRAINI(ITY S, DL, I)=TSTRAIN(IK)

1225 CCHTIIUZ

1226 CCNTINUZ

1220 CONTINUE
PRINT 1227

1227 FORIIAT(/* STRESS AlD STRAIN IN THE METAL */)
PRINT 1228

1228 FCRMAT( 2X*1"OIE~ 55 SIG-1*8Y* SIG-2*8% SIG-12 *8X*EPS -1 *¥8X
1%¥3P5=2XOY¥ BES~12 %)

FRILT 1226,(1,( STRESS(1,K,I) ,k=1,%), (STRANN(1,K,I),
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1K=1v3)1I=1,MX)NC)

1229 FORISLAT(I‘B,3KE1O.3,3@10.3,3)@10.3,4)@10.3,3}@10.3,3)(E1
10.3
PRINT 1230

1230 TFORMAT(/* STRESS AND STRAIN IN THE COMFOSITE*/)
PRINT 1228
PRINT 1229, (I (smzss(z K,I),%k=1,5),(STRANN(2,K,I), k=1
1,3),I=1,MX ., XC)
JM=0.
DX=TX/NC
DO 1232 I=1,M{,IC
DY=TY/IR
SUM=SUM+DY* ( STRANN(2,2,I)~STRANN(1,2,I)) *D(MX+I)

1232 CONTIIUE
PRIMI 1251, M

1251 FORMAT( /* ENERGY RELEASE ON MINOR AXIS IS¥E11 3/)
CALL XINC(SUM,XICY,DAS,IFS)
CPR(KOUNT )=DAS
DPR(KOUNT )=DFS
IF(XKSTIF.GE .,56000.)G0 TO 1005
TNC=TNC+XICY
IF(DBIC.GE.FCYC)GO TO 1003
B1=F*A1
PRINT 42, TC

42 FORMAT /* APPLIED CYCLES=*E10.3)

IRINT 555,DAS,IFS

555 FORMAT(* m/m BEFORE CYCLE INCREMENT IS*E11.3/
1% DB/INN BEFORE CYCLE INCREMENT IS*E11.3/)
PRINT 40,XNCY,A1,B1,P1,P2
1% MAXIMUM DEBOND HEIGHT=¥E10.3* P{=*E10.3% P 2=*E 10. 3/)

40 FORMAT( 5X* INCREMENT CYCL=*E10.3* CRACK,IENGTH=%E10.3

FTNC(KOUNT )=TNC
FXNCY (KOWIT ) =XICY
FA1(KCUNT )=A1
FB1(KOUNT)=B1
IF(A1.GT7.2)GO TO 1001

GO TO 1004

1 Fomm(zo)esmonums OF THE CRACKED SHEET
1 *,E12.3

2 Fonmm(zo}esmnzcmmss OF THE CRACKED SHEET
1 *,E12.3

3 Fommm(zomunorz AXIS HEIGHT IN PERCENT CRACK LENGTH
1 *,E12.

4 mmm(zc;x&mcm IENTS TO MAXIUMUM CRACK LENGTH
1 %112

7 PORIIAT(ZOX*REMOTE APPLIED STRESS
1  *,E12.3)

8 K)RI«‘AT(ZO))C*INITIAL CRACK LENGTH BEFORE CYCLING
1 *E12.3

9 FORMAT(/25X*INCREMENT *I5,4X*CRACK LENGTH *F10.3/)
10 FORMAT(5E12.3)
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11 FORMAT (20 X*LOCATION NODE DEBOND HEIGHT*6X
1#X -COEFFICIENT*8X*Y -COEFFIC IENT*7X*X -COEFFICIENT*
27X*Y-COEFFICIENT*/)

12 Fommgzzxps.3,9xr2,1oxr5.3,4(1oxE1o.3))

14 FORMAT( /23X¥K -BOND*5X*K -UNSTIFFEND* 5X*K ~STI FFENED*5X
1%*K-FACTOR*/)

15 FORMATEZOX,B(E 10.3,5X) ,E10.3/)

5 FORMAT 20})(*SECONDARY SHEAR MODULUS AFTER YIELDING
1 *E12.3

6 PORMAT(ZO))(*YIELD STRESS OF MODUIUS IN UNIAXIAL TENSION
1 *E12.3

18 FORMAT(ZOX‘;COMP MODULUS PARALLEL TO LOAD
1 *,E12,3%

19 mRMAT( 2ox->;mxcmmss OF THE REINFORCEMENT SHEET
1 *,E12.3%

20 mnmlxw(zopepoxssons RATIO FOR THE CRACKED SHEET

21 13031\:41’&%(1 %6}3@2001@ POISSONS RATIO TRANSV TO LOAD AXIS
221F0RM1’!.¥(1 %6)3@2NUMBER OF ELLIPSES IN GRID
2311"0R;IIA’}3%%OX*NUI-'EBER OF LINES IN GRID
24 1mmﬁéz(2%o;mmmsw3 THICKNESS

1 *,E12.3)

2 FORMAT(20}*SHEMR NODULUS OF THE ADHESIVE
261EORM"A%2%C.)}3@200MP MODUIUS TRANSV TO LOAD
Z71FORI‘E1’&%(1§6}3@2$HEAR MODULUS OF COMEOSITE
3o1mmf.7£(1 LT —— COLUMNS FOR BOUNDARY POINTS
31 11‘0le!’§‘(1 ggX*NUMIER OF ROWS FOR BOUNDARY FOINTS
33 1FORMA£222C2X*FINAL NUMBER OF APPLIED LOAD CYCLES
341P0R;21’£(1 gé?elemAL CRACK IENGTH

1 *,E12.3)

1005 PRINT 38, ™C

38 FORMAT(5X* SFECIMEN FAILED BEFORE*E10.3*CYCLES*/)
GO TO 1001

1003 FRINT 79,FCYC

39 FORMAT(5X* THE SFECIFIED NUMBER OF IOAD CYCLES HASX
1# BEEN MET*E11.3)

2002 FORMAT(/)
1001 CONTINUE

M=M/2

N=N/2
IOUNT=KOUNT-1
PRINT 540
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540 FORMAT(/13 X*DELTA-I* 11 X*TOTAL-IP 18 XAA* 16 X*DA /IIi* 18 X* B*
116 DB/ > /)
PRI 536, (FXNCY(I),FrNc(I),m1(X),Cr(I),FB1(I),IPR(I
1),I=1,I0UNT)
536 FORIAT(6220.3)
IF (PEST.I%®.0.) GO TO 1000
D
SUBROUTINE IIVER(3,AI,D)
C
C TIS ROUTINE INVERTS A 5X3 MATRIX

C
DIVMATSION A(3,3),A1(3,3),46(3%,3),3(3,3)
D=5(1,1)¢5(2,2)*5(3,39+8(1,2)%5(2, 3)%5(3,1)}+5(1,3 )
15(2,135(3,2)
2—$S(1 3)x5(3,1)*8(2,2)+s(1,2)*xs(2,1)*S(3,3)+S(1,1 )
35(3,2375(2,3%))
AGE1,1 =5(2,2)*s(3,3)-5(2,3*S(3,2)
AG(1,2)=-5(2,1)*35(3,3)+S(2,3)*S(3,1)
AG(1,3)=5(2,1)*8(3,2)-3(2,25(3,1)
AG(2’1)='S(192)*8(313)‘*'8(193)*8(312)
AG(2’2)=S(191)78(3’3)"3(1;3)*5(3;1)
AG22,3 =-5(1,1)5(3,2)+s(1,2)*5(%,1)
AG(3,1)=5(1,2)"s(2,3)-5(1,3)5(2,2)
AG€3,2 ==5(1,1)5(2,%)+s(1,3)*S(2,1)
AG 3)3)=S(1;1)>S(2’2)"8(112)')‘8(1!2)
0 11=1,3
DO 1 J=1,3
AI(1,J)=AG(J,I)/D

1 COUTINUL
RETURN
D
SU3BROUTINE MULT(4A,B,C)

C

¢ TIIS RWTINE MULTIILIES TWO MATRICES

c
DIKA'SIO A(3,3),B(2),C(3)

D0 1 I=1,%
SUM=0.0
DC 2 L=1,7
2 I =50+A(I,K)B(K)
c(I)=5sun
1 CONTIIUE
RETURI
END
SUBROUTTS SIIQ(A,B,N,KS)

c PLUTICH OF THs LINIAR ALGEBRAIC SYSTZII OF EQUATIOKS

c OF THE FORM

c AX=3

C A - NX'7 MATRIX OF COKFFICIENTS

C B - VECTOR FOR THZ RIGHTHAND-SIDE OF THE SYSTElN OF

c EQUATICUS
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55

65
70

202

N- NUMBER OF EQUATIONS AND VARIABISS
KS - OUTPUT DIGIT
0 FOR A NORMAL SOLUTION
1 FOR A SINGULAR SET OF EQUATIOKS
DIMENSION A(1),B(1)
T0L=0.0
KS=0
JJ=-N
DO 65 J=1,u
JY=J+1
JI=JJ+1 +1
BIGA=0.0
I1T=JJ -J
DO 30 I=J,N
IJ=IT+1
IF(ABS(BIGA)-ABS(A(IJ))) 20,30,%0
BIGA=A(IJ)
IMAY=T
CONTILUZ
IF(ABS(BIGA)-TOL) %5,35,40
¥S=1
RETUAN
I1=J+N+4(J=-2)
IT=IMAX-J
D0 %0 K=J,N
T1=I 1+
12=1 1417
SAVE=A(I1)
A(I1)=A(T12)
A(I2)=SAVZ
A(TI1)=A(I1)/HIGA
SAVE=B(IMAX g
B(IMAX)=B(J
B(J)=SAVE/BIGA
Ir (J-I) 55,70,55
IQs=lr*(J-1)
DO 65 IX=JY,N
IXJ=IQS+IX
IT=J-IX
D0 60 JX=JY,N
XTI L=N* (JX-1)+IX
JIX=IXJX+IT
AIXTL)=A(IZIX)~-(A(IXT)*A(TTX))
B(IX)=B(IX)-(B(J)-A(IXJ))
NY=11-1
IT= 1]
DO & J=1,NY
IA=IT-J
IB=H-J
IC=I
DO 0 ¥=1,J
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B(IB)=B(IB)~-A(IA)*B(IC)
TA=TA-N

80 IC=IC-+1
RETURN
ZND
SUBROUTINE FORM(N,M)

THIS ROUTINE FORMS THE COEFFICEINT MATRICES USED TO SOLVE
FOR ELASTIC MTERLAMINAR STRESSES

QaQQa

DIMENSION THETA(10)
COMDN/XLIMIT/DC(2,51),IB(6,51),FF
COITMON/ROT/Z9(1000O) {100 ), ALF
COMDILI/T0F /E3,T2,V1, X S\TY,G,OONS,Q,M,SCON
COMDY/BOT /E4, T4, V4, SCX,SJY,GB,OONB,Q1,GC,E5
COI\I&O;I/AD}IuS/'IIAD GAD
COMDN/BOND/F, P1,P2, m«‘ XKUNS,XESTIF
COIIMON/BOND2/NL NL xc(1oo) YC(100) XA (100 ),YA( 100),
1NOZ(100)
COMMDN/CTOL/TOL ,NC , MR, TX , TY ,NBC( 100 ), IBC
COMPLEX Z,CI,F1,G2
EXT ERNAL F1 G2
CI=QMPLX(O. ,1 0)
A=A1
0=M/2
P=I1/2
I1=P
MX=NC*NR
k_
c
C ASSEMBLE RIGHTHAND SIDE VECTOR
C
FRINT 57
57 FORMAT( /~ IiODE NUMBER*8X*X~COR*8X*Y -COR* /)
PRIIM %, (1,Dc(1,I),Dc(2,I),I=1,M)
56 FORMAT(I10,2E15.3)
DO 101I=1,K
X=DC(1,I)
Y=DC(2,I)
2=X+CI*¥*Y
CALL REI-;'.LU%DU,DV ,zg
CALL REMBU(BU,BV,Z
D§ 1)=U-BU
D(K+I)=DV-BV
DO 102 J=1,MX
CALIXIHTG(Z,J,A,C1 c2,03,C4,F1,1 )
CALL m*TG(z,J,A,m Bz B3 B4 F1 2 )
802 CONTINUE
I1=I
J1=J
IV1=(J1-1 *N+I1
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Z9(IV1)=C1+B1
?( I.B.J)29(1IVv1)=29(IV1+TAD/GAD
2=1
Jd2=J+L
IVo=(J2-1 *N+12
Z9(IV2)=C2+B2
I13=I+K
J3=J
IV3=(J 31 ¥N+13
Z9(IV3)=C3+B3
14=I+K
J4=J+1
IV4=(J4-1 y*N+14
Z9€IV4)=C4+B4
IF(I4.5Q.J4)29(IV4)=29(IV4 )+TAD/GAD
102 CONTINUE
101 CONTINUE
104 OONTINUE
20 QONTINUE
RETURY
END
SUBROUTINE REMTU(U,V,Z)

CALULATE DISPLACEMENTS IN THE TOF SHEET DUZ TO A REMOTE
STRESS

COMMQY /TOF/E3, T2,V1, X, MY, G,CONS,Q, A1, SCON
COMPLEX CI,2,2I,7B,CXSR,D,IPHI ,PHI ,DOMEGA
CI=CMPLX(0.,1.)

ZB=ONJIG(2)

D=CXSR(Z,A1)

DPHI=,5*SMY*D-, 25%2* ( SMY-SMX )
PHI=.5%SlY*Z/D-,25*(SMY-SiX)

DOMEGA=, 5*SMYX CXSR(ZB,A1 )+ .25 *(SMY-X ) * ZB
D=(Q*¥DPHI-DOMEGA-(Z2-7ZB)*CONJG(PHI))/(2.*G)
U=REAL(D)

V=AMAG(D)

RET URN

D

SUBROUTINE REMBU(U,V,Z)

CALCUIATES DISPLACEMENTS IN THE BOTTOM SHEET DUE TO A
REMOTE STRESS

COMMON /BOT /54, T4,V4,CX ,SCY,GB,C0NB,Q1,GC,E5
COMPIEX Z

X=REAL(2Z)

Y=AIMAG(Z)

S12=-V4/ES

U=éSCX/E5+S12*SCY *X

V=(S12*SCX+Y/E4 *Y
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RETURN
END
COMPLEX FUNCTION F1(Z,20)

EVALUATE INTEGRAL OF B(Z,Z0)

COMPLEX 2,70 ,7B,708B,XA ,XB,XC ,CXSR,CI,D,B,R
COMPIEX H .H1,H2,El

DIMENSION N(%00)
COMMDN/TOP /E3, T2, V1, X , MY ,G, CONS,Q, A1, SCON
COMMON /KK /KCOUNT

COUNTER LIMITS INTEGRATION INTERVAL TO 50 STEFS

USE COMMON TO ZERC COUNTER

mé 2,20)=CLOG(( 2*20-A* ¥2- CXSR( Z,A)*CXSR( 20,A) Y (2*Z0+A
2*)( -
2CXSR(Z,A)*CXSR(Z0,A))*(~1.))

XB%,zo ) =CLOG( (2*Z0-A**2-CXSR( Z,A)*CXSR(Z0,A) )*(Z2+20)*
1%2
2(Z* 20+A* * 2~ CXSR(Z,A)*» CXSR( Z20,A) ) * (Z0-Z)**%2))

XC(2,20)=(2-20*CXSR(Z,A) /CXSR(Z0,4A))*(Z0B-20) / (2%x2-

120*%2)

G1=G

ZB=C0ONJG(2Z)

ZOB=CONJG( 20)

CI=CMPLX(0.,1.)

SAVE PREVIOUS VALUES OF XB AND CHECK PATH FOR BRANCH CUT
IF BRANCH IS CROSSED ADD PROPER IMAGINARY TERM TO KEEF
DISFLACEMENTS CONTINUOUS

100

KCOUWNT=KCOUNT+1

K=KOQUNT

A=A1
BI=.5*%(XB(2,20)-Q*XB(2,20B))+x(2,20)

X=REAL(XB(Z,Z0B))

Y=ATIAG (XB(Z,Z0B) )

I=1

IF(X.IT7.0.AND.Y.GE.0)I=2

IF(X-I‘T oo oAIIDoYom .O )I=3

D=XB(Z,20B)

IFE {.JIE.2) GO TO 100

IF H(K—2).m 02 .AI‘ID.I.EQ 03

IP(W(K-2) . R.3.AUD.I. M .2

CONTINUE

N(K)=1
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H1=-Q"XC(Z2,20)

H=-Q“RZAI{XA(Z,20))

H2=.5%(Q=»2¥D+CONJG(D))

R=H+H1+H?2

T1=R+XC(ZB,Z0)+2*(2* 20-20B*ZB) /(ZB* “2- 20%#2 )+ (Z-ZB) * E(
12B,Z0)

G1=3,75*10% 6

F1=F1*CONS

D1=REAL(D)

D2=AIIUAG(D)

RETURN

END

SUBRUTI'® XIuTG(2,I,A,S11,S12,821,522,F1,IC)

THIS ROUTINE INTEGRATES THI SUNM AIlD DIFFERENCE OF TWO
COMLEX FUIICTIOLNS, F1 AND F2, USED ‘'C EVALUATZ THE GREENS
FUNCTIAS FOr. DISPLACENETS.

corpIr/CTOL /0L, NC , R, TX , TY ,NBC( 100 ), IBC
COIMMOIT/IX /KCOUIT
COMMEX F1,F2,7,20,CI,A1,B1, Z0B
COIMOIT/ALIMIT/DC(2,51),IB(6,51),FF
EXTFRIJAL T1
CI=Q121.%(0.,1.)
X=RZAL(Z)
$11=0.0
5312=0.0
521=0.0
$22=0,0
Y=AII'AG(2)

I D=1 TI<l 2 1L,Iw3 QUTSIDE INTEGRATION PATCH

ATD Y1 10INTS ARD USCD I A SINGLZ INTEGRATICI,

IT TI'DE¥=2 TIEN TEN Z LIZS VITHIN THE INTEGRATICIT PATCH
AND TWO INTEGRATIONS ARE [ADE WITH K2 PCINTS IN XACH
IIITEGRATICH,

ICOUNT COITRULS THE 1L0O0OrS 0O THE INTmGRATICN. IF ICOULT
£QUALS O COLTIVUL CTHEAWISE DO SECOND ITTEGRATION.

XS3TLRT=DB(1,I)
FIVAL=D3(2,I)
IF(X.I2 ,XSTART.OR .X.GE ,JFINAL) INDEI=1
IF(X.GT JXSTART .AID.X.IP ,XFINAL)INDEX=2
ICOUNT=0
K1=75
K1=5
IF(IIDEX. R .1)2,73
2 {g=XSTART
JU=3XFILAL,
GO TO 4

7 A=LXSTART
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U=X-T0L
ICOUNT=ICOUNTY 1
GC TO 4
L=XFITAL
J=%+T0L
ICOUIIM=ICOUIIT+1
CONITIIU=
IF(XFTNAL.FQ JA)XFINAT=A-TOL
=K1
= ((U-XL) /(3. %10)
FM=K+1
DO 7 I=1,1
XX = (XU-XT )* (T-1)
X0 =XX/T+X1:
AT=T
X1=AT /2.
L2=1./2
IF(L.M.1.0R.L. 7.1 16, 18
iF=1
GO T0 17
IF(ABS(X1-X2).I1,..0001 )XF=4,
IF(ARS(X1-X%2).GT..0001 )XF=2,
CONTIIUE
Z0=X0+CI: 0,0
YO=ATMAG(Z0)
ZOB=CONJG(Z0)
KCOUWIT=0,0
CALL YIITG(Z,20,I,4A,T11,T12,T21,T22,F1,1IC)
FORMAT( /* Y- STRIEF AT X0=*E10. 9*T1 T2 T),T4-*4E11 3)
C11=XF DX*T14
C12=XF*DX*T 12
C21=XF* D T21
C22=XF+* D T22
S11=S114C 11
S12=512+C12
S21=821+C21
522=822+C 22
CONTIIUE
IF(ICOUNT-1)6,5,6
CONTINUE
RETURI
END
SUBROUTIIE YINTG(Z,20,I,A,S11,512,821,522,F1,IC)

THIS ROUTINE INTEGRATES THE SUM AND DIFFERENCE OF TWO
OOIIJ.L.,X FUNCTIOUS, F1 AID F2, USED TO EVALUATE THE GREZENS
FUICTIONS FOR DIS PLACLImN’I‘S.

COMFLEX H,A2,B2
COIMON/CTARM/S1,S2,C11,C12,C22,C21, P1,P2,Q4, Q2

COMFLEX 21,22,W1,W2,G,GB,S1,S2,C11,C12,C22,C21, P1,P2,Q
14 ,Q2
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COMMON/XLIMIT/IC(2,51),IB(6

COMMON /CTOL/T0L,IC , MR, TX , TY
COMPLEX F1,F2,%,20,CT,A%

COMMQy /ROT /29 (10000 ), ( 100 )

CI=CMPLX(0.,1.)

X0=REAL(20)

X=REAL(Z)

$11=0.0

$12=0.0

S21=0.0

522=0.0

Y=ATMAG(2Z)

B1=DB§3,I§

B2=DB(4,I

C1=DB§5,I§

c2=DB(6,I

Y1=YYX2XO,B1,BZ;

Y2=YYX(x0,C1,C2

ICOUNT=0

K1=7

K1=5

XL=Y1

XU=Y2

II=1

IF(II .BQ.1)GO TO 4

IOGIC TO STATEMENT FOUR IS FOR THE NARROW STRIP THAT
CONTAINS ™E SINGULARITY

THESE STATEM&NTS CAN BE USED TO INTEGRATE THIS STRIP WITH
ADDITIONAL LOGIC. CONSIDER X CONSTANT OVER THIS NARROW

STRIf.

IF(Y.IE.Y1.0R.Y.GE.Y2)INDEX=1
IF(Y.GT.Y1.AND.Y,ID . Y2)INDEX=2
IF(INIEX.’Q.1)2,3

2 L=Y1
XU=Y2
GO T 4

3 L=Y1

W=Y-TOL

ICOWT=ICOUNT+1

GO TO 4

L=Y+TOL

U=Y2

K1=5

ICOUNT=ICOUNT+1

4 OONTINUE
K=K1

DX=(XU-XL)/(3.%K)

M=X+1

D0 1 I=1,M

N
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K=(XU-XL)*(1-1)

YO=XX /K+XL

AT=L

X1=AT/2.

X2=L/2

IF(L.R.1.0R.L.|.M) 16,18
XF=1

GO TO 17

18 IFéAE(X1—X2).Iﬂ!..OOO1 XF=4.
IF(ABS(X1-X2).GT,.0001)XF=2.
17 CONTINUE

Z0=X0+CI*Y0

Z0B=COMJIG(20)

IC=1 CRAKED METAL SHEET
IC=2 ORTHOTROFIC SOLLD SHEET

IF(IC.NE.2)30,%1

30 CONTINUE

A1=F1$Z,ZO)
B1=F1(Z,20B)
T11=REAL2A1+B 1)
T12=REAL(CI*(A1-B1))
721 :AIMAG§A1+B 1)
T22=ATMAG( CI*(A1-B1))

GO TO 33

31 CONTINUE
Z1=X+ S1*Y
22=X+82*Y
W1=X0+S51*Y0
W2=X0+82*¥YO0
A1=GEZ1,W1
B1=G( Z2,VW2
A2=H§Z1 LW
B2=H( 22,2

T11=2.*REAL(F 1%*C 11*A 1+P2*C 21 *B1)
T12=2.*REALEP1*C12*A2+P2*C22*B2§
T21=2.*REAL(Q4*C 11*A 14Q2*C 21 *B 1

722=2 ,*REAL(Q4%C 12 ¥A 2+Q 2*C 22%B2)

33 CONTINUE
IF(IC.NE.3)60,61

60 I‘S:1o
FR=1.

GO TO 62

61 CONTINUE
FS:DEI)
FR=D(I+IALF)

62 CONTINUE
P11=XF*FS*DX*T 11
P12 =XFX FRXDX*T12
P21 =XF+FS*DX*T21
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P22 X F* PRFDX*T22
S11=5 1142 11
312=8 12+ 12
S21=521+721
$22=822+P 22
1 OOLTLIUE
IF(ICOWIT-1)6,5,6
6 CONTINUE
RE TURY
D
COMILEX FUNCTION CXSR(Z,B)

THIS FUNCTION TALES THE SQUARE ROOT OF Z¥¥2-B¥*%*2
IT ONLY RETURIIS T™E FIRST ROOT, THE SECOND ROOT CAN BE
FOUND BY ADDING FI/2 TO THE TRIP ARGUIENT

COMPLEX Z,T1,T2,CI
CI=ChPIX(0.,1.)
T=2-B
T2=7+B
{1=REAI(T1)
Y1=AIMAG(T1)
2=REAN(T2)
Y2=AIMAG(T2)
A1=ATAH2$Y1,X1§
A2=ATAN2(Y2,X2
S1=§REAL§T13* ¥Q4+ATIMAG(T 1 P *2 % 5

S2=( RCAL( T2)% * 2+AIMAG( T2 )x* 2 )¢+ 5
SR=(S1%¥s2)p 7,5
ATG=A1+A2
CXSR=5S™ (COS(ALG/2 .0)+CI*SIN(ANG/2.))
RETURI!
END

CCHMIIzX FUNCTION XK(Z,Z0)
REZLS FUNCTIOI FOR STRESS TNTEITSITY

CClrMCG: /T0: /23, T2,V1, X, Y,G,CCHS,Q, A1, SCON
celiiIiZx Z,20,78,70B,CXSR,D,F

A=A1

ZB=01JIG( 2)

ZOB=CONJG( 20)

D=(20" ZOB-2 .¥ZC *2+A*+2) / (( 20%¥ 2~ A*» 2 *CXSR(20,4))
F=Q ‘C{SR(Z20B,4A) / (Z0B*2- & ¥2)

W=oxpAxs C¥(F4+D)/(6.28%%( 1.4Q)*T2)

REZTURN

=D

FUIICTION YY(T)

IS A DUMMY ARAMOTER FOR X0
ALCULATS YO FOi A GIVEIl XO
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cormon/mo: /E3,72,V1, 81X, 9iY ,G, CONS,Q, A1, SCON
COlMOM/BOLD/F, P1,12, XKF XYUNS XI\STIFF

F(T7/A1.1I2.0)2,1

1 CONTINUZS

YY=P¢( (1= (P/A1)*¥ 21)%%(1/P2)) %A1
GO TC 3
=TF4A 1

3 CONTIIUL

RATUR
D
COMPIEX FULCTION B(2,Z0)
cel Mon/Tor/E3,72,V1, 89X, Y, G, CONS,Q, A1, SCON
COI‘:IBX X1,X%2,%3,X4,%{5,CXSR,Z0B,%,32,X6,X7, X8, X9
01=0
A=A1
ZOB=COIIG(Z0)
{1=CxXsS~( Z,A)
X2=CXs2(20,4A)
3=1,/(2% 2= 7207 %2)
x4=1./2z-v>2-z013->< +2)
X5=1./(2-20)*
A6 1. /(Z+2C)¥=2
1*((—4*zo*lis)+2 7Q 1%*Z0B*{4+( Z2-20B) * X5~ (Z+ Z0B)»X6)
{8 (zo Z0B) ((A7>2-2%70 )% X5 (ArX24Z%XZ0)%X6) /X2+2. %K 2%

1X3%Z

X9=-2,%Q 1*Z* CXSR( ZOB,A)* X4
B= (X7+X84X9) /(2. 0%%1)
RETURIT

EID
SUBROUTINE CPAR

CAZCUIATC :ARANMTERS FOR COMrLEX VARIABLES IN ORTHOTROPIC
MIATYSIS,

cor:1zxX ¢I1,51,51B,82,528,C11,C012,C21,C22,¥1,02,Q4,Q2,D
1,U1,02
COITLEX CC
cclmMo37/BOT /&4, T4,V4, CX,CY ,GB,CONB,Q1, GC, 85
coILlo: /c-ARh/m S2,C11 c1 022 c21, 1, 132 Q4 Q2
CI=C121.:(0.0,1 o)
EY=E5
EY=E4
=74

Z{Y =GC

=D/ GLY -2 *¥VL
c L‘I{/EY
CC= clnw(c 0.0)

VY=V ._.JI./
D—"J}’{’T’g Y 9-4 ,*¥CC)
U4=-.5%(3-D)
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U2=-,5*%(B+D)
S1=CSQRT(U1)
IF(AIMAG§S1 JIr ,0)S1=-51
S2=CSQRT(U2
IF(ATMAG(S2) .1l ,0 )S2=-S2
S1B=CONJGES1;
S2B=-CONJG(S2
IF(B**2-4.*C)1,2,3

1 CONTINUE

PRINT 4

FORVAT(* ROOTS ARE COMPIEX U1=A+IB, U2==-MIB*/)

GO TO5

COI'TINUE

PRINT 6

FORIAT(* DOTS ARE PURE IMAGINARY AND EQUAIx/)

GO TOS

B1=AIMAG(S1)

D1=ATINMAG(S2)

P1=(S 1% 2-VX) /EX

P2=E S2%* 2-VX) /EX

Q2=( -VY*s2+1./S2)/EY

Q4=(-V¥*S1+1./51) /EY

(o TN O B -

i

100 FORMAT(4E12.3)

COMP1=1./(12.566*] 4*(B1¥x 2-D1** 2))
C11=(D1%*x 2¥VY+1 *B14COMP1
C 12 =( VX4D 1%* 2 CONP1
C21==D1*( VY *B1** 2+ 1 *COMP1
C22=~(B 1%* 24VX ) *COME1
GO TO 7
5 RRINT 3
8 FORMAT( /* ERROR-FRROR CRTHOTROPIC ANALYSIS IS NOT*
1% DEFINED x/)
7 CONTINUE
RETURN
D
SUBROUTINE GRID

GENERATE MESH USED TO DISCRETIZE INTERLAMINAR STRESSES.

COMMOCIT /BOND2 /NE,NL ,FT , XC ( 100 ), YC( 100 ), XA( 100 ), YA( 100 ),
1NOE(100)

COMMQY /CTOL/TOL ,NC ,NR , TX , TY ,KBC( 100 ) , IBC

COMMOY/TOP/E3, T2, V1, MX , MY , G, CONS,Q, A1, SCON

COMMA: /3 IMIT/IC! 2,51),1B(6,51 ) , FF

CCMMON/BOND/F ,F1, P2, XKF , XKUNS , XKSTIF

P=T1

TXX=2,*T0L

DX=TX /1IC

DY=TY/NR

IBC=0

MK=1CXIIR
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DC 11 I=1,MX
NBC(I )=0

DO 100 J=1,NR

D0 100 I=1,NC

MT=NC* (J-1 I
AC=A14DY*(J -1 }+DY/2.
YI=F*A1

BC=YI+DY*(J-1 )+DY/2.
DC(1,MT )=DX/2 .+(I-1)*DX
X=DC(1,MI)
Y=YYD(X,BC,AC,P)
DC§2,MT§—Y
DB(1,MT)=DX~(I-1)

DBE2,MT;=DX*I

DB(3,MI)=DY* (J-1 )+YI

DB( 4,MT)=DY*(J-1)+A1

DB(5,MT) =DY*J+YI

DB(6,MI) =DY*J+A1

CONTINUE

FORMAT(I10, 2E15. 33
FORMAT(I10,6E12.3

RETURN

END

SUBROUTINE XINC (SUM,XNCY,DAS,IFS)

THIS ROUTINE INCREMELITS THE CRACK LENGTH AND DEBOND SHATE
FCR NCY CYLES

CCHMIDN /XLINIT/DC(2,51),1B(6,51),FF
CCMMON /CTOL,/TOL,NC,NR , TX , TY ,NBC( 100 ), IBC
COMNON/BONID/F,P1, P2, XKF ,XKUNS,XKSTIFF
COMMON/T0F /E3,T2,V1, X, MY ,G,CONS,Q,A1, SCON
coryMoy /BT /24, T4,V4,5CX ,CY,GB,C0NB,Q1,GC,ES
COVVON/XY /XD, YD
DIIENSION Yi(20),xi(20),B(2,2),01(20),D20),CR(2,2)
B1=A 1*F
R= .01
DA=3,223-14 *XKSTIFF**3,38
CFAC=1.79E-14
CFAC=3.3E-14
DA=CFAC*XKSTIFF**3, 38
DA=DA/((1.-R)*56000 .-XKSTIFF)
DF=3, 158E-05*SUM** 3, 616
DAS=DA
DF S=DF

DETERMINE HOW MANY CYCLES REQUIRED FOR EITHER A CRACK COR
DEBCND EXTENSIOIN OF .1 INCHES. THEN USE SNALLEST VALUE
AS THE INCREMENT OF APPLIED LOAD CYCIES

XNCRACK=.10/DA
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XNBOMND=.,10 /IF
XNBOND=,20/IF

XCY=XNCRACK

IF ( XNCRACY..,GT , NBOND )XNCY=XNBOND
DA=XI1CY* DA

A2=A 14DA

DF=DF*XliCY

B2=B 1+DF

71=2

A1=A2

F=B2/A2

RETURN

END

SUBROUTINE VERI(2Z,SXX,SXY,SXXY,SYx,sSryY,sSyXy,MX,KTYPE)

C INTEGRATE GREENIS FUNCTIONS FOR STRESSES

C

QOO

C

COMMON /CTOL/TOL,NC , MR , X , TY ,NBC (100 ) , IBC
COMFILEX Z

2=2

MX =M

J=J

SXX=0.

SXY=O.

SL{XY=0,

SYX=0-

SYXY=0,

SYY=0.0

DO 1 J=1,MX

CALL VXINTG (J,Z,S1,52,53,54, S5, 56, M ,KIYEE)

FIRST IIDEX INDICATES L.OAD DIRECTION, SE8COND STRESS
DIRECTION

SXX=51+5XX

SXY=53+SXY

SXLY=55+SXXY

SYX=52+5YX

SYY=354+SYY

SYXY=56+5YXY

CCNTIFUZE

RETURI

END

SUBROUTINE VXINTG(I,Z,S1,S2,S3,54,35,56,MX,KIYFE)

DETERMINE STRESSES 1IN ADHERENDS DUE TO INTERLAMINAR
STRESSES.

CoMMON/XLIMIT/DC(2,51),IB(6,51),FF
COMMON/ROT/29(10000),D( 100 ) ,NALF
COV.M(N /TOP/E3,T2,V1, X, Y ,G,0CNS,Q, A1, SCOI
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comins¥ 2,728,720 ,7208,8,18Z,B1,D818B,31B,IB1,G%, G5, G7,G3
celor /cr¢1./T0L,I1C, MR, ™ , TY ,NBC (100 , 1BC

COMILX CI

COIILEA T

e
is=

=RIAL(Z)
31=0

$2=0

33=0

S4=0

55=0

36=0
ZB=001J3( 2)

IT TIIDIX=1 THSN 2 7I8 OUTSIDE THI INTLGRATIOCN PATCII

AI'D II1 ICII'TS ARLD USED IN A SINGLZ INTEGRATICN

IF IIDEX=2 T2 Z2 TIZS WITHIW THE INTZGRATICH TATCH A
TVIC DITEGRAATICNS ARE ITEADE EACH WITH K2 INTUGRATIOLI POINT
I¥ ICCUNT=0 THEI] OONTINUZ OrHEl]WISE SECUID INTEGRATION

ASTART=DB(1,I)
X7 Lmu_muz I)
IF(X. Ll XSTART .OR .X.GE . AFINAL) INDEX=1
IF(X.0T JXSTART ,AND . . IT . XFINAL)INDiK=2
K1=7
K1=5
ICOMIT=0
IF(INDEX.EQ .1)2,3

2 ICJ AfThRT

’T —fxﬁI‘.A._l

GO ™ 4

L.=XSTART

M=.4-T01.

ICOUNT=ICOUNTE 1

GC TC 4

D W=ZT11"aL
=.4T0L
ICCUiT=I0CUN T+ 1

4 CCLTIN UL
IF(ZFITALLI) LA )IPINAL=A1-TOL
¥=¥1
DX=(XU-.) /(3. %)
Y=X+1
CI=Q:172(0.,1.0)
DC 7 L=1,l
Co=(HU-T0)*(T-1)
J0=L/Y+X.,
YO=YY(X0)
7(=1C+CI' VO
/0B=CLIIIG(ZC)
AT=3

N
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X1=AT/2.
2=l /2
I(L.%Q.1.0R.T. M .M) 16,18
16 1F=1
GO TO 17
18 IF(iBS(X1-X2).I1..0001)XF=4
IF(ABS (X1~ X2) .GT..0001 )XF=2
17 CONTIIUE
CALL vwinrte(z,zo,I,T™X,T™Y,T¥YX,TYY, TXYX, KYY,KTYPD
S1=XF+ T T:®+ S1
S2=YXF¥ (> TXY+52
S33=Y.F+IK~ T+ S3
S4=XT*TH Y TYY+54
S5=XF*I{~ oY X+ S5
S6=XF~IK*TXYY+S6
7 CONTINUZR
IF(ICCUNT-1)6,5,6
6 COUTINUZ
RETURI
END
SUBROUTIIE VYIute(2,20,I,S7,58,S3, 54,55, S5,KIYPE)
C
C INTEGRATE GRUENS FUNCTIONS FOR STRESSES
C
COMMQ /CEARIY/S1,52,C11,C12,C22,C21, 1,T2,Q4,Q2
COMMON /3. THIT /DG (2,51 ) . TB(6, 51 ), FF
CoOM¥ILZX 21,22,W1,W2, GB,S1,S$2,C11,C12,C22,C21,11,P2,Q
14,Q2
CO:3DI/ICT /B3, T2,V1, 31X ,S1Y,G,CCNS,Q, A1, SCON
COMMDI/ROT /73 (10000),1( 100 ) \NALF
COM‘LEX Z,78,7%0,708,B,IBZ,B1,I0B1B,B1B8,IB1,G5,G5,G7,G8
COMILIX CI,G1A
COIFLEX G1,G2,G3,G4,H1,H2,W1B, W2B
CClMGT /CTOL/T0L,MC, MR, TX , TY ,MBC (100 ), IBC
CCIVLIY *
A=REAL(2Z)
Y=ATMAG(Z)
=7
C1=Q
ZB=CO:JG(2Z)
S7=0,

OOOO.C)
o

wvintie.
[ C IR I g
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DB GIVIS PARAISTIRS FOR UPPER AIlD IOWER GRID BOUIDARIES.

QaQa

B1=DB(3,I)
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B2=DB(4,I)
C1=DB€5,I§
C2=DB(6,I
¥0=REAL( 20)
Y2=YYX(%0,C1,C2)
Y1=YYX(x0,B1,B2)
K1=5

E1=3

=Y1

W=Y2

K=K1

C SEE YIITG FOR ICGIC FOR INTHGRATION OF NARROW STRIP THAT
C CONTAINS THE STIGULARITY. THAT STRIF IS NEGLECTED HERE

DX=(XU-ZL) /(3. %)
M=K +1
CI=CMPIX(0.,1.0)
D0 7 I=1,M
K=(X-XL)*(L-1)
YO=XX/K+XL
7Z0=X0+CI* YO
Z0B=CONJG ( ZO)
AT'-‘IJ
{1=AT/2.
X2=L /2
IF(L.Q.1.0R.L.J.M) 16,18
16 F=1
GO TO 17
18 IF(ABS(X1-X2).Il,.0001 XF=4
IF(ABS(X1-4£2).GT..0001 )XF=2
17 CONTIIUE
IF(KTYPE.HQ .1) 30, 31
20 CONTINUZE
B1=B(Z2,20)
B1B=B( Z,70B)
IB1=DBZ{%,70)
DB1B=DBZ(2,70B)
G1=—4%( 20 /(2% * 2= 20% *2)+Z0B/ (2 * 2= Z0B**2))
G1=REAT(G1)
G1A=-4*(20/(2+*2~ 20% ¥2)-20B/ (2> *2- ZOB**2))
G1A=REAL(CI*G1A)
G2=2*Q1*ZOB/(Z**2—ZOB**2;
G2=G2- ((20B+2ZB)/(2+20)* *2+(20B-ZB) /(2-20)**2)
G3=2"Q 1*20 /(27 ¥ 2- Z0% %2)
G3=G 3= ((20+ZB)/(2+20B) **2+(20-2ZB) / (Z2-Z0B ) %% 2)
G5=B 1+B1B
G6=CI* (B1- B1B)
G7=( 2B-Z) * (DB1+DB1B)
G8=CI+ (2B-2)¥ (DB1-IB1B)
T1S=REAL(G1-G2-G3)
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T2S=REAL(G1A-CI* (G2- G3))
T335=REAL(G14+G24G3)
T4S=REAL(G1A+CI*(G2- G3))
P5S=AINMAG(G14G24G3)
T6S=AIMAG(G1A+CI+*(G2-G3))
P11=(-REAL(2*G5- G7 T 1S) * SCON
T22=(-REAL(2*G 6~ G8)+T 23) * SCON
T33=(-REAL22*G5+G7 T3S)* SCON
T44=( -REAL(2%G64G8 +T48)* SCON
T55=EAII-IAG€-G7 Tssg*scon
T66=( AIMAG (-G8 H+T6S)* SCON
C
C CHANGIE SIGNS TO ACCOUNT FORNEGATIVE BODY FORCES
C
T41=-T11
T22=-T22
35==T33
T44==T44
T55=-T55
T66=-T66
GO TO %2
31 CONTINUE
Z1=X+S1*Y
Z2=X+ S2*Y
W1=X0+ 51¥Y0
W2=X0+S52‘Y0
W1B=CONJ G S W1 ;
W2B=COilJG{W2
G1=2*(W1/(Z21%*% 2-V1** 2 4WAB/ (Z1%*% 2-W1B-*2))
G2=2*(2/(Z 2%*% 2- \2%* 2 )4 W2B/ (Z2%* 2-W2B*% 2))
H1=2*§w1/ 2 1% 2= WA 2g-wﬂa/§z1H 2-&'.'19*233
H2=2%(1,2/(Z22% 2= Worx 2)-\2B/ (2 2%* 2= W2BX % 2
T11=2"REAL(S1¥* 2%C 11 %G 145 2% 2<C 21 %G 2)
T22=2¥REAL(CI* (S1%* 2%C 12 ¥ 145 2% 2%C 22 ¥H2))
P33=2¥REAI{C 11*G 14C 21 *G 2)
P44 =2*ZEAL(CI* ( C12 ¥*H14C 22*H2))
P55=-2*¥REAL(S1*C 11 %G 1+S2%C 21 *G2)
T66=-2*REAL(CIX (S1*C 12 *H1+S2*C 22 X1 2))
C
C CAICULATE STRESJES IN ORTHOTROYIC SHEET
c
72 OONTINUE
57=XF* DX T11*Dé I)+s87
S8=XF<DL* T22*D( I+MX)+38
S2=XF*Dx* 7% ¥D(I)+S3
S4=XF+D: TA4*D( I+}MK )+ S4
S5=XF* Di» T55*DE I1)+85
S6=XF* D* T66*D( I +MX ) +56
7 CONTINUE
RETUR!
BD
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COMILEX FUNCTION DBZ(Z,Z0)
ceMMor/T0:/E>,T72,V1,SMX,MY,G,CONS,Q,A1,SCON

THIS FUKCTION IS THE DERIVATIVE OF B(Z,Z20) WITH RESIECT
TO 2

COMPLEX ZB,CXSR
COMFLEX Z,20,B1,B2,B3,Z0B

CCMYL3IX XIZ0,XIZCB,LIZ

ZB=CCN JG(Z)

ZC3=C01JG (ZC)

A=A1

X1Z2=CX3R(Z,A)

AIZU-CKDR(ZO A)

XIZ0B= 0?51(203 A)

Bi=(-4%Q*2¥ Z0B /(Z*%2-Z0B**2)* #2-4 *7% (3*¥Z0~* 2% Z 0B+ 2% *2
1%Z0B-4 %201 7
2)/((20-2)* 3% ( 20+ Z)*%3)) /2

B2=-((Q*XIZ0B* (A~ x°*ZOB**2-2*Z**4+A**2*Z**2)/(ZOB**4-2
1% Z 2% 2% Z0B
2K Q4 7 A) KT 20" (A¥X 2% Z 0% QD #Z# XALf 2% 2% 27 %2) [ (Z0%** 4-27
1Z¥ ¥2%7C 2 2

2+2+%4)) (27 c2= 4> ~2)+ ((Z0O**24Z* ZC-2%A* »2) /(20-2)* ¥ .+( 20
1#%2-27 20
3-2%A2¥2) [(Z0+Z )¥¥ 342% ((A*% 2- 2 20) /(20-2) *% 2= (Z% ZO+A**2
1)/(Z20+2 )** 2
4)/(2**2-Av *2))*(20-20B)/(2%XI20))/X12

DBZ=E1+B2

RETURT

END

SUBRCUTIIL RESIGM(Z,S11,S822,312,KTYPD,STRESSH, STRESSC )

C COMUTE 3TRES3ES IV ADHERENDS DUE TU RiI.OTE STRESSES

Q

cCMON/TUY/ES,T2,V1,81'X,9.Y,G,CCNS,Q,A1,SCONL
DIN!ISICT STRESSE (3),QT?£SSC())

CCI.LDZ 2,0%05.,H1,C1 8GAR, DY HI, XK , 2B, ST
I”(MTYLU.L*.1)1,L

CCHTINUE

ZB=CC1JIG(2)

SHI=STR2S2(2) (Z2/CISR(Z,41)) /2.~ .25 (ST.ESS.(2)-STR.S
13.(1))

OMEGAB=STRESS! (2)* (ZB/CXSR(ZB,A1)) /2 J+.25%(STSSML(2) -
15TES3:(1))

D} HI==A1%"2,(CXSR(Z,A1)x (2¥ 7 2-A1%=2))

DL HI=D.HI*;TRESI:(2)/2.

ﬂfmwma mm%auzumu

A HI=2¥*REAL(1HI)

AK=X3HI+ZB*Di I+ ST

S11=REAL (X FI-(2DB*DIHI+SI))

S22=REAL (1)



aQQ

Qaaaaa

QaaQ

220

512 =AIMAG (1)
GC TU

2 311=smnssc§1§
322=5TRESSC(2
512=8TRESXL(3)

3 COIITILUZ
REZTURY
BN D
COMILEL FUNCTIOYW G(Z,%)
COVFLEX 2,78 ,W,WB
ZB=OOI{JG§Z)
WB=CONJIG (W)

G=CICG(./-2)-CLOG( 2+WB)-CLOG(2+W)+CLOG(WB-2)

RETURY
D
CLLFLITX FULCTION H(2Z,%)
cCv.I34 2,72B,¥,WB ,CI
CI=Q111Xx(0.0,1.0)
ZB=CONJG( Z)
WB=CONJIG (W)
H=CLOG( W-2Z) +CLCG(Z2+WB)~-CLOG(Z+W)-CLOG(WB-2)
H=CI"Y
RETURN
1D
SUBROUTINE PLASTIC(SYIEID,GAD2,S,IR)

PERPCRII INCRIIENTAL »LASTIC ANALYSIS

CCNMOiT/RCT/29(10000),D( 100) ,NALF
CUMMCIT/ADES /TAD,GAD

DIN2SICIH F( 100 5 ,G(100),DR(100),NCE(100),MYI=1D( 100)
*X.=0

CCIxUTE YIZ1D STRES3 FCR EACH rOINT
CliOU3s CRITICAL ZLUIa'T

N=2*I"AIl
0SQ =177

SUM=0
C 55 I=1,lALT

F(INAIF)=N.0
55 N0 (I)=0
FCI=99%99999929%99.
12 FCC=929995999.
W=_K+1
IC 1I=1,lIALF
IF(NO:(I).5Q.1)GC TC 1

ADD I0GIC TC SKII ALL YIWLDED ELZFENTS
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A=D(I )**24D( I+HALF)**2
B=2%(F(I)D(I)+F( I+MALTF )*D( I+NALF))
C=F(I)**2+F( T+NALF ) **2- SYIXID**2/3.
TEST=(-B+SQRT(B*+*2-4 *A*C))/(2.*A)

IF(TE3T.IT.FCC)2,3
2 ¥=1
FCC=TZ3T
CONTINUE
CONTINUE
IF(¥X.BQ.1)FCI=FCC
LL=I-1
SUM1=SUNM
SUI=SUI+FCC
IF(SUN.GT.S) 5,6
6 IF(FCC.H .99999999.)GC T 13
16 £ (X)) =1
NYIFLD(IK )=k

— \N

c
C SAVE STRESS IN EACH ELENINT ATYIELDING
c

¢ 8 I=1,N

F(I)=FCC*D(I)+F(I)

G(I)=FCcC~D(I)

& CCUTINUE

c

C MODIFY EQUATION SuT FCR YIELDING OF CRITICAL ELZEMIIT
C
I1=(K-1)*I1+K
I4=K+1JALF
I12=(14~1 *N+14
29(11)=29(T1)+TAD*(1, /GAD2-1,/GAD)
29(12)=29(12)+TAD*( 1, /GAD2-1./GAD)
C
C USING AN ITERATIVE MSTHOD UFDATE ELEMINT STRES SES
o
CAIL GAUSS(DR)
IF(iK.Q.IATF)GC TO 18
GU TC 12
5 IF(¥K..mMQ.1)13, 14
12 RINT 15
UM =0.
15 FCRMAT(/* THE SOIUTION IS CCHMPLETELY ELASTIC*/)
GO TO 16
14 CONTINUE
KE =1 -1
SUl=SUM
18 CONTINUE
FRINT %1,K, UM
31 FORNMAT( /I10* BLEMENTS HAVE YIELDED AT *E10.3/)
16 CONTINUE
1001 FORVMAT(£E10.3)
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DO 2% I=1,MALF
D(I)=(S5-SUM)~D(I)+F(I)
D(I+NALF)=(S~SUM )*D( I+NALF)+F( I+NALF)

26 CONTINUE
IF(KK.Gl.1)25,29

25 RINT 27

27 FGRMAT( /# YIELDZD EIEMENTS */)
RINT 28, (WYIEID(I),I=1,KK)

28 FCRMAT(12110)

29 CONTIIUE
ZRINT 0,FCI

%0 FORMAT(* THE YIELD MACROSCOPIC SPRESS IS *E11.3/)

RETURN
END
SUBROUTINE GAUSS(ID)

GAUS5 SEIDEL METHCD FOR SOLVING INCREMENTAL
PLASTIC SCIUTIQI

DIMENSION ID( 100),ASAVE(100)
COMMON/ADHES/TAD,GAD
CONMMGY /ROT/29(10000),D( 100 ) ,MALF
EFS=.005
N=2¥NAIF

NSQ =1 N
ITMAX=20

0 33 I=1,N
K=(I-1)*N+1I

ASTAR=29(K)
ASAVE(I)=ASTAR

DO 3 J=1,N
II=(J-1)*l+1I
29(I1)=29(I1)/ASTAR

CONTINUE

DD(I)=DD(I)/ASTAR
CONTLIUE
DO 9 ITER=1,ITMAX

KFLAG=1
DO 7 I=1,H

XSTAP:D(I;

D(I)=DD(I
DO 5 J=1,N

II=(J-1 *l+1
IF SI Q. J) GOTO 5
D(I)=D(I)-22(I1)*D(J)
5 CONTINUE
IF( ABS( XSTAR-I(I)).IE,EPS)GO TO 7
YFLAG=0
7 CONTINUE
IF(KFLAG.NE.1)GO TO 9
GO TO 1



QO

9
1

223

CONTINUE
PRINT 204
CONTINUE

RECOISTRUCT Z¢ AlID DD IMATRIX FOR USE ON FUTUTRE
ELEMHITS THAT YIELD

330
204

Wl -

N -

DO 3%0 I=1,N
K=(I-1*i+1
ASTAR=ASAVE(I)
DO 0 J=1,N
II=(J-1 »N+1
Z29(I1)=29(II )*ASTAR
CONTIIUE
DD(I)=DD(I )*ASTAR
CONTINUE
FORMAT(/* CAUTION THE GAUSS SEIDEL DID NOT CONVERGE*/)
RETURI
B
NCTION YYX(X,B,A)
COMMOQIY /BOND/F,r1,72, XKF ,XKUNS,XKSTIFF
IFéK.EQ.O)GO TO 4
IF(X/A.GE.1)1,2
YWX=B*( (1.-(X/A)* ¥P1)**(1,/2))
GO 0 3
YYX=0.
GO T0 %
X=B
CONTINUE
RETURN
BD
FUNCTICH YYD(#,B,A ,F)
IF(X/A.G2.1)1,2
YYD=Px((1.-(X/A)> v )*-(1./P ))
GO TO 3
YYD=0.
CONTINUE
RETUN
D
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