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CRACK PROPAGATION IN ALUMINUM SHEETS 

REINFORCED WITH BORON-EPOXY 

by 

G. L. Roderick 

ABSTRACT 

The literature has shown that crack propagatlon in cracked 

metal sheets can be significantly reduced by bonding an uncracked 

reinforcement to the metal sheet. However, cyclic debonding typically 

occurs over a localized area near the crack. Herein, an analysis was 

developed to predict both the crack growth and debond growth in a 

reinforced system. The analysis was based on the use of complex 

variable Green's functions for cracked, isotropic sheets and uncracked, 

orthotropic sheets to calculate inplane and interlaminar stresses, 

stress intensities and strain-energy-release rates. An iteratlve 

solution was developed that used the stress intensities and straln­

energy-release rates to predict crack and debond growths, respectlvely, 

on a cycle-by-cycle basis. The analysis was verified with experiments. 

The analysis was used in a parametric study of the effects of 

boron-epoxy composite reinforcement on crack propagation in aluminum 

sheets. The study showed that the size of the debond area has a 

significant effect on the crack propagation in the aluminum. For 

small debond areas the crack propagation rate is reduced significantly, 
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but these small debonds have a strong tendency to enlarge. Debond 

growth is most likely to occur in reinforced systems that have a 

cracked metal sheet reinforced with a relatively thin composite sheet. 

The analysis predicts crack growth in reinforced systems. 

Hence, the analysis can be applied in developing methods to repair 

damaged metal structures and to increase the lives and payloads of metal 

structures by selective reinforcement. 
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CHAPTER I 

THE USE OF COMPOSITE REINFORCEMENT 

TO PREVENT FATIGUE FAILURE IN AIRCRAFT 

A potential cause of aircraft crashes is fat1gue failure. As 

shown by Hardrath (1971), most types of clvi1 aircraft have experienced 

some form of fatigue problem. In addition Lowndes and Miller (1969) 

indicate that fatigue failures have frequently occurred in military 

aircraft. In some cases the fatigue failures led to loss of lives and 

the aircraft. In efforts to elim1nate such fallures, both government 

research laboratories and a1rcraft manufacturers have studied the 

fatigue fal1ure process in depth. These studies showed that the rate 

at which the fatigue damage develops 1n metals is a function of the 

stress level in the structure and occurs in three stages: crack 

initiatlon, stable crack propagation, and unstable crack propagatlon 

(catastrophlc fallure). Although aircraft structures can be designed 

to have stresses low enough to prevent fat1gue failures, the weight 

penalty would be enormous and would make the a1rcraft uneconom1cal 

to operate. Hence, a trade-off exists between low stresses and low 

weight, and welght efficient structures will almost always have 

stresses high enough to support fat1gue damage accumulation. 

Fat1gue cracks in1tlate at local stress concentrations in the 

structure The local stress concentrations may be caused by poor 

1 
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fatigue design, by manufacturing defects in the material. or by damage 

caused by the f11 ght envi ronment. Although methods can be employed to 

reduce the occurrence of fatlgue crack initlation, the development of 

such cracks seems almost 1nevitab1e. 

Once a crack init1ates it grows at a stable rate unt11 it reaches 

some predlctab1e, crit1ca1 length after which catastrophic fa11ure follows. 

Fortunately, 1n alum1num aircraft structures the cr1t1ca1 crack length 

is large and the crack is easy to detect long before 1t reaches a 

critical length. Consequently, fat1gue cracks can be tolerated 1n 

an aircraft structure as long as the structure 1S 1nspected per10dica11y 

to locate cracks before they become crltica1. Of course, once the 

crack is detected it must be repa1red before it becomes critical. The 

repair can be made by e1ther rep1aclng the component or by repa1ring 

it in situ. Because replac1ng a component may 1nvolve high cost and 

keep the aircraft out of serV1ce for extended periods of time, repair­

ing the component 1n situ 1S frequently very desirable. 

Basically, a fatigue crack can be repaired by reduc1ng the stress 

state in the vicinity of the crack tip. One method of reducing the 

stress state is to reinforce the crack w1th un1direct10na1 composlte 

(fibers are perpend1cular to plane of crack). The composite reinforce­

ment reduces the stress state near the crack tip by two mechanisms. 

First, adding the compos1te re1nforcement lowers the overall stress in 

the cracked metal by increasing the cross-sectional area and by 

provlding an alternate, st1ffer load path by virtue of the h1gh 

modulus of the compos1te. This reduction in stress can be easily 
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calculated by simple strength of materials theory and, hence, is 

easy to investigate. The second mechanism comes from the development 

of stresses between the metal and composite adherends. Several papers 

(Kula et al 1973, Ellis 1976, Johnston and Stratton 1975, Ratwani 1977) 

have shown that these interlaminar stresses have a profound effect on 

crack propagatlon. These lnterlaminar stresses reduce the stresses 

near the crack tip and, consequently, retard ltS growth. As will be 

shown later, the investlgatlon of these lnterlaminar stresses requlres 

a much more extenslve analysls than that provided by strength of 

materials theory. 

Consequently, a need eXlsts for the development of a reallstic 

fatigue analysls that incorporates the effects of the interlamlnar 

stresses. Accordlngly, the obJective of thlS dlssertation was to 

develop such an analysis and use it to study the effects of composlte 

reinforcement on the fatigue life of cracked metall1c structure. 

To meet this object1ve the following approach was taken. F1rst, 

in Chapter II the fat1gue behavior of the constituents of the re1nforced 

system was characterized. Next in Chapter III the fatigue behaV10r of 

the reinforced system was stud1ed experimentally. Then, 1n Chapter IV 

with the use of the results of Chapters II and III and complex variable 

theory, a static analysis was developed that related applied loads, 

adherend th1cknesses, debond Slze, and crack length to crack propagat1on 

rates. Next, in Chapter V the analysis was further developed to predict 

both debond and crack growth as a funct10n of appl1ed load cycles. The 

accuracy of the analys1s was investlgated 1n Chapter VI. F1nally, in 
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Chapter VII the analysis was used to parametrically study crack 

propagation in reinforced systems. 

Throughout the development of the analysis many 1tems required 

deta11ed analytical or experimental 1nvest1gation. These 1nvest1gations 

were developed and discussed 1n several appendices. 



CHAPTER II 

FATIGUE BEHAVIOR OF THE REINFORCED SYSTEM CONSTITUENTS 

The relnforced system that will be considered hereln 1S composed 

of adherends made out of two dlssimilar materials, an aluminum sheet 

and a composite sheet, that are bonded to each other with a relatively 

thin, room-temperature curing adhesive. This system 1S intended to 

model the repair of a cracked, aluminum aircraft component that is 

repaired by bonding a composite sheet to it. Each of the three 

constituents of the system - the metal, the compos1te, and the adhes1ve­

exhibits different fatigue behavior and plays an important role in the 

fatigue behavior of the reinforced system. Consequently, to analyze 

the fatigue process in the system, the fatigue behavior of each of the 

constituents needs to be understood. In the following sections the 

fatigue behav10r of each of the constituents will be discussed and 

analysis methods formulated. 

Fatlgue of Metals 

As pointed out by Erodogan (1968), the fatigue process in metals 

occurs in three different stages: crack initiation, stable crack 

growth, and unstable crack growth (fracture). Current aircraft design 

methods focus on the latter two stages of the fatigue process by using 

a "Damage Tolerant Design Philosophy" (military specification 

5 
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MIl-A-83444). This philosophy, as far as fat1gue damage accumulation is 

concerned, admits that in1tial flaws such as cracks, exist 1n aircraft 

components that are fatigue critical, i.e. may fail under cyclic 10ad1ng. 

But, the philosophy also assumes that these initial cracks grow stably 

and can be detected during periodic inspections before they reach a 

critical crack length. Once the damage is detected, 1t can be repaired. 

Hence, the valid1ty of this ph1losophy rests on the accurate prediction 

of crack growth rate and crit1cal crack length. Fracture mechan1cs 

theory can be used to determine both crack growth rate and critical 

crack lengths. 

Fracture mechanics theory was conceived when Griffith (1921) 

related fracture to an energy balance as the crack extended. In 1957 

Irw1n related the stress state at the crack tip to fracture. A 

schematic of a crack t1P and equations for the stresses very close to 

it (Sih and liebow1tz 1968) are shown on figure 1 (add1tional terms not 

shown in the equations have a negligible effect on the stress state 

near the crack t1p). As may be seen from the equations, as the distance 

from the crack tip, r, approaches zero the stresses become inf1nite. 

Consequently, at the crack t1P where the stresses are 1nf1nite a 

. l·t . t 1 slngu ar1 y eX1S s. The coefficients of the stress distr1butions, 

kl and k2 , are the stress intensity factors WhlCh are used 

extensively 1n fracture mechanics. The Mode I stress 1ntensity 

deSignated by kl is assoc1ated with the stresses that deform 

the crack surfaces symmetrlca11y with respect to the or1ginal plane of 

lIn reality infinite stresses cannot exist 1n the mater1al and 
local yielding of the materla1 occurs. This local yielding 1S 19nored 
in linear elastic fracture mechanics. 
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y 

crack x 

Symmetric loadlng (Mode I) 

k 1 8 8 38 
ax = --1 cos - [1 - s'n - sin -]+ ... 

(2r)~ 2 2 2 

kl 8 
a = -- cos 
y (2r)~ 2 

8 38 
[1 + sin - sin -]+ ... 

2 2 
kl 8 8 38 

aXY = (2r)~ cos 2 sin 2"cos 2 + ... 

Skew-symmetrlc loadlng (Mode II) 

k~ 8 8 38 
a = ---1 Sln - [2 t cos - cos --]+ ... 

x (2r)~ 2 2 2 

k2 8 8 30 

0y = (2r)~ Sln "2 cos "2 cos 2- + •.. 

k l. 8 8 38 
axy = (2r)~ cos 2 [1 - sin 2" Sln ;2]+ ... 

Flg. 1. Stress dlstributlon near crack tlP 
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the crack while the Mode II stress intens1ty designated by k2 is 

associated w1th stresses that cause shear displacements between the 

crack surfaces. In 1960 Sanders showed that the stress 1ntensities 

were related to the strain energy release as the crack extended. Hence, 

the stress state near the crack tip was related to the Gr1ffith theory 

of fracture, and the foundat1on of fracture mechan1cs was formed. 

The stress intensities can be determined from complex stress 

functions determ1ned from the theory of elast1city (Slh and Liebow1tz 

1968) as 

kl - ik2 = 2/2 11m {;z:-a- q, (z)} ( 1 ) 
z -+ a 

where 

z = x + iy and i = ;:T 

and x and yare the cartes1an coordinates and ¢(z) 1S the complex 

stress function as developed by Muskhelishvili (1975) that satlsfies 

the equatlons (plane stra1n or stress) 

(2) 

2io - 0 + 0 = 2[Zq,'(Z) + ~tz)] xy x y (3) 

where 0x,Oy and 0xy are the stresses 1n the carteslan coordinates 

and ~(z) is another stress functlon. The two stress functions are 
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functions of both the loading conditions and the configuration of the 

body and will be discussed in detail in later chapters. 

The stress intensities can be related to both crack propagation 

rates and critical crack lengths. On the basis of the Griffith theory 

of fracture, a critical value of the strain energy release can be found 

and hence, according to Sanders (1960) a critical value of the stress 

intensity can be found. For the material used in this study, 2024-T3 

aluminum, Hudson (1969) showed that the critical value for k is 
IC 

1 

56,000 psi-in~. Hence, with the use of equation (1) and the appropriate 

stress functions, the fracture can be predicted. 

Cyclic crack growth rates were related to the stress intensity 

by Paris (1961) by the empirical formula 

da/dN = C(k )'+ 
1 

where da/dN is the crack propagation rate, C is am empirical 

constant and k lndicates the stress intensity range during cyclic 
1 

loading. Forman et al (1967) improved this equation by including the 

critical stress intensity k
IC 

and the stress ratio R, which is 

the ratio of the minimum to maximum stress in the loading cycle, 

in the empirical formula 

da/dN = (4) 
(l-R)k - k 

1 C 1 

J 

where c and n are empirical constants and kIC = 56,000 psi-in~. 
1 1 
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For 2024-T3 aluminum Hudson (1969) showed that the constants c and 
1 

n
1 

have the values 

= 3.22 x 10- 14 

= 3.38 

As the prevlous dlScussion lmp11es, once the stress functions for 

a cracked body are known, the stress intensities can be calculated. 

With the stress intensities both the crack propagatlon rate and critical 

crack length can be predlcted. The crack propagation rate and crltical 

crack length can be used in a Damage Tolerant Deslgn Philosophy to 

predict life of aircraft components. The 11fe is predlcted by flrst 

assuming that the structure contalns cracks. The lengths of these 

cracks are assumed to be the largest crack detected in the structure 

or the largest crack which can be overlooked due to the resolutlon 

of the inspection technique. Then, by using the assumed or detected 

crack length and fracture mechanics theory, the number of load cycles 

to fracture can be predlcted. On the basls of these calculations, 

inspection intervals are determined to assure that cracks can be 

detected and repaired before they reach a critical length. 

Fatigue of Bonded Systems 

To perform a realistic fatigue analysis of the relnforced system, 

the fatigue behavlor of the adheslve in situ, hereln called the bond, 

must be characterlzed. Several researchers have shown that the bond 

deteriorates when subJected to a CyCllC load. Within this dlsserta­

tion this deterioration will be called debondlng. Hoffman and June 
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(1973) studied debonding by recording the debond propagation as a func­

tl0n of applled load cycles. They showed that a myrlad of factors 

such as type of adhesive, adherend and adhesive thickness, method of 

curing, and aglng all affect the debonding. Roderlck et a1 (1976) 

showed that debonding could occur as failure within the adheslve as a 

cohesive fal1ure, between the adhesive and an adherend as an adhesive 

failure, or in the composite material. Because of the variety of 

failure modes, the analysls of the debonding is dlfficult. The most 

progress ln analysis of debonding appears to stem from the energy 

approach developed by Griffith (1921). 

The first app11cation of the energy approach appears to be by 

Rippling et a1 (1964) in the study of fracture toughness of bonded 

joints. Since Rippling's paper, Mostovoy and Rip1ing have published 

several other papers on fracture toughness of bonds: Mostovoy and 

Rippling 1966, Mostovoy et a1 1967, Mostovoy and Ripp11ng 1971. However, 

a correlation between the fracture energy and the stress state near 

the debond tip has not been made in the bonded systems. Wang et a1 

(1976) showed that a primary reason for the lack of correlation appears 

to be the development of large regions of plastic Ylelding in the 

adhesive. Hence, linear elastic fracture mechanlCS based on small 

yield zones and stress intensities at a crack tlP do not appear 

applicable to bonded systems. 

However, by applying an energy approach, Roderlck et al (1975) 

showed that the debond propagation rates can be correlated for specimens 

with different thickness adherends with a Paris (1961) type equation 
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(5) 

where both c2 and n2 are empirical constants for a specific bond 

system and G is the strain energy released as the debond extends. 

As shown by Roderick et al (1976), the parameters c
2 

and 

n2 vary for different bonded systems. The bond system used in thlS 

dissertation was 2024-T3 a1um1num bonded to unid1rectional boron/epoxy 

with a room temperature curing adhesive, Shell EA-934. For th1S system 

the empir1ca1 constants were determ1ned by methods d1scussed 1n 

Appendix A and were found as 

-5 c
2 

= 3.158 x 10 

n2 = 3.616 

With these constants, a value for the strain energy release rate, G, 

and equation (5), the debond growth rate can be predicted. The 

calculation of G for debonding in the re1nforced system w111 be 

discussed in deta11 in Chapter V. 

Fatigue of Composite Mater1als 

The term "composite" may refer to a myriad of systems composed 

of a wide spectrum of different types of fibers and matrices. Further­

more, each system may have widely different fatigue characteristlcs 

depending upon the fiber orientations, stacking sequences, and loading 

conditions. Durch1aub and Freeman (1974) showed that fatigue damage 

in compos1tes may occur perpend1cu1ar to, parallel to, or at an 
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angle to the loading axis depending upon the f1ber orientation. Foye 

and Baker (1970) showed that the lives of composite laminates could 

vary as much as an order of magn1tude by changing their stack1ng 

sequences. Reifsnider et a1 (1974) showed that changing the frequency 

of the app11ed cyclic load affects both the mode of fa11ure and the 

fatigue life As evident from these observations, the fatigue behaV10r 

of compos1te materials 1S complex. 

Currently the understand1ng of the fatigue process 1n compos1tes 

appears pr1m1t1ve although some progress in deve1op1ng an understanding 

has been made. As p01nted out by Sa1k1nd (1973), fat1gue fa11ure 1n 

composites can occur in different fa11ure modes such as matrix crack1ng, 

delamination, and f1ber fracture. Also, eV1dence eX1sts that suggests 

that the fatigue process 1S a result of primar11y matrix deter10ration 

(Roderick and ~~hitcomb 1977). If matrix deteriorat10n is the primary 

cause of fat1gue 1n composites, then the var10US fa11ure modes could 

be exp1a1ned 1n terms of different stress states 1n the matr1x depend­

ing upon the fiber or1entation and stack1ng sequences of a spec1fic 

laminate. Hence, those lam1nates 1n which the matr1x is h1gh1y stressed 

would most likely degrade under cyclic load while those lam1nates 1n 

which the matr1x is lightly stressed would not. 

Fo11ow1ng th1S 11ne of thought, composites 1n Wh1Ch the f1bers 

transmit the load, f1ber controlled composites, would have long fatigue 

lives wh1le those 1n Wh1Ch the matr1X transm1ts the load, matr1x 

controlled composites, would have short lives. An example of a f1ber 

controlled composite 1S a unid1rectiona1 laminate loaded along the aX1S. 

On the other hand, an example of a matrix controlled lam1nate is one 
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in which the fibers are at 45° angles to the 10ad1ng axis. As shown by 

Ourchlaub and Freeman (1974), the matrix controlled laminate does degrade 

rapidly under CYC11C 10ad1ng wh11e the fiber controlled laminate does not. 

Two basic approaches to predict the diverse fatigue behaVlor of 

composite materials are currently being developed by researchers. In 

the first approach, the laminate behavior is described by a stat1stical 

model (Halpin et a1 1972) that relates the stat1c strength and fatlgue 

life distributions by assum1ng that the residual strength of the 

laminates degrades monotonically (Yang and Liu 1977). Because this 

method is based on experimental results, 1t can be appl1ed eas11y. 

However, it does not apply to laminates whose res1dua1 strength does 

not decrease monoton1cally2 with applled load cycles. Also, this 

method requires extensive testing every time the stacking sequence or 

fiber orientation changes. 

The second approach as developed by McLaughlin et al (1975) 

couples basic fatigue data on the laminae level w1th a stress analysis 

to predict both the mode of fatigue failure and the fat1gue 11ves of 

laminates. Because th1S approach 1S based on 1am1nae data rather than 

laminate data, it can be used to predict the fatigue behavior of lami-

nates with different stacking sequences and fiber or1entat10ns without 

extensive testing. 3 The maJor drawback to this approach is 1tS 

20urchlaub and Freeman (1974) showed that the residual strength of 
notched laminates could 1ncrease after fat1gue 10ad1ng. 

3The analysis or1gina11y proposed by McLaughlin et al did not 
consider interlaminar stresses and therefore could not account for 
changes in stacking sequences, but incorporation of interlaminar stress­
es into the analysis has been done and will be shown 1n a NASA 
contractors report released in 1978. 
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complexity in attempting to develop simple, realistic stress analyses 

and a failure crlterlon on the laminae level. 

The state of the art of fatigue analysls, in the author's opinion, 

is still in the early stages of development and not yet capable of 

reliable life predictions for general laminates. As a consequence 

the fatigue behavior of the unidlrectiona1 boron/epoxy used in the 

present study cannot be described by relatively simple fatigue analyses 

as was the case for the cracked metal sheet and the bond system. Accord­

ingly, the fatigue behavior will be determined solely by experlmental 

data. 

Shockey et al (1970) showed that unidirectional boron/epoxy 

laminates that were loaded along the fiber axis had an average ultimate 

tensile strength of 193 ksi; when these laminates were cycled under 

constant amplitude cyclic loading with R = 0.1, they retained 

73 percent of their ultimate tensile strength after 107 applied load 

cycles. Consequently, in an attempt to prevent fal1ure in the 

unidirectional boron/epoxy, stress along the fiber axis (based on 

laminate ana1ysls) was kept below 140 ksi. 

Having discussed the fatigue behavior of the constituents of the 

reinforced system in this chapter, the next chapter deals with the 

fatigue behavior of the constituents in situ in the reinforced system. 

Hence, the next chapter discusses fatigue tests of reinforced systems. 



CHAPTER III 

FATIGUE TESTS OF REINFORCED SYSTEMS 

To determine the fatigue behav10r of the re1nforced system, two 

large panels were manufactured and tested. The panels shown on 

figure 2 were made of 8 x 24 1nch sheets of 2024-T3 alum1num and 

unidirectional boron/epoxy. EA-934 room temperature curing adhes1ve 

was used to Join the sheets with the bonding process described in 

Appendix A. The primary d1fference between the panels labeled A and B 

on figure 2 was the thickness of the metal and composite adherends. To 

simulate a crack, the metal adherend contained a through-the-th1ckness 

narrow slit 0.01 1nch wide and 2 inches long. The Sllt. which was made 

by an electrical discharge process, was centered along the hor1zontal 

centerline of the panels. In both panels the fibers of the un1direc-

tional composite run parallel to the longitud1nal axis of the panels. 

The panels were tested 1n a 300,000 pound load capacity servo-

hydraul1c fatigue mach1ne. Both panels were tested under constant 

amplitude loading with R, the ratio of the m1nlmum to maximum stress 

in the load cycle, equal to 0.01 at a test frequency of 2.5 Hz.4 

For the fatigue tests of both panels the dlstance between test 

machine grips was 16 inches. The maximum loads appl1ed to each panel 

4The test frequency was limlted to 2.5 Hz lnstead of the 10 Hz 
used to characterize the debond behavior in Appendix A because of 
test machine limltations. 
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during the fdtigue tests and the corresponding stresses in the adherends 

calculated from membrane laminate theory (see AppendlX C) are showll 

below. 

Panel 

A 

B 

Maximum Load 
1 bs 

37,600 

22,500 

Stress, psi 
metal composite 

19,600 

14,600 

58,600 

43,100 

During the fatlgue tests, crack lengths were measured periodlca11y 

with an optical mlcroscope. Table 1 shows the measured crack lengths 

and applied load cycles for both tests. The crack lengths are plotted 

against the applied load cycles on figure 3. Note that on the flgure 

the abscissa is logarithmic and the ordin~te starts at the lnitlal ha1f­

crack length of a = 1.0 inch. The crack propagation rates for the 

panels are the slopes of the curves shown on figure 3. These rates 

are tabulated in Table 1 and plotted against the half-crack length on 

figure 4. As eVldent from figure 4, the crack growth rate is about 

two orders of magnltude larger in Panel A than in Panel B. 

The crack propagatlon rates in these panels is a functlon of 

debonding between the adherends. If the adherends were completely 

debonded the crack propagation rate would be much larger than if no 

debonding occurred. To lnvestigate the effect of debond size on 

crack propagatlon rate, the test panels were examlned with an ultrasonlc 

C-scan (details of the C-scan method are discussed in detail by 

McMaster 1963) after the half-crack length grew to 1.0 lnch. Figure 5 

shows the C-scans of the panels. On the figure the dark parts of the 
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TABLE 1 
CRACK LENGTHS AND CRACK PROPAGATION RATES 

Panel A Panel B 
ha 1 f-crack cycles crack cycles crack 

length propagation propagatlon 
rate rate 

a, in *N da/dN *N da/dN 
x 10-5 x 10- 5 

1.05 44,800 
0.236 

1.10 1,570 65,940 
0.312 

1. 15 7.57 81,975 
0.217 

1. 20 3,220 105,000 
0.33 

1. 25 9.02 120,130 
0.369 

1. 30 4,440 133,675 
0.311 

1.35 10.8 149,740 
0.328 

1.40 5,540 164,980 
0.339 

1.45 11.6 179,695 
0.321 

1. 50 6,790 195,250 
0.277 

1. 55 12.0 213,310 
0.299 

1. 60 7,790 230,025 
0.275 

1.65 12.2 248,180 

1. 70 8,690 .. 

1. 75 13.0 279,795 
0.295 

1. 80 9,690 296,765 
0.323 

1.85 13.0 312,260 
0.339 

1. 90 10,680 326,990 
0.312 

1. 95 342,990 

2.00 ... . 
*N - Instead of 11sting the number of cycles that caused crack 

growth at both crack tlPS, the average number of cycles is given. 
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C-scans are areas where debonding has occurred. As evident fronl the 

figure debonding occurred over an elliptical area. Ratwani (1977) 

has observed similar elliptical debonds in metal laminates. The major 

axes of the elliptical debonds were nearly equal to the crack length 

in the metal adherend of the panels. As measured from figure 5 the 

minor axes of the debonds were 3.0 inches and 0.50 inch for Panels A 

and B respectively. However, when the C-scans shown on figure 5 were 

made, they were distorted along the longitudinal axes of the panels. By 

taking into account this distortion, the minor axes of Panels A and 

B were found to be 4.0 and 0.67 inches respectively. With these 

corrected values of debond length along the minor axes, the ratios of 

minor to major axes of the debonds, F = b/a, were found as 1.0 and 

0.14 for Panels A and B respectively. 

The experiments discussed 1n this chapter showed that the fatigue 

in reinforced systems occurs as collinearcrack growth and debond 

growth over an approximately elliptical area. In Chapters IV and V 

an analysis will be developed that can model this observed behavior. 

In Chapter VI the analysis will be verified by comparing the experimental 

results of this chapter with results of the analysis. 



CHAPTER IV 

STRESS ANALYSIS 

As shown in the previous chapter, under cyclic loads the rein­

forced system exhibits both crack and debond growth. Intuitively, 

the rate at which the debond and crack propagates is a function of the 

stress state and level in the system. Consequently, to predict these 

rates a realistic stress analysis is required. For the stress analysis 

to be realistic it must predict stresses in the adhesive as well as 

in the adherends of the system. Because adhesives typically exhibit 

nonlinear behavior (Hughes and Rutherford 1968), the stress analysis 

must include nonlinear behavior of the adhesive. The first step in 

development of a realistic, nonlinear, elastic stress analysis is the 

formulation of a linear elastic stress analysis. 

Formulation of Linear Elastic Solution 

To formulate an elastic solution, the reinforced system shown in 

figure 6 was considered. As shown in figure 6, the system consists of 

a cracked metal sheet bonded to a composite sheet with an elliptical 

debond between the sheets. The system was subjected to a remote 

stress, s. A rigorous stress analysis of this system requires a 

three-dimenslonal formulation. Although a general, exact solution is 

not available, finite element or finite difference numerical methods 

24 



metal 

crack 

+ z 

+ y 

25 

Fig. 6. System to be analyzed 

composite 

de bond 

+ x 

adhesive 



26 

can be employed to obtain a tractable solution. However, these solutions 

are not efficient for analyzing reinforced systems in which the crack 

length and debond area are continually changing. An alternate, simple 

analysis can be developed by assuming that the adherends are in plane 

stress while the adhesive is in pure shear. These assumptions were 

first used in an analysis by Volkerson in 1934. 

The validity of these assumptions for analysis of the reinforced 

system shown in figure 6 was investigated in detail in Appendix B. 

As shown in Appendix B with a simple example, the assumption can lead 
, 

to errors as much as 100 percent in the calculated adhesive stresses 

as compared to more rigorous finite element solutions. Evidently, 

significant shearing deformation occurs in the adherends of the 

reinforced system. The presence of the adherend shearing deformation 

violates Volkerson's assumptions, but as shown in Appendix B an 

effective shear modulus, Geff , can be determined and used wlth the 

assumptions to calculate adhesive shearing stresses within a few percent 

of the finite element results. 

Arin and Erodogan (1972) used Volkerson's assumptions with complex 

variable elasticity theory developed by Muskhelishvi1i (1953) and 

Lekhnitski (1956) to analyze a system similar to that shown in figure 6. 

The linear elastic stress analysis developed herein basically follows 

the concepts used by Arin and Erodogan, but differs in the formulation 

of the Green's functions used in the elasticity solution, the method of 

numerical lntegration of the Green's functions, and the domain of 

integration. To develop the stress analysis, the relnforced system 

1s free bodied as shown in figure 7 (adhesive layer not shown) 
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using Volkerson's assumptions. In the figure the remote stress, s, 

refers to the applied load over the total cross sectional area of the 

reinforced system. By the use of laminate theory as described in 

Appendix C, the inplane stresses aym , ayc ' axm ' and axc (where 

the first subscript refers to stress direction and the second subscript 

refers to the metal or composite adherend) can be easily calculated. On 

figure 7, fyz and fxz indicate shear stresses in the adhesive 

layer. Throughout this dissertation the adhesive shear stresses which 

will be assumed to act as body forces on the adherends will be frequently 

called interlaminar stresses. To form a governing equation, these 

interlaminar stresses were related to the displacement of the adherends 

in the following manner. 

First, the shear strain in the adhesive layer was related to the 

displacement in the adherends by the relations 

v - v m c 
Yyz = --­

tad 

(6) 

where tad is the thickness of the adhesive, u and v refer to 

displacements in the x and y direction respectlvely, and the 

subscripts m and c refer to the metal and composite adherends 

respectively. Next, Hook's law was used to relate the shearing strain 

in the adhesive to the interlamlnar stresses as 

T = GY (7) 
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Then, by the use of the effective shear modulus and equations (6) and 

(7) the interlaminar stresses can be related to the adherend dis-

placements as 

Geff 
f = -- {u -
xz t m 

ad 

Geff 
= -- {v -m 

tad 
(8) 

Equation (8) can be written for several different points in the 

reinforced system to form a system of simultaneous equations. These 

simultaneous equations are developed in detail in subsequent sections 

of this chapter. 

The displacements, u and v, in the adherends were related 

to the inplane adherend stresses and the interlaminar stresses by 

several functions Fl - Fe as 

(9) 

The displacements, Fl and F2 , 1n the metal adherend due 

to the remote stress were calculated in terms of two stress functions 

~(z) and w(z) (Muskhel1shvili 1975) by the equation 
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(10) 

3 - \.l 

where n = -- for plane stress, i = 1-=1, z = x + iy, the bar 
1 + \.l 

over a function or variable denotes the complex conJugate, \.l 

is Poisson's ratio and 

amyy 
~(z) = ---- \fz2 - a 2 

-

2 

z {amyy _ atnxx l 
2 2 2 J 

+ ~ {omyy _ amx~ 1 
2 2 2 J 

dz 2 { 

z 1 l{Om 

""' "1- 2 ;y ~(z) = -- = 

(11 ) 

(12 ) 

(13) 

In equations (11) through (13) "a" denotes half the crack length 

in the metal sheet. With the use of equation (10), the functlons F 
1 

and F were found to be 
2 
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f n$(z) - w(z) - (z - 2)m} 
F (am ,aTil ) = Real 

1 xx yy 2G 
(14 ) 

{ n$(z) - w( z) - (z - 2) m J 
F 2 (am xx ,amyy ) = Img 

2G 

The displacements, F3 and F~, in the composite sheet due 

to the remote stress were found as follows. Flrst, the constitutive 

equations for an orthotroplc material were used to relate strainsto 

stresses (Lekhnitskil 1968) as 

V xy a 

E: = -- ac + - ac y E xx E yy 
x y 

(15 ) 

where Ex and Ey are the modu11 of elasticity ln the x and y 

directions respectively, and vxy and Vyx are Poisson's ratios. 

Then with the definition of strains as ~ = au and - av 
c..x ax E:y - ay 

equations (15) were integrated to find dlsp1acements as 

f
ac xx Vyx } 

= -- - - ac x + h l(y) 
E E yy 
x Y 

(16 ) 

v = F (ac ,ac ) = - - ac + -- y + h2(x) 
{ 

Vxy aCYYJ 
~ xx yy E xx E 

x Y 
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where hl(y) and h2(x) are arbitrary functions which were set to 

zero because of symmetry considerations. 

The displacements, Fs and Fs ' in the metal adherend 

caused by the interlaminar stresses were calculated by assuming 

that the interlaminar stresses acted as body forces on the adherends. 

With this assumption, the dlsplacements were calculated using Green's 

functions in surface integrals as 

(17) 

where 

(18) 

and Zo is the locatlon of a point load (see Appendix D) and GDxx ' 

GDxy ' GDyx ' and GDyy are the Green's functions which were 

discussed and derived in Appendix 0 and found as 
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with 
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+ 2----

= Log 

-z - z o 

{

ZZo - a 2 -

zz + a 2 -o 

(19 ) 
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XC(z,zo) = --­
Z2 _ Z 2 

o 

+----
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+ 

z 

I(z) { 

I(zO) 

z 2 - Z2 
o 

I(z) 

I (z) J 
I (zo) 

Z2 - Z 2 
o 

+----
(z - Z )2 o 

- n 
I (zO) } 

Z 2 - Z2 
o 

1 

The domain of integratlon used in equatlon (18) will be discussed 

in a later sectlon. 

The displacements, F7(fxZ,fyz) and Fe(fxz,fyz)' in the CO~poslte 

adherend caused by the lnterlaminar stresses were found with an 

approach slmllar to that used for the metal adherend. The functions 

were wrltten as 
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(20) 

where 

(21 ) 

k = 1,2 

and HDxx' HDXY' HDyx' and HDyy are the Green's functionsfor the 

composite adherend derived in Appendix D and found to be 

(22) 
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where S1 and S2 are complex numbers WhlCh are nat complex conJugates 

of each other and are roots of the equation (Lekhn tSkl 1968) 

s .. + 

and 

Cll = 

C21 = 

{G
EX 

_ 2" }, + 
xy 

xy 

Sl(S22VXY + 1) 

41Ttds 1 2 - S22) 

S1 (s/vyX + 1) 

41T t (s 2 c 1 
_ S 2) 

2 

(1 - v 5 2) yx 1 

Ex 

Ey 

C12 

C22 

= 0 

s 2 + V 
2 xy 

= 
41Tt (s 2 - S 2) C 1 2 

- -

= 

52 + V xy 

41TtC(S12 - s/) 

(1 - v s 2) yx 2 
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Substituting equations (14), (16), (17), and (20) lnto equatlon (9) 

and that result into equatlon (8) yields the governing equation that 

was used to formulate a system of simultaneous equatlons. 

Numerical Solution 

To solve for the unknown stresses fxz and fyz' the domaln of 

integration in equations (18) and (21) was separated into three 

regions as shown on figure 8. Region A on the flgure represents 

the portion of the domain where debonding has occurred. In thlS region 

the interlaminar stresses are zero. Reglon B on the flgure represents 

the portion of the domain where significant interlamlnar stresses 

exist. As shown on the figure, this region is dlvided lnto smaller 

elements. Region C on the figure represents a portlon of the domain 

where the interlaminar stresses are small and can be neglected. The 

size of each of these regions w111 be dlscussed further in Chapter VI 

where convergence of the system ;s lnvestigated. 

The next step 1n the formulatlon of the slmultaneous equatlons 

was to assume that the interlamlnar stresses were constant over each 

element of reglon B. Wlth this assumpt10n, the displacements caused 

by the 1nterlaminar stresses, equatlons (17) and (2Q) ,were wrltten 

as 
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n 
F (;) = E AAxx(;,j)[-fxz(j)] + AAXy(;,j)[-fYZ(j)] 

5 

J=l 

n 

F 6 (1 ) = E AAYX (l,J)[-fYZ (j)] + AAyy(i,J)[-fYZ(j)] 
J=l 

n 
F 7 ( 1 ) = E BBXy (l,J)[-fXZ (J)] + BBXy (l,J)[fYZ (j)] 

J=l 

n 
Fe(;) = E BBYX(i,J)[fXZ(j)] + BByy (l,J)[fYZ (J)] 

J=l 

where n is the number of elements 1n reg10n Band 

BByx (l,J) = II HDyx(zki,wk)dxodyo 

BByy(i,j) = II HDyy(zK1,wk)dxodyo k = 1,2 

(23) 

(24) 
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where the i subscript 1nd1cates the p01nt in the x-y plane, z, 

where the governing equations (equations (8)) were evaluated. The 

j subscript when used in the coefficient of the inter1aminar stresses, 

fxz and fyz, ind1cates the location of the centrold of the element 

over which the 1nter1am1nar stresses act while the J subscript 

used in the inter1aminar stresses indicates the value of these stresses 

acting on element j. The integrals in equations (24) were evaluated 

numerically; the method of integration will be d1scussed ln Chapter VI. 

substituting equation (14) and (23) ln equations (9) and (8) and 

eva1uat1ng the result at the centroid of each element of reglon 

B lead to a system of 2n simultaneous 11near equat10ns where n 

is the number of elements 1n reg10n B as 

AAYX(i,J) + BByx(i,J) AAyy (l,J) +BByy(l,j) 

l tad [ 1 [F 1 (1 1 - F (1) 
3 

+ G
eff 

0 F (1) - F (1) 
2 ~ 

Using Gaussian el1mination, this system of linear slmu1taneous 

(25) 

equatlons was solved and yielded values of the unknown lnterlamlnar 
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Nonlinear Solution 

As shown in Appendix B, the adhesive used in the reinforced 

system can exhibit nonlinear stress strain behavior. As shown in the 

appendix, the tensile stress strain curve for the adhesive can be 

approximated by a bilinear stress strain curve wlth a change of slope 

occurn ng at about 4200 ps i . Because the adhes lVe in the rei nforced 

system is assumed to be in a state of pure shear, the data from the 

tensile stress straln curve must be related to the adhesive in a 

pure shear state. To develop this re1atlonship, a yielding criterlon 

is required. 

For simplicity the criterlon developed by Von Mises and given 

by Hill ( 1 951) as 

(26) 

+ 6 /0 2 + 0 2 + 0 2 ) = 6k 2 
~ yz zx xy 0 

where 0 is the stress at yielding and ko is a constant, was used to 

estimate when the adhesive in the reinforced system would exhibit 

nonlinear behavlor. 5 For pure tension, as was the case in the bulk 

property test described in Appendix B, equation (26) reduces to 

5Several yield criteria, of which Von Mises' is one of the most 
popular, are available in the literature. 
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". 

20 2 = 6k 2 yy 0 
(27) 

For the adhesive in the reinforced system the only stresses present, 

according to the Volkerson assumptions, are 0yz and ,Jxz ' Hence, in 

this case equat10n (26) reduces to 

k 2 
o (28) 

Combining equations (27) and (28) by el1minat1ng ko Y1elds a relat10n 

between tensile and shear yielding as 

0 2 + a2 = a2
yy/3 yz xz (29) 

For the bulk property tensile tests 0yy was found approximately 

at 4200 pSi. With th1S value in equation (29) and the notation for 

interlaminar stresses in the relnforced system an 1nelual1ty was 

developed as 

f2 + f2 Z > 5.88 x 106 
yz x- (30) 

Equation (30) was used to estimate the in1tiatlon of nonllnear behavlor 

of the adheslve 1n the reinforced system by uS1ng fyz and fxz 

from the solution of equation (25). As will be shown in Chapter VII, 

equation (30) predlcts that nonlinear behavior of the adhesive wlll 

occur in many relnforced systems. The adhes1ve nonlinearlty manlfests 
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itself in equation (25) as changes in Geff with the magnitude of 

applied load. As shown in Appendix B, the Geff for the adhesive 

can be either 65,000 PSl or 36,000 psi. The value Geff takes in the 

reinforced system can be determined from equation (30). If equation (30) 

is true then Geff = 36,000 PSl whl1e if equation (30) is false 

Geff = 65,000 psi. 

By the use of inequality (30) and equation (25), the applied 

stress at which Geff of the adhesive changes in the reinforced 

system was predicted with the following approach. As shown by equations 

(14) and (16) the right hand slde of equation (25) is a function of 

the applied stress, s (amxx ' amyy ' ac xx ' acyy are linear functions 

of s). Hence, the Solutlon of equation (25) was written in terms 

of the unit solution and the applied stress, s, as 

(31) 

where s is the remote applied stress and fxz(j)unit and fyz{j)unit 

are the solutions of equation (25) with an applled stress of s = 1. 

Substituting equations (31) lnto equation (30) and solving for s 

for each of the elements of region B, lead to values of the remote 

stress s(j) WhlCh cause a change in Geff for element j as 

5.88 x 106 

(37) 
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The smallest value of s(j) for n elements of region B is the value 

of the applied stress, S(l), which causes a change in Geff in 

element k. At this value of S(l) all elements except element k 

have Geff = 65,000, while element k has Geff = 36,000. 

If the value of S(l) is greater than the maximum remote 

applied stress, smax' then the solution 1S completely elastic and 

from equation (31) the interlaminar stresses in the system are glven 

as 

(33) 

However, if S(l) is less than smax then Y1eld1ng has occurred. 6 

At the yield point the stress in all of the elements 1S given by 

(34) 

where the un1t(1) indicates that the unit stresses were obtained from 

an elast1c solution where all had the same shear modulus of Geff = 

6Yielding refers to a change in Geff in the adhesive of the 
reinforced system. 
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65,000 psi. Once yielding has occurred in element k the shear 

modulus of element k takes on the secondary value Geff = 36,000. 

Consequently, for the next increment of applied stress the 

governing equations (25) must be modi fled as 

1 o 

= Funit 

[A] + 

o 

where 

[A] = 

(35) 

Equation (35) was then used to flnd a new unit solution after 

element k had yielded. The new unit values, fxz (J)unit(2) and 

fyz (l)unit(2)' were then used in equatlon (31) and added to equations 

(34) to give the stress ln each element after the second load increment 

as 

f (') - (1){) + (l)f ( ) xz J - gxz J S xz J unit(2) 

(36) 
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Substituting equations (36) into equation (3D) and solving for 

yields the value of S(2} that causesthe next element to yield 

as 

(2) -8 + ~ 8 2 a a - 4AoCo 
s = 

2Ao 

where 

A = 
0 {f .. (J )unit(.}' + r yz(J )unit('1' 

(37) 

If the value of S(2} > smax then the stresses after the section 

increment of load are given by 

9 (2}(J) = (s _ S(1)} f (O) (1)(0) 
xz max xz J unit(2) + gxz J 

(38) 

9 (2}{J) = (s - s { 1 } } 
fyz (j}unit(2} + 9 {1}(J} 

yz max yz 
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and the total number of load increments is 2. But if S(2) is less 

than then the stresses after the second load increment are 

given by 

(2)( .) = (2)f (") + 9 (1)(J) gxz J s xz J unit(2) xz 
(38) 

(2)( .) (2) . + 9 (1)(j) gyz J = s fyz (J)unit(2) yz 

The entire process 1S repeated until the sum of all the load increments 

equals smax. The f1nal value of the interlaminar stresses are the f1nal 

va 1 ues of gxz (j ) and 9yz (J ) gi ven as 

= 9 (m){j) 
yz 

where m is the total number of load 1ncrements. 

(40) 

To obtain the final values for the 1nterlam1nar stresses, equat10n 

(40), the system of simultaneous equations (equat1ons (35)) must be 

solved for each load increment. To minimize computat10nal effort, a 

Gauss Siedel method discussed by McCracken and Dorn (1968) was used to 

solve equation (35) after the first unit vector was found by Gaussian 

elimination. By the use of unit vectors, fxz(j)unit(k) and 

fyz(j)unit(k)' of the k iterat10n as init1al estimates for the k + 1 

unit vectors, the Gauss Siedel method rapidly converges. Consequently, 

the method is very eff1cient in solving for the un1t stresses in 
successive load increments. 
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In this chapter an analysis was developed to determine inter­

laminar stresses in the reinforced system. In the next chapter these 

interlaminar stresses wlll be used to determlne crack and debond 

growth rates in the reinforced system. The accuracy of the analysls 

will be discussed in Chapter VI. 



CHAPTER V 

FATIGUE ANALYSIS 

As shown in Chapter II, fatigue damage 1n the reinforced system 

occurred as crack and debond growth. Accord1ngly, an adequate fatigue 

analysis should predict both types of growth. To the author's 

knowledge, the only ana1ys1s to date that attempts to model this behdvior 

was developed by Ratwani (1977). Ratwani (1977) analyzes crack and 

debond growth in a cracked metal sheet reinforced w1th an uncracked 

metal sheet by using the elastic analysis developed by Erdogan and 

Arin (1972) and a maximum strain cr1ter1on to pred1ct debond growth. 

In contrast, herein, the nonl1near e1ast1c stress analys1s developed 

in the previous chapter was coupled wlth a debond propagat1on equatlon 

based on calculated straln energy release rates. 

Crack Growth Rate 

To use the crack propagat1on equat10n (equat1on (4)), the stress 

intensity must be determlned. The stress 1ntens1ty can be related to 

the two stress distributions discussed in Chapter IV: the remote 

inplane stresses in the re1nforced system and the 1nterlaminar shear 

stresses which act near the debond front. The stress 1ntensity can be 

found by superimposing the stress intens1tles from the two stress 

distributions. 

49 
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The stress intensity produced by the remote stresses can be 

calcJlated by substituting the stress function, ~(z), for this 

loading case (equation (13» into equation (1) which related the 

stress function to the stress intensity as 

k i k = 2./2 1 im 
1 2 z -+ a 

which results in 

k = 0 
2 

( 41) 

(42) 

The stress lntenslty produced by the lnterlamlnar shearing 

stresses, fxz(j) and fyz(j), was found in the following manner. 

First, the stress intensity for four point loads actlng on a cracked 

sheet was found by substituting the stress function 

(D.43) 

derived in Appendix D lnto equation (1) to Yleld 
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Taking the limlt of equation (43) and combining coefflcients of the 

X and Y load components results in 

which leads to 

where 

la 
XK(zo)= --­

'IT( 1 + n)tm 

(44) 

(45) 

Then. with the use of the coefficlent of the X and Y load 

components as Green's functions for the stress intenslties. the stress 
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intensity caused by the interlaminar stress, fxz(j) and fyz(j), 

can be found as 

n 

kl = 2 r [fxz(j)ffReal XK(zo) dxodyo 
i=l 

(46) 

The domain of integration for equation (46) is, of course, the same as 

was discussed in the previous chapter. The method of integrat10n wlll 

be discussed in the next chapter. 

Debond Growth Rate 

To use the debond propagation equatlon (equation (5)), the 

strain energy release rate must be determined for points along the 

debond front. A rigorous determinatlon of the strain energy release 

rate is difficult and beyond the scope of this effort. However, an 

approximate solution 1S developed in the following paragraphs. 

A freebody of a strip was taken from the longitudinal centerline 

of the reinforced system as shown in flgure 9. The straln energy 

release rate for the strip was approximately calculated wlth the J 

integral developed by Rice and glven in Llebowitz (1968) as 

au, 
1 G = J = f r (-2 a· E· .dz - t

1
·-..,- ds) 

lJ lJ 0y 
(47) 
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where (J •• 1J 
traction, 

is the stress, EiJ is the strain, T1 is the surface 

u. is the displacement and r is any contour that 
1 

contains the debond front and does not pass through a plastic region 

of material. Equat10n (47) can be written in terms of cartes1an 

coordinates as (Yoder and Griffis 1974) 

G = f r W - (J ~ - a a\'l} dz 
r 1 e yy ay yz ay 

+ t ~v + a aWl dy r yz ay zz ay 

(48) 

where We is the strai~ energy density and v and w 

in y and Z directions respectively. 

are displacements 

To apply integral (47) to the freebody shown in flgure 9, a path 

of integration shown in figure 10 was used to analyze the energy 

release rate. The path surrounds the debond front on which no 

stresses or traction act, follows the bond line in the metal adherend 

on which the interlaminar stresses act, crosses the adhesive Wh1Ch 1S 

assumed to have insigificant stresses, and follows the bond llne 1n the 

composite adherend on which the interlam1nar stresses act. The 

~v 
o n 

is the strain 1n the metal adherend, and the 1S the 
ely ay 

strain in the composite adherend. With the use of thlS contour, the 

value of G from equation (48) can be written 1n terms of the 1nter-

laminar stresses, fxz and fyz ' and the strain in the adherends, 

Emy and £cy' as 
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(49) 

With the use of d1screte values of the interlaminar stresses and strains 

in the adherends, the strain energy release rate G can be approximated 

as 

P 
G = L ty(i)fyz(i){ECy(i) - Emy(i)} 

i =1 

(50) 

where ty represents the length of the discrete elements, i the 1ndex 

for the elements in the strip, and p the number of elements 1n the 

strip. 

The interlaminar stresses, fyz(k), were determ1ned from 

equation (40). However, the strains in the adherends still need to 

be determined. The strains 1n the adherends were determined from the 

stresses 1n the adherends according to lamlnate theory as shown 1n 

Appendix C as 

-1 -1 

EX Ox EX Ox 

Ey = [ C ] 0y Ey = [ !) ] 0y 

EX °xy Exy °xy 

metal composlte 

(51 ) 



57 

where matrices C and D are given by equations (C.4) and (C.5) 

of Appendix C. 

Before equat10n (51) was used to calculate the strain in the 

adherends, the stresses in the adherends were determined. 

As shown by Muskelishvili (1975) the stresses 1n the metal 

adherend can be expressed 1n terms of two functions, ~(z) and n(z), 

as 

ax = Real{3¢(z) - n(z) - (z - z)~} 

a = Real{¢(z) + n(z) + (z - z)~} y 

a = Imag{¢(z) + n(z) + (z - Z)¢I(Z)} xy 

(52) 

(53) 

(54) 

Equations (52) - (54) were used to determ1ne the stresses in the metal 

adherends caused by both inplane remote stresses and lnterlaminar 

stresses. 

For remote inplane stresses, ¢(z) is glven by equation (13) 

as 

am
yy 

{ 1>(z) = -2- Ii' : .,J (13) 

~I(Z) was found by taklng the derlvatlve of ¢(z) as 

~I (z) = - -- (55) 
2 
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and n(z) was found by differentiating equation (12) as 

n(z) om { z 1 1 {am am J " " x = -2- 1z2 a2 + '2 -2- - -2- (56) 

For the interlaminar stresses, ~(z) and ~(z) were determined 

and substituted in equations (52) - (54) (see Appendix D). The result, 

stress in the metal caused by interlaminar stresses, was found as 

n 
a =-E x ff{GSxxfxz(j) + GSXyfyz{j)}dxodyo (57) 

j=l 

n 
a =-E y ff{GSYXfxz(j) + GSyyfyz(j)}dxodYo (58) 

j=l 

n 
axy = -E ff{GS(Xy)xfxz(j) + GS{Xy)yfyz(j)}dxodyo (59) 

j=l 

where GS xx ' GS xy ' GSyx ' GSyy ' GS(xy)x' and GS(xy)y are the Green's 

functions for stresses given in Appendix 0 by equations (0.68) 

through (0.73) respectlvely. The domain of integration in equations 

(57) - (59) is the area of an element shown in region B of figure 8 

where J denotes the particular element. 

Adding equations (52) - (5?) and (57) - (59) yielded the stress 

in the metal adherend of the reinforced system. This result was then 

used in equation (51) to calculate the strain in the metal adherend. 
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The inplane stresses in the orthotropic adherend caused by the 

remote stresses were calculated with simple laminate theory as shown 

in Appendix C. 

The inplane stresses in the orthotropic adherend caused by the 

interlaminar stresses were found in Appendix F as 

n 
a = x Eff{HSxxfxz(j) + HSXyfyz(j)}dxodyo (60) 

j=l 

n 
a = y Eff{HSyxfxz(j) + HSyyfyz(j)}dxodYo (61) 

j=l 

n 
a = xy Eff{HS(xy)xfxz(j) + HS(Xy)yfyz(j)}dxodyo (62) 

j=l 

where HSxx ' HS XY ' HSyx ' HSyy ' HS(xy)x' and HS(xy)y are the Green's 

functions for an orthotropic solid sheet given in Appendix E by 

equations (E.23) - (E.28). 

Adding the inplane stresses in the orthotropic adherend caused 

by the remote stresses and the interlaminar stresses and substituting 

the result into equation (51) yielded the strains in the orthotropic 

adherend. 

With the strains in the adherends, equation (50) was used to 

calculate the strain energy release rate for the debond along the 

longitudinal axis of the reinforced system. 
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As indicated in Chapter III, the shape of the debond throughout 

the cyclic tests can be approximated by an ellipse. The equation 

for a general elllpse is given as 

(63) 

where a is half the crack length and b is the debond length 

measured along the y-axis from the center of the crack. With the use 

of equation (63) the overall debond shape was predlcted by calculating 

the half crack length, a, from equation (4) using the stress 

intensity calculated from equation (45) and calculating the debond 

length, b, from equation (5) using the strain energy release rate 

calculated from equation (50). 

Prediction of Crack and Debond Growth 

The analysis developed in this dissertation was programmed on 

a CDC 6600 computer at NASA-LRC. A discussion of the program. a 

sample analysis. and a program listing are given in Appendix F. 

A flow chart of key elements of the program is shown in figure 11. 

In the next chapter the accuracy of the analysis is investigated 

by comparing results of the calculations from the analysis with 

experimental results generated in Chapter III. 
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CHAPTER VI 

ASSESSMENT OF ACCURACY 

Before the analysis developed in the previous chapters was used 

to study the fatigue behavior of the reinforced systems, the accuracy 

of the analysis was assessed. This assessment was based on analytical 

convergence studies and studies comparing analytical results with 

experimental results obtained in Chapter III. 

Numerical Integration 

A key item in the analysis was the method of integration of the 

Green's functions, In theory the Green's functions for both stress 

and displacement require integration over an infinite domain. Because 

the functions are complicated, a closed form integration 1S difficult 

if not impossible to perform. Consequently, a numerical solution was 

employed. Two key items in this numerical integration were the domain 

of integrat10n and the method of numerical integration. 

As shown on figure 8, the infinite domain of integration was 

divided into three regions: A, B, and C. Only region B has significant 

interlaminar shear stresses which need be integrated. To perform the 

integration region B was divided into elements as shown on figure 8. 

Each of these elements was bounded by the curves 

62 
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(64) 

where the functions fl and f2 are the form of equation (63) and 

reflect the debond shape. For example, the bounding curves for 

elements along the debond front are given as 

Y,(X) = b {l - [f}~ 
Y,(X) = (b + db) { 1 -[a ~ d.]f 

where a and b are the half crack length and the debond height 

respectively and da and db represent fractions of a and b. 

(65) 

The numerical method of integration used for each element of 

the region B was a two-dlmensiona1 Simpson's integration. Simpson's 

integration was used so that several of the Green's functions given by 

equations (19), (22), (0.68) - (0.73), and (E.23) - (E.28) could be 

integrated simu1tanious1y by using common values of the complex 

functions. In each element the inter1aminar stresses were assumed 

to be constant and the Green's functions were integrated by using 9 or 

18 integratlon pOlnts. Nine integration points were used when the 

domain of integration did not contain a singularity while 18 points 

were used when a singularity eXlsted within the element. 
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In the latter case the domain of the element was divided 1nto 

three regions; two of which were analytic and the th1rd, which contained 

the singularity, was nonanalytic. The two analytic regions were 

integrated with the nine point Slmpson's 1ntegration scheme. The 

nonanalytic region was integrated by separating the Green's functions 

into products of analytic and nonanalytic functions. The analyt1cal 

portions were expanded 1n a Taylor series and only the first terms, 

which were constants, were reta1ned. The slngular portion was integrated 

analytically 1n the principal value sense (H1lderbrand 1950). The 

product of the f1rst term of the Taylor series and the pr1nc1pal 

value resulted in an approximate integral value 1n the nonanalyt1c 

region. In general the value of the integral 1n the nonanalyt1c reg10n 

of the element was small in comparison with values 1n the two analytic 

regions. 

The size of region B shown in f1gure 8 was determ1ned iteratively 

by starting with a small region and 1ncreasing its size unt1l no 

changes occurred in the interlaminar stresses, stress intensity or 

strain energy release rate. As an example, Panel B (under a load of 

22,500 pounds) discussed 1n Chapter III was modeled as shown in f1gure 

12 with an 1n1t1al crack length of one inch and no debond (b = 0). As 

shown in the figure, region B was assumed to be nearly rectangular 

with nx elements along the x-axis and ny elements along the y-axis. 

The elements have a width of 0.25 inch and a height of 0.20 1nch. The 

analysis was performed for values of nx ranging from four to SlX and 

values of ny ranglng from one to SlX. Test conditions for each of 

these possible combinatlons were notated as 
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nx 

4 5 6 

conditions 

1 1 7 13 

2 2 8 14 

3 3 9 15 

4 4 10 16 

5 5 11 17 

6 6 12 18 

Figure 13 shows the values of inter1aminar stresses along the 

longitudinal centerline for the different conditions. As evident 

from the figure,va1ues of the interlaminar stresses have converged 

for values of nx = 4 and ny = 3. Also both the stress intensities 

and the strain energy release rates have converged for these values. 

Thus, for this sample case the domain of reg10n B 1S about 1 x 0.6 inch. 

Similar analyses showed that the length of the domain of region B 

along the x-axis is typically the length of the crack. However, as the 

adherend thickness or shear modulus of the adhesive changes, the 

extent of region B in the y-direction also changes. 

With the use of the one-dimensional analys1s d1scussed in 

Append1x B, the extent of region B in the y-directlon was estimated for 

different adherend thicknesses and adhesive moduli in the following 

manner. A strip was taken from along the longitudlnal centerline of the 
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reinforced system as shown in figure 9. Because of the crack the 

load 1n this strip must be transferred either to the adJacent metal 

via inplane shear stresses or to the composite via 1nterlam1nar stresses. 

If all the load were transferred via the interlaminar stresses, the 

interlaminar stresses could be higher and extend over a greater area 

than if the inplane stresses were considered. Consequently, the boundary 

of the interlaminar stress region calculated from the one-dimensional 

analysis, Wh1Ch only considers interlaminar stresses, would be an 

upper bound. 

From the one-dimens1onal analysis the shearing stresses are 

found by equation (B-12) as 

~(y) (B.12) 

where 

a = 

Examinat10n of equation (B.12) revealed that the T{y) is a maximum at 

y = O. The shear stresses were assumed to be negl1g1ble when they 

were smaller than 5 percent of the maXlmum value. In equatlon form, 

the relationship between y and 95 percent of the maXlmum inter-

laminar shear stress was expressed as 
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Solving for y led to 

In(0.05} 
y=-----

./a 
(66) 

the distance at which the shear stresses are 95 percent of their 

maximum value. As evident from equation (66) the y distance is a 

function of the thicknesses and material properties of the adherends 

and the adhesive. For the adhesive used in the reinforced system of 

Panels A and B two effective shear moduli were found as 65,000 psi 

prior to yielding and 26,100 psi after yielding (see Appendix B). 

With the use of the latter of these two values to give a conservative 

bounds, the y distance for region B of Panel B (see figure 2) as 

calculated by equation (66) was found as y = 0.60 in. The estimated 

value agrees well with convergence study results shown on figure 13. 

The same logic applies to both bonded (b = O) and debonded systems 

(b > O). Consequently, the domain of region B used in the integration 

of the Green's functions was determined by the crack length and 

equation (66). 

Once the domain of region B was determined. the effect of mesh 

refinement within region B was investlgated. Figure 14 shows a 

comparison of interlaminar stresses calculated (again for Panel B) 

using two different mesh sizes in region B. As evident from the figure, 
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the interlaminar stresses calculated with the fine mesh can deviate 

as much as 16 percent from stresses calculated with the coarse mesh. The 

stress intensities and strain energy release rates calculated using 

the two different meshes were found as 

coarse mesh 

fine mesh 

k 
1 

0.281 

0.280 

G 

1.29 

1.36 

The values of k and G are not nearly as sensitive to changes in mesh 
1 

size as the interlaminar stresses were. The reason for the insensitivity 

is most likely because both k and G are obtained by integration 
1 

schemes that smooth out the effect of local approximations in the 

interlaminar stresses. Consequently, the grid can be rather coarse 

and still accurately predict both k and G. 
1 

In contrast the values 

of the interlaminar stresses requlre a finer mesh for accurate values. 

Because k and G are used to predict the fatigue behavior of the 
1 

reinforced system, a relatively coarse mesh was used in the analysls 

without loss of accuracy. 

Accuracy of the Analysis 

To ascertain the accuracy of the analysis, calculated values of 

stresses in the adherends, the stress intensities, and the crack 

propagation rates and debond Slzes were compared to experimental 

results on Panels A and B shown in Chapter III. To compare calculated 

and experimental values of stresses in the adherends and stress 
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intenslties, Panels A and B were modeled when the half crack length, a, 

reached 2 inches as shown on figure 15. The debond sizes were obtained 

from the C-scans of the specimens shown on figure 5. The height of the 

grid from the edge of the debond was determined from equation (66). 

The crosshatched elements on the flgure indicate elements in which the 

adhesive has changed modulus (yielded) during each applled load cycle. 

The effect of the modulus change on 

the next chapter. 

k and G wlll be d1scussed 1n 
1 

The values of the crack growth rate for Panels A and B were 

calculated for a half-crack length of 2 lnches, the debond Slzes 

observed in figure 5, and the applied loads shown on page 18. 

The calculated values and the experlmenta1 values, from Chapter II, 

of the crack propagation rates are 

Panel 

A 

B 

da/dN, In/cycle 
calculated experlmenta1 

2.85 x 10-4 

2.26 x 10-4 

1.30 x 10-4 

3.12 x 10-4 

The dlfference between the calculated and exper1mental rates are 

within the scatter of the pred1cted rates for unre1nforced metal 

sheets (Figge and Newman 1967). Hence, the ana1ys1s accurately 

predlcts the crack growth rate 1f the crack length and debond are 

known. 

As a further check, the ana1ysls was used to pred1ct the crack 

growth 1n Panels A and B. Figure 16 shows the calculated and 
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experimental half-crack lengths plotted aga1nst the number of applied 

load cycles. For both panels the analysis gave a conservative predict10n 

of the crack growth. The calculated and experimental half-crack lengths 

agree within a factor of 2. Th1S deviation 1S within the scatter of 

crack length prediction of unreinforced metals. Hence, the analysis 

appears to accurately pred1ct the crack length as a function of 

applied load cycles. 

On figure 17 the calculated and exper1mental crack propagation 

rates were plotted against the half-crack length. The calculated 

crack propagat1on rates were with1n a factor of 2 of the experimental 

rates. The largest error occurred in Panel B for a half-crack length 

of 2 inches. 

The calculated crack lengths and crack propagation rates shown 

on figures 16 and 17 are a function of debond growth. On figure 18 

the debond aspect ratio, bla, was plotted against the half-crack 

length for the two panels. The symbols on the figure 1ndicate values 

of the debond aspect ratio obtalned experimentally (see f1gure 10). 

As eVldent on the figure, the calculat10ns 1nd1cated that the debond 

aspect ratio 1ncreases rapidly, especially for Panel A, before the 

half-crack length reaches 0.2 1nch. Hence, the debond grows before 

the crack does. 

Of the two panels, Panel A exhibits the largest debond growth, and 

at a half-crack length of 2 inches the predlcted debond aspect ratio was 

determined exper1mentally. For Panel B, the analys1s predicted a debond 

aspect ratio of 0.45 at a half-crack length of 2 inches. In contrast, 
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the debond aspect ratio obtained experimentally was about 0.14. The 

discrepancy between the calculated and experimental values may be 

linked to the magnitude of strain energy release rate as the debond 

propagates in Panel B. Values of G in Panel B ranged from 

0.63 in-lbs/in at a half-crack length of 1 inch to 0.53 in~b/in at a 

half-crack length of 2 inches (in contrast G values for Panel A 

ranged from 6.0 to 2.45 in-lbs/in). The values of G for Panel B 

were below values of G used to determine the empirical constants 1n 

equation (5). A few exploratory tests of the type performed 1n Appendix 

A revealed that a threshold value of G may exist. Below this threshold 

value debonding does not occur. Although proving the existence of a 

threshold was beyond the scope of this dissertation, 1f it does 

exist the analysis of Panel B would predict a debond aspect rat10 much 

closer to the experimental value. 

The comparison between calculated and exper1mental values of 

predicted crack length, crack propagation rate and debond aspect 

ratio shown on figures 16 through 18 showed that the analysis has 

potential to predict crack growth in metals reinforced with composite 

materials. However. a true assessment of the accuracy of the analysis 

can be made only after a more extensive data base is developed. 



CHAPTER VII 

PARAMETRIC STUDIES ON CRACK AND DEBONO GROWTH 

To glve lnslght about crack and debond growth in relnforced 

systems, the analysls was performed for reinforced systems with 

several dlfferent adherend thlcknesses, debond Slzes, and crack 

lengths. The metal adherend thlcknesses studled were 0.05, 0.10, and 

0.15 inch; the composlte adherend thicknesses were 0.025,0.05, and 

0.075; the half-crack lengths were 0.5, 1.0, 1.5 inches; and the aspect 

ratios of the debond areas were 0.001, 0.5, and 1.0. For the varlOUS 

combinations of adherend thicknesses, crack lengths, and debond 

aspect ratlos, the stress intenslties, strain energy release rates, and 

remote stress that caused nonllnear behavior of the adheslve were 

calculated and are shown ln Table 2. 

The flrst two columns of the table glve the metal and adherend 

thicknesses, tm and tc. The thlrd and fourth columns give the 

half-crack length, a, and the debond aspect ratlo,b/a. The flfth 

column gives the stress lntenslty ln the metal adherend normallzed by 

the remote stress, k/s. The sixth column glves the strain energy 

release rate at the debond front (along the longitudinal centerllne) 

normalized by the remote stress squared, G/s 2
• The last column glves 

the remote stress that would cause the adheslve layer In the relnforced 

system to behave nonllnearly. 

79 
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TABLE 2 

CALCULATED VALUES FOR PARAMETRIC STUDY 

t t a b/a k/s G/s 2 
sYle1d m c k 

(1n) ( 1 n) (in) ( 1 n 2) ( 1 n Ij / 1 bs ) PSl 

0.050 0.025 0.50 0.001 0.171 12.4E-10 19,600 

0.50 0.50 0.240 8.2E-10 25,200 

0.50 1. 00 0.289 4.4E-10 25,600 

1. 00 0.001 0.170 12.6E-10 17,600 

1.00 0.50 0.286 9.5E-10 23,900 

1.00 1. 00 0.366 4.9E-10 23,600 

1. 50 0.001 O. 171 12.4E-10 16,500 

1. 50 0.50 0.322 9.6E-10 23,800 

0.025 1. 50 1.00 0.426 5.1E-10 23,700 

0.050 0.50 0.001 0.138 7.3E-10 25,000 

0.50 0.50 0.190 5.6E-10 21,700 

0.50 1. 00 0.230 3.0E-10 29,500 

1. 00 0.001 0.136 7.2E-10 22,800 

1.00 0.50 0.221 6.0E-10 28,100 

1.00 1. 00 0.286 3.3E-10 27,000 

1. 50 0.001 0.137 7.2E-10 21 ,100 

1. 50 0.50 0.264 6.0E-10 27,600 

0.050 1. 50 1. 00 0.329 3.3E-10 27,200 

0.075 0.50 0.001 0.125 5.7E-10 28,200 

0.050 0.075 0.50 0.50 0.170 4.8E-10 33,800 
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TABLE 2-Continued 

tm tc a b/a k/s G'S2 sYle1d 1 

( in) ( 1 n) (in) (in~) (In'+/lbs) PSl 

0.050 0.075 0.50 1. 00 0.206 2.4E-10 31,900 

1. 00 0.001 0.123 5.6E-10 26,500 

1. 00 0.50 0.196 4.7E-10 30,600 

1. 00 1. 00 0.254 2.6E-10 29,100 

1. 50 0.001 0.123 5 6E-10 23,800 

1. 50 0.50 0.217 4.8E-10 30,000 

0.050 0.075 1. 50 1.00 0.291 2.7E-10 29,300 

0.100 0.025 0.50 0.001 0.254 41. 5E-1 0 11 ,200 

0.50 0.50 0.334 24.6E-10 15,700 

0.50 1. 00 0.385 11.4E-10 17,600 

1.00 0.001 0.256 46.1E-10 9,800 

1. 00 0.50 0.407 28.9E-10 14,200 

1.00 1. 00 0.498 13.5E-10 15,400 

1. 50 0.001 0.257 46.2E-10 9,100 

1. 50 0.50 0.462 29.9E-10 13,700 

0.025 1. 50 1. 00 0.583 14.2E-10 15,100 

0.050 0.50 0.001 0.202 23.9E-10 14,600 

0.50 0.50 0.263 16.2E-10 18,900 

0.50 1.00 0.307 8.1E-1O 19,900 

1. 00 0.001 0.202 25.1E-10 13,100 

0.100 0.050 1.00 0.50 0.309 18.5E-10 17,400 
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TABLE 2-Continued 

tm tc a b/a k/s G/s 2 
sY1e1d 

1 

(In) (1 n) (i n) (i n~) (1 nit /l bs) PS1 

0.100 0.050 1. 00 1.00 0.385 9.4E-10 12,379 

1. 50 0.001 0.201 25.0E-10 16,800 

1. 50 0.50 0.345 19.0E-10 16,800 

0.050 1. 50 1.00 0.444 9.9E-10 16,700 

0.075 0.50 0.001 0.178 17.6E-10 16,900 

0.50 0.50 0.230 12.5E-10 21 ,300 

0.50 1. 00 0.269 6.4E-10 21 ,800 

1. 00 0.001 0.177 18.0E-10 15,200 

1.00 0.50 0.266 14.0E-10 19,400 

1. 00 1. 00 0.333 7.4E-10 18,500 

1. 50 0.001 0.176 17.9E-l0 14,600 

1. 50 0.50 0.294 14.4E-10 18,600 

0.100 0.075 1. 50 1. 00 0.382 7.4E-10 18,100 

0.150 0.025 0.50 0.001 0.313 78.3E-l0 8,300 

0.50 0.50 0.397 40.9E-10 12,400 

0.50 1. 00 0.446 18.0E-l0 14,800 

1.00 0.001 0.323 95.6E-10 7,000 

1.00 0.50 0.493 51.3E-l0 10,900 

1.00 1.00 0.584 22.3E-l0 12,500 

1. 50 0.001 0.325 99.0E-10 6,500 

1. 50 0.50 0.565 54.1E-1O 10,400 

0.150 0.025 1. 50 1. 00 0.689 23.7E-10 12,100 
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TABLE 2-Contlnued 

tm " a b/a k/s G/S2 sYleld -c k 
(i n) (in) (i n) ( 1 n 2) (1 n4 /l bs) psi 

0.150 0.050 0.50 0.001 0.253 46.8E-l0 10,600 

0.50 0.50 0.318 28.9E-10 14,400 

0.50 1. 00 0.362 13.9E-l0 16,200 

1. 00 0.001 0.256 52.9E-l0 9,400 

1.00 0.50 0.379 35.2E-l0 12,900 

1.00 1.00 0.460 17.1E-l0 13,400 

1. 50 0.001 0.256 53.7E-l0 8,700 

1. 50 0.50 0.425 37.1E-1O 12,400 

0.150 0.050 1. 50 1. 00 0.534 18.2E-l0 12,900 

0.150 0.75 0.50 0.001 0.222 34.4E-l0 12,300 

0.50 0.50 0.278 22.5E-l0 16,100 

0.50 1. 00 0.318 11.3E-l0 17,600 

1. 00 0.001 0.223 37.3E-l0 11 ,100 

1. 00 0.50 0.325 26.9E-10 14,500 

1.00 1.00 0.397 13.7E-l0 14,400 

1. 50 0.001 0.222 37.6E-l0 10,300 

1. 50 0.50 0.360 28.2E-10 14,000 

0.150 0.75 1. 50 1. 00 0.457 14.5E-l0 13,700 
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Stress Intensity Factor, Crack Growth Rate 

Figures 19, 20, and 21 show the effects of composite adherend 

thickness, debond aspect ratio, and crack lengths on stress lntenslty 

for the dlfferent thlckness metal adherends. On the flgures clrcles, 

dlamonds and squares represent stress lntenslty values for 0.025. 0.05. 

and 0.075 inch thlCk composite adherends respectlvely. Open. half­

shaded, and shaded symbols represent stress intensity values for 

debond aspect ratios of 0.0,0.50. and 1.0 respectlvely. On the flgures 

the stress intensity normalized by the remote stress was plotted agalnst 

the half-crack length. 

For all three metal adherend thicknesses. the flgures show 

consistent trends. If the debond aspect ratlo is small, the stress 

intensity is not signiflcantly affected by either the crack length or 

the thickness of the composlte reinforcement. However, as the 

debond size increases, the stress intensltles lncrease slgnlficantly 

wlth longer crack lengths and thlnner composlte relnforcement. 

The effects of debond size. composlte adherend thlckness. and 

crack length become more pronounced for the thlCter metal adherends. 

Straln Energy Release Rate, Debond Propagation 

Figures 22, 23, and 24 show the effect of composite adherend 

thickness. debond aspect ratlO. and crack length on the straln enerqy 

release rate at the debond front (along the longltudlnal centerl,ne 

of the reinforced system). As on flgures 19,20, and 21, d,fferent 
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symbols lndlcate different composite adherend thicknesses, and 

different amounts of shadlng indicate dlfferent aspect ratios. On 

the figures the straln energy release rate norma11zed by the remote 

stress squared was plotted against the half crack length. 

Examinatlon of the figures revealed that for all metal adherend 

thicknesses the thlckness of the composite had the most pronounced 

effect on the strain energy release rate. The thinner the composlte 

adherend the higher the straln energy release rate and the more 

11ke1y debondlng would occur. The debond aspect ratlo had the next 

most slgnlficant effect. The larger the debond aspect ratio the lower 

the strain energy release rate. Of all the parameters the crack 

length had the smallest effect on the strain energy release rate. 

As in the case for stress lntenslties, the effects of debond 

size, composite adherend thlckness, and crack length are more 

pronounced for the thlcker metal adherends. In fact on figure 24 

the energy release rates for 0.025 inch composite r£lnforcement wlth no 

debond reinforcing a 0.15 lnch metal were so great for all crack 

lengths that the energy release rates were off scale ln the flgure. 

Evidently, the most severe case for debond occurs wlth a thlck 

metal adherend relnforced wlth a thln composite sheet wlth no 

debondlng between adherends. 

Non11near Effects 

Flgures 19 through 24 were generated by assumlng that the adheslve 

behaved 11near1y. Hence, because they were normallzed wlth respect 

to the remote stress or its square, they can be used to estlmate the 
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stress intenslty and straln energy release rate for any remote stress 

that does not produce nonlinear behavior of the adheslve ln the 

relnforced system. For the dlfferent parameters studled, Table 2 

glves the values for the remote stresses that cause nonllnear behavior 

of the adhesive. As eVldent from the table nonllnear behavlor can 

occur at relatively low remote stresses. For value~ In the tdhle, 

the lowest value of remote stress to cause nonllnear behavlor occurred 

for the thlckest (0.15 In) metal adherend with a 1.5 lnch crack that 

was reinforced with the thinnest (0.025 In) composlte adherend and no 

debond. For this reinforced system a remote stress of 6,000 PSl 

caused nonlinear behavior of the adhesive. However, for practlcal 

purposes, the remote stress applled to thlS system could be as hlgh 

as 52,000 psi. To investlgate the effects of the nonllnear adheslve 

on the crack and debond growth predictlons, the analysls was conducted 

using the precedlng parameters for both a linear adheslve and nonllnear 

adhesive. 

For the linear analysls an effectlve shear modulus (see Appendlx 

B) of 65,000 psi was used, whlle for the nonllnear analysis an effectlve 

shear modulus of 65,000 PSl was used untll the remote stress reached 

6,000 PSl after which an effective shear modulus of 36.000 PSl was 

used for nonlinear elements of reglon B (see page 38). Wlth the use 

of the two dlfferent analyses, the stress lntenslty ~nd the strdln 

energy release were found as 
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kl 

18,800 

16,700 

13 

G 

26.1 

26.1 

o 

For thlS example, the non11near ana1ysls predlcted the stress 

lntensity 13 percent below that predlcted by the llnear analY~ls. 

However, the predicted strain energy release rate was the same for 

both analyses. 

At flrst glance the 11near ana1ysls would then accurately 

predlct the debond growth and conservatlvely estimate the crack growth. 

But by the use of equations (4) and (5) and the above values the debond 

and crack growth rates were found at 4.2 inches/cycle and 1.56E-04 

lnches/cycle respectlvely. Hence, the debond propagates much faster 

than the crack. As the debond grows, the magnltude of the stress 

intensity from the llnear and non11near ana1ysls converges. In fact, 

because the debond grows so much faster than the crack, before the 

crack extends any appreclable amount the stress lntensltles from the 

two analyses predlct the same crack growth rates. In addltion, because 

the example exhiblts the most slgniflcant non11nearlty of all the cases 

consldered ln Table 2, the llnear analysls, and hence flgures 19 

through 24 can be used to estlmate crack and debond growth even when 

the adhesive behaves nonllnearly. 
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Pred1ction of Crack and Debond Growth 

To pred1ct the crack and debond growth 1n a re1nforced system, 

the computer code d1scussed 1n Append1x F should 1n general be employed. 

However, figures 19 through 24 can also be used to estlmate both the 

debond and crack growth for a variety of re1nforce~ ~yst~~s 1n the 

fo11owlng manner. First, for the given adherend t~lc~n~ss, crack 

length, debond Slze, and remote applled stress, the ~tr31n energy 

release rate, G, and the stress lntenslty, k
1

, can be ec;tl"lared 

from flgures 19 through 24. Then, equatlOns (4) c.nd (5j, tre :rack 

and debond growth equatlons, can be used to estlTfdte the number of 

applied load cycles to extend the crack by, for example, 10 percent 

and to extend the debond length (along the lonqltudlnal aX1S of the 

re1nforced system) by 10 percent. The smallest vaiue of the appl1ed 

load cycles requ1red to produce these extenslons 1S used w1th equat10ns 

(4) and (5) to predict the extenslon of crack and debond growth. Next, 

these extenslons are added to the or1g1nal cr3rk and debond length 

and the entire process 15 repeated unt1l the stress 1ntens1ty reaches 
k 

56,000 pSl-1n 2 (fracture occurs) or the deslred crack length or 

number of applled load cycles lS reached. 



CONCLUSIONS 

The fa1lure mode of cracked metal sheets that are re1nforced 

w1th compos1te 1S crack propagation 1n the metal sheet. Analys1s of 

the crack growth is compl1cated by the development of a debond near 

the crack. Here1n, an analysis was developed to predict both the debond 

and crack growth 1n a re1nforced system. The analysis was pred1cated 

on the use of strain energy release rate to correlate debond growth. 

Emp1r1cal constants requ1red for the correlat1on were developed 

from simple bonded spec1mens. The correlating equat10n for the 

debond growth was then used 1n a stress analysis that was based on 

complex var1able Green's funct10ns Wh1Ch were developed herein for 

cracked, 1sotropic sheets and uncracked, orthotrop1c sheets. The 

stress analysis was used to calculate the 1nplane and interlam1nar 

stresses, the stress intensity at the crack tip, and the stra1n 

energy release rate at the debond front. By the use of the analysis, 

an 1terat1ve Solut1on was developed that used the stress 1ntens1ty and 

the stra1n energy release rate to pred1ct the crack and debond growth 

on a cycle-by-cycle bas1s. 

To ver1fy the analys1s, tests were conducted on two d1fferent 

relnforced panels WhlCh exhlblted dlfferent amounts of debondlng. 

For both panels the predlcted crack growth was withln the accuracy 

of crack growth predlctlon In unre1nforced metal sheets. Hence, 
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the analys1s appears accurate w1th1n the bounds 9f eXlstlng fracture 

mechanics concepts. 

The analysis was used in a parametr1c study of the effects of 

boron/epoxy composite re1nforcement on crack propagdtlon 1n alumlnum 

sheets. The study showed that the aspect rat10 of the debond area 

has a slgniflcant effect on the crack propagatlon 1n :he alum1num 

sheet. For small debonds the crack propagat1on rate 1S reduced 

slgnlf1cantly, but these small debonds have a strong tendency to 

enlarge. Debond growth is most llkely to occur 1n re1nforced systems 

that have a cracked metal sheet that 1S relnforced wlth a relatlvely 

thin composlte sheet. 

The analys1s can be used to predlct crack growth 1n relnforced 

systems. Hence, the analysis can be applied 1n develop1ng methods 

to repalr damaged metal structure and to lncrease llves and payloads 

of metal structures by selectlve relnforcement. 



APPENDIX A 

DETERMINATION OF DEBOND CONSTANTS 

As d1scussed 1n Chapter II, debonding can be pred1cted 1n a 

bonded system w1th an equat10n of the type 

(5) 

where r, lS the stra1n energy release rate and c2 and n2 are 

emp1r1ca1 constants. The obJect1ve of th1S append1x lS to determ1ne 

the emp1rica1 constants for the re1nforced system used 1n the 

experimental port1on of th1S d1ssertation. 

Spec1men Fabr1cat1on 

To determ1ne c
2 

and n
2

, several test speclmens with the 

conf1gurat1on shown 1n f1gure A.1 were fabr1cated. The spec1mens 

cons1sted of 1-1nch wide str1ps of 0.188 1nch th1Ck 2024-T3 a1um1num 

bonded to 0.03 1nch th1Ck un1d1rect1onal boron/epoxy The str1ps were 

bonded w1th Shell EA-934 room cur1ng adhes1ve. To ma1nta1n a constant 

adhes1ve th1ckness 1n the bond, 2 percent by volume of 0.004 1nch 

dlameter glass beads were added to the adhes1ve prlor to bond1ng. 

The process used to bond the alum1num to the compos1te was as 

follows 
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SURFACE PREPARATION 

Aluminum 2024-T3 
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1. Vapor degrease - perchloroethylene condensing vapors for 

5 to 10 minutes. 

2. Grit blast with 220 grit at 90 psig. 

3. Alkaline degrease - Oaklite 164 solution (9 - 11 ounces/ 

gallon of water) at 190 ±10° F for 15 mlnutes. Rinse 

immediately in large quantities of cold running water. 

4. Acid etch - place panels in the followlng solution for 

10 minutes at 1500 ±5° F. 

Distl11ed water 30 parts 

Sulfuric acid (cone) 10 parts 

Sodium Dichromate 1 part 

5. Rinse - rinse panels in clear, delonized running water. 

6. Dry - air dry 15 mlnutes; force dry 10 minutes at 1500 F 

±10° F. 

Boron/epoxy 

1. Vapor degrease as above. 

2. Grit blast with 220 grlt at 30 psig. 

BONDING 

1. Bond within 4 hours of surface preparation. 

2. Coat surfaces of both adherends prior to bonding. 

3. Cure at room temperature under 15 psig ±2 psig pressure. 

4. Record date of bonding. 
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The method of surface preparation for the aluminum was taken from 

Cagle (1973) while the surface preparation for the boron/epoxy and the 

bonding method was developed by the author. The bonding process was 

verified with lap-shear strength tests of the bonded system. 

As shown in figure A.1 photoe1astic material was bonded to the 

surface of the boron/epoxy. The photoe1astic material enabled tracking 

of the debond front in the fatigue tests of the specimens. 

Fatigue Tests 

The fabricated specimens were tested 1n a servo-hydraul1c fat1gue 

machine with a maximum load capacity of 10,000 pounds. All of the 

tests were conducted at a loading frequency of 10 Hz with a ratio of 

minimum to maximum load in the load cycle of R = 0.05. Dupl1cated 

tests were conducted for maximum loads of 5,000, 4,000, and 3,000 

pounds. 

As the specimens were tested, a debond developed at the change 

of cross sectlon and propagated between the aluminum and boron/epoxy 

adherends. Throughout the tests the location of the debond front 

was indicated by an isochromatic that was observed by viewing the 

photoelastic material through a polarizing material. The locat1on 

of the debond front is plotted against the number of applied load 

cycles on figure A.2 for all of the tests. The results of these 

tests will be used with a stress analysis to determ1ne the empirical 

constants c
2 

and n2 • 



101 

~ 

0 0 
a.. 0 

N 

0 0 0 0 0 0 
"1/1 0 0 0 0 0 0 

-0.0 0 0 0 0 0 0 
1tS.- .. .. .. .. .. .. 

0 
0 (II') (II') c:r c:r Ln Ln 
-I 

o 0<] ~<l 0 

~ 
~\ -0 

\\ t: 
0 
.0 

*' 
1/1 .,... 
-0 

1/1 
Q) 

..I:: 
U ~ 

\\ 
t: 0 .,... ''''' Z > 

,b Ln ItS . .. ..I:: 
N 1/1 Q) 

Q) .0 
+l r-

\ ItS U C'l 
>, t: 

Q) ~U ,... 

b 
0- 0 -0 
0 0-0 t: 
.- .-1tS 0 
1/1 0 .0 

0 .- Q) 
0 

-0 
Q) ,... . 
.- N 
0-
0- c::( 
ItS 

0 0 . 
C'l .,... 

I..L. 

0 
0 

<] 

~ Cb 
~ " ~ '<I.. 

~ ~~ 
~--<]~ 

0 . . 
I,() c:r (II') N .-

sa4Ju~ '4lDua L puoqap 



102 

Stress Analysis 

Because of the change of cross section of the test specimen, 

as an axial load, P, is applied to it, it bends. As shown by 

Timoshenko (1961) the equilibrium equation for a beam that exhibits 

both axial and bending deformation can be written as 

dM dw 
V = - + p- (A.l ) 

dy dy 

where V is the shear, M is the bending moment, and P is the 

tensile axial load. To use equation (A.l) both the moment M and 

the axial load P were related to the deflection in the z-direction, w, 

with two equations given by Calcote (1969) as 

P dv d2w 
- - A B -
A Ildy 11 dy2 

(A.2) 

dv d2w 
M=B -

11 dy 
- 0 -

11 dy2 
(A.3) 

where A is the cross sectional area of the beam and dv/dy is the 

axial strain of the beam and 
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k 1 k 
2 2 

= E Q.(Z. - z. 1) 1 1 1- - - E Q.(z. 
211 z. 1) 1-

i =1 

1 k 

i=l 

3 (Ey) i 
Zi_l) Qk = -----

1 - (vxyVYX)i 

where i indicates the layer of a beam w1th k layers and z is 

measured from any reference surface. 

Eliminating dv/dy from equations (A.2) and (A.3) Y1elded an 

expression for the moment as 

M 
Bll { d

2
W} d

2
w 

=-P+B--D 
A 11 d 2 11 dy2 

11 Y 

(A.4) 

Substituting equat10n (A.4) into equation (A.l) and differentiating 

once w1th respect to y, Y1elded a governing equat10n as 

(A.5) 

where qz is a transverse distr1buted load acting on the beam. 

The boundary conditions for equatlon (A.5) were determ1ned 

from the end conditions of the test specimen installed in the test 

machine as shown schemat1cally on figure A.3a. With the assumption 
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that the specimen 1S effect1vely fixed at both ends by the relatively 

massive test machine gr1ps the boundary conditions were determined as 

w( -d} = 0 w(L} = 0 

(A.6) 
dw( -d} dW(L} 

= 0 --= 0 
dy dy 

At the change 1n cross section of the test specimen a 1 oca 1 

moment given as 

(A.7) 

where eo 1S the distance between centroids of the two cross sect1ons, 

was produced. W1th th1S moment the beam can be modeled as a symmetric 

beam with two d1fferent cross sections acted upon by a local moment 

M at the change 1n cross sect10n and an aX1al load P as shown in 

figure A.3b. For the model shown 1n f1gure A.3b, equation (A.S) 

was solved with convent1onal f1nite d1fference techniques (Ames 1971). 

To verify the analysis, the strains were determined by both the 

fin1te difference analysis and by experiments. The test specimen 

shown in figure A.3a was analyzed. In cross section 2 the spec1men 

was composed of four layers: the metal core, the adhesive layer, the 

composite cover, and the photoelastic material. The thickness, modul1, 

and Poison's rat10 for each of these layers are given as 
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layer materlal thickness elastic POlsson's 
(i n) modulus ratio 

PSl 

1 alumlnum 0.188 107 0.30 

2 adhesive 0.004 600,000 0.40 

3 composlte 0.030 3 x 107 0.21 

4 photoelastlc 0.083 390,000 0.36 

With the preceding values and the surface of the metal wlth straln 

gages (see flgure A.4) as a reference plane All' B
11

, and °Il 

were found for sectlon 1 (see figure A.3) as 

A = 2.1 x 106 1bs/in 
1 1 

B = 200,000 1bs 

° = 2,500 1bs/ln 
11 

and for section 2 as 

0Il = 65,000 1bs/ln 

1 1 

B11 = 392,000 1bs 

With the use of the prevlOus values and an applied load P of 5,000 

pounds as shown on flgure A.4, the flnite dlfference method was used 

to calculate def1ectlons and curvatures of the beam. Wlth the curva-

tures the strains in the beam were calculated on the surface of the 

metal with (Calcote 1969) 

E = _1 fp + B d

2
W} 

a A 11 dy2 
1 1 
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On figure A.4 the solid line indicates calculated strains on the 

surface of the metal adherend while the C1rc1es indicate strains 

obtained experimentally w1th strain gages. As eVldent from the figure. 

the comparison is very good. Consequently, the developed stress 

analysis is adequate and can be used to calculate the strain energy 

release rates as the test specimens debond. 

Calculation of Stra1n Energy Release Rates 

The strain energy release rate can be calculated as 

11m rw _ fiU} 
G = (A.B) 

l1b -+ a l1b l1b 

where W is the change 1 n 1t/ork done on the system, U is the change 

in internal straln energy, and l1b is a small extension of the 

debond. With the assumption that the debond extends at the maximum 

applied load, the work done as the debond extends can be calculated as 

where 1100 is the rotation of the beam at the debond front. The 

change in internal energy can be calculated as 

(A. 1 0) 
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Subst1tut1ng equat1ons(A.9) and (A.10) 1nto equation (A.8) and 

rearrang1ng S11ght1y Y1e1ds the stra1n energy release rate as 

G = 11m 0 {p 
tb -+ 6b 

6bend M60G bend 
+ P -- + ------

6b 6b 

6U aX1a1 

(A.l1) 

The f1rst two terms.wh1ch neglect bend1ng. of equat10n (A.11) can be 

calculated as shown by Roder1ck et a1 (1975) as 1 (for a un1t w1dth) 

= 

LIb ) 

t E p2 
'c C 

(A 12) 

The last three 1tems. Wh1Ch are due to bend1ng. can be calculated w1th 

the f1n1te d1fference results 1n the fo11ow1ng manner 

F1rst. the aX1a1 def1ect1on due to bend1ng 1S calculated as 

shown by Den Hartog (1952) as 

P 

2 
l -d (A.13) 

lThe flex1ble adheS1ve and photoelast1c mater1al are neglected 
because they have 11ttle effect on the stra1n energy due to the aX1al 
load 

A 
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where the slope dw/dy was calculated at each nodal p01nt 1n the 

f1n1te d1fference approx1mat1on. Between the nodes the slope 

was assumed to vary 11near1y. The 1ntegration of equat10n (A.13) 

was done p1eceW1se over the length of the beam. The work done 

by the moment \oJas expressed a~ 

M = 

M 

2 

The stra1n energy due to bend1ng was calculated as 

M2 All 
dy 

where aga1n the lntegrat10n was performed 1n a pleceW1se fash1on. 

(A.14) 

(A.15) 

Equat10ns (A.13) through (A.15) were evaluated before and after 

a debond extens10n 6b. The quant1t1es were subtracted to calculate 

the last terms of equatlon (A.ll). The result was added to equatlon 

(A.12) to glve the straln energy release at the debond front. Tn 

figure A 5 the solid 11nes show the calculated stra1n energy release 

rate plotteda1a1nst th~ debond lengths for values of appl1ed loads of 

5,000, 4,000, and 3,000 pounds. The dashed llne on the f1gure shows the 

stra1n energy release rate--neg1ect1ng bend1ng--calculated w1th 

equat10n (A 12) As eV1dent from the f1gure, when the debond length 

15 greater than 0 S 1nch or less than 4.5 1nches, the contr1butlon 

of bend1ng to the stra1n energy release rate 1S small. Part1cu1arly, 
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when the debond length is about 2.5 1nches long, the bend1ng contr1but10n 

1S zero. 2 Consequently, for a debond length of 2 51nches.equat10n 

(A.12) can be used to calculate the stra1n energy release rate 

Curve Fit for Emp1rical Constants 

The debond rates for the conf1guration analyzed were determlned 

by taking the slope of the curves at a 2.5-lnch debond length from 

figure A.2. These experlmental rates and the correspondlng values 

of the calculated strain energy release rates are shown In Table A.l. 

The values In Table A.l were used to determine the emp1rlcal constants 

C2 and n2 in equatlon (5) with a least squares flt (Wylle 1966). 

To perform the f1t, equatlon (5) was wr1tten as 

(A.16) 

As a result of the curve flt. C2 and n2 were found as 

C
2 

= 3.158 x 10- 5 n = 3.616 
2 

Figure A.6 shows the data as p01nts and the fltted equat10n (5) 

as a SOlld llne. As eVldent from the flgure, the equat10n f1tS the 

2Actually, there are also two other deDond lengths where the 
straln energy release rate 1S zero, but they are located closer to 
the ends of the spec1men where the analysls may be more 1naccurate 
than at the 2.5-1nch debond length. 



load 

1 bs 

5,000 

5,000 

4,000 

4,000 

3,000 

3,000 

113 

TABLE A.1 

STRAIN ENERGY RELEASE RATES 

AND DEBONO PROPAGATION RATES 

strain energy 
release rate, G 

in-1bs/in 

2.15 

2.15 

1. 38 

1. 38 

0.77 

0.77 

debond rate 
db/dN 

in/cycle 

5.60 x 10-4 

5.20 x 10-4 

1.04 x 10-4 

8.00 x 10- 5 

1.26x10-5 

1.33 x 10-5 
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data well. With the determined empirical constants, equation (5) 

can be used to predict debond propagation rates whenever the strain 

energy release rate can be determined. 



APPENDIX B 

ADHESIVE SHEAR DEFORMATION ASSUMPTION 

As mentloned in Chapter IV, the complexity of the analysis 

for a reinforced system is significantly reduced by assuming that the 

adhesive only undergoes shear deformation while the adherends only 

undergo extensional deformations that do not vary through the 

adherend thickness. Hereln, the validity of these assumptlons were 

investigated by comparing a one-dimensional solution that was based 

on these assumptions with a more rigorous two-dimenslonal finite 

element solution. Before the one-dimensional and two-dimensional 

solutions were compared the bulk propertles of the adhesive were 

determined. 

Adhesive Bulk Propertles 

To determine the bulk properties of the adhesive an appropriate 

test specimen was deslgned and fabricated in several steps. First, 

a female plastic mold was made from the specimen shown in figure B.la. 

Then, the adheslve liquid base and hardener were combined and cast 

into the mold. Next, after curing 24 hours in the mold the adhesive 

specimen was removed and cured an additlonal 5 days before it was 

handled. Finally, x-rays were taken of the specimen to locate air 

bubbles developed in the moldlng process. Speclmens that contalned 
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large air bubbles in cr1tical areas were scrapped SlX test 

specimens were fabricated in thlS manner but only three were acceptable 

for testing. 

Prior to the testing the specimens were instrumented w1th strain 

gages and linear variable differential transformers (LVDT) as shown 

1n figure B.lb. The stra1n gages were used to obta1n the 10ng1tud1nal 

and transverse stra1n while the LVDT's were used to check the strain 

gages (the LVDT's were w1red to elim1nate bending effects in the1r 

read1ngs wh1le the stra1n gages would 1nclude bend1ng 1n the1r 

readings). Discrepancies between the readings would 1nd1cate bend1ng 

due to poor specimen alignment in the test machinE Each 1nstrumented 

specimen was placed in a servo-hydraul1c test machine w1th a loading 

range of 2,000 pounds and a sensitivity of flO pounds. Then, each 

specimen was loaded to fa1lure at a rate of 80 lbs/sec. 

In this manner, the three specimens were tested and the results 

were nearly identical for all three of the tests. For all spec1mens, 

the longitudinal stra1n calculated from LVDT's agreed with1n 1.5 percent 

of the 10ngitud1nal strain gage reading and indicated the spec1mens 

were aligned properly 1n the test mach1ne. The data obtained from the 

strain gages are shown on figure B.2 in the form of a stress-stra1n 

plot. On the f1gure the heavy SOlld line 1nd1cates the stra1n 1n the 

loading direct10n E and the dashed line 1ndicates the stra1n y 

transverse to the loading d1rection EX. As 1nd1cated by the light 

solid llnes on the figure, the stress-stra1n curve can be approx1mated 

by a bilinear stress-strain curve with a change of slope occurring 

at 4,200 pS1. 



119 

7 

\ 6 

\ 5 

.~ 

I/) 
.:.t. 4 .. 

longitudinal I/) transverse 
I/) 

ClJ £x £y ~ 
+.I 
I/) 

-0.01 o 0.01 0.02 

strai n, i n/i n 

Fig. B.2. Adhesive stress-strain curve 



120 

In the initial linear region the following values were obtained 

from the curve: 

~cry = 3,000 PS1, EX = 0.002 

USlng these parameters, the Poisson's ratio and the e1astlc modulus 

wer~ calculated as 

EX 

Vyx = - - 0.40 
Ey 

= 600,000 pSl 

With the assumption that the adhesive is isotroplc the shear modulus 

was calculated as 

G = 
2 (1 + v ) 

yx 

= 215,000 psi 

Along slml1ar lines, the mater1al parameters 1n the second linear 

region were determined as 

v = 0.28 xy Ey = 190,000 psi G = 74,000 PSl 

The fracture of the specimen occurred at a stress of 6,600 

PS1 at an axial strain, of 0.0215. Wlth the preceding material 

property values for the adheslve, the one-dimensional and two-

dimensional Solutlons were compared. 
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As a test case, the shearing stresses in the adheslve layer 

of the specimen shown on figure B.3a (the specimen is symmetric about 

the x-y plane) was calculated with both types of Solutlons for a plane 

stress state. Although the solution was for plane stress, for the 

self-equilibrating load system shown on figure A.1a the stress 

dlstrlbutions are identical for both plane stress and strain states 

(Timoshenko (1951)). Consequently, although the tests case considered 

a state of plane stress, the results are also applicable to a state of 

plane strain WhlCh may be more appropriate for a section taken through 

the thickness of the reinforced system shown on figure 9. 

One-Dlmensiona1 Solutlon 

Figure B.3b shows a freebody of the specimen shown in figure B.3a. 

On the flgure P is half the load in a composite adherend, F{y) 

and q(y) are the load in the metal adherend and the shear flow in 

the adhesive at any point y, and tm, 2tc ' and tad are the 

thicknesses of the metal, composite, and adhesive respectively. 

The change in the load F{y) with respect to y is the shear 

flow in the adhesive layer given as 

dF{y) 
q(y) = -­

dy 
(B.1) 

The shear stress in the adheslve is thlS shear flow divided by the 

width, w, of the specimen, glven as 

q 1 dF(y) 
T(y) = - --- (B.2) 

w w dy 
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(a) Specimen configuration 
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metal 

tad I 
U --=- ---- ~ ---...;;--
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'--- compos i te 
(b) Freebody for one-dimenslona1 solution 

~p 

~y 

~ F(y) 

~-F(Y) .... Y 

Fig. B.3. Specimen configuration and freebody for 
one-dimensional Solutlon 
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With the assumption that the adhesive only undergoes shear deformatlon 

and that this deformation does not change through the adhesive thickness, 

the shearing stress in the adhesive can be related to the shearing 

strain in the adhesive by the constitutive equation as 

T(y) = y(y)Gad (B.3) 

The shearlng straln in the adheslve can be related to the extensional 

displacements ln the metal, um(y), and the composite, uc(y), 

as 

v (y) - v (y) m c 
y(y) = ----- (B.4) 

Substituting equation (B.4) into equatl0n (B.3) and that result lnto 

equation (B.2) Ylelds 

= (B.5) 
dy 

Equation (B.5) can be differentiated wlth respect to y to yield 

Gw 

= (B.6) 
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when the derivatives of the extensional displacements urn and Uc 

with respect to yare the extensional strains 1n the metal and 

composite adherends respectively. These strains were related to the 

extens10nal loads in the adherends by 

F{y) 

dy 
E:c = --- = ----

dy wEc tc 
(B.7) = 

where EM and Ec are the moduli of the metal and compos1te respec­

tively. Subst1tut1ng equat10ns (B.7) 1nto equat10n (B.6) Y1elded a 

second order, nonhomogeneous d1fferent1al equat10n 1n F{Y) as 

- aF(Y) = B (B.8) 
dy 

where 

and 

B = = 
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where s is the stress in the composite and Gad is the shear modulus 

of the composite. 

Solving equation (B.8) Y1elded a complete solution as 

ray -ray 
F{y) = c1e + c2e + (B.9) 

With referral to f1gure B.3a, the boundary cond1tions for equation (B.9) 

are 

y = a F{Y) = F{O) = a 
(B.10) 

y = 00 F{y) 1S bounded 

With the use of these boundary condit1ons, the constantsin equation 

(B.9) were found to be 

Thus, equation (B.9) becomes 

F{y) = _SW_G_
ad

_ {l -e -ray} 
Cit dE a c 

(B.ll) 

By the use of equat10n (B.2), the shear stress in the adhesive was 

calculated from equation (B.ll) as 
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-ky 
T(Y) = e (8.12) 

Finite Element Solution 

A finite element computer program, PLANE, was used to calculate 

the shearing stresses in the adhesive layer in the speclmen shown in 

figure 83.a. PLANE is an elastic-plastic, two-dlmensiona1 program 

which uses constant strain and linear strain triangular elements. 

PLANE was developed by the Grumman Aircraft Corporation for the 

National Aeronautics and Space Administration and was documented by 

Armen and Levy (1962). The mesh used for the analysis is shown on 

figure 8.4 and contains 1,522 degrees of freedom. The trlang1es 

are predominately linear strain triangles which allow linear variations 

in the stresses and strains through the elements. Each of the adherends 

is modeled with several elements through the thickness thus allowing 

variations of extensional and shearlng stresses through the thickness. 

In contrast, the one-dlmensiona1 analysis assumed uniform extensional 

stresses and no shearlng stresses through the thickness of each 

adherend. The adhesive layer was modeled by one layer of elements 

which allowed 11near variation in stresses through the adhesive 

thickness. 
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One-Dimensional Versus Finite Element Solution 

To compare the results of the two solutions, the specimen 

configuration shown in figure B.3a with a width of w = 1.0 inch 

and the following parameters 

metal adhesive composite 

thickness t = 0.1 in tad = 0.004 in tc = 0.1 1n m 
moduli E = 10.3 x 106 pS1 Gad = 215,000 PS1 Ec = 30 x 106 

m psi 

and an applied stress s of 1,000 psi was analyzed with both solutions. 

The parameters used in these solution were typical for const1tuents 

used in the reinforced system discussed in Chapter II. The adhesive 

shear stress calculated from the one-dimensional solut10n equation 

(B.12) was plotted as a solid line against y (distance from the 

edge of the metal adherend) on figure B.S. On the same figure the 

circles indicate values of the adhesive shear stress calculated 

from the finite element solution. As evident from the figure the 

one-dimensional solution gives shear stress values twice as high as 

those obtained from the finite element solution near the edge of the 

metal adherend (y = 0). Evidently, the shearing deformation of the 

adherends which was not accounted for in the one-dimensional solution 

has a significant effect on the values of the shear stresses. 

To account for the adherend shear deformation and still use the 

simplified one-dimensional analysis, an effective shear modulus Geff 
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1-0 solution with actual G (2.15 x 105psi ) 

1-0 solution with effective Geff (0.64 x 105 pSl) 

finite element 

y-axis 0.5 in 

Fig. B.S. Finite element versus one-dlmenslonal solution 
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was introduced. The magnitude of Geff was determined by equating 

the maximum shear stresses in the adhesive calculated by the flnite 

element solution to the expression for the maximum shear stress from 

the one-dimensional solution from equation (8.12) as 

sGad 
Tmax = (8.13) 

tadEc Yh (y = 0) Finite Element 

Solving equation (8.13) for G yielded an expresslon for an 

effective shear modulus Geff as 

(8.14) 

With this value for G in equation (8.12) yields a corrected one-

dimensional solution for the adhesive shear stress as 

T(Y) = 
sG we- Yhy 

eff 
(8.15) 

For the sample ana1ysis,equatlon (8.14) yielded Geff as 64,000 

pSi. Using this value for Geff , equation (8.15) was plotted against 

y as a dashed line on figure 8.5. The agreement between equation (8.15) 

and finite element results indicated by the circles on the figure is 

excellent. Consequently, the assumptions made in Chapter IV, that the 

adherends only undergo extensional deformation while the adhesive 
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only undergoes shear deformation, can be used to accurately predict 

shear stresses in the adhesive with a simplified analysis if an 

effective shear modulus for the adhesive is used 1n the calculat1ons. 

For analysis of the re1nforced system shown in figure 2 the 

effective modulus was determined for a range of adherend th1cknesses 

for the adhesive used in the reinforced system both for before 

and after the adhesive yields. To determine the values of effective 

shear modul1 numerous finite element solutions were run w1th different 

adherend thicknesses for both the initial bulk adhesive shear modulus 

of 215,000 psi and the bulk shear modulus after Ylelding of 74,000 

psi, The results of these calculations are given in table B.l. In 

the table the maximum shear stress calculated from the finite element 

solution and the effective shear modulus are tabulated for the 

different adhesive thicknesses. 

As shown in table B.l the value of the effective modulus for the 

initial shear modulus of the adhesive does not vary much with adherend 

thicknesses. The average value for Geff is about 65,000 psi and 

is within 3 percent of any of the calculated values. 

Also, as shown in table B.l, the value of the effective modulus 

for shear modulus of the adhesive after yielding also has little 

variation with adherend th1cknesses. The average value in this case 

is about 36,000 psi and is within 3.3 percent of any of the calculated 

values. 

As evident from the previous discussion the re1nforced system 

can be analyzed by assuming that the adherends only undergo extensional 
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deformation while the adhesive only undergoes shearing deformation 

if an effective shear modulus of 65.000 psi is used for the adhesive 

before the adhesive yields and an effective shear modulus of 36,000 psi 

is used for the adhesive after yielding. 
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TABLE B.l 

EFFECTIVE SHEAR MODULI FOR REINFORCED SYSTEM 

metal adherend thlckness, inches 

0.05 0.10 0.15 

T max' psi 754 887 957 
Geff , psi 66,960 65,200 65,200 

Tmax' PSl 841 1,049 1,169 

Geff , ps i 66,400 64,800 64,400 

T max' psi 876 1,124 1,278 

Geff , psi 65,800 64,300 64,000 

T max' psi 897 1 ,171 1,347 

Geff , psi 66,000 64,300 63,600 

Tmax' psi 561 661 710 
Geff , psi 37,100 36,200 35,900 

T . max' ps 1 629 785 871 

Geff , PSl 37,100 36,300 35,900 

Tmax' PSl 656 842 953 
Geff , psi 36,900 36,100 35,700 

T . 
max' PSl 671 876 1,002 

Geff , psi 36,840 36,000 35,400 
- ---------

0.20 

1,003 
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APPENDIX C 

REMOTE STRESSES IN THE ADHERENDS 

For equilibrium to exist, the macroscopic stresses applied to the 

reinforced system must be balanced by the stresses in the adherends 

of the system. This relationship can be written in vector form as 

Sx amxx acxx 

Sy A = OTnyy Am + acyz Ac 

Sxy OTnxy acxy 
system metal composite 

(C.l ) 

where A represents the area of the reinforced system and Am and 

Ac represent the area of each element. For the case where stress 

was applied in only the y-direction, 

Sx = a 

Sy = applied load/A (C.2) 

Sxy = a 

With strains uniform through the thickness, (C.l) can be rewritten for 

a unit width as 

134 
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o 

(C.3) 

a 

where the C and 0 are the stiffness matrlces for an isotropic 

and orthotropic materla1 in plane stress, respectively, as given by 

Zienkiewicz (1971) as 

E vE 
o 

vE E 

[C] = o (C.4) 

o o G 

o 

vyxEx E 
Y 

[0] = 0 
Ex E 

Y 1 2 

Ey 
Vyx 

Gyx Ex 
2 

0 0 -(1 - - v ) 
E E yx 
y y (C.5) 
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with E, Gyx ' and Vyx denoting the extensional modulus, the 

shear modulus, and Poisson's coefficient respectively. With simple 

matrix algebra, equation (C.3) can be solved and the strains determined. 

These strains in turn can be used with the appropriated stiffness 

matrices to calculate the stresses in the metal and composite 

adherends as 

amyy 

ae xy 

= [C] 

= [D] 

(C.6) 

(C.7) 



APPENDIX D 

GREEN'S FUNCTION FOR THE CRACKED SHEET 

The solutions for the interlaminar stresses and the strain energy 

release at the debond front developed in Chapters IV and V respectively 

require Green's functions for both displacements and stresses. As 

pointed out by Dennemeyer {1968}, the solution for a concentrated 

load acting on a body can be used as a Green's function. 

Herein, the solution for four concentrated loads that are 

symmetric with respect to a crack in an isotropic sheet was developed. 

The solution was based on elasticity theory using complex variable 

theory as developed by Muskhe1ishvili {1975}. The solution was 

predicted on the assumptions that the cracked sheet is infinite 

isotropic, and can be described by a plane stress or strain analysis. 

As shown by Muskhe1ishvi1i {1975}, both the stresses and displacements 

in a cracked sheet can be expressed in terms of two stress functions, 

~{z} and ~ Z}, as 

cr = Real{~{z} + ~ - [Z~I{Z} + ~{z}]} X 

cry = Real{~{z} + ~ + Z~I{Z} + ~(z}} 

137 

{D.l} 

(D.2) 
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0xy = Imagfz4>, (z) + '¥:z)} (0.3) 

2G(u + 1V) = n¢(z) - z~ - ~(z) (0.4) 

where ox' 0y and 0xy are stresses, u and v are d1splacements, 

the bar over the funct10ns denotes the complex conjugate, 

square root of -1 and 

d¢{z) 
ct>(z) = ¢' (z) = --

dljJ{z) 
\jI(z) = 1jJ'(z) ---

dz dz 

n = 3 4v plane strain 

3 - v 

n = -- plane stress 
1 + v 

1S the Poisson's ratio. 

1S the 

The stress funct1ons, ct>{z) and \jI~z), for the cracked sheet 

under four concentrated loads as shown on f1gure O.lc were constructed 

by superimpos1ng the stress functlons for a cracked sheet under two 

different load1ng condit1ons. The first cond1t1on Wh1Ch is shown 

on figure O.la has concentrated loads act1ng on the cracked sheet plus 

a stress distr1bution appl1ed to the crack surface. Th1S stress 

d1stribution was equal to the stress d1str1but1on WhlCh eX1sts along 

the x-aX1S for an uncracked sheet wlth concentrated loads. Th1S stress 
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-1 I P(tJLx ( \ _P(+) ( \ J L 
x+ \ 00 \ = I I ~ 

f r) ! 1 If r 
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Fig. 0.1. Superposition method used to formulate Green's functions for a cracked sheet 
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distribution closes the crack and, therefore, effectlvely eliminates 

it. As a result, figure O.la represents an uncracked sheet with 

concentrated loads acting on it. The second conditlon which is shown 

on flgure O.lb is for a stress distribution acting on the surface of a 

crack. This stress dlstribution has the same magnltude, but is 

of opposite sign to the stress dlstribtulon applled to the crack ln 

the first condltlon. The development of the stress functlons for 

t~ese two conditions follows. 

The stress functlons for figure O.la were developed by super-

imposing the solution for slngle concentrated forces that act ln 

different quadrants. For a pOl nt, zo' in the fl rs t quadrant the 

solution was given by Muskhe1ishvi1i (1975) as 

where 

¢(z) = -5 -­
z - Zo 

x + lY 
$ = 

1 

'¥(z) = Sn -- -$--
(z - Z )2 o 

(0.5) 

and X and Yare the load components ln the x and y directlons 

respectively, TI = 3.1459, and tm lS the thickness of the sheet. 

Equatlons (0.5) were generated for the second, third and fourth 



141 
quadrants by replacing Sand Zo with -S and -zo' -S and -zo' 

and 5 and Zo respectively. These stress functions were then 

superimposed to form the functions 

~(z) = S {1 1 J + 5 {1 1 1 
z + Zo z - Zo z + Zo z - zoJ 

(0.6) 

ljI(z) 
= +{-z - Zo 

+ sfn{-l -
z - Zo 

where upon differentiation equatlon (D 6) becomes 

and upon integration equatlons (0.6) and (0.7) become 

(z + :0) , 11 

+ (z + l,o)'}} 

(0.7) 

(0.8) 
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<jl{Z) = S [Log(z + zo) - Log{z - zo) ] 

+ 5 { +09(Z - z ) -o 

(0.9) 

Log(z + Zo~ +ZOf 1 + 1 11 
J z - Zo z + Zo !S 

Log(z + zoj + zO{ 1 _ + 1 - 11 
z-z z+z o 0 

(0.10) 

Equations (0.6) through (0.10) are the required stress functions, 

derivative, and integrals to compute stresses and displacements from 

equations (0.1) through (0.14) for figure D.1a. 

The stress functions for load condition 2 shown on figure D.1b 

were obtained in the following manner. Following Muskhe11shvili (1975), 

a new stress function n(z) was introduced which is related to the 

previously discussed stress function by the equation 

~(z) = n(z) - ~(z) - z~'(z) (0.11) 

where 

n(z) = n(z) 
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The required stress functions, ~(z) and n(z), can be 

determined for pressure acting on a single crack as (Muskhelishvili 

1975) 

1 I(t)p(t)dt 1 q(t)dt 

~p(z) = fa +- fa (0.12) 
27TiI (z) -a t - z 27T; -a t - z 

1 I(t)P(t)dt 1 q(t)dt 

np(z) = fa fa (0.13 ) 
27TiI(z) -a t - z 27Ti -a t - z 

with 

crack length 
I (z) = 1z2 - aZ a = -----

2 

and 

1 i + 
P(t) (Oy 

+ + a -) - "2 (T xy - T xy ) - -
2 y 

(0.14) 
1 i + -

q(t) (Oy 
+ - a -) - - (T - T ) = -

2 Y 2 xy xy 

0y and Txy are normal and shearlng stresses acting on the crack 

surfaces respectively (the plus slgn 1ndicates the upper surface of 

the crack while the minus sign indlcates the lower surface.) P(t) 
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and q(t} are total normal and shearing pressures which act on the 

crack surfaces. As mentioned previously, the stresses which acts 

on the crack surface in figure O.lb is equal to the magnitude but of 

opposite sign to the stress caused by four point loads acting on an 

uncracked sheet. Therefore, the functions, ~(z) and w(z}, shown 

in equations (0.6) and (0.7), which are solutions for point loads on a 

continuous sheet, can be used to find P(t} and q(t}. 

The normal and shearing stresses acting on the crack were 

calculated (Muskhelishvili 1975) in terms of equations (0.6), (D.7), and 

(0,8), as 

(0.15) 

Substituting equations (0.6), (0.7), and (0.8) into equation (0.15) 

yields 

or 

where 

{ 

-4zo 
= S ---­

Z2 - Z 2 o 

(0.16) 

(0.17) 

-( :-:-Z-Z:-}-2 + -( z_z -~-:-:-}-2 + Z 2
2

:

Z;J 
(D. 18) 
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Equation (0.16) shows that no imaginary term exists. Consequently, 

TXY is zero. Also, cry has the same value along the x-axis independent 

of the direction in which the x-axis is approached. Consequently, 

ay+ = cry-. Therefore, with consideration given to the above statements 

and equations (0.14), the total pressures on the crack are 

(0.19) 

q(t) = 0 

As a result of the above simplifications, equations (0.12) and (0.13) 

become equal to each other and are expressed as 

1 I(t)P(t) 
~(z) = n(z) = --- f a dt 

2~iI(z) -a t - z 

The integral in equation (0.20) was evaluated by contour 

integration along the contour shown in figure 0.2 by using the 

Residue theorem given as (Wylie 1960) 

f f(z)dz = 2~i EResidues 
c 

where the residue for simple poles is given as 

1 r -1 {z - al
Mf{z1 Residue = lim 

(M - l)! z -to a d M - 1 

(0.20) 

(0.21) 

(0.22) 
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Fig. D.2. Path for contour integration 
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The contour shown in figure 0.2 can be broken into several sections. 

Thus, equation (0.19) becomes 

f A(~) + f A(~) + f A(~) - f A(~) + f A(~) 
r1 r2 r3 r.. rS 

- f A(~) + f A(~) = 2ni I: Res 
r r7 6 

where 

~~2 -a2 P(~) 
A(~) = d~ , ~ = t + is 

~ - z 

On figure 0.2 the integral is evaluated along the contour as R 

approaches infinity and e: approaches zero. Each of the contours 

can be expressed as follows. 

I (~) P(d 

J A(d = 1 im J d~ 
r 1 e:-+-O ~-z 

Let ~ + a = e:e i8 
d~ = i8 ie:e d8 

V i8 ;e: e: 2e - 2ae:e,8 P(e:e i8 - a)e i0d0 
.. J A(r;) = lim f 

0 

i0 r
1 e: -+- 0 2n e:e - a - z 

(0.23) 

(0.24) 
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i0 r.;; - a = e:e 

iE VE 2ei0 + 2aEei0 P(Eei0 + a)ei0d0 
• 
.. Ir A(r.;;) = lim 

2 

-IT 
I 

Eei0 + a - z IT 

E -+ a 

for r 3 

+ 
let) P(t)dt 

I A(r.;;) = I a 
r 3 -a t - z 

likewise 

let) P(t)dt 
I A(r.;;) = I a 
r.. -a t - z 

I a 
-a 

I(t) pet) 

----dt 
t - z 

+ 
Noting that Muskhelishvi1i (1975) showed that I(t) = -I(t) for 

r.;; < a, equations (0.26) and (0.27) can be combined to give the 

integral on the left hand side of equation (D.20) as 

+ 
I(t) P(t)dt 

I A(r.;;) = 2f a 
r.. -a t - z 

(0.25) 

(0.26) 

(0.27) 

(0.28) 
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Noting that 

+ 
I(t} = I(t} for ~ > a 

the sum of the next two segments of the contour integral equals 

zero, because 

+ + 
I(t} P(t}dt I(t} P(t}dt 

f A(~} = f R f A(d = fa 
r 5 a t-z r R t-z 

6 

so that 

f A(~} + f A(~} = 0 (D.29) 
r 5 r 6 

The last contour segment can be evaluated as 

I (d P(dd~ 

f A(d = 1 im f 
r7 R-+oo ~ - z 

Let ~ = Rei8,d~ = Riei8d8 

Ri V R2 e2 i8 - a2 P(Re i8}de 
21T 

.. f A(r,;) = 1 im f (D.30) 
r7 R-+o:> 

o 
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Substituting equations (0.24), (0.25), (0.28), (0.29), and (0.30) 

into equation (0.23) and rearranging the terms yield the deslred 

integral as 

I (t) P (t) dt 1 
f a 0 

-----= 1Ti l:Residues - lim - f -----10--------
t - z 2 21T £e - a - z -a 

1 

- 1 im - f 

O 2 1T 
£ -+ 

-1T 

£ -+ 0 

i£V£2ei0 + 2a£e10 P(£e i0 _ a)e10d0 

i0 £e + a - z 

(0.31) 

where P(t) is given by equation (0.19). As an example, equation 

(0.31) was calculated for the first term of P(t). For thlS case 

the express10n to consider was chosen as 

I (r;;) P ( r;;) 
1 

-4I(r;;) SZo 
=-------

-4Sz o 
P(t) = ------
1 (t2 - Z 2)(t - z) o 

(0.32) 
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The residuals for expression (0.32) were calculated w1th equat10n (0.22). 

They become 

f -41(,)zo 

z) } 
+ 11m 

(I;; - zo)(l;; -
I;; -+ -z 

0 

r, -41 (r,;)zo 

zo) I + 11m 
- Z )(1;; + 0 

s -+ Z (0.33) 

To insure single valuedness of the stress funct10ns, values of 1(1;;) 

must be chosen so that they 11e on the same branch. Values of l(s) 

will lie on the same branch for all values for s if 

I(s) 
1 im = 1 (0.34) 

The two poss1ble values of I(s) are the complex numbers Wo and -woo 

H~nce, equation (0.34) requires that I(zo) equals Wo and that I(-zo) 

equals -W, or simply that l(z) = -1(-zo). W1th the proper values o 0 

of I(~) defined according to equation (0.34), equation (0.33) 

reduces to 
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Residual - ----
Z 2 _ Z2 
o 
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In order to evaluate equation (0.3l) the limits of three 

(0.35) 

integrals must be taken. The first two 1ntegrals involve limits as 

E ~ 0 (equations (0.24) and (0.25)). The evaluat10n of these 11mits 

is similar for both equations. The 11m1ts can be obtained by rearrang1ng 

the terms in the integrand so that they can be expressed by a simple 

binomial series as 

n(n - 1) 
(x + y)n = xn + nxn-ly + __ _ (0.36) 

2! 

or 

(x 2 < 1) (0.37) 

With the use of the first term of P(t) as shown 1n (D.32). as an 

example (0.24) can be expressed 

lim 

E -+0 0 

(0.38) 
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The term V£e210 - 2a£e10 1n equat10n (0.39) can be expressed in terms 

of equation (0.36) as 

V€e 210 - 2a 
10 

i ~e 2" V£e10 _ 2a e = 

£e i0 

= i ~e10/2 (1 --)!~ 

2a 

1 I0a .,0/2 r 10 2 2 i0 

.. } £e £ e 
= - --- (0.39) 

4a 32a2 

·0 1 while the term (Eel - a + z)- can be expressed 1n terms of equation 

(0.37) as 

= 

{1 -
i0 2 2i0 

.. -1 
£e £ e 

= + 
z - a z - a (Zo - a)2 0 0 

(0.40) 
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Substituting equations (0.39), (0.40) and sim1lar expressions for the 

remaining terms in the denominator of equation (0.38) into equation 

(0.38) yields an expreSS10n as 

1 im 

£: ~ 0 
- 4z o 

10 
2 .r::- ""2 

fO 1 £: v£:2a e 
2'JT r 

i0 £:e 

1 +-
4a 

£e 

_£e_
1

_

0

_ •• 1 
Zo - a J 

10 } 
10 + ---••• e d0 

z + a 

(0.41) 

whose limit is zero. Equat10n (0.25) can be evaluated by sim1lar means. 

The result for P(t) as shown by (0.32) 1S also zero. 

Equat10n (0.30) can also be evaluated by a llm1t1ng process and 

by the use of equat10ns (0.36) and (0.37) as R + 00. For this case, 

the integrand has to be arranged 1n a manner that makes the expans10ns 

for equation (0.36) and (0.37) valid for large values of R. For exam­

r le • for the first term of P(t) as glven by (0.37), equat10n (0.30) 

can be expressed as 
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i f - R' e::e} 
~ 

de 
1 im /Tr -4z = f A(l;) 0 Re ie[1 z ' J {I - Re~e J R-+oo 0 

R2 e~i0 
r 

7 

(0.42) 

By subst1tuting the appropriate expansions for the terms in the integrand 

of equation (0.42), the 11mit as R increases without bound gives 

the value of equat10n (0.42) as zero. 

Sim11ar1y, equation (D.31) can be evaluated for all te~JS of 

P(t) contained 1n equatlon (0.19). All of these terms were comb1ned, 

simplified, and substituted 1nto equation (0.20) to yield 

(0.43) 

where 

1 2nzo 
-

'0 } r -4zo z - Zo z + 

B(Z,Zo) = + + 
2 Z2 - Z 2 Z2 - Z 2 (z - Z ) 2 (z + Zo) 2 

0 0 0 

-
{"' - ZZo 

a2 + zz 1 Zo - Z 
0 0 

+ } 

2I(zo)I(Z) (z - z)2 (Zo + Z)2 ( 
0 

'" z r [(Zo) nl(,o) 1 
I(z) z 2 _ Z2 Z 2 _ Z2 (0.44) 

0 0 

A 



156 

With the use of equation (D.43l which shows ¢(z) and n(z) 

to be equa\ and equatlon (D.11), 1'z) was expressed as 

'1'(z) = ¢(z) - ¢(z) - Z¢' (z) (D.45) 

where ¢(z) is glven by rlght hand side of equatlon (D.43). To 

evaluate equation (D.45), the derivatlve of ¢(z) was requlred. Hence, 

the derlvatlve of B(z,zo) was required because 

d¢(z) 
¢'(z) =-­

dz 
(0.46) 

Using a symbolic manlpu1ation system, MACSYMA (1975), wrltten 

in LISP programming language, the derivative of B(z,zo) was found 

to be 

3z 2Z + Z2Z - 4z 3] o 0 0 0 
+ 

(z - Z)3 (z + Z)3 
o 0 

I(z) 

A 
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z - Zo r 2 + Zz - 2a 2 z 2 - zz - 2a 2 
0 o 0 o 0 

+ + 
2I(zo) (zo - z) 3 (z + Z)3 

0 

z 
+ 

(D.47) 

To complete the evaluat10n of the funct10ns used in equat10ns 

(0.1) through (0.4) for pressure actlng on the crack surface, the 

integrals of 4>(z) and \p(z) glVen by cp(z) and I/J(z) respectively 

were determlned. As shown by equation (0.45), once cp(z) is found 

lJ!(Z) is also determlned. To evaluate cp(z) by integrating (0.43) 

the integral of B(z,zo) was determined (evaluation of the integral 

of B(z,zo) 1S the same as for the 1ntegral of B(z,zo) except that 

zo is replaced by zo). 

Many of the terms in B(z,zo) are easy to integrate by using 

standard rules of calculus. However, those terms Wh1Ch conta1n I(z) 

in the denomlnator requlre some rearrangement before the integration 

is attempted. For example, integrals of the type 

dz 
II(z) = f (0.48) 
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appear frequently and were 1ntegrated as follows. F1rst, a change 

of var1ables was made by letting 

z = asinG, dz = acosGdG 

With the restriction that Izl ~ a, equat10n (0.48) became 

dz acosGdG 
II(z) = J = J 

I (z)(zo - z) I(z)(zo - aS1nG) 

Next, the tr1gonometric relation sln 2G + cos 2G = 

to express COSG 1S 

was used 

cosG = 
a 

(0.49) 

(0.50) 

At this point care must be taken to choose the correct value of the 

multi-valued funct1on. The correct value was assured by requiring 

equation (0.34) to hold. For example, I(z) can be written as 

but according to equation (0.34) 

11m 

z -+ 00 

V Z2 - a 

z 
= 

11m 
-----= 

z -+ 00 z 
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so then 

I(z) - - i Ja2 - Z2 or 

Substituting equat10n (0.51) into equation (0.40) and that result 

into equation (0.49) Y1e1ds the result 

dz 
J 

I (z)( Zo - z) 
= 1 

de 
J ---­

z - asine o 

which can be integrated by uS1ng standard integral tables. 

Burlington (1973) gives the value of the integral 1n (0.52) as 

(0.51) 

(0.52) 

de -1 r+ zosine +va 2 - Zo'COSG} 
J = Log 

Zo - asine va2 - z 2 Z - sine 0 0 

(0.53) 

Making the appropriate substitutions of 

sine = z/a 

cose = iI (z)/a 

va2 ~ z 2 = iI(z ) a 0 

gives the result of (0.48) as 
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dz 1 

J = -~~~ 
I(z}(zo - z} ~Z02 - a2 

(0.54) 

The development of equation (0.54) was restricted to values of 

Izl ~ a. However, for values of Izl > a the substitution z = aCSC e 

can be made and a similar process repeated. The results of this integra­

tion are identical to equation (0. 54}. Consequently, equation (D.54) 

is valid for all values of z (the same can be shown to be true for 

all values of zo)' 

After much labor and simplification the integral of B(z,zo) 

was found to be 

where 

+----
Z2 _ Z 2 

o 

XI(z,zo} = Log 

nXI(Z'ZO~ 
(D.55) 
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Therefore, integration of equation (0.43) can be expressed as 

(0.56) 

By integrating equation (0.45), ~(z) can be expressed in terms of 

equation (0.56) as 

w(z) = ~(z) - z~(z) (0.57) 

Therefore, in summary, the functions required to evaluate 

equations (0.1) through (0.4) for the cracked metal sheet which has a 

stress applied to the crack surface (equal in magnitude but of 

opposite sign to the stress along the crack line for a solid sheet) 

are given by the equations (0.43), (0.45), (0.56), and (0.57). 

Green's Functions for Stress 

As mentioned previously, the solution for the cracked sheet is 

obtained from superposition of the stresses from the two loading 

conditions shown on figure O.la and O.lb. The stress functions 

for these two loading conditions, which were developed in the previous 

sections, were used to obtain the stresses in each loadlng condition. 

The stresses for the two conditions were then added to form the Green's 

function for stresses for the loading condition shown in figure O.lc. 
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The stress state for four point loads acting on a solid sheet 

shown on figure D.la was found by substituting equation (0.6), 

(0.7), and (0.8) into equations (0.1), (0.2), and (0.3). The result 

is, in terms of the coefficients of the X and Y pOint loads: 

where 

Ox = Real{Gl - G2 - G3}X + Real {G1A - i(G2 - G3)}Y 

0y = Real{Gl + G2 + G3}X + Real {G1A + i(G2 - G3)}Y 

0xy = Img {Gl + G2 + G3}X + Img {G1A + i(G2 - G3)}Y 

Real 

Gl = r 
-2zo 

Z2 - Z 2 
o 

(0.58) 

(0.59) 

(0.60) 

1 

f 
- - - - 1 Zo + Z Zo - Z 

(z + zol' + (z - zol'} 
G2 = 

27T(1 + n)~ 

(0.61) 

A 



G3 = 
1 

2rr(1 + n)t m 
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(0.62) 

The stress state for the stress applied to the crack surface, 

as shown on figure D.lb, was found by substituting equations (0.43), 

(0.45), and (0.46) into equations (0.1), (0.2), and (0.3). After 

several algebraic manipulations, the result was found to be 

Ox = Real{2G5 - G7} X + Real{2G6 - G8}Y 

0y = Real {2G5 + G7} X + Real {2G6 + G8}Y (0.63) 

0Xy = Img (G7) X + Img (G8) Y 

where 
1 

G5 = B{Z,zo) + B{z,Zo) (D.64) 
2rr{l + n)t m 

i 
G6 = B{z,zo) - B{z,zo) (D.65) 

2rr{ 1 + n)t m 

(z - z) f B' (z,zo) + B' (Z,z01 G7 = (0.66) 
2rr(1 + n)tm 

i(z - z) [ 1 
G8 = B'{Z,zo) - B'(Z,zo) (D.67) 

2rr{ 1 + n)tra 
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Superimposing the stresses from the two loading conditions by 

adding equations (0.58) and (0.63) and taking the coefficients of the 

X and Y loads for the different stresses yielded six Green's 

functions for stress as 

GS = Real{Gl - G2 - G3 - 2G5 + G7} xx 

GSXY = Real {G1A - i(G2 - G3) - 2G6 + G8} 

GS = Real{Gl + G2 + G3 - 2G5 - G7} yx 

GSyy = Real {G1A + i(G2 - G3) - 2G6 - G8} 

GS(xy)x = Img {Gl + G2 + G3 - G7)} 

GS(xy)y = Img {G1A + i(G2 - G3 - G8)} 

where the first index on GS indicates the stress and the second 

(0.68) 

(0.69) 

(0.70) 

(0.71) 

(0.72) 

(0.73) 

indicates the load responsible for it. For example, GS indicates yx 
the 0y stress at point z due to a unit load applied in the x­

direction at point Zoe 

The Green's functions given by equations (0.68) through (0.73) 

were verified with the use of a finite element program developed 

by Y. K. Cheung and I. P. King and documented in Zienkiewicz's book 

(1971). The finite element model used for the test case is shown in 

figure 0.3. Because of symmetry only the first quadrant of the cracked 
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pOint of load application ~ 

Fig. 0.3. Finite element mesh used to check Green1s functions 
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sheet was modeled; the crack was simulated by freeing the nodes in the 

y-direction along the x-axis from the origin to x = 1.5 inches. 

Point loads of X = 1 and Y = 2 were applied to the model at the 

pOint Zo = 2.5 + 2.5i. 

The finite element results were compared to the Green's functions 

results. For the comparison. the stresses were calculated along the 

line Z = x + 1.25i by equations (0.68) through (0.73) and with finite 

elements. Finite element values of stresses along this line were 

taken as the average of two elements midway between y-coordinates of 

the nodes. On figure (0.4) the dotted line, dashed line, and solid 

line indicate ox' 0y' and 0xY stresses respectively, obtained 

with the Green's functions while the sym~ols represent stresses obtained 

from the finite element solution. The comparison was good and verified 

the Green's functions within the accuracy of the finite element model. 

Green's Functions for Displacements 

Thf displacement field for the solid sheet under four point 

loads as shown on figure D.la was found by substituting the stress 

functions ~(z), ~(z), and $(t) shown in equation (0.8). (0.9), 

and (0.10) respectively into equation (0.4). The result is 

(0.74) 

where 
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Fig. D.4. Verification of Green's functions for stresses in a 
cracked isotropic sheet 



168 

(O.75) 

The displacement field for stress on the crack as shown in figure 

O.lb was found by substituting the equations for the stress functions 

~(z). wet}, and ~(z) shown in equations (0.56), (0.57), and 

(0.43) into equation (0.4). The result is 

where 

(0.76) 

(0.77) 

Superimposing the displacement equations for the two preceding 

equations yields the displacement field for the load condition shown 

on figure O.lc as 

2G(u + lVl = S{Fp(Z.zol - Fo(Z'Zo~ 

+ S~p(Z'Zol - Fo(Z'Zol} (0.78) 
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Equation (D.78) was simplified, after lengthy algebraic manipulations. 

The result was found as 

where 

with 

= -

I(zo)I(z) 

I (zo) I( z) 

(D.79) 
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1 [ -4zo 2nzo 
-z - z 0 

B(z,zo) = + + 
2 Z2 _ Z 2 Z2 - Z 2 (Z - ZO)2 

0 0 

Zo - Zo f"' -ZZO 
.' + ZZ} 

- (Z + Zo): 
+ 

2I(ZO)I(z) (Z - z )2 
0 

z 

I(z) 

The Green's functions for displacements were obtained from 

equation (0.79) by forming coefficients of the X and Y loads 

for the u and v displacements. The result was 

with 

c = o 

1 

4Gt 1T(1 + n) m 

z + Zo 1 
(Z + ZO)2 

(0.80) 

(0.81) 

(0.82) 

(0.83) 
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where the first lndex of GO 1ndicates the displacement and the 

second indicates the load responsible for it. 

The Green's funct10ns for d1sp1acements glven in equations 

(0.80) through (0.83) were ver1fied with the finite element model 

dlscussed in the previous section and shown on flgure 0.3. A 

comparlson of the displacements calculated from the Green's functions 

and the fin1te element solution 1S shown on figure 0.5. The compar1son 

is made along the 11ne z = x + 21 where the fin1te element 

displacements are taken from the nodal points of the model. In the 

figure the S011d and dotted 11nes indicate the u and v displacements 

calculated with the Green's funct10ns while the symbols represent 

values obtained from the finite element Solut10n. The agreement 1S 

good and verifies the Green's functlons wlth1n the accuracy of the 

finite element model. 
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Fig. 0.5. Verification of Green's functlons for displacements 
in a cracked isotropic sheet 



APPENDIX E 

GREEN'S FUNCTION FOR AN UNCRACKED 

ORTHOTROPIC SHEET 

Lekhnltskii (1968) glves the stress and dlsplacements in an 

orthotropic sheet in plane stress in terms of two stress functions, 

ax = 2Re.l fS/~;(Z2) + S22~2'(Z2~ 

ay = 2 Re'{~l'(Zl) + ~2'(Z2)] 

axy = -2Re'1{Sl~1'(Zl) + S2~2'(Z21 

" = 2Re'1{pl~1(Zl) + P2~2'(Z2)} - woY + "0 

v = 2Re'lrql~1(Zl) + q2~2(Z2)] + wax + va 

where SI and S2 are the roots of the equation. 

{

Ex } Ex 
s" + - - 2v s 2 + - = 0 

G xy E 
xy y 
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(E.l) 

(E. 2) 

(E. 3) 

(E. 4) 

(E. 5) 

(E. 6) 
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where Ex' Ey ' GXY ' and vxy are the elastic moduli and Poisson's 

ratio. Leknitskii (1968) proved that the roots, SI and S2' 

could not be purely real for real materials but are purely imaginary 

or complex. The complex roots occur 1n conjugate pa1rs and SI and 

s are distinct roots, 1.e. not complex conjugates. The following 
2 

were defined 

Zj = x + SlY 

PI = - (s 2 - \I ) Pz = - (s 2 - \I ) 
E 1 xy E 2 xy 

X x 
(E. 7) 

1 1 

ql = - (1 _ \I s 2) q2 = - (1 _ \I s 2) 

SI Ey 
yx 1 

S2Ey 
jX 2 

(E. 8) 

Note that wo' uo' and Vo 1n equat10n (E.4) and (E.5) are rigid 

body rotations and translations respectively and 

~2'(Z ) = --­
dZ 2 

The two required stress functions for a pOint load acting on a 

solid, orthotropic sheet were given by Lekhnitskii (1968) as 

(E. 9) 



175 

where Ac and Bc satisfy the equations (for material axis concurrent 

with the axis of orthotropicity) 

A + B -c c Ac Bc 

slAc + S2 BC -sA 
1 c S}c 

s 2A + 
1 C 

s 2B 
2 C 

- + 
S S 

1 2 

- 2-- s A 
1 C 

S 
1 

- 2-- s B 2 c 

S 
2 

y 

= 
27ftci 

-x 
= 

27ftci 

(E.10) 

-vxyY 
= 

27ftc' 

= 

With the use of the preceding equations, stress functions for 

paint loads acting on a un,directiona1 boron/epoxy composite were 

developed. For this material the material constants are 

E = 0.27 x 107 ps, x 

= 0.7 x 106 psi 

Ey = 3.0 x 107 psi 

= 0.019 

With these material constants, the roots of equation (E.6) were found 

to be purely imaginary as 
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s = ±0.153i s = ± 1 .95i 
1 , 3 2,1+ 

For purely imaginary roots equations, Ac and Bc were found from 

equations (E.l0) as 

where 

Ac = Cll X + i C12 Y 

Bc = C2l X + i C22 Y 

Cll = 
s (s 2V + 1) 

2 1 xy 

47ft (s 2 - S 2) 
C 2 1 

C21 = -
S 1 (s 2 2 Vyx + 1) 

47ft (s 2 _ S 2) 
C 2 1 

(L11) 

(L12) 

S 2 + V 
1 xy 

C12 = 

S 2 + 
2 Vxy 

C22 

Using equations (E.ll) and (E.12) and translating the origln 

so that the slngularity occurs at the point zo' equations (E.9) 

became 

= (Cll X+ 1 C12 Y)Log(z - w ) 
1 1 

(E. 13) 

= (C2l Y. + i C22 Y)Log(z - w ) 
2 2 
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where w = x + s y 
1 0 1 0 

Equations (E.13) were used to construct a solution for four 

point loads acting on a solid orthotropic sheet as shown in figure E.l. 

The result was 

~ (z ,w ) = Cll G8(z ,w )X + i C12 G9(z ,w )Y 
III 11 11 

(L14) 

~ (z ,w ) = C21 G8(z ,w )X + i C22 G9{z ,w )Y 
222 22 22 

where 

G8(z,w) = Log(z - w) - Log(z + w) - Log(z + w) + Log(z - w) 

(L15) 

G9{z,w) = Log(z - w) + Log(z + w) - Log(z + w) - Log(z - w) 

(L16) 

The derivatives of equations (E.14) were found to be 

~ I(Z ,w ) = Cll G8 1 (z ,w )X + i C12 G9 1 (z ,w )Y 
III 11 22 

(Ll7) 

~ I{z ,w ) = C2l G8 1 {z ,w )X + i C22 G9 1 {z ,w )Y 
222 11 22 

where 
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y 
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x 

y 

Fig. E.1. Location of point loads on orthotropic sheet 
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2w 

G8' (z,w) = + 

2w 

G9' (z,w) = 

Equations (E.13) and (E.17) can be used in equations (E.l) 

through (E.5) to describe the stresses and displacements in the 

orthotropic sheet. 

Green's Functions for Stresses 

(L 18) 

(L19) 

The Green's functions for stresses were developed by 

substituting equations (E.17) into equations (E.l), (E.2), and (E.3) 

to determine the stress state as 

(L 20) 

(L21) 

(L 22) 

where the Green's functions are given by 
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H\x = 2Rea1 fs ' Cll G8' (z , w ) + S 2 C21 G8' (z ,W ~ (E. 23) 
1 1 1 2 2 2 

HS XY = 2Rea1{ ifs,' C12 G9' (z ,W ) + S 2 C22G9 1 
(Z, ,W, )}} (E. 24) 

1 1 2 

= 2Realf Cll G8 1 (z ,W ) + C21 G8 1 (z ,w )1 1 1 1 2 2'1 (E. 25) 

HSyy = 2Rea1{ i {C12 G9' (z, ,w,) + C22 G9' (Z,'W,)}J (E.26) 

HS(xy)x = -2Rea1{s,Cll G8' (z"w,) + 5, C21 Ga' (Z,'W,)} (E.27) 

HS(xy)y = -2Rea1{ if S, e12 G9' (Z"W,) + 5, C22 G9' (z"w,1J(E.28) 

To verify these Greenls functions, stresses computed with equa­

tions (0.20) through (0.22) were compared to finite element results. 

The model used for the finite element solution is ldentical to that 

shown in Appendix 0 on figure 0.3 except that no nodes were freed 

along the x-axis to simulate a crack. The finite element program used 

is documented by Zienkiewicz (1971) as mentioned in the previous 

appendix. However, the program as given by Zienkiewicz does not have 

orthotropic capability. Therefore, it was modified by introduclng 

the orthotropic stiffness matrix for plane stress given by 

Zienkiewicz (1971) as 
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n nv 
jX 

0 

Ey 
[0] = nv

jX 
1 0 

1 - nVJx 

0 0 M(l - nVYX
2 ) 

where n = and m = in place of the lsotropic 

stiffness matrix in the program. 

The comparisons between the stresses along the line z = x + 

1.25i are s~own on flgure E.2 on WhlCh the dotted line, dashed line, 

and solid line indicate the ox' Oy' and Oxy stresses respectively 

from the Green's functions. The symbols on the figure indicate the 

same stresses obtained from the finite element solution. The 

comparison was good and verified, within the accuracy of the finite 

element model, the accuracy of the Green's functions for stresses. 

Green's Functions for Displacements 

The Green's functlons for displacements were developed by 

substituting equations (E.14) into equations (E.4) and (E.5). Because 

of the symmetry of the loads the rigid body rotation, wo ' and the 

rigid body translations, Uo and vo' are zero in equations (E.4) and 

(E.5). The results are 

(E.29) 

(E.30) 
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where the Green's functions are given by 

HDxx = 2Rea1 fp C11 G8(z ,w ) + p C21 G8(z ,w )1 
1 1 1 2 2 2'1 

HOyx = 2Rea1 [\ C11 

HOyy = 2Rea1 f; f q, 

G8(z ,w ) + q C21 G8(z ,w ~ 
1 1 2 2 2'j 

C21 G9(z,'w,) + \ C22 G9(Z2,W21J 

(E.31) 

(E. 32) 

(E. 33) 

(E.34) 

With the use of the finite element model shown in figure D.3, 

equations (E.31) through (E.34) were verified by compar1ng the displace­

ments along the line z = x + 21 calculated with equation (E.29) 

and (E.30) shown on dotted and dashed line, respectively, on figure 

E.3 with the displacements calculated with the finite element program. 

The comparison is good and w1thin the accuracy of the finite element 

model verifies the Green's functions for displacements in the 

uncracked orthotropic sheet. 
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Fig. E.3. Verification of Green's functlons for displace­
ments ln an uncracked orthotropic sheet 



APPENDIX F 

COMPUTER PROGRAM TO PREDICT CRACK 

AND DEBONO GROWTH 

The analysls developed ln Chapters IV and V to predict crack 

growth ln reinforced systems requlres the use of a digltal computer 

to perform numerlcal lntegratlon and solve large systems of simultaneous 

equatlons. The analysis was programmed ln FORTRAN IV for use on the 

NASA Langley Research Center (LRC) CDC 6600 computing system. However, 

no special system routines were used in the program, and the program 

should be usable on any computing system that uses a FORTRAN IV 

compiler. With the exceptlon of the GaUSSlan elimlnatlon subroutine 

SIMQ, the program lS all origlnal code. 

For economical reasons the user should be aware of the central 

processlng time (CP) and central memory (core) required to execute 

the program. The CP tlme lS pr;marlly a function of the numerlcal 

integration of the Green's functlons. Several lntegrations are 

required for each shear element, l.e. elements of region B shown on 

figure 8. Consequently, the CP tlme requlrement lS a function of the 

number of shear elements and can vary from a few to several thousand 

seconds dependlng upon the number of elements. The core requirements 

are also a functlon of the number of shear elements. Each element 

185 
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contains two unknown shear stresses, f xz and fyz. The number of 

rows and columns of the square, fully populated coeffic1ent matrix 

used to solve for these stresses 1S two times the number of elements. 

In the program the dimens10ns are set for fifty shear elements 

(100 unknowns), but the program can accomodate more elements if the 

array Z9(10,000) in the program 1S enlarged. For f1fty elements the 

core requ1rement is 137K octal. 

Data are read in the program via a NAMELIST with the following 

definitions: 

E3 modulus of the cracked sheet 

T2 thickness of the cracked sheet 

Vl Poisson's ratio of the cracked sheet 

E4 modulus of the composite sheet in the y-direction 

(load1ng-axis) 

E5 modulus of the composite sheet in the x-direction 

V4 Poisson's ratio of the compos1te sheet for a load applled 

1n the x-dlrection 

GC shear modulus of the cracked sheet 

T4 thlckness of the reinforcement sheet 

TAD thickness of the adhesive layer 

GAD inltial effectlve shear modulus of the adhes1ve 

GAD2 secondary effectlve shear modulus of the adhesive 

SYIELD yield stress of the bulk adhesive in uniaxial tens10n 

Al inltial crack length in metal sheet 

F initial aspect ratio of the debond elllpse 
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NC number of columns of interlaminar sheat elements 

NR number of rows of interlaminar shear elements 

FCYC final number of applied load cycles 

S remote applled stress applied to the reinforced system 

in the y-directlon 

As an example a sample run was made for one iteration. Figure 

F.la shows the model prior to the iteration and flgure F.lb shows 

it after the iteration. The sample NAMELIST input for the run was 

as follows: 



s = 25,500 psi 

+++ttt 
s = 25,500 psi 

++f+1~ y 

t 
y 

+ 
....... 

0.990 

T 
T 

l~ 
~ a = 1.00 in ~ 

- 0.990 >=1 --..... 

11 12 13 14 15 

6 7 8 9 10 

1 2 3 4 :> 

.::;;- x 

0.738 

0.738 

lin." J 

I'" < ,. I UIl;;U' , '£~ '---;;::.-x 

(a) Model before lteration after iteratlon (12 cycles) 

Fig. F.1. Model for sample run 

ex> 
c:> 
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SAMPLE INPUT 

$INPU E3=1.0E+07,T2=.156,VI=.30,E4=3.0E+07,E5=3.0E+06,V4=.02,GC=7.0E+05, 
TAD=.004,GAD=65000. ,GAD2=36000.,SYIELD=4200.,A1=1.00,F=.OOl,NC=5,NR=3, 
FCYC=10000.,S=25500. ,T4=.0208, 
$ 

SAMPLE OUTPUT 

MODULUS OF THE CRACKED SHEET 
THICKNESS OF THE CRACKED SHEET 
POISSONS RATIO FOR THE CRACKED SHEET 
COt4P MODULUS PARALLEL TO LOAD 
COt4P MODULUS TRANSV TO LOAD 
SHEAR MODULUS OF COMPOSITE 
COMP POISSONS RATIO TRMSV TO LOAD AXIS 
THICKNESS OF THE REINFORCEMENT SHEET 
MINOR AXIS HEIGHT IN PER CENT CRACK LENGTH 
REMOTE APPLIED STRESS 
NUMBER OF COLUMNS FOR BOUNDARY POINTS 
NUMBER OF ROWS FOR BOUNDARY POINTS 
FINAL NUMBER OF APPLIED LOAD CYCLES 
INITIAL CRACK LENGTH 
ADHESIVE THICKNESS 
SHEAR MODULUS OF THE ADHESIVE 
SECONDARY SHEAR MODULUS AFTER YIELDING 
YIELD STRESS OF MODULUS IN UNIAXIAL TENSION 

METAL SIGM-X= . 269E+03 SIGM-Y= .200E+05 

COMPOSITE SIGM-X= -.150E+04 SIGr1-Y= . 559E+05 

.107E+08 

.156E+00 

.300E+00 

.300E+08 

.300E+07 

.700E+06 

.200E-01 

.280E-01 

. 100E-02 

.255E+05 
5 
3 

.100E+05 

.100E+Ol 

.400E-02 

.650E+05 

. 360E+05 

.420E+04 

X AND Y DIMENSIONS OF INTEGRATION AREA ARE . 990E+00 .746E+00 
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NODE NUMBER X-COR 

1 .990E-Ol 
2 . 297E+00 
3 .495E+00 
4 . 693E+00 
5 .891E+00 
6 .990E-01 
7 .297E+00 
8 .495E+00 
9 . 693E+00 

10 .891E+00 
11 .990E-01 
12 . 297E+00 
13 . 495E+00 
14 .693E+00 
15 .891E+00 

14 ELEMENTS HAVE YIELDED AT . 189E+05 

YIELDED ELEMENTS 

3 

8 

2 

7 

1 

10 

4 

6 

THE YIELD MACROSCOPIC STRESS IS .716E+04 

NODE DEBOND HEIGHT X-COEFFICIENT 

1 .125 .300E+01 
2 .121 .279E+02 
3 .113 .100E+03 
4 .099 .327E+03 
5 .076 .111E+04 
6 .373 . 346E+02 
7 .365 .130E+03 
8 .349 . 328E+03 
9 .323 .806E+03 

10 .285 . 191 E+04 
11 .622 .916E+02 
12 .613 . 293E+03 
13 .593 . 560E+03 
14 .563 . 983E+03 
15 .521 .180E+04 

Y-COR 

.125E+00 

.121E+00 

.113E+00 

.988E-Ol 

.765E-Ol 

.373E+00 

. 365E+00 

.349E+00 

.323E+00 

. 285E+00 

.b22E+00 

.613E+00 

. 593E+00 

. 563E+00 

.521E+00 

5 9 

ELASTIC 
Y-COEFFICIENT 

. 849E+04 

. 859E+04 

.864[+04 

. 847E+04 

.667E+04 

. 256E+04 

.266E+04 

. 276E+04 

.276E+04 

. 220E+04 

.117E+04 

. 119E+04 

.117E+04 

.108E+04 

.807E+03 



NODE DEBOND HEIGHT 

1 .125 
2 .212 
3 .113 
4 .099 
5 .076 
6 .373 
7 .365 
8 .349 
9 .323 

10 .285 
11 .622 
12 .613 
13 .593 
14 .563 
15 .521 

K-BOND K- UNSTI FFEND 

-.108E+05 .200E+05 

STRESS AND STRAIN IN THE METAL 

NODE 

1 
6 

11 

NODE 

1 
6 

11 

SIG-1 

-.681E+04 
-.340E+04 
-.137E+04 

EPS-1 

-.799E-03 
-.657E-03 
.559E-03 
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WITH PLASTICITY 
X-COEFFICIENT 

.207E+01 

.213E+02 

.795E+02 

. 245E+03 

.805E+03 

. 438E+02 

.156E+03 

.371E+03 

.864E+03 

.191E+04 

.105E+03 

. 333E+03 

. 635E+03 

.11 0E+04 

.189E+04 

K-STIFFENED 

.919E+04 

SIG-2 

. 580E+04 

.121E+05 

.154E+05 

EPS-2 

.733E-03 

.123E-02 

.148E-02 

Y-COEFFICIENT 

.708E+04 

.709E+04 

.704E+04 

. 679E+04 

. 536E+04 

.312E+04 

.321E+04 

. 325E+04 

.315E+04 

. 244E+04 

.165E+04 

. 165E+04 

.161 E+04 

. 146E+04 

.112E+04 

K-FACTOR 

. 459E+00 

SIG-12 

-.472E+02 
-.103[+03 
-.146E+03 

EPS-12 

-.115E-04 
-.250E-04 
-.354E-04 
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STRESS AND STRAIN I~ THE COMPOSITE 

NODE SIG-1 SIG-2 

1 . 838E+04 .105E+06 
6 . 897E+04 .728E 05 

11 . 758E+04 . 568E+05 

NODE EPS-1 EPS-2 

1 .272E-02 .350E-02 
6 .294E-02 . 242E-02 

11 .249E-02 .189E-02 

ENERGY RELEASE ON MINOR AXIS IS . 597E+01 

APPLIED CYCLES= . 990E+01 
DA/DN BEFORE CYCLE INCREMENT IS .181E-04 
DB/ON BEFORE CYCLE INCREMENT IS .202E-01 

INCREMENT CYCL = . 990E+01 CRACK,LENGTH= .100E+01 

MAX DEBONO HEIGHT= .201E+00 

SIG-12 

. 742E+03 

. 252E+03 
-.301E+03 

EPS-12 

. 674E-04 

.360E-04 
-.430E-04 
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mOGRAM COLLS( INPUT ,aJTPUT ,TAPE4) 
C 
C THIS PROGRAM CALCULAT]S CRACK AND DEBOND GROWTH m A 
C HE INroRCED SYSTEfo1 COMPOSED OF A CRACKED METAL 
C SHEET RElNFORCED vlITH A UNIDIRECTIONAL BORON/EPOXY 
C SHEET. 
C 

C 

CONMON/ROT/Z9(10000),D( 100 ),NALF 
OOMMON/IDND2/NE ,NL ,M, XC( 100), YC( 100) ,XA( 100 ), YA( 100 ), 

1NOP( 100) 
DIMENSION FTNC(:D), FXNCY(:D ) ,FA 1 (SO) ,m3 1 (50 ) 
COMMCN / ADHES/TAD ,GAD 
00 Mfo1CN /ID P /E3, T2~ V 1, g.nc ,SvIY ,G, CX)NS ~ Q, A 1, OOON 
DIMEHSION DR( 100) ,CPR( 100) ,DPR( 100) 
CONMON /XLIMIT /00 ( 2,51 ) ,DB( 6,51) W 
DIr-1ENSION CM( 3,3) ,SIG( 3), STRAIN( 3) lID( 100 ) 
DIMENS ION SM( 3, 3) ,a'LM (3,3) ,eMC ( 3, 3 ~ ,STRESSM( 3), srRESSC 

1(3) 
DIMENSION TSIGM( 3), TSI GMT ( 3), ~ (3,3) S-1C ( 3,3) 
DIMENSION TOTG(:D), SIGMT( 3) ,TSTRAm ( 3 ~ , srRESS (2,3,50 ) 

1 ,STRANN (2, 3 , :D ) 
OOr-IMCN /ID T/E4, T4, V4, SJX ,OOY ,GB ,OONB ~Q 1, GC ,E5 
COMMON /CJr 0 L/ID L ,NC ,NR , TX , TY , NBC ( 100 ) , rnc 
COMMCN /IDND/F, P1, P2, XKF ,XKUNS ,XKSTIF 
COI1r1CN /mCAY/FE ,ALPHA 1 ,ALPHA2 
OOMPIEX Z,CI ,XI( 
EXTERNAL XK 
CI=CMPLX( 0.,1.0) 
NA~~IST/nrpU/E3,T2,F,S,TEST,T4,E4,V4,V1,E5,GC,TAD,GAD 

1 ,NR,NC ,FCYC, 
1 A 1 ,GAD2 , SYIELD 

C E3-I10DULUS OF THE CRACKlID SHEET 
C T2-lliICKNESS OF THE CRACKED SHEET 
C V1- IS THE IOISSONS RATIO FDR THE CRACKED SHEET 
COO-SHEAR MOIDLUS OF THE REINFORC:ENENT SHEET 
C E4-IDDULUS OF THE REINFORCEr-'lENT SHEET IN THE WADING 
C DIRID TION 
C E5-l'I>DUIUS OF THE REll{FORCEJv1.ENT SHEET TRANSVERSE TO 
C THE LOADING .A.XIS 
C V4 IS THE POlS sons RATIO FOR THE IDTTOM SHEET FOR A 
C TRANSVERSE WAD 
C T4-lliI CKUESS OF THE REmFORCEHENT SHEET 
C F-MINOR AXIS HEIGHT In PERCENT CRACK LEnGTH 
C S -REHCJTE APi-LIED STRESS 
C NR-NUMBER OF ROWS OF BOUNDARY 10INTS 
C NC-NUMBER OF COLUMNS OF BOUNDARY POINTS 
C FCYC-FINAL NUMBER OF LOAD CYCLES 
C A 1-11'1ITIAL CRACK LFNGTH 
C 

K=O 



C 

1000 OONTlNUE 
READ INPU 
MX=N~NC 
M=MX 
N=f.1X 
NALF=l\1X 
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C OUTPUT 'lHE INPUT 
C 

PRINT 1,E3 
PRINT 2,T2 
PRINT 20, V1 
HUNT 18,E4 
HUNT 26, E5 
l'RIUT Z7, GO 
.fRINT 21, V 4 
PRINT 19, T4 
PRINT 3,F 
PRINT 7,S 
PRINT 3O,~ 
PRINT 31,NR 
PRINT 32, ~YC 
HUNT 34,A1 
HUNT 24,TAD 
PRINT 25, GAD 
PRINT 5,GAD2 
}"'RINT 6, SYIEID 
P1=2. 
P2=2. 
TOL=.001 
FF=F 
N=2*N 
M= 2*I': 
NSQ=U*n 
IF( N .GT .100) 500,501 

500 mINT 502,M,N 
502 FORMAT( 11:r. ERRORS -- MORN EXCEEDS DIMENSIONS BOUNDS 

HJ;=* I lO*H=* 1101 I) 
GO TO 1001 

501 OONT INUE 
Q=(3.-V1)/(1.+V1) 
Q1=(3.-V4)/(1.+V4) 
G=E3/(2.*( 1.+V1» 
CONS=1. I( 12.56 6*T2 *( 1-+Q) *G) 
SCON=1./(6.2832*( 1-+Q )*T2) 
GB=E4/(2.*( 1.+V4» 
CONB:: 1 • I( 12 • 566*T4 *( 1-+Q 1 )*GB) 
V5=V 4*E 5/E4 
EE=2.7182818 
ALPHA 1=GAD*( 1. I(T 2*E 3)+ 1. I (T4 *E4» lTAD 
ALPHA 1=SQRr( ALPHA 1) 
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AlPHA2=GAD2*( 1. I (T 2*E 3)+ 1. I (T 4*E 4» lTAD 
ALPHA 2=SQRT(AIJ}'HA 2) 
TY =-ALOG( .05 ) I ALPHA2 

C CALCULATE THE REMOTE STRESSES 
C 
C ZERO AlL CONPLIANCE MATRICES 
C 

C 

00 3J 1= 1,3 
00 7J J= 1,3 
Cl1(I,J)=0. 
Clr.r1 ( I , J) = 0 • 
CHC (I ,J)=O. 

50 OONT nJUB 

C CALCULAT:2 C0rIT'IIAHCE FOR METAL SHEET 
C 

C 

cr,:!1 (1,1 )=E3/( 1. -V1+l(· 2) 
CI,n'l (1,2)= V1*CT'IM ( 1, 1 ) 
cr111 (2, 1 )= C!-Jr.1( 1 ,2) 
or,n·! ( 2 , 2 ) = CNr1 ( 1 , 1 ) 
Gr.1M ( 3, 3) = G 

C GWERATE mE STIFF r.1ATRIX FOR THE I1ETAIJ SHEET 
C 

CALL !lIVEn (CHN, 3\'11-1, TID) 
C 
C CALCULATE canJIJIANCE FOR CGIPOSITE ffiEET 
C 

C 

XN=B5/E4 
.. <r·l = GC IE 5 
CC=E41 (1. -XN*V4~ 2) 
cr1C (1 , 1 )=XN* cc 
cr·w( 1, 2 )=~m*V4*CC 
C11C(2, 1)=CIJC( 1 ,2) 

CI1C(2,2)=CC 
CI·W (3,3 )=XF* (1 • -XN*V4~ 2 )*CC 

C GENERATE IDE STIFF I-lATRIX FOR THE COIU'OSITE SHEET 
C 

CALL INVBR(CtvjC, s:·rc ,IID) 
C 
C Gl::l;ERATE EAC RO STIFFIIESS r1ATRIX 
C 

C 

DO 51 1= 1 ,3 
]X) 51 J= 1,3 
ex·: ( I ,J) = cr/M ( I ,J) * T2+Cf.'lC (I ,J»)( T4 

51 <XlNT INUE 

CALL niV~R( cr-:, S''I, TID) 



3IG! 1 )=0.0 
~IG ~)=S*(T2+T4) 
..lIG )=0.0 
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CALL MULT(SN,SIG ,srRAIN) 
400 FORl'1M'( 3E11 .3) 

C 
C CAlCULATE STRES3ES IN EACH LAYER 
C 

CALL fvnrrJT(cr-lIv1~STRAlN ,srRESSM) 
SNX=STIDSSH( 1) 
g-'iY=STRESSE( 2) 
CALL NUm( cr'1C~ STRAIN ,STRESJe) 
SCX=STRZlSC( 1 
3CY=STRESSC (2 
mIlTT ~O ,sr'~X ,!:NY 

300 FORI1AT(/lI IvlETAL SIGr1-X=*E10.3"" SIGl\1-Y=*E10.3) 
PR I1~T ,X) 1 , XX , SJ Y 

301 FORr'rAT( l~' COrfrOSITE SIGr-1-X=*E 10.:'-'" S IGI-I-Y=*E 10. 3/) 
C 
C SEr ill- LOOIS FOll RIGHr HAND VECTOR AnD COEFFICIENT IvIATRIX 
C 

C 
C LOor ON IlrCR~Et~TS OF LOAD CYCLES 
C 

C 

TNC=O.O 
KOUNT=O 

1004 COlTTnruE 
IF( [OUNT.lIE.O )l-RIHT 551,KOUNT 

551 FORI':AT ( II =ox* x:;axxXXXXXX llJCREI·};!;T FOR LUAD CYCLES+-
1~IS~I5 xxxxxxxxx*/) 
TX=.9 9-)(A 1 
i:'RIl7l' 16, TX , TY 

16 FORI:AT( 1* x AnD Y DJ~.El'rSIONS OF INT:8GRATION AREA ARE ~ 
12211 .~/) 

[OUllT=l(CUIIT+ 1 
HSAVE=I: 
CALL G:UD 
CALJ~ FOHI.(n ,r-1) 

C NAKE RIGHi' HAl'1n SIDlj A UliIT V~CTOR FOR USE \lITH }LASTIC 
C ANAIXSIS 
C 

ro 1401 I= 1, N 
C SAV~ mnT RIGHT II1JID VECTOR 

m ( I )=D ( I) 1 s 
D( I )=D(I )/s 

1401 CClTTIHUE 
RE1t/nm 4 

1 130 FO ltr:l!.T ( 111',10 • :; ) 



197 

C 
C STORE OOZFFICIEI;-T NATRIX O~ TAI'E 
C 

C 

\'lRI T E (4, 1130 )( Z 9 (I ) ,1= 1 , l~Q ) 
BE','ll I:TI 4 
CALL SINQ(Z9,D,H,TIm) 

C RETRIVE OOEFFICr:i.~:;T !!:ATRIX 
C 

P.EAD( 4, 11:;0 )( Z 9 (I ) ,1= 1, NSQ ) 
C 
C SAVE ELASTIC SOLUTIOI:-
C 

DO 1402 1= 1, n 
DD(I)=D(I) A S 

1402 conTIHUE 
c 
C CALL THE T1ASTIC SUBROUTINE ro FIUD INTEaLAIITI;AR STRESSES 
c ATIE~ YI~LDDjG 
C 

C 

C 

CALL ~'LA3l'IC (SYIEI,D,GAD2, s, m) 
NAIJF=r:/2 
ERIHT 17 

17 rom·~AT( /'10~{1'i'lITH l'LASTICITY*29X*EIJASTIC*) 
:;:'RIHT 11 
DO 104 1= 1, NAIJF 
II: = I+1TAIF 
X=DC( 1 , I) 
Y=DC(2,I) 
PR I NT 12, X , I , Y, D( I ) , D( I K ) , II) ( I ) , TID ( I + liALF) 

104 COHTnmE 

l.KTOT=O. 
DO 105 J= 1, l'IA1JF 
X=DC (1, J) 
Y=DC( 2,J) 
Z=X+CI-¥ Y 
CALIJ xr;-rTG(Z,J,A1,S11,S12,S21,S22,XK,3) 
:xK1=S11+S12 
'G~2= - (s 21 +S 22 ) 
XK TOT =XI<:TOT+Xl: 1 

105 roUT n!UE 

C :::RIHT mE STt1ES3 IlrTEI;SITIZS 
C 

XKU1T3=STry>,A p.y .5 
,\lCS TH'=}:!]JITS+ XICTCJT 
.::KF=Xr:STI F /ia-Cun s 
c'RI;JT 14 
1 RII:T 15, X[TCT ,XI~UHS ,XKST I:li' ,:XKF 

100 COlTTDIUE 
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C 
C CALCUIATE STRAItS AND STRESSES AT COOHDIUATE EOUITS n~ 
C THE ADHE !tErTD S 
C 

00 1220 1= 1, r1X: ,rIC 
X=DC( 1 , I) 
Y=DC( 2, I) 
Z=X+CI"< Y 
DC; 12 26 KTTl:F 1 , 2 
CAL:!) v:r.; RI( Z , ::kG, S'{Y , SXXY ,SIX , ~ , SIXY ,r~IX , E:!.'Y} E) 

C 
C FI RST THRR.: TERl-tS ARE F::{)f.! X-L6ADS TH3 LATT3R THREE FROT-­
C Y-IDADS 
C 

TSIGH( 1 )=SXX+SYX 
TSI~r( 2)=SXY+SYY 
TS I GH( 3)= S :GY+ SYXY 

C 
C CAICULAT.2 THE STRESSES IN THE COJllPOSITE SHEET 
C 

CAIJJ RE SIGH ( Z,S11 ,S22 ,S12 ,KTYFE,Sl'R.t:ssr:,Sl':lESsc) 
C 
C &JI'ERIKP03E STRESSES 
C 

TSI GHT ( 1)= T SIGH ( 1 )+s 11 
TSIC1·1T (2)= TSIGr-l ( 2 )+S 22 
TSI~1T (3)= TSIGN( 3)+S 12 

C 
C CAI.CULATS Tm~ CORRESHJIlDDrG STRAINS 
C 

C 

IF(1:TYJ:'''::.~.1 ) 1221,1222 
1221 CAIJI· r·UIJT(Sr·rr;,TSIGIlT,TSTRAIH) 

GO TO 1224 
1222 CAIJL HULT (3~C , TSI GI(T, TSTRAnJ) 
1224 co:rTnruE 

C 31'0 RZ ALL VAlUES 
C 

DO 1225 11:= 1 , J 
.sTRESS(}:TY1)~,IK ,I)=TSIGr.lT( IK) 
STRAlm( l:TYl'~ ,D~ , I) =T STH.AIlr( JK) 

1225 CC :·TTI!!U oS 
1226 ocnT HTU:S 
122:) COITTnruE 

PRu:rr 1227 
1227 FORI1AT(/* STRESS Alill ST~IU IN THE NEPAL */) 

PRIllr 1228 
12 28 FO~NAT( 2X-)l-FOill', 5X'II SIG-1 *8X*SIG-2-:+8Xl< SIG-12 *8X'<EPS -1 *8X 

1*31)8-2 i( GX-l< EIS-12 *) 
pRIIrT 1229, (I , ( STMSS( 1 ,K ,I) ,K= 1,:;) , (STRANN( 1 ,K, I) , 
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1 K= 1 , 3) , I= 1 , 1« , NO ) 
1229 FORHAT( I5, 3XE10. 3, 3XE 10. 3, 3XE 10. 3, 4XE 10. 3, 3XE 10.3, 3XE 1 

10.3) 
PRINT 1230 

1230 FORNAT(/* STR~S AUD SmA-IN IN THE COMPOSITE'*' I) 
PRINT 1228 
PRIm 1229,(I~(STRiSS(~,K,I) ,~1,3),(STRAmr(2,K,I) ,~1 

1 , 3 ) , I= 1 ,MX , NC ) 
&JM=O. 
DX=TX/NC 
DO 1232 I= 1 ,MX ,NC 
DY=Ty/!m 
SUM=SUI1+DY* (STRANN( 2,2, I) -srRANN( 1,2, I» *D(HX+I) 

1232 caNT nUE 
PRHlr 1251, am 

1251 FORHAT( 1* ENEmy RELEASE ON MINOR AXIS IS*E11 .3/) 
CALL XInc( SUM ,:xnCY ,])\S ,IFS) 
CPR (KOUNT )=DAS 
DPR(KOm1r ) =DFS 
IF(XKSTIF.GE.56000.)GO TO 1005 
TNC:TNc+xnCY 
IF ('nrc. GE • FCYC ) GO TO 1003 
B1=F*A 1 
HU NT 42, 'nrc 

42 FORNAT( 1* APPLIED CYCLES=*E10. 3) 
mINT 555,DAS,DFS 

555 FORMA.T(* ])\/m BEFORE CYCLE mCREMEllT IS*E11 .31 
1* DB/m BEJroRE CYCLE INCREf'lENT IS*E11 .3/) 
PRIm~ 4O,XnCY,A1,B1,P1,P2 

1 * r.1AXIMmr DEBOIID HEIGHT=*E10. 3* P 1:#E 10.3* P 2=*E 10.3/) 
40 FURMAT( 5X* INCREHEI;T CYCL=*E10. 3* CRACK,LENGTH=*E 10.3 

FTNC(KOUNT )=TNC 
FXHCY( KoutTT) =XUCY 
FA 1 (KOUNT)=A 1 
FB1 (KOilllT) =B1 
IF( A 1.GT. 2 )GO ro 1001 
00 TO 1004 

1 FOlu.:rAT(roX*~10DULUS OF THE CRACKED SHEET 
1 *,E12.3) 

2 FORlwlAT(20X*THIClOlESS OF THE CRACKED SHEET 
1 *,E12.3) 

3 FOR'iAT(20X?'I1IHOR AXIS HEIGHT IN PERCENT CRACK LENGTH 
1 *,E12.3) 

4 FORHAT( 2JX*I NCREr1:EUTS TO 11AXIUMUM CRACK LENGTH 
1 *,I12) 

7 FORHAT(roX*REMOTE APPLIED STRESS 
1 ",E12.3) 

8 FORNAT(20Xl<INITIAL CRACK LENGTH BEFORE CYCLING 
1 *E12. 3) 

9 Foru'~T(/25X*INCREMElTT '*I5,4X*CRACK LENGTH *F10.3/) 
10 FORMAT(5E12.3) 
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11 FOm!AT(2(n.~·LOCATION NODE DEBOND HEIGHT*6X 
1*X-COEFFICIENT*8X*Y -COEFFICIENT*7X*X-COEFFICIENT* 
'ZlX*Y-OOEFFICIENT* /) 

12 FORJlOO (22XF5. 3 ,9XI 2, 10XF 5.3, 4( lOXE 10. 3 » 
14 FOru·1AT( /23X*K-OOND*5X*K-UNSTIFFEND* 5X*K-STIFFENED*5X 

1*K-FACTOR* /) 
15 FORJIIAT( z)X,3 (E 10.3, 5X) ,E10. 3 /) 
5 FORMAT{ z)X*SECONDARY SiEAR MOlliLUS APrER YIELDING 

1 *E12. 3) 
6 roRHAT( Z)X*YIELD srRESS OF MODUIDS IN UNIAXIAL TENSION 

1 *E 12 • 3) 
18 FORr.iAT( z)X*COMP MOlliLUS PARALLEL TO LOAD 

1 *,E12.3) 
19 FORKAT( 2OX*THICKNESS OF THE REINFORCEHENT SHEET 

1 *,E12.3) 
Z) FORNAT( z)1."*POISSONS RATIO FOR THE CRACKED SHEET 

1 *,E12.3) 
21 roRMAT( 2OX*COI1P POISSONS RATIO TRANSV ID LOAD AXIS 

1 *,E12.3) 
22 FORMAT( z)X*NUMFER OF ELLIPSES IN GRID 

1 *112) 
23 RJRI1AT( z)X*NUHBER OF LINES ill GRID 

1 *112) 
24 :FORMAT( 20 X*ADIIESI VE THICKNESS 

1 *,E12.3) 
25 roRMAT( 20 X* SHEAR MODULUS OF THE ADHESIVE 

1 *,E12.3) 
26 roRMAT( z)X*C OMP MODUWS TRANSV 10 LOAD 

1 *,E12.3) 
'ZJ FORMAT{ 2OX*SHRAR I-10DULUS OF COMIOSlTE 

1 *,E12.3) 
30 FORf1AT( Z)X*r.;UI-rBER OF COLID·'INS FOR BOUNDARY POINTS 

1 * , 112 ) 
31 FORr1AT{ 20 XlI NUMmR OF RO~'/S IDR BOUNDARY POINTS 

1 * , I 12 ) 
33 FORMAT (z)X*FINAL NUMBER OF APPLIED LOAD CYCLES 

1 *,E12.3) 
34 FORr~AT{ 2OX*INITIAL CRACK IENGTH 

1 -*,E12.3) 
100.5 PRI NT J8, mc 

38 RJRNAT( 5X* SF.EXHMEN FAILED BEFORE*E10. 3*CYCLES*/) 
GO TO 1001 

1003 PRINT 39,FCYC 
39 FORHAT( 5X* THE SPECIFIED IHJMBER OF LOAD CYCLES HAS-I( 

1* BEEN I1ET*E11 .3) 
2002 FORNAT(/) 
1001 CONTINUE 

~M/2 
N=N/2 
WUNT=: I:OUNT-1 
PRInT 540 



C 
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540 rom·'iAT( /13 X*DELTA-N* 11 X*TO TAIJ-IJ'X 18X.<A>l-16 X*DA/n;~ 18X+:-B-!" 
116~ DB/ll': > /) 

l?RI:'!T 536, (FXn CY( I) ,:?rifC (I) ,FA 1 (I ) ,GI-it( I ) ,FE 1 (I) ,DPR( I 
1 ) , 1= 1 ,10 UnT ) 

536 FOm~AT( 62&>.3 ) 
IF (TE3T • lIS .0 .) GO TO 1000 
11m 
3UBOOUTnrL!; IlrVEIl (.3, AI , D) 

C THIS ROUTTITE IliV~RT3 A 3X3 ¥ATRIX 
C 

C 

Dnmr 3 I 01: A( 3 , 3 ) , ,..'u ( 3 { :5) ,.AG ( 3, 3) , s( 3, 3 ) 
D= 3 ( 1 ~ 1 )-.< S (2 ~ 2)~ 3 (3, 3 )+ 3 ( 1 ,2)-j( 3 ( 2, 3 )~~ 3 ( 3, 1 )+ 3 ( 1,3 )* 

13(2,1)7'3(3,2) 
2- (3 ( 1 ~ :;) )( :3 (3 ~ 1 ) ~ 3 ( 2,2)+ 3 ( 1 ,2)-l< S ( 2, 1)~ S ( 3,3)+ S ( 1,1 )* 
33(3,2)",' S(2,))) 

AG ( 1 , 1j = S ( 2 , 2 )* S ( 3, 3) - s( 2, 3 )it- S ( 3 , 2 ) 
AG( 1,2 =-S( 2,1 )*S(3, 3)+3(2, 3)*S(3, 1) 
AG ( 1 ,3 = s( 2,1 )-l-: S (3,2) -J( 2,2 )i:- S ( 3,1 ) 
AG ( 2, 1 )= -S( 1 , 2 )-x S ( 3 , 3)+ S ( 1 , 3)* S ( 3, 2 ) 
AG ( 2, 2 )= S ( 1 , 1 )-r S ( 3, 3) -S( 1 , 3 )it- S ( 3, 1 ) 
AG( 2, 3j:= -S( 1 , 1)-Y S (3,2)+ S (1 ,2)~ S (3,1 ) 
AG ( 3, 1 = S ( 1 , 2) -, 3 ( 2, 3) - s( 1, 3 r S ( 2, 2 ) 
AG (3,2 = -s( 1 ,1 )--' S (2, ))+ 3 ( 1 , 3)* 3 (2,1) 
AG ( 3, 3) = S ( 1 , 1 ) ~ S ( 2 , 2 ) - s( 1, 2 )+. S ( 1 , 2 ) 
IX) 1 1= 1 ,3 
IX) 1 J=1,3 

AI(I,J)=AG(J,I)/D 
1 CO UTI :rIUl:: 

P2TURN 
}!1<;D 
SU3I{)UT HIE HU1T (A,B, c) 

C THIS RuUTIJTB HULTD 1I:8S 1"10 r·TATIUCES 
C 

DII·::!lT S I O~; A ( ~, 3) ,B( ::;) ,c( 3) 
DO 1 1=1,::; 
SUH=O.O 
DO 2 [= 1,:::; 

2 SJE=SU1+A(I ,K» B(K) 
c( I )=sm1 

1 CO~~TI!rtTi 
RETUi."l!r 
EnD 
SUBrouTTIr:~ SII Q(A,B,N,KS) 

C roL UTICH 010' TH..'·; IJIlT~AR AJ.JGEB!lAIC SYSTEIl OF EQUATIONS 
C 0 F mE FO!U1 
C AX=B 
C A - NX~j f-'!ATRIX OF COEFFICIEnTS 
c B - VECTOR Fon TH.2 RIGHTHAND-SIDE OF THE 3Y3TEF OF 
C EQUATICH3 
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C N - NUl·mER OF EQUATIonS AND VARIABI.i!:S 
C KS - OUTPUT DIGIT 
C 0 FOR A NORI11AJJ roLUTION 
C 1 FOR A S IUGULAR SET OF EQUATIOl~S 

DIME!iS 101; A( 1) ,B( 1 ) 
TOL=O.O 
1:S=O 
JJ=-N 
DO 65 J=:,N 
JY=J+ 1 
JJ=JJ+l~ +1 
BIGA=O.O 
IT=JJ -J 
DO ::;0 I=J,N 
IJ=IT+I 
IF (ABS ( BIGA ) -ABS ( A (IJ) » a), ~ , J) 

a) BIGA=A(IJ) 
IMA .. 'f= I 

;0 roN T II;U3 
IF (ABS(BIGA )-TOL) 35,35,40 

35 !:8= 1 
RETU!~N 

40 I1=J+U-i.-(J-2) 
1T=ThIAX-J 
IX) ~ K=J,N 
I 1=1 1+!! 
12=11+1T 
SAVE=A(I1) 
A( 11j=A( 12) 
A(I2 =SAV2 

~ A(11 =A(I1)/mGA 
SA VE= B ( n-IAX ) 
B(IH\X)=B(J) 
B( J)=SAVE/BIGA 
IF (J-l;) 55,70,55 

55IQS=lP(J-1) 
DO 65 ]X=JY,U 
IXJ=IQS+IX 
IT=J-IX 
IX) 00 JX = JY , n 
IXJX=N* (JX-1 )+1X 
JJX=IXJX+IT 

60 A( IXJX )=A (IXJX )-(A ( IXJ)~ 11.( J JX» 
65 B(IX)=B(IX)-(B(J)"A(IXJ» 
70 NY=Ir-1 

IT=i\fl< IT 
00 00 J= 1 ,NY 
1A= IT-J 
IB=1T-J 
IC=l~ 
DO ro 1:=1,J 
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B( IB )=B( JJ3) -A( IA )*B( 10) 
IA=IA-N 

00 IC=IO-1 
RETURN 
END 
&JBROUTIHE FO~!(N ,M) 

C THIS ROUTINE FOill':S THE COEFFICEIUT forATRICES USED TO SOLVE 
C FOR ELASTIC TIlTERLAr1INAR STRESSES 
C 

C 

mMENSION THETA( 10) 
COMr-DN /xrJIMIT/OC ( 2,511, DB (6,51 ) ,!iF 
CON1,1ON/ROT/Z9(10000),.1.\ 100) ,NALF 
CONI-Dn /IDI /E3, T2, V1, g,IX ,3'1Y , G, a)NS ,Q,A 1, roON 
cora·DIT/IDT /E4, T4, V4, sex ,roy ,GB ,ooNB ,Q1, GO ,E5 
COH10:iI/ADHES/TAD ,GAD 
cor·jf,DN /BOHD/F, P1, 1)2, XKF ,XKUNS ,XKSTIF 
COHHON /OOND2/NE ,NL ,NT ,E ( 100) , Ie ( 100) ,XA( 100 ), YA( 100) , 

1NO?( 100) 
COMr{)N/CTOL/IDL ,00 ,NR ,TX ,TY ,NBC( 100) ,LBC 
COMPLEX Z,CI,F1,G2 
EXT ERNAL F1, G2 
CI=CMPLX(O. ,1.0 ) 
A=A1 
0=1-1/2 
?=N/2 
L=P 
NX=NC*KR 
K=O 

C ASSETffiLE RIGHTHAND SIDE VECTOR 
C 

FRDrr 57 
57 FORI1AT( /.,.. IlODE nUHBER*SX*X-ooR*SX*Y -ooR* /) 

PRItTI' 56, (I , m ( 1 , I) ,:00 ( 2, I) ,1= 1, r.1X) 
56 roRI-J:AT( 110, 2E15. 3) 

DO 1011= 1, K 
X=DC( 1, I) 
Y=DC( 2,1) 
Z=X+CI*Y 
CALL REhW(DU ,DV , z) 
CALL REr®(BU,BV ,z) 
D(I)=llJ-BU 
D(K+I ) = DV-B"V-
DO 102 J= 1, MX 
CALL~INTG(Z,J,A,C1,C2,C3,C4,F1,1 ) 
CALL Xn~TG(z,J ,A,B1,B2,B3,B4,F1,2 ) 

802 CONTINUE 
11=1 
J1=J 
IV1=(J1-1 )*N+I1 
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Z9 (I V 1 )= C 1+B 1 
IF( I.~ .J) Z9(IV1 )=Z9(IV 1 )+TAD/GAD 
12=1 
J2=J+L 
IV2=( J 2-1 )*N+ I 2 
Z9(IV2)=C 2+B 2 
I3=I+K 
J3=J 
IV3=(J~1 ~'N+I3 
Z9(IV3 )=C3+B 3 
I4=I+K 
J4=J+L 
IV4=(J4-1 )*N+I4 
Z9(IV4)=C4+B4 
IF (I4.~ .J 4)Z 9(IV 4 )=Z 9(IV 4 )+TAD/GAD 

102 OON T I1mE 
101 COI~TIIruE 
104 roNT nmE 

20 OONTD1UE 
RETURN 
END 
SUBROtJrINE REMTU( U ,V, z) 

C OALroLATE DISPLAOEHENTS IN THE TOF SHEET DUE TO A REr·lOTE 
o STRESS 
o 

C 

OOMI1CN /m P /E3, T2, V1 , SIJX , ~Y , G, OONS , Q, A 1, roON 
OOIVIPLEX OI,Z, ZI, ZB ,CXSR,D,IFHI ,PHI ,IDP..EGA 
01= cr1PLX( 0 • , 1 • ) 
ZB=OONJG(Z) 
D=OXSR( Z,A 1) 
DPHI= .5 *Sr-1Y* D- • 25*Z* (SHY -S1X) 
PHI= .5*SHY* Z/D-. 25*( SMY -Svu::) 
Ixn·:EGA=. 5*SJI~"l( CXSR( ZB ,A 1)+ .25 *(SMY -SvIX)* ZB 
D= (Q *DPHI-IDNEGA-(Z-ZB) *COHJG(PHI» /( 2. *G) 
U=REAL(D) 
V=AJJ1AG(D) 
ID:TURU 
EUD 
SUBIDUTlliE REHRJ( u, V, z) 

o CALCUIATES DISPLACUiENTS m THE BOTTOl'; SHEET DUE TO A 
C RH·lOTE STRESS 
o 

COIJINC!l" lOOT /E4, T4, V 4, SJX , SOY ,GB , OONB ,Q 1 , GO , ES 
COl'IPIEX Z 
x= RFAL ( z) 
Y=AlMAG(Z) 
S12=-v4/E5 
U= (scx/Es+S 12 *SOY )*x 
V= (S12*SCX+!:CY IE4)*Y 



RETURN 
END 
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CGr-1PLEX FUNCTION F1 (Z ,ZO) 
C 
C EVAWATE INTIDRAL OF B(Z,ZO) 
C 

C 

COMPLEX Z, ID , ZB , IDB ,XA ,XB ,XC ,CXSR, CI ,D, B, R 
COI1PLEX H ,H1 ,H2~BI 
DHmTSIOU N(~O) 
COr~N/TOP/E3,T2,V1,SMX,SMy,G,aoNS,Q,A1,SCON 
COlwlIDlr /KK /KCOUNT 

C OOUlrTER LIMlTS INTEGRATION IUTERVAL TO 50 srEPS 
C 
C USE C011MON TO ZERO COUNTER 
C 

C 

XA( Z,ZO) =CLOG( (Z-l<ZO-A**2- CXSR( Z ,A)*CXSR( ZO,A) Y(Z*ZO+A 
2*'* 2-
2CXSR( Z ,A)*CXSR( ZO ,A»* (-1. » 

XB( Z ,ZO) =CLOG( (Z+-ZO-A+:-* 2-CXSR( Z,A)*CXSR( ZO,A»* (Z+ZO)* 
1-*2/ ( 
2(Z* ZO+A* * 2- CX:SR (Z,A)+- CXSR( ZO ,A) ) * (ZO-Z)** 2» 

XC (Z, ZO) = (Z-ZO*CXSR( Z,A) /CXSR( ZO,A»* (ZOB-20) / (Z*-K2-
1ZO**2) 

G1=G 
ZB=OONJG(Z) 
ZOB=CONJG( ZO) 
CI=CNPLX(O. ,1. ) 

C SAVE PREVIOUS VALUES OF XB AND CHECK PATH FOR BRANCH CUT 
C IF BRANCH IS CROSSED ADD PROPER IHAGINARY TERN TO KEEF 
C DISPLACEFIEliTS CONTINUOUS 
C 

C 
C 
C 

KCOUI'lT= KCOUNT+1 
K=KOOUHT 
A=A 1 

BI = .5*(XB (Z, ZO) -~XB (Z,ZOB) )+XC( Z, ZO) 
X=REAL( XB( z, roB) ) 
Y=A D1AG (XB( Z, Z(>B) ) 
1=1 
IF( X.LT.O .AlrD.Y .GE.O )I= 2 
IF (X.LT .0 .MID.Y .ILr .0 )1= 3 
D=XB(Z,ZOB) 
IF(K.LE.2) GO TO 100 
IF( H( K-2) .~ .2 .MiD.I.:EQ .3 )D=D-6. 283 *CI 
IF( H(K-2 ) .~ .3 .MTD.I.K2 .2 )D=D+6. 283*CI 

100 COlfTllTUE 
N(K)=I 
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H1=-Q" ~W(Z,.w) 
H=-Q'< P~AL(XA( Z,ZO) ) 
H2= .5*( Q-A -A 2*D+CONJG( D» 
R=H+H1+H2 
F 1 =.tl.+XC( ZB,2O) +2*( Z4: ZO-ZOB-!<- ZB) j(ZB-.<- ~ 2- 2D-l-:--:t 2)+( Z-ZB) t: E ( 

1ZB,ZO) 
G1=3. 75* 10-lh( 6 
F 1 =F 1 +:'C OHS 
D1=REAJ_(D) 
D2=AIIlIlG( D) 
RETURN 
EnD 
3UBROUT ns XIHTG( Z,I , A, S 11 , S 12, S21 , S;~2 ,F 1, IC) 

C 
C mIS ROUTllm IHTEGRAT::SS rnm S1'1-1 AnD DIFFERElTCE OF T1'l0 
C CmITLEZFUlTCTIOiIS, F1 ANTI F2, USED ill EVALUATZ THE GREENS 
C FurrCTIOlTS FO? DIS11IJAcm:ErTS. 
c 

C 

COI'~}D 1T JCTO L jro L , HC , NR , ~ , TY , NBC ( 100 ) , rnc 
cOJ~rro;TjKK jKCOU:TT 

Corm-JEX F1,F2,Z,ZO,CI ,A1,B1,ZOB 
COFMOlTjXLII1ITjW( 2, 51) ,m( 6,51),FF 
EXT!RHAL F1 
CI=a'I?I~I( o. ,1. ) 
X=H~AL( z) 
311=0.0 
312 =0. 0 
321 =0.0 
S22=().0 
Y=A II:AG ( z) 

C II' I1~D~{= 1 TE,~r z 2JI1~S OUTSIDE IlfrEGRATIo:r PATCH 
C AiTD 1: 1 :i{j I ~;TS A?-Z US,SD TIi A SINGL2 D:TEGRATIOI:. 
c IF n:D~X=2 TIZJT '1Hm~ Z 1,I:3S ~,rITIIIn 1HE InTillRATIGlJ PATCH 
C i\.ND T:'IO IlTTEG~TIOH3 A.1.E HADE \VITH K2 I>CIUTS IN ~ACH 
C nfTEGrlATIOE. 
C IcomTT C02lTRGJJS THE 100tS O:~ THE IHT!::Gl4.TION. IF ICOU:lT 
C EQUAl.S 0 COIiTnm:::: C:THBllIVISE ro SEconD ll;TEGRATImr. 
c 

:CSTLJ.tT=DD ( 1 , I) 
::FI:LTAL=D3( 2, I) 
IF( x • I.E .XSTART. O;{ .X. ~ .XFIlrAIJ) IHDE:{= 1 
IF ( Z. GT • '".(S T A.tCfl' • AITD • x. I!I' • XF I H AJ,J) INDEX= 2 
ICOUlTT=0 
1: 1 =:; 
K1=5 
IF( lliDEX.m .1 ) 2,:5 

2 ,IT,=XS TAItT 
.-TI=XFI[AIJ 
GO TO 4 

::; XL=;~ST1,:lT 



XU=X-IDL 
ICOUNT=ICOUN~ 1 
GO TO 4 

5 X[J=XFTIJAL 
.. CL=X+TOL 
ICO UlIT:: I CO UlTT+ 1 

4 COHTI1!U3 
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IF( ~CFI!';AIJ.m .A)XFDTiliJ=A-TOL 
1:=1: 1 
DX= (:m -XL) / (3. *1:) 
H=K+1 
00 7 L= 1 ,11 

XX= (XU-XL) -": (1-1 ) 
XO= XX/ld-XIJ 
AT=I 
X1=AT /2. 
:{2=L/2 

IF (J.J • ~ • 1 • OR • L.:EQ .1-1) 16, 18 
16 AE'= 1 

GO TO 17 
18 IF(lffiS(X1-X2).LT •• 0001 )XF=4. 

IF( ABS(X1-X2).GT •• 0001 )XF=2. 
17 cOI~TnruE 

ZO=XOtCI; 0.0 
YO =AIr,IAG( Zo ) 
ZOB=COUJG( ZO) 
KCOt]fT=O.O 
CAJJL YIllTG(Z,ZO,I,A,T11 ,T12,T21,T22,F1,IC) 

201 :ro:U':AT(/~f Y-Sl'RIl AT XO=*E10.3*T1,T2,T3,T4=*4E11.3) 
C11=XF"DXi<T11 
C 12 =XF* DxkT 12 
C21 =XF+l-DX* T21 
C 22 =XF* Dr- T 22 
811 =8 11 +C 11 
812 =8 12 +C 12 
S21 =821 +C 21 
S22=S22+C 22 

7 COlTTIIlJE 
IF(ICOUlTT-1 )6,5,6 

6 cOHTnroE 
RETUP.lT 
EnD 
sunIDUTHZ YDrrro(Z,ZO,I,A,S11 ,812, S21,822,F1,IC) 

C 
C THIS IlOUTIllE IUTEGRATES THE SUN Al';D DIFFERENCE OF T\'/O 
C COI'II'L::;X FunCTIons, F 1 AlTD F2, USED TO EVALUATE THE GREEHS 
C FurJCTIOl~S FOR DISPLACEEEUT8. 
C 

CO!·1?rJl~X H ,A2, B2 
COITI'lO 1T/CI' A RN/S 1,82, C 11 ,C 12, C22 , C21 , P1, P2, Q4, Q2 
COI'IPL EX Z 1 , Z2 , Vl1 , \'12 , G , as , S 1 , 82, C 11 , C 12, C 22 , C 21 , P1 , P 2, Q 

14,Q2 
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00l'Tf.lON/XLHIIT/ID ( 2,51 ) , m( 6,51) W 
Cor,1H(J{ ICTOL/IDL ,NC ,NR, TX, TY ,NBC ( 10C) ,LBC 

COKt'.LEX F1 ,F2,Z,ZO , CI ,A 1 ~ B1, ZOB 
COHr1Cli/ROT/Z9(10000),D( 100) ,NALF 
CI = mCP.LX ( O. , 1 .) 
xo= REAL ( 2D ) 
X=REAL( z) 
S11=O.0 
S12=O.0 
S21 =0.0 
322=0.0 
Y=AJHAG(Z) 
B1=DB (3, I) 
B2=DB (4, I) 
C1=DB(5,I) 
C2=DB(6,I) 
Y1=YYX(~0 ,B1, B2) 
Y2=YYX(XO,C 1, C2) 
ICOUNT=O 
K1=3 
K1=5 
XL=Y1 
XlI= Y2 
11=1 
IF ( II .~ • 1 )GO TO 4 

C IDGIC TO STATEHENT FOUR IS FOR THE NARRO\'i STRIP THAT 
C OOUTAIHS mE snmULARITY 
C THESE STATENJilTTS CAll BE USED TO INTEGRATE THIS STRIP WITH 
C ADDITIOlTAL LOGIC. conSIDER x CONSTANT OVER TnIS NARROW 
C STRII-
C 

IF(Y. LE. Y1. OR. Y. GE. Y2 )INDEX= 1 
IF (Y .GT • Y1.,AND • Y .m . Y2 )INDEX=2 
IF( INIlEX.EQ.1) 2,3 

2 :{L=Y1 
XU=Y2 
GO 10 4 

3 ;a.=Y1 
XU=Y-TOL 
ICOUNT= ICOUNT+ 1 
GO TO 4 

5 :(L=Y+IDL 
XU=Y2 
Y.1=5 
ICOUNT=ICOUUT+1 

4 OOrTTnmE 
K=K1 
DX=(XU-XL)/(3.*K) 
H=K+1 
DO 1 IF 1 ,M 



C 
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18 

17 

XX=(XU-XL)*(L-1 ) 
YO=XX/K+XL 
AT=L 
X1=AT/2. 
X2=L/2 
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IF(L.~.1 .OR.L.~ .M) 16,18 
XF= 1 
GO TO 17 

IF(AlE(X1-X2).I.!r •• 0001 )XF=4. 
IF(Affi (X1-X2).Gr •• 0001 )XF=2. 

CONTllTUE 
ZO=XOtCI*YO 
ZOB=CONJG( ZO) 

C IC= 1 CRA(l<:ED f·ETAL SHEET 
C IC=2 ORTHOTROPIC SOUD SHEET 
C 

IF( IC.NE.2) 30, 31 
30 OJNTIUUE 

A 1=F 1 (Z ,ZO) 
B1 =F 1 (Z , ZOB ) 
T 11 =REAL(A 1+B 1 ) 
T12=REAL(CI* (A 1-B1» 
T21 =AIMAG(A 1+B 1 ) 
T22=AI11AG( C1* (A 1- B1 » 
00 TO 33 

31 OJUT I1IDE 
Z1=X+S1*Y 
Z2=X+S2*Y 
\'l1=XO+S1*YO 
W2=XO + S2-l<-YO 
A1::G( Z1 '\'11l 
B1::G( Z2, \'l2 
A2=H( Z1 ,W1 
B2=H ( Z2 , \/2 

T11=2.*REAL(P1*C 11*A 1+P2*C21 *B1) 
T12=2. *REAL(P1*C 12*A2+P 2lfC 22*B2) 
T21 =2.*REAL(Q4*C 11*A 1-+Q2*C21*B1) 

T22= 2. *REAL(Q4-l<C 12 *A2+Q 2*C 22*B2) 
;; COITTll'TUE 

IF(1C.NE.3)60,61 
60 FS= 1. 

FR=1. 
GO TO 62 

61 OOlTTnIDE 
FS=D(1) 
FR=D(1+lTALF) 

62 OOUTIlJUE 
P11 =XF*FS*D~T 11 
P12 =XF-t< FRK DX*T12 
P21 =XF*FS*DX-l'-T21 



C 

P22 =XF* FR*DX*T22 
S11 =S 11 +:2 11 
312=S 12+l'12 
S21 =S 21 +L'21 
322=S 22 +P 22 

1 OOIrTIllUE 
IF (ICOUlTT-1 ) 6,5 , 6 

6 OONTIlIDE 
RETURN 
DiD 
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COMiLEX FunCTIon CXSR(Z,B) 

C THIS FU17CTIOH TAI:ES THE SQUARE ROOT OF Z**2- B**2 
C IT O!1LY RETURns lliE F1TIST ROOT, THE SEconD ROOT CAJ."1 BE 
C roUND BY ADDING PI /2 TO THE TRIP ARGll'IEJJT 
C 

C 

Cor·1PLEX Z , T 1 , T 2 , C1 
C1=CKPIX( O. ,1.) 

T1=Z-B 
T2=Z+B 

;{1 =REAIJ( T 1 ) 
Y1=.A I HAG ( T 1) 

::2=RBA1( T 2) 
Y2=A I HAG ( T2) 
A 1=ATA!T2(Y 1, X1 ) 
A2=ATAH2(Y2,X2) 

S1=( REAL ( T 1)* *2+AINAG( T 1)* * 2 y* .5 
S2=( RBAL ( T2)"'~ "2+A I NAG ( T2)i< * 2>* -)' .5 
JR = ( S 17.<S 2)-r- -> • 5 
AHG=A1+A2 

cxs:t= s~ (cos(AHG/2 .O)+CI*SIN(ANG/2.» 
RETURlr 
END 

COHl1L2X }'UNCT101T llC(Z,ZO) 

C GnEEI~3 FUNCTIOn FOR STRESS TI'ITEITSITY 
C 

C 

CCEr·Kr~ /TO~' 13:;, T2, V1, S'lX , g·lY , G, CCl';S ,Q , A 1, 3JO~T 
CC·F:J~X Z, ZO , ZB, ZOB, CXSR ,D, F 
A=A1 
ZB=OJFJG( z) 
ZOB=(X)IT JG( ZO) 
D= (ZO' ZOB-2 • -l<ZC-d 2+A"* ~ 2) / « Zo*.y 2-A>'-7 2 }*CXSR( ZO ,A» 
F=Q 'CZSR (IDB A) / (ZOB)(-'~ 2- AI ~ 2) 

2'J: = 27·-A +> ... ::; ~- ( F + D ) I ( 6. 28) -*( 1. +Q ) -l( T 2 ) 
RZTUTIN 
ZITD 
Fu:rCTIOU YY( T) 

C T IS A DUJ'1-~Y .2ARANlJ'TBl1 FOit XO 
C CALCUI·AT::: YO FOL\ A GIVEr: XO 



C 

C 
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COIn'IOlT/TOJ IE'], T2, V1, SIX, 3/iY , G, cxms, Q, A 1, ooOH 
C0E!Y1mr/OOl'lD/F,.P1 ,1'2, XKF ,nuns ,}J{STIFF 
IF(T/A1.LE.O)2,1 

1 COHTIlru~ 
YY =F* ( ( 1- (T I A 1 )~,HI ..::- 1 )-~.I(- ( 1 /P 2)).\(" A 1 
GO TO :3 

2 YY=~.(A 1 
3 COHTIlTUS 

P.ETUHH 
znD 
Cor.a}12X FUIICTlOiJ B( Z ,ZO) 
cor Hon/TO.!? /E3, T2, V1, S"~X ,g-rr ,G, (xnTS ,Q, A 1, SJon 
Cor:IJEX X1 ,;:2,:0 ,X4 ,:{5, CXSl1,ze)B , 2D , Z, X6, X7, XS, :K9 

Q1=Q 
A=A1 
ZOB = COlTJG ( ZO) 
I1=CZSn.( Z,A) 
~C2=CXS}( zo ,A) 
1-:3= 1. / (Z-" /2- 20)' ... 2) 
X4= 1. I (z ,t ) 2- IDB-)! -, 2) 
X5=1. /(Z-Zo) x:'2 
X6= 1. / (z+ Zc) l'.-' 2 
X7=X 1*( (-4*ZO*:{3)+ 2. -IQ 1*ZOB*X4+( Z-2DB) "X5- (Z+ZOB)-"X6) 
:w=( ZO-ZOB);- ( (A" ) 2- Zlr ZO ),~ X5- (A~ -x 2+Z-l< ZO )*X6) /X2+2. *x 2* 

1X3*Z 
X9=-2. *Q 1*Z.y-CXSR( ZOB,A)~ X4 

13= (X7+X8+X 9) / (2. O-X"X1 ) 
RETURIT 

BirD 
SUBROUTnrs C:!?AR 

C CA:JCUI ATL: ~ AilAI·ITEffi FOR CX)!·I f'LEX VARIABLES nr ORTHOTROPIC 
C t11 AlJYS IS. 
C 

CO E 11.GX C I , 31 , S 1 B , S 2, S 2B , C 11 ,C 12 , C 21 , C 22 , I 1 , :P 2, Q 4, Q 2, D 
1, U1 , U2 
cmaLEX CC 
CCI!Ho},;r/BOT /E4, T4, V 4, sex ,00Y ,GB ,cxm] , Q1, GC ,:C;5 
CuI'll IO:;jC:' ARl:I S 1 , S 2, C 11 ,C 12 , C 22 ,C 21 , 1 1 , P 2, Q4, Q2 
CI=cr:t.1~~(0.0, 1.0) 
EX=E5 
EY=B4 

V-J..=Y4 
GXY=GC 

B=lG/GXY -2 *VX 
C=EY.:/EY 
CC= CFJ'IJX(C ,0.0) 

VY-V~') -;,~r/1;'"r 
- .J},. .!..Jl ~. 

1):: eSQ RT( B-' " ~-4 • -l(·CC ) 
U1=-.5Y-(B-D) 



C 
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U2=-. 5-:+( B+D) 
S1::CSQRT(U1 ) 
IF(AII.wt(S1j.r.rr.0)S 1=-S1 
S2::CSQRT( U2 
IF(AIHAG(S2 .r.rr.0 )S2=-S2 
S1B=CONJG(S1 ) 
S2B=COUJG( S2) 
IF (B** 2-4. *C) 1, 2 , 3 

1 CONTINUE 
PRIUT 4 

4 FORr-~( * ROOTS ARE COHPLEX U1:A+IB, U2=-~IB* I) 
GO T05 

2 OOITTIlUE 
:?RHlT 6 

6 FOPJ,':AT( i( ;oOTS .A.-rtB PURE JMAGINARY AND EQUAL* I) 
GO T05 

3 B1 =AIHAG (S1) 
D1=AIHAG( S2) 
P1 =( S 1** 2- VA) lEX 
P2=( S2** 2- VX) IF:£. 
Q2=( -VY*S2+1./s2)/Er 
Q4=( - V'f-';' S1+ 1. IS1) IFN. 

100 FORHAT( 4E12. 3) 
CONP1= 1 • I( 12. 566*T 4-lf(B 1** 2-D1** 2» 
C 11 =(D 1** 2*VY+ 1 )*B 1-;'C0Jv1P1 
C 12 =( VX+D 1** 2 )*COIyiP1 
C21 =-D1*( VY*B1** 2+ 1 )*COMP1 
C22=-(B 1** 2+VX) -*COUF1 
GO TO 7 

5 HUNT 8 
8 FORHAT( 1* ERroR-ERROR ORTHOTROPIC ANAIJYSIS IS nOT* 

1* DEFTI-TED -x I) 
7 conTINUE 

RETURN 
Elm 
SUBIDUTllm GRID 

C GENERATE I1ESH USED TO DISCRETIZE INTERLAIwIINAR STRESSES. 
C 

COl-U-!OU/BOND2/NE,NL ,NT ,xc( 100), ID( 100) ,XA( 100), YA( 100), 
1NOF( 100) 

CONMCN ICTOL/IDL ,NC ,NR, TX ,TY ,UBC( 100), mc 
COlilHO:i/TOP IE3, T2, V 1, SOUC ,Sorr ,G, OON'S ,Q, A 1, roON 
C0I1HCXr IXLIMIT/m~ 2, 51) ,DB( 6, 51 ) ,FE' 
cm1NON/OOHD/F, 1)1, P2, XKF ,XKUNS ,XKSTIF 
P=I'1 
T,lX=2. ";'TOL 
DX=TX:/nc 
DY=TY/NR 
LBC=O 
r·1X=H C leIiR 



C 

DO 11 1= 1 ,HX 
11 NBC(I)=O 

00 100 J= 1 ,NR. 
DO 100 1=1 NC 
f1T =NC * (J -1 ~I 
AC=A 1+DY* (J -1 )+DY /2. 
YI=F*A1 
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BC=YI+DY*( J -1 )+DY/2 • 
DC (1 ,NT )=DX/2 .+( 1-1 )*DX 
X=DC( 1,m) 
Y=YYD(X~BC,AC'P) 
DC (2,MT =Y 
DB ( 1 , MT =D X ,\ ( 1-1 ) 
DB (2 ,I'iT) =DXi< I 
DB( 3,T1T) =DY* (J -1 )+YI 
DB ( 4 , HT ) = DY* ( J -1 )+ A 1 
DB(5,I1T)=DY*J+YI 
DB (6 ,r-rr ) =DY*J+A 1 

100 COl~TIlmE 
110 roRT1AT( I 10, 2E 15.3) 
120 FORMAT ( 110, 6E12 .3) 

RETURN 
Er~D 
3UBIDUTllTE XINC (SUH ,xtrcY ,nAS ,DFS) 

C THIS OOUTllrE IlJCRET·1B!iTS THE CRACK LENGTH AND DEBOND SHArE 
C ro R NCY CYLSS 
C 

C 

CO El·DN /nnaT /IX! (2,51 ) ,m( 6,51 ), FF 
COEIT-DN/CTOL/TOL,NC ,NR ,'IX,TY ,NBC( 100) ,mc 
COHlION/BOHD/F,?1, P2, XKF ,XKUNS ,XKSTIFF 
COHHON /TOr /E3, T2, V1, S1X, S1Y ,G, cxms,Q ,A 1, ~ON 
COI~r.~(l~ /roT /E4, T4, V4, sex, OOY ,GB, CCNB,Q 1, GC ,E5 
COI'Jr.ON/XY /m , YD 
DI !·'[ZH S ron Y~J( 20 ) , xn ( 20 ) ,ill ( 20 , 2 ) , CI ( 20 ) ,D( 20 ) ,CR ( 2, 2) 
B1=A 1*F 
R= .01 
DA=3. 2?E-14 *XKSTIFF**3. 3S 
CFAC=1.79E-14 
CFAC=3. ?i)E-14 
DA=CFAC*XKsrIFFI<*3.38 
DA=DA/« 1. -R)*56000 .-XKSTIFF) 
DF=3. 158E-05*SUHi<--: 3.616 
DAs=m 
DFS=DF 

C DETERKnm HO'" NANY CYCLES REQUIRED FOR EITHER A CRACK OR 
C DEBOUD EXTEIISIOlT OF .1 INCHES. THEN USE SnALLEST VALUE 
C AS THE INCREMENT OF A PPLIED LOAD CYCLES 
C 

iNCRACY.=.10/DA 



C 

XNBOND= .10 /JJF 
XNBOND= • 20 /DE 
XNCY=XHCRACK 
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IF( XNCRACY.:.GT • XNBOND )XNCY=XNBOND 
DA=XnCY*DA 
A2=A 1+DA 
DF=DF*XHCY 
B2=B 1+DF 
?1=2 
A1=A2 
F=B2/A2 
~TURli 
END 
SUBIDUTTITE VERI (Z ,SXX, s:a ,SXXY ,SYX, SlY , SYXY ,MX ,KTYPE) 

C INTEGRATE GREEnS FUNCTIONS FOR STRESSES 
C 

COMMOrl'/CTOL/TOL ,liC,NR, ~, T'f ,NBC (100) , mc 
COIii}LEX Z 
Z=Z 
l-1X=r« 
J=J 
8XX=0. 
SXY=O. 
sxxy=o. 
syx=o. 
syxy=o. 
syy=o.o 
DO 1 J= 1 ,f1X 
CA1L VXll{TG (J, Z, S1, S2, S3, S4, S5, S6, r,lX, KTYFE) 

C 
C FIRST IITDEX nmICATES IJOAD DIRECTION, SEconD STRESS 
C DIRECTION 
C 

SXX=S1+SXX 
SXY=S3+SXY 
SXXY=S5+SXXY 
SYX=S2+SYX 
syy= S4+SYY 
SYXY= S6+SYXY 

1 CClTTTIJUE 
HETumI 
EnD 
SUBROUTTIm VXINTG(I ,Z,S1, S2, S3, S4, 35, S6,NX ,KTYPE) 

C 
C DETERl'iI1TE srRESSES TIT ADHffiENDS DUE TO INTERLANINAR 
C STRES3ES. 
C 

CO!w!r'iOI;/XLINIT /re ( 2,51) m ( 6, 51 ) ,w 
CQl·'il·DU/ROT/Z9( 10000) ,D( 100) ,NALF 
COI-':MON /TO P /E3, T2, V 1, 31X ,glIY , G, ool;S, Q, A 1, SJOl: 



C 
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COI-l.!:L3}: Z, Zi3, 'lJJ ,ZOB ,B,IlBZ ,B1, DB 1B, 31B, DB 1, G:l, GG, G7, GC3 
Co!:Hor~ /CTC1/IDJ.J ,HC ,llR, TX, TY ,IIDC (100 ,WC 
cor,r::":J.',X CI 
cm ~1:LZA 1, 
1'==Z 
(=IUAL( z) 
31=0 
S2=0 
.']3=0 
S4=0 
::;::=0 
36=0 
Z:3=<X.J:r JG( Z) 

C IF IIm::{= 1 TIL~:n z 7J1:~ OUTSIDE TH2 n;T:LGRATIOn .2ATCII 
C AI]) I: 1 !on;TD AR.C U3ED IN A SIHGL3 IlJTEGRATIOlT 
C IF Irn:DX=2 TE~~r z J I;'~S ',.'ITHIl: THB Il'TT3GnATIOll l'ATCH J..~m 
C T.'IO J:iTEGJATIOl[S AAE nEADZ EACH \'lITH K2 nrTLGRATIOI r .20II~T 
C IF ICCU1:-T=C) TIiE!; (J)UT IlTU2 ar~IE~n'lISE SBCCJllD IK~EG:1.ATlmr 
C 

l::5TART=DB( 1 ,I) 
XFII1A:J=ID ( 2 ,I) 
H'( X.hf~ .XSTA."{I' .OR .X.GE .XFlIfA1) IK0EX=1 
IF(X.GT .XSTAIU .MTD.;CLT .XFn~AjJ)IIm~{=2 
K1=3 
1:1=5 
ICOD:JT=O 
IF (TI-rDE:{.:m .1 ) 2, 3 

2 XL=XSTAi=tT 

.1J=.':-TQI. 
IC(;U:lT= IC(JUlTT+ 1 
GO TG 4 

::> ZU = ;C;'11 T le.., 
l:JJ=.:+ TO:' 
ICGUJ:T= IOOmTlY-1 

4 co :;TI :~J":; 
IF (ZF I?'AI,.:ID. • A 1 )ZF I:~A1=A 1- TOL 
Y =1:1 
D'T - (.ru '/~) / (.. X' ) A- .\. -..... ). 1, 

It.=K+1 
C I = a ,: 1 J ~.: ( O. , 1 .0 ) 
DC 7 1= 1 ,I·l 
~O:=(ZU-::r,)~-(TJ-1 ) 
.~O=_<:C/K+X_J 
ID= YY(XO) 
zc = ::C+ CI" YO 
I;GB=CC1~JG( ZO) 
AT=J 



C 

X1=AT/2. 
X2=I,/2 
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IF(L.~ .1 .OR .IJ.EQ .N) 16,18 
16 XF=1 

GO TO 17 
18 IF (lillS (X1- X2) • nr •• 00 01)XF= 4 

IF(ABS(X1-X2) .Grr •• 0001 )XF=2 
17 C01TT I;1jE 

CAL1 VYIHTG( Z ,ZO , I, TX:X , TXY ,T'IX ,TYY ,TXYX, TXYY ,KTY.lJB) 
S1 =XF"" ll{} T:OC-t S 1 
32=XF-l'lrC-' T:A'Y+S2 
S3=XF~' TIX> TYX+ S"3 
34=X::;'i:-IlX y TYY +34 
S5=XF lE-DX:'- T;:YX+ ;]'-) 
3G=XF"" IJX * TXYY + S6 

7 CO!ITnm:2: 
IF (ICOUHT-1 )6,5 ,G 

6 COlTTIHU~ 
RETU:ul 
mID 

SUBIlJUTllYE VYIljTG(Z,ZO ,1,S7, S8, S3, S4, S:5, S6,KTYPE) 

C INTEGRATE Grr~EtI'S FmWTIOJ>TS FOR S1RESSES 
C 

C 

COEI>1:0U /Cl'ARI'i/S 1, S2, C 11 , C 12, C22 t C21 , l"1, T2, Q4, Q2 
cor-mon /AL nUT /m ( 2, 51 ) , DB ( 6, 51 ) , F.F 
co r::E-I ZZ Z 1 , Z2, ~v 1 , \'/2, GB, S 1, S 2, C 11 ,C 12, C22 ,C 21 , 1'1 ,.P2, Q 

14,Q2 
C 0: 'IT'D I; /1CI' /:E3, T2, V1 \, 3·1X ,S-IT ,G, cxnrs ,Q, A 1, seO!i 
CONl'IDl:/ROT/Z9(10000),n( 100) ,NALF 
CO K~ L E:{ Z, Z!3 , '2JJ , ZO B , B , m Z , B 1 , DB 1 B , B 1 B , DB 1 ,G 5, G6, G 7, GS 
cor·'iIL.":{ CI, G1A 
COI!EJE~~ G 1, G2, G 3, G4, H1, H2, IV 1B, ~IJ2B 
COEHClr /CTO L/m L ,IrC ,1m. , TX ,TY , NBC ( 100 ) ,lBC 
CC!:l'L:CX 2:' 
X=~EAI,( z) 
Y=ATI·1AG (Z) 
~=Z 
Q1=Q 
ZB= COl;JG(Z) 
37=0. 
33=0.0 
~3=0 
34=0 
S:5=O 
36=0 

C DB GI733 :i:jA?.~~T.illS FOrt UP1)EH AITD IDV1ZR GffiD BOUlIDARIES. 
C 

B1=DB (:.;, I) 



C 

B2=DB( 4,1) 
C1=DB(5,I) 
C2=DB( 6, I) 
;W=REAL( ZO) 
Y2=YYX (XO ,C 1, C2) 
Y1=YYX (XO ,B1, B2) 
K1=5 
1:1=3 
~ffi= Y1 
AU=Y2 
R=K1 
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C SE~ YIUTG FOR IJOGIC FOR INTEGRATION OF NARROi'l STRIP THAT 
C CONTATI-rS THE STIIGULARITY. THAT STRI} IS NEGLECTED HERE 
C 

DX= (XU-AL)/(3.1EK) 
H=K+1 
CI = C!>j?IX ( o. , 1 .0 ) 
DO 7 I.F1,H 
xx= (XU -XL) -k (L-1 ) 
YO=XX/K+XIJ 
ZO=XO+CI-¥ YO 
ZOB=OONJG( ZO) 
AT=IJ 
:(1 =AT /2. 
X2=L/2 
IF(L.~.1 .0R.L.R2 .I1) 16,18 

16 XF= 1 
GO TO 17 

18 IF (ABS( X1- X2) • ill •• 0001 )XF= 4 
IF(ABS(X1-..{2).GT •• 0001 )XF=2 

17 roUTIHUE 
IF ( K TYP E • m . 1 ) 30, 31 

30 CONTIImz 
B1=B( Z ,ZO) 
B1B=B( Z,WB) 
001 =DBZ (Z, ZO) 
DB1B=DBZ( Z ZOB) 

G1=-4 *( ZO/ (Z~-* 2- 20* * 2)+ZOB/ (Z-l( * 2- ZOB-I<-*2» 
G1=li.EA::J( G1) 
G1 A= -4 -*( ZO/ (Z+ -r. 2- 'lfJ* *2) - IDB/ (Z-t. -)(-2- ZOB-lE-*2» 

G1A= REAL ( CI-l! G1A) 
G2=2*Q 1*ZOB/(ZlI-"'-2- ZOB**2) 

G2::G 2- « ZOBt ZB) /(Z+ ZO)* -"-2+( ZOB-ZB) / (Z-ZO )**2) 
G3=2-Y-Q 1*ZO/(Z"-)(2- W**2) 

G3::G 3- «ZO+ZB) / (Z+ ZOB) )H( 2+( ZO-ZB) / (Z-ZOB) -a 2) 
G5=B 1+B1B 
G6=CI i( (B1- B1B) 
G7=( ZB-Z) -x- (DB1+DB 1B) 

G8=CI-': (zn-z)-Y (DB1-DB1B) 
T1 S= REAJ.J (G1- G2- G3) 



C 
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T2S=REAL(G1A-CI-X (G2- G3» 
T3S=REAL(GHG2-+G 3) 
T4S=REAL( G1A+CI~( G2- G3» 
T5S=AIIOO(G1+G2-+G3 ) 

T6S=AIMAG( G1A+CI-*( G2- G3» 
T11 =( -REAL (2'*0-5- G7)+T 1S)* SCON 

T22=( -REAL (2*G6- G8)+T 23j* SCON 
T33=( -REAL(2*G5-+G7 )+T3S '* SCON 
T44=( -REAL (2*G6-+G8)+T4S *SCOH 
T55=(AIHAG( -G7 )+T5S)* SCOlI 
T66=(All·IAG (-G8)+T6S)* SCOlI 

C CH.AUGE SIGNS ID ACCOur~T FORNEGATIVE IDDY FoncES 
C 

C 

T11=-T11 
T22=-T22 
T3)=-T:J:; 
T44=-T44 
T55=-T55 
T66=-T66 
GO TO 32 

31 COlTTHlUE 
Z1=X+S1*Y 
Z2=X+S2*Y 
~'11 =XO+ SlYYO 
i'l2=XO+ D2 -YO 
i'l1B= COUJG ~ '.'l1 ) 
''I2B= C 0 HJ G \ \'12) 

G1 =2*( \'11/ (z 1 H- 2- \'11** 2 )+vI1B/ (z 1** 2- vl1Br * 2» 
G2=2*(U2/ 1Z 2** 2- ','12** 2 )+'''2B/ (Z2* 2-W2l3*'" 2» 
H1=2*(\'11/ Z1-\-" 2-\'11** 2)-\'l1B/(Z1** 2-vI1W*2» 
H2= 2*( i, 2/ Z 2** 2- \,/2** 2)-\l2B/ (Z 2*l!- 2- j{2I3K -x 2» 
T 11 = 2-) ~EAL( S 1** 2"*C 11 *G 1+S 2iH1 2~-C 21 *G2) 

T22= 2-*REAL( CI* (31** 2*0 12 *H1+S 2*-X 2-x-C 22 *H2» 
T33=2~REAL( C 11*G 1+C 21 *G2) 
T44 =2-,c:-tEAL( CI* (c 12 *H 1+C 22*H2» 
T55=-2*REAL(S1*C 11 *G 1+S2*O 21 *(2) 

T66 =-2-lC-RZAL(CI x (S1*C 12 *H 1+S2*O 22 l<-H 2» 

C CAlCULATE STRESJES In ORTHOTROIIC SJ-fEET 
C 

;;2 mITT I lTUE 
S7=XF* D:{' T 11-'<-D ( I )+37 
S8=XF~ D.{¥ T22°tD ( I+!-1X)+ S8 
S3=XF* DX-lI T3~1'D( I )+S3 
S4=XF*D~~· T44*D( I+NlO +S4 
S5=XF*D:'.-A T55*D( I )+S5 
S6=XF*DZx T66*D( I+H{)+S6 

7 en IT T I HUE 
r:C:TU~; 
fl:'D 
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COI:iILEX FUNCTION DBZ( Z,ZO) 
CC !r1rl0 Ii/TO ~'/E:'; ,T2 ,V1 ,SNX, SI'>1Y ,G, CONS ,Q ,A 1, SCOH 

C 
C THIS F(n;CTIOI~ IS THE DERIVATIVE OF B(Z ,ZO) \'lITH RESIECT 
C TO Z 
C 

CO r·'PL BX ZB, CX SR 
C(;!'lFLEX Z,ZO ,B1 ,B2 ,B3 ,ZOB 
CCrTL3X XIZ0,XIZOB,LIZ 
ZB=CC r; JG (Z) 
Z(; :3=CO IiJG ( 'If) ) 
A=A 1 
XI Z=C X3i1 (Z ,A) 
AI ZU= CXSR(ZO ,A) 
XI ZOB=C"LS:t( ZOB,A) 
B1=(-4Ji-Q"*Z~' ZOB /(Zlt*2-Z0B*""2)**2-4*Z-'! (3*ZO..-'l-2*ZOBtZ~~-*2 

1*ZOB-4*ZO'1.A 3 
2 ) / ( ( ZO - Z ) ':* j ~ ( ZO+ Z ) * oK ~ ) ) /2 
B2=-« QAX I ZOB" (A-.-)( 2*ZOB* -). 2-2 *Z,< *4+A -l( *2*Z*''(-2) / (ZOB*'I< 4-2 

1*Z"* 2* ZOB 
2*'* 2+Z.,.iI 4) -XI Z0" ( A>:~ 2*ZO** 2-2 *Z-f -t:4+A :.. * 2* Z r*2) / (ZO-H 4-2'1 
1 Z'" +' 2* Z C" ~ 2 
2+Z''''';'4»/(Z' ,(2-A'A '-2)-+ «ZO':H-2+Z~ ZC-2*.h* '2)/(ZO-Z)~Il(.:+(ZO 
1->'12-Z-1 ZO 
3- 2*A.j.. +'2) / (20+Z )-l<"- 5+2* « Af..-Ji- 2- Z-l< 20)/ (ZO-Z) H: 2- (Z-l< ZO+A'A '*2 
1)/(ZO+Z)**2 
4)/(Z"*2-A> '*2»} (ZO-ZOB)/(2*XIZO»/.UZ 

DBZ=B 1+B2 
RZTU?F 
m:D 
SUBR( UTI I~.c RESIGiV1 ( z, S 11 ,S22 ,S 12 ,KTYlJI: ,ST RESS!'!, STRZSSC ) 

C 
C ccr·} UTE srri.GS.l8S n; ADI~~EIIDS DUE ~ Ril,_0TE ST.r{ESSES 
C 

COEr:0:r;/T0} IE') ,T2 ,V1 ,SI iX, sr'J Y ,G, CONS ,Q ,A 1, scor; 
~II\1.r.l: SI0r STa.sssI-:( 3) ,STIUSSC( 3) 
CC L'::'l ~z Z, CX :>.: , .L'~II ,()f:~GAB, Dl HI, XlC ,ZB ,81 
I~("my' " "r'I 1) 1 'J ~ .1-L 1.J .-..I'q:, • , (_ 

1 CC ~'rTI :;uz 
ZB =~ j.JJG (z) 
':'HI=3T~S 1- (2) '" (Z/C:~SR( Z ,A 1» /2.- • 2:; \ (s T.{.~S $.( 2 )-STa..;s 

13r.(1) 
OE~GA3=ST?.r;3m· (2)' (ZB/CXS:"{( zn,h 1» I? .+ .25*( ST=~S8:'.( 2)-

1 ST :8S3: ( 1 » 
m HI= -A 1-)( "2/ ( C Xs:l ( Z, A 1 )-l< ( Z-l< .- 2- A 1 )(ow 2) ) 
Dl. HI=D~HI*::;T.:l£Sg·:(2)/2. 
51 =CG ~IJG (Q(ZGAB) -PI! I-Z* D.r-liI 
... :1 HI= 2-:+ REAL (:i HI) 
:.<K = Xl' HI + Z B)( lli III + S I 
S 11 =RiW, (x.;. EI- (ZIl*lJI HI+ S I» 
S22=REf.J, (YJ') 



812 =A I HAG (Xl:) 
GO 1D ..I 

2 311 =3TRCSSC (1) 
':>22=STRESSC (2) 
S12=ST~SX(3) 

3 co :rTI rill: 
RETUR!T 
EUD 
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C(;!j:i.-LEA FunCTION G( Z, \'1) 
COE.£-lLEX Z, ZB ,'I': , 'vJB 
ZB=CX)I-~JG(Z ) 
-,'lB =CXi I{ JG (1.1) 

cr.= C 10 G('.l-Z) -CL OG( Z+i'TB) -CLOG( Z+ ','/) +CLOG (\<lB-Z) 
RETUi{!I 
1!TD 
C(E}l~X Fill7CTlm; H( Z,~'/) 
ceT-' _1 ZZ Z ,Zr3, v!, \'ffi ,CI 
CI =O,llLX (0.0,1 .0) 
ZB=OOilJG( z) 
'vIB = ()) Ii JG ( ':1) 
H= CLOG( ~/-Z) +CL(; G( Z+ \~B ) -CLO G( Z+ \'T) -CLO G C\vB-Z) 
H=CP-H 
RETURN 
h1-TD 
SUBIUUTTI-iE ?I,A S1'IC (SYIELD ,GAD2, S ,DR) 

c 
C l'Z!WviU: I!;CLD?:EHTAL .:.'LASTIC ANALYSIS 
C 

C 

COrl r10.iT/HCT/Z9( 10000) ,D( 100) ,NAIF 
c(;r~r-:o:'r/.AD]:r;S/TAD GAD 
DIL2fSIGr~ F( 100 ~ ,G( 100) ,m( 100) ,!Iv}'( 100) ,NYI~lD( 100) 

}y=o 

C CCFuJUTZ YLD,D STRESS FOR EACH l'OINT 
C C!I003..8 CHI:r I CAL E IJ~I ::;)~ T 
C 

C 

N=2*l' All!' 
nS('!=l? :~ 
SUI'L=O 
ro 55 1= 1 ,!TAIl" 
F(I)=O.O 

F( I+NAlP)=0.0 
55 HO.dI )=0 

FCI=99j99999999S9 • 
12 FCC=999999999. 

}J:=:X+ 1 
:oc 11= 1 ,HAL?' 

IF(Jrol (I).~.1 )GO TO 1 

C ADD:DG IC TC: 3In.:. ],,1,1 YI;':;LDED EIEEBT'TS 
C 



C 
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A=D(I )-¥.*2+D( I+liAIJF) **2 
B=2*( F (I))., D( I)+F( I+HALJ )*D( I+NAI,F) ) 
C=F( I) **2+F( I+NALF) )(*2- SYI~LD*"*2/3. 
TEST= (-B+-SQ RT( B*'IC 2-4 *A *C ) ) I( 2. *A) 

IF (TE3T.LT .FCC )2,3 
2 r=I 

FCC=TZsr 
3 CONTnmE 
1 CONTINUE 
IF(KK.~ .1 )FCI=FCC 
11=1:-1 

Sur·11=SUH 
LJUI1=Sm:+FCC 

IF (sm: .GT • s) 5,6 
6 IF ( FCC.:EQ .999999999. )GO 10 18 

nO.?(K)=1 
NYIELD(I'JC) =1. 

C SAVE STRESS IH EACH EJ.,EE~;T ATYIE:L.DllTG 
C 

C 

:oc 8 1=1 ,U 
F( I)=FCC*D(I)+F(I) 
G( I )=FC C,cD( I ) 

8 CO UTI HUE 

C 110DIFY EQUATION S~T feR YIELDING OF CRITICAl) ELEN2HT 
C 

C 

11=( K-1 ):q; +K 
I4=K+UAI)F 
12=( 14-1 }*N+I4 

Z9(I1)= Z9(I 1 hTA1)lI- (1. IGAD2-1 • lGAD) 
Z9(I 2)= Z9 (I 2 h TADE- ( 1. /GAD2-1 • lGAD) 

C USInG AN I TERATIVB r-r.r;THOD Ul~DATE ELEM~rT srRES S:CS 
C 

CAIJ) GAUSS ( l)R) 
IF (i:K.~ .IIAT F )GO TO 18 

G0 T0 12 
5 IF(KL.m.1)13,1~ 

1~ RUNT 15 
3f.m=o. 

1~ Fe ?J·IA T (j-* THe: s OIDT Ion IS C 0I':FLETE1JY ELASTIC'" I) 
GO TO 16 

14 C01:TllrUE 
Y.K=i:-1 

SUH=smT1 
18 conT nruE 

l-RI:;T 31 ,TIC ,SJM 
31 FOEUiAT( /110 * ELEf':I!:HTS IIA VE YIELDBD AT -)( E 10.3 /) 
16 CONTInUE 

1001 FORI'IAT (['E10. 3) 
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DO 26 1= 1, NAL}' 
D( 1)= (S-Stn-l )"'-D( 1)+F (I) 

D( I +NALF) = (S-Wr-1 )*D( I+NALF) +F( I+NALF) 
26 OONTINUE 

IF ( KK. GT .1 ) 25 , 29 
25 mINT Z7 
Z7 :Fe m: AT( /* Y I ErJD 3D EIEI'~Er;T S * / ) 

IRIHT 28, (UY1E1D( 1),1= 1, KK) 
28 FO~U!AT( 12 110 ) 
29 OOUT IlIUE 

:RINT :O,:FeI 
~ :FDRHAT( ~ THE YIELD I-'lACROSOOPIC srRESS IS *E 11.3/) 

RETURN 
END 
SUBIDUTn;E GADS S (IlD) 

C GAUSS SEIDEL ~mTHOD FOR SOLVING n7CREN}llTAL 
C PI,ASTIC SOIUTIar 
C 

DH!Z!ISIm: IID( 100),ASAVE(100) 
COMI'DN / ADHES/TAD, GAD 
COr/~HOlT /ROT / Z9( 10000) ,D( 100) , HALF 
ErS=.005 
N=2*NAIF 

nSQ=N*N 
ITMAX=2) 

ill 33 I=1,N 
K= (1-1 )*N+ I 

AS TAR = Z9(K) 
ABA V.L!;( I )=ASTAR 

DO 3 J= 1 t N 
II = ( J -1 )* 1J + I 
Z9(II )=Z9(II )/ASTAR 

3 CONTn~UE 
DD(I)=DD(I)/ASTAR 

33 CO!1TnruE 
DO 9 ITER=1,ITJ.'IAX 

Y..FIJACF 1 
DO 7 1= 1, n 

XSTAH=D(I) 
D( I )=DD(I ) 

DO :; J=1,Ir 
II = (J -1 rlf II + I 

IF (I .:ER. J) GO TO 5 
D(I)=D(I)-z9(II)¥D(J) 

5 CONTINUE 
IF( ABS( XSTAR-D{ I».LE .EPS )GO TO 7 

Y.:FLAG=O 
7 CONTINUE 

IF( KFLAG.NE.1 )GO TO 9 
GO TO 1 



C 

9 CONTINUE 
PRINT 204 

1 COUTDTUZ 
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C RECOlSTRUCT Z9 AUD DD HATRIX roR US:2 on FU'lUTRE 
C ELEr·mrTS THAT TIELD 
C 

DO ])0 I= 1, H 
K= (1-1 }*1J + I 

J"STAR=ASA VEe I ) 
DO ;0 J=1,N 
II= (J-1 f-11+I 
Z9(II )=Z9(1I )~ASTAR 

30 OOllTIlllE 
DD(1)=DD(I )*ASTA!l 

330 COnTINUE 
204 Fom~T(/-!(- CAUTIUH THE GAUSS SEIDE}J DID NOT COllVERGEtc I) 

RETunn 
:Elm 
Ftn~GI' I O~~ YYX (x, B, A) 
CO 11'1 110H IIDND/F ,i'1, r2, XKP ,XKuns ,XKST1W 
IF(X.:EQ .0 )GO TO 4 
IF ( xl A • GE • 1 ) 1 , 2 

2 YYX=B* ( (1. -(xl A)-'< )!-1:'1)** (1./1'2» 
GO TO :5 

1 YYX=O. 
GO ro -~ 

4 YYX=B 
3 COnTInUE 

RETURN 
:Elm 
FUNCTIon YYn(X,B,A ,F) 
IF ( XI A. G:8 • 1 ) 1 , 2 

2 yyn=B*« 1.-(:{/A)7 '< f' )-1(-( 1./r » 
GO TO :5 

1 YYn=o. 
3 CO~:TINUE 

RETUill-r 
El;n 
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