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16. Abstract 

This report represents the culmination of three major pieces of research effort in defining
 
and evaluating the performance of the next generation of multispectral scanners within the
 
framework of a set of analytic analysis packages. 'The integration of the available methods
 
provides the analyst with the Unified Scanner Analysis Package (USAP), the flexibility and
 
versatility of which is superior to many previous integrated techniques. USAP consists of
 
three main subsystems, (a) a spatial path, (b) a spectral path and (c) a set of analytic
 
classification accuracy estimators which evaluate the system performance. The spatial path
 
consists of satellite and/or aircraft data, data spatial correlation analyzer, scanner IFOV
 
and random noise model. The output of the spatial path is fed into the Analytic Classificati
 
Accuracy Predictor (ACAP). The spectral path consists of laboratory and/or field spectral
 
data, EXOSYS data retrieval, optimum spectral function calculation, data transformation and
 
statistics calculation. The output of the spectral path is fed into the Stratified Posterior
 
Performance Estimator (SPEST). A brief theoretical exposition of the USAP individual buildin
 
blocks are presented and example outputs produced. References are provided for a more
 
complete coverage of the algorithms.- Each building block carries with it at least one soft
ware unit. The programming provides a complete input-output compatibility among these units.
 
One test case starting from the raw data base is carried through the system and the per
formance figures in terms of a set of classification accuracies are produced. A listing of
 
the underlying software is provided in Appendix I.
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Cl-. Multispectral Scanner System Parameter Study and
 

Analysis Software System Description
 

1. INTRODUCTION
 

The utilization of sensors on earth orbiting platforms as the main
 

element of an Earth Observational System has undergone substantial
 

growth in recent years. ERTS-l (Landsat-l) followed by Landsat-2 and
 

-3 have proven exceptionally successful in collecting data to help
 

monitor the Earth's resources.
 

The principal data collection unit aboard the first three Landsats
 

is the multispectral scanner known as MSS. Although this scanner has
 

been providing data with a quality which exceeded most prelaunch
 

expectations, it has been clear from the beginning that MSS does not
 

represent the ultimate in multispectral instruments; more advanced
 

instruments providing greater detail would be needed as the user community
 

begins to become familiar with the use of such space data.
 

The design of a multispectral scanner is a very complex matter;
 

many different, interacting factors must be properly taken into account.
 

Currently operational systems such as MSS have been designed primarily
 

using subjective judgements based upon experience with experimental
 

data. In designing a scanner the use of empirical methods, at least in
 

part, is essential. Each of the large collections of scenes which a
 

given scanner will be used upon is a very complex information source; not
 

enough is known to make a simple (or even a complex) model of it by
 

which to make the design of a scanner a simple straightforward exercise
 

of a mathematical procedure.
 

And yet, more is known than when MSS was designed, and it is impor

tant to be able to carry out future designs on a more objective basis
 

than in the past. Thus the purpose of the present work is the develop

ment of appropriate mathematical design machinery within a theoretical
 

framework to allow: (a) formulation of an optimum multispectral scanner
 

* 	 The work in this report was done under Task 2.2C1 Multisensor Parametric 

Evaluation and Radiometric Correction Model. 
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system according to defined conditions of optimality and (b) an 'ability
 

for convenient manipulation of candidate system parameters so as to
 

Permit comparison of the theoretically optimum designs with that of
 

practical approximations to it.
 

In order to deal with the complexity of the design situation, the
 

first step is to determine a suitable set of parameters which adequately
 

characterize it but is not so large as to be unmanageable.. It has been
 

observed [i] that there are five major categories of parameters which
 

are significant to the representation of information in remotely sensed
 

data. They are:
 

1. The spatial sampling scheme
 

2. The spectral sampling scheme
 

3. The signal-to-noise ratio
 

4. The ancillary data type and amount
 

5. The informational classes desired
 

Thus, it is necessary to have present in the design machinery, some means
 

for evaluating the impact of change in parameter values in each of these
 

five categories.
 

Such a scanner design tool has been assembled in the form of a
 

software package for a general purpose computer. Each of the parts of
 

this package, called Unified Scanner Analysis Package (USAP) has been
 

carefully devised and the theory related to it fully documented [2, 3, 4, 51.
 

The goal of this report is to provide a documentation and description of
 

the software. In constructing this documentation it was a~sumed that this
 

package will be useful for sometime into the future, however it was also
 

assumed that it will only be used by a small number of highly knowledge

able scientists.
 

Section 2 recaps the theoretical concepts behind some of the primary
 

These are divi7ded into (a) scanner spatial charactercomponents of USAP. 


istics modeling and noise effects, (b) optimum spectral basis function
 

calculations, (c) analytical classification accuracy predictions
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(d) stratified posterior classification estimation and (e) an information
 

theory approach to band selection. Although (e) is not a part of the
 

USAP system, the results from this approach are helpful in understanding
 

the scanner design problem.
 

Section 3 shows the integration of the above modules into the
 

software system. Section 4 is the user's guide to USAP describing the
 

required inputs and the available output products. A listing of all
 

programs is provided in the appendix.
 

The work which led to USAP was immediately preceded by a simulation
 

study of possible parametric values for the Thematic Mapper, a new
 

scanner now being constructed for launch on Landsat-D in 1981. The
 

purpose of this simulation was to compare the performance for several
 

proposed sets of parameters. We will conclude this introductory section
 

by briefly describing this work because it provides useful background
 

and serves well to illustrate the problem. A more complete description
 

of this simulation study is contained in [l, 6].
 

The general scheme used was to simulate the desired spaceborne
 

scanner parameter sets by linearly combining pixels and bands from (higher
 

resolution) airborne scanner data to form simulated pixels, adding
 

noise as needed to simulate the desired SIN; the data so constructed
 

was then classified using a Gaussian maximum likelihood classifier and
 

the performance measured. The problem was viewed as a search of the
 

five dimensional parameter space defined above with the study localized
 

around the proposed Thematic Mapper parameters. The scope of the
 

investigation was primarily limited to three parameters (a) spatial
 

resolution, (b) noise level and (c) spectral bands. Probability of
 

correct classification and per cent correct area proportion estimation
 

for each class were the performance criteria used. The major conclusions
 

from the study are as follows:
 



4 

1. 	There was a very small but consistent increase in identification
 

accuracy as the IFOV was enlarged. This is presumed to stem
 

primarily from the small increase in signal-to-noise ratio with
 

increasing IFOV, Figure 1.
 

2. 	There was a more significant decrease in the mensuration accuracy
 

as the IFOV was enlarged, Figure 2.
 

The noise parameter study proved somewhat inconclusive due to
3. 


the greater amount of noise present in the original data than
 

desired. For example, viewing Figure 3 moving frolm right to
 

left, it is seen that the classification performance continues
 

the 	amount of noise added is decreased until the
to improve as 


point is reached where the noise added approximately equals that
 

already initially present.* Thus, it is difficult to say for
 

what signal-to-noise ratio a point of diminishing return would
 

have been reached had the initial noise not been present.
 

4. The result of the spectral band classification studies may also
 

be clouded by the noise originally present in the data. The
 

relative amount of that change in performance due to using
 

.80-.91 jim
different combinations of the .45-.52 Jm, .74-.80 vtm, 


and .74-.91 Pm bands is slight but there appears to be a slight
 

preference for the .45-.52 jim band. The performance improvement
 

of the Thematic Mapper channels over those approximating Landsat-l
 

and 	-2 is clear however.
 

5. 	Using spectrometer data it was verified that the .74-.80 vm and
 

.80-.91 Pm bands are highly correlated.
 

6. 	Correlation studies also showed that the range from 1.0-1.3 Pm
 

is likely to be an important area in discriminating between earth
 

surface features. Further, it is noted that the absolute
 

calibration procedure described above results in a global
 

atmosphere correction of a linear type in that assuming a
 

uniform atmosphere over the test site, the calibration
 

procedure permits a digital count number at the airborne
 

scanner output to be related directly to the present reflectance 

of a scene element.
 

The 	noise level in the original A/C data was equivalent to about .005 
NEAp


* 
on the abscissa. See Reference [ll.
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2. SCANNER PAPAMETERS ANALYSIS TECHNIQUES
 

Based upon the parametric approach introduced above, the development
 

of a parametric scanner model must give explicit concern for the spatial,
 

spectral and noise characteristics of the systems. This is what has been
 

done in the Unified Scanner Analysis Package (USAP) shown in Figure 4.
 

USA? is composed of two distinct subsystems. The spatial aspect of it
 

contains (a) a data spatial correlation analyzer, (b) a scanner IFOV
 

model and (c) a random noise model. The spectral techniques are capable
 

of producing an optimum spectral representation by modeling the scene as
 

a random process as a function of wavelength,followed by the determination
 

of optimum generalized spectral basis functions. Conventional spectral
 

bands can also be generated. Also studied was an information theory
 

approach using maximization of the mutual information between the reflected
 

and received (noisy) energy. The effect of noise in the data can be
 

simulated in the spectral and spatial characteristics. Two different data
 

bases are used in the system. The spectral techniques require field
 

spectral data while the spatial techniques require MSS generated data,
 

aircraft and/or satellite. The system performance, defined in terms of
 

the classification accuracy, is evaluated by two parametric algorithms.
 

A detailed system description and user's guide is presented in Sections 3
 

and 4. In the following, the theoretical ideas behind the five major
 

elements of USAP are discussed.
 

2.1 Analytical Classification Accuracy Prediction
 

Throughout the analysis of remotely sensed data, the probability of
 

correct classification has ranked high among the set of performance indices
 

available to the analyst. This is particularly true in a scanner system
 

modeling where generally the optimization of various system parameters
 

has as its prime objective the maximization of the classification accuracy
 

of various classes present in the data set.
 

The estimation of the classification accuracy is fairly straightfor

ward if Monte-Carlo type methods are employed. In system simulation and
 

modeling however, such approaches are generally a handicap due to their
 



Figure 4. Block Diagram of the Unified Scanner Analysis Package (USAP).
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heavy dependence on an experimental data base, the availability of which
 

can be limited due to a variety of reasons. What is required, therefore,
 

is a parametric classification accuracy estimator for a multiclass,
 

multidimensional Gaussian Bayes classifier. This procedure should require
 

the class statistics, mean vectors and covariance matrices, as its only
 

input and produce a set of probabilities of correct classification.
 

This technique has been developed, tested, implemented and comprehensively
 

reported [2]. The following is a summary of the method and some" results.
 

The probability of Error as an N-Tuple Integral.
 

The classification of a multidimensional observation vector into
 

one of M populations is conceptually identical to the binary case. Let
 

0, M and N be the feature space, number of classes and the dimensionality
 

of Q respectively. The procedure is to divide 2 into M mutually disjoint
 

sets, Pi and to assign each feature vector to a set in accordance with
 
-


an appropriate rule. This is illustrated in Figure 5. Let Zi, i = 1,
 

2, ..., M partition S1in R . The Bayes risk is defined as 

R = i J P(m.) Ci. f-Xlw) dX 
1~ Z. J=l 

I 

is the cost of deciding w1. where w. is true. In the case where
 

C..=0 for ij and C..=1 for i#j. R is the probability of error.
 
iJ 1:
 

where C.. 13 i1
 

Among all possible choices of Z. the Bayes rule partitions Q into
1
 

Z.=Z.* such that R=R* is. the the minimum probability of error. Assuming

1 1
 

that the population statistics follows a multivariate normal law, the
 

optimum Bayes rule is as follows [7].
 

X a W3. if W. < W. Vi # j - 1, 2, ..., M 

where
 

Wi = (X- i)T [i-1 (X-_.u + ln[iZ.-21n P(o')m 



i0
 

~wo2 
~~WM 

Allocation of a Measurement Vector X to an Appropriate 
Partition
 

F-igure'5. 

of the Feature Space.
 



with
 

X 	= observation vector
 

= mean vector for class w
 
(2)
 

= covariace matrix for class .1
 

P( 	 i) = apriori probability for i 

The error estimate based on direct evaluation of Eq. (1)exhibits all the
 

desired-properties outlined previously.
 

The evaluation of multiple integrals bears little resemblance to
 

their one dimensional counterparts, mainly due to the vastly different
 

domains of integration. Whereas there are three distinct regions in one
 

dimension; finite, singly infinite, and double infinite; in an N dimensional
 

space there can potentially be an infinite variation of domains. The
 

established one dimensional integration techniques, therefore, do not
 

carry over to N dimensions in general. Hence, it is not surprising that
 

no systematic technique exists for the evaluation of multivariate integrals
 

except for the case of special integrands and domains [8]. The major
 

complicating factor is the decision boundaries defined by Eq. (2). P. is
 

defined by a set of intersecting hyperquadratics. Any attempt to solve
 

for the coordinates of intersection and their use as the integration limits
 

will be frustrated if not due to the cumbersome mathematics, because of
 

impractically complicated results.
 

In 	order to alleviate the need for the precise knowledge of boundary
 

locations and reduce the dimensionality of the integral, a coordinate
 

transformation followed by a feature space sampling technique is adopted.
 

The purpose of the initial orthogonal transformation of the coordinates
 

is 	an N to 1 dimensionality reduction such that the N-tuple integral is
 

reduced to a product of N one dimensional integrals. Let the conditional
 

classification accuracy estimate, Pc be the desired quantity. Then
 

the transformed class w. statistics is given by
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. . j = 1, 2, ... , M (3) 

-3-
S. = 0T. 0 

where 0. is the eigenvector matrix derived fromi" Naturally, in each
 

transformed space, Ti(Q), wi has a null mean vector and a diagonal
 

covariance matrix.
 

The discrete feature space approach is capable of eliminating the
 

If 0 is the
need for the simultaneous solution of M quadratic forms. 


continuous probability space, a transformation Ti is required such that
 

can be completely described in a nonparametric form, thereby
in TiQ), r.
1 1 

bypassing the requirement for.an algebraic representation of P.. This
 

desired transformation would sample Q into a grid of N-dimensional
 

hypercubes. Since the multispectral data is generally modeled by a
 

multivariate normal random process, a discrete equivalent of normal
 

random variables that would exhibit desirable limiting properties,
is
 

Let ynBi (n, p) be a binomial random variable with parameters
required. 


n and p. The x defined by
 

Yu- np
x Yn 0,i, 2, ... , n (4) 

converges to xN(O, 1) in distribution [91, i.e.,
 

lim F (X) - - F(x)
n 

The convergence is most rapid for p= , then
 

(yn - n/2)2
 
(5)
n 
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The variance of xn is set equal to the eigenvalueof the transformed Yi
 
by incorporating a multiplicative factor in Eq. (5).
 

The segmentation of . b a union of elementary hypercubes makes
 

nonparametric representation of P. and its contours feasible. Following
1
 

the orthonormal transformation on o. and sampling of 2 accordingly, each
1
 

cell's coordinate is assigned to an appropriate partition of r. This
 

process is carried outexhaustively, therefore FI can be defined as a set
 

such that
 

r. = {ux :x el*.i (6)
 

once the exhaustive process of assignment is completed, the integral of
 

f(Xjwi) over Fi is represented by the sum of hypervolumes over the
 

elementary cells within P.. The elementary unit of probability is given by
1 

61 62 6N
 

f f (Xi) = 2 f (xli i ) dN T f (x 2 lo i ) d 2 2--2 f (xNIwi) dN 

C -61 62 -N
 

2 2 2 (7)
 

where C. is the domain of a sampling cell centered at the origin and 6.
 

is the width of a cell along the ith feature axis. The conditional
 

probability of correct classification is therefore given by
 

c Il+ 61 c2+ 62 

Pcli - T (x i (x-l2) (C)dx2J f jw) (C)dx x. 
c -6 2c -61 


2 2
 

(8)
 

c +6 
"n n 

c 2.-- f (xNIw±) I.I(C) dxN 

c -6 
n n
 

2
 

with overall classification accuracy given by
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M 

p P(m.) P 1W. (9)
•
C I 

where
 

1 if Cc'. 
(10)
ii(C) = 

0 otherwise.
 

C = The domain of an elementary cell
 

Figure 6 is a geometrical representation of Eq. (8).
 

Experimental Results.
 

The analytic classification accuracy prediction (ACAP) has been
 

Two examples are repeated hepe.
thoroughly tested and documented [2]. 


The first experiment investigates the performance of the estimator vs.
 

Small to moderate range of
grid size i.e., number of cells per axis, n. 


Figure 7
 n is required if computation time is to remain realistic. 


vs. n for three classes having some hypotheshows the variation of Pcjw 

c1
 

The main property of the estimator is
tical statistics in 3 dimensions. 


its rapid convergence toward a steady state value thereby alleviating
 

the need for excessively fine grids and hence high computation costs.
 

The data collected over Graham County, Kansas is used to perform
 

a comparison between the ACAP algorithm and a ratio estimator such as
 

LARSYS. The results are tabulated in Table 1.
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Table 1. ACAP and LARSYS Performance Comparison.
 

Class No. of Points LARSYS ACAP
 

Bare Soil 443 65.9 78.3
 

Corn/Sorghum 99 89.9 91.0
 

Pasture 1376 98.4 95.0
 

Wheat 459 94.8 93.9
 

Overall 2377 87.2 89.6
 

The comparison of ACAP and LARSYS results from Table 1 is inconclusive.
 

In some cases the difference is negligible (corn) and in some, significant
 

(bare soil). Examination of the data statistics revealed that the
 

assumption of normality does not hold throughout the populations statistics.
 

This problem can be rectified by simulating random Gaussian data having
 

identical statistics with the real data, hence assuring the normality
 

assumption. Repeating the LARSYS and ACAP procedures produces a new set
 

of classification accuracies, Table 2.
 

Table 2. ACAP and LARSYS Performance Comparison Simulated Data.
 

Class LARSYS% ACAP% Accuracy Difference%
 

Bare Soil 77.8 78.3 0.5
 

Corn 91.2 91.0 - 0.2
 

Pasture 95.3 95.1 0.2
 

Wheat 94.2 93.9 0.2
 

Overall 89.6 89.6 0
 

The differential between ACAP and LARSYS results has been narrowed
 

considerably, ranging from a high of 0.5% for bare soil to 0% for the
 

overall classification accuracy. Two conclusions can be drawn from the
 

results of this experiment. First, the ACAP and Monte Carlo type
 

classifiers produce practically identical results if the underlying
 

assumptions are satisfied (e.g., normality of the statistics). Second
 

and more revealing is the fact that the results of the ACAP processor
 

indicated an upper bound for the classifability of bare soil had
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its statistics been Gaussian. This result is a direct property of ACAP's
 

data independence. Figure 8 is the ACAP estimator vs. n for Graham Co.
 

data.
 

The above selected experiments and others reported in the biblio

graphy establishes ACAP as a viable and necessary tool in any analytical
 

remote sensing data collection system modeling and simulation when the
 

performance index is defined as the probability of correct classification.
 

2.2 Stratified Posterior Classification Performance Estimator.
 

The second classification accuracy estimator to be presented here
 

(SPEST) is based on the maximization of the aposteriori probability
 

associated with each sample. This formulation is closely related to
 

the maximum likelihood principle used in the ACAP. The distinction
 

arises in the determination of integration domains. Where in ACAP a
 

"deterministic" grid was set up to sample the feature space, SPEST uses
 

an internally generated random data base and assigns the feature vector
 

to the appropriate class via the maximum aposteriori principle. Due to
 

the different approaches adopted, the statistical properties of the
 

estimators could be substantially different although no major study has
 

yet been carried out. It has been observed however, that the SPEST
 

algorithm is somewhat faster than the ACAP in selected cases. The
 

approach here is similar to that described in Moore, Whitsitt, and
 

Landgrebe [10].
 

1, 2, 3, ... , M,
Let X be an observation from one of M classes wi, i = 


with a priori probabilities P.. The maximum likelihood decision rule can
 1
 

be stated as follows: Assign X to the class w k if
 

P(ikIX) = max {P(wi.X)}

JX) 
 i
 

This rule partitions the observation space Q into subregions FI, 1'2 , ., PM , 

corresponding to the classes il, ()2' . ' M' respectively. Define the 

indicator function as 
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The probability of correct classification integral is given 'by
 

Pc = f M , I.(x) p(xi) dx (11) 

It is desirable to evaluate the probability of correct classification for
 
I 

each class as well as the overall probability. The performance probability
 

for the ith class is
 

Pci = JI i(x) p(xlt& (12) 

The overall performance, then, is
 

M 

p = iPci (13) 
c i= l1 c 

From Bayes' rule
 

P(mijx) p(x)
 

p(xli) P. 

hence,
 

Pci = l(x) ptn p(x) dx 

p(x) is a mixture density
 

M 

.p(x) = X P. pjx 
jl p ( 
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Therefore,
 

M P" 

I - T2 x) P(4)Ix) p(xV1 ) dx (14)
Pc1 j=l P i
 (
 

Define
 

Qi(x) = Ii(x) P((i Ix) 

Then 

f Qi(x) p(xIW) dx 

is the conditional expected value of Qi(x) given that X comes from the
 

class C.. The estimate
 

M p N. 

(15)
j=l PN I Qi(xk)j=P5 jJ k=l 

is unbiased. This estimator is similar to the stratified posterior
 

estimator described by Whitsitt [10].
 

To do this a pseudo-random sequence of uniformly distributed random
 

digits is generated by the power-residue method and is transformed by the
 

inverse cumulative-distribution-function method to obtain nearly Gaussian
 

samples. These samples are used to fill the elements of the data vector Y.
 

Each vector Y, then, has expected value 0 and covariance matrix I.
 

By performing the transformation
 

X = . F. Y + m. (16)
J j - -3
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On the vectors I, the random vectors for class j are obtained, where 4'.
 

is the matrix of eigenvectors required to diagonalize the covariance matrix 

of class j, rS is the diagonal matrix of eigenvalues 
and m. is the desiredJ 

These random vectors are used to evaluate the estimators in
 mean vector. 


Eqs. (15) and (13). 

The term that must be evaluated from Eq. (14) is
 

P p(xlwo) 

P(C.Ix) = YPk P(X_ k Q 

k 

To evaluate this probability compute P. p(xloj) for each class w.. Choose
 

the largest value of the product P. p(xlm.) and divide by the sum P P(XLk)

j k 

P(x~mk) = exp {- (x-mk)T K1 (x - m) (17) 

(27F) 2K I 

and Kk are the mean vector and covariance matrix 
respectively for class
 

k. Substituting Eq. (16) into (17),
 

p(xIk) = - exp {- T T- Y 

2YT r. T -1 "1 -18 
-2 -j Kk (-m-,mk) 4 (m.-mk) K (m.-mk)]} (18) 

In this form it is not necessary to perform the intermediate computational
 

step of transforming the data. We need only to generate M sets of random
 

vectors Y with mean vector 0 and covariance matrix I and use them in the
 

Eq. (18).
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Estimator Evaluation.
 

A subroutine program was written to evaluate classification perfor

mance by the above method. To test the method a three class problem was
 

constructed. The mean vectors for the classes were
 

1 ]
T
 

S = [-i, -i, ..., 
.. . ]T M 2 [0, 0, 


N'2 T 
L3 = [, ,] 

The covariance for each class was the identity matrix. The number of
 

random vectors generated for each class was 1000. The exact classifica

tion accuracy as a functidn of the dimensionality can be evaluated for
 

this case
 

P = 1 - erfc (fi/2)
 

Pc2 = 1 - 2 erfc (VN/2)
 

P = 1 - erfc (A-/2)
 

P =1 - 4/3 erfc (AT/2)

c 

t~ -X2/2 

where erfc (a) = edx
 

and n is the number of dimensions. Table 3 contains the results of
 

evaluating the class conditional performance and overall performance
 

from one to ten dimensions.
 

To evaluate the variance of the estimates different starting values
 

for the random number generator were used. Twenty trials were used to
 

evaluate the maximum bound and the standard deviation from the true value.
 

These results are presented in Table 4.
 

For the overall accuracy the estimate is within .005 of the true
 

value. This is certainly sufficient for performance estimation. The
 



Table 3. Test of the SPEST Error Estimatd. 

Pc1c P P P Pc2 Pc30 

1 0.6915 0.3829 0.6q15 0.5886 0.6859 0.3793 0.7001 0.5884 
2 0.7602 0.5205 0.7602 0.6803 0.7671 0.5116 0.7700 0.6829 
3 0.8068 0.613j5 0.8068 0.7423 0.8037 0'.6202 0.8081 0.7440 
4 0.84-13 0.6827 0.8413 0.7885 0.8283 0.6852 0.8550 0.7895 
5 0.8682 0-.7364 0.8682 0.8243 0.8642 0.7425 0.8703 0.8256 
6 0.8897 0.7793 0.8897 0.8529 0.8767 0.7939 0.8787 0.8498 
7 0'.9071 0.814I 0.907i 0.8761 0.8993 0.8242 0.9065 0.8766 
8 0.9'214 0.8427 0.9214 0.8951 0.9129 0.8472 0.9240 0.8947 
9 0.9332 6;8664 0.9332 0.9109 0.9193 0.8809 0.9360 0.9120 

10 0.9431 0.8862 6.943i 0.924i 0.9209 0.9012 0.94'81 0.9234 
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Table 4. Variation of Estimates,
 

pcl Pc2 Pc3 Pc
 

1 	 .016 .010 .017 .003 a
 
.033 .019 .049 .005 Bound
 

2 	 .018 .010 .014 .002 a
 
.036 .018 .027 .005 Bound
 

3 	 .016 .017 .017 .003 C 

.046 .031 .055 .007 Bound 

4 	 .011 .016 .015 .003 a
 
.025 .029 .029 .005 Bound
 

5 	 .015 .014 .012 .002 a
 
.031 .033 .026 .004 Bound
 

6 	 .014 .014 .010 .003 a
 
.026 .023 .022 .006 Bound
 

7 	 .009 .016 .012 .003 a
 
.027 .033 .027 .005 Bound
 

8 	 .013 .013 .012 .003
 
.025 .036 .023 .006 Bound
 

9 	 .013 .014 .012 .002 a
 
.026 .031 .021 .004 Bound
 

I0 	 .009 .012 .009 .002 a
 
.016 .024 .019 .005 Bound
 

a = standard deviation 

Bound = 	maximum difference between estimate and true value over 
20 trials 
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class conditional estimates are less reliable but are sufficient to
 

observe trend in the performance due to individual classes.
 

2.3 Scanner Spatial Characteristics Modeling
 

The multispectral scanner represents the,most important element in
 

a remote sensing data gathering system. Therefote, an understanding of
 

the signal flow through this subsystem is essential. As data is processed
 

through the scanner, its statistical properties undergo a transformation.
 

This in turn will alter the population separabilities and hence the
 

classification accuracies. The comparison of this quantity at the scanner
 

input and output and observationof its variation with the system para

meters sheds considerable light on the overall system design. Since the
 

Bayes Ppectral classifier depends solely on the population of spectral
 

statistics, methods need to be developed that relate the scanner's input and 

output statistics. A complete derivation of such relationship is given 

in Appendix A of [2]. A summary follows: 

Scanner Characteristic Function.
 

Figure 9 is a basic block diagram of the scanner spatial model where
 

f through fN are N stochastic processes corresponding to N .spectral
 

bands and h(x,y) is a two dimensional PSF. In particular where the Landsat
 

scanner is concerned, the assumption of a Gaussian shaped IFOV has been
 

widespread. Let f(x,y), g(x,y) and h(x,y) denote the input and output
 

random processes associated with any two matching bands and the scanner
 

PSF respectively. It is well known that the above quantitfes are related
 

by a convolution integral.
 

Jg(x,y) f f(x-1,y-A 2 ) h(XV1 2) d IdX 2 (19)

it follows that
 

S(U,V) SIf(u,v)IH(u,v)l2 (20)
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n(x,y)
 

f2 h(xy)+ 92
 

f- _-+ gN
 

Figure 9. Scanner Spatial Model as a Linear System.
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where S(u,v) is the spectral density of the appropriate random process 

and H(uv) is the two dimensional Fourier transform of the scanner PSF. 

Let M(u,.v) = IH(u,v)12 , afd m(T,n) its inverse transform. Then the output, 

spatial autocorrelation function is given by
 

R (T,n) = Rff(T,n) * m(Tn) (21)
 

In order to obtain specific results, the following assumptions are
 

invoked; (a) exponential data spatial correlation, (b) Gaussian IFOV,
 

PIT I Rff(T,n) = 011 r,n 0, 1, 2, 

(22)
 

2 2 
h(x,y) = c1 e - e'2 

r r 
0 0
 

=-a =-b 
where px = e and py = e are the adjacent sample and line correlation 

coefficients respectively, r is the scanner PSF characteristic length 

O 
in-pixels and c1 a constant providing unity filter gain. Using the
 

separability property of the functions inv6lvedi
 

R g(T,,I) = Rff(T-X-) m(x) dx f Rff((Th-y) rn(y) dyJ 

where
 

c 
2' 2 
r0 2 2 n 

m(rr) = 2 e 2r 2e 2- 2 (23) 

0 0 

carrying out the integration, the scanner characteristics funation is
 

given by
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2 a222 
lar a r 

_- -aT +a 

W (T,I,a,b) = Q(ar --L-) + e Q(ar +U)X 
0 0 

bt~rr 2or Qb l 

o
 
+ o +bf 

2
Lr- Q(br2Q(br ) (24)e
 

where
 

2
x 


Q(x) = e 2 

The spectral statistics is a subset of the spatial statistics hence
 

W (0,0,a,b) defines the ratio of the variance at the scanner output to
 s 

the corresponding input quantity.
 

The output crosscovariance terms can be similarly derived. Let
 

the crosscorrelation function between bands i and j be defined as
 

Rf.f (T,) = rf.f.af of e-aeIrI -biiI (25)
213 1J 1 j 

where rf f is the spectral crosscorrelation-coefficient at the input
 

such that Irff I < 1 " aij and bI.j are defined similar to a and b with 

the additional channel specification. Following the previous technique
 

it follows that the crosscovariance term between channels i and j is
 

given by
 

Rggj (0,0) = rffoff off Ws(0,0,aij,b)ij (26) 

1J 1 .J i i ij 12 2 
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The corresponding crosscorelation coefficient follows:
 

W (0,0,a :i,bi) 
Sgigj - rff
 

w 2(0,0,aii~bii) WbO,O,a. .,b..) i 
s si, 33 33 

Therefore, the band-to-band correlation coefficients are identical at
 

input and output provided the spatial auto and crosscorrelathe scanner 


tion function at the input are equivalent, i.e., aiiaij, biib ij. A
 

closed expression can also be obtained for a rectangular PSF defined by
 

I~o Ix lyl o/2
 

(28)
h(x,y) = 

0 elsewhere
 

the corresponding characteristic function is given by
 

-a. .r 

(i1 - ) X 
-l
W (OOa,.)= 2 l-e 110 

s O aiii a..r a..r
 
I 0 11 0 

-b..r
 

b..r2 (I l-e.r 110 -) (29) 

ii o ii 0 

Eq. (24) and Eq. (29) are plotted in Figures10 through 13 for different
 

as a running parameter. The
 scene correlations with the IFOV = r0 


of either PSF is the increasing output
universal property exhibited by Ws 


variance reduction as IFOV is increased. This property has,been widely
 

verified experimentally. Comparison of Figumsll and 13 indicates that
 

for the same IFOV, a Gaussian shaped IFOV causes a heavier variance
 

a rectangular PSF.
reduction in a spectral band than that of This
 

property can potentially produce a higher separability among the popula

tions as the signal is processed through the scanner electronics.
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Adjacent Line Correlation = .65.
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The input-output statistical relationship just developed along with
 

the analytic classification accuracy predictor,provide the two basic
 

tools required for a parametric evaluation of the MSS performance under
 

varying operating conditions. As an illustration, three hypothetical
 

classes with some prescribed statistics are specified at the scanner
 

input. Three different sceneswith adjacent sample correlations of 0.5,
 

0.85 and 0.95 are considered. The scanner characteristic function
 

produced a set of transformed statistics at the output followed by the
 

estimation of the conditional classification accuracies using ACAP, for
 

8 different IFOV's. The results are plotted in Figuresl4 through 16.
 

Two main properties stand out. First is the improvement in class
 

separability as the IFOV is enlarged. This is true in all the cases.
 

The rate of improvement however, is strongly correlated with the scene
 

spatial correlation. The lower the input scene correlation, the higher
 

the classification accuracy improvement per IFOV step. This property
 

is brought about by the characteristics of Ws where one step increase
 

in IFOV size produces a greater variance reduction for a low scene
 

spatial correlation than a similar increase would cause in a highly
 

correlated scene.
 

The scene spatial correlation plays a significant role in the overall
 

system performance which is not readily obvious. One of the well
 

known properties of linear systems with random inputs is the reduction
 

of the output variance/input variance ratio as the point spread function
 

(PSF) is widened. In this section it has been shown theoretically that a
 

third factor in this reduction is the spatial correlation structure of
 

the input stochastic process. Specifically, with everything else fixed,
 

a process having a moderate scene correlation will undergo a tighter
 

clustering around its mean than an otherwise identical process with a
 

highly correlated spatial characteristic. On the extreme side of the
 

correlation scale with a small pixel-to-pixel correlation, the ratio of
 

the output variance to the corresponding input quantity is very negligible.
 

Consider a bandlimited white noise process with a spectral density,
 

shown in Figure 17,where W is the bandwidth and No/2 the two sided spec
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No/2
 

-2gW 27W w
 

Figure 17. Bandlimited White Noise Spectral Density.
 

tral density. As W increases the adjacent pixel correlation in the
 

scene decreases. The increase in W, however, is accompanied by a
 

decrease in No/2 if this process is to remain physically realizable
 

(finite energy). Under a finite energy constraint, therefore, as W-

No/2-- 0. In the limit the energy content of the output random process
 

will be nil.
 

Random Noise.
 

Additive random noise entered at various stages of a scanner system
 

can degrade the overall system performance substantially. The noise can
 

be classified into two broad categories: external and internal. A
 

major source of external noise is atmospheric in nature mainly due to
 

absorption (e.g., water vapor) and scattering. The detector and quanti

zation noise comprise the major component of the internal noise sources.
 

From a system analysis point of view, the latter represents a more tract

able and better understood component of the random noise [11], while
 

the former still awaits further experimental documentation. The purpose
 

of this work is not so much the exploration of the various noise sources
 

but the integration of its effect within an analytic analysis package
 

once its characteristics and origin has been determined.
 

can be stated that atmospheric
From the theoretical results obtained it 


noise, in the uplink path at least, has negligible degrading factor
 

compared with the detector and quantization noise. Let f(x,y)., Nf(x,y),
 

f'(x,y) and Nf'(x,y) be the input random process, input additive white
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noise, the output random process and the noise component of the output
 

signal respectively, then
 

f-(x,y) = f(x,y) * h(x,y) (30) 

N (x,y) = Nf(x,y) * h(x,y) (31)
f 

Define
 

(SNR)f = Var {f(x,y)1/Var {Nf(x,y)l (32) 

(SNR) -= Var {f'(x,y)}/Var {N (x,y)) (33) 
f f 

Recalling the functional dependence of Ws on the input scene spatial
 

correlation, it follows that the ratio of the variance of a white noise
 

process at the scanner output to the corresponding input quantity is of
 

the order of 5% to 10%, higher or lower depending on the IFOV size.
 

Therefore,
 

Var {f'(x,y)} < Var {f(x,.y)l (34,)
 

Var {N (x,y)l << Var {Nf(XY'} (35)

f
 

hence
 

(SNR) f >> (SNR)f (36)
 
f
 

It then follows that the noise component of the output process prior to
 

cases.
detector and quantization noise is negligible in most 


In order to observe the effect of noise on the scanner output class
 

separability the test class statistics were modified to exhibit the effect
 

of random noise. The assumed properties of the noise are additive, 

white and Gaussian. Let F-(x,y) )e the signal to be teJmeterud to 

Earth. 
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f"(x,y) = f'(x,y) + N .(x,y) (37)
 
f
 

the statistics of f'"(x,y) and f'(x,y) are related by
 

+ Y (38)
 
r~f -N.
 

f
 

the simple addition is due to the signal and noise independence. Assuming
 

a zero mean N .. the mean vector are identical, i.e., 
f 

E {ff"j = E {f-) 

Among the four assumptions about the noise,:its Gaussian property is the
 

weak link due to the Poisson distributed detector noise and uniformly
 

distributed quantization noise. Relaxing the Gaussian noise assumption,
 

however, would mean the design of an optimum classifier for non-normal
 

classes and evaluation of its performance. A task that would complicate
 

matters considerably. Due to the relatively insufficient documentation
 

of the characteristics of random noise in multispectral data, the initial
 

Gaussian assumption is adhered to.
 

Following the adopted SNR definition, three different noise levels
 

are considered and the corresponding overall classification accuracies
 

for the three previously used test classes are estimated. Figure 18 is
 

the variation of P vs. IFOV with SNR as the running parameter. For a
 
c
 

fixed IFOV, P increases with increasing SNR. For a fixed SNR, P
 c c
 

increases with increasing IFOV size. These illustrations have shown
 

that with a proper coupling between the ACAP and the scanner characteristic
 

function, the progress of the population statistics through the system
 

can be studied on an analytical and entirely parametric basis. The
 

accompanying classification accuracies can measure the designer's success
 

in selecting the spatial and/or spectral characteristics of a Multispectral
 

Scanner System.
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2.4 Optimum Spectral Function Research
 

In earth observational remote sensing much work has been done with
 

extracting information from the spectral variations in the electromagnetic
 

energy incident on the sensor. Of primary importance for a multispectral
 

sensor design is the specification of the spectral channels which sample
 

the electromagnetic spectrum. An analytical technique is developed for
 

designing a sensor which will be optimum for any well-defined remote
 

sensing problem and against which candidate sensor systems may be compared.
 

Let the surface of the earth at a given time be divided in strata
 

where each stratum is defined to be the largest region which can be
 

classified by a single training of the classifier. Each point in the
 

stratum is mapped into a spectral response function X(X) as in Figure 19.
 

That is if one observes a point in the stratum with the sensor, then the
 

function X(A) describes the response variations with respect to the
 

wavelength, X. The stratum together with its probabilistic description
 

defines a random process, and the collection of all of such functions
 

X(X) which may occur in the stratum is called an ensemble.
 

The general concept of a pattern recognition system in this applica

tion requires that if each X(X) is to be classified by a classification
 

algorithm, this can be accomplished by first measuring a finite number
 

of attributes of X(A), called features. This is the function of the
 

sensor system as depicted in the upper left portion of Figure 20 where
 

X1, X2, ..., X are the values of N features for a given X(X). It
 

may be viewed as a filtering operation on X(A).
 

For example, on the right portion of Figure 20 the function of MSS
 

of the Landsat satellites is illustrated. In this case a number propor

tional to the average energy in a wavelength interval is reported out by
 

the sensor for each of four wavelengths. Mathematically this may be
 

expressed as
 

Zn f X n)(X)dX n = 1, 2, 3, 4 
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Next we must consider what would constitute an optimum sensor. We
 

first note that in general the sensor may be used over any part of the
 

earthb surface, at anytime, and for many different applications (sets
 

of classes). Therefore the sensor must be optimized with respect to the
 

entire set of strata represented by these cases. As a result of the large
 

size of this set and the fact that its statistical description is not
 

known, we will optimize the sensor with resp&ct to its signal representa

tion characteristics. The fX(A)} each contain information Useful to the
 

classifier; we require of the sensor design that for a given N a maximum
 

of this information which was in X(A) still be present in {X }. Since
 n 
the specific nature of this information is not known a priori, we can
 

only assure that this will be the case for any stratum if X(A) is
 

recoverable from fX I.
 
n 

Let X(A) be the result of attempting to reconstruct X(A) from {X }.
 
n 

A fidelity criterion which is useful in this instance is
 

= f[X(X) - x(X)] 2 dA (39) 

the so called mean square error or mean square difference between X(X) 

and X(A). 

It is known [12J that'a reconstruction scheme which minimizes C for 

a given N is 

X(A) = XI1 (A) + X2? 2(A)+.... + +n(A)
 

N
 
X + (A) (40)
 

n=l
 

provided that the {n(A)} are orthogonal over the wavelength interval of
 

interest, i.e.,
 

S m(X)n(X) d) = 0 m # n (41) 
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Figure 19. Realization of a Stratum as the Ensemble of Spectral Sample Functions.
 



Figure 20. Basis Function Expansion of a Random Process.
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and the {X } are calculated by

n 

X = X(x) Mn(3dA (42) 

Note for example that'the Landsat example of Figure 20 satisfies
 

these conditions. In the lower right of Figure 20 is depicted the
 

result of such a reconstruction for the Landsat example.
 

While use of Eq. (42) in the case does minimize s with respect to
 

the choice of values of TX 1, a further improvement may by obtained by
n 

choosing a set of {.iIXI} which minimizes E. Itcan be shown [5, 12]
 

that the set { n(X)} which accomplishes this must satisfy the equation
 

U = R(A,C) C()dC (43) 

where
 

R(X,C) = E{[X(A) - m()] [X( ) - m( )]1 (44) 

is the correlation function of the random process and m(X) is its mean
 

value at X.
 

Such a signal tepresentation defined by Eqs. (40-44) is known as a
 

Karhunen-Lo~ve expansion [13]. It provides not only for the most rapid
 

convergence of X(X) to X(X) with respect to N but in addition the random
 

variables (X } are uncorrelated and since the random process is Gaussian
 n 

they are statistically independent. Further the only statistic required
 

of the ensemble is R(X,C). This representation of {X(X)} is therefore
 

not only optimal, it is convenient.
 

A useful generalization of the Karhunen-Lo~ve expansion can be made.
 

Suppose a priori information concerning portions of the spectral interval
 

are known and it is desired to incorporate-this knowledge into the analysis.
 

A weighting function w(A), is introduced which weights portions of the
 

interval according to the a priori information. As an example, measure
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ments were taken over the spectrum and it was observed that there was
 

considerable variation in the signal in the water absorption bands
 

around 1.4 and 1.8 micrometers. This variation was due to measurement
 

and calibration difficulties rather than being a result of variations
 

in the scene. Therefore, the weighting function was set to zero in
 

these absorption bands. This generalization is referred to as the
 

weighted Karhunen-Lo~ve expansion [5]. Eqs. (40), (42) and (43) become
 

N 
X(A) = x.( AsA (45)

i=1l
 

a '(A) = FR(A,E) w( ) 4, (E)dE (46)
w. i f w 

x, X(A) w() tw .(X) dA (47) 
1
 

where the eigenfunction, 41 (A) are solutions to the integral Eq. (46)

W'.
 
1
 

with the weight w(A). The special case where w(A) = 1.0 for all AcA
 

reduces the expansion to the original form in Eq. (40), (42) (43), and
 

(44).;
 

The results of having utilized this means of optimal basis function
 

scheme on spectral data are contained in reference [5]. From them one car
 

see the significant improvement in classification accuracy which decreased
 

spectral representation error will provide. One can also determine the
 

spectral resolution and band placement needed to achieve such classification
 

accuracy improvement.
 

2.5 Information Theory Approach to Band Selection
 

The ptoblem of selecting a set of "optimum" windows in the electro

magnetic spectrum for observing the reflected sunlight has always been of
 

considerable interest. Depending on the definition of the optimality
 

different methods have been developed. One such approach was shown in
 

Section 2.4 using K-L expansion to select an optimum set of basis functions.
 

In this section an information theoretic definition of optimality developed
 

in [3] is explored.
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Mutual Information and Stochastic Modeling.
 

The reflected energy from the target is detected by the scanner
 

and corrupted by various noise sources. If S is the "noise-free" signal,
 

Y the observation and N a random disturbance, then
 

Y = S + N (48) 

the reduction of uncertainty about S obtained from Y is called the
 

average or mutual information between the observation and original signal.
 

Since the reconstruction of the reflected signal from the noisy observa

tion is the highly desirable capability, the comparison of such average
 

information-and selection of these bands with the highest information
 

content is chosen as-a means of spectral band selection. Let
 

S = (sl, s, .2. ) 

and
 

)
Yn =(Yl' Y2' "''Yn
 

where si and yi are the coefficients of the orthonormal (K-L) expansion
 

of Y and S, then the mutual information between Y and S is given by [3].
 

T(Y,S) = - log et. (49) 

where C and C are the covariance matrices of (yi, i = 1, 2, ...) and
 

(ni = No/2, i = 1, 2, ...) and No/2 is the two sided spectral density of
 

the additive white noise. Equivalently I(Y,S) can be represented in
 

terms of the Wiener-Hopf optimum filter impulse response,
 

A

-(2


T(,)= J h(A,A) dA (50) 

11
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h(X,A) provides an estimate of S from Y with a minimum mean-square error.
 

This relationship, however, is not a practic d-.dethod of evaluating I(Y,,S)
 

since the actual solution of the Wiener-Hopf integral itself is a nontriyal
 

task. This problem can be circumvented by a discrete state variable
 

formulation, i.e.,

s(k+l) = _s(k) + FW(k) ke[Al ,x2 ] (51)
 

where
 

s1(k+l)
 

s2(k+l)
 

s(k+l) = 

Sn(k+l)
 

is an (nxn) matrix
 

r is an (nxl) vector
 

W(k) = a descrete independent Gaussian
 

zero mean random process
 

The formulation of the problem in the discrete domain -provides a practical
 

way of computing h.X,X) through Kalman filtering techniques. The discrete
 

version of Eq. (50) is given by
 

I(Y,S) = - h(k,k) 

k 6 {AA 2} (52)
 

The discrete nature of this approach makes the evaluation of Eq. (52)
 

considerably more practical than its continuous counterpart. This is due
 

to the fact that the Wiener-Hopf equation is easily solved in only those
 

cases for which the analytical form of Ks (A,u).,, the signal eovariance
 

fnnction, is fairly simple, not likely for most-random processes encountered
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in remote sensing. Since h(k,k) is dependent on the parameters of Eq. (51)
 

a concise representation of s(k+l) is needed.
 

The general form of Eq. (51) is given as an autoregressive (AR)
 

model
 

m1 m2 

s(k) = X a.s(k-j) + I bji(k-j), + W(k) (53) 
j=l J j1 

s(k) = The spectral response at the discrete
 

wavelength k. It is a Gaussian random
 
process.
 

w(k) = zero mean independent Gaussian disturbance
 

with variance p.
 

*(kj) = deterministic trend term used to account
 
for certain characteristics of the
 
empirical data.
 

a.,b. = are unknown constant coefficients to be 
I i determined. 

ml'm2 = The order of the AR model. 

The identification selection and validation of general AR models
 

for the representation of a random process is a well developed technique
 

[14,15]. The identification of an appropriate model provides the
 

necessary parameters required for the evaluation of I(Y,S) in Eq. (52).
 

The model selection process for a selected number of ground covers has
 

been carried out [3] leading to the ranking of a set of spectral bands
 

according to the criterion outlined previously. A summary of the
 

experimental results are given below.
 

Data Base and Model Selection.
 

Two different sets of empirical data are used to demonstrate the
 

techniques developed here. The first set consists of observations of
 

wheat scenes. The second set consists of several vegetation cover
 

types such as oats, barley, grass, etc. For each scene the spectral
 

responses, collected by the Exotech 20C field spectroradiometer, are
 

averaged over the ensemble. It is thought the resultant average
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zspectral response provides a relatively good data set for demonstration
 

-purposes. Figures2l and 22 show the average response for both cover
 

types.
 

In order that the study be carried out in a context that is rela

tively realistic for multispectral scanners,, the spectral response -of
 

the two data sets is divided into a cnumber -of spectral banids. The division
 

is fairly arbit-rary, but each band must contain a sufficient number of
 

.data points to ensure accurate parameter estimation for model identifi

cation. The spectrum is divided into 9 bands from 0.45 pm to 2.38 pm
 

with ,two gaps in the 1.34-1.45 pm and 1.82-1.96 -pm range -due to atmos

pheric absorption, see Tables 5 and '6.
 

Table 5.' Spectral Bands for Wheat Scene. 

Band Number Spectral Wavelength 
Interval (Pm) 

1 0.45-0.54 

2 0.54-0.62 

3 0.62-0.71 

4 0.71-0.85 

5 0,.85-0.99 

6 0.99-0.13 

7 1.13-1.34 

8 1.45-1.,82 

9 1.96-2.38 

Table 6. Spectral Bands for Combined Scene.
 

Band Number Spectral -Wavelength
 
Interval (pm)
 

1 0.45-0.54
 

2 0.54-0..62
 

3 0.62-0.71
 

4 0.71-0..85
 

5 -0.85-0:98 

,6 0.98-1.12 

7 1.12-1.30 

8 1.4:5-1.8 2 

9 1.96-2.38 

http:1.96-2.38
http:1.12-1.30
http:0.98-1.12
http:0.62-0.71
http:0.45-0.54
http:1.82-1.96
http:1.34-1.45
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Figure 21.* Average Spectral Response -- Wheat Scene.
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Figure 22. Average Spectral Response -- Combined Scene.
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The next step is the identification and validation of models that
 

would adequately describe the aforementioned spectral responses. Three
 

different models were tested and compared, (a) autoregressive (AR),
 

(b) autoregressive plus a constant trend (AR+C), (c) integrated
 

autoregressive (I-AR). Following the standard selection and validation
 

techniques, one of the above 3,models is selected which describes the
 

scene most satisfactorily. Tables7 and 8 show the selected models for
 

the wheat and combined scene respectively, IAR-2 in Table 8 in a second
 

order IAR.
 

Table 7. Modeling of the Wheat Sc~ne.
 

Band Order of Model 

1 7 

2 2 

3 11 

4 1 

5 1 

6 2 

7 5 

8 8 

9 6 

Type of Model
 

AR
 

AR
 

IAR
 

AR+C
 

AR
 

AR+C
 

IAR
 

IAR
 

IAR
 

Table 8. Modeling of the Combined-Scene. 

,and Order of Model Type of Model 

1 11 IAR-2 

2 2 AR 

3 11 IAR 

4 1 AR+C 

5 3 ,AR 

6 1 AR 

7 '9 AR+C 

'8 '8 tAR 

9 1 AR 



55 

Spectral Band Selection.
 

It was initially stated that the information content of a set of
 

spectral bands can be used in the selection of an optimum subset. Here,
 

the preceding regression analysis will be used to evaluate the mutual
 

information between the reflected energy and the observed signal in the
 

9 spectral bands under study.
 

The first step is the computation of the average information in y(k),
 

the received spectral process, about s(k). The reflected spectral scene
 

response as a function of spectral bandwidth for each band of both
 

scene types. The average information is computed for several values of
 
2
 

the noise variance, a N" Appropriate software is developed to carry out
 

the calculation of I(Y,S). Figures23 and 24 show the variation of
 

I(Y,S) in nats for the wheat and combined scene in band 1. Similar plots
 
2 -3
are shown for the infrared band 7, Figures 25 and 26. Selecting a a = 10
 

for demonstration purposes, the average information for wheat and combined
 

scenes are tabulated in Tables9 and 10 for 9 spectral bands.
 

Table 9. Average Information for Wheat Scene I
 

Band I(Y,S) nats
 

1 34.50
 

2 10.52
 

3 20.35
 

4 30.00
 

5 44.96
 

6 37.20
 

7 60.31
 

8 34.80
 

9 50.10
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Figure 23. Average Information, Band 1, Wheat Scene.
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Figure 24. Average Information, Band 1, Combined Scene. 
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Figure 25. Average Information, Band 7, Wheat Scene. 
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Figure 26. Average Information, Band 7, Combined Scene.
 

0 



58 

Table 10. 	 Average Information for Combined Scene Band.
 

Band 	 I(Y,S) nats
 

1 	 41.33
 

2 	 16.17
 

3 	 22.98
 

4 	 40.08
 

5 	 45.73
 

6 	 40.96
 

7 	 78.25
 

8 	 64.15
 

9 	 74.19
 

Using the information content of each band as an optimality criterion,
 

the 9 spectral bands can be ranked, see Table 11.
 

Table 11. 	 Order of Preference of Spectral Bands for the
 

Wheat and Combined Scenes.
 

Rank Wheat Scene Band Combined Scene Band 

1 7 7 

2 9 9 

3 5 8 

4 6 5 

5 8 1 

6 1 6 

7 4 4 

8 3 3 

9 2 2 

The top 6 highest ranked bands, although ordered differently, are the
 

same for both cover types. Moreover other than band 1 which is in the
 

visible portion, the remaining 5 are all in the infrared portion of the
 

spectrum. 	Thus, relative to the average information criterion, the
 

infrared portions of the spectrum is generally preferred to the visible
 

portion since bands 2 and 3 are ranked lowest for both the wheat scene
 

and combined scene.
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The selection of a subset of the available spectral bands using the 

idea of their information content is a new approach in band selection 

and requires further investigation to evaluate its optimality in more 

concrete terms. One of- the most useful optimality criterion is the 

selection of these bands that maximize the overall classification accuracy. 

No -documented relationship exists between the average information contents 

of a set of bands and the subsequent class separability. It is true 

however, that such information measure is directly related to the optimum 

Weiner filter thereby providing a basis for the optimality of this 

ranking technique. 

3. THE UNIFIED SCANNER ANALYSIS PACKAGE BLOCK DIAGRAM
 

The identification and development of a set of individual techniques
 

and algorithms is only the first step toward a complete system simulation
 

package. The usefulness of this package is fully realized only when the
 

elementary modules are interconnected in a logical and clear fashion. The
 

objective here is the integration of the available processors such that
 

starting with a raw data base, the question of optimum spectral bands,
 

IFOV size and the noise model can be answered with the classification
 

accuracy as a primary performance index.
 

3.1 System Structure
 

One realization of such simulation model was shown in Figure 4 and
 

is repeated here for convenience in Figure 27. USAP is basically composed
 

of three distinct parts (a) a spatial path, (b) a spectral path and (c) a
 

means for classification performance estimation. In the following
 

individual software modules are discussed.
 

Classification Accuracy Estimators.
 

There are two classification performance estimators available
 

(a) the analytic classification accuracy predictors and (b) the stratified
 

posterior performance estimator.
 



Figure 27. The Block Diagram of the Unified Scanner Analysis Package (USAP).
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Analytic Classification Accuracy Predictor. The ACAP algorithm
 

discussed in Section 2.1 is the primary processor in evaluating the
 

performance of a scanner system when the probability of correct classifi

cation is defined as the primary performance index. This piece of
 

software, as shown in its theoretical development, requires one major
 

input in the form of the population statistics. In order to facilitate
 

the operations, the format of the statistics deck is chosen to be
 

identical to the one produced by LARSYS statistics processor although
 

it contains a considerable amount of redundancy such as field coordinates.
 

These cards are skipped. Among other user-supplied information is the
 

desired spectral bands to be used in the analysis and the-sampling and
 

grid fineness in the form of number of elementary cells per axis.
 

There is obviously a trade-off between the estimator's variance, a
 

decreasing function of the grid size, and the computation time. If
 

N is the number of spectral bands and n the number of cells per axis,
 

the per class number of cells to be tested in a set of M quadratic
 

discriminant functions is nN. This exponential relationship calls for
 

a careful selection of n particularly for a high dimensional space.
 

On the other hand a small variance is very much required property of any
 

estimator.
 

The relationship between grid structure and the estimator's variance
 

has been covered in detail [2]. It was shown that the classification
 

accuracy obtained using ACAP exhibits a relative independence from n for
 

n > 12. This property is preceded by a fairly rapid rise to a steady
 

state value after which the magnitude of the Pc oscillations is within
 

0.5% of the true value or the Monte Carlo derived reference. The choice
 

of n is ultimat&ly decided by the user depending on his specific needs
 

and after some experimentation. Initially, however, a default option of
 

n = 9 cells per axis is considered to provide quick turn-around time
 

while keeping the quality of the estimate high. The output, in addition
 

to the classification accuracy estimate, contains information on the
 

transformed class statisti&s, .feature space and sampling grid structure.
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Stratified Posterior Classification Performance Estimator. This.
 

is the software implementation of the.algotthm discussed in Section 2.2.
 

The maximum conditional aposteriori clas'sprobability is the criterion
 

for classifitation and error estimation purposes. The program does,
 

not provide any options and the size of the internally generated random
 

data is fixed. ACAP and SPEST produce different,but very close results.
 

Spatial Path.
 

Data Base. The input data to the spatial scanner model is via the
 

multispectral image storage tape containing satellite or aircraft
 

collected data. This tape has been reformatted and is compatible with
 

any LARSYS processor.
 

Data Retrieval. The individual software units can access the
 

available data base through various system support routines or any of
 

the LARSYS processors.
 

Spatial Correlation Analyzer. The determination of the scanner
 

characteristic function requires a knowledge of the spatial properties
 

of the input data, therefore a class conditional estimate of the spatial
 

auto and crosscorrelation functions is needed. Let f (x,y) be a two

k
 

dimensional image of size N x N pixels in the kth spectral band then
0 0
 

the spatial autocorrelation function estimate is given by [16].
 

No-t No-n
 

^Rkk(Tn) = C Y Y fk(i'j) - k] [fk(i + T, j + n) -'Vk]
i=l j=l
 

T,T1 = 0, 1, ... , n -1 (54)
 

where-pk = E{fk(x,y)l. The multiplicative factor C can be chosen ta be
 

one of the following
 

1 (55)

CI= (N -'T)(N -ii) ( 

U1(
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1
 
C2 =2
 

if k ts known and C = C1 then E{Rkk(Tn)} = Rkk(Tfn)- If Pk--Ik then 

neither selection of C1 or C2 will produce an unbiased estimate. The 

actual derivation of the mean and variance of Rkk when the mean is 

estimated is rather complicated. The bias of the estimate in one 

dimension is given by [161. 

N-ITIVar -2 (56) 

E{Rk(T) - R(r)} = -R() k + O(No)
NN k 0 

0 0
 

From Eq. (56) it follows that R.( ) is asymptotically unbiased. This
1
 

result can be extended to the two dimensional functions provided the 

autocorrelation function is separable along each spatial axis. In 

general the maximum lag, n, must be chosen such that n << N . As a 

rule of thumb it is desirable to keep the maximum lag less than one-

This will tend to avoid certain instabilities
tenth the sample size N . 
0
 

that can occur in autocorrelation function estimates. The across-band
 

correlation function estimate is obtained using an identical relationship
 

to Eq. (54).
 

The empirically obtained spatial correlation matrix needs further
 

processing to be used in the scanner spatial model developed in Section
 

the experimen2.3. Specifically a Markov correlation model is fitted to 


tally obtained lkk(T,r). By invoking the separability assumption for
 

small lag values,
 

R(r;'n) R(r) R(n) (57) 

where no subscript indicates either auto or crosscorrelation function.
 

Table 12 shows the magnitude of the errors involved in carrying out
 

this approximation on an aircraft data set. The error is expressed as
 

a percentage of the experimental values. An exponentially dropping
 

function is then fitted to the individual correlation functions along
 

the sample and line directions. The fitting is accomplished using a
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Table 12. Error Matrix for Cross Correlation Function Appr6ximation
 
Between Channels 2 and 8.
 

1.00 .92 .81 .69 .59 .50 .44 
.93 .88 .78 .67 .56 .48 .41 

.73 .71 .64 .54 .44 .36 .3 
R28 .48 .47 .43 .36 .28 .2i .16 

.30 .31 .29 .24 .18 .12 .08 

.23 .25 .24 .21 .16 .12 .08 

.22 .24 .24 .22 .19 .15 .12 

1.00 .92 .81 .69 .59 .50 .44 
.93 .86 .75 .64 .55 .46 .4 

.73 .67 .6 .5 .43 .36 .32 
R28 .48 .44 .38 .33 .28 .24. .71 

.30 .27 .24 .2 .17 .15 .13 

.23 .21 .18 .16 .13 .11 .1 
22 .2 .18 .15 .13 .11 .1 

0 0 0 0 0 0 0 
0 2.2 3.8 4.5 1.8 4.16 2.43 
0 5.6- 6.2 7.4 2.3 O 6.75 

28E 0 6.4 11.6 8.3 0 17.5 23.8 
0 13.0 17.2 16.6 5.5 20 38.4 

0 16 25 23.8 18.7 8.3 20 
0 16.6 25 31.8 31.6 26.6 16.6 
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weighted least square approach to the logarithm of R(T) and R(n). The
 

slope of this linear fit determines the adjacent sample or line
 

correlation coefficients. Specifically let
 

F(i) = ln R(i) i =0, 1, ..., n -l
 

0
 

then the parameters of the linear fit, CI+C 2x,are given by [17]
 

C = (HT W H) -I HT W F (58) 

where
 

E(i) = 1 = 0, , ... ' no(59)0 

0 i no+l,H(i) 2n -l-i = 0o 0O ... , 2n -i 

and the diagonal weighting matrix, W
 

(n -1-i)
 
i = 0, 1,... n - (60)
W(i) = a 


with a as the weighting matrix diagonal base, o < a < 1. The weighting
 

matrix via the control parameter assigns a progressively smaller weight
 

to R(T,n) for succeeding lag values. This weighting is necessary since
 

the properties of the correlation functions show an increasing deviation
 

from the underlying assumptions of separability and Markovian structure
 

for higher lag values.
 

A complete specification of the spatial properties of the available
 

spectral classes requires determination of
 

N!
 
N + 2! (N-2)!
 

auto and crosscorrelation functions per spatial axis per class where N
 

is the total number of spectral bands used in the analysis. The imple

menting software contains various default provisions in case the corre
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lation properties of the input data differs considerably from the afore

mentioned assumptions.
 

The user specifies the area to be correlated by a run table entry
 

run number follow&d by the field coordinates. In order to perform either
 

the auto or crosscorrelation operations, appropriate spectral bands(s)
 

need to be specified. The maximum lag, no, in computing R(t,n) is also
 

a variable and is entered as a percentage of the image size in pixels.
 

The value of n is dependent on the size of the area to be correlated.
 
0 ^ 

Since the magnitude of R(T,n) for Landsat data is generally negligible
 

for more than 4 or 5 pixels lag, n as a percentage can take on small
 

values for large fields and vice versa.
 

Scanner IFOV Model. The scanner IFOV software is the computer
 

implementation of the scanner characteristic function discussed in
 

Section 2.3. The input consists of (a) spectral covariance matrix,
 

(b) spatial correlation matrix along the samples (c) spatial correlation
 

matrix along the lines and (d) IFOV size in terms of the number of high
 

resolution pixels. A standard LARSYS statistics deck produced by the
 

statistics processor constitutes the first item. The spatial correla

tion information in entered through an N x N symmetric matrix the (i,j)
 

element of which
 

-a 
Pj = e ij 

a.. is estimated
 

by the spatial correlation software. The IFOV size is expressed on a
 

relative scale in terms of the number of high resolution pixels within
 

1 IFOV of the scanner PSF, e.g., 1, 2, 3, etc. There are two choices
 

available for the functional form of the PSF, Gaussian and rectangular.
 

is the pixel-to-pixel correlation for bands i and j. :11 

The output generated by this software module is a spectral statistics
 

deck which is the input class statistics transformed by the scanner
 

characteristic function. This deck is used as input to the ACAP processor.
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Additive Noise Model. By virtue of the parametric approach adopted
 

here, the incorporation of the noise effect takes on a simple form. The
 

noise statistics is characterized by a zero mean vector and a diagonal
 

covariance matrix with zero off diagonal elements. This matrix is then
 

simply added to each class covariance matrix,
 

2
 
nI
 

2
 
Gn 


2
 

+ (62) 

f f 

2 a
 
nN
 

The diagonal elements of G2 ,determines the SNR in each spectral 
-N i 

band. By the appropriate selection of a 's, different SNR can be 

specified for each band. Let a denotenhe variance of the noise-free
 

signal at the scanneroutput, then the SNR in the kth spectral band is
 

defined by
 

(SNR)k = af2 
 n 

(63)
 

The choice of equal oic unequal SNR in different bands based on experimental
 

or theoretical results is at the analyst's discretion.
 

Spectral Path.
 

Data Base and Retrieval. EXOSYS is a software package which provides
 

access to field measurement data taken with a variety of field instruments.
 

A brief overview of the EXOSYS package will be given here, with more detail
 

available in the EXOSYS manual [18]. Data is collected and stored on
 

magnetic tape in field measurements format. During the reformatting
 

procedure the data is calibrated and ancillary information such as
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weather readings soil conditions, and plant growth status is placed in
 

the identification record for each run.
 

There are three processors in EXOSYS which are used to access the
 

field data information - IDLIST, GSPEG, and DSEL. The IDLISW processor
 

scans the tape and lists information from the identification record as
 

required. One can use this information to select appropriate runs-to
 

represent informational classes.
 

The GSPEC processor provides a punched deck consisting of the
 

numerical values of the spectral response function for all of the desired
 

runs. One can select a set of run numbers as input and the output will
 

consist of a punched deck. Options exist for plotting the spectral
 

response functions for the desired runs.
 

The DSEL processor simulates rectangular spectral channels and
 

uses data from the tape to evaluate the response in each channel for
 

the ensemble. The inputs are the spectral band locations and the run
 

numbers on the data tape., The output is a set of statistics for the
 

specified channels.
 

Optimum Spectral Basis Function System. For the optimum spectral
 

function calculation the output of the GSEC processor is required. The
 

appropriate ensemble can be selected by specifying a set of identifica

tion parameters such as date of collection, scene type, run number, etc.
 

The cards containing the numerical values for the spectral response
 

functions are used and stored on- disk in a format which is compact and
 

convenient for future processing by the program SPRDCT. The files that
 

are stored on disk may be transferred to magnetic tape for future use to
 

avoid repeating the procedure involving the EXOSYS package. SPRDCT
 

requires some information to be entered at the terminal to provide ID
 

information for the ensemble. A list of all runs used by run number is
 

printed after the data has been stored on disk.
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Optimum Basis Function Calculation. The calculation of the optimum
 

set of basis functions for an ensemble is accomplished by solving the
 

matrix equation
 

4r = KWF (64)
 

to get the eigenvalues ll O2' ... , aN and the eigenvectors h' 2' ""' N" 

N1
The matrix 0 is the matrix of eigenvectors 0 = [1i 2' . and F is 

the diagonal matrix of eigenvalues 

0
a1 


a2 (65)
 

aN
 

The matrix W is a diagonal matrix of weights
 

Wl 0
 

W 2 (66)
 

WN-


R is the covariance matrix for the ensemble. Let the mean vector for the 

ensemble be m = [mI, m2 , ... , mNT then 

R.. = E {(x.-m) (xj-m.)T (67)
 

The maximum likelihood estimate is
 

N 

1 = kN T 

ki Ns I ~ (Xik-m.) (x kk-m )68 
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where N is the number of sample functions in the ensemble.
 

If we let A=KW, then A is a real general matrix. An algorithm for
 

solving for tha eigenvalues-and eigenvectors of a real general matrix is
 

available [19] and is used here with only slight modification. The
 

algorithm makes use of Householder's method and the QR double-step itera

tive process to compute the eigenvalues. The eigenvectors are obtained
 

by the inverse iteration technique. A sorting routine-was added to order
 

the eigenvalues and the corresponding eigenvectors.
 

The required inputs are the data in the appropriate format and the
 

weight function. The output of this processor is a set of N eigenvectors
 

or baslis functions punched onto cards. Also, the eigenvalues and means=
 

square representation error are printed. The eigenvectors can,beplotted
 

using GCS subroutines.
 

Data Transformation and Statistics Calculation. The ejgenvectors
 

are used to perform a linear transformation on the original data vectors
 

[X}. The transformed vectors MY} have the desired properties provided 

by the Karhunen-Loive expansion. Each element of the transformed-vector 

is given by 

Yi = ilxl + i2x2 + ... + 4iNXn ('69) 

where ij is the jth element of the ith eigenvector.
 

The inputs to this processor are the eigenvectors and the data set
 

stored on the disk. The output is the set of statistics for each class.
 

The statistics are printed and punched on a deck of cards for future,
 

processing.
 

4. USER'S GUIDE TO USAP
 

The block diagram of the scanner parameter study, Figure 27, is made
 

operational by a collection of compatible software packages. Each module
 

is individually compatible with the LARSYS environment facilitating
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incorporation of LARSYS processor in the overall system performance
 

evaluation. This section provides a guide for the acquisition and
 

execution of each program available on the LARS IBM 370/148 computer
 

system.
 

Prior to a discussion of the individual modules some general remarks
 

are in.order. The access to this program library is simplified by the
 

allocation of two special disk storage devices designated by DHSYS and
 

DHDSK. The former contains the text version of the software while the
 

latter holds the source. These devices can be accessed using the
 

appropriate GETDISK commands.
 

GETDISK DHSYS
 

and
 

GETDISH DHDSK
 

these commands will establish the proper links in a Read-Only mode and
 

USAP initialization is complete. In the following subsections the
 

required input and necessary steps to run each program are discussed.
 

4.1 The Classification Accuracy Estimators
 

There are two parametric classification accuracy estimators
 

available to the USAP user, (a) the analytic classification accuracy
 

predictor (ACAP) and (b) the stratified posterior classification
 

accuracy estimator (SPEST). The theoretical aspects of these processors
 

have been discussed in Section 2. Here is a guide to their software
 

implementation.
 

Analytic Classification Accuracy Predictor
 

This program evaluates the performance of a Bayes classifier when
 

the populations statistics are multivariate normal. The following
 

control cards are required.
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.ontrol Word -Description 

*ACAP This card specifies the particular processor 

requested. 

CHANNELS The desired subset of the available channels 
is given here. Note that the numbers appearing 
on this card are the order of the selected 
channels not theiractual number. For example, 
if the available channels are 8; 9, 12, 14 
and channels 8, 9 and 14 are requested CHANNEL 
card should read 1, 2, 4. 

CLASSES This card specifies the name of each class. 
Each name must be placed in a field 7 charac
ters long followed by .a blank. The continua
-tion card, if required, must have the word 
"CLASSES" at the beginning. 

GRID This quantity controls the quality of the 
estimate. The higher the number the closer 
the estimate is to the true Bayes error rate. 
(See '&stimated CPU time!'for more details.) 

END This card signals the end of the control card. 
Stat deck follows immediately. 

Remarks. The ACAP processor in its current form is capable of
 

handling up to 20-classes and 8 spectral bands. The extensions of
 

these parameters presents no conceptual difficulty. The required statis

tics deck is a standard LARSYS produced deck with no modifications. It
 

must be punched in the character format, however.
 

How to Run the Program. Make sure the DHSYS disk has been accessed
 

properly. One reader file consisting of the control cards followed by a
 

statistics deck is required. Type ACAP in the CMS environment. Appro

priate terminal and printer output is produced.
 

Example of control card set up
 

*ACAP
 
CHANNELS 1,3,4
 
CLASSES SOYBEAN ALFALFA WHEAT
 
END
 

Since GRID card is not included, its default value (9) is selected.
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Estimated CPU Time. The execution time is quite sensitive to the
 

GRID card specifying the number of cells per axis. For the default
 

grid size and a 4-dimensional space it takes approximately 2 minutes of
 

CPU time per class to provide the requested classification accuracy
 

estimates. The CPU time is most sensitive to the dimensionality of the
 

feature space. Hence if the number of spectral bands is limited (less
 

than 4) considerable increase in GRID number is possible. The default
 

number of cells per axis is considered to be the minimum while 'still
 

providing acceptable performance. Increasing the parameter improves
 

the quality of the estimate somewhat at the expense of higher CPU time.
 

The choice is left at the user's discretion.
 

Stratified Posterior Error Estimator.
 

This program is identical in purpose but different in approach to
 

the ACAP processor. GivEna set of multivariate normal populations,
 

SPEST provides the classification accuracies associated with each class
 

using an internally generated random data base. The different estimation
 

procedures between the two methods is transparent to the user.
 

Description of the Control Cards
 

Control Word Description 

*SPEST This card specifies the particular processor 

requested. 

CHANNELS The desired subset of the available channels 

is given-here. Note that the numbers appearing 

on this card are the order of the selected 

channels not their actual number. 

CLASSES This card specifies the name of each class. 
Each name must be placed in a field 7 charac
ters long followed by a blank. The continua
tion card, if required, must have the control 

word "CLASSES" in the beginning followed by 

the rest of the names. 

END End of the control cards. 
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Remarks. In usage, this program is identical to *ACAP. The
 

standard,LARSYS statistics deck follows the control and disk immediately.
 

Printer output contains the estimated conditional classification
 

accuracies. By virtue of their separate.approaches,, *ACAP and,*SPEST
 

provide different, but very close, estimates of the correct 
5classification
 

accuracies.
 

How to Run the Program. The reader file contains the control cards, 

followed by the LARSYS statistics deck. A sample control card deck 

follows: 

*SPEST
 

CHANNELS 1,,2,4
 

CLASSES ALFALFA SOYBEAN WHEAT'
 
END
 

4.2 Spatial Path
 

The spatial path in USAP consists of two main software units. The, 

spatial correlation analyzer, CORELAT and the S.CANNER IFOV model,. 

SCANSTAT. 

Spatial Correlation Modeling. This program is a.2-dimensional 

spatial correlator the primary output of which, Is. a. normalized, spatial 

auto (cross) correlation matrix for any specifie& area.. The user speci

fies the coordinates of the desired segment in the form,of am injtial, and
 

final line and column along with, the appropriate spectral bands (s). 

Following the estimation of the correlation matrix,, the. expQnential fit 

option, if invoked,, will fit an exponentially dropping function to- the 

experimental values of R k(t) or \k-n) using a wetghtedi linear least 
squares technique. 
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Description of the Control Cards
 

Control Word Control Parameter Description 

*CORRELATE This card specifies the particular 

processor requested. 

INPUT RUN(.) Run number of the desired area. 
TAPE(.) Tape number of the desired area. 
FILE(.) File number of the desired area. 

BLOCK LINE(.,.) Initial and final lines: 
COLUMN(.,.) Initial and final columns. 

FUNCTION AUTO Autocorrelation function requested. 
CROSS Crosscorrelation function requested. 

CHANNELS Channels used for correlation 
operation. 

SAMPLELAGt Maximum cross track lag used as 
a percentage of the total number 
of samples. 

LINELAGt Same as SAMPLELAG except for 
along track lag. 

EXPOFITt If included exponential fitting 
operation is carried out. 

END End of control cards. 

Remarks. This program is capable of processing areas containing
 

up to 2400 pixels. The maximum lag default is set at 20 percent of
 

the total number of lines and columns. Both quantities can be altered
 

by user supplied control cards. The exponential fit option provides a
 

pixel-to-pixel correlation coefficient for the channel(s) specified.
 

This number is computed from the estimated parameters of the exponential
 

correlation model.
 

How to Run the Program. The only required reader file is the
 

control card deck,an example of which follows:
 

t optional
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*CORRELATE
 
INPUT RUN (74028500), TAPE (2689), FILE (3)
 
BLOCK LINE (1,25), COLUMN (1,25)
 
FUNCTION AUTO
 
CHANNELS 2
 
SAMPLELAGt 25
 
LINELAGt 25
 
EXPOFIT±
 

END
 

after DHSYS disk has been properly linked to, type CORELAT tp start
 

execution. Appropriate terminal and printer output is.generated.
 

Scanner IFOV Model.
 

This program computes the spectral statistics of a population at
 

the output of a multispectral scanner provided the data spatial correla

tion approximately follows a Markov model. The ,scanner IFOV shape is
 

limited to either a Gaussian or rectangular shape. No assumptions
 

are made or indeed required about the type of the population statistical
 

distribution.
 

Description of the Control Cards
 

Control Word Description 

*SCANSTAT This card specifies the particular processor 

requested. 

CHANNELS The desired subset of the available channels 

is given here. Note that the numbers appearing 

on this card are the order of the selected 
channels not their actual number. 

CLASSES This card specifies the name of ' each class. 
Each name must be placed in~a field 7 
characters long foliqwed by a blank. The 
continuation card, if required, must have 
the control work "CLASSES" in the beginning 

followed by the rest of the names,. 

IFOV This card specifies theJIFOV size of the 

scanner in terms ofhigh resolution input 
pixels. 

t optional
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APERTURE 	 The choices here are "GAUSSIAN" or "RECTANGULAR."
 

SNRi 	 Output signal energy to noise energy in dB.
 

PUNCH± 	 The output statistics is punched out in an
 

ACAP/SPEST format. Redundancies are added
 
to replace field description cards.
 

END 	 End of control-cards.
 

Remarks. This program is limited to 20 classes and 8 specfral
 

bands. Execution time is quite short and extension of those parameters
 

is straightforward. The input data immediately following the control
 

cards consists of 3 parts:
 

1. 	Standard LARSYS statistics'deck in character format.
 

2. 	Spatial correlation parameters (cross track) are entered via a
 

NXN symmetric matrix where N is the number of channels. The
 

(i,j) element of this matrix is the adjacent sample correlation
 

between channels i and J. The lower triangular part of this
 

matrix is punched in a 5 (EI3.7,lX) format.
 

3. 	Spatial correlation parameter matrix except for along track
 

pixels.
 

The above decks follow the control cards in the order listed. The
 

signal-to-noise ratio is defined as the ratio of the output signal
 

energy in a particular.channel (diagonal element of the class covariance
 

matrix) to the noise energy in the same bands expressed in dB and defined
 

by
 

10 log1 0 a k/2

(SNR)k = 

k 10 sk nk
 

where k refers to the particular spectral band.
 

t optional
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How to Run the Program. One'reader file consisting,of 4 consecutive
 

decks and appropriate link to DHSYS disk is required before the program
 

execution. An example of a control card set up follows:
 

*SCANSTAT
 

CHANNELS 1,2,4
 
CLASSES ALFALFA SOYBEAN WHEAT
 
IFOV 	2
 
APERTURE GAUSSIAN
 
SNRI 	10 
PUNCHI
 
ENDt
 

The output consists of an ACAP/SPEST compatible statistics deck for
 

the modified population. This deck can be used in the ACAP-/SPEST processors
 

to obtain the new set of classification accuracy estimates.
 

4.3 	 Spectral Path
 

The spectral path in USAP consists of three main pieces of software
 

(a) data retrieval through EXOSYS processor (b) optimum spectral function
 

calculation and (c) data transformation and statistics calculation.
 

Procedure for Computing and Evaluating Optimum Basis Functions.
 

Data Retrieval. The data retrieval system is stored on EXOSYSDV and
 

it is necessary to define storage as 768K. A card file containing the
 

data points for each run will be constructed on a temporary disk
 

(25 cylinders). It is desirable to make the temporary disk a P-disk
 

and the permanent user disk a T-disk.
 

In CMS
 

RELEASE 191 P
 
LOGIN 191 T
 
GETDISK TEMP MODE P25CYL NO-UFD
 

"±nntn1,l 
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In CP
 

I EXOSYSDV
 
CCINPUT TERMINAL
 
RUN EXOSYSDV
 

The control cards will be entered through the terminal. The tape on
 

which the data is stored must be specified as well as the cover type
 

and the collection date. A typical sequence of cards is as follows:
 

$ TAPE 4896 
$ GSPEC 

GRAPH SPEC (SPRING WHEAT), DACO (770508) 
LIST NO LIST 

OPTIONS PUNCH, NOGRAPH
 
END
 

$ END
 
$ EXIT
 

The runs taken over Williams Co., North Dakota for May 8, 1977 are on
 

tape 4896. The crop species is spring wheat and the collection date is
 

May 8, 1977. The output is a deck of cards with one hundred data values
 

for each run punched onto the cards. Header information must be flushed
 

at the line printer. Return the system to CMS and read the cards onto
 

a disk file SPR100 DATA. The number of records in the file is equal to
 

the number of runs. This number should be recorded as it will be needed
 

later. This procedure is repeated for the second class. The cards from
 

GSPEC are read onto the file INPUT DATA and the number of records
 

recorded. The two files are combined by typing (in CMS)
 

COMBINE SPR100 DATA P1 SPR 100 DATA P1 INPUT DATA P1
 
ERASE INPUT DATA
 

This procedure is repeated until all classes have been included in the
 

file SPR 100 DATA. The crop species SUMMER FALLOW and PASTURE are used
 

in GRAPH SPEC(.) to complete the data set.
 



At this point the program SPRDCT is loaded and rum. .A disk file 

will be created using DSRN of 2 and file type :FUNC. The 'following 

information is requested at the terminal 'by SPRDCT 

Experiment Number 100
 

Number of Classes 3
 

Number of Sample Points per Run 100 

(Dimensions) 

Class Name Wheat Fallow Pasture 

Number of Samples 
per Class 664 437 16-

The information is requested and is entere-dbetwpen the slash
 

marks, right justified.
 

At this point the data is ready to be used by the system. It is a
 

good iaea to store the file on tape for future use. Type
 

TAPMOUNT 156 TAP2 RI
 
T DUMP SPR 100 FUNC Pl
 

The tape on which the data is ,stored is 156 in this example. 'To recall
 

the data to the disk type
 

TAPMOUNT 156 TAP2 RO (If not already mounted)
 
'T SLOAD SPR 100 FUNC
 

Note that the 2-disk -must be a large -fairly empty -disk '(10 cyl)
 

The format for data storage is
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ID
 

Run 1
 

100 Data
Vae
Class 1 
 Values
 

Run 2
 

100 Data
 
Values
 

Class 2
 

ID Information Record
 

Item 


Date 


Exp. Number 


Number of Classes 


Number of Dimensions 


Number of Samples for Class 1 


Number 6f Samples for Class 2 


Number of Samples for Class 3 


Number of Samples for Class 4 


Number of Samples for Class 5 


Number of Samples for Class 6 


Number of Samples for Class.7 


Name of Class 1 


Name of Class 2 


Name of Class 3 


Name of Class 4 


NnMr' nf CA.n~ 9 


Words
 

1-15
 

16
 

17
 

18
 

21
 

22
 

23
 

24
 

25
 

26
 

27
 

30-39
 

40-49
 

50-59
 

60-69
 

70-79
 



?mL4 

Name of Class 6 80-89
 

Name of Class 7 90-99
 

Optimum Spectral Functions Calculations.
 

Once the data set is on disk it is necessary to issue the following
 

CMS commands to compute the eigenvectors.
 

FILEDEF 2 DSK-P4 SPRIOO FUNC RECFM VS LRECL 400 BLKSEZE 
400 (PER 
CP SP PUN TO USERID
 
LOAD SPOPTM (XEQ 

4.4 Example Outputs
 

This section presents a sample output for the individual software
 

units used in USAP. The example set consists of sample outputs from the
 

ACAP and SPEST processors. CORELAT and SCANSTAT in the spatial path and
 

SPOPT and SPTES in the spectral path. Graham Co., Kansas is used as the
 

test site.
 

Classification Accuracy Estimators.
 

The following control card set up is used for the ACAP processor and
 

output is shown in Table 13.
 

*ACAP
 

CHANNELS 1,2,3,4
 
CLASSES BARESOI CORN SOYBEAN WHEAT
 
END
 

The required control cards for the SPEST processor are
 

*SPEST
 

CHANNELS 1,2,3,4
 
CLASSES BARESOI CORN SOYBEAN WHEAT
 
END
 

the output is shown in Table 14.
 



Table 13. *ACAP Sample Output.
 

ANALYTIC CLASSIFICATION ACCURACY PREDICTION'- A C A P
 

SAMPLING GRID CHARACTERISTICSO
 

GRID SIZE= 9 CELLS PER DIMENSION
 

TOTAL NO OF CELLS IN THE GRID 6561
 

TRANSFORMED FEATURE SPACE CHARACTERISTICSO
 

EIGENVALUESO
 

2.9182E 01 1.1413E 01 1.3430E 00 


EIGENVECTORSO 


2.105E-01 2.0478E-01 8.2319E-01

4.58446E-01 8.2659E-01 
 -1.5239E-01


-6.7334E-03 
 1.9331E-01 -5.3271E-01

8.6342E-01 -4.872BE-01 -1.2389E-01 

TRANSFORMED MEAN VECTORSO
 

1.1654E 01 2.3928E 01 
 3.8200E-01

-2.Z766E 00 
 1.5Z48E 01 1.3871E-011.3111E 01 5.1333E 00 -5.9814E-01 

0.0 0.0 

P R O B A B I L I T Y 


CLASS WHEAT
 

7.6125E-01
 

-v
 

4.8593E-01 
 ,

-2.8873E-01
 
8.2390E-01
 
4.1283E-02
 

-5.4T50E-02
 
1.0838E-01
 
1.0702E 00
 
0.0 

O F C 0 R R E C T 
C L A S S I F I C A T I O N 93.486 1
 

*****TOTAL PROB OF CORRECT CLASSIFICATION****= 89.287 PERCENT
 

0.0 



Table 14. *SPEST Sample Output. 

STRATIFIED POSTERIOR ERROR ESTIMATOR 

P R 0 B X B I.I T Y 

CLASS BARESQI 

0 F C 0'R R E C T C L A S S I F I C A T I 0 N = 79.218( 

P R 0 B.A B I I-| T Y 

CCASS CORN' 

0 F C 0 R R E C T C L A S S I F I C A'T I 0 N = 92.721( 

PR0BABIL ITY 

CLASS 

O F 

SOYBEAN 

C O R R E C T C L A S S I F X'C A TI 1O N = 96.359(' 

P a s A ' 1 II TLY 

CLASS 

0 F 

WHEAT, 

C On R E C T C L A' S, S I F I C A T 1 0 N - 92.614( 

OVERALL PROBABILI,TNy,1QF CORRECT RECOGNI.TION,= 90;2'20 

do'" 
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Spatial Path.
 

The control card set up for CORELAT is as follows:
 

*CORRELAT
 

INPUT RUN(74028500), TAPE(2689), FILE(3)
 
BLOCK LINE(50,98), COLUMN(50,98)
 
FUNCTION AUTO
 
CHANNELS 1
 
EXPOFIT
 
END
 

The sample output is shown in Table 15.
 

The control card set up for SCANSTAT is as follows:
 

*SCANSTAT
 

CHANNELS 1,2,3,4
 
CLASSES BARESOI CORN SOYBEAN WHEAT
 
IFOV 2
 
APERTURE GAUSSIAN
 
END
 

The sample output is shown in Table 16.
 

Spectral Path.
 

The optimum basis function calculation and computation of the
 

transformed data statistics comprises the main spectral processors. The
 

sequence of required commands has been shown in Section 4.3. The
 

following example is a weighted basis function calculation.
 

The weighting function w(X) is zero for the water absorption bands
 

near 1.4 and 1.8 micrometer and zero elsewhere on the interval (.4-2.4 pm).
 

The printer oi-tput is shown in Table 17, listing the first 30 eigenvalues.
 

The first 4 eigenvectors are sent in card format to the reader. They
 

can be stored on the disk by issuing the command.
 

0 READ EIG00 DATA Tl
 



Table 15. *CORRELAT Sample Output.
 

TWO DIMENSIONAL SPATIAL CORRELATION ANALYSIS 

CHANNELSO 1 1 

2-D SPATIAL CORRELATION MATRIX
 

1.00' 0.3 0.50 0.36 O.28 01.23. 0.19 D.1f3' 0.08
 

0.70 0.,6Q- 0.44 0.33 0.26, 0.20, 0.,17 0;12 0.07 

0.50 Q.45 O.36 0.27 0.21, 0.17 0.,1,4 0.10- 0.05"
 

0;.38 0.37 0.3,1 0.24' 01-7 0.1.3 0,11 0.08; 0.03!
 

0.31 0.32 0'.27 U.,21 0.14 0.11 0.10 0.08, 0.04
 

0'.25 0.26 0.23 0..6 0.11 0.09 0.07 0.05 0 .02
 

0,.2 0 , 0.20 0. 18 0.1'3' 0,.10 0.07' O,.0& O.05, 0.03
 

0.14 0,.15 '..4, 0.,lO 0.07 0.05: O.94- 0;04 0.02, 

0.10 0. 11t 0.12 0,.1i 0.09 0;4.0- 0.031 0.02 0,.001 

WEIGOTEDzLEAST- SQUARES FIT' INFORMAT'ION,,-

WEIGHTING MATRIrX DIAGONAL, BASE=O.40' WEIGHTED' LSF. ERROR. (CROSS TRACK)= 0.1037569E-02>
ADJACENT SAMPLE CORRELATION= 0.7.937.16E 0,-WE IGHTED LSF ERRORU,.(ALONG' TRACK-) :. 673b4634Et05-AJDJACENT: LINE CORRELATI0N -. 7026,460E 00: 

I I 

http:BASE=O.40


Table 16. *SCANSTAT Sample Output. 

SCANNER 

APERTUREO 

OUTPUT 

GAUSSIAN 

STATISTICS 

IFOV SIZEO 2 HIGH RESOLUTION PIXELS 

CLASS CORN 

INPUT COVARIANCE MATRIX 

9.29 

12.26 19.79 

10.63 16.37 16.09 

4.43 7.14 6.24 3.45 

OUTPUT COVARIANCE MATRIX 

4.86 

4.61 10.37 

4.00 6.15 8.43 

1.67 2.68 2.34 1.81 

00
 

rt
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LARQOPATONY FOR APPLICATIONS OF REMOTE SLNSIIG
PUPFUE UN4IVEPS1TY
 
SAMPLE FUNCTION I'4FOrL.ATION 10 JULY, 1978
 

100
 
NUMBER OF CLASSES .................. 3
 
CLASS:...............................WHEAT
 
NUMBER OF SAMPLE FUNCTIONS..........664
 
CLASS................................FALLOA
 

EXP. NO ............................. 


NUMBER OF SAMPLE FUNCTIONc...........437
 
CLASS.............................. PASTURE
 
NUMER OF SAMPLE FUNCTIONS.......... 164
 

WEIGHTING FUNCTION NUIARE 3
 

N 
1 
2 
3 

EIGENVALIJE 
311.4133 
229.3520 
21.1702 

VAR (GA ) 
307.0752 
166.5619 

1.4191 

V.AR (PHI)
0.0086 
0,.OOb7
0.0104 

MEAN-SQUARE EPROR 
299.15674q
6V.8d4748 
4.6J4554 

4 15.4660 0.7574 0.0126 33.16b544 
5 8.8838 0.2499 0.0106 24.2047e4 
6 
7 
q 

5.7765 
3.5611 
2.6887 

0.1057 
0.0402 
0.02?9 

0.012; 
0.OLj7
0.0573 

jt.50&,2q
i4.947187 
1f.25848 9 

2.3128 0.0169 0.0635 4.945677 
10 
1i 

1.8363 
1.4195 

0.0107 
0.0064 

0.04,4 
0.0663 

o. 10',33 
0.6u9800 

12 
19 

1.2304 
0.9300 

0.00i. 
0.0027 

0.0043 
0.0336 

b.4b 4q4
4.52-464 

14 0.6806 0.0015 0.0338 3.8465-28 
15 
16 

0.5217 
0.3517 

0.0009 
0.0004 

0.0351 
O.lo 6 

J.327086 
2,975436 

17 
IR 

0.3138 
0.2945 

0.0003 
0.0003 

0.3,14 
0.47o2 

.6o15)9
2.3o7111 

19 
20 

0.2771 
0.2336 

0.0002 
0.0002 

0.3430 
0.211 6 

2.090019 
1.8D64 11 

21 0.2102 0.0001 35.7eb2 1.646236 
2? 0.2092 0-.0001 35.7220 1.437049 
23 
24 

0.1792 
0.1514 

0.0001 
0.0001 

0,14-69 
o.z238 

1.2!7806 
1.106359 

25 0.1452 0.0001 0.5u6 0.961120 
2r 0.1137 0.0000 0.0943 u.B,+458 
27 
P 
2Q 

0.0976 
0.0851 
0.0744 

0.0000 
0.0000 
0.0000 

0.1?01 
0.1318
0.11n3 

0.749854 
U.664 7 850.%9tU391 

52 

30 0.0583 0.0000 0.c213 0.5j211-2 q-

Table 17. Eigenvalue and Mean-Square Representation Error for the Data
 
Set.
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A GCS routine was used to plot the graphs of the eigenvectors the 

first of which are displayed in Figures 28 through 31. 

The statistics for the first 4 terms are computed by using the 

same FILEDEF command as above plus 

CP SP PUN TO USERID 
0 PUNCH EIG100 DATA TI 
LOAD SPTES (XEQ) 

The program will ask 'NUMBER OF TERMS?',to get all 4 terms type '4.' 

The output will be a statistics deck with the following format: 

Card 

I 

2 

Number of Classes, Number of Terms 

Apriori Probabilities for each Class = l/Number of Classes 

Mean Class I [Foimat (20A4)] 

Covariance Matrix Class 2 

Mean Class 2 

The covariance are in upper triangular form. This statistics deck
 

can be used as the input to the classification error estimator algorithms.
 

Table 18 is a sample of the statistics obtained from the data set using
 

the first 4 optimum basis functions. Also, the statistics were used as
 

input to the classification performance estimator *SPEST to get an
 

estimate of the probability of correct classification.
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-. 1 

1.9 2.4-I 
.9 1.4 1.9 2.4 A "'A 

WRVELENGTHt MICROETERS)
WAVELENGTH (MICROMETERS) 


Figure 28. Eigenvector 1. Figure, 294' Eigenvector 2.
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3(A) 04() 

-. 2 

. 1.9 2 
 .9 1.9 2.A 

WRVELENGTH (MICROMETERS] 
 WRVELENGTH (MICROMETERS)
 

Figure 30. Eigenvector 3. Figure 31. Eigenvector 4.
 



92
MEAN VECTOR 


-20063751 22.0529 4.5466 18.8553
 

COVARIANCE MATRIX
 

312.5391
 
-24.4102 62.8445 

8.4233 -20.7412 14.0594 
-5.2539 -8.6057 4.5237 12,26-1.2 

MEAN VECTOR
 

-202.1029 35,2806 5.7945 16.3977
 

COVARIANCE MATRIX
 

244,.7227

-69.3594 152,5959
 
-15.8333 10.3513 24.0876
 
-2.2070 1.3667 -0.7130 12.3877
 

MEAN VECTOR
 

-187.5431 54.8315 8.2578 19.0705
 

COVARIANCE MATRIX
 

286.1719
 
-1.2813 168.4688
 

-19.2971 -47.7388 29.0520
 
10.3206 54.3401 -16.4006 26.1763
 

PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS I = 0.9187 

PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS 2 = 0.6624
 

PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS 3 = 0.9003 

OVERALL PROBABILITY OF CORRECT RECOGNITION ' 0.8270
 

Table 18. 	 SPTES and SPEST Sample Output Using the First 4 Eigenvectors
 
and Estimates of the Classification Accuracy.
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5. SUMMARY
 

The task of evaluating the performance of a multispectral scanner
 

system while incorporating every spatial, spectral, electronic and tele

metric parameter is exceedingly complicated. The primary objective of
 

this project has been the investigation of the two important, and most
 

relevant in remote sensing applications, of scanner parameter, namely
 

spatial and spectral. The development of analytic techniques for system
 

performance evaluation differentiates the approach adopted here from
 

other experimental methods. This property provides an ease of parameter
 

manipulation not available through some heavily data dependent algorithms.
 

Although the development of individual components of such systems is
 

fundamental to the overall system operation, it is the logical and proper
 

integration of individual modules that determines its ultimate processing
 

capabilities.
 

The Unified Scanner Analysis Package (USAP) is a fully integrated
 

system with complete input-output compatibility of software units. It
 

consists of a spatial and spectral path plus a shared unit providing the
 

desired performance index in the form of probabilities of correct classi

fication.
 

5.1 Classification Error Estimators
 

The primary performance index throughout this study is defined as
 

the probability of correct classification of the various populations
 

present in a data set. In keeping with the underlying requirement of a
 

parametric approach, the available LARSYS and other classification
 

accuracy estimators using a randomly generated data base were deemed
 

less than satisfactory. It is well known that the exact probability of
 

correct classification is a multiple integral over an appropriatedomain.
 

The direct evaluation of such integral in a continuous N dimensional
 

space is a complicated and mathematically cumbersome task. This problem
 

is circumvented by a deterministic sampling algorithm of the feature
 

space preceded by an orthogonal transformation. This transformation
 

when applied to the Gaussian probability density function of a particular
 

class under consideration would conditionally decouple the feature space
 



94
 

and hence reduce the N dimensional error integral to a product of N one
 

dimensional integrals each of which is a widely tabulated quantity. This
 

algorithm requires the population statistics as the only major input
 

and provides classification error estimates of high quality without
 

excessively fine feature space quantization. The second classification
 

accuracy estimator uses the maximum a posteriori principle coupled with
 

a Monte-Carlo type integration technique. Although this algorithm is in
 

a way dependent on a simulated data base, from a userspoint of view the
 

difference between ACAP and SPEST are essentially transparent since both
 

methods require the spectral statistics of the populations as their
 

primary input. The aforementioned classification accuracy estimation
 

techniques provide the basic tools for the scanner system performance
 

evaluation.
 

5.2 Scanner Spatial Parameters Selection
 

The scanner spatial modeling algorithm and software consists of one
 

main plus two supporting routines, i.e., IFOV modeling (SCANSTAT), spatial
 

correlation analyzer (CORELAT) and classification error estimator (ACAP).
 

The objectives of an analytical representation of scanner IFOV model
 

is the establishment of a parametric relationship between the system's
 

input .and output statistics in terms of the class conditional mean vectors
 

and covariance matrices. This relationship is -established using linear
 

system analysis techniques extended to a 2 dimensional space. In order
 

to derive any specific results two basic characteristics need to be
 

specified: (a) scanner PSF and (b) ground scene spatial correlation
 

model.
 

The choice of a Gaussian shaped PSF has been widespread in the field
 

of image processing as applied to the Landsat data. This model closely
 

approximates the averaging property of the scanner aperture. An added
 

feature of a Gaussian shaped PSF is the simplification of an otherwise
 

intractable and cumbersome mathematics. Generally speaking the amount
 

of information available about the spatial correlation properties of
 

remotely sensed data is sparse. It has been frequently observed however,
 

that the ground scene spatial correlation model approximately follows an
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exponentially dropping function [2]. On the basis of previous experimen

tal evidence and the mathematical simplicity afforded by these assumptions,
 

a Gaussian PSF and a Markov scene spatial correlation model is adopted.
 

Like many other instances, the choice of the problem assumptions does not
 

necessarily rest on their strict validity but also on the tractiability
 

of the ensuing algebra. It is entirely conceivable that much more
 

elaborate scene correlation models and PSF shapes can be envisioned.
 

This approach, however, could and would complicate the underlying mathe

matics to the point where the gains initially expected from the more
 

accurate model are balanced out. For simulation purposes the entire
 

analysis is repeated for a rectangular shaped PSF although no currently
 

operational Landsat is equipped with such a scanner system.
 

Based on the foregoing discussion the scanner characteristics
 

function is derived in a closed form. This function relates the input
 

and output statistics as a function of the IFOV size and pixel-to-pixel
 

correlation. SCANSTAT is the software implementation of this linear
 

transformation. The auxilliary program, CORELAT, estimates the class
 

conditional correlation functions and provides the best exponential
 

curve fit to the experimental data using a weighted least-squares fit
 

algorithm. The resulting output statistics is modified by additional
 

random noise the power of which is computed from the specified SNR. The
 

ACAP or SPEST processors provide the new classification accuracy sets.
 

The probabilities of correct classification at the scanner output provide
 

the basic information needed to evaluate the system performance under
 

various operating conditions. For test purposes a hypothetical set
 

consisting of 3 populations is selected and their statistics (mean
 

vectors and covariance matrices) specified. The scanner output statist

tics and associated classification accuracies are computed for various
 

IFOV sizes and scene correlations. The results are in close agreement
 

with the numerically oriented experiments. For any fixed scene correla

tion, the population separability and hence the overall classification
 

accuracy increases monotonically with IFOV size. The rate of increase,
 

however, is a function of the scene spatial correlation. The classifi

cation accuracy increase per IFOV step is small for a highly correlated
 

scene compared to a scene with a small adjacent sample correlation.
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This property stems from the features of the scsnner characteristic
 

function and its particular weighting process. The addition of white
 

Gaussian noise predictably degrades the output separability. The
 

experimental results show that for a fixed IFOV size, SNR and classifi

cation accuracy increase monotonically. Same relationship exists between
 

the classification accuracy and IFOV size when SNR is fixed.
 

5.3 Scanner Spectral Parameters Selection
 

The task of information extraction from remotely sensed data here 

primarily deals with the development of methods and techniques to 

select a set of spectral bands to enhance population separability. The 

first criterion employed in selecting a set of optimum spectral channels 

is the Karhunen-Logve expansion of the ensemble of spectral responses 

associated with a cover type. This expansion provides a 'set of optimum 

basis functions, a linear combination of which reconstructs the original 

stochastic process with a minimum mean square error. These basis functions 

in effect define a set of optimum windows in the electromagnetic spectrum. 

The associated software consists of EXOSYS data retrieval package, SPOPT 

spectral function claculation and SPTES data transformation and statistics
 

calculation. The classification accuracy estimates used to check the
 

resulting separability is obtained using either the ACAP or SPEST proces

sors.
 

The second approach employes an information theoretic concept for
 

the specification of the optimal spectral bands. The observed spectral
 

random process is modeled as the sum of a noise free signal plus an
 

additive random noise component. For a candidate set of channels the
 

quantity of interest, mutual information between the reflected and
 

observed energy, is computed. The method consists of representing
 

each random process as an autoregressive model. This type of represen

tation facilitates the evaluation of the mutual information when expressed
 

in terms of the Wiener-Hopf filter PSF. Experimental results consists
 

of selecting a wheat scene and dividing the continuum of electro magnetic
 

spectrum into 9 distinct bands. In each band a proper autoregressive
 

model is fitted to the particular random process. Following the
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estimation of the parameters of the regression models, the average
 

information content in each band is computed and on this basis spectral
 

channels are ranked. Therefore on the basis of maximum mutual information
 

optimality criterion, the top N bands represent the N "best" choice. The
 

significant result obtained from the ranking method is that out of the
 

6 top ranked channels 5 lie in the infrared portion of the spectrum
 

thus future scanner systems used in remote sensing application should
 

contain more infrared spectral bands according to this analysis.
 

5.4 Conclusions
 

This report has presented a brief description of the algorithms and
 

results of the Scanner Parameter Selection culminating in the development
 

of a Unified Scanner Analysis Package by proper integration of the
 

available software modules. Although this report is the final document
 

in this project, it actually represents the first step toward a well
 

coordinated scanner system parameter study technique. The current struc

ture of USAP basically represents a skeleton of the future analysis
 

packages. There exists a considerable software and theory development
 

potential. The software by and large can take most of the streamlining
 

to further facilitate their usage. Specific topics include extended
 

diagnostic handling and error recovery capability, accelerated algorithms
 

to further reduce execution times, etc.
 

An overall'evaluation of the methods and results presented in this
 

report shows that the objectives initially outlined have been success

fully met. The resulting analysis package, starting from a data base,
 

produces specific guidelines on the selection of spatial and spectral
 

parameters of a multispectral scanner system and it does so on an entirely
 

analytic basis. In closing it should be pointed out that USAP can have
 

a pivotal role in any follow up project providing by far the widest and
 

most economical parameter manipulation scope, fully complimenting any
 

numerical or experimental scanner analysis techniques.
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CHA ANSF AtION THAT DECOUPLES THE FEATURE SPACE IS1FIRCA	 CORRECT CLASSIFICATION*00*'UNDER 548 FORMATIZ5X*4***TOIIL PR6B OF 


DERIVED BY OBTAINING TME EIGENVECTOR OF THE CLASS
C 	 TIT * PERCENT')ENTIRE SET OF STATISTICS MEAN VECTORS
C CONCIDERATION. THE 
 549 FORMAT GAI-

C AND CUVARIANCE MAIRICES ARE TRANSFORMED REULTING IN A 	 FORMAT IIX'ALL CLASS STATISTICS HAVE BEEN READ')0
550
£ DIAGONAL COVARIANCE MATAIX FOR THE CURRENT CLASS AND GENER 


THE NFW COORD NATE SYSTEM IS IGSNS9O IM

C FORM FOR OTHERS.THE MEAN OF 
 CAt THE CURRENT PEAN. TIS PROCESS IS REPE TEO UNTIL THE 	 PNINI+NIN
ENTIRE SET OF PUPULATICNS IS EXHAUSTED. 
 EN22+SM
 

N3N3+5 =
 C.............................................................................. IFINSIZE.LT.51 N3 NSIZE
 
c 


SUBROUTINE ACUTST IA.EAAASIGMA EMAMAMAA,MTS DELTAIPIPC VtHV cZI-NI N2

6 F T2 ZI NZ


NC, RC HADIFTIIN2NADR I4V,XPRI M R, PR EVLL,UL,W 6ET,Z,lQ ,IN X, 

C
C 
 I THE M-A
C LOCAL VARIABLES DEFINITION 	 , 

REALOA AINTSI AAINTSh.SICMAANSSIMAINTM) MAAINTM) TMSOINOIM C
 

C1 DELTANOI~HItnPIN ,P INCL I)VINCL$)WV IN cIMe!VnI 	 ii, 
0 

http:IFINSIZE.LT.51
http:WINCLS),EAINSAtCMANMi4),11N61M.NS


FILE. . . ACAP FORTRAN B1 

C 

C 
 READ (5,PMI2I EMA 


READ IS,FIT3I EA 
c wkITEIt6551O 


WRItEt 6.550)

C 
C 


S SELECT THE REQUIRED SUBSET OF CHANNELSE
 

C 
 DO 803 JCLSSI.NCLS 


C 

5MDS-IJCLS-L)SDIM 


DO 802 K01P41,SDIH

00 801 J-1,NDIM 


C
 
IFIKO A.EQ.CCIJ K Kt 

IFiKDMI.EQ.4CC(J II MAIKIUEMAIDS NCCIJI)


C 
801 CONTINUE 

602 CONTINUE
 
603 CONTINUE 

C 
C 

D 530 JCLS-INCLS 

00 530 KOI1,INOIN


C 
MOS.IJCLS-I)*1)DII MtKDIM 

MAA (MOS I-MAMi)SI 


C
 
C 

C OBTAIN THE ADURESS OF THE SELECTED ENTRIES INTO COVARIANCE MATRIX 

C 


EIDSuIJCLS-1) 

C 


CALL ADRES INADRNCSOIMNDIM) 


K-0 

DO 603 JCLS-1,NCLS
C 


MOS-IJCLS-I)*NSIZE

C 


DO 602 I-jNSIZE

00 601 J-I*NSIZE 


C 

IFII.EQ.NADRIJI) GO TO 602 


C 

601 CONTINUE 

C 


IKt+L 

A(KIuEAIMOSI)


C 

602 CONTINUE 

603 CONTINUE 

C 
 00 20 KDIHINTS 

C 


AAIKOIN-AIKDINI 

O CONTINUE 


381 CONTINUE 

00 628 I.1.NCLS

PCI! )0.

P" I I1lUE
 

620 CNTHU
 
ICNT-ICNTOl
 

FILE. . . ACAP FORTRAN BL 

C TPCC-O. 

C 00 88 KNTR tINCLS 

C 
IRITE16,?0)WRITE(6,7zI 

C 
C RESET THE MEAN VECTORS 

00 321 JCLS-1INCLS
 
DO 321 KDIMflN1I4
C
 

MOS=(JCLS-1I)*NUII

MAINDS+KOIhMIHAAIMDSKOIMI
 

321 CONTINUE
 
C
 

C
 
C PERFORM A OECOUPLING TRANSFORMATION ON THE CURRENT CLASS
 
C 
C
 

C 
C 
C 
C
 
C
 
C
C TRANSLATE THE ORIGIN TO THE MEAN OF THE CURRENT CLASS
 
C
 

IFIJCLS.EQ.KNrR) GO TO 35
 
C
 

DO 38 KOIM-tNUIM
 
0N011
 

NOSnIKNTR-1 *NDII
 
MAIMDS KDI PIMA(MDS*KDIMI-MA(NDS KDIMI
 

C
 
38 CONTINUE
 
35 CONTINUE
 
C
 DO 36 KOIflINDIM
 
C
 
36 MAINDS+KOIMI=O
 
C
 
C
 
C
 
C ,na...*..
C
 
C FIND THE REQUIRED TRANSFORMATION MATRIX
 
C
 
C
 
C
 
51 FORMAT(IX,4(IPEII.4.IXII

C
 

NDS.IKNTR-I ISIZEtl
 
CALL EIGEN IANOSIFRtNDIMNV)
c
 

L-O
 
DO 40 KOIM-1.NDIM
 

C
 

EV KDIMI-AINDS+L-1I)

C
 
40 CONTINUE
 



FILE. 	. . ACAP FORTRAN 81
FILE. 	. . ACAP FORTRAN 51 

WRITE(6,721

WRITEI6,5421
 

RESET THE CURRENT CLASS COVARIANCE MATRIX WRITE16, 12 E
 

WRITE 6,MTII EV
 

C W ITE16 .54)
00 	 WR TEI6,5 4)

0 901 KDIM-.1ISIZE 	 WRITE 6:721
C 	 WRITE16,FTI R
C AINOSKDIM-I)AA(NDS*KDIM-13 	 WRITE(6:TI A
 

C ~WRITE (6.74)
 

901 CONTINUE WRITE 6,5461

C 	 C 

WRITE 6,721

$ WRITEI6,FMTII M
 

C 
PERFORM DIE TRANSFORMATION ON COVARIANCE MATRICES 	 C RTt*4* *	 * 

C	 C.*s.*.***.tflqr******.****.***, ****f ***..*.*t,.**....* .*...*.....*... 

START 	ESTIMATION OF THE PROBABILITY OF MISCLASSIFICATION
NCI NOtM 

NC 1N DIM
 
NC2-NDIM 	 C
 
MSA-. 	 99 CONTINUE
 
MS8.1 	 CALL PMC (MISIGMAPPCEVZ SD.DELTA.WVI WVZV,XFRIM,W,R,
 
IC0*0 I Q0ETINDXO Q, LUL,PR.HAD)
 
00 TOI JCLS-I.NCLS **$$$t*t$€$$$*$ $*$$$ $$$$¢$$$*$¢$$
 

C C
 

KOS. JCLS-I)OISIZE t C CONVERT THE RESULTING PCC TO PERCENTAGE
 
KSS JCLS-I)*NDtI 	 C
 
CALL 	 iLAG R AIR SISIGMAIKSS),XPRIM,MSAMSB,NRINCINC2.ICO,


CDH I
 
C PCiKNTRI-sOO.*PC(KNTRI

701 	 CONTINUE C
 
C 	 WRITEII6,72)

C 	 WRITEIIS6491 IHEADIKS*I, 3-1,2)


49 	 FOIHATI2 XtCLASS *,2A4)
 
WRMITE I6XP[L
PERFORM THE TRANSFORMATION ON MEAN VECTORS 


43 FORMATCL;X,_--P ROBABILITY OF CORRECT CLASSIFICATION- %,FT.3,
 

C ,RRITEII6.?2)
CALL GMTRA IR.QNDIM,NDIM) , C
 
NRI .NDIM
 C 	 WRITE(6.547) PC(KNTR)
NC I'NUIM 

Nc2' 868 CONTINUE
 

DU 702 JCLS*I.NCLS C
 
MUS JCLS-t ¢NL M+l
 

NC N 2) C FIND THE TOTAL PROBABILITY OF CORRECT CLASSIFICATION 

CALL GMPRD IOMA(MUSIMOS3.NRINCINC)C 
0.M MB I N M S NR 


02 CONTINUE 	 $~e$e$*$e*$e$$*$$$$$$$$$$$*e$*$$$$$ 

C C D0 568 11I,NCLS
 
C$$ee$$TH¢E$$$$$ OUTPUT ,$$$$$$$$$¢$$$$$$¢$$$ TPCC-TPCC.PC(I
C 	 I CC 

PREPEARE THE PRINTED 0 	 568 CONTINUE
 
C** $ e $ ***$ $$*$ $ $$TPCC-TPCC/FLOATINCLS)


WRITE (b,4T

C 	 WR TE 6NT


KS.2* TRR
 C 	 WRITEI6,12)
WRITEI6,5361

WRITE(6 74) 	 C
 
WRITEI6 537) IHEAD(IKStIIZt12) 	 999 CONTINUE
c 	 WRIT 16,74) cC 
WRITE 16.536) C 

C 	 C RETURN
 
WRITE 16,721 	 END
 
WRITEI6 5393 NS c
 

C WRITEIt,??) 
 S 	 ....................................
 ,....
WR ITE(6,540)lBS 
 I
 

C E 	 SUBROUTINE ADRES
 
WRITEI6 741 	 C
 
WRITE16:5411
 



FILE. . . ACAP FORTRAN B1 FILE. . . ACAP FURTRAN B 
C PURPOSE I C LL - LOWER COORD. OF A CLLL A 
c C M - TRANSFORMED MEAN VECTORS a 
c 	 FIND THE DESIRED SUBSET OF A COVARIANCE MATRIX C P - GRID PO NT VECTOR A
C 	 PC CLASSIF CATI ON ACCURACY RESULTS A
DESCRIPTION 	OF PARAMETERS C PR - PRCHABILITY ASSOCIATED WITH EACH GRID CELL Ac 	 I C Q - WORK VECTOR 

£ NADR -ADRESS ARRAY OF THE ENTRIES TO BE DELETED I C R - EIGENVECTORS 	 A
NC ARRAY OF THE CHANNELS TO BE DELETED I C SO - CLASS STANDARD DEVIATION VECTOR 	 A 
SDIM TOTAL NO OF BANDS SUPPLIED 	 I C V - PART OF IHE DISCRIMINANT FUNCTIONS A
 

C NDIM - DESIRED SUBSET OF SDI I C WVL - WORK VECTOR 	 A 
c 	 I C WV2 - WORK VECTOR A

C REMARKS 	 I C W - DISCRIMINAT FUNCTION AAC XPRIM- WRK VECITR
£ 

C NONE 	 I C z - COGRD OF CELL CENTERS A 

I 	 A
 
SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED 	 C REMARKS
 

C 	 CC NONE tC 4NNE AA 
C C A
C METHOD 	 C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED A
 
C C A 
C USING A 04L DIMENSIONAL STORAGE MODE FOR EACH COVAR ANCE I C DIAG. GRPROB, MINV A 
C MATRIX IN AN UPPER TRIANGULAR FORMaTHE PARAMETRIC A RESSES C A 
C FOR EACH ENTRY IS DERIVED AND USING NC ARRAY THE LOACTION OF ; C METHOD A 
C ALL THE ENTRIES THAT LIE IN THE UNWANTED LINES AND COLUMNS C A 
C IS COMPUTED AND STORED IN NADR i C THE PRIMARY INPUT TO THIS SUBROUTINE IS THE TRANSFORMED A 
C 	 I.C PEAN AND COVARIANCE MATRICES. THE STRUCTURE OF rHF SAMPLING A
 
C........,.......... ...... ,.,........,• ...,.*,............ 0 C GRID IS DETERMIND BY COMPUTING THE CELL WIDTH ALONG EACH A

C C DIMENSION AND THE COORD OF THE CENTER OF EVERY CELL TIRDUGHOUA
 
C C THE GRID. THE ENTIRE GRID IS SCANNED AND NCLS DISCRIMINAT A
 

SUBROUTINE ADRES (NADRNCSDIM,NDtI) I C FUNCTION IS CALCLLATED FOR EACH CELL. USING MAXIMUM LIKELIH A
 
INTEGER*4 NADRAII.PDIHSDII 030 RULE A CELL IS ASSIGNED TO EITHER THE CURRENT CLASS OR A
CUTSIDE(NEED 
 NOT KNOW EXACTLY WHICH CLASS). SUBROUTINE A

INTEGER*2 NC II i C GRPROB CALCULATES THE HYPERVOLUME JNDER THE POF AND OVER THE A
 

C C GRID CELL. AFTER ALL TIHE POINTS ARE EXHAUSTIVELY TESTED THE A
 
PDIM-SDIM-NDIM C ELEMENTARY UNITS OF PRUBABILITY ARE SUMMED AND STORED IN THE A


C 	 C PC ARRAY AND RETURNED TO THE CALLING PROGRAM. A
 
IFIPDIH.LE.0 GO TO 100 C 	 A

DO 20 	Jt1,PDIM C.........................................................................A
 
NI-.NCIJ) C 	 A
 
DO 1O 	I-k,N1 C A

K=K+1 	 SUBROUTINE PMC (MSiGMAP.PCEV ZlSDDELTAWV1,WV2VXPRIM.WR, A
 
NADRIKIaINC(JI*(NCIJ)-1I/2I+I 	 I QDET.INDX IC.LLULPR,HEAI A
 

10 CONTINUE C 	 A
 
20 CONTINUE C A
 
c

C 	 C A
 

DO 45 	J-IRDIN C LOCAL VARIABLES DEFINITION A
 
NFINSDIM-NCIJ)+] C 	 A
 
DO 35 L-.NFIN 	 *
 

C 	 C A
 
K-K+ 	 REAL MIl LLIIIULIIIPRII) A

NADRIKII (NCIJI*I-1)4P4CIJI+I-21/21NCIJ) 	 I SIGMPIlv,WeIII ,ZNDMWVilI),NSISilIIDELA i AA
12 	 LI C 

WRITERI6 2331 K NADRII( 	 1PIhCwW ,D iII
2 'It iliWV2( 	 A 

533 	 FORMAt(2ZIS.X)5 3 XPRIMINDiMiWIilg1.rt ,VI A
 
35 	 CONTINUE C A
45 CONT1INUE jINTEGER*6 GSfIEADEIIIQII),INDXfl) A
 
C c A
100 	 RETURN COMMON /CAPCON/ ND.NDIMNS,NCLSNP.ISIZEKNTR A
 

END C A

C 	 GS-NS**NDIM A
 

ICD-l 	 A
 
C......................................................................... C 	 A
 
c 	 C A

C SUBROUTINE PHC C A
 

C PURPOSE C A
 
C 	 C FIND THE VARIANCES ALONG EACH FEATURE AXIS A

C TO COMPUTE THE PROBABILITY OF HISCLASSIFICATION OF THEC A
 
C CLASSES C*A****************** #*** **t *** A


C 	 A 
DESCRIPTION 	OF PARAMETERS DO 706 KDIM-INDIM A
 

C 	 C A
 
C 	 DET - DETERMINANT ARRAY FOR EACH COY MATRIX SD(KOII='SCRT EVIKDIN|i A 

DELTA- ARRAY (F SAMPLING CELL DIMENSIONS C A 
EV - EIGENVALUES 106 CONTINUE A 
HEAD - HEADER ARRAY 	 A

CNDX - POINTER ARRAY C 	 A 

http:XPRIMINDiMiWIilg1.rt
http:ZlSDDELTAWV1,WV2VXPRIM.WR


FILE. * * ACAP FORTRAN 81 

C 
C INVERT THE TRANSFORMED COVARIANCE MATRICES 


£ 


C 
DO 70T? JCLS-l NCLS 

KOS IJCLI-I*ND*j
CALL MINV (SIGMAtKOSI,NOIN.OETIJCLSIWYIWVZ 


70? CONTINUE 
C33 FRMATIIX 3 IPE I .12 x I 

32 FORMATIIXw2ILPEIZ. I 
C c2 
C 
C SAMPLE THE FEATURE SPACE BY A BINOMIAL APPROX. TO NORMAL D.F. 
C 

C 

C 
FIND THE WIDTH OF A SAMPLING CELL ALONG EACH DIIENSION
C 


C 


C 

00 44 KDIMS1,NDIM 


C 


OELTAIKDINI.2.*SD(KDIHI/SORTIFLOATINPII

44 CONTINUE 

C 

C 

C 

C FIND THE COORDINATES OF EACH AND EVERY SAMPLING CELL CENTER
 

*.4,*. **e***.e*n***ee****.*..*************************** 


C 


Da 30 KDIM=j.NDIM

DO 30 1- C00 


ZIKIMII=2.*SDIKDIMI*IFLOATI I-I-NPI2) /SRTIFLOATINPII 

C 

30 CONTINUE 

C 


C C 

CUADRATIC DISCRIMINANT FUNCTIONS C* CALCULATE THE 

C 


£
 ICNT'O 


C 

00 404 KDIM=INDIM 


C 

404 INDXIKDIPII
C 


99*99* **********fUDO 

C
 

,s.*.t*.*****,***t*********** 


C PERFORM A ONE-TO-N DIMENSIONAL MAPPING OF POSITIVE INTEGERS 

C 


DO 520 


C 

I1II-NS**(NOIM-11 


2O 	 CONTINUE 


00 I2O J.IGS 

C 


IFIJ.EQo1 GO 70 30 


FILE. . . ACAP FORTRAN Bt 

DO 12Z KDIM-1NOIIM
 
C
 

IFII'.OOlJ 1 IOIK(DINI I.EQ.OI INDXtKDIIII-INDXIKDIMI41
 
IFIINOX(KD[I.GT.NS INDXIKOIK
 

C 
122 CONTINUE
 
A$ CONTINUE
 
c
 
C
 
C
 

CJIPLETE THE DISCRIMINANT FUNCTION CALCULATION
 

00 124 JCLS=1.NCLS
 
00 126 KOIM-INCIM
 

C 
NDSs(JCLS-I*NOIM
 
PiMfS*KDIMI-ZIKOIMINDXIKDIMI)-M(MDS*KDIMI
 

126 CONTINUE
 
12C 04IU
DO 128 JCLS-1.NCLS
 
C
 

MKS- JCLS -l*ND+1
 
lISA SO
 
MSB-O
 

CALL DIAG (PIMOS)iSIGMAIKOSIVIJCLSI.XPRIM.MSAMSB.NR1.
C
 

WIJCLSI-V(JCLSItALOGIDETIJCLSI

C
 
128 CONTINUE
 

C C4ECK THE CONDIKION FOR CORRECT CLASSIFICATION
 

C
 

C
 
134JL=INL
 

C JCLSINCLS
 

IF(W(JCLSI.LE.TERMI TERMWIJCLSI
 
C
 
134 CONTINUE 
C **********t************c********************#**************9** 


+
 

E FIND THE ELEMENTARY UNIT OF PROBABILITY
 
C
 
C
 

IFITERM.NE.W(KNTH)I GO TO 120
 
ICNT-ICNT*I
 

CALL GRPROB IINOXDELTASfhNSNDItZ.PRLLULI
 
c

855 CONTINUE
PRP I.
 

710'P [H-I ,NCIM
 

C PRP-PRP*PRIINOXIKDIMII
 
c
 
C Cl0NOIM 


PCIKNTR).PCIKNTR I*PRP
 
C
 

120 CONTINUE
 

RETURN
 
END
 

C**
 

http:IINOX(KD[I.GT.NS
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FILE. , . ACAP FORTRAN BE 


C

C 	 A C REMARKS
 
C SUBROUTIN GRPROB rA. NONE
 

A
PURPOSE 	 C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED
A,
COMPUTE THE GRID PROBABILITY
C 	 A; C IPRO.GMPRD
C 

DESCRIPTION OF PARAMETERS ASUBROUTINES 
 TP AND GMPRO ARE USED IN SECUENCE TO


A' £ PERFORM HE TRANSPESITON AND MULTIPLICATION.
T

C DELTA - GRID CELL DIMENSIONS 	 A'
 
C INOX - POINTER ARRAY 

C LL - LOWER COORD OF A CELL 	 At 

A C . . ...... ............ . 

C MS - No or CELL PER DIMENSION 
c NtMN - NO CF SELECTED SUBSET CHANNELS 

A C 
C PR - PROBABILITY ARRAY AROUND EACH CELL A C 
C So - STANDARD CEYIATICN VEC TORt 	 A; C SGAXRMMAMBN1NINZIDN 
CU -ULUPPER CUORD OF A CELL A[ SUBROUTINE DIAG EQ X SIGHAAXPRI)MSAMSBNRINCINC2,ICD#NI
 
C_ - CELL CENTER COORO ARRAY At REAL Q 7X(II,SIGA I),XPnI
 

REAK 	 A' 76 F0RMATI1 IF5.261X))
 
At IFIICO.EQ.O) G TO 55
 

i 	 REMARKS
C NONE Ir NRI-N 

C Al NRI-N 
C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED 	 Ar NC2-N
 

Al C

CEFAl 	 55 CONTINUE
C ERF
LtE 100 55 	 CALL TPRD IQ,XXPRIM,NR1,NCI.MSA,MSB,NCZ)
 

C THE NORMALIZED CLASS DENSITY FUNCTION IS INTEGRATED OVER A!IFICDEQO GO TO 121
 
HYPERVOLUME WHOSE SIZE IS DETERMINED BY 'DELTA'. A(
E A NRLs1 

C Al NCI.N 
C .................................................................. 	 A NC2-1
Ai C
C 


Al 121 CONTINUE
 
SUBROUTINE GRPRCB IINOX.DELTASDNSNDIM,Z,PRLLUL) Al CALL GMPRO IXPRIMQSIGMANRINCINC21
CA RETURN
 

REAt*4 Z(NOINMSOEAI)Pl) O ) A!RTR c END

NSETINTEGERIINPRI.SOILLII),ULII)Al
XI T 


E A [ 	 C 
00 100 KEOIflNOIM 	 At C SUBROUTINE GMTRA
 

A! C
 

A( C PURPOSE
 
ULIKDIN)L(KDIMINDXIKDIMI tALTA(KDIN 2. 	 C TRANSPOSE A GENERAL MATRIX
 
LLIKOIN)ZIKDIINPXIKOIMI)ODLKDIMI ;2. C
 

A[ C USAGE
 
ULIKDLIM)ULIKIH)fSD IKOII A( 	 C CALL GHTRAIA.RNM)
 
PjIINXI OIM)I).Q.SOERFIULIKDIM)/SQRTIZ.)I-ERFILLIKDIMI/SQRTIA 
 C DESCRIPTION CF PARAMETERS 
. 1 C A - NAME OF MATRIX TO BE TRANSPOSED

A( 	 R NAVE OF RESULTANT IATRIX
 
A 	 C N - NUMBER OF ROWS OF A AND COLUNS OF R0O CONTINUE 

AI	 H NUMBER OF COLUMNS OF A AND OdS OF R 

RETURN At £ 


END A C REMARKS,
 N THE 	SAME LOCATION AS
2 MATRIXRMA TR ICE S ACANNOTAND R MUBE T BE STORED AS GEINNERAL MAT R CES.	 •,, , . . . - o , , . . . . .o * , , . . ., , , , , , , ~ ~ ~ o A( 

c 
cA[ 	

AAl CC SUBROUTINESNONE AND FUNCTION SUBPROGRAMS REQUIREDSUBROUTINE OIAG 


C PURPOSE AC C NON
 
C TO PERFORM THE FOLLOWING OPERATION. tQTRANSPOSEI*X*IO1-	 At CTROD
 

TRANSPOSE N BY K MATRIX A TO FORM BY N MATRIXRC U 
SA,MSBN,NCI,NC2,IC,N.RCN CA A ..................................................................CALL DGXSR,IAG I,X,SIGPA,XPRI 


Af C) 
DESCRIPTION or PARAMFIERS 	 A( SUPROUTINE GMTRA(AR.N,M 

CQ -THE FIRST MATRIX A[ DIMENSION Aillyftill
 
S -THE ECOND PAIR IO A 

SIGMA -TIHF OUTPUT PATH IX A' IRDO
MSA 	 -FLAG FOR TIlE STORAGE MODE OF FIRST MATRIX Ai D0.0 1-1,N 

c mSs -FLAG FOR THE STORAGE MODE OF SECOND MATRIX 	 At IJ-N 
NRI 	 -NO OF ROWS IN THE FIRST MATRIX At 00 -IM
 

-NOFIRST MATR X A( JNAJ+N
 
NCE -NO OF COLUMNS IN THE SECOND MAT4IX 	 A[1 ReI RR1 

c ICO -FLAG TO BESET NA AND NC PARAMETERS A( ORIR-|J
 

C 4 -NO OF DIMENSIONS AC
 



FILE. . . ACAP FORTRAN S1 FILE. . . ACAP FORTRAN S1 

RETURN 
END 
................................................................. 

80 CONTINUE 
90 IR-IR*I 

RETURNE 
N 

D 

C 
C 
C 

c 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 

c 
E 

SUBROUTINE TPRD 

PURPOSE 
TRANSPOSE A MATRIX AND POSTMULTIPLY BY ANOTHER TO FORM 
A RESULTANT MATRIX 

USAGE 
CALL TPROIABRNM.MSAMSBL) 

DESCRIPTION OF PARAMETERS 
A - NAME CF FIRST INPUT MATRIX 
B - NAME OF SECOND INPUT MATRIX 
R - NAME OF OUTPUT MATRIX 
N - NUMBER OF RCWS IN A AND 6 
M - NUMBER OF COLUMNS IN A AND ROWS IN R 
MSA - UNE DIGIT NUMBER FUR STORAGE MODE OF MATRIX A0 - GENERAL 

I - SYMMETRIC 
C 
C 
C 
C 

2 - DIAGCNAL 
HSB - SAME AS MSA EXCEPT FOR MATRIX B 
L - NUMBER OF COLUMNS IN B AND R 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C
C 
C 
C 
C 
C 
C 
C
C 

REMARKS 
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRICES A OR B 

SUBROUTINES AND FUNCTION 3UBPROGRAMS REQUIRED 
LOG 

METHOD 
MATRIX TRANSPOSE OF A IS NOT ACTUALLY CALCULATED. INSTEAD. 
ELEMENTS IN MATRIX A ARE TAKEN COLUMNWISE RATHER THAN 
ROWWISE FCR MULTIPLICATION BY MATRIX B. 
THE FOLLOhING TABLE SHOWS TilE STORAGE MODE OF THE OUTPUT 
MATRIX FOR ALL COMBINATIONS OF INPUT MATRICES 

A B R 
GEERAL GENERAL GENERAL 
GENERAL SYMMETRIC GENFRAL 
GENERAL DIAGONAL GENFRAL 
SYMMETRIC GENERAL GENLRAL 
SYMMLTRIC SYMMETRIC GENERAL 
SYMMETRIC DIAGONAL GENERAL 
DIAGCNAL GENERAL GENERAL 
DIAGCNAL SYMMETRIC GENERAL 
DIAGONAL DIAGONAL DIAGONAL 

................................................... 

SUBROUTINE TPROIAB,RNMMSA.MSBSLI
DIMENSION AlI).E9(1,RIII 

C 0 

SPECIAL CASE FOR DIAGONAL BY DIAGONAL 

MS-MSA*IOtMSBIFIMS-22) 30.10.30 Z 

20Do0 

RETURN 
MULTIPLY'TRANSPOSE OF A BY B -

30 !R-l 
DO 90 K-1.L 
DO 90 J-I.M 
RIIRI.3.O 
IF(MS 40160,40 

40 CALL LOIIJIAN:M:MSAI 
AL LOCIIAKiBNL.NSBM lA) 50, 3,50 

so6 IF 1
B 
1 TO 00'70i 

60 ANIJ?1B-NO RIKTel1 

10 RI-RI.R(IRS.AIIABIIBII 

0 



FORTRAN 81
FILE. . . SPEST 

£ 

SUEVSRFRTEETMTRINTEGtR'4
SUPERVISOR FOR THE STRATIFIED POSTERIOR CLASSIFICATION ACCURACY
ES T I M A TOR 


CWRITTEN 01/24/78 0. J. 

C 

AENDED 10/3178 B. G. MOBASSERI 


DESCRIPTION AND PURPOSE 
C cH THE STRATIfIED POSTERIOR ESTIMATOR - SPEST- IS SIMILAR TO TH 

ACAP PROCESSOR IN PURPOSE. IT PROVIDES A SET OF CLASSIFICATIO 

ACCURACY ESTIMATES FOR A BAYES CLASSIFIER WHEN T14E POPULATION
 
STATISTICS ARE MULTIVARIATE NORMAL. ALTHOUGH THE ALGORITHM
 
E1MPLOYS THlE LIK~LIHO0 PRINCIPALf IT DIFFESDECOE 

BY USING A RANDOMLY GENERATED DAfA BASE. FURTHER DETAILS ONC
 
THE THEORY CAN BEFOUND IN THE LARS FINAL REPORT,NOV 30 .1970 


cNCSEIIIB
C DESCRIPTION OF CONTROL CARDS 

c
C aSPEST
 

C 

THIS CARDS SPECIFIES THE PARTICULAR PROCESSOR REQUESTED
C
C 


CHANNELS 


THE DESIRED SUBSET OF THE AVAILARLE CHANNELS IS GIVEN HE
C 
 THE NUMBERS APPEARING
IT IS* IMPORTANT TU REMEMBER THAT 

THE ORDER OF THE SELECTED CHANNELS NOT
C ON THIS CARD IS 


THEIR ACTUAL NUMBER. FOREXAMPLE, IF THE AVAILABLE
c I ARE REQUE
c CHANNELS ARE 0,9,12, 4 AND CHANNELS 0,9 AND 

C THI'S<CARD SHOULD READ L,2,4. 

C 

C CLASSES 

c 
C 
c 
C 

C 
c 

C END 

E **0 STAT 

2 REMARKS 

THIS CARD SPECIFIES THE NAME OF EACH CLASS. EACH NAME 

MUST BE PLACED IN A FIELD 7 CHARACTERS LONG FOLLOWED 
Y A BLANK. THE CONTINUATION CARD , IF REQUESTED MUST, f 
E THE NAME 'CLASSES' IN THE BEGINNIG FCLLDWED BY THE 

REST OF THE NAMES. 


C 


SIGNALS THE END OF THE CONTROL CARDS 


QECK FOLLOWS IMMEDIATELY. MUST BE IN CHARACTER FORMAT 

REMARKSFLAG013-. 


C THIS PROGRAM IS CURRENTLY CAPABLE OF PROCESSING UP To 20 

c CLASSES AND B SPECTRAL BANDSE 


HOW TO RUN THE PROGRAMFLAG4.TRUE.
 
THEPRG 


C P GETDISK DHSYS' TO ESTABLISH THE PROPER LINKS.THE REI 

THE CONTROL CARDc
FIE CONIAIKS ONE DECK CONSIST NG OF
R L 


AND LARSYS'STATISTICS DECK. TYPE SPEST FOR THE PROGRAM' 
EXECUTION.PE CONTL CR ST UP 

ED 

C 
C 

#SPEST 
CHANNELS I 
CLASSES BAAE OI CORN 
END 

PASTURE WHEAT 

C.*,.9t$#** ,,*,**.tt****Q,***t#**#Q ~250 

20) COV(36 201
REALM4 PR(2O),PHI. 2iZO)PI20) AMIB 

REALM OPZO') COVTf GA 8, DeT|OCOVINC.2O)

RALt44)Yin) DL COVU 8 PM SDETIOI
(1201


0AITEIE,IO
REAL EXAMB, XCOV 3Lzh -REALe , 


SPEST FORTRAN 01
 

D2)
 
FILE. . . 

REAL#4 ICSET (901 

INTEGERS', NAOR(720),HEADI2D51
 

LIST(41 1'*5PE 'CHiN', 'CLAS' ,'ENDI/
I V E C/lLIARD S"C
 
2 BLANK/ */FSTCRD/'LARS'/
 

- - ,IECU ICAOdO 

INTEGER2 ICSEL(3OI,NCIJOI NCC(O)

tIERSA
LOGICAL;I FLAGI4I/4*.FALSE./
 
COM MON /SPCOH/ NTHNTSISI ZENSIZE.NSA.SDIMNDIM
 

11 FORMATI// R CHANE EXECUION EMINT .0I
 
1Ola FORHAIIXTERR0R IN CTLWRD EXECUTION TERINAT D.'I
 

10X2 EJMA CHANEL. EXECUTION TERMINATED')
1X'ROR
1013 FORMAT IX 'MISSING CONTROL WORD. EXECUTION TERMINATED$I
 
1014 FORNAT(LX,'SPEST PROCESSING STARTED')
R1A5Et.IFORHATII)X tALL CONTROL CRSHV ENRA
 

O15 *FORHAII'ALO NTROCRSHE BEEN EAD')
 

CONTROL CARDS 

C
 
DO 777 1I1,30
 
ICSEL(II0
 

TTTST77CONTINUE
 

C 
77 D 7CSE7I-50000.O
77
Ceil-00.
 

100 CONTINUE
 

LSL-4
 
IERDO
 

c
 
C
 
CALL CGLWRO TICARDICOLLIST0LS01ICOOE.INRDZERI
 
IFIER.NE.O1 GO TO 1001
 
GO TO 199 101,102,103) , ICODE
 

99 FLAGIIo.RUE.
 
GO
 

C
 
C CHANNELS CARD
 
C
 
101 CALL CHANEL (ICARD,KCOL,NCR,ICSEL,ICSET,NCC,900)


FLAGICTRUE.
 
NDIM' NCR
GO TO 100
 

C CLASS NAMES CARD
 
10 DO 10) 20R 


TRUE.
 

GO TO 100
 

N
END CARD
 

0 0 UE 
C
 

201 CONTINUE
 c
 
C CHECK IF ALL CONTROL CARDS HAVE BEEN READ
 

DO 250 1 "'
 
IF.NOT.FLGIII) GO TO 321
 
GO TO 250 -


WRITEI 6,10L31
 
GO TO 999
 
CONT INUE
 
WXITE 16,11)
 

WRITE 16,1C141

WRITEI 6,10141
 

- 15 .
 

0 

http:IFIER.NE.O1
http:DeT|OCOVINC.2O
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WRITEI 6'IO151 

C 


GO TO 680

1001WR TE3 


OWRIE 6T 1000
GO To 999 


680 CONTINUE 

C 


GO TO 720 

900 WRITEI6tO12)


WRITE(16.10121

7 0TO 999 


720 CON TINUE 

C

C***..*.*********4*********f*****l****************************** 

READ THE TOTAL NO OF CHANNELS AND CLASSES FROM THE STAT DECK 


501 FORAT A0I 

5 I kOSMA COS4 t 

ICCDSO ICROS~t 

IFIICRO.EQ.BLANK) GO TO 503 

GO TO 502 

REOIN 5 

REWIND 5 

602 READ S l ICRD 

IFIICR6.EQ.FSTCRDI GO TO 601 

GO TO 602 


601 CONTINUE 

NUNI CiDS0-2 

005061.1SNUN 


KEAO(5 NUl 

501 FORMATIBAA,I8 

0b CORMTNU 


C 

READ(5 508) NCLSNFLO 


08 FORMATI15,6X I5, 1X-
NS 

MNNDIM 


NU2 SD NUMZ 
E 09 ,0


HEADI5Sul0 

509 CONTINUE 


FIND THE CHANNEL SET THAT IS NOT REQUESTED 


C 
DO 611 I=I SDIK 

00 61 J l.NDIM 


C 

IFII.EO.NCCIJ33 GO TO 611 


C
 
612 CONTINUE 

C 


NCIKI-I
C 

611 CONTINUE 


ISIZE-SDIM* ISNIM*lI/ 

ISIZE4DSIMI NOIM*1/2 


C 

NTS-NCLS*1SIZE 

NTM-NCLS*NDIM 

NSS-NCLS*ND 

NSANCLStNSIZE 

NSM-NCLS*SOIR 


NCT * N9(N*I)/2 

00 21


12 PII-I.FLQAT(MI
 

FILE. . SPEST FORTRAN4 a1 

C
 
C CALL MCOVPINAMIIIICOVIIII)

30 ENTI . T O(M


ALL SPESTM(MNPHZ PSAM.COV.PRPCQPICOVTGAMO ET COV!N
 
Y.TEI.DELCOVU,PX.SUETNAURNC NCCEXAtEXCOV.
2 HEAD;
 

C
 
C
 
C

C
 

PC.IOOS;PC
 
WRITEI6,6OIPC
60 FORMAT(///30XOVERALL PROBABILITY OF CORRECT RECOGNITION =,F1
 
1.3)


999 STOP
END
 

C ............................
 
SPEST IS AN ESTIMATOR OF THE CLASSIFICATION PERFORMANCE FROM A
 

GIVEN SET OF STATISTICS FROM M CLA SES THE ESTIMATOR IS A
 
C STRATIFIED POSTERIOR ESTIMATOR (REF. WHITSITT AND LANDGREBE).

C THE PROBABILITY DISTRIBUTIONS APE ASSUMED To OF MULTIVARIATE 
C GAUSSIAN 
C 
C 19 JANUARY, 1918
£.........................................................
 

SUBROUTINE SPESTMIMN PHI PtAMCCOVPR0PCQP COVT.GARDET -COV.
0 COUPSETN ,CCM AEXh
 

2 H&r
 
INTFCER*4 NADR(NSA);SCIM

INIEGER:4 FMTI(4 / (2X,'* 00 E14% 171/1
 
NIEGER 4 FMT2 A /'(2X,',' O : E1:, 71
 
4ITEGER*4 NL/I 0- N2/6 0/


REAL*. QPIMP M, .PRiI).EXA4(SDIMM) rKCOVINSIZMI.COVTtISIE)
P 

REAL*4 GAMfl MI PHI(NNI OtCTIM),COVINIISZEMI
 
REAL*" YIN) EI t) ,nELIN dOVUIN.N)
 
REAL*4 AMIN M) HEADI2O),COVIISIZEM)

REAL*8 PXMIIH COE'I SDETIMIRETAZO.LI,Z2,z3
INTEGER*2ONSPCO# NC!3)NCCN30)"II
NC1 IE,NSIZCNSA,SOIK,NOIM
 

C MMON /SPCO/ Noi $s
 

C - - - - -.. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
 
C
 
C LIST OF VARIABLES
 

M - NUMBEA OF CLASSES
CC N - NUMBER OF DIVENSIONS
 
C PIl - APRIORI PROBABILITIES OF CLASS I
 
C PRI I ' CLASS CCNOITIONAL PERFORMANCE
 
C PC * OVERALL PERFORMANCE 
C AM, J : PEAN VECTOR OF CLASS
 
c COV(JI CIVARIANCE MATRIX OF LASS STORED IN UPPER TRIANGULAR
 

C FORM)

C
 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 
C
 
C
 

C
 
C READ IN THE MEAN VECTORS AND COVARIANCE MATRICES
 

C
 
NI-NISOIM

N22*
 

C IF(NSIZE.LT.5I N2-NZ+NSIZE
 

FMTII2)-NI

FMT212l-N2
 

C
 
00 30 I-I,M
 
READ I5,FMT1I IEXAMIJ.Il JflSDIMI
 

30 CONTINUE
 
C
 

-DO 311.4
READ (5,AMFZIEXCOVIK,I K-INSIZE)
 
CONTINUE
 

H
 
H
 

http:IEXAMIJ.Il
http:IF(NSIZE.LT.5I
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C
 
C 


SELECT THE AEOUIREO SUBSET OF THE CHANNELS 


DO 803 JCLSfI.M 


C 
 K=O 

CKOC 
 DD 802 KOIM.ISDIM 


Do 801 J1,N 

c 


IFIKDIM.EQ.NCC(JI) K-K )

IFIKDI.EQ.NCCI JI) AM(KJCLS)-EXAM(4CCIJhJCLS) 


C 

801 	 CONTINUE 


CONTINUE

0 CON|itNU 


C
 

C 

C OBTAIN THE ADDRESS OF THE SELECTED ENTRIES INTO COVARIANCE MATRIX 

c

C 


CALL ADRES INADRNCSDIMNDIF4) 

C 


c=O 

DO 603 JCLS=IR 


K0 

c


00 6021 "NSIZE 


Do 601 J a1NSIZE 


C IFII.EO.NADRtJ)) GO TO 602 


60 CONTINUE 
 SZ3 


K=K 

COV(KJCLSI)EXCOVIIJCLS)


C 

'602 CONTI NUE 

603 ONT NUE 

C 

C 
 I=9;79j3 


NCT * N*INOII( 

C 

C COPPUTE EIGENVALUES AND EIGENVECTORS FOR EACH MATRIX 

C *170
MV - 0 


EPS - 1.OE-6 

DO lOO' J.11 0 

00 5 5 1 L, N T0 
55 	 CDVTI G. COVIII.1,I-toJ)5Y11vl

CALL EI EN(COvrtPHIII.,IJIN0MV

L o.0 

00 60 	I *i.N 

L L4I 


60 	 G$(1IJI COVTI) 

c 

C COMPUTE DETERMINANT AND INVERSE OF EACH MATRIX
C 
 C0 65 I. ,NCT 


65 COVTCI) - COV(ICIJC

ALL SMINVICOVI NODETIIJI,MV,EPSIER)

FItE)I00 060 


70 	 CONTINUE 

SOETI!) - S RTIOET(IJ)I 

DO 7 5 lulNC. 


75 	 COVINi JI - COVTIII 
100 	 CONTINU 


MV - 0 

00 105 I-, R 


10s 	 gpd0u5o.6M 
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C LOOP ON CLASS ICL
 

c	 PC a0.0
 

00 500 ICL-I,N
 
c 	 AVE - 0.0 

C LOOP ON THE NUMBER OF SAMPLES
C
 
NS - 1000
DO 300 IJINS
 

C
 
C GENERATE Y VECTOR FROM CLASS ICL
 
c
 

D 1l1 1IN
 
CALL RANOUtIXIYXP
 
IX -aY
 
CALL NDTRIIXPY(I),XDIERI
 

e CONTINUE
 

C COMPUTE CONDITIONAL PROBABILITIES FOR EACH CLASS
 
C
 

DO 200 JCL-4
 
IF(JCL .EQ. ICLI GO TO 180
DO 130 itqL,NTEII) - 0.0
 
DELFl) - AHIIICLI - AM(I.JCLI
 
00 130 Jll
 
TEI? -4T1 II) S1RT(GAMIJ.ICLW0YIJ)'PNIIJJICL)


130 	 CONTINUE
 

00 140 I-i1N
 
DO 140 J I

JJ - JJ * [
 

COVU(Jti) - CUVINIJJ JCLI
COVUI 	,JI - VIN JJ:JCL
 

140 	 CONTINUE

1 - 0.0
 

Z2 - 0.0
- 0.0
 

DO ISO I'1,N
 
00 150 J.hN
 
Z~lI ZI - o5*TEII)*COVUIIJ)*TEI(J)

Z2 • 22 - TEIIICUVU(IJIJ)ULIJ)Z3 3- o*OELIICOVUIhIDELJ)
 

150 CONTINUE
 
ZSUM - Z1 + Z2 + Z3 
IF(ZSUN .LT. -1OO) GO TO 190
 
BETA - P(JCL)*1.O
 
PXIJCL) - BETA'*DEXP(ZIZ2+Z3)/SOETIJL)

IFIPXIJC) .EQ. 0.0 WRITE 116.919 ICLJCL.ZSUMSOET(JCLIPXJ(UL
 
CNIU
GO TO 200
 

180 COUTINIJE
 
ZO - 0.0
 
DO 10I- O.5*(N
 

185 CONTIUE,
 
IFIZO 	.LT. -100 GO TO 190
 
BETA - PIJCL)*1.O
PXJCLI * BETA'*OEXPIZ)/S ETIJCLI 
IFIPX(JCLI .EO. 0.0 WRI1E16919) ICL.JCLZOSDET(JCLIPXIJCLI

GO TO 	2OO

190 	 PXIJCLI * 0.0 
200 	 CONTINUE
919 	 FORMATi5X,215.3EI2.4)
 

C
 
C CHOOSE THE LARGEST
 

B

DIG 2 	-0O0
 
DO 220 I 1 I
 
IFIPX41I .0T° BIG) LOC XII)


2 ONT
 
220 ONTINU
 

DEN -'0.0
 
DO 230 1-I04
 
DEN * 	 DEN * PXIII 

http:gpd0u5o.6M
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FILE. . . SPEST FORTRAN 51 

NADRjKI-(NCIJI*INC(J)-1I/2I+i P 

AVERAGE 

230 ~ ONTIUE 
C 

CONINUEP 

DO 45 J-,PDIM P 

C NFINSSDI M-NC[JI 
QP( OC) - OPILOCI + PIICLI*Q/P(LOC) DO 35 I-INF N 

300 CON 
500 CONII NUE K-K*1 

HRITE(6.)536AR).INCIJI+-I)*(NCiJIWRIrECA 536) I CONTINUE 

36 FDRATIS STRATIFIED POSTERIOR ERROR ESTIMATORS) 45 CONTINUE 

FORMAT(IIll :EN 
00O510 ICL'I 1 100 RETURN 

,~IL: PPIICLI/FLOAT(NSI END 

PC . PC * P(ICL)*PR(ICL)
RITE(6,72) 

T2 FORMAT(///I
DSPL2*ICLWRITE(b >37)C(HEADIOSPL+I),1-1,21 

537 FORMAT I9XCLASS ,2A4) 
C PCPR-|O1.*PRIICLI 

WRITElb.82)
82 FORMATI//)

WAITEb1,4821) PCPR 
482 FORPATI2SX,'P R 0 B A B I L I T Y f F C 0 R A E C T C L A S I 

INFIC A 7 I U N -S %FT.300)
510 CONINUE 

RETURN 
1000 WRITEI6 IIOOIIER 
1100 FORHAT(IOXO*0*INVERSION ERROR1 ,12,)1***')

RETURN 
END 

C........................................................................I 
C 
C SUBROUTINE ADRESC 

l 

|-21/2|+NC4I 

P 
p 
p 

P pP 

P 
p 

PURPOSE -c 

FIND THE DESIRED SUBSET OF A COVARIANCE MATRIX 

DESCRIPTION OF PARAMETERS tCT) 

C 
C 

Cc 

NAD - ADDRESS ARRAY OF THE ENTRIES TO BE DELETED 
NC - ARRAY OF THE CHANNELS TO BE DELETED 
SI-TOA aOF SANDS SUPLIED 

DESIRED SUBSET OF SDIM 
REMARKS 

NONE 

C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED 

NONE 

C METHOD 

C 
EIS 

USING A ONE DIMENSIONAL STORAGE MODE FOR EACH COVARIANCE 
MAR IX IN AN UPPER TRIANGULAR FORM THE PARAYETRIC ADDRESSES 
FOR EACH ENTRY IS DERIVED AND USIN& THE NC ARRAY THE LOCATION 
OF ALL THE ENTRIES THAT LIE IN THE UNWANTED LINES AND COLUMNSLOMPUTEO AND SIORED IN NADR. 

C................................................................ ........ 
SUBROUTINE ADRESINADRNCSDINNOIM) 

C INTEGER*4 NAORIII)POIMSDIM 
INIEGER*2 NC(II 

C PDIM-SDIR-NDIM 
C IFIPDIM.LE.OI GO TO ICO 

00 2 JflPOIM 

D6 0Ii-1 ,N t
K-IKJ1 

HN 
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2C
 
SUPERVISOR FOR A TWO DIMEISIONAL SPATIAL CORRELATION 


SPEVIORC 

C WRITTEN 10/04/78 BIJAN G. MOBASSERI 


2 
N 


C 

DESCRIPTION AND PURPOSE 


EC 
C THIS PROGRAM IS A TWO DIMENSIONAL SPATIAL CORRELATOR THE 


hHICH IS A NORMALIZED SPATIAL CORRELATION
C PRIMARY OUTPUT OF 

C MATRIX FOR ANY SPECIFIED AREA. 

C 

THE USER SPECIFIES THE COORDINATES OF HIS DESIRED AREA IN THE 
c 

INITIAL AND FINAL LINES AND COLUMNS ALONG WITH THE 
c FORM OF 


RESPECrIVE SPECTRAL HAND1 I[F THE AUTOCORRELATICN FUNCTION 

IDESIRED ONLY ECAB N*ORLT
 

IS E 
 MNLY
E ONE CHANNEL NUMBER NEED BE SPECIFIED.
EXPOLONENIALONOKD
 c FOLLOWING THE ESTIMATION OF THE CORRELATION MATRIX, THE

EXPONENTIAL FIT OPTION IF INVOKED 4ILL FIT AN EXPONENTIALLY 

ROPPING FUNCTIO4 TO TH& EXPERIMENIAL DATA USING A WEIGHTED 


LINEAR LEAS SOUARES FIT TECHNI UE. IN CASES WHERE THIS 

ASSUMPTION IS NOl YALIO, THIS OPERATION IS BYPASSED. 


THE PURPOSE HERE S TO DEVELOP A MARKOV MODEL FOR THE 


SPATIAL CORRELATION FUNCTION OF THE MSS DATA. 


DESCRIPTION OF CONTROL CARDS 


C *CORRELATE
 
c 

THIS CARD SPECIFIES THE PARTICULAR PROCESSOR REQUESTED
CC 


C INPUT RUNI.),TAPE(.1,FILEI.)

C 

C TilE INPUT RUNTABLE FROM WHICH DATA IS READ 

C-

C BLOCK LINEt.,.I,COLUMNI.,.I

C 

C SEGMENT TO BE CORRELATED 

C 

C FUNCTION 

C ACOMMON 


EITHER AUTO OR CROSS FUNCTION CAN BE SPECIFIED 


CHANNELS 

SPECTRAL BANDS USED IN CORRELATING 

S 


C SAMPLELAG 


CROSS TRACK LAG USED IN ESTIMATING THE CORRELATION FUNCTION 


EXPRESSED AS A PERCENTAGE.OF TOTAL NO OF SAPPLES IN 

C THE AREA. THIS CARD IS OPTIONAL. 


C 

C tINELAG c 


SAME AS SAPLELAG EXCEPT FbR LINES (ALONG TRACKI 


C ExD 

C THIS CARD STARTS IHE EXPONENTIAL FITTING PROCEDURE. OPTIONAL 

CI
 
C END 

C 

C END OF CONTROL CARDS 


2 REMARKS 
C 

TH S PROGRAM IS CURRENTLY CAPABLE OF PROCESSING AN AREA 

111 PIXELS LARGE SINCE ALL THE SUBROUTINES ARE OYNAMICALLY 

SIMENSIONED6 ANY ENLARGEMENTS CAN BE ACCnMPLISHED BY ALTERINI 

THE O1MENSI

6 NS OF THE ARRAYS IN THE 


FILE. . . CORELAT FORTRAN BI 

CC HON TO RUN THE PROGRAM 

C USE THE COMPAND IGETOISK DHSYS' TO ESTABLISH THE PROPER LINK 
THEN TYPE *CORRELATE.
 

C
 
C EXAMPLE OF CONTROL CARD SETUP
 

fCORRELATE
INPUT RUNIT402850O0tTAPE12689),FILE(3
BuLcOCK UF
 
6


FUNCT~ION AU?
C CIIANNELS 2 
C SAMPLELAG 25
 
C LINELAG 25 
C EXPOFIT
 
C END
 
C
 
C OR FOR CROSSCORRELATION.
 

CCORRELA
 
INUTR ITT
 

C BLOCK LINEIi2 SCOLUMNItS}

C FUNCTION RCS
CHNNELS
 
E
C LINELAG 25
C EXPOFIT
 

c END
 
£
 IS 20
 
C PERCENT OF 

C IF SAMPLELAG AND LINELAG ARE LEFT OUT, THE DEFAULT 


THE TOTAL NO OF LINES AND COLUMNS.
 

C
 
C IMPLICIT INTEGER CA-i)
 

REAL64 F2500 G12500),RIZ500,ICSET9I ,RNORM MEANt MEAN2
 
INTESER'4 RUNTA(IO,31 1(2001 LDATAI12500, LDATA225001
 
INTEGER*4 LISTI(9)/lCOR'-,INPU'rBLOC% FUNC'CHANLESAMP%
 

I 'LINE','EXPI"-END I
 
2 LIST2II)/'RUN ,'TAPIO;FILE'/,

3 LIST32I1LINE 'COLUf
 
INTEGER*4 ICARD(201,FCTI21),IVECt2)
 
INTEGE02 CSELI MI ISELI30),NCCI30)
 
LOGICAL*L IDATAc2iOOOIFLAG|IZJ/12*.FALSE./


ICORCOH/ FSTLN,LLINEFSTCLLCOLNSIZEXNSIZEYLAGXLAGYt
 
C I PCTX.PCTY 

1011 FORMAT(IX,'ERROR IN CTLWRD. ERROR CODE=%13,' EXECUTION TERMINAT 
1012 F'RMTI 1XzERROR N CTLPRM. EXECUTION TERMINATED$)
 
1013 FORMATI X,'ERROR N VAL. EXECUTION TERMINATED')


FORMAl IXOERROR IN iHANEL. EXECUTION TERMINATED'I
1014 

is) CONTROL CARD OR PARAMETER. EXECUTION TERMINATI
 
1015 FORMATIX,MISSING 


C
 
C PCTX=20
 

PCTY-20
 
NCE111=
 
ICSELIII
 
00 777 .t-,30
 

777 COt.TINUE 

778 2.1 90
 
7 ICSETII9-0000.O
 

100 CONTINUE
 
LSZ=9
 
IER-O
 
14RD-5

CALL CTLWRD IICARD.ICOLLISTILSZICODE IMROIERI
 
IFIIEK.NE.i O~GO TO IDOL
 
GO TO 99 1O ,12,1O3,104.IO5,106,?,,OTI CODE
 

99 FLAG I -. RUE.
 
GO TO 100
 
INPUT RUNTABLE
2H INPUT RUNTABLE
 

http:PERCENTAGE.OF
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c 

CALL CTLPRMIICARUICOLLIST2,LSZICODE.IOOZ2
101 LSZ3.TUE

LSZ1 

CALL [VALIlCARD. ICULIVECLSZOO3)

GO TO 1501,502, 3),o coo 


C RUN NUMBER
 
C 

501 	 RUNTAB(1I)SIVEC(Il


FLAG(2s. TRUE. 

IF(ICOL.LT.121 GO TO 101 

GO TO 	100
C 

TAPE NUMBER 


502 RUNTABII,2)-IVEC(1)
FLAG/ -).TRUE. 101
IFLAGOLLIET2E GO TO 


GO TO 100ONTINUE
 

FILE NUMBER 


503 	 RUNTABII,3)-IVEC(Il

FLAG(4)s.TRUE

IFIICOL.LT.721 GO TO 101 

GO TO 100 


c 

102 	 '51Z2 


OAL CTLPRHILCARD,ICOLLIST3.LSZICODE1OOD2)

LSE-2 

CALL 	IVAL(ICARDICOL6IVECLSZ.10033

GO TO 1601,bO2) [C E 


c 

C NO OF LINES 

C01 FSTLN-IVECII 


LLINE=IVECI2I 

FLAGIS):.TRUE.

IFIICOL.LT.TZ) GO TO 102 


C 	 GO TO 10 

C 	 NO OF COLUMNS 

C 
602 	 FSTCL-IVEC(l)


LCOL 	 -IVECIZI 

FLAGI6-..TRUE. 

IFtICOL.LT.72) GO TO 102 

GO TO 	LO0 


C AUTO OR CROSS 

20D
OO is I1
103 
 FCT I).ICAAD[i) 


C04INUE

151 

GO TO 00 

C 

C 	 CHANNELS CARD 

C 

104 	 CALL CHANEL (ICARDCOL,NCR,ICSEL.ICSETNCC.IOOI1


NW N-NCR 

FLAGIB).TIUE.

GO TO 	 100 
O TR LAG 


05 tS1 G 

,I

CALLI 	 VALIICARAOICOL,IVECLSZ, 
100 ) 

PCTX IVECCI) 

FLAGI9)9.TRUE.
8~[O.LZ1T0 O
F OL.LT.721 GO TO 101Cl 

1 T10 
LAGC ALNG TRACK 


ALNGTACKLAG, V .
 

106 'A'L'IVLIICRDIOL.VECSZ,1031OR 
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PCTY-IVEC(II
 
FLAGI1OI.TRUE.
 
IF(ICOL.Lr.722 GO TO 101
 
GO TO 100
 

EXPONENTIAL FIT
 

107 	 FLAGIII).TRUE.

GO TO 	100
 

C
 
C 	 END CARD
 
106 	 FLAGIIZ).TRUE.

C
 
c
 
C CHECK IF ALL CONTROL CARDS HAVE BEEN READ
 
C 0 1-. TO
00 651 [1.18


F(,NOT.FLAGII)I GO TO 652
 

C
 

GO TO 	6b4
 652 	 WRITEIIO 1015)

GO TO 	994
 

C 	 00 
654 	 CONTINUE
 

GO TO 	125
 
1001 	 WRITEII6,IO11 ILEA
 

GO TO 	999
 
1002 	 WAITE(b1,1O12)


GO TO 999
 
1003 )RITE(16,10131
 t,
GO TO 	999 
 '
 GO6 TO 	999
1004 	 WRITEI16,IOIA)

c 	 GO999 
125 	 NSILEX-LCOL-FSTCL*I
 

NSIZEY.LLINE-FSTLNt1
 
C
 

c 	 LASX:PCTX*NSITEX/100
 
LASY PCTY*NSIZEY/100 	 Go 

C 
CALL CRLT (FGRLDATAILOATA2,RUNTAB.NCCFCTFLAG)
 

c
 
999 	 STOP
 

END
 
C
 

SUBROUTINE CRLT
 

C PURPOSE

TO PERFORM A TWO DIMENSIUNAL CORRELAT ION OF AN IMAGE IN TWO
2 ARBITRARY BANDS AND DETERMINE A SPATIAL CORRELATION MATRIX. 

C DESCRIPTION OF PARAMETERS 
C
 
C F - ARRAY TO STURE THE INPUT IMAGE (FIRST CHANNEL) 
C G - ARRAY TO STORE THlE INPUT IMAGE (SECOND CHANNEL) 
C R - RCSULING SPATIAL CORRELAFION MATRIX 
C LDATAI - STORAGE ARRAY 
C LDATA2 - STURALE ARPAY 
C 	 RUN[AS p1:) - RUN NUHRIER (IFTlE DESIRED AREA 
C RUNTAB I I - TAPE NUmarR cr HE DES RED AMA 
CROS TAKLAGC - NUPBER OFRUNTABII131 FILE HE DES!RED AREA2K 	NCC - CHANNEL ARRAY 

FCT - DESIGNATING AUTO OR CROSS FUNCTICN 
C FLAG - OPTION ARRAY 
C 
C REMARKS
 
c 	 THIS UBROUTINE HAS VARIABLE 0 HTNSjON PRoPERTY. ALL THE 

ARRAYi MUST BE OIMENSIONED IN THE MAIN PROGRAM ACCORDING 
TO THE SIZE IUFTHE P CTURE 

EOTHELAG N IMATiNE THE CORRELATION FUNCTION IS USR SUPPLIE 
IT IS ADVISABLE HOWEVER TO KE P HI S QUANTITY AT 

BELOW 20 PERCENT OF THE AR A N ODER TO PRCGVIDE AN 
i 'ESTIMATE WITH SMALL VARIANCE. 

i.
.L 
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ARRAYS FGANO R ARE EMPTY UPON ENTERING THE SUBROUTINE. NRTRY-2C 


SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED
 

STAPOP. 
 C* POSITION THE TAPE AT THE START OF DESIRED RECORD
 
METHOD *¢**e****e***¢**#***oe*******A*ee
 

GETRUN 

lN IE ThOTUSTN-

C THE STANDARD LAGGED-PRODUCT SUM METHOD IS IMPLEMENTEO IN TWO ICOUNT.ESTLN-1 
AT UP GTOUNICONU ER1DIMENSIONS ANC CARRIED OUT BY SUBROUTINE ALF. 
 ALTUPFS INUNITflCU ERI


-IERR.NE WRITE h'6 6 ERR
 
IF(ERR.NE.O GO Tu 88
 

NSCID16)
 
NC -1015)
c 


SUBROUTINE CRLT IFGRLDATA1.LDATA,RUNTABlCCFCTFLAG) 	 IFIFJ 13j.EZR, gJP L
 
IFQI fQT(3TFSTCLE.CCORI 0 PL S 


1 CSELII.
D I
C 
 1
LOCAL VARIABLES DEFINITION 

IFIFCT(3).EQ.ACORI GO TO t4
 
CSELINCC1)3l-1
 

C 


CSEL 	 CC 21)-l
I4PLICIT INTEGER IA-Z) 
 CSELINCCIII)fl
REAL*; FNSIAEX1SIZEYIAGINSILEX NSIZEY RtLArXLAGYI,
I. RU,) P(6; 4 6),t~tT(3}.HI 12 ).WRZII) FRROR(312
 
IEKI),krrE I 3,Fa(3IFHAII3 .NCKMrE ANLEAn Ct READ iN THE DESIRED AREA
 

3 ER1.EM340X,tIY C(2)
3

INTEGER 4 IUU4TA6(IUf l,16(2zIZO LOATAI(NSIZEX)#LDATAZINSIZEXI 	 0
 
INTEGER 4 ACOR?' AU /,CCOR/' ROC 	 DO 30 J=INSIZEV
 

2I'	 CALL TOPRV IINUITNSCERRIOATANRTRYNCCSELLNID)
I'NTEGCR'4 	 3 OfTIIt)/'4!//'Z,1R,'I)'/

INrEER*4 FIIZIS)II o tVlI .fe't5t0,1 i1'I 	 IFIERR.NEl WRITE t6.2) RR 
ItTEERQ4 FCTIZCI , 41' 	 ,NI)
N/ 	 I
I$IERHNE. Go TO S6?

INTEDtRO2 CSEL(D3,NCCI3O) 
 CALL 	 OYBYT IIATAFSTCL,lLDATAI.3.NSIZEX)
LOGICAL*1 IOATA(25GIOFLAG(121 
 CALL NOVOYT IZOATA .D FLiLOATA2.344,NSItEXI
COMMON /CORCUM/ 3STLNLINEfSTCLLCOLNS1ZEXNSIZEY.LAGX.LAGY, 


SPCTXPCTY 	 ILNSIZEX
 
GFI.J)-LOATA2 1)
c 


30 	 CONTINUE

COMMON BLOCK VARIABLES DESCRIPTION 


C 	 C
 
FSILN - FIRST LINE C
 
FSTCL - FIRST CCLUMN
 

S LLINE - LAST LINE ******,**ttt4**tt***lt******##*#**"
 
C 	 LC3L - LAST COLUMN C* FIND THE MEAN OF THE PICTURE
 

NSI1Z X- NO Of COLUMNS
 
NSIZY -NO OF LANES
 
PCrT -- LAG AS A PERCENTAGE OF NSIZEX 	 00 ZO J-1,NSIZEY
PCTY - LAG AS A PERCENTAGE OF NSIZEY 	 DO 200 I'1 ,NS ICX 

MEAN! 	 ME AtIIGf 1,JG F T R L
60 FOR'AT2IX,) N ERROR.' IV 	 200 CONTINUE
 
61 	 FOqMATI IX.IOPFS ERRUR. * MEANIS$EANIIFLOAT(NSIZEXgNSIZEY
62 FOAMATILXITOPRV ERROR 021 MEAN2=EANZ/FLAINS ZEXNSIZEYI
 
C -. 
 !EXNS11EY
 

LAG-3
 
C . SUBTRACT- THE MEAN OUT 

00 255 JZNSILEYTHE RUNTABLE ANC FIND THE PROPCR FLIGHTLINE 

DO 255 1iNSIZEX
 

C* 	 SETUP 
Ft IJ3FI ,J 1-NLANI
 
Gi lJGF1 J)-MEAN!
 

652 FORMATI 1XA,2,l I,IK.2LIPE1t.4,1X)O

255 	 CONTINUE
 
P1o 	 CONTNE
 

FSTCL-fSTCL-


C ENIT 6 I0,ERRRUNTAa,) 	 COMPUTE TME AUTOICROSS) CORRELATION FUNCTION
 
ERo
CALFGET RUN IRUNSEL IN! lO) 	 +p oAAl+e,
 

FERR.N .0 WR14 IM601 &RR
 
IFIAR.LOIGo V 8 

http:6),t~tT(3}.HI
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C 


CALL ACF (FG.RNSIZEXNSIZEY.LAGX.LAGY) 
 1 WRITEI6,1001S

C 	 1005 FORMATII///


SWRITe(6,1006
 
O0 	 FORIAT(3O%62-0 SPATIAL CORRELATION MATRIX'I
 

00 320 J-1 LAGY
WRITEI6 FMfII IRIIJ),I-1.LAGX)
 
320 CONTINUE
 

c NORMALIZE THE RESULTING CORRELATION FUNCTION 	 c IFIR(t,1).LT.R(2i)) GO TO 671
 
IF(R(1 II.LT.RI 2 OTO 671
 

a OC7
FiNOT.FLAGIL1I ) GO TO 611

RNORM-R(1,11 RNRMRIL 

DO 68 J=tLAGY c WRITEI6,1005)


WRITEI6t1007)
00 68 I1 LAGX 

1001 FDRMATIOX.-WEIGHTEO LEAST SQUARES FIT INFORMATION-)
 

68 conE(NUa 

68 JlsRIJ)/iRNORM) 
 WRITEI6,1002)


WRITEItb.100d) RHO
C 	 G 

LF(.NOTFLAG(11) GO *~t***e****e** ,1006 WRITE16;iOO2)	 ,F4.23
cwee** ¢¢*~*¢,t*e~#*c~ TO 902 	 FORMAT{30X6'WEIGHTING MATRIX DIAGONAL BASE' 
WRITEI6 1009) ER
 

1009 FDRMAT( UX WEIGHTED LSF ERROR (CROSS TRACKI)hEI4.7)
 

EXPONENTIAL CORRELATION MODEL DEVELOPMENT WRITEIS,1062I
 
NRITE(6 IOLO HIOX
 

1010 FORMAFI:OX6;ADJACENT SAMPLE CORRELATION-I.EI4.7)
IRITECb 1::E
 
USE A LINEAR LEAST SQUARE FIT TO THE LOGARITHM OF THE rUNCTION WRITEIS6.LOLL ER2
 

IALONG TRACKI-tEI4.7)

111 FORATI3JX62WEIGHTEO LSF ERROR 


WRITE6,1012) RHOY
 
1012 FORMATI3OXADJACENT LINE CORRELATION -%EI4.1)
 

DO 831 1I1,LAG 

C 
 C
 

IFIR(I.1).LE.0) GO TO 901 
 6T1 CONTINUE
 
FNII)-ALOGRLAG--11h11) I 
 WRITE(lb,1002)
 

831 CONTINUE 
 C
 
C 2001 FDMMATI/I
 

CALL LSF IHWGTPSFNFHATCIERERRORWRIWR2,LAGRMSERMUI 
 0 RITE16,2002)
 
ER I'RMSIEII) 2002 FORMATiX, 'TWO DIMENSIONAL SPATIAL CORRELATION ANALYSIS'l
 

WRITE(16,2001)
 
CWRITEII6,2003)


RHOX-EXPP-CI2)I 

NCCII tNCCI2I
 

O 832 IsILAG 	 2003 FORMATI2X,-CHANNELSO .21I2,X))
Mllb2001
).-ALOGIRIILAG-IOT 1-1 3)IFR1 

832 COAINUE 


FNI L° F.49011)-AL I 1 LA -1 	 RITE116 20041
IF(R( ,I).LAE.0AlGO ro, 	 WRITEIlb,2001)

2004 FOMATILiX602D SPATIAL CORRELATION MATRIXI) 	 C 

WRITE( 16 2OO1
C 

00 330 J=iLAGY
IHWGT.P.S.FNFHAT.CIERERROR,WRIWRZLAG.RMSE.RMUI
CALL 1SF 

ER2RFSO CALCONTINUE T I WRITEBH6 F 12) IRILJ)R-ALAGXI M 

RHOY9EXPI-CIZ))c 330 CONTINUE 0R TE (1,IO05 1
 
GO T 
 881 RETURN 

901 WR TE 16 1OI3 
902 


END
 
WRirEl ,o103|
 

OR CCF 0 C 	 ooo .*1013 FORMATMA EXPONENTIAL FUNCTION DOES NOT DESCRIBE THE ACF 
IF THIS AK A° REQUEST IGNORED-) ............................. .E
 

902 CONTINUE 
 C UAEXAY
 

C USAGEC C CALL ACF IF,G,R,NSIZEXNSILEYL4GX.LAGY) 

C GENERATE THE OUTPUT 	 DESCRIPTION OF PARAMETERS
 
C F - ARRAY CONTAINING THE AREA TO BE CORRELATEDI1ST C
 c

,#eC*********t**~****t***********t****
v¢ v** ********** *** C G - ARRAY CONTAINING THE AREA TO BE CORRELATEOIHND CH NrfI. 
R - RESULTING SPATIAL CORRELATION MATRIXC 

NSIZEX - NUMBER OF COLUMNS IN TIlE PICTUREFIFCTI3).EQ.ACOR) NCC(2)*NCCII) 


C NSIZEY - NUMBER OF LINES IN THE PICTURE
 
IFILAGX.GE.I0I FMTI(3I)NI19 C LAGX LAG IN PIXELS ALONG THE COLUMNS
FMrI3):LAGXNlI 


C LAGY LAG IN PIXELS ALONG THE LINES
FMT2(2)sFMTII3)

WRITE 6 1000) 	 C
 

C REMARKS
 
WRITE46,100II 


1000 FORMATIEHI) 

C
 

1001 F3AMATIA X TWO DIMENSIONAL SPATIAL CORRELATION ANALYSIS') 
 NONE
 
WR ITS I6.1062)
 

c SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED
1002 FORMAT(//) 
 NCC(
WRITEI6 10031 NCC(II 

NONE
 

WRITEI 10, (CLASS II2),1-1,1Z 

1003 F JRMAT1X9CAhNELS *,2i12.IX)) 


METHOD
 
1004 FORMATINO' LASS' .2 41
 

THE LAGGED PRODUCT SUM METHOD IS CARRIED OUTH
 

http:WRITE16;iOO2),F4.23
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C 


C 


C SUBROUTINE ACF IFG.R.NSIZEXNSIZEYLAGXLAY) 


A V A FSUBROUTINE

LOCAL VARIABLES DEFINITION 

EPe***flINTEGERfl**O

MPLICIT INTECEIA tA-lZ 


IEAL FINSIZEX,NSIZEY), G(NSIZEXNSIZEYI ,RLAGXLAGYI,
RNN EANIyMEANZROIM 

IM.NSItEXVNSIZEY 


C 	 SM THE LAGGE PROUCTS 

C 

00 ETA'1,LAGY
Do 1010 TAUILAGX 

00 30 J ILNSIZEY 


C 00 	30 1 . ,NSILEX 


C IFI(IETAU-II.GT.NSIZEX.O.uIJ ETA-II.GT.NSIEy)I GO TO 25

C. 
2S 2 ?TAU.ETAIRTAUETAII4+tAU-i *F
CUNT IUue I.J T-;F~jhIJ 
30 CONTINUE 

RITAUITA)-RITAUETAI/RDIH

10 	 CONTINUE 


'RETURN 

END 


SUBROUTINE LSF C 


PURPOSE 


C 	 PUROEI A LINEAR 	FUNCTION THROUGH A DATA SET,IJSING LEAST SQUARES

C 


C DESCRIPTION OF PARAMETERS
 
H -MATRIX OF VALUES Or LINEAR FUNCTIONS

WGT-WEIGHTING MATRIX 

a -HTRAISPOSE.NGT 


C P.HNPNTS-I
CS RINVERSE*P 

C -LEAST SQUARES COEFF.
 
F -MATRIX UF DATA VALUES
FHT-ESTIMATE UP F 

C 	 ERR-WEIGHIEO F-FHAT 
LAG-N) (IFDATA VALUESWRI-WURK 	VECTOR

WRZ-WOAK 	 VECTOR 

C REMARKS 

THE EQUATION OF THE LINEAR FIT IS OF THE FORMCI*CZOX 

THE FOLLOWING MATRICES ARE OIMENSIONEO 2*tAG 

HP.S 


THE FOLLOWING MATRICES ARE DIMENSIONED LAC IN THE MAIN PROG 

C IGT.WRIW2,RROR EA ,FNFHAT 
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C 
 C
 

C R(4),RSEIIICI2I 


AND FUNCTION SUBPROGRAMS REQUIRED 	 C
TPROGMPRDINV
E G 
tPOGPOMN
 

C 	 NETHOO
C GENERALIZED LFAST SQUARES TECH3IQUE IS IIPLEMENTFO.FORMULA U$Ef
C INTR*tGI*H)** -II*HTR0WGr*F 
 IC FOR FURTHER O TAILS SEE IDICRETE PARAMETER ESTIMATION 'BY IC J.M.MENOEL,1qT3 
C I 

C ........................................................ ........I
 

SUBROUTINE ISF IHW$T P,S,F,FH&TC,ERA,ERROR,WR1,WRZ,LAG.RMSE,RMU)
 

CI
 
C LOCAL VARIABLES DEFINITION

C
 

C
 
IMPLICIT 	INTEGER IA-Z)
 

I; PiiSf11,FIIR
C WA-,R().WR I ),
REAL*4 HiE) GT(I t EI l FHAT(1|,CIIltERRII.ERRORIRMU.DET 

ED FORMATi//I
8I FORMATI//)

8 FPOATSLAG
 

I
 
DO 30 	IhNPNT$
 

KN*NfPNTS
KItNPNTS*i
 
H(1). 2"1
 

40 CONTIN4UE
 

40 C'TIE
 
C* INITIALIZE THE WEIGHTING 
MATRIX
 

2 HUwQ.4
C
 

no ZR Is1,NPN(S
 
WGTt)-RU**X
 

C
 
NsPT 

NNPTS 
MSA.O 
MSS.z 
L-NPNTS 

C CALL TPR IH GTPNMMSAMS ) 
C N-2 

Lsz 
C 

H
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CALL GPAD IPHRNR4LI 

C 


CALL PUNV £R,NDETWR,1R2) 

C 


N
N=2 N*2i 
KsZ 

L NPNTS 

CALL GMPRO IRP.S.N,1,Ll 


C 

N:2

M NPNTS 
L-I 


C CALL GMPRO IS.F,CN.,L) 

FIND THE LEAST SQUARE ESTIMATE 


C 

NNPNTS 

M.2 

L-1 

CALL GMPRD IH,C,FHAT.N.HL) 


C 

C 


WIGHTD LASTSQUARES ERROR
FIN TH 


£ 	03 100) 1- 1NPNTS 

ERRORIL1I I-FHAII)

CONTINUECl
 

DLNPNTS 


CALL TPRO IERRORWGT.ERRNMMSAMSB,. 

C 


M NPNTS 

L-1 

CALL GMPRD IERR,ERROR.RMSE.N.M.L)


C 


RE TURNE01
 
ENO 


END 


Cf
 
Cal
 

Cu'
 
CO!
 
COl
Call 
CO I
 
Co:

CO
 
Lai
 
CDl
 
Cot
 
Cal
 
Cni
CAl
 

4CO,
 

CO I
 
CUI
 
COl
 
CDI
 
CGl
 
Cut
 
Cal
 

CUl
 

Cal
 
CoI
 

Cal
 

Cal
 
CDI 

CoI
 
CaI
 
COt
 
COl 

CDI
 
'-I 

C q) 
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Co***Oo 

SUPERVISOR FOR THE COMPUTATION OF THE SCANNER OUTPUT STATISTICS 


WRITTEN 09/25!TB BIJAN G. MOBASSERI
C 

****O*fl** 


C 

C DESCRIPTION AND PURPOSE 
C 


THE SCANNER OUTPUT STATISTICS PROGRAM IMPLEMENTS A LINEAR I 

TRANSFORMATION T) OBTAIN A SET OF STATISTICS AT THE OUTPUT 


C OF A MULTIOAND SCANNING RADIOMETER IN TERMS OF THE CORRESPONOIN' 

c 	 INPUT QUANTITIES. IHIS TRANSFORMATION IS ACCOPPLSIIED BY


THE COmpUTAFTON OF THlEI SCANNER CHARACTERISTIC FU:ICT ION 4. AN
ANALYTICAL EXPRESSION, THE MAIN PARAMETERS OF WHICH ARE THE 


C IFOV SIZE AND INFORMATION ON DATA SPATIAL CORRELATION. 

c 

E DESCRIPTION OF CONTROL CARDS 

C *CNTTC 
C THIS CARD SPECIFIES THE PARTICULAR PROCESSOR REQUESTED
 

E 

C CHANNELS 


THE DESIRED SUBSET OF THE AVILABLE CHANNELS IS GIVEN HERE. 

cTIS 11HPURTANT TO REMEMBER THAT THE NUMBERS APPEARINGMON IS CARO ARE THE OROER OF THE SELECTED CHANNELS NCT

THIER ACTUAL NUMBER. FOR EXAMPLE IF THE AVAILABLE CHANNELS 

ARE 8 W2,14 AND CHANNELS 8,9 AND 14 ARE SELECTED, CHANNELS 

THIASSS 	 NAE::C LS:t£NMISB

CLASSE
THIS CARD SPECIFIES THE NAME OF EACH CLASS. EACH NAME MUST BE 

PLACED IN A FIELD 7 CHARACTER LONG FOLLOWED BY A PLANK. THE 

C 	 IN TH BEGINNING FLLOWED BY THE- REST OF THE NAMES. 


c IFOV
C 


THIS CARD SPECIFIES THE SPATIAL RESOLUTION OF THE OUTPUT DATA 

IN TERMS 	OF TE INPUT. BASICALYINTEGER*2 

RESOLUTION PIXELS WITHIN ONE FOY OF THE SCANNER. E. G. FOR 


C 	 MSS OPERATING ON A 6 MTER DATA AND IFOV-5 ACCORDING TO THE 

ABOVE CONVENTION THE ACTUAL SPATIAL RESOLUTION IS 30 METERS 


APERTURE 

c 

C THE CHOICES HERE ARE 'GAUSSIAN' OR 'RECTANGULARV 


SNR (OPTIONALE 

C
C 	 TkIS;'ARD SIMULATES THE EFFECT OF RANDOM ADDICTIVE NOISE ON THE 


POPUIATIUNS S'ATISTICS AT THE SCANNER OUTPUT.THE NOISE COVARIAN 

MATH X S DIAGONAL WITH OFF DIAGONAL ELEMENTS EQUAL TO ZERO.
HESR IS
N DEFINEO AS THE RATIO OF SI]GNAL ENERGY (DIAGONAL ELEH 

C ETS) To NOISE ENERGY.SNR MUST BE GIVEN IN OECIBELS DEFINED 
SNR - 1,*ALMIObISI MAL ENERGY/NBISE ENERGY). THIS SNR WILL 

C BE THE SAME IN ALL CHANNELS. 


PUNCH AUPTIONAL) 


IF PRESENT THE OUTPUT STATISTCS' IS PUNCHED OUT. NOTE THAT SOME 

BLANK CARDS ARE INCLUDED IN THE DECK FOR COMPATIBILITY REASONS 


END 


C THIS ARD SIGNALS THE END OF CONTROL CARDS. DATA FOLLOWS IMMEDIA 

C TLY
U D1026
2 NPUT 	DATA STRUCTURE 

*5US CONSI TS OF 3 SEPERATE DECKSO 
1- LARSYS STATIST0ICS DEK WITH NO CHANGESO IT SHOULD 
NPUT TO 

2_HOWEVER BE, N CHIARAC FORMAT * E0 TERA 

t.SPATIAL 	rCCRELATION PARAME TERS ARE ENTERED VIAk A ND011X 1401$ 

FfLEo .. SCANSTAt FORTRAN 8t 
CMATFRIX.A THE II,JI ELEMENT OF IT IS THE PIXEL-TO PIXELCORRELATION IN CHANNFLS I AND J. THIS DECK CORRESPONDS TO
 
C THE CROSS TRACK COR ELATTON.
C 	 ORLAINC 

C 3- SAKE AS 2 EXCEPT FOR ALONG TRACK DIRECTION.
C
 
C REMARKS

C THIS PROGRAM IS CURRENTLY CAPAOLE OF PROCESSING UP TO 20 CLASSE 
E AND 8 SPECTRAL BANDS.THE EXECUTION TIME IS QUITE SHORT AND 
C 	 EXTENSICH TO A HIGER NO CF CLASSES AND DIMENIONS PRESENTS
 
C 	 NO PARTICULAR PRUBLEM. THE.STATISTICS DECK PRODUCED HERE DOES
 
C 	 NOT CARRY A SEQUENCE NUMBER IN THE 72-80 COLUPNS.
 
C
 
C HOW TO RUN THE PROGRAM
 
C
 
C THE SOURCE AND TEXT FILES ARE LOCATED ON THE 01105K AND ONSYS
C DISKS RESPECTIVELY. AUTHCRIZED 1O0S ARE AUTOMATICALtY LINKED
 
C TO BOTH DISKS AT LOGIN TIME. OTHERWISE ANYONE CAN ACCESS THE 
C DISKS THRU THE COMMANDS GETSK OHSYS- FOR TEXT ANDC G~rDISK DHOSK- FIR THE SOURCE 

AFTER THE PRUPER LINKS ARE ESTABLISHED, TYPE IN *SOS.
 

c EXAMPLE OF THE CONTROL CARO SET UP
 

c 0SCA4STAT 
C CHANNELS 1.2t4 
C 	 CLASSES BARE.O1 CORN SOYBEAN WHEAT

C FOV 2 
C 	 APERTURE GAUSSIAN
 
C 	 PUNCH
 
C 	 END
 

TEGER* LISTI8)1'4SCA',ICHAN' 'CLAS'.'IFOV','APER','SNR%'PUNC,
I END f/. IVEC(II jICARD iOi O RTO
 
INTEGER04 RLAN ,I- I STCRDO/ZOL)NAORIT2O
 

14TEGER04 FMTI 5)I-(7X,1 O' FB.' 12 144 1)1/
 

2FT(1t'3 FHT4(6)ftt4CXtlt,' 0 #IF$~~I I|~
 

N NL/' 091
 
SPREAT3T)lICSEU3 NC3OfNCI3I
 

REAL4 C'VIN172C2ICOVLUTI72Q r,U(OV 72 SLPXITEO)jSLPY1I2OI.
0)

I SUBSLX720IISUBSLYITZCIPXIT2OIPYIT2O ,SPxtTaOI.

2 SPYEI2OICIITZO) C217201,CIYI0).RHO(7201. 

C 3 MUIIbOhI.$MUf16O) 
REAL*M ICSET190I 
LOGICAL*L FLAGIOI/B*.FALSV./

COMMON ISUSCOM? NCLSSOIH.NOIMNSIZE, ISIZENTSNSASIGMAXSIGHAY,
I 	 T S N
C 	 TMSR
 

C
 

1010 FORMArtIIX RROR F'NCTLWROD EXECUTION TERMINATED.')

loll FORlHATl'IX.IERROR N IVAL. XECUTIO TERMINATED.'I
IOIZ FORMA {IWERROR IN CHANEL. EXECUTION TERMINATED.-) 

1013 FORMAT'IXtIR SS|NG CONTROL WORD. EXECUTION TERMINATED.-)
1015 FAHNTI
 

FOHAT1,6,'S CANEV
1,01T FOAMA, 13,SXIS C A N 0 E It 0 U T P U T S T A T | 5 1 1 C SIt 

10IGI FOR A 20XO~SCANNER QUIPUT SPECTRAL STATISTICS*)
I'D 19 FOR4HA,3SXAPERIURO -,3A41
1020 FORMA4IZOX:'APERIUREO 1,3A41

1021 FOR1ATI35XIFOV SIIEC,12," HIGH RESOLUTION PIXELS'O
 
1022 FOI4AT ZOX, 1FOV SILEO'1 12,' HIGH RESOLUTION PIXELS'I
 
1023 FOUHAT 9XOCLA S 1,2A4

1024 FOIMATg25t9,CLASS I 2A4 
1025 FO4MATI IOX'IMPU CUVARIANCE MATRIX.Afl.'OUTPUT COVARIANCE MATRIX
 

1')
1FORMAtIIXIINPUT COVARIANCE MATRIX'.IOXIOUTPUT COVARIANCE MATRIX
 

O27 6 	 hTt/// 

DECODE CONTROL CARDS
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C 

DO 77 1-1,30 


77 ICSEL 12.0
777 	 CONTINUE 


DO 116 1:1 90 

78 	 ICSETII)I-0000.0 


C 
100 	 CONTINUE 


LS?8 

IER=O 

INk O5 


CALL CTLWRD ICAROICOLtLISTLSZ.ICODE,INRD.IERI

IFI ER.NE.0) GO TO 1Ol 

GO T0 t 1 lOZ.103,104,105.106,10),ICCDE
19 9 1
99 	 FLAGIII.TRUE. 

GO TO 100 


CHANNELS CARDC
C
 
101 	 CALL CHANEL IICARO,ICOLNCRICSELICSETNCC.900)
 

FLAG21 .2 TRUE.
 
NDIH-NCR 

GO TO 	100 


C 

c 	 CLASS NAMES CARD
 
C 

102 	 09 10 -.1,20

10 	 HEADIII=ICARD(II


FLAGlIl3.TRUE.
GO TO 	lEO 

G 0 


IFOV SIZE SPECIFICATION 


103 	 LSZfc 

CALL 	IVAL IICARDICOL.IVECLSZ,10021

FLAGI(I-.TRUE.

SIGHAX'IVECIII 

SIMAYSSICAX 

GO TO 100
 

C 

C 	 IFOV SHAPE SPECIFICATION 

C 

104 	 DO 30 1tj 20 

30 	 APERTI IICARDII 


FLAGIS -.TRUE. 


C G3 TO 00 

C 	 SISNAL TO NOISE RATIO 

C 

105 	 LSL1C
 

CALL 	IVAL IICARDICOLIVECLSZ,1023)

SNi=IVEC(I3

FLAGI61.THUE. 

Go TO 1o 

TO PUNCH OR NOT TO PUNCH 


106 	 FL&OI73-.TRUE.O
60 C,100 


ENO CARD 


FLAG(8.TRUE.oC

GO TO 201 


002 I
WRITEII ,OI 


Go To 	0911)C
C O TO 90921 


WRITE(LIlOIZI
9DO 	 WRITEI6 10121 
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201 CONTINUE 
C
 
C 	 CHECK IF ALL CONTROL CARDS HAVE BEEN READ
 
c
 

GO TC 321
 

GO TO 250
 
321 	 WRITEI1610133
 

HARITEi 6,10033

GO TO 	999
 

250 	 CONTINUE
 
C
 

IFI.NOT.FLAGI8I) GO TO 321
 

GO TO 680
 
1001 	 WRITEI161010 

WRITEI 6,10101

GO TO 	999
 

680 	 CONTINUE
 

C
 
C 	 READ THE TOTAL NO OF CHANNELS AND CLASSES FROM THE STAT fECK
 
C
 

C
 
502 	 READ{S01I ICRO
 
501 	 FOR4ATIA43
5 CRDSO ICRS+1
 
C COQIRSl
 

IFIICRD.EQ.BLANK) GO 70 503
 
GO TO 502
 

503 CONTINUE
 

REWIND 5
 
602 	 READ56 501) ICRD
 

IF(ICR .EQ.FSTCRD) GO TO 601
 
GO TO 	602
 

601 	 CONTINUE
 

NUM-ICR0SQ-2

DO 506 1-1,NUH

READIS LOT
 

507 	 FORMATIBA4.183
 
506 	 CONTINUE
 
C
 

c READI5 1014) NCLS NFLO SDI
 
1014 FORMAIiLs,6X,15.X,15f

C
 

NUM2-SDIM41 

Do 509 I1 NUH2
 
REAO15,50T1
 

509 CONTINUE
 
ISIZE0I4.I¢NOIM,1/2 


= 1 E
C SZN L S IS I OMI/

NTS C O Z


NSMHNCLSSDIN
 

NSA-NCLS'NSIZE
 
FIND THE CHANNEL SET THAT IS NOT REQUESTED


C 	 KDS 
DO J t ,SNfOiN00 611611 1 


00 612 Ja MNOIR
 
. IF(I.EQ.NCCIJII GO TO 611
 

C612 CONTINUE
 

C 


C0
 

5 

n _I:
r
;
 

H3
 

http:FLAG(8.TRUE.oC


FILE. . . SCANSTAT FORTRAN B1
FILE. * . SCANSTAT FORTRAN 01 

tr=K.I C
 

C 	 C.Rm
oeoee~~~~~~oeeeweee~~oee~~o~~eete~e
NC(Kl~ 	 C....................................
 
611 CONTINUE
 
C 
 SUBROUTINE SCANER
 
C PURPOSE
 

C. START COMPUTATION OF THE STATISTICS AT THE MSS OUTPUT C 	 TO COMPUTE THE SCANNER CHARACTERISTICS FUNCTION AND GENERATE
 
C
 CC 	 THE TRANSFORMED STATISTICS
 

CALL SCANER (COVIN.COVOUT SUJCOVSLPX SLPYSUBSLXSUSLC DESCRPTIN 	OF PARAETERS
 
IC1,C2NN CRHnADRIAnnU,~lf4'' ER 	 C 

C APERT - ARRAY CONTAINING TiHE IFOV IHAPE [ UTI[N
CI ONE DIFENSIONAL SCANRER H RAFUNTION

£2 	 OE DI PENS ZONAL SANR HlC C 	 C - C1C2 

CDVIN - INPUT COVARIANCE MATRICES 
E 	 C COVOUT - CUTPUT COVARIANCE MATRICES 

C FLAG - FLAG I[N CONTRCL CARDS 
C C 	 14U INPUT REAM VECTORS 

011842 .JCtStNCLS 	 CNADR ADORESS OF THE MATRIX ELEMENTS TO BE DELETED
CC 
 NAO THE 'CHANNEL SET THAT I NOT REQUESTED

C N COPLEMENT OF NC
KSM24.CLS 
 C RHO - SPECTRAL CORRELATION MATRIXRS-ICLS-IISIZE
AS11L-1*SZ 	 C - AUXPY tUX ARRAYARRAY 

wra 6,101S) SLPX - PATIAL CORRELATION PARAMETERS. CROSS TRACKWRI t6, 0161 	 SLPY - SPATIAL CORRELATION PARAMETERS. ALONG TRACKWRIE 16 0161 
 C SUBSLX - SUBSET OF SLPX 
H ,01 I)
NRTE(16IIBI 	 CUBSLY - SPY
SUUCUV - SUBSETSUBSET OFOF THE INFU SPECTRAL COW MATRICES

WRITEI6,I168 	 SUBHU 
- SUBSET OF THE INPU MEAN VECTORS
WRITE(16 1016) 	 C
C
 
WRgTEI6,10201 1APERT (i1.1.3 


E+21 10136WRITEIot[d11I APERTI 

C REMARKS
 

WRITEI6jI O E) C

WR1IE116016) 	 C NONE
wR TEIO'11 SIONAC

WR ITTEt-t Iz21SIGIAX 
 C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED
WRI 	E6 1021 4 C
W*RIEI'I0 1 . C ADRESWRITEI.!P 613 tAOIS 13 lflz) C METHOD
Nk1TEILB)Wj3) IHEA(KS*IzIrSRjAWRUEII6ii2THE 	 A"EQUIflEO SUOSET OF THE INPUT SPECTRAL AND SPATIAC CORRELACC(6i10t6| 	 MATRICES IS COMPLIED. tHr SCANNER CHARACTERfISTIC ,UNCTION IS

CRTSA6,IO2Tl 	 CCALCULATED BASED ON EIIHER A GAUSSIAN OR RECTANGULAOR jFOV 
C AND SPECIFIED SIZE. THIS WEIGHTING 'FACTOR &S THEN APPLIED

WR 16,I C5 C TO-THE INPUT STATISTICS AND THE RESULTING AUPUT IS PRINTEDWITEIV 14,1026) C A0NOPUNChED I F AEOUESTEOI. THE PUNCHED STAT BECK IS COMPATIBC 
 C 1TH OAC AP AND VARIOUS LARSYS PROCESSORS. UMOTY F TERCRT WITE( 1016) 	 CI1) II'A N AIOSLRY RCSSR.UIYFIE 
C GAIN MAINTAINS THE EUUALITY CF INPUT'AND OUPUT MEAR VECTORS 

C WRITE(I6401)
DO 4I XDIf=l~,NDIM C 

6D 641K01M ,N~tHCC ..........................................?............................ 
9STRT-KD H* KDIM-11/+tI 	 c(STOPKOIHIKOIM-I)/2t 	 SUBROUTINE SCANER (CUVINCOVCUT SUBCOVSLPX SLPY SUBSLX.SUBSLY PX
 

(UpyTCCI2, 	 CiNNCCRtlUNA, R,FLG.HUSUOHUoAPhRTI

FNTI 2F=H1(23I 	 C
 

MTIS 	2 ITI 2 c
 

NR FITI)I . OLOCAL VARIABLES DEFINITION

URISEI6FT 'SIJ6COV 'ItlS)I-ISTRT, ISTOP)yVO TJit ISTOP)IWRITE I6,FT CS I.fS 

REAL4 COVjNINSAINUFNSM) COVOUTINT) SUCOVXNTSISU'UINTN),SLPI.
ICDVOUT(J+MSI,.JISTRTISTOPI 	 #IN
C it1EF16'fIT41 	 SA fSLPV(NSAC SU?0jNT jI; $ IPX(NTSI'PYIMTSJt
C~ WRT(,06 	 U TCi( 6I ZINTS C NIS 6RH NTS 

g0 CONTINUE 	 INTEGER*4 NIT1 41/41I2A00/' 

842 COTINUEINTEGER44 	 Nil' O', Nl 0.16 
CNTEGER04 GMAgSIGAY.SR ,NAwRia . APERT|2) 
9NTFGE 4 SHAPE/ REJ-1 
INTEERf NCUIOIMCCT 30)
 

ELO 

9fl STgP 
 S
 

1') 



FILE. . . SCAISTAT FORTRAN 1
 
601 CONTINUE
 

UBSLX KI-SLPX IDSj
 
USLY KIaSLPY 1DS l
 

c 
C
 
602 ONTINUE
 
603 ONIINUE
 

K
 K=O 
00 803 JCLS-IlNCLS
 

C
 

00 802 KOIM-I SDIM
 

ON 801JiND M
 
I IFIKOIN* |K-K+I
 *E 


C T IN TE SCNNEI SURU(K UIDSNCCTIJ
 
82 CON TjNUE


03 CONT NiUE 

i ETERMINE THE SCANNER CHIARACTERISTIC FUNCTION 
* i i i ! l i i i * i i i i e i l i i i i i e e i e , i l i
 

C 	GAUSSIAN SCANNER POINT SPREAD FUNCTION

U 

C 0 *00 IINTS
 
IFIAPEAT 3)iEQ.SHAPEI GO TO 641
 
PYXi SI$AXtt2)t(SUOSLXII1..2
 ~ '=IIOAY*SZIsISU8SLYII"*2) C
 

SPK-SQTIPXIII)

CSP RTptI
 

CIIIl 2 *10,SeERFCjSPXlSQRTj2.)j)-EXP PXI|I/2:1
 

2 5 ERFC SP /SQRT 2.) '/Z
 CC IfIf 8*0:I 	WEXPIP 

GO TO 646
 

C RECTAJGUALR SCANNER POINT SPREAD FUNCTION
 C
 
641 CONTINUE
 
C
 

PK .I-SIGKAXISUBSLXIIt 
PYIE lSIGAY*SUSLYIII 
CIII)-iZ./PXII). I-fl-EXPI-PX|III/PXIII 
CZI 'I2./PY Iit I--EXP -PY7 III/PYII

C
 

646 CONTINUE
 
C CII CIIIl'c21I1
 

C
 
C FIND THE OUTPUT COVARIACE MATRICES
 
C
 
C
 
C
 
C
 
C COVOUTIIJ-SUBCOVII)aCiI)

00 CONTINUE
 

IFI.NOT.FLAGI6)) GO TO 456
 

C 
C ADD 
NOISE TO THE SCANER OUPUT SIGNAL
 

FILE. .. SCANSTAT FORTRAN BL 
~K-Ki
 

CONMON /SOSCOM/ NCLS,S0IM,NCIM,NSIZEISIZENTSNSA,SIOMAXSIGAY,

I 	NTISN.SNR 


COMON BLOCK VARIABLES DESCRIPTION 

4 -CORE SPACE FOR ONE SUBSET OF CQVRIANCE HATRIX 
C NCLS " NOOF CLASSFS
 OIR -OF REQUESTED CHANNELS 


NTN CORE SPACE FOR A SUBSET OF MEAN VECTORS
 NSA NCLS N IZE 


C NSIZE COME SPACE FOR ONE COY MATRIX 

c RHA' CORS SPACE FOR THESEAENTIRE INPUT
 NTS -NCLS:ISIZE 


5 C om NO OAVAILABLE CHANNELS
 IGMAX-IFOV SPREAD. CROSS TRACK 

c 5 G1A0-IFOV SPREAD. ALONG TRACK0
 

501 FORMATI2OAI4).2.IxI
 508 FORMATItLARSYS VERSION 3 STATISTICS FILE') 
509 FORMAT(ICLASS NAME'l
510 FORMATt 151XI5i6XifS)

511 FORMAT(10 F4.2, Xf|C 


~ READ IN THE INPUT SPECTRAL AND SPATIAL STATISTICS 


VECTORS
 

e00 

c 


N2"N2 f5IC 

N2=NZf5 


IFINSILE.LT.5I N2-N3+NSIZE 

C 	FMTI(21-NI 


f8 21T2).N2 


t2 MU 


READI5.$T2I COVIN 


C REAO5,507) 


REAOSb SLPX 

READD1iSSII ISLPY


C 

C 00 S5 IsI.NSAC
 

SLPXfh-LoG5(SLPXflI) 

SLPY(Uj.-ALOGISLPYIIII


521 CONTINUE 


C

C SELECT THE REQUESTED SUBSET OF THE INPUT 


C 

C 


CALL ADRES INADR.NCsSDINNDNIM 


C 

K-0
 O0 603 JCLS-t.NCLS 


MDS"IJCLS-I NSIZE 


DO 	602 I:I:NSIZE 


00 601 J I NSILE 

IF II.Eg.NAORIJ) GO TO 602 


C 

MATRICES 


http:IFINSILE.LT.5I


FILE. . . SCANSrAr FORTRAN 81 FILE, . . SCANSTAT FORTRAN f1 

C C 

C C
 
c 	 0 5 CSINL SUBROUTINE AGNES INAORsNCSDiMN0Im)
 

C 4 	 INECER*4 NADRIIPDIMSOIM
 
G 455 KDIM-tCNDIM 
 INTEGER*Z NC(1I
 

NAUSKDIM*IKDIMtII/Z C PDIN=SOIANDI
 
VARNSE-|IIC)**(-SNR/1O.3)PCOVOUTIMISSNADI 	 c
 

IF,PDIM.tE.O1 GO TO 100
COVUUIIMON.#NADIW COVOUTI POS+NAD) 4VARNSE
1,5 CONTINUE DO 20 J-IPGIM
 
456 CONTINUE 
 C
 

C
IF(.NOT.FL&GI37) GO TO 544 

00 10 	I-1,1.
C 


2 	 NARIKt-(CIJ)INC(d1-E2IlPUNCH 	OUT THE SCANNER OUTPUT STATISTICS 

C 	 g

20 CONTINUE
 

WRITEtT,508I c
 

WR|TEMT5231 WRIT17,59) c 00 45 JlPI
O) J-t0P0I"
 

523 FORMATILK C NFIN-SDIM-NCtJ)+1
t3 


C 	 WRITEI(l5I0) NCLSNFLO.NDIM 00 35 I-I1NFIN
 

NUM2-S~lM~tC KSKil
 
U3 53f1-I=lNUMZ
CONYRIEC 	7C2 NAORIK)1 (NCIJI*I-lIINCIJI,k-/U+INCIJ I

WJRITE ITE.2I
CONTINUE 
 C
 

35 	 CONTINUEP4NrIIt2)I-;3NDIMA 45 	 CONT NUE$Mt2121.NizC 	 C 
100 	 RETURN
WRITEITFMTII SUBMU
CVOUE
C4 	 RITEITFM~fH) 


544 	 CONTINUE
 
RE IURN
 
END
 

C
 

SUanUrINE ADRES 

2 PURPOSE 
c
 

FIND THE DESIRED SUBSET OF A COVARIANCE MATRIX
 

DESCRIPTION OF PARAMETERS
 

NAOR 4RCREARRYOYHUETISTFB
I NADR - ADORESS ARRAY FTHENRETOEDLTD EEE

S8 M ARRAY UP THE CHANNELS TO BE DELE.TED 

SDM TOTAL 140 OF BANOS AVA 'LABLE
 
1401M DESIRED SUBS ET Of SU1M -

S REMARKS
 

C NONE
C
 
SUDROUTINE AND FUNCTION SUBPROGRAMS REQUIRED
 

NONE
 

METHOD
 

uSING A ONE DIMENSIONAL. STORAGE MODE FOR EACH COVARIANCE
 
MATRIX IN AN UPPER TRIANGULAR FORM, THE PARAMETRIC ADDRESSE
 
FOR EACH ENTRY IS DER'IVED. USING THE NC ARRAY, THE LDCATO
OF ALL THE ENTR IES THAT LiE Ifl THE UNWANTED LINES AND COLU?C IS COMPUTED AND STORED IN NADR. 

http:PDIM.tE.O1


FILE. . . SPROCT FORTRAN PI FILE. . . SPOPTM FORTRAN PI 

sPR- C 

C SPOPTM
C
 
C PURPOSE
 

PURPOSE 


EXOYS DATA IN PUNCHED FORMAT IS READ AN) STORED ON TAPE 


REVISED 1 
 TO DESIGN THE OPTIMUM SENSOR FOR A GIVEN DATA SET.
 

3 JULY, 1978 USAGECALLED FROM EXEC ROUTINE
 

C
C-
C 	 C DESCRIPTION OF PARAMETERS
Cf14EON (04 tOO) C AM -- MEAN VECTOR OF DATA
 
INTEGER*4 INS) 04V431D EI1IhNFOCRP 1OUPI C COY COVARIANCE MATRIXCOF DATA
 

6E* C PHI OF EIGENVECTUORS.
-MATR1X
8UEt0iATAI2SO0I~~~' 
011) 1G4A3 	 EIGENVALUES
EQ ALENCIDAT& 
 C 	 N DIMENSIONALITY OF DATA SET
 

411 1, IFOII, ),I1 IFIOO C NCLS NUMBER OF CLASSES
 
RNT I C SUBROUTINE AND FUNCTION SUBPROGRAMS CALLED
 
NT 	 oo0 C EIGENPEISORTSPWGI


C C
 
CtI INFORM4ATION 
 C METHOD
 c N 	 CRI1c THE KARHUNEN-LOEVE EXPANSION WITH THE MAXIMUM LIKELIHOOD ESTIMATEt RITE|(6,10T1 C OF THE COVARIANCE MATRIX AS THE KERNEL IS USED TO REPRESENT THE 

ID FflMATI5XTYPEIN DATE*,/IX.15('/fl) C RANDOM PROCESS.READtI5 15)DATEH
 
15 FORMAT4ISAIi C REVISED


C 14 AUG. 1978 
C EXP. NO., NUMBER OFCLASSES, AND NUMBER OF DIMENSIONS C 

WRITE(16,2O| C 
20 FORMATIXTYPL EXPoN0.jCLAjSESAND DIMENSIONS*,/' / 1/ t0 COMMON 11)41O)

READtlb;25)iOtI6btiD0FORMAFI lT IO 1BA RE L 8 VEC (10OU O t VI (IO 0 4IND 0{OOACOVfIOO I 0O| GAN|IO DJ2 s 3ZX IZ ,X ,13) 	 REALt4 AMI OOJ#Y|[OO} coVISO),HIP100,100) 
REAL:$ PHC 100.10


CEXPERIMENT INFORMATION REAL4 XIIOOi 0
OO 

NCLS - 10117) 	 REWIND 2W{IE 416.5)
 

DC 35 I-ItNCLS 5 FORMATt5X-OPTIHUH SENSOR DESIGN')
WRITE(I6,3QII 	 C
 
30 	 FDRMAT(SX,'TYPE CLASS INFO AND NO * SAMPLES FOR CLASS 'Itl,/IX#KO C READ ID INFORMATION 

35 	 READ AEADI2) I0 
40 	 FDRMATIIAI I6OXI' WRITE618)

WRITE(III 1 8 FORPAT(IH1,SI/))
CALL SPL5L 	 CALL SPLOL
 

READ SAMPLE FUNCTIONS FROM EACH CLASS 
 C* I 1
 
DO 500 K-i NCLS C COMPUTE COVARIANCE
 
WRITL(680 	 C
 

so 	 FOMMATth{/IIOX.SAMPLE FUNCTIONSt) WRITE (6tI)
NF - ID(2O*KI 10 FORNA TI5%COVARIANCE BEING ESTIMATED (SPOPTHI 
1 00 READ2 O%9IAv TIME. tN NOGRPSxNOSAMS NCLS I II100 R 0 DAY
INFT 

1000 FOAIAT JAA,2XfK / 4 IIBXt/)OX 20 

0 
I1I.NCLS
I I 4# 	 00
REAOISIIOUIIDAIA I, nO S) 20 NFT " 4FI * 11)20+1)

1100 FDRMATIZOAAI COt - OFLOATINrI)/DFLOATINFT-1I
WRIITEI6 ISO IN 	 DO 30 I-I.N
 

150 	 FORMATIIOXZ0A4) 30 AMIII - 0.0

DO 160 1 1 NT 	 30 35 I0.0CT

160 	 XIll - DATAIItlI 35 CUVII) - 0.0WRITEIElI X 00 &5 IJINFT 
200 CONTINUE READI?) X 
500 COUTINUE IN - 0END FILE 11 	 03 50 I-1N


STOP 	 AMIX) - AMill 4 XIll/DFLDATINFT)
END 	 Do 50 J-1,1
 

14 - IN + I
COVIIN) - COVIIN) * XII*XIJI/OFLAT(NFT-II
50 CONTINUE 
65 CONTINUE

IN - 0 
DO 60 	I.IN
 
DO 60 J-1.1
 

IOViNl - OVIINI - CPN*AMII)*AMIJ1
 

.0-. 



FILE.. . SPWGT3 FORTRAN PI 

FILE. . . SPOPTN FORTRAN PI C 

60 CONTINUE C WEIGHTING FUNCTION NUMBER 3 

C WEIGHTING FUNCTION 	 c
 
C 	 ,SUBROUTINE SPWGT3(WI


4 -R0 
 REAL*4 WIt1c0
 
00 210 J-1 I 

WRITE (6,151
14 - IN * 1 FORMATI// 5KOWEIGHTING FUNCTION NUMBER 34//I
Jl.-*OIC5 
 Do 20 1
ACOV(I , 
 Wi 1.!100
210 CONTINUE 

C CALL SPWGT3(Wd 
 CALLSPWG31W)DO 	 20 CONTINUE
30.1;!18,53

C 	 00 250 I-1.N C 14.5D0 30~~o 


C 	 0 Will-0.
DO 250 .11,N
250 W141 	 1-72,76
DO .J I.N 40 DO 	40 • 0.0
 
250 ACOVILJI ACOVIIJI'W(J) wil7 0. 

C W(541 0.5
COMPUTE TRACE OF COVARIANCE 	 W(711 0.5
 

WTUN 0.5
SUM -	 0.0 

DO 80 	ITNRN
 END
80 	 SUM - SUM*t ACOYI|eI) 


COMPUTE EIGENVALUES AND EIGENVECTORS
 
WRiTEl 1 6, 75)
 )


75 	 F3RMATVSXAEIGENVALUES AND EIGENVECTORS (EIGENP)'

NM NT - 56.
 

CALL EiBENPINNMACOVT,GAMEVIPHIVECIINDIC.WI
 
CALL EIORTIN GAM,PHI
C
 

C PRINT EIGENVALUES AND MEAN-SQUARE ERROR
a CO - FLOAT NFTI/ FLOATINFT I )FLOAT INFT-1 1
 

CI * FLOAi(4*NFi-II/(FLOAT(NFT-1))
WRITE(6 1I0)
 

110 	 F3RMATidl/) .5X, N% SX,'EIGENVALUE.o5XeVARIGAMNP,5XIVAR(PHI),5SX
*'MEAN-SQUARE ERRORIL
00 ISO 1-1,30

VARP ; 0.0
 
03 L20 J41 10,

IFIJ .EQ. 19 GO TO 115 
VARP u VARP t COtGAM(l)*GAM(Jl/,GANA II - GAMIIJJ,*2 

115 CONTINUE"
 
120 CONLNUE
 

VARG - C4tG4MhhI*GAM(I)
SUM 	 SUM - GAMI II 
WITE (6.1451IGA(I) VARG VARPSUM 

145 	 FORMAT( X,~i4XFtO.L.4Xi LO.4,2X,F10.4,ZXF14.6)
150 	 CONTI NUE 

00, 155 JtI,N

00 155 I1IN,

1,55 	 RHI.PlIfIj *M PH'II, J)
 
03 180 J-1 O,2'
WRITE17 16 )IPHIPiII J-lI-1vN) 

160. 	 FORMATMIOA*) M
 
180 	 CONTINUE'
 

STOP,

END' 

H1
 

http:EiBENPINNMACOVT,GAMEVIPHIVECIINDIC.WI


FILE. 	. . SPIES FORTRAN P1 


C - -0 
 C 	 ~C
C SPTES TRANSFORMS THE DATA USING THE OPTIMUM 
SET OF BASIS


VECTORS OMPUTES THE MEAN-SQUARE ERROR, AND COMPUTES TE 

STATISTICS FOR EACH CLASS. 


COMON 10o100)- -5 REAL*4 P1103PHI(IOOG 03X/100),YIIOQIZ(i00j

C 	 REAL4 A 1ObIAVEt261o? ,iOVtZ 0ica1 


SELECT NUHUER OF TERMS 


WRITE1I6,10I 

to FJRMAl15x;'NUMBER OF TERNS 6)
is Rc oilSil INTEAP 

tS FORMATIIZ)


REWIND 2 

READIZI 10

U S I0417)
N:LS R 

N . a;18
* NVERM*INTERM 4 1)/AFT
 
DO 20 IaINCLS 
20~~~~~O NF $ D2+100 

00 25 	laI,NCLS
C 

25 CONTINUE 


P5 I ./FLOAT(NCLS) 


28 	 FOW4ATII2XI2N

2 R8E T (* I 


0 FORHATlOFE.42 

COMPUTE MEAN FUNION 

C 0C
00 300 1 N
 
300 AMII- 0.6I6 


no 320 KaINFT 

REAQ~z03AO32 £Xx ti03
~I00 IIN
320 [I 


2 C+Xt16/FLOATiNFT320 	 CONTINUEN~~u
 
REWI 2 


CREAD EIENVECTORS 

DO 40 	J-I NTERM
READ1-

FORMAT1ZOA4)
35 FRATh 351(~PlHlII I,)f.I'N) 

40 CONTINUE 
LOOP ON THE SAMPLE FUNCTIONS IN THE DATA SET 

AVESO- 0.0WRITE16,21O)AVEUO
AVESO 	- 0.0 

Dl 200 ICLSr1,NCLS
DO 50I . NTERM 


so 	 AVE( ICL - 0.0 

03 55 I.1 NCT
 

55 	 COVIIcts). 0.0
 

UP .	 If(ZC4ICLSI

CON a FLOATINF)/FLOATIN-1)
 

c DO ISO ISAM-I.NF
 
CREAD SAMPLE POINTS FROM FUNCTION
 

C READI2) X
 

TRANSFORM DATA USING BASIS FUNCTIONS
 

Do 70 J'l NTERM
 
YV.0.6
 

TJIl ..'ttIi - PHI(I,J)0(XEII - A~f
 

FILE. 	. . SPTLS FORTRAN PI
 

CONTINUE
 
CMPUTE SOURED ERROR
 
O
 

00 80 	I1IN
 
80 	 1z(| * 0.0 

00 85 Ill
 
.Z( a ) PHI(IJP*YtJl
fl~ * 


CONTINUE
 
88 £*1 A3RI
 

XSO - 0.0
 

ZSQ*. 0.0
 
E5 
 *0.0
 0SO 	 0.0
 
O 90 Is.IN
XSO . XSQ + XIlij XII
 

ISO * ISO t zllt*Zll
Xi a Xz + 2.O*XllllI)

90 	 CONTINUE 

ESO - IXSO - XZ 4 ZSQ)IFLOATIN)AVESQ - AVE$O + ESQ 
cC COMPUTE STATISTICS 

I-IiNTERM
AVEIItCLS
0 - AVEI IICLS) + Y(I)/FLOATINF)
 
too 	 CO INUL
 

1 = 0
 
Do 110 J*1,NTERM

DO O I-LJ

r3VIINICLS - COV(INICLSI + YII)*YIJ)/FLOATINF-1)
 

IO EOUNTINUE
I' 

50O
 

PRINT 	STATISTICS
 
C
 

IN . 0
 
00 160 J-1,NTERP
160 I-
D: 1 IN 

CONIN ICL COV4INICLS) - COU*AVE(IICLSI*AVEIJICLS) 
WITE(6I65)CLS 

1 FCAMAif54/ STATIST CS FOR CLASS'OMT1 
CALLALEuAVEgIlLMCUVPdt IERA CSFRCAS j4IWRITE4T 17011AVE 1,1CL I I- tNIERMI
E hCOVlICL 


170 	 FDAMAIt(1A41 .
WRITEIT175) (COVIIICS), INCT)

75 FORMAI OA4 IC) ICS~
 

C
 
zoo CONTINUE
 

AVESQ - AVESO/FOATINFTI
 
210 FORMAT(///IOX.*MEAN-SQUARE ERROR * E0.41


STOP
N
 
END 

http:ISAM-I.NF
http:FORHATlOFE.42


Final Report Distribution List
 

NAS9-J5466
 

NAME NUMBER OF
 

NASA/Johnson Space Center
 
Houston, Texas 77058
 

ATTN: J. D. Erickson/SF3 (1) 
ATTN: M. C. Trichel/SF3 (1) 
ATTN: L. F. Childs/SF (1) 
ATTN: K. J. Demel/SF5 (1) 
ATTN: F. Weber/SF5 (1) 
ATTN: G. 0. Boat4right/SF3 (1) 
ATTN: K. Baker/SF4 (1) 
ATTN: H. G. DeVezin, Jr./FM8 (1) 
ATTN: R. P. Heydorn/SF3 (1) 
ATTN: M. C. McEwen/SF3 (1) 
ATTN: D. H. Hay/SF12 (1) 
ATTN: D. L. Amsbury/SF5 (1) 
ATTN: J. G. Garcia/SF3 (1) 
ATTN: F. G. Hal1JSF2 (1) 
ATTN: B. L. Carroll/C09 (1) 
ATTN: E. Laity/SF121 (2) 
ATTN: R. Shirkey/JM6 (4) 
ATTN: J. T. Wheeler/AT3 (1) 
ATTN: G. E. Graybeal/SF4 (2) 
ATTN: I. D. Browne/SF3 (5) 

IBM Corporation 
FSD Mail Code 56 
1322 Space Park Drive 
Houston, Texas 77058 

ATTN: Mr. Stanley Wheeler (1) 

Department of Mathematics 
Texas A&M University 
College Station, Texas 7784? 

ATTN: L. F. Guseman, Jr. (1) 

ERIM 
P. 0. Box 8618 
Ann Arbor, Michigan 48107 

ATTN: 
ATTN: 
ATTN: 

R. F. Nalepka 
W. A. Malila 
R. C. Cicone 

(1) 
(1) 
(1) 

Kansas State University 
Department of Statistics, Calvin 19 
Statistical Lab 
Manhattan, Kansas 66506 

ATTN: A. M. Feyerherm (1) 



NAME NUMBER OF COPIES
 

U. S. Department of Interior 
Geological Survey 

GSA Building, Room 5213 

Washington, D. C. 20242 

ATTN: Mr. W. A. Fischer (1) 

,NASA Wallops 
Wallops Station, Virginia 23337 

ATTN: 
ATTN: 

Mr. James Bettle 
Dr. Harold Maurer 

(1) 
(1) 

U. S. Department of Interior 

EROS Office 
Washington, D. C. 20242 

ATTN: Dr. Raymond W. Fary (1) 

U. S. Department of Interior 

EROS Office 
Washington, D. C. 20242 

ATTN: Mr. William Hemphill (1) 

University of Texas at Dallas 
Box 688 
Richardson, Texas 75080 

ATTN: Dr. Patrick L. Odell (1) 

Department of Mathematics 

University of Houston 
Houston, Texas 77004 

ATTN: Dr. Henry Decell (1) 

U. S. Department of Agriculture 
Statistical Reporting Service 

Room 4833, South Bldg. 

Washington, D. C. 20250 

ATTN: W. H. Wigton (1) 

Goddard Space Flight Center 

National Aeronautics & Space Administration 

Greenbelt, Maryland 20771 

ATTN: 
ATTN: 
ATTN: 

Mr. W. Alford, 563 
Dr. J. Barker, 923 
Dr. L. Walter, 920 

(1) 
(1) 
(1) 



NAME 


U. S. Department of Agriculture
 

Soil & Water Conservation Research Division
 

P.. O. Box 267
 
Weslaco, Texas 78596
 

ATTN: Dr. Craig Wiegand 


U. S. Department of Interior
 
USGA National Center
 
Mail Stop 115
 
Geography Program
 
Reston, Virginia 22092
 

ATTN: Dr. James R. Anderson 


Director, Remote Sensing Institute
 
South Dakota State University
 

Agriculture Engineering Building
 

Brookings, South Dakota 57006
 

ATTN: Mr. Victor I. Myers 


U. S. Department of Agriculture
 
Forest Service
 
240 W. Prospect Street
 

Fort Collins, Colorado 80521
 

ATTN. Dr. Richard Driscoll 


University of California
 
School of Forestry
 
Berkeley, California 94720
 

ATTN: Dr. Robert Colwell 


Environmental Remote Sensing
 

Applications Laboratory
 
Oregon State University
 
Corvallis, Oregon 97331
 

ATTN: Dr. Bwrw J. Schrumpf 


U. S. Department of Interior
 

Director, EROS Program
 
Washington, D. C. 20242
 

ATTN: Mr. J. M. Denoyer 


NUMBER OF COPIES
 

(1)
 

(1)
 

(1)
 

(i)
 

(1)
 

(1)
 

(1)
 



NUMBER OF COPIES
NAME 


John F. Kennedy Space Center 

National Aeronautics & Space Administration 

Kennedy Space Center, Florida 32899 

ATTN: Mr. J. P. Claybourne/AA-STA (1) 

Texas A&M University 

Institute of Statistics 
College Station, Texas 77843 

ATTN: Dr. H. 0. Hartley (1) 

Code 168-427 
Jet Propulsion Laboratory 
4800 Oak Grove Drive 
Pasadena, California 91103 

ATTN: Mr. Fred Billingsley (1) 

NASA Headquarters 
Washington, D. C. 20546 

ATTN: 
ATTN: 
ATTN: 

Mr. Pitt Thome/ER-2 
Mr. Leonard Jaffee/D 
Ms. Ruth Whitman/ERR 

(1) 
(1) 
(1) 

Texas A&M Univetsity
 
Remote Sensing Center
 

College Station, Texas 


ATTN: Mr. J. C. Harlan 


USGS -National Center
 
Mail Stop 115
 

Geography Program
 
Reston, Virginia 22092
 

ATTN: James Wray 


77843
 

(i)
 

(1)
 

Canada Centre For Remote Sensing 

2464 Sheffield Road 
Ottawa, Canada KIA OY7 

ATTN: Dr. David Goodenough (1) 

Dr. Paul Mausel 
ISU 

Terre Haute, IN (1) 



NAME NUMBER OF COPIES
 

Remote Sensing Laboratory 
129 Mulford Hall 
University of California 
Berkeley, California 94720 

ATTN: C. M. Hay (1) 

NASA Lyndon B. Johnson Space Center 
Public Affairs Office, Code AP 
Houston, Texas 77058 (1) 

National Aeronautics and Space Administration 

Scientific and Technical Information Facility 
Code KS 
Washington, D. C. 20546 (1) 

Department of Watershed Sciences 
Colorado State University 
Fort Collins, Colorado 80521 

ATTN: Dr. James A. Smith (1) 

NASA/Johnson Space Center 
Earth Resources Program Office 

Office of the Program Manager 
Houston, Texas 77058 (i) 

NASA/Johnson Space Center 
Earth Resources Program Office 
Program Analysis & Planning Office 
Houston, Texas 77058 

ATTN: Dr. 0. Glen Smith/HD (1) 

NASA/Johnson Space Center 
Earth Resources Program Office 
Systems Analysis and Integration Office 
Houston, Texas 77058 

ATTN: 
ATTN: 

Mr. Richard A. Moke/HC 
Mr. M. Hay Harnage, Jr./HC 

(1) 
(i) 

Earth Resources Laboratory, GS 

Mississippi Test Facility 
Bay St. Louis, Mississipi 39520 (i) 

ATTN: Mr. D. W. Mooneyhan (I) 

Lewis Research Center 
National Aeronautics & Space Administration 
21000 Brookpark Road 
Cleveland, Ohio 44135 

ATTN: Dr. Herman Mark (1) 



C6 

Ay-!, 


