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Abstract

Multiattribute decision analysis is a methodology for

providing information to a decision maker for comparing and selecting

between complex alternatives. This Report presents a brief introduc-

tion to the principal concepts of the Keeney and Raiffa approach to

multiattribute decision analysis. The Report presents the concepts

of decision alternatives, outcomes, objectives, attributes and their

states, attribute utility functions, and the necessary independence

properties for the attribute states to be aggregated into a numerical

representation of the preferences of the decision maker for the

outcomes and the decision alternatives.
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FOREWORD

This Report . has been prepared in response to the many requests for

an introductory level explanation of the multiattribute decision analysis

methods used in the evaluation of technology alternatives for Small Power

Systems Applications (SPSA). It is intended to focus on the methodology

rather than on the context of the illustrative examples. Hence, simple

examples are employed here. These simple examples are not drawn from

Small Power Systems Applications due to the rapidly evolving and changing

criteria and attribute scales to be used in that context. It is believed

that the use of examples likely to stimulate extensive discussion would

distract the reader from the introductory level explanation.

This Report is intended to serve as an introduction to the Report on

the "Criteria and Methodology for Ranking Small Power Systems Applications

Technology Alternatives." Thus, this introduction is Volume I of a three-

volume effort. The second volume contains a detailed description of the

criteria, their attributes, and the decision analysis process developed to

evaluate and rank technology alternatives for small (1-10 MWe) solar

thermal power systems applications. The third, and final volume in this

series will cover the interviews and subsequent analysis for evaluating

and ranking the SPSA technology alternatives. Volume III is presently

scheduled for completion in May, 1979.

The immediate purpose of this document is to aid people in the

understanding and use of the second and third volumes at the Jet

Propulsion Laboratory, the Department of Energy and cooperating organiza-

tions such as Battelle-Pacific Northwest Laboratories and the Solar Energy

Research Institute. An additional use of this introductory Report is to

explain multiattribute decision analysis to individuals facing other pro-

blems that may be amenable to this methodology.
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1.	 Introduction

Multiattribute decision analysis is a methodology for providing

information to a decision maker for comparing and selecting between com-

plex alternatives. The methodology of multiattribute decision analysis

is derived from the techniques of operations research, statistics, eco-

nomics, mathematics, and psychology. Thus,researchers from a wide range

of disciplines have participated in the development of multiattribute

decision analysis. The first books and papers on the subject appeared

in the late 1960's [1-4]. The most practical, extensive, and complete

presentation of an approach to multiattribute decision analysis is given

in the 1976 work of Keeney and Raiffa [5]. While several approaches to

multiattribute decision analysis have been developed [6-17], the princi-

pal method described in this Report corresponds to that of Keeney and

Raiffa [5].
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2.	 The Decision Analysis Paradigm

The paradigm for any decision analysis is depicted in Figure 1. A

problem or a requirement exists. A set of alternative actions, called

"alternatives," are available. The decision maker must select one, and

only one, alternative. Examples of alternatives might relate to a

corporate policy decision, a capital budgeting decision, selection of

a system design, or a personnel decisi;:;n. The selected alternative is

an input to a system model which is a set of descriptions or mathematical

equations relating the selected alternative to the resultant "outcome."

Uncertainty

System	
Outcomes	

Value	
Preferences

Model	 Model

Figure 1. The Decision Analysis Paradigm

When no uncertainty exists in the system model, then the selection

of a specific alternative results in a prescribed outcome. For example,

the investment of $1,000 in a Federally insured savings account at

6% interest compounded annually will result in an outcome for certain of

$1,060 after one year. If uncertainty exists, then the selection of a

specific alternative could result in any one of several outcomes. Invest-

ing in the stock market would be a prime example. The alternative would

be the investment portfolio selected. The system model would include all

of the economic forces and uncertainties that act on the stock market.

The outcome would be the value of the investment portfolio at the time it

was sold plus any dividends that had accrued. This is an extreme example

2
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of a systeti model dominated by uncertainty, because no valid system model

of the actions of the stock market presently exists [18, 191.

The problems to which decision analysis can be most usefully applied

lie somewhere between these two extremes. For example, an advanced energy

system is to be developed. Certain engineering principles and experience

with prhtotype designs give a good indication of how the system will per-

form. However, some uncertainties will still exist such as the cost of

the energy system in mass production or the reliability in commercial

operation.

In the decision analysis paradigm, the outcomes of the system model

provide the input to the decision maker's value model. The output of the

value model states the decision maker's preferences, either in terms of

a rank ordering of the outcomes or a numerical scale that measures

strength of preference as well as rank ordering.

3



3.--- Thw Dacia-ion Maker-

Any decision analysis assumes that there is a single decision maker

or a group of people that can be expected to reach a consensus of opinion.

It is the preferences of this person, or of this group, that will be us4d

in the decision model. This requires that the decision analysts interact

with the decision maker or his representatives in formulating the value

model. Where consensus is required of a group of people, the consensus

must be obtained by means external to the decision analysis. There pre-

sently exists no analytical means of combining disparate preferences into

a single or "true" preference, nor may there ever be [5, 20-23]. There

exist axiomatic formulations for obtaining group preferences, based on

concepts of rationality, fairness, and efficiency, but they ultimately all

contain one or more logical assumptions that can be seriously questioned.

Even the selection of a group decision model is in itself a group decision.

An extensive discussion of a group decision analysis where the members of

the group had disparate preferences is that of Dyer and Miles [24-16].

4
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The multiattribute aspect of decision analysis appears because,

for most complicated problems or complex systems, the outcomes must be

evaluated in terms of several objectives (also called "goals" or "criteria").

Objectives of a decision analysis are stated in terms of properties, either

desirable or undesirable, that determine the decision maker's preferences

for the outcomes. For the design of an automobile, several objectives

might be: (1) to minimize cost, (2) to minimize fuel consumption, (3) to

minimize air pollution, and (4) to maximize safety. The purpose of the

value model is to take the outcomes of the system model, determine the degree

to which the outcomes satisfy each of the objectives, and then make the nec-

essary trade-offs between the objectives to arrive at a ranking for the out-

comes that correctly expresses the preferences of the decision maker.

The value model is developed in terms of a hierarchy of objectives and

sub-objectives, as shown in Figure 2 for the design of an automobile. In

order to quantify the value model, a unit of measurement must be assigned

to the lowest members of the objectives hierarchy. These measurement units

are called "attributes," and they are scaled in convenient units to measure

the degree to which the associated objective is satisfied. In Figure 2,

six attributes are used to quantify the value model, and the outcomes of

the associated system model would be expressed as a six-component vector,

with the components corresponding to the six attributes, i.e.,

x - (xl ,x29 x3 ,x49 x59 x6), where xi is the ith attribute of the value model.

A specific occurrence of an attribute is called a "state" of the attribute.

An "attribute state" for the objective "minimize fuel consumption" might

be x3 - 35 miles per gallon.

5

y

I

16



i^

d
O
W

W
W
W
O
,G

S.+

d
'd

O
0!

rl

U
C1
'r1

V

0w

u
w
CdN
a
x
a
b
O

Ol
O

tti

N

Ql
w
7
OO

4.

^a

o

W
2
a

N6	 ZWN
N
_

uj	 vi

F
2 ac 4A

x Z W W()
--------

N ^j

d

at Z

---- ---------	
O
J

_J

4A

^N
J
O

N

V

AHAMIN S3nIzvo0
	

Shnsibuy

6



5.	 Aggregating Objectives into a Value Model

Once attributes have been assigned to all the objectives and

attribute states have been determined for all the outcomes, it is then

necessary to aggregate the Attribute states of each outcome through trade-

offs into a single unit of measurement that will correctly represent the

preference ordering of the decision maker for the outcomes.

One common method for aggregating the attribute states is the

"willingness to pay" or "pricing out" technique [5]. One attribute is

singled out as the measurement attribute, preferably an attribute measured

in money. Then, one at a time, each of the other attributes are changed

to a reference state, with the money state of the measurement attribute

adjusted by means of an assessed trade-off or rate of substitution to com-

pensate for the change in the other attribute. Through this process, ai'.

the outcomes are expressed in terms of n attributes, n-1 of which all have

been -djusted to the same reference att.Libute state. The preference rark-

ing of the decision maker is then expressed by the state assigned to the

measurement attribute. Unfortunately, easy as this method is to apply, it

is valid with constant rates of substitution only when two conditions are

satisfied:

1. The trade-offs for the measurement attribute and any other

attribute are independent of the states of the other

n-2 attributes.

2. The trade-offs for the measurement attribute and any other

attribute do not depend on the states of either the measurement

attribute or the other attribute. (This literally is what

"constant rate of substitution" means.)

7
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For two-attribute outcomes, x - (xl-,x_7).-this requires that the trade-off

curves be straight lines (A trade-off curve is a line through a set of out-

-	 comes for which the decision maker is "indifferent" or "equally prefers.")
i

Thus, this "pricing out" technique is extremely difficult to apply to

objectives whose attributes exhibit a diminishing return to scale.

For outcomes represented by more than two attributes, similar arguments

apply.	
s

Fof the Keeney and Raiffa formulation [5] that is to be described

in the remainder of this report, the attribute states are quantified on

a numerical scale that represents the preferences of the decision maker

for the various states that the attribute can assume. The function that

transforms an attribute state into a numerical representation of attribute

preference is called an attribute utility function. It is represented

by the expression u.(x.), the attribute utility function value for the

ith attribute in the attribute state xi . The proper algebraic expression

combining the attribute utility functions is called an outcome utility

function u(x), with x = (xl,...,xn) being the n-attribute outcome. An

outcome utility function is a numerical representation of the decision

maker's preferences for the outcomes. The use of the word "utility" to

represent preference or value has a rich and venerable history in econo-

mics [27-31]. It is convenient to measure attribute utility functions

on a scale from u  = 0.0 to u  = 1.0, where u  = 0.0 corresponds to the

least-preferred ith attribute state that occurs among the outcomes under

consideration, and ui = 1.0 corresponds to the most-preferred state.

An example of an attribute utility function for the attribute x 4 of

Figure 2 (grams per mile of hydrocarbon emissions) is shown in Figure 3.

8
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Since u4 (x4-- 0.2) - 0.5 in Figure 3, one could interpret this as

meaning that the decision maker has the same increase in preference in

decreasing hydrocarbon emissions from 0.25 grams/mile to 0.20 grams/mile

as decreasing hydrocarbon emissions from 0.20 grams/mile to 0.05 grams/

mile. Other interpretations are possible.

If all the other attributes of an outcome are held at constant states,

it is theoretically possible to construct an attribute utility function

as shown in Figure 3. There are several techniques for determining the

form of the attribute utility function. These include direct magnitude

estimation, preference difference assessments (either rank ordering of

preference differences or equal preference iaterval scaling), ratio scal-

ing, and the lottery method [12,32]. The lottery method will be used in

this Report because of its theoretical consistency, its widespread discus-

sion in the literature, and the fact that it provides a straighforward

way of handling uncertainty.

If the other attributes of an outcome are not held at constant states,

but instead are allowed to vary, then the concept of an attribute utility

function has no theoretical or practical validity unless certain indepen-

dence conditions are satisfied. The most obvious independence condition

is Lhat the form of the attribute utility function should not change if the

other attributes are held at constant, but different, attribute states.

This independence condition allows the concept of an attribute utility

function to be meaningful. The name given to this type of attribute

independence is "utility independence."

10
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If the attributes satisfy utility independence, then it would seem

to naturally follow that the utility of the outcomes would be computed as

a weighted sum of the attribute utilities, e.g., where x - 
(x1 x2),

U(X) - 
klul(x1) + k2u2 (x2) .

Unfortunately, utility :Independence of the attributes alone does not suffice

mathematically to insure that the outcome utilities can be correctly com-

puted as the weighted sum of the attribute utilities. For the two-attribute

case, x - (xl ,x2), the correct formula, assuming utility independence, is

[5,33] :

u(x) = k1Ul (xl) + k2u2 (x2) + (1 - kl - k2) ul (xl) u2 (x2) .

The correct mathematical derivation shows that a multiplicative term

ul (xl) u2 (x2) with a weighting factor of (1 -k I  
-k2 ) appears.

A simple example can illustrate why the weighted sum can yield

incorrect orderings of outcome preference. Consider the selection of an

aircraft with the two attributes of concern being x  = payload weight and

x2 - aircraft range. A weighted sum could incorrectly give preferential

ranking to an aircraft with a very large payload weight, but whose range

was less than the majority of the routes being considered. In the two-

attribute formula just given, assigning small values to k  and k2 results

in a formula approximately of the form:

u(x)	 u1 (x1 ) u2 (x2 ) .

11



It is in this multiplicative term that the

preferred states is correctly modeled.

W

Keeney has developed a practical algebraic expression for combining

the attribute utility functions to obtain an outcome utility function.

Rather than testing each attribute for utility independence, Keeney has

shown that it is only necessary to test one attribute for utility indepe:i-

dente (call it the reference attribute), and then to verify that the pair-

wise trade-offs of the reference attribute versus each of the other

n-1 attributes are independent of the states of the remaining n-2 attri-

butes. This pairwise trade-off independence is called "preferential

independence." These n independence conditions then lead to an algebraic

expression for the outcome utility function of the form:

n

u(x) k Q I + kkiui (xi)^ -1

where:

u(x) = the outcome utility function.

ui (xi) = the attribute utility function of the ith attribute.

k  = a scaling constant that determines the "weight" or

"importance" of the ith attribute.

k = an algebraic function of the ki I s, which scales u(x)

from u = 0.0 to u = 1.0.

For the details of the proof, the reader is referred to Keeney [34] and

Keeney and Raiffa [5].

12



The n scaling constants, ki, determine the relative importance of
t

the associated attributes. The k i 's range in value from 0.0 to 1.0, with
i

the larger values associated with the more-important attributes.
tr

When the necessary independence conditions are violated, it is

possible to divide the attribute state ranges into intervals over which

the independence conditions are approximately valid, or the set of attri-

butes can be redefined so the independence conditions are valid. It is

important to distinguish these independence conditions from the "technical

dependence" of variables which define the system model. This latter type

of dependence arises very naturally in engineering systems, and only

restricts the set of feasible systems of the system model. In the air-

craft example cited earlier in this Report; the engineering constraints

on the design of the aircraft result in a technical dependence (or func-

tional relationship) between aircraft range and payload weight. It must

be stressed that this "technical dependence" has no effect on the value

model and is not to be confused with the utility and preferential indepen-

dence conditions required of the Keeney and Raiffa formulation of the

value model.

13



The lottery method, first introduced by von Neumann and

Morgenstern [35], serves three purposes in the Keeney and Raiffa formula-

tion [5] of the multiattribute decision problem. It permits the construc-

tion of outcome or attribute utility functions, given the preferences of

the decision maker for various outcome or attribute states; it permits the

determination of the attribute scaling constants; and it permits uncer-

tainty to be treated in a straightforward manner such that utility function

values can be assigned to alternatives with uncertain outcomes.

A lottery is a gamble between a set of outcomes in which a single

outcome will result. Associated with each outcome is a probability of

the occurrence of that outcome. Lotteries are diagrammed as follows:

{ Outcome A
ttt(

	

i

{ Outcome B

Outcome C

The diagram is to be interpreted as requiring that Outcome A will occur

with probability pA, Outcome B will occur with probability p B , and

Outcome C will occur with probability p C . Only one outcome can result

(mutually exclusive) and one of the outcomes will result for certain, i.e.,

p  + p  + p  = 1.0 (collectively exhaustive). The probabilities may not

be at all easy to assess, especially if the probability of the occurrence

of an outcome is extremely small, or is based entirely on subjective

judgment with little supporting data [36]. There are also a number of

psychological biases that enter into the estimation of probabilities [37].

14



Ultimately, if the value model is to represent the decision maker's

preferences, the probabilities used in the decision analysis must corres-

pond to the judgment of the decision maker.

The most common use of the lottery method is for handling uncertainty

and it is for this purpose that von Neumann and Morgenstern [35] introduced

the method. Lotteries are used to represent the uncertainty that the deci-

sion maker may have with respect to the outcomes that could result from the

selection of a specific alternative. Von Neumann and Morgenstern assumed

that lotteries and outcomes could be rank ordered in preference. They

proved that the correct numerical representation of the decision maker's

preference for a lottery is simply the expected value of the utilities

of the outcomes of the lotteries, i.e.. for a lottery that yields

Outcome A with probability p and Outcome C with probability 1-p, the correct

numerical assignment of utility to the lottery is just:

u(Lottery) - p u(A) + (1-p) u(C) .

Several other axiomatic formulations and proofs of the decision criterion

of expected utility have appeared in the literature [38-43]. Elementary

proofs are given in Hadley [44] and Luce and Raiffa [45]. See also other

i
References [46-50].

Lotteries are used in the following manner to establish outcome and

attribute utility functions. The decision maker (or his representative)

is first asked to rank order in preference three or more outcomes (or

attribute states). Let us assume that Outcome A is preferred to Outcome B,

which is in turn preferred to Outcome C. Then the decision maker is asked

15
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for a probability p such that he is indifferent between receiving Outcome B

for certain, or a lottery which yields Outcome A with probability p and

Outcome C with probability 1-p. In terms of the following diagram, the

decision maker is asked to assign a probability p to the following lottery

such that he is indifferent between receiving (a) or (b):

{ Outcome A^

P	 t

(b)

1-p

1 
Outcome C

(a) {Outcome B) or

If one arbitrarily assigns a utility of u(A) - 1.0 and u(C) = 0.0 (this is

not absolutely necessary, but simplifes the arithmetic). The utility of

Outcome B will just be u(b) = p. When the utility function of the ith

attribute is being assessed, the most-preferred attribute state is

arbitrarily assigned a utility of u i = 1.0 and the least-preferred state is

assigned a utility of ui = 0.0. Then the attribute utility function is

determined by the same lottery technique as used for the outcomes. If xi

is defined to be the most-preferred state of the ith attribute, and xi is

defined to be the least-preferred state, then the decision maker is asked

to assign a probability pi to the following lottery such that he is

indifferent between receiving (a) or (b):

p

<1,-pv

Attribute xi

(a) 
I 
Attribute x i ^	 or	 (b)

{ Attribute xi

16
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in the attribute utility function of Figure 3 in Section 5, pi would equal

0.5 for xi M 0.20 grams/mile, i.e., ui(xi • 0.20 grams/mile) - 0.5.

The attribute scaling constants, ki, are assessed in a similar manner

using the lottery method. The scaling constant k  measures the importance

of the ith attribute, or the degree to which the ith attribute can influence

the decision maker's preferences between the outcomes. Several artificial

outcomes are constructed (they may not be technically feasible, but it is

still possible to assign a preference to them in principle). The first

outcome is constructed by placing all of the attributes at their most-

preferred states (define this outcome to be x*). The second outcome is

constructed by placing all of the attributes at their least-preferred states

(define this outcome to be xo). Then construct an outcome in which all of

the attributes are placed at their least-preferred states except the

ith attribute, which is placed at its most-preferred state. Then the deci-

sion maker is asked to assign a probability k  such that he is indifferent

between (a) and (b);

most-preferred
states

Attribute	 State	 k	 x*

xi	 most-preferred

	

(a) x3 0 xi least-preferred	 or (b)	 least-preferred
states

1-ki	x° }

The probability k  is the attribute scaling constant for the ith attribute.

This procedure is discussed in detail in Keeney and Raiffa [5].

17



unique outcome. Instead it specifies a lottery over a set of outcomes.

Since the decision maker cannot have the most-preferred outcome for

certain, the best that can be done is to select the alternative that

results in the most-preferred lottery. Thus, a decision alternative

can be assigned a utility, namely the expected utility of its corres-

ponding lottery, and the most-preferred alternative is that for which

the utility is maximized.

As a final example for this Report, consider the case of the chief

executive officer of an electric utility company who must decide on the

next unit of expansion for baseload electrical capacity. Let us suppose

that after much engineering, environmental, and regulatory analysis that

the decision alternatives are either (a) a coal-fired plant with stack

scrubbers or (b) a solar central power tower. Where an initial capital

investment is concerned, the alternative (a) of a coal-fired plant in-

volves no uncertainty. The decision alternative and the outcome are one

and the same. However, with the alternative (b) of a solar central power

tower, the R&D program in progress could significantly influence the cost-

competitiveness of the solar central power tower. Thus, if the chief

executive officer has to make the decision prior the completion of the

R&D program, he is faced with a decision to choose between alternative (a)

which yields an outcome for certain, and alternative (b) which is a

lottery over the outcomes of the R&D program. The decision inalysis

18



diagram would be:
F.

1 Solar power tower 1

	

p	 1 RAD successful f
(a) {Coal-fired plant 	 or (b)

	

1-p	 UO
olar power tower
 not successful)

The decision would be made based on a value model that includes as

objectives such factors as annualized cost, environmental effects, coal

availability, and the probability p that the R&D program would be

successful.

19
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7 .	 Summary

Multiattribute decision analysis is a technique for aiding the

decision maker in comparing and selecting between complex alternatives.

The complexity may arise for several reasons: (1) the system model may

be inherently complex, (2) the value model of the decision maker may con-

tain many objectives, and trade-offs need to be made between these objec-

tives, and (3) uncertainties may exist that prevent the selection of a

specific alternative from uniquely determining the outcome. Multiattri-

bute decision analysis has the analytical capability to handle all of

these complexities with a practical and theoretically consistent approach.

20
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