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ABSTRACT 

This study, conducted over the period April 1978 through November 1978,
addresses four issues relevant to SPS costing and selection of preferred SPS 
satellite configurations: 

1. 	 Consideration of economic factors in the SPS system studies that 
relate to selection of SPS satellite configuration 

2. 	 Analysis of the proper rate of interest for use in SPS system
definition studies 

3. 	 Study of the impacts of differential inflation on SPS system 
definition costing procedures 

4. 	 Utility interface and SPS baseline design. 

The first three issues are discussed in this volume. The fourth issue is discussed in 
Volume 2 of this report. 

A cost-risk comparison of the Rockwell International and Boeing Company
SPS satellite configurations showed a significant difference in the levelized cost of 
power from them. It is concluded, from the assessment reported herein, however,
that this difference is the result more of differences in the procedures for
assessing costs rather than in the satellite technologies required or of any
advantages of one satellite configuration over the other. On the other hand,
however, a real advantage of the Boeing SPS development program does appear
over the Rockwell SPS development program. This advantage is primarily due to 
the fact that the Boeing SPS development program contains one additional decision 
point prior to the commitment of the rajor fraction of the development funds. 

Analysis of the proper rate of interest for use in SPS system definition
studies leads to the conclusion that the appropriate rate of discount is 4 percent.
This rate of discount is justified by examining both the real cost of capital to the
federal government, that is, real interest rates on U.S. treasury bonds, and the
opportunity costs of capital measured in terms of real pretax return on assets
obtained by 1600 major U.S. corporations. This rate of discount is also in keeping
with federal policy on energy conservation. 

A procedure is presented for SPS cost estimating taking into account
differential inflation that is likely to occur between now and the time that SPS
would- be implemented. The major item of differential inflation to be expected 
over 	 this period of time is the real cost of labor. This cost is likely to double 
between today and the period of SPS construction. 
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1. INTRODUCTION
 

During the period January 1975 through March 1977, ECON, Inc., teamed 

with Arthur D. Little, Inc., Grumman Aerospace Corporation and Raytheon 

Company, performed an economic study and assessment of Satellite Power Systems 

(SPS) for the George C. Marshall Space Flight Center. As a part of this study 

ECON determined the range of likely costs for electric power from SPS and, based 

on these results, developed an economic rationale for proceeding with an SPS 

development program. In the conduct of this work an economic evaluation 

methodology was developed appropriate to long-range energy projects such as SPS. 

This methodology recognizes explicitly the uncertainties inherent in research and 

development of long-range energy alternatives and deals with them directly. To 

begin with, uncertainties are quantified using a risk analysis computer model. Then 

the results of the risk analysis are used in a decision analytic evaluation of 

candidate SPS development programs. This methodology is particularly suitable as 

an aide to the selection of preferred SPS satellite configurations and the 

formulation of corresponding SPS development programs. 

The above study also identified a number of key economic issues relevant to 

the development and selection of preferred SPS satellite configurations. In a 

follow-on study to this work, beginning in August 1977, ECON addressed three such 

related issues: the effect of an SPS development program on optimal fossil fuel 

consumption patterns, a study of the benefits attributable to alternative uses of 

SPS technologies and a study of the electric power market penetration of SPS. 

This study was completed in January 1978 and provided interesting new insights to 

a number of critical economic issues relevant to SP'S. 
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As a result of the above studies, a number of -economic factors affecting the 

satellite power system, its development, design and costing, were identified. Four 

of these issues are addressed in the study reported here. This study was conducted 

over the period April 1978 through November 1978. The issues covered include the 

following: 

1. 	 Consideration of economic factors in the SPS system studies that 
relate to selection of SPS satellite configuration 

2. 	 Analysis of the proper rate of interest for use in SPS system 
definition studies 

3. 	 Study of the impacts of differential inflation on SPS system 

definition costing procedures 

4. 	 Utility interface and SPS baseline design including: 

a. 	 Receiving antenna site selection 

b. 	 Power pooling issues 

c. Implications for SPS design. 

Results of the study-on issues 1 through 3 are reported in this volume. Study 

results on issue. 4 are reported in a second volume authored by Arthur D. 

Little, Inc. 

1.1 	 Economic Factors Relating to Selection of SPS Satellite Configurations 

Two candidate SPS satellite configurations were examined in detail in this 

study. These include the 5 GW gallium aluminum arsenide solar cell SPS 

configuration developed by Rockwell International under contract to the George C. 

Marshall Space Flight Center and a 10 GW silicon solar cell SPS configuration 

developed by the Boeing Company under contract to the Johnson Space Center. A 

risk analysis model was developed for each of the two above configurations. The 

model made use of the data generated by the respective contractors to provide 

cost-risk data on both satellite configurations. The cost-risk model follows the 
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work breakdown structure established for the SPS by the Marshall Space Flight 

Center. Documentation of the cost-risk models for these two SPS satellite 

configurations is provided in Appendices B and C of this report. 

In addition to the cost-risk modeling described above, the proposed SPS 

development programs for each of the two configurations were also analyzed. 

Parametric data on this analysis are presented, showing the economic value of the 

respective development programs as a function of the busbar of price of energy 

from competing alternatives, in Figure 1.1. Based upon the data provided by the 

contractors and the assumptions made in the performance of the analysis, the 

break-even busbar price of energy on January 1, 1999 is shown to be in the range of 

20-35 mills/kWh (1977), not including taxes or insurance. The Rockwell Inter

national configuration and development program was further analyzed para

metrically in terms of the learning rate on SPS system costs and the differential 

escalation rate in the busbar price of power from competing alternatives. 

In performing the risk analysis, a number of inconsistencies between the 

Rockwell and Boeing works were uncovered. The area of inconsistency of most 

concern to this study involves the procedure and assumptions used in costing SPS 

system components. Cost estimates for SPS system components represent 

forecasts or predictions of the future and as such cannot be precise. Varying 

rationales by which such cost estimates are obtained lead to significantly different 

results. As a result, the projected costs for the Boeing and for the Rockwell SPS 

systems, on a levelized cost of energy basis, are significantly different. We believe 

that this difference is due primarily-to these inconsistencies and not to any 

inherent differences in the satellite system itself. Thus, a major recommendation 

deriving from this study is that further SPS costing should be developed by a cost 

analysis committee consisting of representatives of both contractors and NASA and 
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including also a qualified economist or operations research individual to assure that 

cost ground rules and cost estimates are internally consistent and are consistent 

with mathematical and economic theory. 

1.2 Rate of Interest for Use in-SPS System Definitions Studies 

An analysis of the appropriate rate of interest for use in SPS system 

definition studies was conducted and the results derived from this study were used 

in a preliminary evaluation of the Rockwell International SPS satellite configu

ration to illustrate the differential impact of the recommended discount rate 

compared to the 7.5 percent discount rate used in SPS studies to date. The 

appropriate rate of discount was determined by bounding the problem from two 

sides. On the low- side, the actual cost of capital to the government was 

considered. The risk-free standard for the real cost of capital to the government 

is measured by the interest rate on U.S. treasury bonds corrected for inflation. 
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While during recent periods this interest rate has occasionally been negative, over 

the past several years it has tended to lie in the region of I to 2 percent. 

On the high side, the discount rate is bounded by the opportunity cost of 

capital. This cost is measured most appropriately by the rate of return on assets 

generated by industry, corrected for the effects of inflation. This rate, measured 

by examining the prdf it and loss sheets for 1600 U.S. corporations over the past 15 

years, has recently tended to be in the range of 5 to 6 percent. The argument for 

use in SPS system definition studies furtheran appropriate rate of discount for 

draws upon the work of Von Neumann, performed in the 1930s. Von Neumann 

demonstrated that, in a linear economy, the maximum stable rate of discount is 

equal to the rate of technological innovation. Over the past 50 years or so, this has 

per year. Thus, it is concluded that antended to be slightly above 3 percent 

for use in SPS system definition studies would lieappropriate rate of discount 

between 3 and 5 percent, with this range representing the approximate resolution 

of this range, is theof this study. Consequently, 4 percent, or the midpoint 

This rate of discount is also compatible with anrecommended rate of discount. 

aoverall federal policy of energy conservation. Such would not be the case at 

7 to 10 percent rate of discount. 

Costing1.3 Impacts of Differential Inflation on SPS System Definition 
Procedures
 

The effects of inflation on SIPS system definition costing procedures was 

First, it is argued that system costing can appropriately be done usinganalyzed. 

fact that the time period ofconstant year dollars. However, because -of the 

construction of the SPS is 20 to 50 years in the future, it is additionally desirable 

to account for expected trends in specific sectors of the economy which will result 

as a whole. Thein differential inflation between these sectors and the economy 
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procedure advocated divides costs into three economic categories: labor, resources 

and capital. Costing procedures in each category are defined separately. 

It has been observed that over the past 100 years the productivity of labor 

has increased steadily at a rate slightly over 3 percent per year. This continued 

increase in productivity has resulted in increasing real compensation for labor, that 

is, increasing real wage rates. If previous trends continue, this will result in 

roughly a doubling of the cost of labor between the present time and the early 

period during which the SPS construction would commence. Thus, the cost of labor 

should be differentially inflated accordingly. 

The cost of capital is discussed in detail as a separate task in Section 3 of 

this report and reviewed above in Section 1.2. The recommended real cost of 

capital for SPS system definition, and costing is 4 percent per year. Variations 

about this number, however, are likely to occur, thereby resulting in a component 

of uncertainty in the total SPS cost. 

Finally, resources are dealt with. Many resources required for SPS construc

tion and operation are found in abundance. The major question with respect to 

these resources is only how one should estimate their price for the time period of 

interest. It is suggested that long-term average prices are perhaps a good guess, 

but that the historical volatility in price should also be examined as an indication 

of the likely uncertainty in the present ability to forecast these prices. Other 

resources may be scarce or depleting. For these resources, it may be appropriate 

to consider the cost of alternative resource supplies or, particularly in the case of 

energy resources, to explicitly account for economic rents attributable to depletion 

of the resource in question. 

In any case, considerable uncertainty exists in any estimate of resource costs 

for the time period of interest. 
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2. COST-RISK AND PROGRAMMATIC ANALYSIS OF 
CURRENT SPS SATELLITE CONFIGURATIONS 

The purpose of the cost-risk analysis described herein is to determine the 

current state-of- knowledge that exists on candidate SPS system configurations: a 

determination which is a necessary ingredient of the comparison of alternative SPS 

satellite configurations. First, the risk analysis output reflects explicitly--if it is 

conducted properly--a measure of the effect of component technology uncer

tainties on system performance and cost. Second, risk analysis allows a proper 

identification of those technologies which are critical to the development of an 

economically efficient system, a process of identification which is not possible by 

means of a nonstatistical analysis. The proper identification of critical tech

nologies is a vital part of the development of efficient, candidate SPS R&D 

programs. Third, risk analysis results are a necessary input to decision making and 

program evaluation. The methodology which is used to conduct cost-risk analyses 

and to employ the results in programmatic evaluations is reviewed below. Readers 

wishing more detail than is provided here are referred to Chapter 3 of "Space-

Based Solar Power Conversion and Delivery Systems Study--Volume V, Economic 

Analysis,"* which provides a more detailed description of the theoretical basis for 

the techniques applied here. Following the review of the methodology, the results 

from the analysis of the two candidate SPS configurations developed by Rockwell 

International and the Boeing Co. are presented. 

Prepared for NASA George C. Marshall. Space Flight Center under Contract 
No. NASS-31308 by ECON, Inc., March 31, 1977. 
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2.1 Methodology 

2.1.1 Cost-Risk Analysis 

The purpose of the risk analysis described herein is to provide a computa

tional tool for statistical system costing. The output of the risk analysis is a 

probability distribution of system costs (capital investment, operation and 

maintenance, and total life cycle). The necessary components of the risk analysis 

include an engineering system model, a cost model and data which describe the 

current state-of- knowledge on the system. The engineering system model must, 

to the appropriate level of detail, reflect the interrelationships of the various 

system components, such that, when one of the physical parameters is varied, all of 

the adjustments necessary to accommodate that change are reflected in the new 

output describing the system and its performance. For example, if solar cell 

efficiency varies from a nominal value, the size (hence, total mass) of the solar 

array varies as well, and this change in solar array size must be calculated along 

with corresponding changes in total satellite mass, the requirements for space 

transportation (hence, transportation cost), and so on. 

At the level of analysis presented here, system relationships are mostly 

represented by linear approximations or scaling laws which, while they work fairly 

well owing to the fact that many portions of the SPS system scale in a linear 

fashion over reasonable ranges, are, nonetheless, an approximation that must be 

recognized. The system masses are generally calculated as functions of area or 

power throughput, with areas and power throughputs being determined by the 

efficiencies of the power conversion and distribution elements of the system. The 

series of power conversion steps in the SPS system may be characterized as an 

efficiency chain, a generalized version of which is presented in Figure 2.1. Most of 

the system components of the SPS satellite and ground station are related directly 
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to the efficiency chain. Other components are more directly correlated to total 

SPS satellite subsystems. 

The cost model translates the output parameters of the engineering system 

model (such as the total mass, size or power throughput of subsystems, the total 

number of launch vehicle flights to LEO, etc.) into estimates of the total system 

cost. The general logic flow of the interaction of these two models is depicted in 

Figure 2.2. The cost models employed in this analysis are formulated to calculate 

the production and operations and maintenance (O&M) costs for a single unit, in 

this case the "theoretical first unit" (TFU). While the comparison of TFUs of 

different configurations is a convenient approach, to do this it is necessary to 

apportion the costs of equipment which is used for the construction of more than 

one satellite appropriately among the satellites constructed by such equipment. To 

accomplish this apportionment of costs, the cost models calculate annuities at the 

prescribed discount rate to repay the cost of each piece of equipment over its 

design life. This annuity is then divided equally among all of the satellites 

constructed in one year. In this manner, the cost of equipment common to the 

construction of more than one satellite is properly accounted for in the cost of 

each satellite. However, it is only direct charges such as transportation and 

assembly costs which are attributed to each satellite, not sunk costs such as R&D 

costs. Other assumptions involved in the engineering system model and the cost 

models used in the analyses here are described below. 

The final component necessary to c6nduct a cost-risk analysis is a set of data 

to characterize the current state-of-knowledge about the technical and economic 

parameters of the system under consideration. The possible range of values for any 

of these parameters is typically represented as a probability distribution which is 

0
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the subjective assessment by those knowledgeable about a factor assigning proba

bilities to each value within the range of possible values. If a risk assessment is 

conducted properly, the minimum value for each parameter distribution will be set 

at a value for which there is "very low" probability of the actual value occurring 

below that minimum value in the distribution; likewise, the maximum value should 

be set such that there is "very low" probability that the actual value will be found 

to exceed that maximum value in the distribution. The maximum likelihood point 

in the distribution should correspond to the current "best estimate," again 

subjectively assessed by experts, and the shape of the distribution should reflect 

the current state-of-knowledge in that the more sharply peaked the distribution is, 

the greater the degree of confidence in the estimate of the parameter value. 

Conversely, a flatter distribution would reflect a lower degree of confidence in the 

estimate. This latter degree of sophistication in risk analysis (the shape of the 

input parameter distributions) could not be employed within, the scope of the 

current effort. The actual distributions used are shown in Figure 2.3. For the 

purposes of this analysis the shape of the distribution depends upon the position of 

the most likely value within the range of values. 

One method for performing a risk analysis involves a Monte Carlo simulation 

on the engineering system and cost models, that is, random sampling is conducted 

to produce a deterministic set of input data for the two models and the resulting 

system cost (or other otput parameter) is stored. The process is repeated until it 

has been determined by statistical means that a significant output sample has been 

generated. This risk analysis procedure is depicted below in Figure 2.4. The 

results of a risk analysis are conveniently presented as cumulative distribution 

functions, showing the probability of a-given output parameter, such as total unit 
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cost, being less than the indicated amount. While the output parameter distri

bution functions dearly result from the use of subjective probability assessments 

as inputs, that is, they are not derived from the sampling of actual events, they do 

provide an interesting, and probably the best available, basis for comparison of 

aalternative system configurations, in that a risk comparison explicitly includes 

description of the uncertainty which exists on each system configuration cost 

estimate. The usual alternative to risk analysis is & simple "point estimate" of cost 

and other parameters. Presented only with point estimates of, say, the installed 

cost per kilowatt of competing electrical generation technologies, a decision maker 

is deprived of any indication of how reliable these estimates are, that is, of what 

the likelihood is that each estimate will be met or exceeded. Risk analysis creates 

a framevork in which subjective judgment may be incorporated at the most 

appropriate level (component by component) and accounted for in a mathematically 

F5, (fru 



15 

correct fashion. Therefore, if the risk analysis is conducted properly, the results 

will be an accurate reflection of what is really known about any 'given system and 

what the total effect is of what is not known on estimates of system performance 

and cost. And so long as risk analyses of competing systems are conducted in a 

consistent manner, comparison of the results will be far more enlightening from 

the standpoint of program decision making than the comparison of point estimates. 

2.1.2 Identification of Critical Technologies 

The framework for cost-risk analysis outlined above provides a mechanism 

for assessing the individual technology elements which comprise the present 

state-of-knowledge. Technology elements are critical to the current state-of

knowledge if, given perfect information on them, this information could substan

tially influence decisions regarding the system development and implementation. 

For the SPS it is assumed that programmatic decisions will be keyed, among other 

conditions, to the total life-cycle costs of a single SPS. Therefore, a technology 

element is critical if it alone can have a significant effect on the cost-risk profile 

(meaning both risk- -the slope of the risk curve--and expected cost). 

To determine the impact of a technology element on the risk profile, one 

assumes that perfect information on the technology element can be made 

available. In terms of the input variables to the risk analysis model, perfect 

information is expressed as a deterministic value or spike distribution for that 

variable. However, the value that any particular variable will ultimately assume, 

between the minimum and maximum limits estimated as a part of the cost-risk 

analysis, cannot be known in advance (that is, today). Thus, it is necessary to input 

deterministic values for each technology element, one at a time, over the range 

from the minimum to the maximum possible values for each variable to determine 

the range of potential outcomes from the information-gathering process. In the 
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work performed here, each input variable is assigned three deterministic values 

corresponding to "the minimum, most likely and maximum values which the 

parameter takes on in the cost-risk analysis. All other input data remain 

unchanged. Critical technologies are then identified by observing the variables 

which had the largest effect on the expected value and standard deviation of the 

total life-cycle cost probability distribution. 

It is interesting to compare this approach for the identification of critical 

technologies to the deterministic approach more often used and referred to here as 

a sensitivity analysis. In a sensitivity analysis one produces a deterministic cost 

estimate of the system by the use of a system cost model. Then, one by one, the 

input variables to this cost model are varied from their nominal values to 

pessimistic or worst-case values. The effect that this has on the total system cost 

is then noted and the critical technologies are identified by observing which input 

variables have the largest influence on the total system cost. Unfortunately, this 

procedure, while simpler than the risk analysis outlined, is mathematically 

incorrect and can lead to substantially wrong ansviers. This is so because of 

nonlinear interactions between variables in the model each of which contain some 

uncertainty. Consider the simple example where the cost is given as the product of 

two variables A and B. And consider the case when the distributions representing 

the current state-of-knowledge on A and B are as shown in Figure 2.5. Due to the 

long tail nature of the distribution on variable B the risk and cost sensitivities to 

variable A are greatly enhanced. Under a case of simple nonlinearities such as that 

illustrated here it is not uncommon for a deterministic analysis to underestimate 

the criticality of the state-of-knowledge on variable A by a factor of two or more. 

Risk analysis thus provides a mathematically correct basis for identifying 

technologies critical to the development of an SPS. In general, one would expect 
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MIN A MAX MIN B MAX
 

FIGURE 2.5 EXAMPLE STATES-OF-KNOWLEDGE
 

that these are the technology elements that should be addressed early in a research 

and development program so that an improved state-of-knowledge will be available 

for future programmatic decisions. 

2.1.3 Decision Analytic Approach to Program Evaluation 

A key purpose which the decision maker serves in a research and development 

program, such as the SPS program, is to assure that the technology is successfully 

developed (if that is possible within schedule and budget constraints) while 

simultaneously minimizing exposure to risks. This is accomplished by segmenting 

the overall research and development program into a number of discrete phases. 

During each phase of the program, research and development activities are carried 

on with the aim of providing information for subsequent decisions within the 

program. The subsquent decisions can be to continue the program as planned, to 

terminate the program or to alter it in some substantial way. It is precisely this 

process of sequential information buying that enables a program manager to 

control risk by not pursuing those technologies which appear to be dead-ended and 

instead to focus project resources on those technology areas which promise the 

most payback. 

The information provided by a cost-risk profile of an SPS configuration can 

be used as a basis for the evaluation of a particular R&D program. The evaluation 
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uses a decision analytical procedure with the cost-risk data as an input. The 

procedure for such an evaluation is outlined in Figure 2.6. A particular R&D 

program is defined in terms of the experiments to be conducted in each phase of 

the program directed at "buying information," that is, the reduction of uncertainty 

about the technical and economic parameters of the system. Also defined are the 

"decision points" where the program is evaluated and either continued, redirected 

or terminated, based upon the information developed during the preceding phases 

of the program. The costs associated with each phase of the R&D program must be 

estimated, as well as the expected improvements in the state-of-knowledge on the 

system resulting from the experiments conducted. These expectations of improve

ments in the state-of-knowledge are expressed in this work as expected percentage 

reductions in the uncertainty (standard deviation, for example, of the distribution 

of each parameter) to be achieved as of each decision point. Furthermore, an 

DEVELOP AN 	 RISK
 
IMPLEMENTATION 	 ANALYSIS 
SCENARIORESULTS
 

FARMULATE FORIIILATE 
DEFINE COST THE OEELOPH"ENTTRDECISIONE DECISION RULES 
DEVELOPMENT 	 TREE


i PROGRAMSPROGRAMS_" ICONFPROGRAM 


ASSESS THE PERFORM ASSESS PRIOR COMPUTE 
STATE-OF- RISK ANALYSIS PROBABILITIES EXPECTED 
KNONLEIGE FOR EACH ON EACH VALUE 
AT DECISION DECISION DATE DECISION 
DATES 

RESULT: 	 EXPECTED VALUE OF
 
EACH PROGRAM OPTION
 

FIGURE 	2.6 AN OUTLINE OF THE DECISION ANALYTIC PROCEDURE
 
USED TO CALCULATE THE EXPECTED VALUE OF EACH 
PROGRAM OPTION
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implementation scenario must be defined in terms of the number and scheduling of 

operational units to be produced. For purposes of the evaluation, the program is 

expressed as a decision tree with each branching point corresponding to a decision 

point and each branch correspondingto a potential decision. The original cost-risk 

profile for the system is used as a prior distribution of total life-cycle cost for the 

system. It represents everything that is known about the system today. Decision 

rules are needed to determine, at each decision point, whether to continue or 

terminate the program (more complicated decision trees may be formulated 

involving parallel technology development efforts and the like; however, the 

analyses here have been formulated on a simple go/no-go basis at each decision 

point). The decision rule applied here is that at each decision point the 

state-of-knowledge extant must meet a technology target which corresponds to a 

linear improvement in the 80 percent confidence bound for the technology from the 

current state-of-knowledge to the "break even" cost for the TFU. This is the cost 

of the TFU for which there is exactly zero net present value for the entire program 

(present value of costs equals present value of revenues). If the technology 

development is such that the 80 percent confidence technology bound remains 

under the 80 percent confidence technology requirement throughout the develop

ment 	program, then the development program, will be a success. 

To calculate the expected value of a program, risk analyses are performed on 

the data for each decision point reflecting the expected percentage reductions in 

the range of uncertainty on each parameter. The resulting standard deviations of 

the state-of-knowledge on the total life-cycle cost are used along with the 80 

percent confidence technology target described above to create cumulative distri
* 

butions which represent the decision rules. Using a process described in detail in 

These distributions are assumed to be Gaussian and therefore may be uniquely 

specified by a mean value (which may be derived from the 80 percent 
confidence value) and a standard deviation. 



20 

Appendix G of the previously cited report* the prior probabilities of each decision 

point are calculated. The prior probabilities represent the likelihood of proceeding 

successfully at each decision point. The decision tree itself is evaluated by 

weighting successively the value of each branch (taking costs to be negative and 

revenues positive) by the probability of reaching that branch and then summing the 

expected value of each branch to arrive at the expected value for the entire 

program represented by the decision tree. The results from such programmatic 

evaluations can be used to rank SPS program and cQnfiguration alternatives. In the 

"zero budget" sense, if a program has a positive expected value, then one is 

economically justified in undertaking the first phase of that program. If more than 

one program option has a positive value, the one with the highest expected value is 

the one that is economically preferred. Again, the reader who wishes a more 

detailed description of the theory and application of these techniques to SPS 

program evaluation is referred to the previously cited report. 

When confronted with a cost-risk profile, many program planners become 

very concerned with the potential that such a system has to incur very large costs 

for its production, that is, with the long tail of the distribution ranging up to rather 

high costs. Such concern however, is the result of a misunderstanding of the role 

of the program manager. It is, in fact, the purpose of the program manager to 

insure that the program would be terminated in a timely manner if in fact it 

becomes evident that the actual system costs will lie toward the upper end of the 

cost range as opposed to the lower end. It is the opportunity posed by the 

probability that the cost could lie at the lower end of this range that the program 

manager should seek to capitalize upon. Thus, a properly structured research and 

See footnote on page 7. 
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development program is one which offers the opportunity to buy information to 

determine what the system will, in fact, cost when all research and developments 

are completed, to proceed with the program if, at any point, it is economic to do 

so, or to terminate further work on the project as soon as it becomes clear that 

this is the economic choice to make. 

2.1.4 	 Assumptions and Ground Rules for a Consistent Comparison of 
Alternative SPS Configurations and Programs 

The sources of information for the components of the cost-risk analysis and 

the major assumptions used in constructing the models are reviewed in Figure 2.7. 

Models of the two system configurations to be analyzed were derived first from 

contractor reports and then verified through two series of discussions with 

contractor personnel responsible for the design work. The NASA Work Breakdown 

Structure (NASA TM 781551, 3anuary 1978) served as a guide for the organization 

and reporting of the engineering system and cost models. The assumptions 

employed in the programmatic evaluation are listed in Table 2.1, including: unit 

size, lifetime, availability and output power level; fleet size, implementation rate 

and cost reduction learning curve; discount rate; price of power and price of power 

escalation rate; and taxes and insurance. It should be noted that the results of the 

analyses in the next two subsections below depend upon the assumptions made. 

Changes in the assumptions may change the conclusions. Thus, while the insights 

gained may be valuable, decisions should be based on this analysis only after a 

thorough review of the models, the data representing the current state-of

knowledge and the assumptions made for the analysis. 

Some modifications were made to the input data obtained from the 

contractors, in order to assure, where possible, that the same costs and 

performance characteristics were being assumed for similar equipment. Therefore, 

adjustments were made in the efficiency chains for the two systems to reconcile 
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TABLE 2.1 PROGRAMMATIC EVALUATION ASSUMPTIONS
 

* 	 END-OF-LIFE POWER OUTPUTS OF 5 GW FOR THE ROCKWELL CONFIGURATION AND 10 GW FOR THE BOEING
 
CONFIGURATION ARE USED FOR REVENUE CALCULATIONS
 

o SATELLITE LIFETIME IS30 YEARS 

a EACH UNIT IS PRODUCING POWER 95 PERCENT OF THE TIME 

* 	 INITIAL OPERATION DATE (IOD) OF THE FIRST UNIT IS ONE YEAR LATER THAN THE IOD OF THE PROTO-

TYPE IN EACH PROGRAM; THE IMPLEMENTATION RATE FOR THE ROCKWELL CONFIGURATION IS FOUR SATEL-

LITES CONSTRUCTED PER YEAR, AND THE IMPLEMENTATION RATE FOR THE BOEING CONFIGURATION IS
 
TWO SATELLITES PER YEAR
 

e 	 THE TOTAL FLEET SIZE FOR THE ROCKWELL CONFIGURATION IS 120 SATELLITES (INCLUDING THE PROTO-

TYPE) AND FOR THE BOEING CONFIGURATION IS 60 SATELLITE (INCLUDING THE PROTOTYPE)
 

THE COST OF THE SUBSEQUENT UNITS IS RELATED TO THE COST OF THE TFU BY A 90 PERCENT LEARNING
 
RELATIONSHIP
 

o 	 DISCOUNT RATE IS4.0 'PERCENT 

* 	 REAL PRICE OF ELECTRICITY AT THE BUSBAR INCREASES 1 PERCENT PER YEAR, BEGINNING WITH A
 
PRICE OF 30 MILLS/kWH AT THE IOD OF THE FIRST UNIT
 

* 	 NO CHARGES WERE COMPUTED FOR TAXES OR INSURANCE
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differences, so that both configurations were analyzed with the same efficiency 

chain. For similar types of equipment, the same proportional ranges were used to 

express the uncertainty on related input parameters; however, no adjustments were 

made in the "most likely" estimates for these parameters. The only other 

adjustments which were made were to set the design lives of the space construc

tion bases to 30 years for both configurations. These changes represent only those 

necessary to eliminate the most obvious inconsistencies in design estimates for the 

two systems. It did not fall within the scope of this effort, nor would there have 

been sufficient definition of engineering assumptions for.the two configurations to 

rectify all of the differences which exist between the two configurations in 

analysis, design and cost estimation of similar equipment. 

2.2 An Evaluation of Rockwell SPS Configuration and Program Plan 

The Rockwell International SPS configuration and program plan which were 

subjected to cost-risk and programmatic evaluations are described in "Satellite 

Power Systems (SPS) Concept Definition Study," Final Report, April 1978, prepared 

for the George C. Marshall Space Flight Center under contract NASS-32475. The 

werebasic features of this system are reviewed in Table 2.2. The models which 

developed to represent the Rockwell configuration in the risk analyses conducted 

here are listed in Appendix B. The data corresponding to the input variables of 

these models are found in Appendix D. For simplicity in review and comparison, the 

engineering and cost equations are presented in a unified format using the NASA 

Work Breakdown Structure (NASA TM 78155, January 1972) as a guideline. The 

relationship, between the accounts listed in the Work Breakdown Structure and the 

models used to analyze the two SPS configurations is depicted in Figure 2.8. Once 

* again, it is noted that the research and development costs are not amortized over 

.the satellites constructed, as this approach would not represent the actual timing 
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TABLE 2.2 	ROCKWELL SPS CONFIGURATION AND
 
CONSTRUCTION SCENARIO
 

a 	 ALUMINUM STRUCTURE
 

* 	 GALLIUM-ALUMINUM ARSENIDE SOLAR CELLS
 

* 	 CONCENTRATION RATIO = 2.0
 

o 	 END-OF-LIFE POWER OUTPUT AT THE BUSBAR = 5 GW 

o GEO FABRICATION AND ASSEMBLY
 

a ELECTRIC CARGO ORBIT TRANSFER VEHICLE (INDEPENDENT)
 

o 	 HORIZONTAL TAKE-OFF, SINGLE-STAGE-TO-ORBIT WINGED HEAVY
 
LIFT LAUNCH VEHICLE
 

of the decisions and the incurring of costs. Rather development costs are taken 

into account in the programmatic evaluations. The Initial Capital Investment 

Account in the NASA WES corresponds directly to the TFU Cost Models reported in 

the Appendices. The distinction in the NASA WBS between the Replacement 

Capital Investment and Operations and Maintenance accounts is useful for the 

purposes of computation of taxes and insurance. However, as neither taxes nor 

insurance are considered in this analysis, the two accounts have been combined into 

a single O&M model for each configuration. 

A cost-risk analysis was conducted on the Rockwell configuration using the 

methodology described above, employing the models listed in Appendix B. The 

current state-of-knowledge for each input parameter (in terms of minimum, 

maximum and most likely values) is listed in Appendix D. The resulting cost-risk 

profile is shown in Figure 2.9. The nominal case shows an expected value TFU cost 

of about $33 billion (1977 dollars) and a minimum value of about $.19 billion. This 
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cost-risk profile reflects far less risk (variability)than one might expect for a 

technology in the state of development of SPS with the leadtime that is necessarily 

involved (at least 20 years before commercial implementation). The sensitivity of 

this estimate of the current state-of-knowledge to an alternative view of the 

current state-of-knowledge is reflected in the curve, also shown in Figure 2.9, 

depicting an assessment of higher risk on only two variables. If one adjusts merely 

the high-side risk for solar cell specific cost and mass, that is, merely changes the 

worst case values for these two parameters to those reported in an Arthur D. 

Little, Inc. analysis, leaving the best and most likely values unchanged, the cost 

profile is radically altered. Indeed, the expected value in the case acknowledging 

higher risk on two input values is more than twice that of the nominal comparison 

case. 

The critical technologies for the Rockwell configuration were analyzed in the 

manner described above in Section 2.1.2. Each of the parameters which is thought 

to have a potentially significant effect on total system cost is-set deterministically 

first to its maximum value, then to its most likely value, and finally to its 

minimum value, allowing all other parameters to vary freely (according to their 

defined probability distributions) in the simulation. This analytical approach 

simulates the effect of perfect information on the variables being examined, so 

that the effect on total system cost variability resulting from the variability of 

each parameter may be measured. Thirty-four parameters were examined for 

their effect on system cost and risk. Those parameters having the greatest effect 

on system cost and risk, that is, the major 'cost and risk driving factors for this 

configuration are listed in Table 2.3. Three basic areas of concern are indicated by 

Space Based Solar Power Conversion and Delivery Systems Study, Final 
Report, Volume IV, Energy Conversion Systems Studies, prepared for ECON, 
Inc. by Arthur D. Little, Inc. under Contract No. NASS-31308, March 29, 
1977. 



TABLE 2.3 THE EFFECT OF COST AND COST RISK OF CHANGES IN THE
 
STATE-OF-KNOWLEDGE OF THE ROCKWELL CONFIGURATION
 

RANGE OF VALUES, $ BILLIONS (1977)
 

BEST MOST LIKELY WORST
 

MAJOR COST AND RISK
 
DRIVING FACTORS MEAN COST COST RISK MEAN COST COST RISK MEAN COST COST RISK
 

NOMINAL CASE 33.29 6.34 

SPECIFIC COST OF THE SOLAR BLANKET 28.99 4.36 30.37 4.58 45.54 7.60 

SOLAR CELL EFFICIENCY 28.55 4.26 33.99 5.86 40.21 8.18 

DC-RF CONVERTER EFFICIENCY 31.28 5.47 32.72 5.74 40.32 7.28 

RATIO: COST OF MICROWAVE ANTENNA 
ELEMENTS TO DC-RF POWER 
THROUGHPUT 29.68 5.91 33.19 6.20 38.09 6.65 

PHASE CONTROL EFFICIENCY 31.50 5.74 32.29 6.65 35.44 7.92 

ANTENNA POWER DISTRIBUTION 
EFFICIENCY 31.22 5.38 32.13 6.04 36.82 7.54 

BEAM COLLECTION EFFICIENCY 31.70 5.90 33.19 6.12 36.89 7.08 

UNIT COST OF CABLE ATTACHING 
MACHINES 33.36 5.94 34.30 6.56 37.98 6.38 

"COST RISK" IS THE STANDARD DEVIATION OF THE COST ESTIMATE.
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this listing of cost and risk drivers. First, uncertainty about the cost and 

efficiency of the gallium-aluminum arsenide solar cells has the greatest effect of 

all the parameters examined. Second, uncertainty about a number of charac

teristics of the microwave transmission system, including conversion efficiencies 

and klystron costs, has a significant effect on system cost and risk. Third, the 

cable attaching machine, a fairly numerous and moderately expensive piece of 

assembly equipment, is found to be the element of the construction scenario whose 

uncertainty contributes most significantly to overall cost and risk. 

A programmatic evaluation was conducted following the decision analysis 

techniques described above. A decision tree representation of the Rockwell 

development plan described in Volume VII and the Appendices of the aforemen

tioned Rockwell report is shown in Figure 2.10. This program calls for a variety of 

ground- and space-based technology verification experiments to be conducted, 

during the first phase. Flight tests, where necessary, will utilize the Shuttle. 

During the second phase a I GW prototype is constructed and, after a demonstra

tion period, is expanded to a full-scale 5 GW plant. The final phase entails 

commercial implementation. The scope of this study did not allow a more detailed 

representation for the purposes of this programmatic evaluation because, while a 

more detailed program plan is described in the Rockwell report, it is necessary to 

subjectively estimate the improvements in state-of-knowledge on each parameter 

that is likely to occur as of each decision point. A means did not exist at this level 

of analysis to discern with greater resolution than is represented in Figure 2.10 the 

stages of the program with their accompanying improvements in states-of

knowledge. Based upon the previously stated assumptions underlying this analysis, 

the Rockwell program shows a substantial positive expected value, on the order of 

$324.billion (1977 dollars) present value as of January 1, 1980. The sensitivity of 
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this result to the underlying assumptions is discussed below. For the moment, it 

should be noted that probabilities'associated with decision points B and C are quite 

high. These high probabilities of success at each decision point are the result of 

several factors. First, the relatively modest risk reflected in the cost-risk profile 

shown above for this configuration results in a series of technology targets which 

are not very demanding relative to the current state-of-knowledge. Second, the 

relatively low discount rate (which is only appropriate if a valid risk assessment has 

been conducted, as noted in Section 3) allows for a greater proportion of the value 

of the fleet revenues to be counted in defraying the cost of building the fleet. The 

correspondingly higher "break-even" cost further reduces the rigor of the 

technology targets for the program, thus increasing the probability of success at 

each decision point. Third, the lower discount rate used here shifts the "prior 

distribution" of unit costs down by reducing the cost of capital applied to each unit 

over the period of its construction. Such a reduction in the prior distribution of 

unit cost improves the chance of success at each decision point. These latter two 

effects relating to discount rate are described, in more detail in Section 3. 

2.3 An Evaluation of the Boeing SPS Configuration and Program Plan 

The Boeing Co. SPS configuration and program plan which were subjected to 

cost-risk and programmatic evaluations are described in "Solar Power Satellite 

System Definition Study--Part III," March 1978, prepared for the Lyndon B. 

Johnson Space Center under contract NAS9-15196. The basic features of this 

system are reviewed in Table 2.4. The models which were developed to represent 

the Boeing configuration in the risk analyses conducted here are listed in 

Appendix C. The data, corresponding to the input variables of these models are 

found in Appendix E. As with the Rockwell models described above, the 

engineering and cost equations are presented in a unified format using the NASA 

WBS as a guideline. 
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TABLE 2.4 	 BOEING SPS CONFIGURATION AND
 
CONSTRUCTION SCENARIO
 

o 	 COMPOSITE STRUCTURE 

o 	 SILICON SOLAR CELLS 

* CONCENTRATION RATIO = 1.0 

a END-OF-LIFE POWER OUTPUT AT THE BUSBAR = 

10 GW 

* 	 LEO FABRICATION AND PREASSEMBLY; FINAL
 
ASSEMBLY AT GEO
 

e 	 ELECTRIC CARGO ORBIT TRANSFER VEHICLE 
(SPS-POWERED) 

* 	 VERTICAL TAKE-OFF, TWO-STAGE WINGED
 
HEAVY LIFE LAUNCH VEHICLE
 

The results of the cost-risk analysis of the Boeing configuration are shown in 

Figure 2.11. The Boeing cost-risk profile exhibits both the same modest assess

ment of risk and the extreme sensitivity to changes in input variable distributions 

that the Rockwell cost-risk profile does. The expected value for the Boeing 

configuration TFU is about $40 billion (1977 dollars) with a minimum value of about 

$25 billion. However, if the high-side risk for the solar cell parameters (specific 

cost, mass and efficiency) is changed to reflect the previously cited Arthur D. 

Little, Ini. analysis of worst values for space-qualified, mass-produced silicon 

solar cells, leaving the best and most likely values unchanged, the expected value 

for TFU cost increases by more than a factor :of two. The implications of this 

extreme sensitivity to alternative assessments of the current 'state-of-knowledge 

is discussed below. 
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A critical technology assessment was conducted on the Boeing configuration 

in the manner described above (see the methodological description and review of 

the results of the corresponding analysis on the Rockwell configuration). Forty

nine parameters were identified as having potentially significant effects on system 

cost and risk. Thirteen of these parameters were determined to be major cost and 

risk drivers as a result of the critical technology assessment. These major cost and 

risk drivers are listed in Table 2.5. In addition to the solar blanket and microwave 

transmission system characteristics which were identified as major cost and risk 

drivers of' the Rockwell system, the payload mass and the operations cost of the 

HLLV and the cost of electric thrusters for self-powered orbit transfer were 

identified for the Boeing configuration. Except for these latter factors, there is a 

complete overlap of the critical technologies identified for both systems. 

Data were gathered to conduct two programmatic evaluations. The first 

program included a first phase of ground-based technology development, a second 

phase of flight testing using the Shuttle, a third phase consisting of the construc

tion of a minimum cost commercial prototype using a Shuttle derivative instead of 

the HLLV and without tooling for full-scale commercial implementation until after 

the success of the commerical prototype. The second program differed in that the 

commercial prototype was built using the HLLV and the space bases that would 

then be used to build the entire fleet of SPS satellites, that is, in the second 

program, development of the HLLV and the space construction facilities occurs 

before the building of the commercial prototype satellite. When these two 

programs were analyzed, there was found to be no significant difference between 

them. This result is probably due to the fact that the cost savings of .not 

developing an HLLV earlier was largely offset by the higher transportation costs 

incumbent with the use of a Shuttle derivative instead. Similar offsetting costs 



TABLE 2.5 	 THE EFFECT OF COST AND COST RISK OF CHANGES INTHE
 
STATE-OF-KNOWLEDGE OF TH4E BOEING CONFIGURATION
 

RANGE OF VALUES, $ BILLIONS (1977)
 

MAJOR COST AND RISK 

DRIVING FACTORS 


NOMINAL CASE 


SPECIFIC COST OF SOLAR BLANKETS 


DC-RF CONVERTER EFFICIENCY 

OPS. COST PER FLT. OF HLLV 


COST OF RECTENNA PRIMARY
RATIO: 

STRUCTURE TO POWER THROUGHPUT 


ANTENNA POWER DISTRIBUTION
 
EFFICIENCY 


BEAM COLLECTION EFFICIENCY 


RECTENNA POWER DISTRIBUTED
 
EFFICIENCY 


MASS OF HLLV PAYLOAD TO LEO 


RATIO: COST OF SELF-ORBIT
 
TRANSFER THRUSTERS TO
 
SATELLITE MASS 


SOLAR CELL EFFICIENCY 


RF-DC CONVERTER EFFICIENCY 


PHASE CONTROL EFFICIENCY 


RATIO: COST OF GRID INTERFACE
 
( PROVISIONS TO POWER THROUGHPUT 


BEST MOST LIKELY WORST 

MEAN COST COST RISK MEAN COST COST RISK MEAN COST COST RISK 

40.06 7.02 

34.44 5.35 36.65 5.51 54.32 7.57 

37.65 6.76 39.31 7.29 47.52 9.04 
36.18 6.19 39.23 7.42 44.46 7.54 

36.60 7.48 38.13 6.91 44.41 7.32 

36.76 6.08 38.18 6.96 44.13 8.34 

37.74 6.68 38.91 7.78 43.46 7.86 

37.69 6.98 39.83 7.30 43.26 8.34 

37.10 6.48 39.98 7.35 42.31 7.95 

38.17 7.29 39.50 7.42 43.19 7.83. 
38.69 6.96 39.54 7.18 43.61 8.93 

38.37 6.78 39.59 7.45 43.21 7.78 

39.37 6.41 38.76 7.14 44.17 8.44 

38.58 7.64 40.12 7.63 43.12 7.89 

"COST RISK" IS THE STANDARD DEVIATION OF THE COST ESTIMATE
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occurred in the area of space construction. Owing to the fact that there is no real 

difference between the expected value of the two programs, only the results of the 

anlaysis of the second program, which corresopnds more closely to the Rockwell 

program for purposes of comparison, will be presented here. This second Boeing 

development program is represented as a decision tree in Figure 2.12. The 

expected value of the program is substantial and positive ($570.5 billion (1977) 

present value as of January 1, 1980), for the same reasons as pertained to the 

Rockwell program. To wit, the modest assessment of system risk and the low 

discount rate applied in this analysis combined to produce virtual certainty of 

success at each decision point. It should be noted that the low discount rate used 

in this analysis is appropriate only ifa valid risk assessment has been conducted. 

This requirement is described in further detail in Section 3. 

2.4 Comparison and Conclusions 

The cost-risk profiles of the Boeifig and Rockwell configurations are 

compared on an installed cost basis in Figure 2.13. An unthoughtful examination of 

the data presented in these cost-risk profiles would lead one to the conclusion that 

the Boeing configuration is very likely to be the less costly alternative. In fact, 

the cost differences are not likely to be statistically significant and are likely to be 

due to differences in the people who made the estimates. This is a type of 

"calibration" error described in an important article by Harrison [11. Whereas it is 

important to model systems such as SPS at an appropriate level of detail so that 

the basic probability assessments being conducted are done so on a level that is 

easily grasped by the participants, it is precisely this practice which, according to 

Harrison, "opens up the possibility of series error through unwarranted indepen

dence assumptions." Harrison concludes, "Whenever an analyst does things right, I 

believe that he must worry to some extent over the potential effect of the decision 
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maker's uncertainty about his own calibration." The fact that the "critical" 

technologies are much the same for both configurations and that cost-risk analyses 

of both configurations exhibit extreme sensitivity to alternative assessments of the 

current state-of-knowledge tends to support the conclusion that much of the 

difference between the cost estimates presented here is actually due to calibration 

errors among the individuals making the underlying estimates. Consequently, it 

would be highly desirable for a panel of experts to be established to support the 

development of consensus on the basic technical and economic issues underlying a 

cost estimating procedure such as that required for SPS., It is also highly desirable 

that such a panel have available the services of an economist or operations 

research scientist to assure that a consistent, mathematically correct framework is 

established within which to elicit expert opinion. 

A second conclusion which can be drawn from an examination of Figure 2.13 

is that, in spite of the substantial positive expected values calculated for both 

configurations above, neither configuration has a sufficiently high probability of 

being economic to justify commitment to an entire SPS development program prior 

.to substantial reduction of existing uncertainties. This can be accomplished with 

further studies, analyses and technology programs which, at the proper level, 

appear economically justifiable under the existing state of uncertainty. 

Economically successful SP5 development will depend upon successful completion 

of the various component technology programs. It should be noted that the 

deterministic estimates of the cost of the two systems lie at the tip of the 

low-side tail of the cost-risk profiles for the two systems. Further, both cost-risk 

profiles demonstrated considerable sensitivity to alternative expert estimates of 

the current high-side risk on solar cell parameters. These continue to remain 

inconsistencies inthe evaluation of system costs and the risk analysis procedures 
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used by both NASA contractors seem to fall short of properly evaluating the 

uncertainty existing in many, if not most, cost elements.. If the uncertainty 

"associated with other system parameters besides solar cell efficiency, cost and 

mass were equivalently evaluated, the cost-risk profiles may well turn out to be 

much "flatter" than even those shown above for the higher risk cases, with 

expected values possibly considerably higher than those shown in Figure'2.13. 

The sensitivity of the programmatic evaluations to several of the assumptions 

on which the analyses are based was conducted. The expected value of the 

Rockwell program is charted in Figure 2.14 as a function of both the assumed rate 

of escaration for the price of power and the rate of learning applied to the costs of 

successive SPS units. It is clear from this figure that the economic value of SPS 

programs is extremely dependent upon both of these factors. Consequently, the 

value of information provided by the next phase of SPS development will be highly 

dependent upon the expected price of power and the rate of power price escalation 

in the year 2000 and beyond. Furthermore, if rates of learning as high as the 90 

percent learning curve assumed in the programmatic evaluations here or higher are 

to be used, justification will have to be forthcoming in terms of production 

scenarios and techniques which allow for such learning from unit to unit. A more 

conservative 95 percent learning relationship substantially reduces the expected 

value of the program, and as the assumed rate of power price escalation declines, 

the value of the program actually becomes negative. Another assumption 

underlying the programmatic evaluations which was examined was the implemen

tation rate; however, this factor was found to have very little effect on program 

expected value compared with the effect of the assumed rates of learning and 

power price escalation. 

http:Figure'2.13


42 

- 600 

LEARNING = 85%
550
 

500
 

z 450
 

S 40090
 

S 	 350 

C - = 250o
 

S 200
c 40
 

S 150
 

S 100
 

50
 

-50
 

0.0 	 0.5 1.0
 

ANNUAL ESCALATIONRATE OF THE BOSBAR PRICE OF POWER, PERCENT
 

FIGURE 2.14 	 EXPECTED NET VALUE OF THE ROCKWELL SPS PROGRAM VS. ASSUMED
 
RATES OF LEARNING AND PRICE OF POWER ESCALATION
 



43 

3. 	 THE PROPER RATE OF INTEREST FOR USE IN SPS 
SYSTEM DEFINITION STUDIES 

The social rate of interest, or the discount rate, is a key parameter in the 

optimization of SPS system design. It is also a widely misunderstood and misused 

parameter. The purpose of the work reported here is to establish and substantiate 

a recommended rate of interest for use in SPS system definition studies. 

Several theorists argue that the social rate of time preference is the relevant 

parameter in advocating the social rate of discount. Most economists, however, 

recognize private sector rates of return as opportunity costs for government 

investment. Such arguments have led to the recommended 10 percent rate by the 

Office of Management and Budget (OMB). 

In light of tecent private sector performance, a 10 percent rate appears 

considerably too high. Figures 3.1 and 3.2 show some bond yield and interest rate 

statistics for the 20th century (Figure 3.1) and over the last 13 years (Figure 3.2). 

The important point to notice is that the nominal rates in the late 1960s and early 

1970s are high--higher than those which have prevailed historically--but the real 

rates have remained consistent with or lower than historical levels. In looking for 

a "true" measure of the cost of capital to the government, as argued by Stockfisch 

[2], it would be hard to find a better candidate than the return on treasury bonds, 

the vehicle by which the federal government finances its debt. Since 1965 the real 

rate of return on treasury bonds has not exceeded 2.5 percent per year. On the 

other hand, however, since OMB's recommended rate was based in part upon 

evidence of industry performance records, it is also appropriate to examine this 

performance over the last several, inflation-ridden years. 
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1966, p. 9) 

The only data available for examination of industry performance are profit 

and loss statements which have been prepared in accordance with Internal Revenue 

dollar values for taxService guidelines. These guidelines dictate the use of current 

accounting. Furthermore, they were established during and for a period of 

relatively low inflation and no particular care was taken to assure that they would 

provide an accurate measure of real (corrected for inflation) performance. But the 

objective here is, in fact, to establish real performance. Hence, these profit and 

loss data must be adjusted to account for the distorting effects of inflation on real 

performance as measured by the profit and loss statements prepared under IRS 

Thus, the bulk of the discussion below centers on identifying theguidelines. 

corporate performance and thedistortions which inflation causes in reported 

correction of these distortions to yield real performance data. It is not the intent 

here to criticize or even critique the IRS guidelines, but merely to adjust the 

available data to correct for inflation. 

3.1 Methodological Background 

3.1.1 	 Depreciation, Capital Formation and Inflation: Nominal Versus 
Real Depreciation 

physicalDepreciation is an artificial acounting tool whereby the costs of 

are spread over subsequent accountingassets 	 acquired in one accounting period 



45 

12RATE 
OF
 

RETURN
 
(PERCENT) 11 

10 
 COMMERCIAL PRIME
 
LENDING(OIAL)RATE
 

9 

8
 AN
8, 

7

" RETURN ON
 
/ TREASURY BONDS 

/ --- (NOMINAL) 

5

4 

3 

RETURN ON 
2 -TRESURY 

1 (ADJUSTED
 
FOR
 
INFLATION)
 

0 1 1I " - -
65 66 67 '68 69 70 71 72 73 74 75 76 77 CALENDAR 

-1 -YEAR 

-2
 

-3 

FIGURE 3.2 NOMINAL INTEREST RATES, NOMINAL AND REAL
 
TREASURY BOND YIELDS, 1965-77
 



46 

periods according to the "useful" lifetime of the assets. For example, a firm 

spends $30 million in '1975 for new machinery that will be in use for ten years. The 

money is spent in 1975, but the machinery is not used up in the process of 

generating 1975 production. Depreciation allocates the $30 million investment 

against the production revenues that will be obtained over the ten years the 

machinery is used. 

Depreciation thus allows the recovery of funds to make up for the initial 

investment of resources. Depreciation is a valid "cost" in measuring corporate 

performance in a current year, whether or not the recovered funds are actually 

used to replace the asset at the end of its useful life. Asset values not yet 

depreciated are carried forward to future years. The concept of depreciation is 

recognized in U.S. tax law and procurement regulations, which define depreciation 

broadly as a "reasonable deduction" for the wear-and-tear on capital stock in a 

given accounting period. Funds recovered by such deductions should assure the 

corporation of the opportunity to make a similar investment at the end of the 

useful life of the asset. 

Figure 3.3 describes the current accounting procedures invovled in the 

acquisition of additional capital stock. In this example, a firm acquires $30 million 

worth of new machinery. Of the total, $10 million is funded through depreciation. 

The remaining $20 million is funded half by debt ($10 milion) and half by issuing 

new shares to raise equity ($10 million). Had there been no inflation over the past 

ten years, '$10 million worth of the newly acquired machinery would replace 

equivalent machinery bought ten years ago at a cost of $10 million. The other $20 

million would be correctly measured as added capital stock, providing new capacity 

for corporate growth. This is the way U.S. accounting rules determine depreciation 

and new capital formation--without regard to inflation. Obviously, these 
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accounting rules and regulations were formulated during a period of monetary 

stability. 

When one looks at the same transaction and assumes a 10 percent annual rate 

of inflation, a completely different picture emerges. Table 3.1 illustrates the 

effect; it shows th6 follow : 

Column A: The ten years of the asset history. 

Column B: The annual nominal depreciation under existing U.S. 
accounting procedures. In this case the straight line depreciation 
methods is employed and depreciation is listed at $1 million a year, or 
one-tenth of the original value of the $10 million worth of machinery 
acquired ten years~ago. 

Column C: The reacquisition cost of the asset at the end of each year, 
assuming a 10 percent rate of inflation. After ten years it would cost 
$25.9 million to replace the original $10 million worth of machinery. 

Column D: Depreciation computed on the basis of the reacquisition 
cost in Column C rather than on the original cost. (Other methods 
suggest that the price the corporation might realize for the machinery 
on the market could be used as a depreciation base.) 

Column E: The overstatement of profits resulting from the use of 
nominal rather than real depreciation costs. Over the ten year period, 
the corporation will report a total of $7.6 million in profits which are 
not really profits; they are in fact part of the cost of capital, that is, 
depreciation. 

Column F: The corporate income taxes On that portion of the profit 
that has been overstated due to the use of nominal depreciation 
charges. Over the ten years the corporation will pay $3.6 million in 
taxes on profits which in fact do not exist. 

Column G: The dividend distributions that the corporation will make, 
based on overstated profits. The 27 percent figure roughly represents 
available dividend taxes and retained profits. 

Column H: The retained portion of the overstated profit, amounting to 
a total of $1.9 million over the ten-year span. 

Had there been no inflation during the period covered in the table, each of 

the columns D through H would "zero out." The fact that positive entries are 

shown is due to the illusory effect of inflation when capital assets are evaluated in 

terms of original costs. 
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TABLE 3.1 FINANCIAL HISTORY OF A CAPITAL ASSf--TEN YEAR IISELIFE 
(MILLIONS OF DOLLARS)
 

AZSUMflTIONS A ~usanIonprimeSI0 
Expected uselde 10 yesrs 
Rate of infiation 10 percent annually 
Corporate income tar 48 perent 
25 Percent of profits before taxes retained; blancediributed 

A B C D E F G H 

R..cotuiono 	 Ditrbuted RetainedCot 

Calculalon O"rstaied Corporat Ovematac[Yea Annally Profit Income Tax O rild 

10isAnnually 11F Inflation 10 -5 48% on PfonAsset Prie Depreciation -C 27%on E 25%on E 

1.0n S 11.0 $ 1.1 $ 0.1 .048 $ .027 S .026 
2 1.0 12.1 1.2 0.2 .096 .054 .050 
3 1.0 13.3 1.3 0.3 .144 .081 .075 
4 1.0 14.6 1.5 0.5 .240 .135 .125 
5 1.0 16.1 1.5 0.6 .288 .162 .150 

6 1.0 17.7 1.8 O.B .384 .216 .200 
7 1.0 19.5 2.0 1.0 .480 .270 .250 
8 1.0 214 2.1 1.1 .528 .297 .276 
9 1.0 236 24 IA .672 .373 .350 

10 10 25.9 2.6 1.6 .763 .432 .400 

z S0.0 a $ nt S$ 7.6 S3.600 S2100 $1.900 

TEN YEAR SUMMARY: Reacousition price $25.9 
Total overstated profit S7.6 
Tax pa~d on oversvled wofai $3.6 
Distributed overstated profit $2.1 
Total cash outflow due io overstated profits $5.7 

In summary, the table shows: 

* 	 An overstated profit of $7.6 million 

o 	 Payment of $3.6 million in corporate income tax on the over
stated profit 

* 	 Distribution of $2.1 million in dividends 

" 	 "Equity" amounting to $1.9 million in retained profits. 

Figure 3.4 shows the new picture of the transaction that emerges when real 

cost accounting, which considers the 10 percent inflation factor, is employed. To 

maintain its productive base by replacing the original $10 million worth of 

machinery, the corporation now has to lay out $25.9 million. Thus, in investing the 
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earlier-mentioned $30 million, the corporation incurs $10 million in new debt and 

has to issue new shares for $10 million, but $25.9 million of the $30 million goes to 

replace the original $10 million worth of 1965 vintage machinery. Only $4.1 

million is net added investment. The new financing needed in addition to available 

depreciation funds to replace the 1965 machinery--$15.9 million--represents an 

erosion of corporate assets. Where the prices of products are also determined by 

"historical" costs, or by government-regulated pricing procedures (exemplified by 

public utilities, Department of Defense, the National Aeronautics and Space 

Administration, and the Department of Energy), investments for maintaining the 

capital base for the production of these products cannot be continued for long. 

The current U.S. practice of historical depreciation causes extensive 

distortion in the accounting process. Real depreciation, based on reacquisition 

costs, must be used to insure a correct reflection of market principles and prices. 

3.1.2 	 Monetary and Real Capital 

In the minds of the public and also of some economists, the term capital 

denotes wealth, posessions, money, plant and equipment. However, in the context 

of capital and capital formation in an economic system, two fundamentally 

different terms of "capital" have to be distinguished: 

o 	 Real capital denotes physical goods in the form of machinery, 
plant and equipmdnt which are used with labor to produce goods 
and services. Since these items are quite often used beyond a 
single accounting period--say one year--the term durable goods is 
often used synonymously for real (production) capital. 

* 	 Monetary capital denotes simply any accumulation of paper bills or 
ent riesonbankingaccounts which conveypurchasingpowerorpotential 
title to dispose of resources, that is, labor, equipment, plant or 
consumer goods. 

Even 	though in market economies, except in times of crisis, monetary capital 

can readily be exchanged into real capital through purchases, the two terms are 
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strictly different. When account entries cannot be changed into paper bills and 

paper bills cannot be transformed into goods and services, the crucial distinction 

between real capital and monetary capital is clearly discernible. 

Monetary capital can instantly be transferred worldwide at little cost. On 

the other hand, real capital in the form of equipment, plants, transport fleets and 

networks may take months, years or decades to transfer, and some forms of real 

capital, such as interstate highways and other "fixed" investments, can never be 

transferred. This distinction is most apparent today in the Organization of 

Petroleum Exporting Countries. While highly endowed with financial capital 

amounting to billions of dollars, it is extremely difficult--if not impossible--for 

them to obtain real capital within their boundaries. During the years in which this 

transfer of real capital is taking place, they hold only paper or account entries. 

These distinctions between monetary and real capital are emphasized because 

of their importance in understanding real capital formation in any economic 

system. Monetary savings in an economic system is not the same as real capital. 

Real capital is formed only if new plants and equipment are produced, procured and 

put into productive use. While accumulation of monetary capital can be equated 

with savings, there is no reason why such savings must lead to the creation of real 

capital--an assumption all too readily made by macroeconomists. Such savings 

may- be diverted into the public sector and may be used instead for defense 

expenditures, local, state or federal government services or lost by inefficiencies 

in nonmirket services. 

3.1.3 Interest, Debt, Equity and the Cost of Capital 

In the context of determining the "true" profitability of firms in an economy 

with inflation, several factors have to be considered before interfirm comparability 
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of real rates of return are possible--in addition to the depreciation cost adjust

ment. First, the debt to equity ratio between firms can vary widely. While the 

debt and equity structure of the firm simply has to do with the ownership of the 

enterprise--a matter of book entries and legal documents having little if anything 

to do with the substantive flow of resources and revenues to the firm--this 

differing ownership structure is recognized in a totally distorted and misleading 

way in today's U.S. accounting and tax practices: interest paid on debt, that is the 

cost of outside financing, is recognized as a cost, while the interest cost on the 

equity portion is treated as profit--that is, as if provided to the firm "free of 

charge." This leads to seriously distorted profit and loss reports from firms that in 

fact (that is, in substance, real flow or resources) show identical performances. A 

firm financed 100 percent by equity may show a profit of 9 or 10 percent on its 

account while the identical firm financed 100 percent by debt could show zero 

profit--or even a loss--depending on the conditions at which it can obtain 

financing. In the former case the firm would have the "privilege" of paying 

corporate income tax on its "profit," while in the latter case no tax liability to the 

firm arises. This in turns leads to an overdue emphasis of "self-financing" through 

retained profits as well as an overexpansion of investments by firms that are 

heavily equity financed. 

The economically correct way of accounting for profit is to allow also for an 

interest cost for the equity portion of a firm's financing, something long and widely 

advocated and implemented, for example, in German Cost Accounting Standards. 

To correct for this arbitrary distortion in U.S. accounting procedures, the total 

fixed charges (that is, interest payments and related expenses) are added back into 

gross profits before calculating rates of return on assets irrespective of the 

financial structure of firms. Through this method, the real gross rate of return on 
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total assets for each firm, and for each sector of U.S. industry, is calculated in the 

program used in this study. 

Second, in addition to depreciation cost adjustment and the adjustment for 

fixed charges, other losses occur to any firm in an inflationary economy: to the 

extent that any firm needs a minimum of monetary assets to conduct its business 

these nominal, monetary holdings are subject to the erosion of inflation. In the 

calculations performed it is assumed that the monetary asset structure of firms is 

efficient in the sense that no substantial reduction could be obtained in those 

monetary assets without endangering the conduct of business by that firm. This 

simplifying assumption has to be made for purposes of this analysis; otherwise each 

firm would have to be analyzed case by case to determine the optimum monetary 

asset balances needed and it would only be on those optimum balances that losses 

due to inflation could and should be computed. This task is clearly beyond the 

purposes of this exercise. 

Third, additional losses through inflation occur to the firm on inventories held 

by the firm again in the conduct of its business: the acquisition of inventories two 

or three months in advance of sales again leads to arbitrary, fictitious profits 

included in today's profit and loss account which would not be shown were it not for 

inflation. To determine the inventory-related fictitious profit a detailed analysis 

of each firm and its inventory structure would be needed. A fair approximation of 

the inventory-related fictitious profits can, however, be obtained by determining 

the turn-over rate of sales to inventories: the higher the turn-over rate, the 

smaller the inventory in relation to total sales transacted by a firm, and the 

smaller the inflation-related distortion of profits. With the adjustments of 

inventory losses by. the turn-over rate of inventory, fictitious profits due to 
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inventory valuation were also adjusted for under the "fully impacted" earnings 

calculations for each firm, and for each sector of U.S. industry. 

3.2 Results 

The results of the inflation impact analysis show clearly that reported 

(nominal) returns by industry significantly overstate the real returns being earned. 

For example, in 1977 while reported annual returns on assets (ROA) were 

12.9 percent (asset-weighted average for 1600 corporations in 25 industries), the 

actual return on assets was only 6.1 percent. Further, it was the asset owners, 

those who held equity in the corporations, who suffered the most due to inability to 

depreciate properly: while adjustments for inflation dropped ROA by 6.7 percent 

(roughly equal to the increase in the consumer price index), returns on equity fell 

from 12.1 percent down to 1.2 percent when adjusted for inflation. Clearly the 

lenders are only feeling the first-order effects of inflation while the equity holders 

are bearing the brunt of the inadequate asset-depreciation burden. The disturbing 

results found in terms of real rates of return on equity is an additional finding that, 

for purposes of this analysis, can be ignored but which, in a larger context, has to 

be addressed in economic accounting and tax practices. One should not, however, 

advocate such low or even negative rates of return for purposes of evaluating 

public investment projects. The rates of return on assets are the relevant results 

and these indicate real interest rates of about 6 percent, as stated. 

Table 3.2 shows actual and reported earnings and returns on assets and equity 

for 25 industries for 1977. In general, nominal returns on assets deviate from the 

actual by approximately the rate of inflation, while returns on equity were more 

severely affected. Table 3.3 shows actual returns on assets and equity for the 

25 industries for 1974-77 and real return rates on treasury bonds for those same 

years. 
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TABLE 3.2 REPORTED AMD ACTUAL (FULLY ADJUSTED FOR INFLATION) PERFORMANCE
 
RECORDS, BY INDUSTRY FOR1977 FOR160D COMIPIES 

I PERFOPMANCERECORDS 1fILLI(S OF DOLLARS ORPERCENT PER YEAR) 

ACTUAL RflURh 
EARNINGS C$) EARNINGS () ON EQJITY () ON EQUITY (%) O1 ASSETS (S) ON ASSETS (1) 

INDUSTRY REPORTED REPORTED ACTUALRETURk REPORTED RfTUX ACTUALRETUR 

AGRCICLTURE 2.92 -0.75 5.69 -3.86 9.03 4.47
 

HIKING 13.51 0.97 6.72 0.29 8.20 
 1.88 
DRILLING AND 

EXPLORATION 24.89 7.10 14.47 2.40 17.96 9.97 

IUILDERS A'ND 
CfrtSTRUC'I l 17.33 7.01 16.55 4.27 12.59 7.69 

FOO 32.22 1.138 13.02 3.50 14.69 8.46 
TOBACO 129.11 92.12 14.44 8.37 15.38 12.21 
TEXTILE AMD 

LUMBER 17.56 1.38 11.83 0.49 12.59 4.84 
PRINTING 18.63 9.73 14.59 5.72 18.47 12.02 
CHEMICALS 

MD DRJGS £3.24 23.50 14.54 3.42 15.14 8.19 
REFINING AD 

ROOFING 293.22 28.15 13.33 0.58 18.11 9.15 
RJSER AND 
PLASTIC 14.03 -4.90 9.25 -1.81 11.22 4.34 

GAS, CLAY 
AD CEMENT 22.S4 2.58 12.70 076 11.99 4.87 

IRO AND STEEL 11.08 -35.79 2.83 -4.00 3.56 -1.23 
RDARE 8.08 1.09 14.15 1.13 15.19 6.92 
DCHIIKERY 45.74 15.80 16.44 4.14 17.87 10.38 

ELECTRIC 25.92 8.31 15.0 3.04 14.32 8.11 
CARS, TRUCnS 

MND AIRCRAFT 79.13 32.12 16.43 4.38 16.19 9.41 
INSTRUMNTS 35.53 19.00 14.70 6.03 18.52 11.96 
JEWELRYANO 

6.72 0.40 
RAILS 84.22 15.82 8.64 0.72 7.51 3.06 
TRANSPORTATION 17.29 -7.20 13.46 -2.41 9.54 2.19 

MU4MICATION 32.13 m.51 12.00 -0.51 11.35 3.54 
UTILITIES 49.98 16.04 11.28 1.37 9.70 4.81 
MOC.ESALE 10.05 3.73 14.s0 .80 12.68 7.92 

RETAIL 20.34 6.90 12.80 2.69 12.81 7.16 

s 6 12.06 0.4 14.52 7.17 

TABLE 3.3 ACTUAL RETURNS ON ASSETS, EQUITY AND REAL 
RETURNS ON TREASURY BONDS, 1974-77 

RETURN; ON RETURN ON RETURN ON 

ASSETS* EQUITY* TREASURY BONDS
 

PERCENT PER YEAR
 

1974 6.3 0.5 -3.0 

1975 5.1 -0.6 0.3
 

1976 5.9 1.1 2.0 4g 
01977 6.1 1.2 0.4 


ASSET-WEIGHTED AVERAGES FOR 25 INDUSTRIES.
 

., 
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Based upon these considerations, the use of a 10 percent discount rate is 

clearly unwarranted for the evaluation of long-term projects, that is, projects lor 

which the return on investment is realized many years into the future. High 

discount rates strongly favor the selection of short-term projects and nearly doom 

competing long-range projects, despite the potential benefits offered. When risks 

have not been properly accounted for (for example, the risk that a component may 

cost ten times as much as estimated, or the risk that the system will not work at 

all), it has been argued that the use of a high discount rate such as 10 percent is 

justified as a type of risk premium, accounting for the improper or incomplete 

assessment. This point underscores the need for the use of proper risk assessments 

in the evaluation of long-range energy R&D, for such projects cannot bear the 

burden of the higher discount rate. 

Given that the I to 6 percent range established above is rather wide, where 

within this range would one advocate as "the" social rate of discount? As treasury 

bonds are very liquid and compete with regulated bank interest rates, their rates of 

return might be somewhat too low. On the other hand, return rates on corporate 

assets contain a risk premium, probably beyond that which is appropriate for public 

project evaluation. Still further, Von Neumann [3] gave a mathematical proof 

that, in an expanding, linear, economic system, the real rate of interest is less than 

or equal to the real rate of technological growth of that system. As that proof has 

remained unrefuted since 1937, it stands as an argument for advocating a discount 

rate approximately equal to the growth rate of the economy, between 3 and 

4 percent. The rate of interest thus recommended here for use in SPS systems 

definition studies is 4 percent, the midpoint of the range of 3 to 5 percent which 

represents the "resolution" of the results obtained above. It is important to note 

that this represents a "risk-free" interest rate, that is, that comparisons or 
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evaluations made using this rate should include an explicit risk assessment. The 

separate consideration of these two factors, is demonstrated in an example below. 

One of the major impacts of this recommended interest rate is that it 

enhances the economic value of all long-range energy RD&D, including SPS. In the 

evaluation of energy research, some of the benefits which result, particularly from 

research into long-range technologies, are realized several decades from now. The 

use of high discount rates almost totally denies any value to pursuing such 

research, not only today but also in the future since the long lead times required 

between the earliest development and implementation will remain. As an example 

of the limitations which a high discount rate places upon energy R&D, consider two 

hypothetical projects, A and B, the former of which provides immediate returns 

with no risk and the latter of which provides returns which, while substantially 

greater in dollar value than the other project's, are offset in the future and are 

subject to uncertainty. This uncertainty in returns may derive either from 

uncertainties in the technical performance of the system or from uncertainties in 

the markets for inputs and outputs of the system. Figure 3.5 shows the comparison 

of the value of these two projects at a high discount rate (10 percent) and a lower 

discount rate (5 percent). The total area for Project B (both shaded and unshaded 

areas) shows the potential return of B, and if risk were not taken into account, 

Project B would clearly be more desirable than Project A at either high or low 

discount rates because its potential return exceeds that of Project A in both cases. 

However, as noted in the foregoing discussion, the issue of the effect of 

uncertainty on the value of a program should be dealt with separately from the 

effect of interest rates; consequently, it is the expected value of projects which 

must be compared, that is, the potential payoffs weighted by the corresponding 

probabilities of success. When the potential return of Project B is weighted by its 
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probability of success (50 percent), then Project B's expected value (unshaded area 

only) is lower than the expected value of Project A at a discount rate of 

10 percent, in spite of the fact that Project B offers a return that is five times 

greater in (undiscounted) dollar value. Clearly, it is the high discount rate that 

makes Project B appear less desirable. When a lower discount rate (such as the 5 

percent used in this example), appropriate for situations where risk is considered 

explicitly, is employed in the comparison, then Project B offers a higher return, 

even after risk has been accounted for. 

A somewhat more realistic representation of the effects of different discount 

rates on the revenues (benefits) of an SPS implementation program is shown in 

Figure 3.6. Under the assumption of 120 five GW satellites, each having a lifetime 

of 30 years, being built at the rate of four satellites per year starting in 1996, and 

producing power whose price escalates in real terms at the rate of 1 percent per 

year, a revenue profile like the one shown in Figure 3.6 would be generated. 

Overlaid on this revenue profile are trajectories representing the ratio between the 

value of the revenue stream in a given year to its corresponding present value in 

1980, at discount rates from I to 10 percent per year. The diagram demonstrates 

the dramatic effect that high discount rates have on the value of future revenues: 

for instance, in the first year that satellites are constructed (1996), any revenues 

accruing that year would be worth, expressed as a present value in 1980, only 20 

percent of their value in 1996 at a 10 percent discount rate, whereas revenues from 

that year would retain over 50 percent of their value (again, expressed as a present 

value in 1980) at a discount rate of 4 percent. The situation is even more dramatic 

in 2026, the year in which the satellite fleet is completed, when only about I 

percent of the value of revenues from that year are reflected in a 1980 present 

value if discounted at 10 percent, whereas a still significant 16 percent of the 
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value of the revenues would be reflected in a 1980 present value if discounted at 4 

percent. 

The effect described above of a larger percentage of revenues (benefits) 

"clearing the hurdle" of a lower discount rate is a major determining factor in the 

difference in expected values of an SPS program evaluated at different discount 

rates. The exponential nature of the discounting process, as reflected in the 

curvature of the trajectories of value in Figure 3.6, takes a particularly high toll 

when operating at high rates over the long period of time involved in the 

implementation of SPS. Another aspect of the exponential nature of discounting is 

that the "upfront" costs, such as satellite RDT&E, are less affected than the later 

occurring revenues in an exponential relationship to the discount factor owing to 

their relative proximity in time to the discounting reference point. This difference 

between the upfront costs and later revenues in terms of discounted values is 

shown in Figure 3.7. The "gap" which exists between the discounted sunk costs of 

the program and the discounted revenues constitutes the allowable discoLnted 

investment costs for the program. Clearly, the revenues are far more sensitive to 

the discount rate, occurring as they do much farther in the future. Consequently, 

the "gap" representing allowable costs narrows as the discount rate employed in 

evaluation increases. 

To demonstrate the effect of different discount rates on the value of actual 

proposed programs, the Rockwell program which is analyzed in Section 2 was 

evaluated at a range of discount rates and the results are presented in Figure 3.8. 

As in Section 2, two cases have been analyzed: one using the original Rockwell 

TFU cost data, and a second using TFU cost data with the values for solar cell 

specific cost and mass modified to reflect a more uncertain state-of-knowledge on 

(, .N 
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these parameters, based upon information developed by Arthur D. Little, Inc.* The 

substantial effect on program value, which was noted in Section 2, resulting from 

the increase in risk on these two parameters indicates a necessity for better solar 

cell data as a prelude to economic justification for the program if the program is 

to be evaluated at higher discount rates. Indeed the economic value of the 

program becomes clearly negative at inappropriately high discount rates. Whereas 

4 percent is the discount rate which is recommended for SPS systems definition 

studies, this rate corresponds to a risk-free interest rate, and it is crucial that a 

proper assessment of risk be conducted, in order for the results being evaluated at 

a 4 percent discount rate to represent a valid assessment of the economic value of 

the program under consideration. This has been done here and, with the data 

supplied by the Rockwell and Boeing studies, evaluated at a 4 percent discount 

rate, an SPS program appears economically justified (note that noneconomic 

considerations are not taken into account here--these could either increase or 

decrease the desirability of an SPS program). 

A second effect which the discount rate has on the value of a program is that 

it shifts the "prior distribution" of unit cost on which the decision analytic 

evaluation of the program is based. This occurs because the iscost of each unit 

incurred over some period of time prior to the initial operation date ClOD) of the 

system, and a cost of capital or interest rate is applied to these incurred costs so 

that the cost of an SPS unit which must be recovered during the operation of the 

unit includes the capital cost itself as well as interest charges on it. For the 

purposes of this study, the cost profile for each unit has been characterized as a 

"Space-Based Solar Power Conversion and Delivery Systems Study--Vol. IV, 
Energy Conversion Systems Studies," prepared by A. D.Little, Inc. for ECON,
Inc., under Contract No. NAS8-31308, March 29, 1977. 
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beta distribution beginnihg four years before the IOD and peaking six months 

before the IOD. The difference between applying a 4 percent as opposed to a 7-1/2 

percent interest rate to this cost profile is an almost 4 percent reduction in cost of 

the unit referenced to its IOD date. By thus reducing the cost of the unit the 

chances of its being economically competitive are increased. This is reflected.in 

higher probabilities of success in the decision tree representing the program. With 

higher probabilities of success occurring at each branch of the tree, the revenues 

which obtain at the final branch of the tree are more heavily weighted, that is, a 

larger percentage of the positive returns of the program are included in the 

calculation of the net expected value of the program. 

A final note which should be made on the issue of the proper discount rate to 

be used for comparison of SPS system tradeoffs is that the use of high discount 

rates in energy policy is particularly inconsistent with the emphasis placed on 

conservation of existing, conventional energy resources. Pursuit of policies which 

result in increases in the discount rate beyond that already present in the economy 

would also result in increased consumption rates of the available, nonrenewable 

resources. The emphasis in federal policy on energy conservation above and beyond 

that amount which would already be realized by the market economy implies a 

special role to energy commodities (for national security or macroeconomic 

reasons, perhaps) in the form of a lower discount rate. If this is indeed warranted, 

it should be applied to evaluation of SPS alternatives as well. 

http:reflected.in
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4. 	 A METHODOLOGY FOR SPS COSTING TO 
DEAL WITH "DIFFERENTIAL INFLATION" 

The development of a cost estimate for any system that has yet to be built 

represents a prediction of the future. As such, it is fraught with a number of 

potential perils. Costs of any technological system are a function of both the 

prices and the quantities of the inputs (labor, resources, capital) involved. The 
"quantity" part of the cost estimate involves a quantification of the required inputs 

-for different levels of system performance, based upon expectations of technology 

advancement. The uncertainties inherent in such estimates are greatly amplified if 

the system is to be built 20 to 30 years in the future and if it is to be based on 

technologies not yet developed. Even if precise knowledge of the quantities of the 

inputs were possible, however, system costs could still be quite difficult to predict 

accurately due to uncertainties in the prices of the inputs. Examples of this 

problem can be observed in the aircraft industry. Boeing has recently produced the 

1500th Boeing 727 aircraft. Suppose, with the productioniof this aircraft, the line 

were shut down and dismantled. Then, suppose 30 years from now, Boeing reopened 

the line and began producing precisely the same aircraft again. Certainly there is 

very little technical uncertainty in the design or production of this aircraft. Yet, 

it is unlikely that the cost of the 727 produced in the year 2008 could be estimated 

today with an error that could be confidently expected to be less than +50 percent, 

even setting aside the effects of inflation (that is, even expressing the cost in 1978 

dollars). This uncertainty is a result of the fact that the national economy with its 

diverse markets and sectors will have continued to operate in the intervening 30 

years with the result of continuously adjusting prices for (and quantities produced 

of) the inputs which would be used to produce a 727 in 2008. Driving this continual 



68 

process of market adjustments are factors such as' technological innovation, 

changing incomes and preferences, changing real prices (for instance, as a result of 

increasing scarcity) of related goods and substitution, as well as interaction in 

international trade. 

Sometimes the capability of a system changes so that it becomes quite 

difficult to historically compare such costs over a moderate period of time, but an 

illustrative attempt is nonetheless in order. Consider the case of the Beechcraft 

Bonanza. The model 35 Bonanza was introduced in 1947 with a price tag of $7900. 

The base sticker price of the V35B model Bonanza in 1977, 30 years later, was 

$65,950. Inflation over this period accounts for a factor of 2.84 of this increase, 

bringing the 1947 price up to $22,463 in 1977 dollars. (More will be said about 

inflation below.) Of the remaining gap, about 50 percent might be allowed for 

increased capability: higher speed, higher payload, engine improvements, etc. 

Although the 50 percent is quite subjective, it is also probably a generous allotment 

for such improvements. This 50 percent increment brings the price up to $33,695. 

There is a remaining factor of 1.96, or an annual real price increase of 2.26 

percent, yet to be explained. If one had estimated the cost of producing the 1977 

V35B in 1947, it is unlikely that this factor would have been included and, thus, it is 

likely that the cost estimate would have been in error by a factor of at least two, 

even given excellent knowledge of the technical aspects of the system. 

It is clear from the above example that there are a number of economic 

factors which must be taken into consideration when estimating costs of projects in 

the 'mid- to long-term (greater than 20 years in the future). These effects derive 

from market interactions which may be expected to occur in the intervening 

period. In the case of near-term cost estimation, such market phenomena are 

frequently ignored as not having a significant impact on design-cost tradeoffs. 
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However, over the time period during which the SPS will be developed, market 

interactions may have a very substantial effect on the relative prices of inputs for 

SPS production and therefore must be considered explicitly in design-cost analyses. 

Two types of market-induced effects will be discussed below: first, general 

inflation which affects the "money price" (but not the real price) of goods and 

services; and second, relative price changes (sometimes called diferential 

inflation) which represent changes in the real prices of goods and services. 

Relative price changes will be discussed in terms of the three types of economic 

inputs (resources, capital and labor) with recommendations being made in each area 

as to how to approach projections of these changes and the likely limits on the 

accuracy of such forecasts. 

4.1 General Inflation and the Desirability of "Constant Dollar" Analysis 

The value of a dollar at any point in time (that is, the relationship between 

the dollar and real goods and services) is arbitrary. Furthermore, it is constantly 

changing to reflect the complex interactions among different markets and sectors 

within an economy and the interactions among national economies in international 

trade. The dollar is simply a convenient medium of exchange in these processes of 

economic interaction, and its value .(whether measured in relation to other 

currencies or real goods) continuously changes to equilibrate imbalances which 

exist in different types of economic activity (savings, investment, -government 

spending, consumption), imbalances which exist in the demand for and supply of 

goods and services in the various sectors of the economy, as well as imbalances in 

the amount of goods traded between different national economies. 

Inflation is the name given to an adjustment in the value of a unit of currency 

such that the ratio of real goods to the unit of currency decreases. Conversely, the 

(less familiar) process of deflati6n is one in which the ratio of real goods to a unit 
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of currency increases. If one does not bear -in mind, the fact that the dollar is an 

arbitrary unit of measure whose value changes continuously, then in periods of 

continuing high inflation one -might mistakenly conclude that inflation is actually 

an important "cost-driver." In reality, measuring the cost of something at two 

different points in time without correcting for the changing value of the dollar is 

equivalent to measuring the'length of something in meters one time and-feet the 

next time and concluding that the length has changed because the numbers are 

different. 

Correcting for inflation can lead to surprising results. For example, over the 

period 1950 to 1974, the real price (corrected for inflation) of new cars decreased 

by 35 percent, the real price of dairy products decreased by 4 percent, and the real 

price of fuel and utilities decreased by 16 percent (even after the large jump in 

prices in the 1973-1974 period). One of the most surprising areas is the cost of 

borrowing money. While the interest rate5 increase together with the inflation 

rate, there is often a lag in this increase. Thus, the real cost of capital is usually 

lower during periods of high and increasing inflation than it is during periods of 

relatively low inflation, despite the illusion that is created by the numerical rates. 

Several different theories of the cause of inflation have been develoed to 

account for the continued upward march of price indices in different economic 

circumstances. One explanation applied to an economy at full production describes 

what is called "demand-pull" inflation, in which total aggregate demand in the 

economy is greater than the output that can be produced even at full employment. 

The 1930s are a prime example in U.S. economic history of a period of 
deflation. 

This issue of "money illusion" is discussed in Section 3, where the rates of 
return for corporations have been adjusted for inflation, resulting, in some 
cases, in negative rates of return. 
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This excess demand drives up prices, but since no more goods can be produced' 

because the economy is at full capacity, all that changes are the prices--in an 

inflationary spiral. An alternative description has been applied to the recent 

situation of high inflation even though there has been simultaneous high unemploy

ment, that is, the economy is not at full capacity. This type of inflation has been 

called "cost-push" or sellers' inflation whereby the sellers' of all of the inputs to 

production demand remuneration greater than the total product generated. An 

example of this would be a labor union demanding a wage increase greater than the 

value of whatever increases in productivity had been achieved that year. The 

result of a settlement along such lines can only be an increase in prices, if the 

industry is going to continue to exist. 

The phenomenon of inflation is further complicated by the action of 

government to achieve certain socially desirable ends, such as low unemployment, 

by direct attempts to control or modify economic behavior through regulation,,tax 

incentives, government spending, interest rate and money supply control, among 

others. Thus, if one were to try to predict the rate of inflation over time, he would 

be faced not only with modeling the myriad actors and decisions of the market

place, but also with trying to model or predict the actions of government as it 

interacts with the economy when the actions of government are essentially 

arbitrary in nature and timing. Consequently, it has proven to be extremely 

difficult to predict with any accuracy the course of inflation in the short run; 

mid-term predictions of inflation have been notoriously inaccurate; and it is 

pointless to try to predict how the value of the dollar will vary over the potential 

time period of SPS development and implementation. 

In addition, the actions of other governments and economies would have to be 
accounted for because of the considerable effect they can have on the value 
of the U.S. dollar as demonstrated so vividly over the past several years. 
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More important than the intractability of forecasting inflation is the fact 

that, even if it were possible to make such a prediction with perfect accuracy, it 

would provide no useful information for the purposes of SPS program decision 

making. To estimate costs either at the present or for the future one need only be 

concerned with real costs (that is, measured against real goods) referenced to a 

specific point in time. A cost estimate is referenced to a specific point in time by 

specifying at what point in time the value of. the dollar is taken to be fixed.. For 

instance, all of the cost estimates in this report are expressed in "mid-1977" 

dollars, which says that the relationship which existed between real goods and 

dollars in mid-1977 is the one to be used for the purposes of cost estimation in this 

study. If one wishes to incorporate together or compare estimates made in 

different year dollars, it is necessary to adjust all of .the estimates to a single 

reference point in time, making use of relationships between the dollar and real 

goods, that is, convert all of the estimates to one particular year's dollars, so that 

like elements are being combined or compared. 

A number of price indices exist to aid in making intertemporal comparisons 

of the value of the dollar. Three of the most familiar are shown in Figure 4.1. The 

most generally used tool for adjustment of the changing value of the dollar is the 

GNP (gross national product) implicit price deflator which is an all-encompassing 

indicator that measures the "overall" value of the dollar against a "standard" 

dollar, such-as 1972. To convert (in this case inflate) a cost estimate made in 1960 

dollars to 1975 dollars, one would multiply the earlier estimate by the ratio of the 

index of the later year (123.5) to the index of the earlier year (68.5). Thus, an 

estimate of a cost of 100 dollars in 1960 is equivalent to an estimate of 

approximately 180 1975 dollars. The other two familiar price indices shown in 

Figure 4.1 are the consumer price index and the wholesale price index. The former 
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tracks the total price of a standard market basket of consumer goods and the latter 

tracks the total price of a standard market basket of wholesale items. As these 

latter two indices are tied to specific sets of products, the GNP price deflator is 

generally regarded as a more desirable index for genera adjustments in the value 

of the dollar. In any event, it can be seen from Figure 4.1 that the three indices 

remain closely related over time. 
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If the GNP index is to be used to define the value of the dollar, then the use 

of the GNP implicit price deflator is also appropriate for adjusting historical costs 

in order to obtain data for cost estimates of future projects. The effects of 

inflation must always be removed from historical costs before these costs are to be 

used for forecasting future costs; Also, long-term cost trends, such as an 

increasing cost of labor, must be properly taken into account. Proper adjustments 

for the cost of capital are also necessary and can be quite difficult to make 

properly. All of these factors make it quite difficult to use historical costs as a 

basis for estimates of future costs over substantial time periods. The cost 

estimator must take extreme caution not to fall into any of several potential 

"accounting traps." 

The techniques described above are appropriate for adjusting historical cost 

estimates to a single reference point. That reference point for the value of the 

dollar is then used in forecasts of relative price changes, as described below, and it 

is this single reference point for the value of the dollar used both for aggregating 

historical cost estimates and for making estimates of future costs which is 

indicated by the term "constant dollar" analysis. Before proceeding with a 

discussion of techniques for the forecasting of future relative price changes, 

however, a few more comments on the relative desirability of constant dollar 

analysis and the appropriate role of inflation in economic analysis are needed. The 

desire to include an inflation effect in future cost estimation may be motivated by 

some sense of "realism," that is, inflation is a real effect and, therefore, if it is not 

included in an analysis, it is perhaps thought that something is missing. Indeed, 

inflation is of concern to macrolevel decision makers because high levels of 

inflation can be destabilizing to an economic system and because inflation acts to 

degrade the capital base of the country if it is not properly taken into account, as 
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discussed in Section 3.1. And clearly, inflation is of concern to individuals, 

particularly individuals on fixed incomes, for if their wages do not keep pace with 

price increases, then their real purchasing power decreases over time. However, 

for those interested in cost estimation, inflation does not matter, for costs exist in 

terms of real goods, and the actual number of dollars corresponding to an amount 

of real goods at any point in time is unimportant and does not affect any decisions 

which might, for instance, be made on the ordering of the costs of alternative 

approaches.
 

In addition, there are several advantages to constant dollar analysis over 

attempts to include the effect of inflation. First, since it is impossible to predict 

accurately the course of inflation over the time period of SPS development and 

implementation for reasons described above, one is forced to assume a rate of 

inflation. Consequently, all of the results from an analysis including an assumed 

rate of inflation are dependent, at least in magnitude, upon what value was 

assumed for inflation and therefore may not be compared with any other results 

unless the same technique and values were used with respect to inflation. By 

contrast, constant dollar analysis is equivalent to assuming an inflation rate of 

zero, a simplification which is possible without sacrificing any useful information. 

For example, the results of that analysis can readily be updated and correctly 

compared to later year data by bringing them "forward" at an objective, historical 

inflationary rate as it occurred. Analyses that are an amalgam of assumed or 

predicted rates, etc. are close to impossible to disentangle in later years for 

purposes of updating or checking. Second, by dealing with a constant dollar value 

corresponding, for example, to 1977 dollars, one is working with units for which one 

has some intuitive sense of value and with which he or she can measure the 

reasonableness of cost estimates within his or her area of expertise. Who could 
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have any sense of what a 	dollar will be worth in 2005--again, measured in real 

percent rate of inflation? The applicationgoods--assuming a 4, 5 or 6 of 

subjective judgment is crucial in future cost estimation, a process which is difficult 

enough without introducing the artificial and unnecessary complication of assumed 

rates of inflation which add nothing to the analysis. 

4.2 	 Projecting Relative Price Changes 

terms, three types of inputs are required to produce aIn general economic 

a cost tree depicting, by
good: resources, capital and labor. Figure 4.2 shows 

economic category, these cost components. The resources branch of this tree may 

be further divided into resources which are practically infinite and resources which 

can be further subdivided into are discernably finite. Practically infinite resources 

resources for which there is a constant cost of recovery and those for which, due to 

depletion of easily recovered reserves, the cost of recovery is increasing with time 

or, due to improved technology or economies of scale, is decreasing with time. The 

cost of capital is discussed 	extensively in Section 3 of this report. Suffice it to say 
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here that there exists a certain volatility in the cost of capital which affects the 

precise cost of capital at any given point in time. This is simply another 

component of uncertainty in the total cost of an SPS system. The remaining cost 

components are treated individually below. 

4.2.1 Labor 

As a direct result of technology innovation, the productivity of labor has 

increased steadily throughout this century. The productivity of labor over the past 

23 years is detailed in Figure 4.3. Over this period, there has been an average 

annual increase of 3.8 percent. The result of increasing productivity is that, each 

successive year, there is an increasing per capita supply of goods available for 

distribution. Hence, there is increasing real income, acrossan on the average, all 

employees. The magnitude of this- increase is illustrated in Figure 4.4. Over the 

past 23 years there has been an average annual increase of 3.2 percent in real 

compensation for all nonfarm business employees. (The slightly lower rate of 

increase in real income compared to productivity is due in part to the fact that a 

decreasing fraction of the total work force is productive. This occurs, for 

example, as more and more people become employed in the regulation of industry.) 

In the "average" industry, the increased real cost of labor is precisely offset 

by the increase in productivity so that the real cost of labor to produce the 

"average" good remains constant in time and hence the real cost of the "average" 

good remains constant. The "average" employee improves his standard of living 

because he obtains an increasing real income with time. Averages, however, do not 

apply in specific cases. For example, the productivity of labor in producing hand

held calculators is increasing very rapidly, resulting even in a declining price for 

the resulting good. On the other hand, the construction industry shows a very low 

rate of technology innovation with commensurately increasing construction costs. 
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The fact that prices vary, as in the above examples, rather than wage rates is due 

to the fact -that long-term effects of technology innovation in one industry versus 

no innovation in another would -result in widely disparate wage rates if the adjust

ments went totally into labor rate changes. This effect would cause an abundance 

of labor in areas where technology innovation is high and a shortage of labor where 

innovation is low. The resulting labor supply would then force wage rates to 

equalize across the industries with resulting impacts on prices. Returning to the 

example of the Beechcraft Bonanza, the technology for producing the airplane has 

changed very little over the past 30 years. Thus, at a 3.2 percent per year real 

wage increase, the real labor cost to produce the airplane has increased by a factor 

of about 2.57 during this period. Since much of the cost of producing the airplane 

is in labor, this largely explains the remaining factor of 1.96 between 1947 and 1977 

production costs. 

The implication of the above notions on SPS costing are as follows: 

1. 	 The real wage rate can be expected to increase at about 2 to 3 
percent per year. Thus, the real cost of labor to build an SPS in 
the year 2000 will be about twice the cost of the same labor in 
1978. Of course such increases also apply for costing other energy 
alternatives. 

2. 	 The productivity of labor for building an SP5 cannot be expected 
to increase since expected increases have already been accounted 
for in estimating the manpower requirements. 

3. 	 There is no guarantee that the wage rate will continue to increase 
at 3.2 percent per year just because it has historically done so. 
Thus, one should acknowledge that there exists a rather substan
tial uncertainty in the real cost of labor 20 years or more into the 
future.
 

4.2.2 Resources 

Resources comprise the basic building (or raw) materials for an SPS. They 

may include materials such as aluminum, copper, silicon, gallium, graphite, and so 

on. These materials are converted into SPS components such as solar cells, 
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structural members, etc., by the use of capital and labor. When component 

production rates are low, the capital and labor costs for producing components are 

generally much larger than the resource costs. But when production rates are high, 

the component costs can approach the sum of the resource and energy costs which 

the components require. (in fact, the energy cost may also be reduced by 

technology innovation.) To be sure, much of the resource costs can be tied to 

capital and labor for resource recovery in which case the above principles apply. 

However, it is more convenient here to deal with resources as raw material inputs 

to the SPS construction process. The mining industry is one in which there has 

been a significant level of technology innovation to offset rising real labor costs. 

Not all of the costs associated with resources can be tied to capital and 

labor, at least not in the conventional sense. This fact has recently been made 

quite clear by the behavior of the OPEC (Organization of Petroleum Exporting 

Countries) cartel's behavior relative to the price of crude oil. The present OPEC 

price, some 65 times the marginal cost of recovery, includes an economic "rent" 

which the holders of the resource charge to the users of the resource to 

compensate for the resource's finiteness. There are clearly times when these rents 

become the dominant cost. 

The discussion below deals first with resources that are perceived to be 

infinite and second with resources that are discemably finite. The major 

distinguishing feature that determines whether a resource is perceived to be finite 

or infinite is the way in which the resource is priced. Of course, all resources are 

ultimately finite. However, a particular resource may be widely distributed and 

This was the relationship calculated for the marginal cost of recovery 
(average for all the OPEC countries) and the market price in 1977. 

J1L 



82 

may have a runout horizon of thousands of years. Under such circumstances, the 

resource is generally priced at a rate which reflects its production cost. If, on the 

other hand, the resource reserves are controlled by a few nations or individuals, or 

if the runout horizon is short, say less than 100 years, then quite often economic 

.rents are charged for depletion of the resource. In the former case, long-term 

price forecasting is best done by examining the historical prices and the current 

and projected production costs. In the latter case, prices may fluctuate over a 

wide range as the result of politics and policies, however, the long-term economic 

forces drive the price toward an "equilibrium" level which maximizes the value of 

the resource to its holders. Such appears to be the case, for example, with respect 

to petroleum. 

4.2.2.1 Practically Infinite Resources 

Table 4.1 shows the reserve and resource situation for a number of minerals. 

While ultimate resources for many minerals may be extremely large, the reserves 

of these resources may be quite finite. Such is the case for iron ore and domestic 

bauxite reserves. The core of the earth may be made of iron and iron may be 

present in vast quantities in the earth's crust, but easily recovered ore, by current 

technology is quite limited. Similarly, the total domestic supply of aluminum is 

virtually unlimited, but not in the form of bauxite. This could become important if 

it became desirable to limit aluminum imports. Thus, looking at the index of 

reserves divided by annual production giyes some indication of the time horizon to 

the point at which significant peturbations in production costs might be expected. 

Where this index is on the order of hundreds to thousands of years, historical cost 

trends probably yield the best information on future price expectations. Where this 

Reserves are defined as those resources which have been identified and 
delineated as viable in the context of the current economic and technological 
conditions. 
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index is on the order of decades to, say, 100 years, significant changes in price 

structure could occur during the SPS program. For these resources, it would be 

prudent to cost production from alternative sources. It could be useful to do this, 

for.example, for aluminum. 

A reasonable approach to costing many resources is to simply examine the 

historical cost trends. Figures 4.5 and 4.6 show 28-year trends for aluminum and 

copper. To use long-term data, one must first convert all prices to a common unit, 

say 1972 dollars. This can be done using deflator index such as the GNPa price 

deflator given in Figure 4.2. The deflated prices can then be analyzed statistically. 

Unless there is a clear upward (or downward) trend in the price, it is generally 

6dequate to simply use the long-term average price as the "best guess" of the 

future price (beyond the next few years). 

Beyond estimating the long-term average price, it is useful to examine the 

volatility of the price over time. For example, the standard deviation of the price 

about the long-term average is an interesting parameter. It provides an estimate 

of potential variability of the price at any future time and thus measures inability 

to predict future prices. Because long-term (secular) price trends are difficult to 

predict in advance, and because they may be present today, it is probably wise to 

consider the three-standard- deviation .range' as the bound on one's ability to 

forecast future resource prices. As the price volatilities for aluminum and copper 

indicate, the three-standard-deviation band can be on the order of the resource's 

long-term average price. Thus, it is very plausible that many resources will not be 

priceable to better than a factor of plus minus twoor over the time period when 

such resources would be needed for SPS. However, it should be emphasized that 

this is strictly a plus or minus situtation, not one that is biased one way or the 

other. 
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Another problem in resource pricing that shows up in the data of Figures 4.5 

and 4.6 is that the prices of many minerals are correlated in time. Thus, if the 

price of one mineral goes up, it is likely that others will also. This means that cost 

uncertainties are not necessarily reduced by using a variety of materials in the 

system design. 

Finally, it is again worth emphasizing that this state of price forecasting 

applies to all future energy systems, not just SPS. It is not a good nor a bad 

feature of SPS that such prices cannot be predicted accurately, it is just a fact of 

life that must be accepted and dealt with accordingly. 

4.2.2.2 .Discernably Finite Resources 

To round out this discussion, it is necessary to discuss the pricing of 

discernably finite resources. To be sure, one should recognize that resources are, 

in general, quite vast and widespread. However, there is an energy cost associated 

with their recovery that is difficult to escape. The same is true of energy 

resources and, hence, one might say that they are limited to the extent that, at 

some point, the energy cost for recovering these resources will equal the energy 

contained in the resources recovered. In this context, fossil and nuclear fuels are, 

indeed, limited. From this it follows that other resources are limited, but only by 

the economics, and particularly the energy costs, of their recovery. Thus, the 

discussion which follows applies fully to energy resources, and to other resources 

within the context that, at some price, the resource supply becomes very large. At 

such high prices, monopolies and cartels give way to competition -from other 

sources. 

The basic notion employed in the development of a mathematical model for 

medium- to long-range pricing of finite resources is that the holders of these 

resources wish maximize value their to Thisto the of resource themselves. 
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assumption leads to an economically optimal price as a function of time. Short

term variations may -occur around the economically optimal price due to political 

factors and due to uncertainty in economic parameters such as the demand 

elasticity and the resource reserves. However, considerable pressure is exerted by 

the economic forces tending to drive the price towards its "equilibrium" value. 

Thus, in the long run, we believe that the economically optimal price is the "best 

guess" of future resource price. Certainly, this seems to be the case with 

unregulated oil prices at the present time. 

The mathematical model is formulated as follows: It is desired to maximize 

3, where 

3 " e-p t u(Q,q,t)dt (4-1)
 

where t is time, pis the resource holder's discount rate, Q is the magnitude of the 

reserve at time, t, and q is the rate .of downdrawal of 'the reserve. The 

maximization is subject to the constraints: 

dQT= _q
-t 


q>0
 

for all t
)Q>0 

and it is assumed that Q(t=O) = Q0 (today's reserve) is known. This problem is read: 

select the functional q(t) which maximizes the present value of present and future 

utilities (that is, worth), U(Q,q,t), to the resource holders from resource production 

subject to the constraints that total resource inventory diminishes at the rate at 

which the resource is produced for consumption and that the resource is nonrenew

able. 
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It is appropriate to consider that the utility of resource production may be 

given as the net revenues generated by the resource, that is, the gross revenues 

For example, let S(Q,q,t) be the per unit cost of extractionminus extraction costs. 

at price P. Assumingof the resource and D(P,t) be the demand for the resource 

that prbduction equals demand, 

q = D(P,t) 

yields price as a function of production and time, 

P = P(qt) 

Then, the utility of production can be written 

U(Q,q,t) = q[P(q,t) - S(Q,q,t)] 

This is an optimal control problem where the control variable is q and the state 

on the form of P(q,t) andvariable is Q. The solution to this problem depends 

S(Q,q,t). A typical solution is given in Appendix A of ECON Report No. 77-146-1, 

"A Study of Some Economic Factors Relating to the Development and Implemen

tation of a Satellite Power System." For convenience, this solution is repeated in 

canthis report in Appendix A. The solution yields q as a function of time which 

then be translated into price as a function of time. Substantial variability might be 

expected around the optimal price at any point in time. In the long term, such 

variability cannot be forecast. 

4.3 	 Caveats 

The methods for forecasting future costs presented above assume a "business 

as 	normal" environment. Any number of events could occur to create large cost 

major changes in thevariations. These include mainly factors which could cause 


supply or demand picture for resources or labor- a major economic recession,
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war, drastically new technologiesi political changes, etc. The major thing one 

should be aware of is the new demand for resources which SPS will create. If this 

demand is a significant fraction of the total resource demand, large changes in 

resource cost can be expected. These are likely, but not necessarily, to be upward. 

War should not be discounted. The possibility of war in the South African 
nations which hold much of the world's mineral resources is very real. 
Resulting changes in political structures (or even the threat of change) can 
result in drastically changed resource price structures. Such was recently the 
case with cobalt in Zaire. 

cs=&:U 
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APPENDIX A 

A NONRENEWABLE RESOURCE PRICE MODEL 

This appendix develops a solution to the nonrenewable price model described 

in Section 4. Consider the problem of selecting a functional q(t) so as to maximize 

a, 

T 

J J U [q(t), Q(t), t] e - Pt dt, 

0 

subject to the constraints: 

(t) = -q(t)
 

q(t), Q(t) > 0.
 

Specify a priori the following conditions on U: 

Uq, UQ > 0 

Uqq<O , 

and that Q(t 0 ) = Q. These conditions, in particular that on Uq, guarantee that 

i) the control inequality constraint q > 0 will never be active, and 

(ii) 	 there exists some time, T, T <=o, where Q = 0 and the state inequality 
constraint Q > 0 becomes active. 

Although the problem is properly considered as an infinite horizon one, the 

nonrenewability of the resource Q and condition (ii) above make it such that the 

control problem ends at time T; there exist no more options. 

dxF
 
The following notations are used: x = T- and for F(xy)y E== - .x By x(t) is 

ax
meant the optimal time path of x. 
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From Takayama (Theorem S.A.3, p. 613), the necessary conditions for the 

optimality of the functional q(t) are: 

(i)T' 

where H = H [q(t), Q(t), t, s(t), v(t)] 

- P t = v(t)u[^(t), Qt), tie - s(t) (t); 

s~t), v~t)] > H [q~t), Q(t), t,-s(t), VWt] , for([i) H [q~t), Q^(t), t, 

all admissable q(t); 

(iii) H[q(T), Q(T), T, s(T), v(T)] = 0; 

(v) v(t) = constani > 0. 

s(t) and v(t) are 	Lagrangian multipliers or adjoint variables. 

Condition (ii),requires
 
-
-Pt - s(t)q(t) > vU[q(t), Q(t),t]Pet - s(t)q(t),vu[Lq(t), Q(t), te
 

given the constant v as specified in condition (iv). Now if v = 0, then
 

s(t)q(t) <s(t)q(t), 

Since v and s(t) cannot vanish simultaneously ("Fritz John's theorem"; see 

If s(t) < 0, this 	implies q(t) > q(t) for all q(t) > 0, and
Takayama, p. 612), s(t) A0. 

But an infinite rate of downdrawal is clearly
thus q(t) would 	be unbounded above. 

If s(t)> 0, and letting q(t) = 0, the implication is that q(t) z 0 for all 
not optimal.** 

t, which is clearly not optimal given the condition Uq> 0. Thus, v A0. Without loss 

= o up to
of generality we can set v = 1. Condition (ii) also yields the condition 

time T since q(t) will be in the interior of the admissable region. 

Takayarna, A., Mathematical Economics, The Dryden Press, 1974. 

*That an infinite rate of downdrawal were optimal would imply that buyers 
occur

could absorb Q in an infinitessimal amount of time; and this would 
more elastic than -1.without letting Semand become 
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From the above conditions, the following equations are obtained: 

5=-U e- Pt (A- I) 

5 = -q(t) (A-2) 
-s(t) = U qe p t  (A-3) 

s(T)q(T) = U[&(T), ^(T), T]e I pT* (A-4) 

Equations A-I to A-3 describe the movement of the system up until the entry into 

the constraint, i.e., 0 < t < T-. Equation (A-4) describes the transversality 

condition at T +. (A-1) to (A-4) is a system of two first-order differential 

equations, (A-I) and (A-2), with two boundary conditions known: Q(T o ) = Qo and 

Q(T) = 0. The system also contains the unknown T and two independent equations, 

(A-3) and (A-4). Henceforth, it will be understood that q(t) and Q(t) refer to the 

optimal time paths. 

The effect of the state variable inequality constraint, Q(t) > 0, has not yet 

been considered. Doing so yields an additional necessary condition for optimality, 

called the jump condition. This provides an expression for 9(T). According to 

Pontryagin et al., at the time that the optimal path enters into the constraint 

boundary [here, time T where Q(t) = 0] , the following condition holds: 

v+(T) = v-(T) 

s+(T) = s-(T) -(A-5) 

(A-5) permits equating s+(T) from (4) with s-(T) from (A-3). Before proceeding 

further, the form of U[q(t),q(t),tJ must be specified. The analysis up to this point 

is quite general in nature. A special case is dealt with below. 

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gramkrelidze, and E. F. Mishchenko, 
The Mathematical Theory of Optimal Processes, New York, Wiley Interscience, 
1962 (tr. by K. N. Trirogoff from Russian original), p. 302. 
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An Exponentially Increasing Demand Case 

Consider a linear demand function in which the quantity demanded as a 

function of price grows exponentially. Such a function has the following form: 

p(t)
q(t) =L-- -a,] e ' 
Yt 

Solving for p(t) yields 

p(t) = "Yt q(t) (A-6)aI + a 2 e 

Take the cost of recovery to be given by the expressionb2 2 

c(t) =blq(t) + - q(t)2 +b2 [Qo - Q(t)Jq(t) (A-7) 

Now we define the (undiscounted) rate of utility increase as net revenue: 

U [Cq(t), Q(t)3 = q(t) - p(t) - c(t) 

U(a, - bi - b2Q0 )q(t) + (a 2e'Yt - -2)q(t)2 + b2 Q(t)q(t) 

or, simplifying coefficients, 

Ucq(t), Q(t) =Clq(t) + h(t)q(t)2 + C3 Q(t)q(t) (A-8) 

From this the following obtains 

Uq =C 1 + 2h(t)q(t) + C 3Q(t) (A-9) 

(A-10)UQ C3q(t). 

Substitute (A-9) into (A-3) 

(A-l)s(t) = CcI + 2h(t)q(t) + C3 Q(t)3 e-Pt 


and solve for q(t)
 

q(t) =7 [s(t)e Pt- C C 3Q(tB (A-12) 

Consider now equation (A-4). which describes the transversality conditions. Sub

stituting (A-8) 

Although dt is specified that h(t) = a2e-yt - b t 
-

on the form of h(t) in what follows. 
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s+(T)q(T) = -q(T) CCI + h(T)q(T) + C3 Q(T)] e - T.
 

Now, if q(T) A 0, divide through by q(T), noting that, by'definition Q(T) = 0:
 

s+()= -C e-PT _ h(t)e-P T q(T).
 

Substitute (A- 11) 

s+(T) = -C 1 e-PT 1/2 s(T) + 1/2 Cje-PT 

Noting that s+(T) = s-(T) (the jump condition), 

s-(T) = CIe-PT. 

If, on the other hand, q(T) = 0, solve (A-11) directly for s-(T), finding 

s-(T) = C1 e-PT. (A- 13) 

Thus obtains the final necessary condition for optimality. 

One can now proceed to solve the system of differential equations. Recalling 

Q= -q, differentiate (A-11) to obtain 

- p= -p e CCI1 - 2h(t) + C 3Q(tb 
-+ e p t C-2h' (t)Q - 2h(t)Q + C3Q] (A-I1) 

Substitute (A-10) into (A-I) 

= -C 3q(t)e- # t 

- C e-Pt (A- 15) 

Equate (A-I1) and (A-15) 

-pC + 2p ht)Q - p C3Q(t) - 2h'(t)Q - 2h(t)Q + C3Q = C3Q 

Thus, 

-2h(t)Q + 2 f h(t) - h'(tj - p C3 Q(t) = CI (A-16) 

or 
=[" - 7 Q + M717(T 2t(T (A- 17)*1t)PC 3 PC1 

Thus, a second-order ordinary differential equation in Q(t) is obtained. The 
boundary conditions Q(0) = QO and Q(T) = 0 are known. Additionally, from (A-13) 

and (A-il), q(T) = 0. T, however, is not known. Equation A-l7 can be solved either 
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by choosing some initial consumption rate q(0) and solving until Q(T) = 0 or by a 

Frobenius series solution of the form 
C
 1 Wq(t) 0Ak (Fl't)k 

Unfortunately, the series solution requires the use of about 100 terms to obtain 

adequate accuracy and thus holds no computational advantage over the numerical 

solution. The numerical computations of the first procedure are minimized by 

noting that any two solutions to a linear DE (such as A-17) can be linearly 

combined to form a third solution. Thus iteration on q(O) is not necessary; one 

simply combines two arbitrary solutions in the manner which yields q(T) = 0 where 

Q(T) = 0 and uses this same linear combination to find the optimal q(0). 
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APPENDIX B
 

THEORETICAL FIRST UNIT (TFU)AND OPERATION AND MAINTENANCE (O&M) 
COST MODELS FOR THE ROCKWELL INTERNATIONAL SPS CONFIGURATION 

The following is a listing of the equations incorporated in the TFU and O&M 

cost models of the Rockwell International SPS configuration as described in 

"Satellite Power Systenis (SPS) Concept Definition Study" of April 1978. The 

equations are organized here to correspond to the structure delineated in "Satellite 

Power System Work Breakdown Structure Dictionary," NASA TM 78155, January 

1978. Where discrepancies exist in the level of detail developed or the elements 

identified between the Rockwell report and the suggested WBS structure in the 

NASA document, an attempt has been made to reconcile the differences and to 

report the cost equations at the lowest possible level of detail corresponding to the 

NASA WBS structure. The definitions of the variables used in these equations have 

been gathered together at the end of each cost model in order to avoid repetition. 

It should be noted that the cost model is designed to calculate the cost of a 

single satellite. The data listed in Appendix D correspond to the TFU of the 

Rockwell configuration, and therefore the cost of a single satellite calculated by 

the models listed below is for the cost of the TFU. Where costs or masses below 

relate to facilities or equipment used to construct more than one satellite, these 

costs and masses are amortized in the model so that each satellite pays an equal 

portion of the common cost. For example, in the case of the space bases, whose 

lifetime is equal to the total time required to build the SPS fleet, the cost of the 

space bases has been spread over all the satellites, such that each satellite pays an 

annuity at its IOD, the sum of all of which annuities discounted at the indicated 

discount rate equals the present value of the space base at the IOD of the first 

1-1 /u 
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production unit. 1'ence, any variable which corresponds the total procurement cost 

of equipment which is used for the construction of more than one satellite is the 

amount of the cost of such equipment which has been amortized to each satellite. 

A similar amortization process has also been applied to the masses of space-based 

equipment (used for the construction of more than one satellite) for the purpose of 

calculating total transportation cost associated with the construction of one 

satellite. 

B.I The TFU Cost Model of the Rockwell International Configuration 

01-00-00 Satellite System 

CSAT = CSPM + CSSEI + CST + CPS + CANT + CPDC 

CMISC + CGAI + CSGTH + CSGTO + CGSE + COp S 

MSAT = MST + MPS + MANT + MpDC + MMISC 

01-01-00 Structure 

CST = CAST + CpSST + CMECHS + CSEST 

MST = MAST + MPSST + MMECHS + MSEST 

01-01-01 Antenna Structure 

CAST = SCAST PANT PD 

MAST = SMAST PANT PD 

01-01-02 Power Source Structure 

AB = PSAPD 
ASC F nEFF 1SFSC 'AD fED 

(nEFF - 1) AB 

ACONC 

CpSST = SCPssT (AB + AC ) 
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MPSST = SMPSST (AB + AC) 

01-01-03 Mechanisms
 

CMECHS = SCMECHS (AB + AC)
 

MMECHS = SMMEcHS (AB + AC)
 

01-01-04 Secondary Structure
 

CSEST SCSEST (AB + Ac)
 

M S MSEST (AB + AC)
 

01-02-00 Power Source 

CPs = CSB + CSC + CPDC 

MPs = mSB + MSC + MpDC 

01-02-01 Solar Blankets
 

CSB = SCsB AB
 

MSB = SMsB AB
 

01-02-02 Solar Concentrators 

C sSCsc Ac 

Msc = SMsc Ac 

01-03-00 Power Distribution and Conditioning 

CpDC= (SCcNDC + SCSWT + SCBATT + SCBPc) PSAPD 

+ SCSR PANT INT 

MPDC = (SMcNDC + SMswT + SMBATT + SMBPc) PSAPD 

+ SMSR PANT INT 

01-04-00 Microwave Antenna 

CHP = SCHPp DC-RF 
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MHp = SMHP PDC-RF 

CMWA = SCMWA PDC-RF 

MMWA = SMMWA PDC-RF 

CANT = CHP CMWA 

MANT - MHP + MMWA 

01-05-00 Rotary Joint 

[Hardware elements in this category have been included 
elsewhere. ] 

01-06-00 Propulsion 

[Hardware elements in this category have been included in 
Miscellaneous Equipment below.] 

01-07-00 Energy Storage 

[Hardware elements in this category have been included 
elsewhere. ] 

01-08-00 Avionics 

[Hardware elements in this category have been included in 
Miscellaneous Equipment below. ]' 

Miscellaneous Eauipment
 

CMISC = SCMISC (MST + MPS + MANT + MPDC)
 

MMISC = SMMISC (MST + MPS + MANT + MpDC ) 

[NOTE: Miscellaneous equipment in the Rockwell configuration
includes thermal control equipment which is not included in the 
NASA WBS dictionary.] 

01-09-00 Ground Assembly and Integration 

CSUPC = CST + CANT + C + CPDC 

CGAI= fGAI CSUPC 
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01-10-00 System Ground Test Hardware 

CSGTH = fSGTH CSUPC 

01-11-00 System Ground Test Operations 

CSGTO = fSGTO GSUPC 

01-12-00 Ground Support Equipment 

CGSE = fGSE CSUPC 

01-13-00 Satellite System Program Management 

"CsPM=fSPM (CST + CPS + CANT + CMISC + CMISC + CGAI + 

CSGTH + CSGTO + CGSE +'COPS ) 

0l-14-00 Satellite System Systems Engineering and Integration (SE&I) 

CSSEI f1SSEI (CST + CPS + CANT + CMISC + CGAI + CSGTH + 

CSGTO + CGSE + COp S ) 

02-00-00 Ground Station System 

CGS = CGSPM + CGSSEI + CRECT + CISATCON + CUTINT + CS& F 

02-01-00 Rectanna
 

CRECT = CDIPREC + CRECPDC + C pS 

02-01-01 Dipole/Rectifier Elements
 

CDIPREC = SCDIPREC PRF-DC
 

02-01-02 Rectenna Power Distribution and Conditioning 

CRECPDC = SCRECPD PRECT'PD 

". oug 
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02-01-03 Rectenna Support and Ground Plane Structure 

CGPS = SCGPS PRF-DC 

02-02-00 Satellite Control
 

CSATCON= [Input Value]
 

02-03-00 Utility Interface
 

CUTINT = SCUTINT PRECT PD
 

02-04-00 Site and Facilities
 

CS& F = CLP + CRF + CUT + CB + CME
 

02-05-00 Ground Station Program Management 

CGSPM = fGSPM (CRECT + CSATCON + CUTINT + CS&F) 

02-06-00 Ground Station SE&I
 

CGSSEI = fGSSEI (CRECT + CSATCON + CUTINT + CS&F)
 

03-00-00 Manpower Operations 

CGROP S = CSGO + CGCONST + CGLOGS 

COROPS = CCCREW + CCPROV CCEMS 

Cops = CGROPS + COROPS + CGSOP S 

04-00-00 Orbital Assembly and Support 

CSPAST = CLEOSB + CGEOSB 

MSPAST = MLEOSB + MGEOSB 

04-01-00 Construction Base and
 

04-03-00 O&M Support Base
 

N GEO fSHPD * fNPPS 
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NGEO 
 1
C - NGEO RCONST fDIGEO (NADM SCADM + 

NCHM SCcH M + NCLM-SCcLM + NOM SCcoM + 

NCSM SCCSM + NPOWM SCPOWM + NPSM ScPSM 

NSDA SCSDH + NSM SCSM + CFIX ) 

NGEO 1 
GEOSB f NGEO RCONST DLGEO (NADN SMADM + 

NCHM SMcHM + NCLM SMCLM + NOM SMcoM + 

NCSM SMcSM + NPOWM SMPOWM + NPSM SMPSM + 

NSDH SMSDH + NSM SMSM + MFIX) 

04-02-00 Logistics Base 

NLEO, 1 
CLEOSB t fNLEO RCONST t DLLEO SCcsM 

Sc co M + SCPOWM) 

NLEO 1_______+ 

MLEOSB f NLEO RcONST 1 DLLEO (SM + SMCSM 

SCcoM + SMPOWM) 

05-00-00 Assembly and Support Equipment 

NBM SCBM Nc SCc NCAM SCCAM
CASE = RCONST fDLBM RCONSTf DLC RCONST 1DLCAM 

NRM SCRM NBD SCBD NRD SC RD
RCNT+DP + + 

R CONST fDLPM RCONST fDLBD RCONST fDLRD 

NCD SCcD NAP I SCApL
 
RCONSTIDLCD +RCONST fDLAPI
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M NBM SMBM MC SMC NCAM SMCAM
ASE RCONST fDLBM RCONST IDLC RCONST fDLCAM + 

NRM SMRM NBD SMBD NRD SMRD 
RCONST f[DLRM RCONST 1DLBD RCONST fDLRD + 

NCD SMCD NAP I SMAPI
 
RCONST 1[DLCD RCONST fDLARI
 

06-00-00 Heavy Lift Launch Vehicle (HLLV) 

tCHLLV CHLVPR + CHLVOP
 

06-01-00 HLLV Fleet 

MLEO = MST + MPS + MANT + MMISC + MSPAST + MASE + 

MCOTV + M 1OV N f 
GEO RROTN MLE 


LVFLT M +
MLEO CONST 
P/L *LOAD P-LV POTV
 

N ~NLVFLT 
NHLLV = tDLLV 

C HLVPR = SCHLLV NHLLV 

06-02-00 HLLV Operations 

CHLVOP = SCLVFLT NLVFLT 

07-00-00 Space Transportation System (STS)* 

ClO V = CIOVPR + CIOVOP 

This category refers to the Rockwell Intra-Orbit Vehicle (IOV) which 
transfers payloads from HLLVs to the LEO Space Base. 
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07-01-00 STS Fleet 

MLEO = MSAT + MCOTV + MASE + MSPAST 

N 0 fMLEO 
O: MP/L LOAD DLIOV 

CIOVPR : SCIo V NIOV 
MLEO 

MIO v = SMIoV NIOV + SMIPRP MP/L fLOAD 

07-02-00 STS Operations 

SCIVFT MLEO 
CIOVOP - Mp/L 1LOAD 

08-00-00 Orbit Transfer Vehicle (OTV)* 

CCOTV = CCOTVPR + CCOTVOP 

08-01-00 OTV Fleet 

MSA T + MSPAST + MASE + MGEOS B 
NCFLTS f MP/L fCOTV'LOAD 

NCFLTS 
NCOTV-


fDLCOTV
 

CCOTVPR : SCCOTV NCOTV 

MCOTV = SMCOTV NCOTV 

08-02-00 OTV Operations 

CCOTVOP : SCCOTVFLT NCFLTS 

This category refers to the Rockwell Cargo Orbit Transfer Vehicle (COTV) 
which transfers materials (delivered to LEO by HLLVs) out to the GEO 
construction base. 
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09-00-00 Personnel Module 

CPOTV = CPOTVPR + CpOTVOP 

09-01-00 Personnel 	Module Fleet
 

NROT
CEO RCONST
 

NPFLTS - f POTV
 

- NPFLTSN
POTV- fDLPOTV
 

CPOTVPR = SCPOTV NPOTV
 

09-02-00 Personnel Module Operations
 

CPOTVOP = SCPOTVFLT NPFLTS
 

10-00-00 Facilities 

SC FACS 
CFACS = RCONST fDLFACS 

11-00-00 Taxes
 

CTXS = [Input Value] 

12-00-00 Insurance 

CINS = [Input Value] 

13-00-00 Program Management 

CpM = fPM (CSAT + CGS + CSPAST + CASE + CHLLV + 

CIOV + CCOTV + CPOTV) 

This category has been used to include the entire personnel transportation 
system. 
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14-00-00' Program SE&I 

CSEI = fSEI (CSAT + CGS + CSPAST + CASE + CHLLV + 

CIOV I CCOTV + CpOTV) 

Definitions of TFU Cost Model Variables 

Following is a listing of the definitions of the variables used in the TFU Cost 

Model of the Rockwell configuration, in the order of their initial appearance in the 

model. 

CSAT = total procurementcost of an operational satellite (5) 

CSPM 5total cost of program management for the satellite system 

total cost of systems engineering and integration (SE&I) for 
the satellite system (5 

CST = 	 total cost of the structure of the satellite system (5) 

CPS= 	 total cost of the power source of the satellite system (5) 

CANT = 	 total procurement cost of the transmitting antenna ($) 

C MISC = 	 total procurement cost of miscellaneous equipment (propul
sion, avionics, thermal control, et al.) (5) 

CGAI = 	 total cost of ground assembly and integration (5) 

CSGTH= 	 total procurement cost of system ground test hardware (5) 

CSGT O = 	 total cost of system ground test operations (5) 

CGSE = 	 total cost of ground support equipment (5) 

COp S = total cost of operations associated with the production of 
the TFU ($) 

MSAT = total mass of an operational TFU satellite (kg) 

ST = total mass of the structure of the satellite system (kg) 

M = total mass of the power source of the satellite system (kg) 

MANT = 	 total mass of the microwave transmitting antenna of the 
satellite system (kg) 
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MMISC = 	 total mass of the miscellaneous equipment of the satellite 
system (propulsion, avionics, thermal control, et al.) (kg) 

CAST = total cost of the antenna structure ($) 

-pSST total cost of the power source structure (5) 

CMECHS : total cost of structural medhanisms Cs) 
CSEST - total cost of secondary structure ($) 

SST total mass of the structure of the satellite system (kg) 

MAST - total mass of the antenna structure (kg) 

SpSST total mass of the power source structure (kg) 

MMECHS - total mass of structural mechanisms (kg) 

MSEST = total mass of secondary structure (kg) 

SC AST - ratio of the cost of the antenna structure to the power 
throughput of the antenna power distribution system ($/kW) 

PANT PD = power input to the antenna power distribution system (kW); 

OUTP~P 


~ANT PD1 rI11 	 1RECT PD RF-DC1 BC ATM PROPROTqION PROP PC DC-RF "ANT PD 

where P2 OUT = power output at the rectenna busbar 
(kW; beginning of life, e.o.l.) 

qANT PD = antenna power distribution efficiency 

TDC-RF = dc-rf converter efficiency 

T'C = phase control efficiency 

)ION PROP = ionospheric propagation efficiency 

flATM PROP= atmospheric propagation efficiency 

TBC = beam collection efficiency 

TIRF-DC = rf-dc converter efficiency 

RECT PD = 	 rectenna power distribution efficiency 
(including utility interface) 

SM AST = 	 ratio of the mass of the antenna structure to the power 
throughput of the antenna power distribution system (kg/kW) 
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A 8 = area of the solar blanket (km 2 

P SAPD power
(kW); 

input to the 

P 

solar array power distribution system 

PSAPD -RECT PD TRF-DCnBC 2ATM PROP rION PROP'PC nC-RF'ANT PD "ANT INT'SAPD 

where iANTINT = antenna power distribution efficiency 

TSAPD = solar array power distribution efficiency 

solar cell efficiency (at given concentration ratio, b.o.l.) 
±sc 

F = 	 solar flux constant (1353 x 103kW/km 2) 

nEFF = effective concentration ratio 

fSFSC = seasonal correction factor for solar flux constant 

f = environmental degradation factor for solar cells over design
fED life 

fAD array design factor (includes "packing factor," that is, the -

ratio of solar cell area to total array area) 

Ac = area of solar concentrator as seen by the sun (km 2 

CONC = efficiency of the concentrator 

SCPSST = 	 ratio of the cost of the power source structure to the 
planform area: (that is, the area a seen by the sun) of the 
solar array and concentrator ($/km) 

SM 	 ratio of the mass of the power source structure to tSe
PSST 	 planform area of the solar array and concentrators (kg/km) 

SC MCHS = ratio of the cost of structural mechanisms to jhe planform 
area of the solar array and concentrators ($/km) 

SMMCHS = ratio of the mass of structural mechanisms to te planform 
area of the solar array and concentrators (kg/km 

= ratio of the cost of secondary structure to Pe planform 
area of the solar array and concentrators (S/km 

SMSST= ratio of the mass of secondary structure to te planform 
area of the solar array and concentrators (kg/kmL) 

CSB= total cost of the solar blankets ($) 

CSC total cost of the solar concentrators ($)-
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CpDC 	 total cost of the power distribution and conditioning systemof the solar array ($) 

MSB = total mass of the solar blankets (kg)
 

MSC= total mass of the solar concentrators (kg)
 

MpDC = 
 total mass 'of the power distribution and conditioning system 
of the solar array (kg) 

SC B = 	 specific cost of the solar blankets (/km 2 ) 

SMSB 	 specific mass of the solar blankets (kg/kin2)-

Sc = specific cost of the solar concentrators (/ki 2
 

sc = 
 specific mass of the solar concentrators (kg/km2) 

SCcNDC = ratio of the cost of conductors and switches to the solar 
array power throughput ($/kW) 

SCsWT = 	 ratio of the cost of switching to 	the solar array powerthroughput ($/kW) 

CBATT = 	 ratio of the cost of batteries to the solar array power
throughput ($/kW) 

SCBPC - ratio of the cost of battery power conditioning to the solar 
array power throughput ($/kW) 

S9 SR = 	 ratio of the cost of slip rings and brushes to the antennainterface power throughput ($/kW)
 

PANT-INT  power input to the antenna interface (kW);POUT 
OPANT-INT =n 

RECT PD RF-DCBC 'ATM PROP nION PROP 0PC TDC-RF ANT PD ANT-INT 

SM cNDC= ratio of the mass of conductors and switches to the solar 
array power throughput (kg/kW) 

SMSWT = ratio of the mass of switching equipment to the solar array 
power throughput (kg/kW) 

SMBATT = 	 ratio of the mass of batteries to the solar array power 
throughput (kg/kW) 

SM pC ratio of the mass of battery power conditioning equipment 
to the solar array power throughput (kg/kW) 

SM SR ratio of the massinterface power throughputof 	slip rings(kg/kW)and brushes to the antenna 
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CHP = total cost of microwave heat pipes ($) 

SCHP = ratio of the cost of microwave 
power throughput ($/kW) " 

heat pipes to the DC-RF 

PDC-RF 

PDC-RF 

= 

= 

power input to the dc-ri converters (kW); 
POUT 

qRECT PD RF-DC %tC'ATM PROP TION PROP 'PCbCRF 

M 

SMup 

= 

= 

total mass of microwave heat pipes (kg) 

ratio of the mass of microwave heat pipes 

power throughput (kg/kW) 

to the DC-RF 

CMWA = total cost of microwave antenna elements ($) 

SC MWA = ratio of the cost of the microwave 
DC-RF power throughput ($/kW) 

antenna elements to 

MMWA = total mass of the microwave antenna elements (kg) 

SMMWA = ratio of the mass of the microwave antennaDC-RF power throughput (kg/kW) 
elements to the 

SCMISC = ratio of the cost of miscellaneous equipment to the mass olthe satellite structure, power source, antenna and power 
distribution and conditioning equipment ($/kg) 

SM MISC = ratio of the mass of miscellaneous equipment to the mass of 
the satellite structure, power source, antenna and powerdistribution and conditioning equipment (fraction) 

CSUPC = total procurement cost of the satellite system 

fGAI = ratio of ground assembly and integration 
satellite system procurement cost (fraction) 

cost to the 

fSGTH = ratio of the cost of system ground test hardware 
satellite system procurement cost (fraction) 

to the 

fSGTO ratio of the cost of system ground test operations 
satellite system procurement cost (fraction) 

to the 

fGSE ratio of the cost of ground support equipment
satellite system procurement cost (fraction) 

to the 

SpM ratio of the cost of satellite system program management to 
all other TFU costs (fraction) 

fSSEI ratio of the cost of satellite system SE&I to all other TFU 
costs (fraction) 
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CGSPM = total cost of ground station program management ($)
 

CGSSEI - total cost of ground station SE&I (5)
 

CRECT - total cost of the rectenna ($)
 

CSATCON = 
 total cost of ground station satellite control faciiities 5
 

CUTINT = total cost of the ground station utility interface (5)
 

0 S&F total cost of the ground station site and facilities'($)
 

CDIPREC = total cost of the dipole/rectifier elements (5)
 

CREDPDC = total cost of rectenna power distribution and conditioning
 
equipment ($) 

SGp= total cost of the rectenna ground plane and support 
structure ($) 

SCDIPREC = specific cost of the dipole/rectifier elements ($/kW) 

PRF-DCp = power input to the RF-DC converters (kW);
 

POUT
 
PRF-DC = ni n 

RECT PD RF-DC 

SREC D 	 specific cost of the rectenna power distribution and conditioning equipment ($/kW) 

PRECT PD 	 power input to the rectenna power distribution and condi
tioning equipment (kW); 

POUTERECT PD - qRECT PD 

SCGPS specific cost of the rectenna support and ground plane 

structure ($/kW) ' 

SCUTINT -	 specific cost of the utility interface ($/kW) 

CLP = total cost of the ground station land and preparation ($) 

CRF = total cost of the ground station roads and fences ( 

.CUT = total cost of the ground station utilities (5) 

CB = total cost of the ground station buildings (5)
 

CME = total cost of the ground station maintenance equipment ($)
 

nrL 
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fGSPM = 	 ratio of ground station program management costs to ground 
station procurement costs (fraction) 

fGSSE1 = 	 ratio of the cost of ground station SE&I to ground station 
procurement costs (fraction) 

CGROPS = total cost of ground operations Cs)
 

CSGO = total cost of satellite operations at the ground station ($)
 

CGCONST total cost of construction for satellite operations facilities
 
at the ground station ($) 

CGLOGS total cost of ground logistics for satellite operations (5) 

0OROPS = total cost of orbital operations (5) 

CCCREW = total cost of the construction crew for orbital operations ( 

CCPROV = total cost of construction crew provisions for orbital opera
tions ($) 

CCEMS 	 total cost of expendable maintenance supplies for orbital-

oFerations (5) 

CSPA5T = total cost of the orbital assembly facilities (5) 

MSPAST = total mass of the orbital assembly facilities (kg)
 

CGSOP S = total cost of ground station system operations (5)
 

CLEOSB = total cost of the low earth orbit (LEO) space base (5)
 

CGEOSB total cost of the geosynchronous orbit (GEO) space base (5)
-

MLEOSB = total mass of the LEO space base (kg)
 

MGEOSB = total mass of the GEO space base (kg)
 

NGEO = total crew size of the GEO space base (number)
 
[Note: this input varies over the range of the expected 
value of the crew size, and the cost and mass of the 
space base are scaled accordingly, in reference to the 
point design number F below.]NGEO 

fNGEO = 	 reference point number for the total crew size of the GEO 
space base (number) 

fSHPD = 	 number of shifts per day (number) 
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fNNPS number of personnel per shift (number)
 

RCONST = satellitefleet construction.rate (number of satellites/year)
 

fDLGEO = design life of CEO space base equipment (years) 

NADM = number of airlock docking modules in the CEO space base
(number) 

SCADM = unit cost of an airlock docking module Cs) 
NCHM = 	 number of crew habitability modules in the CEO space base(number) 

SC CHM = 	 unit cost of a crew habitability module (5) 

NCLM = 	 number of consumables logistics modules in the CEO space 
base (number) 

SCLM -	 unit cost of a consumables logistics module (5) 

NCOM = 	 number of base -management modules in the CEO space base 
(number) 

SCCOM - unit cost of a base managemnet module (5) 

NCSM = number of crew support modules with EVA unit in the GEO 
space base (number) 

SCcSM unit cost of a crew support module with EVA unit ($) 

NPOWM = number of power modules in the CEO space base (number) 

SCPOWM = 	 unit cost of a power module ($) 

NPSM = 	 number of pressurized storage modules in the GEO space 
base (number) 

ScPSM - unit cost of a pressurized storage module (5)
 

NSDH = number of shielding units in the CEO space base (number)
 

SCSDH = unit cost of a shielding unit ($)
 

NSM = number of crew support modules without EVA unit (number)
 

SCSM = 	 unit cost of a crew support module without EVA unit (5) 

CFIX = cost of the fabrication fixture ($)
 

SM ADM = unit mass of an airlock docking module (kg)
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SMCHM = unit mass of a crew habitability module (kg) 

SMCLM = unit mass of a consumables logistics module (kg) 

SMcoM = unit mass of a base management module (kg) 

SMCSM = unit mass of a crew support module with EVA unit (kg) 

SMPOWM = unit mass of a power module (kg) 

SMpsM - unit mass of a pressurized storage module (kg) 

SMsD H = unit mass of a shielding unit (kg) 

SMsM - unit mass of a crew support module without EVA unit (kg) 

MFIX = mass of the fabrication fixture 

NLEO = total crew size of the LEO space base (number)[Note: this input varies over the range of the expected 
value of the crew size, and the cost and mass of the 
space base are scaled accordingly, in reference to the 
point design number f 

NLEO 
below.] 

fNLEO - reference point number for the total 
space base (number) 

crew size of the LEO 

fDLLEO = design life of the LEO space base equipment (years) 

CASE = total cost of assembly and support equipment (5) 

NBM = total number of beam machines (number) 

SCBM = unit cost of a beam machine ( 

fDLBM = design life of a beam machine (years) 

NC = total number of cassettes (number) 

SCC unit cost of a cassette ($) 

fDLC - design life of a cassette (years) 

NCAM = total number of cable attaching machines (number) 

SC CAM = unit cost of a cable attaching machine ($) 

fDLCAM = design life of a cable attaching machine (years) 

NRM = total number of remote manipulators (number) 

SCRM = unit cost of a remote manipulator ($) 

fDLRM = design life of a remote manipulator (years) 
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NBD total number of blanket dispensers (number) 

SCBD unit cost of a blanket dispenser ($) 

fDLBD design life of blanket dispenser (years) 

N RD number of reflector dispensers (number) 

SCRD unit cost of a reflector dispenser ($) 

fDLRD = design life of a reflector dispenser (years) 

NCD = number of cable dispensers (number) 

SCD unit cost of a cable dispenser ($) 

fDLCD design life of a cable dispenser (years) 

NAPI number of antenna panel installers (number) 

SCAPI unit cost of an antenna panel installer ($) 

fDLAPI = design life of an antenna panel installer (years) 

MASE - total mass of assembly and support equipment (kg) 

SMBM = unit mass of a beam machine (kg) 

SMC unit mass of a cassette (kg) 

SM CAM = unit mass of a cable attaching machine (kg) 

SM RM unit mass of a remote manipulator (kg) 

SM = unit mass of a blanket dispenser (kg) 

SM RD = unit mass of a reflector dispenser (kg) 

SMcD = unit mass of a cable dispenser (kg) 

SMAPI = unit mass of an antenna panel installer 
CHLLV total cost associated with the heavy lift launch vehicle 

(HLLV) ($) 

CHLVPR - total procurement cost of the HLLV fleet ) 

CHLVOP = total operations cost of the HLLV fleet (5) 

MLEO = total mass launched to LEO (kg) 

COTV = total mass of the cargo orbit transfer vehicle (COTV) (kg) 
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MIOV = total mass of the intra-orbit vehicles (IOVs) (kg) 

MP/L = total mass of the payload of an HLLV to LEO (kg) 

fLOAD = average load factor for 
payload is used) 

an HLLV (what percentage of the 

fP-LV = ratio of the number of HLLV flights for eachOrbit Transfer Vehicle (POTV) flight (number) 
Personnel 

fROT - crew rotation rate (number of rotations per year) 

fPOTV - number of people carried per POTV flight (number) 

NHLLV = total number of HLLVs procured (number) 

fDLLV = design life of an HLLV (number of flights) 

SCHLLV = unit cost of an HLLV ($) 

SCLVFLT = cost per flight of an HLLV Cs) 

Cio= total cost of the intra-orbit vehicles (IOV) () 

CIOVPR = total procurement cost of the IOV fleet (5) 

CIOVO P = total operations cost of the IOV fleet ($) 

NIO V = total number of IOVs procured (number) 

fDLIOV = design life of an IOV (number of flights) 

SCIo= unit cost of an IOV ($) 

SM IoV = unit mass of an IOV (kg) 

SM IPRP = mass of OV propellant consumed per flight (kg) 

SCIVFT = cost per flight of an IOV ($) 

CCOTV = total cost of the COTV fleet (5) 

CCOTVPR = total procurement cost of the COTV fleet ( 

CCOTVOP total operations cost of the COTV fleet (5) 

NCFLTS = total number of COTV flights 

fCOTV - ratio of the 
(number) 

number of HLLV flights to one COTV flight 

NCOTV = total number of COTVs procured (number), 
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fDLCOTV = design life of a COTV (number of flights) 

SCcoTv= unit cost of a COTV ($) 

SM coTv = unit mass of a COTV (kg) 

SCCOTVFLT = cost per COTV flight ($) 

CPOTV - total cost of the POTV fleet ($) 

CPOTVPR = total procurement cost of the POTV fleet (5) 

CPOTVOP = total operations cost of the POTV fleet ($) 

NPLFTS = total number of POTV flights (number) 

NPOTV = total number of POTVs procured (number) 

fDLPOTV = design life of a POTV (number of flights) 

SCpoTv= unit cost of a POTV ($) 

SCPOTVFLT = cost per POTV flight ($) 

SCFACS = total cost of ground facilities associated with the construc
tion of the SPS fleet (5) 

CFACS - total cost of ground facilities associated with the construc
tion of a single SPS satellite ($) 

fDLFACS - design life of the ground facilities (number of years) 

CTXS = total cost of taxes ($) 

CINS = total cost of insurance (5) 

CPM = total cost of SPS program management (5) 
fPM - ratio of overall, program management cost to TFU initial 

investment cost (fraction) 

CSEI = total cost of SPS program SE&I C$) 

fSEI - ratio of overall program SE&I cost to TFU initial investment 
cost (fraction) 
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B.2 The O&M Cost Model of the Rockwell International Configuration 

Orbital Operations 

COROMP = NORC SCORC + MORPR SCORPR + MEMS SCEMS + 

SC ADM NOMADM. + SCCHM NOMCHM 

fDLADM fDLCHM 

SCCLM MOMCLM 5CcoM NOMCOM 

fDLCLM 
 + 1DLCSM 

Ground Operations 

CGSOM = CGSC + CGSMAT 

O&M Transportation 

MOM =MoRPR +MEMS + SMADM +NOMAD M +
fDLADM 

SMCHM NOMCHM SMCLM NOMCLM 

fDLCHM 
 + 1DLCLM + 

SMcoM NOMCOM SMPSM NOMPSM 

fDLCOM + DLPSM + 

SM CSM NOMCSM 

fDLCSM
 

MOM
 
NOMCFT MPL fLOAD fCOTV
-

NOMCFT
 
NOMCV DLCTV
 

MOMCV - Mc~ NOMiCV
 
CM = 
 COTV NOMCF 

c OMCV- CCTVFT NOMCFT + NOM~ CSCOTV 



121 

+ MOMCVNOMFmom
OMIFT MPL fLOAD
 

MOM + MOMCV
NOMOMCV 
MPL fLOAD 'DLIOV 

MOMIV SMIoV NOMIV 

COMIV NOMIV 

NOMLVF MOM 4MoMCv +MOMIv
OMLVF MPL f LOAD 

NOMLVF 
NOMLV fDLLV 

COMLV SCHLLV NOMLV + SCLVFL NOMLVF 

N - NORCe6fROT 
OMPFT fPOTV
 

NO MPFT
 

OMPV f DLPTV 

COMPV = NOMPV SCPOTV + NOMPFT * POTVFT 

COMST COMLV + COMCV + COMIV + COMPV 

Total Annual O&M Cost 

COM = COROMP + CGSOM + COMST 
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Definitions of O&M Model 

COROMP = total cost of orbital O&M personnel (5) 

NORC = total number of O&M crew members (number) 

SCORC = annual cost per person of O&M crew members ($/person) 

MORPR = total mass of annual.O&M refurbishment procurements (kg) 

SCORPR = average specific cost of annual O&M refurbishment procure
ments ($/kg) 

MEMS = total mass of expendable maintenance supplies (kg) 

SMaverage specific cost of expendable maintenance supply 
SCEMs materials (5/kg) 

CGSOM= total cost of ground station O&M 

CGSC = annual cost of ground station crew () 

MOM = total mass to be transported to GEO for O&M (kg) 

CGSMAT = annual cost of ground station materials (5) 

NOMADM = number of O&M airlock docking modules (number) 

NOMCH M = number of O&M crew habitability modules (number) 

NOMCLM = number of O&M consumables logistics modules (number) 

NOMCOM = number of O&M base management modules (number) 

NOMPSM = number of pressurized storage modules (number) 

NOMCSM = number of O&M crew support modules (number) 

NOMCFT = total number of COTV flights to-support O&M (number) 

NOMCV = total number of COTVs "consumed" by O&M (number) 

MOMCV total mass of COTVs "consumed" by O&M (kg) 
COMCV = total cost of COTVs "consumed" by O&M () 

NOMIFT = total number of IOV flights to-support O&M (number) 

NOMIV total number of IOVs "consumed" by O&M (number) 

MOMIV = total mass of IOVs "consumed" by O&M (kg) 
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COMIV 

NOMLVF 

NOMLV 

-

= 

= 

total cost of lOVs "consumed" by O&M (5) 

total number of launch vehicles flights (number) 

total number of. launch vehicles "cbnsumed" 
(number) 

by O&M 

COMLV - total cost of launch vehicles "consumed" by O&M (5) 

COMST - total cost of O&M space transportation ($) 

NOMPFT - total number of personnel transfer flights (number) 

N total number ofO&M (number) personnel transfer vehicles "consumed" by 

COMPV 

COM = 

total cost of personnel transfer vehicles 
O&M ($) 

total annual cost of O&M per satellite Cs) 

"consumed" by 
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APPENDIX C
 

THEORETICAL FIRST UNIT (TFU) AND OPERATION AND MAINTENANCE 
(O&M) COST MODELS FOR THE BOEING CO. SPS CONFIGURATION 

The following is a listing of the equations incorporated in the TFU and O&M 

cost models of the Boeing Co. SPS configuration as described in "Solar Power 

Satellite--System Definition Study, Part III" of -March 1978. The equations are 

organized here to correspond to the structure delineated in "Satellite Power 

System Work Breakdown Structure Dictionary," NASA TM 78155, January 1978. 

Where discrepancies exist in the level of detail deeloped or- the elements 

identified between the.Boeing report and the suggested WBS structure in the NASA 

document, they have been noted, and an attempt has been made to reconcile the 

differences and to report the cost equations at the lowest possible level of detail 

corresponding to the NASA WBS structure. The definitions of the variables used in 

these cost equations have been gathered together at the end of each cost model in 

order to avoid repetition. 

It should be noted that the cost model is designed to calculate the cost of a 

single satellite. The data listed in Appendix E correspond to the TFU of the Boeing 

configuration, and therefore the cost of a single satellite calculated by the models 

listed below is for the cost of the TFU. Where costs or masses below relate to 

facilities or equipment used to construct more than one satellite, these costs and 

masses are amortized in the model so that each satellite pays an equal portion of 

the common cost. For example, in the case of the space bases, whose lifetime is 

equal to the total time required to build the SPS fleet, the cost of the space bases 

has been spread over all the satellites, such that each satellite pays an annuity at 

its IOD, the sum of all of which annuities discounted at the indicated discount rate 
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equals the present value of the space base at the lOD of the first production unit. 

Hence, any variable which corresponds the total procurement cost of equipment 

which is used for the construction of more than one satellite is the amount of the 

cost of such equipment which has been apportioned to each satellite. A similar 

amortization process has also been applied to the masses of space-based equipment 

(used for the construction of more than one satellite) for the purpose of calculating 

total transportation cost associated with the construction of more than one 

satellite) for the purpose of calculating total transportation cost associated with 

the construction of one satellite. 

C.1 The TFU Cost Model of the Boeing Co. Configuration 

01-00-00 Satellite System 

CSAT Cs S + CPS + CpODS + CMPTS + CRT + CAVS + CGAI + CSGTH + 

CSGTO + CGSE + CSPM + CSSEI 

MSAT = MSSS + MPS + MPODS + MMPTS + MAVS 

01-01-00 Structure
 

CCSSS = CAST + CPSTR + CSEST
 

MSS S = MAST + MPSTR + MSEST
 

01-01-01 Antenna Structure
 

CAST = PPAPD (SMwwPs SCMWs + SMMWST SCMWST)
 

MAST = PPAPD (SMMwPS + SMMWST) 

01-01-02 Power Source Structure 

PSAPD
 
AnEFF SSC tAD 1 ED 

MPSTR = SMPSTR AB 
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CPSTR,= SCPSTR MPSTR 

01-01-03 Mechanisms 

[Hardware elements in this category have been reported 
elsewhere.] 

01-01-04 Secondary Structure
 

CSEST = (SCcsS + SCBsuP) AB
 

MSEST = (SMcsS + SMBSUP) AB
 

01-02-00 Power Source 

Cs SCsB ABP= 

M PS= SMsB AB 

[Note: This configuration has no concentrators for the solar array; 
therefore, CECOL = 0.] 

01-03-00 Power Distribution and Conditioning 

MIBJ= 1S3I3 PSAPD 

MMB = SMMB PSAPD 

MSWTG = SMSWTG PSAPD 

C PODS SCSWTG MSWTG + SCMB MMB + SCIB3. M IB 3 

01-'04-00 Microwave Antenna 

CMPTS= CMWTA + CMWPD 

MMPTS = MMWTA + MMWPD 

01-04-01 RF Generator and Beam Control 

01-04-02 Waveguides 

CMWTA = (SCTASG + SCTAPA + SCTATC + SCTACC + 

SCTAH) PDCRF 
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MMWTA = (SMTASG + SMTAPA + SMTATC + SMTACC + 

SMTAH) pDCRF 

01-04-03 Power Distribution and Conditioning 

CMWPD = (SCMWPD SMMwPP + SCMWTC SMMWTC + 

4SCMWTC SMNM\BC + SCMWSG SMMWSG) PAPD 

MMWPD= (SMMWPP + SMMWTC + SMMWSG + SMWWBC) PAPD 

01-05-00 Rotary Joint
 

MAYT = SMAYT PAINT
 

CAYT = SCAYT MAYT
 

Mj3 = MAYT + SMERT PAINT
 

CR3 CAYT + SCERJ MERJ
 

01-06-00 Propulsion
 

[Hardware elements in this category have been included elsewhere.]
 

01-07-00 Energy Storage
 

[Hardware elements in this category have been included elsewhere.]
 

01-08-00 Avionics
 

CAVS = CDM + CCM + CAC
 

MAVS= MDM + MCM +MAC
 

01-08-01 Data Mangement
 

CDM = SCMWDP PAPD + Cc
 

MDM = SMDpPAPD + Mcc
 

01-08-02 Communications and Tracking
 

CCM = CCOMM + SCMWC PAPD
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MCM - MCOMm + SMMWC PAPD 

01-08-03 Instrumentation 

[Hardware elements in this category hae been included 
elsewhere. ] 

01-08-04 Attitude Control 

CAC = CTHR + CACPP + CACIN + CACTS + CACCN + 

SCMWAC PAPD 

MAC = MTHR + MACPP + MACIN + MACTS + MACCN + 

SMMWAC PAPD 

01-09-00 Ground Assembly and Integration 

CSUPC = CSS S + CPS + CPODS + CMPTS + CRa + CAVS 

CGAI = fGAI CSUPC 

01-10-00 System Ground Test Hardware 

CSGTH = fSGTH CSUPC 

01-11-00 System Ground Test Operations 

CSGTO = fSGTO CSUPC 

01-12-00 Ground Support Equipment 

CGSE = fGSE CGSE 

01- 13-00 Satellite System Program -Management 

CSPM = fSPM (Csss + CPS + CpODS + CMPTS + CRJ + 

CAVS + CGAI + CSGTH + CSGTO + CGSE) 

01-14-00 Satellite System Systems Engineering and Integration (SE&I) 

CSSEI = fSSEI (Csss + CPS + CpODS + CMPTS + CRJ + CAVS + 
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CGAl + CSGTH + CSGTO + CGSE) 

02-00-00 Ground Station Systems
 

CGS = 2(CGSEC + CGSCC +CGSGI + CRE + CGSPM + CGSSE I)
 

02-01-00 Rectenna
 

CGSEC = CGSRF + CGSPD + CRPS
 

02-01-01 Dipole/Rectifier Elements 

CGSRF = (SCRFDI + SCRFCR + SCRFSC + SCREcP 

SCRFDC) PRFDC 

02-01-02 Power Distribution and Conditioning 

CGSPD = (SCGSLB + SCGSDP) PRECPD 

02-01-03 Support and Ground Plane Structures 

C ps = (SCpps + SCGSGP) PRFDC 

02-02-00 Satellite Control
 

CGSCC = CGSPC + CSOPS
 

02-03-00 Utility Interface 

CGSGI = PRECPD SCGSGI 

02-04-00 Site and Facilities
 

CRE= [input]
 

The plural "systems" is used because for this configuration there are two 
5 GW ground receiving stations for each 10 GW satellite. 
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02-05-00 Ground Station Program
 

CGSPM = fGSPM (CGsEC + CGSCC + CGSGI + CR)
 

02-06-00 Ground Station Systems Engineering and Integration
 

CGSSEI = fGSSEI (CGsEC + CGSCC + CGSGI + CRE)
 

03-00-00 Manpower Operations
 

[Costs associated with this category have been included elsewhere.]
 

04-00-00 Orbital Assembly and Support
 

CSPCN = CLCB + CGC B
 

MSPCN m
MLCB + MGC B 

04-01-00 Construction Base 

NLEO CLCBFR + CLCBCM + CLCBWM + CLCBCH + CLCBBS 
CLCB f NLEO RCONST fDLLEO 

+ CLMP 

NLEO MLCBFR + MLCBCM + MLCBWM + MLCBCH + CLCBBS 

MLCB - 1NLEO RCONST 1DLLEO 

+ MMP 

04-02-00 Logistics Base and 
04-03-00 O&M Base 

NGEO CGCBFR + CGCBCM + CGCBWM + CGCBCH + GCBB S 

CNGEO RCONST fDLGEO 

+ GM P 

+ MGCBH + GCBBSNGEO MGCBFR + MGCBCM + MGCBWM 
GCB iNGEO RCONST fDLGEO 

+ MGMP 
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CLI 

05-00-00 Orbital Assembly and Support 

CLSA CLEC CLPD 

RCONST DLLSA RCONST 1DLLEC RCONST 1DLLPD 

CLAS CLC 

"CONST £ DLLAS RCONST fDLLC + RCONST IDLLI 

CGSA CGEC CGPD
RCNSIDGS + 

RCONST fDLGSA RCONST fDLGEC RCONST fDLGPD 

C GAS C GC CGI 

RCONST fDLGAS RCONST fDLGC R CONST fDLGI 

M MLSA MLEC MLPD 
ORBHS - RCONST fDLLSH RCONST fDLLEC RCONST fDLLPD 

MLAS MLC MLI 
+ 4 

RCONST fDLLAS RCONST 1fDLLC RCONST fDLLI 

MGSA MGEC MGPD 

RCONST fDLGSA RCONST fDLGEC T fDLGPD 

MGAS MGC MGI 

RCONST fDLGAS RCONST fDLGC + RCONST fDLGI 

06-00-00 Heavy Lift Launch Vehicle (HLLV) 

CHLLV = CHLVPR + CHLVOP 

06-01-00 HLLV Fleet
 

MLEO = MSAT + MSPCN + MORBAS + MOTV
 

NLVFL T MNVL Mp/LMLEO:LOAD 
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NLVFLT
 
NHLLV- fDLLV
 

C=HLVP R = SCHLLV NHLLV 

06-02-00 HLLV Operations 

CHLVOP = SCLVFLT NLVFLT 

07-00-00 Space Transportation System (STS) and 
09-00-00 Personnel Module 

CPOTV = CPOTVPR + CPOTVOP 

07-01-00 STS Fleet and
 
09-01-00 Personnel Module Fleet
 

N GE O RfROT
 

RCONST 
NPFLTS- f1POTV
 

NPFLTS
 
NpOTV- =DLPOTV 

CPOTVPR = SCPOTV NPOTV 

07-02-00 STS Operations and
 
09-02-00 Personnel Module Operations
 

CpoTVOP = SCPOTVFLT NPFLTS 

08-00-00-Orbit Transfer Vehicle 

CSOTV = MSAT (SCSTHR + SCSOT + SCAR + SCLO X ) 

MSOTV.: MSAT (SMSTHR + SMSOT + SMAR + SM LOX ) 

This category accounts for the costs associated with the self-orbit transfer 
concept employed in the Boeing configuration. 
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10-00-00 Facilities 

SCFACS 
CFACS R CONST'DLFACS 

11-00-00 Taxes 

CTXS = [Input Value] 

12-00-00 Insurance
 

CINS = [Input Value]
 

13-00-00 Program Management
 

CPM =fPM (CSAT + CGS + CSPCN + CORBAS + CHLLV + CPOTV + CSOTV)
 

14-00-00 Program SE&I 

CSEI =fSEI (CsAT + CGS + CSPCN + CORBAS + CHLLV + CpOTV + 

CSOTV) 

Definitions of TFU Cost Model Variables 

Following is a listing of the definitions of the variables used in the TFU Cost 

Model of the Boeing configuration, in the order of their initial appearance in the 

model. 

CSAT - total procurement cost of an operational satellite (5) 

CSSS - total cost of the structure of the satellite system Cs) 
P - total cost of the power source of the satellite system (5) 

CPODS - total cost of the satellite power distribution and condi
tioning system ($) 

CMPTS - total procurement cost of the transmitting antennae ($) 

CRJ = total cost of the rotary joints ($) 

CAVS - total cost of avionics for the satellite system ( 
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CGA I = total cost of ground assembly and integration ($)
 

CSGTH = total procurement cost of system ground test hardware ($)
 

SSGTO = total cost of system ground test operations Cs) 

CGSE = total cost of ground support equipment ($) 

CSPM () cost of program management for the satellite systemtotal 

= Stotal cost of systems engineering and integration (SE&I) for 
the satellite system ($) 

MSAT = total mass of an operational TFU satellite (kg)
 

MSSS = total mass of the structure of the satellite, system (kg)
 

M = total mass of the power source of the satellite system (kg)
 

M= total mass of the satellite power distribution and condi
tioning system (kg) 

MMPTS = total mass of the microwave transmitting antenna of the 
satellite system (kg) 

CAST = total cost of the antenna structure (5) 

CPSTR = total cost of the power source structure ($) 

CSEST = total cost of secondary structure ($) 

SSS = total mass of the structure of the satellite system (kg) 

MAST = total mass of the antenna structure (kg) 

MPSTR = total mass of the power source structure (kg) 

MSEST -	 total mass of secondary structure (kg) 

SMMWPS = 	 ratio of the mass of microwave antennae primary structure 
to power throughput (kg/kW) 

SC MWPS 	 specific cost of the microwave antennae primary structure 
($/kW) 

SM MWPS 	 ratio of the mass of microwave antennae secondary 
structure to power throughput (kg/kW) 

SCMWPS 	 specific cost of the microwave antennae secondary 
structure ($/kW) 
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PAPD = power input to the antenna power distribution system (kW); 

P TPOUT 

APD ERECT PD nRF-DC nBC 1XTM PROP ION PROP 'PC 'DC-RF 'ANT PD 

where PROUT = power output at the rectenna busbar 
(kW; beginning of life, e.o.l.) 

1 ANT PD = antenna power distribution efficiency 

n DC-RF = dc-rf converter efficiency 

1PC = phase control efficiency 

ION PROP = ionospheric propagation efficiency 

TATM PROP= atmospheric propagation efficiency 

n BC = beam collection efficiency 

1 RF-DC = ri-dc converter efficiency 
RETPD 

CTD 
= rectenna power distribution 

(including utility interface) 
efficiency 

AB - area of the solar blanket (kin2 ) 

PSAPD - power 
(kW); 

input to the solar 

P 

array power distribution system 

PSAPD -RECT PD'RF-DC %C 'ATM PROP'ION PROP %C bC-RF 'ANT PD 'ANT INTSAPD 

where T1ANT INT = antenna power distribution efficiency 

1SAPD =solar array power distribution efficiency 

USC- solar cell efficiency (at given concentration ratio, b.o.l.) 

F solar flux constant (1353 x 10 3kW/km 2)-

nEFF = effective concentration ratio 

fSFSC" seasonal correction factor for solar flux constant 

fED environmental degradation factor for solar cells over design- life 

-fAD array design factor (includes "packing factor," that is, the
ratio of solar cell area to total array area), 
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SMpsTR 	 ratioplanforin mass of the power source structure toof. the 	 Searea of the solar array 	and concentrators (kg/km 

SCps.TR = 	 specific cost of the power source structure ($/kg) 

SCcSS = 	 ratio of the cost of catenary support system tolhe planform 
area of the solar array and concentrators ($/km ) 

SCBSUP = 	 ratio of the cost of the catenary support system to jhe 
planform area of the solar array and concentrators (5/km) 

= 	 ratio of the mass of the catenary su port system to the 
planform area of the solar array (kg/km) 

SMratio of the mass of tt bus supports to the planform area of 
the solar array (kg/km 

SC sB = specific cost of the solar blankets ($/km2 
SM SB = specific mass of the solar blankets (kg/km2 

MIB = total mass of the interbay jumpers (kg)
 

SM1B3 = ratio of the mass of interbay jumpers to the power
 
throughput (kg/kW) 

MMB = total mass of the main buses (kg) 

SMMB = ratio of the mass of the main buses to the power throughput 
(kg/kW) 

MSWTG = total mass of switchgear (kg) 

SMsWTG = ratio of the rriass of the switchgear to the power throughput 
(kg/kW) 

SCswTG= specific cost of the switchgear ($/kg) 

SCMB = specific cost of the main buses ($/kg) 

SC3 	 specific cost of the interbay jumpers ($/kg)-

CMWTA = total cost of the microwave transmitting arrays ($)
 

CMWPD = total cost of microwave antenna power distribution system
(5) 

MMWTA = 	 total mass of the microwave transmitting arrays (kg) 

MMWPD = 	 total mass of the microwave antenna power distribution 
system (kg) 
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SCTASG = 	 ratio of the cost of antennae structure and waveguides to 
power throughput ($/kW) 

SCTAPA 	 ratio of the cost of the transmitter power amplifiers to 
power throughput ($/kW) 

SCTATC 	 ratio of the cost of transmitter thermal control to power 
throughput ($/kW) 

SCTACC 	 ratio of the cost of phase control to power throughput
($/kW) 

SCTAH = ratio of the cost of transmitter harnesses to power
throughput ($/kW) 

PDC-RF power input to the dc-rf converters (kW); 

POUT 

PDC-RF = ERECT PD 'RF-DC'BC'ATM PROP)ION PROP 7PC tDC-RF 

-SMTASG 	 ratio of the mass of antennae structure and waveguides to 
power throughput (kg/kW) 

SMTAPA = ratio of the mass of transmitter power amplifiers to power
throughput (kg/kW) 

SMTATC = ratio of the mass of transmitter thermal control to power 
throughput (kg/kW) 

SMTACC ratio of the mass of phase control equipment to power-

throughput (kg/kW) -

SMTAH = ratio of the mass of transmitter harnesses to power
throughput (kg/kW) 

SCMwPP specific cost of microwave antennae power processors ($/kg) 

SMMWPP = ratio of the mass of microwave antennae power processors 
to power throughput (kg/kW) 

SCMWTC = specific cost of the microwave power processor thermal 
control ($/kg) 

SM MWTC = ratio of the mass of microwave antennae power processor
thermal control equipment to power throughput (kg/kW) 

SCMWBC = specific cost of microwave antennae busing and cabling 
($/kg) 

SMac = ratio of the mass of microwave antennae busing and cabling 
to power throughput (kg/kW) 
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SCM-'S G = specific cost of microwave antennae switchgear ($/kg) 
SMMwsG = ratio of the mass of microwave -antennae switchgear to 

power throughput (kg/k\V-) 

MAYT = total mass of the antenna yokes and turntables (kg)
 

SMAyT = ratio of the mass of the antenna yokes and turntables to the
 
power throughput (kg/kW) 

PAINT 	 power input to the antenna interface (kw); 

- POUT
 

AINTORC PDrFD TMPO)PCrC
RCT PD C ATM PROPON PROPqPC 'bC-RF 'ANT PD ANT-INT 

CAYT = total cost of the antenna yokes and turntables Cs) 
SCAYT = specific cost of the antenna yokes and turntables ($/kg) 
SM ERJ = ratio of the mass of the electrical rotary joints to the power

throughput (kg/kW) 

SCERJ specific cost of the electrical rotary joints ($/kg)
 

CDM = total cost of data management ($)
 

CCM = total cost of communications ($)
 

CAC = total cost of attitude control ($)
 

MDM = total mass of -data management equipment (kg)
 

MCM total mass of communications equipment (kg)
 

MAC total mass of attitude control equipment (kg)
-

SCMWDP = ratio of the cost of microwave antennae data processing to 
power throughput ($/kW) 

CC= "costof central computing complex ($) 

SM MWDP = ratio of the mass of microwave antenna data processing 
equipment to power throughput (kg/kW) 

Mcc total mass of the central computing complex (kg) 

CCOMM = total cost of the communications subsystem ($) 

-SCMWC 	 ratio of the cost of microwave antennae communications 
equipment to power throughput ($/kW) 
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MCOMM total mass of the communications subsystem (kg) 

SM MWC = ratio of the mass of the microwave antennae communi
cations equipment to power throughput (kg/kW) 

CTHR - total cost of the attitude control thrusters Cs) 

CACPP = total cost of the attitude control power processors (5)
 

CACIN = total cost of the attitude control installation ($)
 

CACTS - total cost of the attitude control propellant tanks (5)
 

CACCN = total cost of the attitude control propellant feed and thrust
 
control system ($) 

SCMWAC 	 specific cost of the microwave antenna attitude control 
equipment ($/kg) 

MTHR = total mass of the attitude control thrusters (kg) 

MACPP = total mass of the attitude control power processors (kg) 

MACIN total mass of the attitude control installation (kg) 
MACTS total mass of the attitude control propellant tanks (kg) 

M = total mass of the attitude control propellant feed and thrust 

control system (kg) 

SMMWAC 	 ratio of the mass of microwave antennae attitude controlequipment to power throughput (kg/kW) 

CSUPC = 	 total procurement cost of the satellite system 

fGAI = 	 ratio of ground assembly and integration cost to the 
satellite system procurement cost (fraction) 

fSGTH = 	 ratio of the cost of system ground test hardware to the 
satellite system procurement cost (f ractiori) 

fSG.TO - ratio of the cost of system ground test operations to the 
satellite system procurement cost (fraction) 

fGSE = 	 ratio of the cost of ground support equipment to the 
satellite system procurement cost (fraction) 

fSPM 	 ratio of the cost of satellite system program management to 
all other TFU costs (fraction) 

fSSEI - ratio of the cost of satellite system SE&I to all other TFU 
costs (fraction) 
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CGSC = total-cost- of a rectenna ($)
 

CGSCC= total cost of a satellite control facility (5)
 

CGSGt = total cost of a utility interface ($)
 

CRE = total cost of site and facilities Cs)
 

CGSPM = total cost of ground station system program management (5)
 

CGSSEI = total cost of ground station system SE&I ($)
 

CGSRF= total cost of the dipole/rectifier elements for a ground
 
station ($) 

= total cost of rectenna power distribution and conditioningfor a ground station (5) 

CRPS 	 total cost of support and ground plane structure for a ground 
station ($) 

SCRDI 	 ratio of the cost of RF assembly dipoles to powerthroughput ($/kW) 

SCRFCR = 	 ratio of the cost of RF assembly circuitry to power 
throughput ($/kW) 

SCREsC = 	 ratio of the cost of RF assembly shields and covers to powerthroughput ($/kW) 

SC RECP - ratio of the cost of rectenna panels to power throughput 
($/kW) 

SCRFDC 	 ratio of the cost of RF-DC conversion units to power
throughput ($/kW) 

PRF-DC 	 power input to the RF-DC converters (kW); 

POUT 
PRF-DC = nRECT PD nRF-DC 

SCGSLB 	 ratio of the cost of ground station local busing to power
throughput ($/kW) 

ratio of the cost of ground station distributed processing to 
power throughput ($/kW) 

PRECPD power input to the rectenna power distribution system (kW); 

POUT 

PRECPD - nRECT PD 
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SC RP ratio of the cost of rectenna primary structure to power 
throughput ($/kW) 

SC GSGP ratio of the ground station planes to power throughput 
($/kW.) 

CGSPC= total cost of a ground station phase control facility ($) 

CSOPS= total ground station cost of SPS operations 

SC= ratio of the cost of grid interface provisions to powerthroughput ($/kW) 

GSPM ratio of ground station program management costs to ground
 
GS station procurement costs (fraction)
 

fGSSEI = 	 ratio of the cost of ground station SE&l to ground station 
procurement costs (fraction) 

CSPCN = 	 total cost of orbital assembly and support ($) 

CLCB = total cost of the low earth orbit (LEO) construction base ($) 

CGC B = total cost of the geosynchronous earth orbit (GEO) construc
tion base ($) 

MSPCN = total mass of orbital assembly and support equipment (kg) 

MLCB = total mass of the LEO construction base (kg) 

MGCB = total nass of the GEO construction base (kg) 

N LEO = total crew size of the LEO space base (numberfNote: 
 this input varies over the range of the expected
 
value of the crew size, and the cost and mass of the
 
space base are scaled accordingly, in reference to the
 
point design number 	fNLEO below.]
 

f = 	 reference point for the total crew size of the LEO spacefNLEO base (number) 

fDLLEO = design life of the LEO space base equipment (years) 

RCONST = satellite fleet construction rate (number of satellites/year) 

CLCBRF = total cost of LEO space base framework ($) 

CLCBC M = total cost of LEO space base crew modules ($) 
CLCBWM - total cost of LEO space base work modules ($) 

= o toal cst 	 (5LE spae bae wrk mdule 
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CLCBCH 	 total cost of LEO space base cargo handling anddistribution equipment 	($) 

CLCBBS = total cost of LEO space base subsystems (
 

CLMP = total cost of LEO space base maintenance provisions (
 

MLCBFR = total mass of the LEO space (kg)
 

MLCBCM = total mass of the LEO space base crew modules (kg)
 

MLCBWM. = total mass of the LEO space base work modules (kg)
 

MLCBCH = total mass of the LEO space base cargo handling and
 
distribution equipment (kg) 

MLCBBS = total mass of the LEO space base subsystems (kg) 

MLMP = total mass of LEO space base maintenance provisions (kg) 

NGEO = total crew size of the GEO space base (number) [Note: 
 this input varies over the range of the expected
 
value of the crew size, and the cost and mass of the
 
space base are scaled accordingly, in reference to the
 
point design number 	fNGEO below.]
 

fNGEO 	 reference point number for the total crew size of the GEO 
space base (number) 

fDLGEO = 	 design life of GEO space base equipment (years) 

CGCBFR = 	 total cost of the GEO space base framework ($) 

CGCBCM = 	 total cost of the GEO space base crew modules Cs) 

CGCBWM = 	 total cost of the GEO space base work modules ($) 

CGCBCH = total cost of the GEO space base cargo handling and 
distribution equipment (5) 

CGCBBS = total cost of the GEO space base subsystems (5) 

CGMP = total cost of the GEO space base maintenance provisions ( 

MGCBFR = total mass of the GEO space base framework (kg) 

M	GCBCM total mass of the GEO space base crew modules (kg) 

GCBWM = total mass of the GEO space base work modules (kg) 

-MGCBCH 	 total mass of the GEO space base cargo handling and 
distribution equipment (kg) 
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CGI 	 total cost of GEO space base indexers ($) 

fDLGI 	 design life of GEO space base indexers (years) 

MLSA = 	 total mass of LEO space base structural assembly equipment 
(kg) 

MLEC 	 total mass of LEO space base energy conversion installation 
equipment (kg) 

MLPD total mass of LEO space base power distribution installation 
equipment (kg) 

MLAS total mass of LEO space base antenna installation 
equipment (kg) 

MLC = total mass of LEO space base cranes and manipulators (kg) 

MLt : total mass of LEO space base indexers (kg) 

MGSA = total mass of GEO space base structural assembly 
equipment (kg) 

MGEC total mass of GEO space base energy conversion installation 
equipment (kg) 

MGPD total mass of GEO space base power distribution installation 
equipment (kg) 

MGAS total mass of -GEO space base antenna installation 
equipment (kg) 

MCC total mass and manipulators (kg)G of GEO space base cranes 

MGI = total mass of GEO space base indexers (kg) 
0 HLLV - total cost associated with the heavy lift launch vehicle 

(HLLV)($) 

CHLVPR = 	 total procurement cost of the HLLV fleet ($) 

CHLVOP = 	 total operations cost of the HLLV fleet ($) 

MLEO = 	 total mass launched to LEO (kg) 

NLVFLT = 	 total number of HLLV flights required (number) 

MP/L = 	 total mass of the payload of an HLLV to LEO (kg) 

fLOAD = 	 average load factor for an HLLV (what percentage of the 
payload is used) 
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NHLLV = 	 total number of HLLVs procured (number 

fDLLV : design life of an HLLV (number of flights) 

SCHLLV = unit cost of an HLLV ($) 

SCLVFLT - costper flight of an HLLV ($) 

MGCBBS = total mass of the GEO space base subsystems (kg) 

CORBAS total cost of orbital assembly and support equipment ($)-

CLSA 	 $totalcost of LEO space base structural assembly equipment 

f DLLSA = 	 design life of LEO space base structural assembly equipment 
(years) 

CLEC 	 total cost of LEO space base energy conversion installation
equipment ($) 

fDLLEC = design life of LEO space base energy conversion installation 
equipment (years) 

CLPD = total cost of LEO space base power distribution installation 
equipment ($) 

fDLLPD design life of LEO space base power distribution installation 
equipment (years) 

CLAS 5total cost of LEO space base antenna installation equipment 

fDLLAS design life of LEO space base antenna installation 
equipment (years) 

CLC = total cost of LEO space base cranes and manipulators (5) 

f1 DLLC = design life of LEO space base cranes and manipulators 
(years) 

CLI = total cost of LEO space base indexers ( 

fDLLI = design life of LEO space base indexers (years) 

CGSA = total cost of GEO space base structural assembly equipment 

fDLGSA 	 design life of GEO space base structural assembly
equipment (5) 
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CGEC = 	 total cost of GEO space base energy conversion 
installation equipment ($) 

fDLEC -	 design life of GEO space base energy conversion installation 
equipment (years) 

CGp D = 	 total cost of GEO space base power distribution installation 
equipment ($) 

fDLPD -	 design life of GEO space base power distribution installation 
equipment ($) 

CGAS -	 total cost of GEO space base antenna installation equipment(s)
 

fDLGAS - design life of GEO space base antenna installation 
equipment (years) 

CGC -	 total cost of GEO space base cranes and manipulators C$) 

fDLC = design life of GEO space base cranes and manipulators 
(years) 

CPOTV = total cost of the POTV fleet C$) 
CPOTVPR = total procurement cost of the POTV fleet ($) 

CPOTVOP - total operations cost of the POTV fleet ( 

NPLFTS = total number of POTV flights (number) 

fROT = 	 crew rotation rate (number of rotations per year) 

fPOTV - number of people carried per POTV flight (number)
 

NpOTV - total number of POTVs procured (number)
 

1DLPOTV - design life of a POTV (number of flights)
 

SCPOT = unit cost of a POTV (5)
 

SCPOTVFLT = cost per POTV flight C$)
 

CSOTV -	 total cost of self-orbit transfer (5) 

SCSTHR = 	 ratio of the cost of self-orbit transfer thrusters to total 
satellite mass ($/kg) 

SCSOT 	 ratio of the cost of self-orbit transfer propellant tanks to 
satellite mass ($/kg) 
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SCAR ratio. of cost of' argon 
satellite mass ($/kg) 

propellant for self-orbit transfer to 

SCLOX = ratio of the cost of chemicaltransfer to satellite mass ($/kg) 
propellant for self-orbit 

SMsTHR ratio of the mass of 
satellite mass (kg/kg) 

self-orbit transfer thrusters to the 

SMsoT ratio of the mass of self-orbit
the satellite mass (kg/kg) 

transfer propellant tanks to 

SMAR ratio of the mass of the argon propellant 
transfer to the satellite mass (kg/kg) 

for self-orbit 

SMLOX ratio of the mass of chemical propellant 
transfer to the satellite mass (kg/kg) 

for self-orbit 

SCEACS = total cost of ground facilities associated with the construction of the SPS fleet ($) 

C=ACS total cost of ground facilities associated with the construc
tion of a single SPS satellite ($) 

fDLFACS - design life of the ground facilities (number of years) 

CTXS = total cost of taxes ($) 

CINS - total cost of insurance 

CPM = total cost of SPS program management ($) 

fPM - ratio of overall program management
investment cost (fraction) 

cost to TFU initial 

GSEI 

f1 SEI 

= 

= 

total cost of SPS program SE&I ($) 

ratio of overall program SE&I cost to TFU initial investment 
cost (fraction) 
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C.2 The O&M Cost Model of the Boeing Co. Configuration 

Personnel
 

(NORC SCORC)
 

OMC - INSOM 

O&M Equipment Cost 
9
 

CME= NOMi COMi CCH
1=1 fDLOMi + DLCH 

O&M Space Transportation Cost
 

MOME N M
 

m~ IN 0 m1 OMi
1=1 fDLOMi 

SNORC MCH 
MOM = MCPM + fNSOM 1 DLCH 

NOMPPT - NORC fROT
 
fPOTV
 

NOMPFT 
N OMPV fDLPTV 

COMPV NOMPV SCPoTV + NOMPFT POTVFT 

M OM
 

NOMCFT COTV 

NOMCV NOMCFTNDLCTV 

mOMCV SMCOTV NOMCV 

COMCV- COTVFT NOMCFT + NOMCV SCCOTV 

NOMLVF MOM +MOMCV +MOME 
MPL 1LOAD 

NOMLV NOMLVF 
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COMLV 

COMST 

= 

-

SCHLLV NOMLV + SCLVFL NOMLVF 

COMLV" + COMGV + COMPV 

Total Annual O&M 

CaM = COMC + COME + COMST 
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Definitions of O&M Model 

COMC - total cost of O&M personnel (5) 

NORC = total number of orbital O&M personnel (number) 

SCORC = annual cost per O&M crew member ($/person) 

F NSOM number of 
(number) 

satellites maintained by a single O&M base 

COME = total cost of O&M equipment (s) 

N number of maintenance gantry and manipulation units 
(number) 

NOM 2 = number of crew module docking ports (number) 

NOM 3 = number of crew buses (number) 

NOMq - number of crane manipulators (number) 

NOM 5 = number of component transporters (number) 

NOM 6 = number of turntables (number) 

NOM 7 = number of laser annealing units (number) 

NOMS = number of gantry/repair vehicles (number) 

COMI = unit cost of a maintenance gantry and manipulation units ($) 

COM2 = unit cost of crew module docking ports ($) 

COM3 = unit cost of crew buses (5) 

COM4 = unit cost of crane manipulators (5) 

COM5 = unit cost of component transporters ($) 

COM6 = unit cost of turntables ($) 

COM7 = unit cost of laser annealing units (5) 

COM8 = unit cost of gantry/repair vehicles ($) 

fDLOM1 - design life of maintenance gantry and manipulation units 
(years) 

fDLOM2 design life of crew module docking ports (years) 
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fDLOM3 = design life, of crew buses (years) 

fDLOM4 - design life of crane manipulators (years) 

fDLOM5 = design life of component transporters. (years) 

fDLOM6 = design life of turntables (years) 

fDLOM7 = design life of laser annealing units (years) 

fDLOMS = design life of gantry/repair vehicles (years) 

CCH = unit cost of an O&M crew habitability module ($) 

fDLCH - design life of an O&M crew habitability module (kg) 

MOME = total mass of O&M equipment (kg) 

MOM 1 = unit mass of maintenance gantry and manipulation units (kg) 

MOM 2 = unit mass of crew module docking ports (kg) 

MOM 3 = unit mass of crew buses (kg). 

MOM 4 = unit mass of crane manipulators (kg) 

MOM 5 = unit mass of component transporters (kg) 

MOM 6 = unit mass of turntables (kg) 

MOM 7 = unit mass of laser annealing units (kg) 

MOM = unit mass of gantry/repair vehicles (kg) 

MOM = total mass of O&M material to GEO (kg) 

MCPM = mass of annual refurbishment components for a single SPS 

satellite (kg) 

MCH = mass of an O&M crew habitability module (kg) 

NOMPPT = total number of personnel transfer flights (number) 

N OMPV= total number of personnel transfer vehicles "consumed" by 
O&M (number) 

CaOMP = total cost of personnel transfer vehicles "consumed" by 
O&M ($) 

N OMCF T = total number of COTV flights to support O&M (number) 

NOMCV = total cost of COTVs "consumed" by O&M (kg) 
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fDLCTV = design life of a cargo orbit transfer vehicle (number of 
flights) 

MOMCV = total mass of COTVs "consumed" by O&M (kg) 

SCcoTV= unit cost of a cargo orbit transfer vehicle (number of 
flights) 

COMCV total cost of COTVs "consumed" by O&M Cs)-

COTVFT = cost per flight of a cargo orbit transfer vehicle ($/flight) 

NONLVF total number of launch vehicle flights to support .O&M 
(number) 

N total number of launch vehicles "consumed" by O&M 
(number) 

COMLV = total cost of launch vehicles "consumed" by O&M ($)-

COMST = total cost of O&M space transportation ($) 

COM total annual O&M cost per satellite ($)-
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APPENDIX D
 

ESTIMATES OF THE CURRENT STATE-OF-KNOWLEDGE AND
 
STATES-OF-KNOWLEDGE AT PROGRAM DECISION POINTS
 
FOR THE ROCKWELL INTERNATIONAL CONFIGURATION
 

The current state-of-knowledge relative to the Rockwell configuration is 

reflected by the ranges of input variables to the risk analysis model. These ranges 

have been subjectively assessed and are given in Table D.1 for the TFU cost model 

and in Table D.2 for the O&M cost model. Table D.2 lists only those O&M cost 

model inputs whose values are not already listed in Table D.I. The current 

state-of-knowledge corresponds to Decision Point A (DPA) in the Rockwell SPS 

Development program analyzed in Section 2. It -should be noted that the date for 

DPA is given as 1980 because no experimentation that might reduce uncertainty on 

any of the listed cost model elements is likely to occur before then. 

The sources for these input data are the "Satellite Power Systems (SPS) 

Concept Definition Study" final report of April 1978, prepared by Rockwell 

International for the George C. Marshall Space Flight Center under NASA Contract 

.NASS-32475 and numerous telephone conversations and two series of meetings with 

Rockwell International personnel. 

The states-of-knowledge at the decision points of the SPS development plan 

proposed by Rockwell have been subjectively assessed and are also shown in 

Table D.1. The numbers shown represent the percent reduction in uncertainty (that 

is, the range) in each variable over the state-of-knowledge today. These 

improvements in the states-of-knowledge derive from work that is scheduled 

during each branch of the respective decision trees. The variables for which a dash 

is indicated have been treated as deterministic in the analysis conducted to date. 
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It has also been assumed in this analysis that the state-of-knowledge relative to 

operation and maintenance costs does not change from the present state-of

knowledge until the IOD of the first unit at which time all uncertainty disappears. 



--
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TABLE 0.2 ESTIMATES OF THE CURRENT STATE-OF-KNOWLEDGE ON O&M COST
 
MODEL INPUTS FOR THE ROCKWELL INTERNATIONAL CONFIGURATION
 

INPUT ELEMENT VARIABLE 
NAME BEST 

RANGE OF VALUES 
MOST LIKELY WORST 

TOTAL NUMBER OF O&M CREW 
MEMBERS 

NORC NUMBER * 285 * 

ANNUAL COST PER PERSON OF O&M 
CREW MEMBERS 

SCORC S/PERSON * 62500 * 

TOTAL MASS OF ANNUAL O&M 
REFURBISHMENT PROCUREMENTS 

MORPR kg 1.2 x 106 1.498 x 106 2.2 x 106 

AVERAGE SPECIFIC COST OF ANNUAL 
O&M REFURBISHMENT PROCUREMENTS 

SCORPR S/kg 5.00 5.52 8.50 

TOTAL MASS OF EXPENDABLE 
MAINTENANCE SUPPLIES 

M 
EMS 

kg 800 x 103 832200 900 x 103 

AVERAGE SPECIFIC COST OF 
EXPENDABLE MAINTENANCE SUPPLY 
MATERIALS 

SCEMS S/kg 3.00 3.75 5.00 

ANNUAL COST OF GROUND STATION 
CREW 

CGSC $ 100 x 103 114 x 103 250 x 103 

ANNUAL COST OF GROUND STATION 
MATERIALS 

CGSAT $ 75 x 103 100 x 103 200 x 103 

NUMBER OF O&M AIRLOCK DOCKING 
MODULES 

NOMAUM NUMBER * 4 * 

NUMBER OF O&M CREW HABITABILITY 
MODULES 

NOMCXM NUMBER * 1 * 

NUMBER OF O&M CONSUMABLES 
LOGISTICS MODULES 

NONCM NUMBER * 1 * 

NUMBER OF O&M BASE MANAGEMENT 
MODULES 

NONCOM NUMBER * I * 

NUMBER OF PRESSURIZED 
STORAGE MODULES 

NOMPSM NUMBER * 1 * 

NUMBER OF O&M CREW SUPPORT 
MODULES 

NOMCSM NUMBER 1 

o O
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APPENDIX E
 

ESTIMATES OF THE CURRENT STATE-OF-KNOWLEDGE AND
 
STATES-OF-KNOWLEDGE AT PROGRAM DECISION POINTS
 

FOR THE BOEING CO. CONFIGURATION
 

The current state-of-knowledge relative to the Boeing configuration is 

reflected by the ranges of input variables to the risk analysis model. These ranges 

have been subjectively assessed and are given in Table E.I for the TFU cost model 

and in Table E.2 for the O&M cost model. Table E.2 lists only those O&M cost 

model inputs whose values are not already listed in Table E.I. The current 

state-of-knowledge corresponds to Decision Point A (DPA) in the Boeing SPS 

Development programs analyzed in Section 2. It should be noted that the date for 

DPA is given as 1980 because no experimentation that might reduce uncertainty on 

any of the listed cost model elements is likely to occur before then. 

The sources for these input data are the "Solar Power Satellite System 

Definition Study" final report of March 1978, prepared by Boeing Co. for the 

Lyndon B. Johnson Space Center under NASA Contract NAS9-15196 and numerous 

telephone conversations and two series of meetings with Boeing Co. personnel, 

headed by Mr. Gordon Woodcock. 

The states-of-knowledge at the decision points of the SPS development plan 

proposed by Boeing have been subjectively assessed and are also shown in 

Table E.1. The numbers shown represent the percent reduction in uncertainty (that 

is, the range) in each variable over the state-of-knowledge today. These 

improvements in the states-of-knowledge derive from work that is scheduled 

during each branch 6f the respective decision trees. The variables for which a dash 

is indicated have been treated as deterministic in the analysis conducted to date. 

It has also been assumed in this analysis that the state-of-knowledge relative to 
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operation and maintenance costs does not change from the present state-of

knowledge until the IOD of the first unit at which time all uncertainty disappears. 
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