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I. INTRODUCTION

In order to control pollution in the ocean and near-shore waters it

is important to have some effective means of monitoring the pollution in

these waters. In most cases this will mean regular, if not frequent

monitoring of large areas of open water. Thus, an effective monitoring

system will probably have to include some form of remote sensing as part

of the standard procedure since there is simply no other method of

providing synoptic, large-area coverage at reasonable cost. The actual

remote sensing techniques and technology used will depend on the par-

ticular application.

It is the purpose of this report to explore the application of

remote sensing to detection and monitoring of ocean waste disposal in

the New York Bight. This report will focus on the two major pollutants

in this area—sewage sludge and iron-acid waste—and on detecting and

identifying these pollutants. The emphasis is on the use of Landsat

multispectral data in identifying these pollutants and distinguishing

them from other substances.

The analysis technique applied to the Landsat data is the eigen-

vector (principal components) analysis which was described in an earlier

report (Klemas et al.', 1978). This approach proved to be quite successful

in detecting iron-acid waste off the coast of Delaware and is applied

here with relatively minor modifications. The results of the New York

Bight work will be compared to the Delaware results.

Finally, other remote sensing systems (Nimbus G, aircraft photog-

raphy and multispectral scanner systems) will be discussed as possible

complements of or replacements for the Landsat observations.



II. LANDSAT AS A COASTAL WATER QUALITY MONITORING SYSTEM

As is apparent from its very name, Landsat was designed for use in

studying land and was not intended for studying open waters at all. The

dynamic range of the multispectral scanner (MSS) is such as to accommodate

targets ranging from water (very low reflectivity) to dry sand (very high

reflectivity). As a result, all the water features are generally restricted

to about eight of the 128 gray levels available from the MSS imagery. In

addition, two of the four spectral bands on the MSS are in the near

infrared, a spectral region in which water is very highly absorbing making

the effective depth penetration at these wavelengths very small. None-

theless, there are several reasons for using Landsat data for observation

of water properties. First of all, there is a surprising amount of

structure apparent in the water in spite of the narrow dynamic range.

Secondly, since Landsat has been operating for better than six years with

repeat coverage of the same geographic locations every 18 days (every 9

days for the period that Landsat 1 and Landsat 2 were operating simulta-

neously) , there is an enormous amount of data readily available for any

coastal U.S. location during all seasons and for any tidal stage. There

is simply no comparable set of spectral data available even for a single

region. Finally, the relatively high resolution of the MSS (-̂ 80 m) is

sufficient to allow identification of many features simply by their

spatial patterns: sediment plumes, frontal zones, pollution dumps,

circulation patterns, etc.

Thus, although Landsat may be less than ideal, it is probably the

best system presently available for water quality monitoring in coastal

waters. At the very least, the attempt to extract water quality informa-

tion from Landsat data can provide some insight in the design and use of

whatever system is ultimately used for water quality monitoring.



2.1 Eigenvector analysis of ocean color data

There are many ways to approach the analysis of the multispectral

data from the Landsat MSS. The method chosen for this study is eigen-

vector analysis or principal components analysis. The use of principal

components analysis in studies of ocean color was first undertaken by

Mueller (1976), in his study of phytoplankton. Mueller's work was a

classic application of the technique and demonstrated the effectiveness

of eigenvector analysis in analyzing water color spectra. The derivation

of eigenvector analysis will not be covered here, since it is covered in

detail in several standard sources (see Morrison, 1976), and since a

complete description of this technique for the ocean color application

was provided in an earlier report (Klemas et al., 1978). Only the major

points will be reviewed here.

The eigenvector analysis is not used here in the classical sense in

which one of the main objectives is to reduce the number of significant

variates. All four Landsat bands are useful for ocean color studies and

any reduction in the number of bands would result in a significant loss

of information. The eigenvector analysis is used here because the

results can be described in geometric terms which aids considerably in

understanding the system of variation, and because it is a statistical

representation of the complete multivariate system unbiased by an

assumption of dependent or independent variables. The latter is in

direct contrast to multiple linear regression techniques which require

an assumption of dependent and independent variables.

The method can be described using a two-dimensional (two-color)

system. For illustration let us consider the problem of distinguishing

between acid and sediment in a single Landsat scene. If the pixels in



this scene which corresponded to a sediment plume and an acid waste

were plotted according to the intensities in bands 4 and 5, the green

and red bands respectively, the result might appear something like that

in Figure 1. In this figure the solid line outlines the region in two-

color space in which the pixels corresponding to acid fall; the dashed

line outlines the sediment pixels. At the low intensity end of these

two regions is a third region outlined by a dotted line and corresponding

to clear water. This schematic plot is fairly typical of scenes in

which both sediment plumes and an acid waste appear. The position of

the water region varies from one Landsat scene to the next, but the

relative positions of the three regions remains fairly constant. The

consistency of this pattern from scene to scene suggests that an automated

classification scheme could be devised to identify these materials if

the spectrum of clear water is known.

The eigenvector analysis is a method of providing a statistical

description of these regions in multidimensional color space. For the

purpose at hand, i.e. automated classification, it is convenient to

assume that the clear water region defines the origin. The signature of

each of the targets (sediment, acid waste, oil, sludge, etc.) is then

described by its own set of eigenvectors (Klemas et al., 1978). The

first eigenvector for each target corresponds to the direction in color

space of the maximum variance for that target. In Figure 1 the first

eigenvector for the acid waste, A, lies along the major axis of the acid

waste region. The second eigenvector defines the.direction of maximum

variance which is perpendicular to the first eigenvector. In the two-

dimensional case of Figure 1, the second eigenvector for the acid waste

would account for all of the remaining variance for this target and
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Figure 1. A two-band plot of Landsat data in which the regions
corresponding to acid-waste, sediments and clear water.



would lie in the plane of the paper, perpendicular to the major axis of

the acid region.

Once the targets .have been described in terms of their eigenvectors

it is then, possible to use these eigenvectors as the basis of a classifi-

. cation scheme. We must be able to take a pixel from the Landsat data

and decide which class, if either, it belongs to. Figure 2 illustrates

the problem schematically for a two-band system. In this figure we have

two classes whose first eigenvectors are.a and a1.. The dotted lines

parallel to the first eigenvectors represent the dispersion of data

about the axis and can be characterized by the standard deviation (a_)

of the training data along the direction of the second eigenvector

(zL). For illustration we have chosen a distance of one standard devia-

tion as a classification limit. The "clear" water mean is represented

by o and r is the vector distance from the original color space origin

-v
to the clear water mean. A point at position A with position vector p

A

relative to the "clear" water origin, clearly belongs to class 2 since

it is within one standard deviation of axis of this class (d1 < a~') and

well outside the same range of the other class (d > aO. The first step

then is to find the distance of the test point from the axis of each of

the classes and throwing out any point that is too far away. The

distance d is given by:

d = IP" x Sjl = p a sine (1)

A point at'position B (Figure 2) is more difficult to assess since

it is sufficiently close to the axes of both class 1 and class 2. The

simplest criterion in this case is if the distance to one class relative

• to the one standard deviation limit of that class is less than the
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distance to the second class relative to the one standard deviation

limit of the second class. That is, if

V di
-^T < — (2)
CT2 a2

then the point is classified as belonging to class 2. The same sort of

process could be used to place point C in one class or another. However,

point C is within the range of the "clear water" region. Point C,

therefore, would be classified as water.

There are several comments to be made at this point. First of all,

with the Landsat data we are dealing with a four-dimensional system in

which the first and second eigenvectors for different targets may not

(and rarely do) fall in the same plane; the second eigenvector may not

be in the direction which is significant for separating two classes.

This can be understood conceptually for a three-dimensional case by

realizing that the region in color space which is being used to identify

the classification limit for a particular class is described by a circular

cylinder whose major axis is the first eigenvector for that class and

with a radius scaled by the standard deviation along the second eigen-

vector, a-. The actual distribution of the data would be better described

by an ellipsoidal cylinder, the major and minor axes of which are scaled

by the standard deviations along the second and third eigenvectors

respectively.

The difference could lead to a misclassification. This is illus-

trated in Figure 3 which shows a cross-sectional view of two classes for

the three-dimensional case. In this figure both of the second eigen-

vectors are in the direction of maximum variance about the major axis of

the distribution but neither is along direction connecting the two



BAND 6

BAND 5

Figure 3. Cross-sectional view of two sample distributions
in 3-dimensions.
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distributions. Using the standard deviation along the second eigen-

vector as a charateristic distance for the classification is equivalent

to assuming that the sample distribution filled the areas outlined by

the circular cylinders rather than by ellipsoidal cylinders. In the

case illustrated, a pixel which is located at point A would be classi-

fied as with class 1 rather "than class 2. Accurate classification would

require a more complex classification criterion than that of equation 2.

In the name of calculational efficiency the results in this paper are

based on the assumption that the distribution of the data about the

major axis is essentially circular. This represents a worst case in

that classification accuracy can only improve if this classification is

refined.

A second comment on this eigenvector classification approach is

that there is an implicit assumption that the variation along the direc-

tion of the first eigenvector is linear. Although this assumption

appears to be adequate there is some evidence that it may not be true

and that classification accuracy could be improved by taking the non-

linearities into account. This possibility will be covered in more

detail below. For the present, however, we will continue to assume that

the along axis variability is strictly linear.

Assuming that the eigenvectors for whatever substances are to be

identified and that the "clear" water spectrum is known, the classifi-

cation scheme is as follows (refer to Figure 2):

1) Find the vector p for the test pixel. If the pixel is described

by vector b = (b-, b», b-, b,) where b. is the intensity (in counts) in

band 4, etc., and the "clear" water is given by r = (r.., r-, r_, r,),

then p~ is given by
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P = b - r (3)

2a) If |p| < w where w is some minimum radius defining "clear"

water, the A is classified as clear water.

2b) If |p| > w continue on to step three.

3) Find the perpendicular distance d from the test pixel at point

A to the axis of each classification distribution.

d = |p x a., | = p sine (4)

where a, is the primary eigenvector (a unit vector) for some class and

9 is the angular separation of p and a.. .

4) Test to see if this distance falls within the cutoff range

(d < o«). This cutoff can be set as strictly or loosely as one might

like. The scaling factor is the standard deviation a- along the second

eigenvector.

5a) If A is within a» of only one class the classification is

finished.

5b) If A is within a~ of more than one class then it should be

placed in that class for which the ratio of d/a~ is smallest.

5c) If A is not within a» of any class then it remains unclassified,

2.2 Pollution classification in the New York Bight

A major goal of this study is to apply the eigenvector classification

procedure to waste plumes in the New York Bight. There are two major

target pollutants in this region: an iron-acid waste and a sewage

sludge waste. The iron-acid waste is similar to that which was dis-

charged off the coast of Delaware and is expected to be spectrally quite

similar to the Delaware waste. The Delaware iron-acid waste was the
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subject of the earlier report by Klemas et al. (1978). The sewage

sludge is secondary treated sewage. Both the acid and sludge are dis-

charged within 20 miles of Sandy Hook, N.J.

Figure 4 is a Landsat image of the New York Bight on 19 August

1975. A fresh iron-acid waste discharge can be seen as a U-shaped

pattern to the east and slightly south of Sandy Hook, N.J. An older

acid discharge appears as a relatively bright smudge to the southwest of

the fresh discharge. A sewage sludge discharge appears as a rather dull

smudge to the northeast of the fresh acid discharge.

The eigenvectors for these two targets were found using training

sets from the fresh acid discharge and the sewage sludge discharge and a

"clear" water sample immediately north of the fresh acid discharge. A

training set was also taken from an area just to the east of the fresh

acid discharge which is covered by diffuse clouds. The older acid

discharge was treated as an unknown material to be classified on the

basis of the eigenvectors for the fresh acid waste.

Table 1 lists the eigenvectors for the 19 August 75 New York Bight

targets and the angles between the first eigenvectors for all possible

pairs. Also shown is the mean value of the "clear" water training set

which was used as the origin for the eigenvector analysis. The clouds

should be spectrally distinct from both the acid and the sludge. That

this should be so can be seen from the angular separation of the first

eigenvectors. The first eigenvector for the clouds is more than 24°

from the first eigenvector for either sludge or acid. By the same

criterion, the acid and sludge appear to be essentially indistinguish-

able. Their first eigenvectors are separated by less than 10° which

means that, for the areas with weaker reflection, there will be much
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J

Figure 4. Landsat image of the New York Bight on 19 August 1975. The
U-shaped pattern is the iron-acid waste. An older iron-acid
waste appears to the lower left of the fresh discharge. A
sewage sludge discharge appears to the upper left of the
fresh acid discharge.
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overlap in the spectral reflectance signatures and that there is unlikely

to be any effective way of distinguishing between the two.

Figure 5 shows the results of the classification of the portion of

the 19 August 75 New York Bight scene outlined in Figure 4. Figure 4A

shows all the pixels classified as acid, sludge and clouds combined; 4B

shows the pixels classified as sludge; 4C shows the pixels classified as

acid. As was expected from the similarity between the eigenvectors for

sludge and acid, the two pollutants are spectrally indistinguishable.

In this case the classification would not be improved significantly by

refining the classification procedure; not only are the first eigen-

vectors quite close, but the second eigenvectors are nearly parallel nnd

along the direction of separation of the first eigenvectors.

There is at least a possibility that the acid and sludge may be

distinguishable by the time rate of change of their reflectance spectra.

Bowker (1978) has pointed out that the fresh sludge is brighter in

Landsat band 6 than is the acid, and that the older sludge is darker

than the acid in band 6. This trend is not clear from the eigenvector

analysis—one would expect such a trend to cause the third component of

the first or second sludge eigenvectors to be greater than their acid

counterparts, exactly the opposite of what actually happens (Table 2).

Nonetheless, this type information could be used to distinguish between

acid and sludge.

2.3 Improving the classification

The distinction between the two pollutants and clouds is adequate

but not as good as might have been expected from the angular separation

of the eigenvectors. The eigenvectors for clouds are quite distinct
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Vector 1:

Vector 2 :

Vector 3:

Vector 4:

Band

4
5
6
7

4
5
6
7

4
5
6
7

4
5
6
7

Acid

.7872

.5755

.2184

.0382

-.6076
.6718
.4232
-.0203

.0703
-.4342
.8130
.3809

-.0762
.1700
-.3350
.9236

Sludge

.8770

.4371

.1995

.0070

-.3256
.8334
-.4016
.1952

-.3269
.2482
.8857
.2171

.1342
-.2296
-.1206
.9564

Clouds

.6047

.5238

.5747

.1723

-.7934
.3625
.4416
.2098

-.0302
.7647
-.6365
-.0958

.0620
-.0971
-.2638
.9577

Unknown angles between
the first eigenvectors of

Acid and sludge = 5.9"
Acid and clouds = 26.4°
Sludge and clouds = 24.2°

Clear water mean Band 4 Band 5 Band 6 Band 7
in gray scale values 18.34 8.60 4.43 0.60
(raw/cm2)-ster-band) (0.358) (0.135) (0.061) (0.038)

Table 1. A list of the four eigenvectors for pollutant targets in
the New York Bight and the angular separation of the first
eigenvectors.
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from those for the acid and sludge. The classification accuracy could

be improved somewhat by more accurately representing the data distribution

about the first eigenvector. This can be seen from the Cact that the

second eigenvectors are not parallel (they are separated by an angle of

2̂7°), nor are the second eigenvectors along the direction of separation

of the first eigenvectors. Thus, the situation illustrated by Figure 3

applies and classification could be improved. However, extending the

analysis to account for the more accurate distribution would be considerably

more expensive in computer time. For this case, it is probably unnecessary.

Another alternative exists for reducing the uncertainty in classifi-

cation between clouds and acid. Most of the classification uncertainty

exists for pixels near the origin, i.e., for pixels that are not much

brighter than the clear water (see Figure 2). Thus, if the classification

criteria are made more stringent in the vicinity of the origin the

clarity of the results should improve. The simplest way of doing this

is to reduce the classification limit. (This is equivalent to reducing

the diameter of the circular cylinders in Figure 3.) However, this

approach has the effect of reducing the number of pixels classified even

in areas of relatively high radiance where there are few problems with

classification. The results illustrated in Figure 5 already correspond

to a limit of one standard deviation, a., along the second eigenvector.

Reducing this limit still further will clarify the results for areas of

low radiance at the expense of significant losses in regions of higher

radiance.

What is needed is a method of restricting the classification in the

vicinity of the origin without seriously affecting the classification

away from the origin. One way of doing this is to replace our cylindrical
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classification limit with a conic limit. This "classification cone"

would have the first eigenvector as its central axis and would open away

from the origin—the point of the cone lying on the origin itself. This

new geometry is illustrated in Figure 6. There are two classes shown in

Figure 6. The first eigenvectors for each class, e.. and e ' , lie along

the axes of the respective classification cones. The half angle of the

cones are 9 and 9', which are given by,

CT2
tan 9 = a — (5a)

v
tan 8' - a1 ̂ p (5b)

where a., and a_ are the standard deviations of the training set data

along the first and second eigenvectors respectively, and a and a' are

weighting coefficients. Any pixel P falling within a given cone will

then be grouped with the corresponding class, referring to Figure 6,

since
_ ?

9p =• cos"
1^ • i1') <_ tan~1(a' ~,) - 9' (6)

Then the pixel P will be grouped with the primed class. If the pixel

lies within the classification cone for more than one class then equation

2 may be used to choose the proper class.

Figure 7 shows the results of classifying acid, sludge and clouds

using the conic limit. The coefficients used for these results were as

follows: a » 0.7, a , = 0.7, a .. =3.0. In descriptiveacid sludge clouds

terms this means that in order to be classified as either acid or sludge

a pixel must lie quite close to the first eigenvector for the respective

class, while the classification criterion for clouds is far less rigid.
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BAND

Figure 6. Two-dimensional geometry of the eigenvector classification
scheme using a "classification cone."
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As with Figure 5, Figure 7A shows all the pixels classified as acid,

sludge and clouds; Figure 7B shows those pixels classified as sludge;

and Figure 7C shows the pixels classified as clouds. The distinction

between clouds and both the pollutants has changed significantly. This

should not be too surprising since the main region of uncertainty was

near the origin in the transformed color space. The misclassification

of clouds as either acid or sludge has been reduced considerably. There

are far fewer pixels classified as acid or sludge between the two acid

dumps at the expense of an increased misclassification of acid and

sludge as clouds. For the purpose of identifying pollutants, this sort

of misclassification is preferable since there is greater certainty that

those pixels classified as a pollutant are, in fact, the pollutant and

not clouds. The distinction between the acid and sludge, on the other

hand, is still rather poor although it is improved over the classifica-

tion using a cylindrical limit. This time more of the sludge has been

classified as sludge than as acid and vice versa, but there is still too

much misclassification to consider the two classes to be separable.

If we consider the combined acid and sewage sludge as a pollutant

class and look at these without the cloud overlay, a relatively dark

area appears in the vicinity of pixel 675 and scan line 1350. The

scatter of points between the two acid dumps is probably noise due to a

misclassification of clouds. The dark feature, however, contains a much

higher density of points than in the adjacent areas and is probably

acid. This is an observation that cannot be verified by any other

means. It is simply statistically unlikely to have such a dense cluster

of points be misclassified.
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2.4 Relating concentration and signal brightness

There is still more information available from this analysis which

is not apparent from Figure 7. Klemas et al. (1978) suggested that it

might be possible to relate the strength of signal (which corresponds to

the magnitude of the position vector p) for a given pixel to the concen-

tration of the material in the water. The natural scaling of |p| is

in terms of the standard deviation along the first eigenvector (see

Figure 6). This is at least reasonable and is probably true in at

least some situations. In any case we may easily separate the

classified pixels by the strength of the signal. The acid class (the

base plot in Figure 7) has been separated into two classes according

to brightness. The results are presented in Figure 8. Figure 4A

shows all the pixels whose position vectors fall within two standard

deviations (o..) of the origin. Figure 4B shows all the pixels whose

position vectors are greater than 2a1 .

The higher intensity pixels show essentially only acid, and show

the features of the acid which which are most apparent to the eye in

Figure 4. The seeming improvement in the classification, however, is a

bit deceptive. As was mentioned earlier, the confusion between the

clouds and the pollutants occurred primarily near the origin. The angle

between the clouds and pollutants is large enough (̂ 27°) for there to be

little difficulty in making the distinction at higher intensities. In

contrast, the uncertainty between the pollutants should exist at almost

all intensities since the angle between their first eigenvectors is so

small (<10°). Only about six pixels appear in the area of the sludge
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dump, largely because very few of the pixels corresponding Co sludge

were bright enough. Had the sludge been more highly concentrated,

implying a brighter signal, the uncertainty between sludge and acid

would probably have been apparent in Figure 8. While it is far from

certain that higher intensities are uniquely related to higher concen-

trations of the pollutant, the results in Figure 8 show the assumption

to be at least qualitatively reasonable. The higher intensity pixels

(base plot in Figure 8) form well defined patterns at the center of the

acid waste sites; the patterns have rather sharp boundaries and there is

little noise elsewhere in the scene. The lower intensity pixels form

more diffuse patterns around the edges of the acid waste sites. The

boundaries of these patterns are less well defined and there is much

more noise in the plot. These are the same gross features one might

expect to find in concentration distribution.

It must be emphasized that the higher intensity may also be related

to the depth distribution of the material or chemical (or physical)

changes in the material. It will be necessary to have far more infor-

mation in order to speculate as to the physical meaning of the variation

in intensity.

2.5 Comparison of New York and Delaware results: semi-automated
classification

Thus far the eigenvector classification procedure has been applied

only to single Landsat scenes. However, one of the advantages of the

method is that if, as was suggested earlier, the spectra of the various

targets is constant relative to the "clear" water standard, then it

should be possible to use the method as a semi-automated system. In

other words, the "clear" water standard must be chosen for each
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Landsat
Overpass

16 Aug 721

23 Oct 73

15 Mar 74

19 Aug 75

19 Aug 75

28 Aug 75

21 Oct 75

17 Nov 75

19 Jan 76

24 Feb 76

18 Apr 76

Region

N.Y.

Del.

Del.

N.Y.

Del.

Del.

Del.

Del.

Del.

Del.

Del.

ID Number

1024-15071

1457-15113

1600-15031

5122-14414

5122-14420

2218-14552

2272-15004

5212-14364

2362-14540

2398-14531

2452-14513

Time After Dump
Completion

___

53 hrs. 36 min.

6 hrs. 8 min.

E
during dump

5 min.

1 hr. 55 min.

2 hrs. 41 min.

39 min.

3 hrs. 23 min.

70 hrs. 19 min.

Pollutant

acid
sludge

acid

acid

fresh acid
old acid
sludge

acid

acid

acid

acid

acid

acid

acid

Table 2. Landsat imagery used for comparison of eigenvectors.
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different scene, but the eigenvectors describing a particular target

should be essentially the same from scene to scene. This is actually

the case to a remarkable extent.

To demonstrate this, eigenvectors for acid, sediment, sludge, and

clouds were calculated for several Landsat scenes of the New York Bight

and Delaware coast. Table 2 lists the scenes used for this work along

with the age of the acid or sludge wastes, if known. The first eigen-

vectors for each target for every scene are listed in Table 3.

There is a qualitative similarity among the eigenvectors for each

class and a dissimilarity between classes except for the sludge and

acid. The comparison of the first eigenvectors can be quantified by

considering the angular separation. The angles between each set of

first eigenvectors were calculated and are presented in Table 4.

Earlier results (Klemas et al., 1978) suggested that the intraclass

angles would generally be less than 10° while the interclass angles

would generally be greater than 20°. At that time it seemed likely that

there would be little difficulty in distinguishing among clouds, acid/waste

and sediment using some mean eigenvectors. With this expanded data base

the results allow for less optimism. Although clouds are still clearly

distinguishable from everything else, it appears that the sludge is

largely indistinguishable from acid and that, at least in some cases,

acid and sediment will not be clearly separable using mean eigenvectors.

There is still reasonably good separation between acid and sediment

in individual scenes (boxed values in Table 4). For instance, the

separation between the first eigenvectors for acid and sediment is 23.8°

for 19 January 1976 and 15.6° for 23 October 1973. These angles are



Place_

ACID
16 Aug 72 N.Y.

23 Oct 73 Del.

15 Mar 74 Del.

19 Aug 75 N - Y -

19 Aug 75 Del.

28 Aug 75 Del.

21 Oct 75 Del.

17 Nov 75 Del.

19 Jan 76 Del.

24 Feb 76 Del.

18 Apr 76 Del.

SLUDGE

6 Aug 72 N .Y.
XT V

19 Aug 75 N .Y.

CLOUDS

23 Oct 73 Del.

15 Mar 74 Del.

19 Aug 75 N - Y -

19 Aug 75 Del.

17 Nov 75 Del.
TS «. 1

19 Jan 76 Del.

SEDIMENT

23 Oct 73 Del.

21 Oct 75 Del.

17 Nov 75 Del.

19 Jan 76 Del.

24 Feb 76 Del.
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Band 4_

0.6508

0.8532

0.8969

0.7872

0.7409

0.7707

0.8526

0.9096

0.8221

0.8413

0.9802

0.4136

0.8148

0.5900

0.5327

0.5587

0.6499

0.5291

0.4264

0.7198

0.6613

0.7021

0.5268

0.5129

Band 5_

0.7347

0.5088

0.4158

0.5755

0.6491

0.6081

0.5127

0.4026

0.5248

0.5264

0.1962

0.6967

0.5021

0.5837

0.5871

0.5579

0.5435

0.6000

0.5879

0.6145

0.6685

0.6255

0.7489

0.7167

H:uul 6_

0.1912

0.1094

0.1392

0.2184

0.1705

0.1906

0.1011
0.1021

0.2205

0.1228

0.0026

0.5632

0.2846

0.5169

0.5700

0.5861

0.4958

0.5560

0.6319

0.3203

0.3404

0.3397

0.4021

0.4725

Ikuul 7,

0.0060

0.0348

0.0334

0.0382

0.0246

0.0032

o.oooo
0.0142

0.0147

-0.0025

-0.0269

0.1616

0.0551

0.2096

0.2157

0.1820

0.1906

0.2258

0.2707

0.0411

0.0006

0.0223

0.0000

0.0028

3.
scenes,
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probably large enough to allow for good separation oC iho two classos

for each scene separately.

The angular separation of acid eigenvectors for both days is 6.8°

which is quite good for classification purposes. However, the angular

separation of sediment eigenvectors for both days is 14.5°—practically

the same as the separation between the acid and sediment eigenvectors

for the 23 October 1973 data. It seems unlikely that a semi-automated

classification procedure using mean eigenvectors would be useful in this

case.

2.6 The possibility and implications of nonlinear spectral variations

The failure at the present time to find a set of typical or mean

eigenvectors which could be used in a semi-automated classification

system could have been due to the arbitrariness in choosing the "clear"

water origin. Admittedly, this is a weak point in the present procedure;

a less arbitrary method of choosing the 'origin might be expected to give

better results.

Several attempts were made to improve the method of defining the

"clear" water origin. All failed. However, the manner of the failure

suggested that the variation in the first eigenvectors for a single

class is not simply random. This is best illustrated with the acid. If

we recalculate the eigenvectors for each date without reference to the

predetermined clear water standard, the new vectors will describe the

variability in that sample. If the variation of the spectral signatures

were strictly linear then these new vectors should be very nearly

identical to the old vectors. In fact, they are not at all similar

either to the old vectors or to each other. Furthermore the variations
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time af ter
dump

53.G hrs.

70.3

date
23 OCT 73
19AUG75
18 APR 76
19AUG75
21 OCT 75
24FEB76
19JAN76
28AUG75
19AUG75

(N.Y.)

(N.Y)

4 5 6
LANDSAT BANDS
(vector components)

Figure 9. Acid eigenvectors calculated without reference to a
clear water standard.
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seem to be quite systematic. Figure 9 shows these new eigenvectors in

graphic form. These vectors characterize the variance in the spectral

characteristics within a given target for a particular day. On days

when the acid waste is rather old (23 October 73, 19 August 75 and

18 April 73) almost all the variance is in the blue. For relatively

fresh dumps the variance in band 4 is reduced and the variance in band 5

increases significantly. For the two freshest dumps (19 August 75 and

28 August 75) the variance in band 5 actually exceeds that in band 4.

Thus there is some relationship between the age of. the dump and its

spectral characteristics. Indeed, Bowker (1977) has already shown this

to be the case. The physical source of this effect is not yet clear.

There are several possibilities: chemical weathering, physical changes

(i.e., flocculation), settling, or some combination of the three.

Although it is not unlikely that all three mechanisms play some

role, a reasonable argument can be made that settling is the dominant

mechanism. The argument is quite simple. Regardless of the apparent

color of an underwater object near the surface, the object will appear

to be blue, blue-green, or green as it is moved deeper into the water

column. The actual color will depend on the kind and the amount of

scattering and absorbing material in the water. Nonetheless, the fact

that water strongly absorbs red light means that the apparent color of

an object will become more blue as it sinks.

This is nicely consistent with the vectors in Figure 9: only in

the freshest dumps is there enough material near the surface to give a

strong signal in the red and the older the acid, the less signal in the

red, implying that most of the iron-acid floe is settling. Thus, it is

possible that there is a direct relationship between the "blueness" of a
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pixel and some average depth of the iron-acid floe.

If this supposition is correct, then the trend towards "blueness"

with age should also be apparent in the original eigenvectors. This is,

in fact, the case. Referring back to Table 3, the day for which the acid

eigenvector is weakest in band 6 compared to other eigenvectors and

strongest in band 4 is 18 April 1976. This acid dump was also the

oldest (70.3 hrs.) and was the most marked anomaly in Table 4. The

eigenvectors for the freshest acid dumps (19 August 1975 [Del], 28 August

1975, 19 January 1976, and 19 August 1975 [N.Y.]) are those with eigen-

vectors which are strongest of the acid eigenvectors in band 6 and

2
weakest of all in band 4. It is worthy of note that it is these same

days which present the greatest obstacle to the use of mean eigenvectors:

1) the largest acid-acid angles (circled values in Table 4) are con-

sistently between the acid eigenvector for one of these days and an acid

eigenvector for one of the other days; 2) the smallest acid-sediment

angles (also circled in Table 4) are consistently between the acid

eigenvector for one of these days and a sediment eigenvector.

The most curious aspect of all this is that the fresher acid,

which, presumably, is nearer the water surface, is harder to distinguish

from sediment than the older acid (farther below the surface). To see

how this might happen it is useful to combine the presumption of a

relationship between the "blueness" of a signature and some averaged

depth of the target substance with the premise of a direct relationship

between intensity and concentration. If the variations of the spectral

reflectance characteristics of a substance in the water depend on

concentration and depth as described above then the eigenvectors which

characterize the substance in water will vary from scene to scene as
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<
CD

CO
Q
Z

LANDSAT BAND A (green)

Figure 10. Suggested modes of variation of pollutant
signatures in water. Variation in the radial
direction relates to concentration; variation
in the a direction relates to "average" depth.
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well. The manner of this variation is illustrated in Figure 10. Here

the radial distance, p, of a pixel from the new origin, 0, along eigen-

vector e, is related to concentration while a decrease in the angle 8

is related to an increase in the "mean" depth.

Assume for a moment that there existed a data set of noise-free

spectra corresponding to all possible combinations of concentration and

"mean" depth for a particular substance in water. For a given "mean" depth,

a variation in concentration would shift the spectra toward or away from

the "clear" water origin. For a given concentration, on the other hand,

a change in the "mean" depth would cause a shift in the spectrum both in

the 9 and radial directions; as the "mean" depth increases, the signature

becomes bluer and decreases in intensity due to increased attenuation by

the water. The total distribution of points for two substances—acid

waste and sediment—might appear as in Figure 11, Each region has been

subdivided into three subregions corresponding to low, medium, and high

concenttrations. In this schematic representation there is a region of

overlap for the sediment and acid. The confusion is between all concen-

trations of sediment with large "mean" depths and low, near surface

concentrations of acid—the sort of distribution that would most likely

be found in a fresh acid dump.

Qualitatively, at least, the assumptions of a dependence of the

spectra on concentration and "mean" depth lead to the same results

observed in the eigenvector analysis results. These assumptions also

lead to two major implications for ocean color analysis in general and

pollution detection in particular:

1) There are at least two degrees of freedom in the systematic

variability of the spectral reflectance characteristics.
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(P*J) . S QNV8 1VSQNV1

Figure 11. Hypothetical distribution patterns of points for two
substances in water showing the relationship of position
to concentration and depth of the substances. The shaded
area shows the area of overlap, i.e. the region in which
the two substances are indistinguishable.



36

Thus, the earlier assumption of essentially random variation

about the first eigenvector is incorrect. Neither the cylindrical

nor the conic limits are really appropriate for describing the

variability in the data although, as has been shown above,

they will both work well enough for classification in individual

scenes.

2) There is a physical limit to the spectral separability of any

two substances in the water—even classes as distinct as acid

and sediment. Random noise may degrade the classification

accuracy, but even if the data were noise-free some uncertainty

in the classification would remain.

III. OTHER MEANS OF MONITORING WATER QUALITY IN THE NEW YORK BIGHT

Landsat was used for this study because of the large amount of data

available, the good spatial resolution and the adequate spectral resolution.

However, Landsat is not the ideal observational tool. The three major

objections to the use of Landsat data for coastal water quality monitoring

are that 1) the spectral response is not ideal for observations of water

color; 2) the gain and dynamic range of the Landsat sensors are poorly

suited to the purpose of water color observation; and 3) Landsat returns

to cover the same area only once every 18 days making it difficult to

use for waste dumps which will be apparent for a few days at most.

The recently launched Coastal Zone Color Scanner (CZCS) aboard

Nimbus G will overcome some of these objections. The spectral response,

gain and dynamic range of this instrument are intended specifically for

chlorophyll observations, but should be quite useful for other ocean

color observations. Indeed, CZCS should be nearly ideal for observing
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large scale patterns of ocean color: distinguishing among large water

masses, observing sediment plumes of major estuaries or detecting

large plankton blooms.

The CZCS, however, lacks one feature available in Landsat imagery

which may be essential for water quality monitoring in coastal areas:

good spatial resolution. Although waste dumps in coastal waters can be

rather large they are not usually large enough to provide a statistically

significant sample for the course (800 m) resolution of the CZCS. For

example, the fresh acid waste in Figure 4 is roughly 4 km x 8 km. The

other two waste sites cover about the same area. This area would be

covered completely by 50 pixels of CZCS. In the case of the fresh acid

waste most of these pixels would be for the water. Even for the older

waste sites where all 50 pixels might cover some of the waste, it would

be difficult to distinguish systematic variations from random noise; one

would need to use the entire sample as a training set. This is not to

say that CZCS data should be ignored. The spectral information could be

quite valuable. However, the CZCS will probably not be adequate alone

for water quality monitoring. It would be much more worthwhile to use

CZCS data in conjunction with Landsat data. The spectral and spatial

resolution of the Landsat data is good for identifying and locating

pollution dumps. The spectral characteristics could be refined using

the CZCS data.

A major advantage to the CZCS is its relatively short return

coverage. The satellite may cover the same scene during the same part

of its orbit only about once every six days. However, any given ground

point should be covered nearly once a day; the nadir point of the

consecutive scenes will not be the same and distortion may be a problem,
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but nearly daily coverage should be possible. This is an important

factor for pollution monitoring in the coastal zone because of the dynamic

character of coastal regions. If the CZCS can be used to identify pollu-

tants by their spectral reflectance characteristics, then it should be

possible to track the same pollutant dump over a period of several days.

Of course, for the pollutant to be spectrally identifiable, the pollutant

plume must be large enough to cover several pixels. The acid and sludge

wastes discussed here cover large enough areas for tracking to be possible.

It would be difficult to improve upon satellite coverage using

aircraft for monitoring of large coastal regions such as the New York

Bight. An aircraft system would simply not be able to cover such an

area as effectively. However, aircraft systems would be particularly

useful for monitoring smaller areas such as legally defined dump sites,

or for short-term tracking of a particular dump.

IV. SUMMARY

The major points of this study can be summarized as follows:

1) The eigenvector classification scheme was shown to be effective

at distinguishing between pollutants (acid .waste and sewage

sludge) and clouds in the New York Bight.

2) The sewage sludge and acid waste were found to be spectrally

indistinguishable in the test scene of the New York Bight.

3) Classification accuracy was improved by replacing the cylin-

drical limit with a conic limit.

4) Semi-automated classification of a Landsat scene using a

predetermined set of mean eigenvectors does not appear

feasible at this time.
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5) It was demonstrated qualitatively chat it is reasonable to

relate higher intensity with higher concentration and that there

is a systematic variability in the first eigenvector which

could be related to a mean depth of the pollutant.

This last point is perhaps the most important finding of this study.

Although the variability in the direction of the first eigenvector makes

it difficult to use the algorithms presented here as a semi-automated

classification technique, the fact that the variability is systematic

suggests that it may be possible to identify a target as a pollutant and

to make some estimate of the concentration and mean depth of the pollu-

tant. Eigenvector analysis should still be useful for this although the

criteria for classification would change.

The sense of the systematic variation in the spectral reflectance

characteristics also implies a physical limit on the ability to distinguish

between any two substances in the water. This is an encouraging result

in that it is a consequence of the depth dependent variation and is

precisely what should be expected.

The Landsat data shows surprisingly good definition of pollutants in

the areas studied. It seems likely that further study along the lines of

the present work could improve the results or at least better define the

limits of the technique as used with the Landsat data. If the spectral

resolution, dynamic range and return coverage could be improved upon

there would be significant gains in terms of pollution monitoring. The

CZCS provides all of these improvements and should be ideal for obser-

vation of ocean color; however, the loss of spatial resolution with CZCS

will reduce its utility for pollution monitoring. Thus, Landsat should

not be ignored as an instrument for pollution monitoring in the coastal zone.
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Footnotes

1. The results for 16 August 1972 are included in Tables 2 and 3 for

the sake of completeness. These results are suspect since the

Landsat sensors were malfunctioning intermittently. Data which was

obviously bad was excluded from the training sets; however, it is

quite likely that some systematic error remains. For this reason

the results from 16 August 1972 do not appear elsewhere in the

paper.

2. It is important to keep in mind the distinction between the eigen-

vector components and the intensity of a pixel. The fact that an

eigenvector for a particular class is dominated by the band 4

component does not imply that a pixel in that class has the greatest

intensity in band 4. -The eigenvector refers only to the variability

in the intensity in band 4 and is unrelated to the absolute intensity.

Thus, mean spectrum of a particular class might have the highest

intensity in band 5 but very little variation about that mean while

the mean for band 4, although having a lower intensity, might show

much greater variability. The eigenvector for this class would

then be dominated by the band 4 component rather than the band 5

component.

3. "Mean" depth—this term is used here very loosely. There is no

intent to imply any particular vertical distribution of the acid.




