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ABSTRACT
 

We propose a model for the formation and evolution of the Earth's
 

core which provides an adequate energy source for maintaining the
 

geodynamo. A modified inhomogeneous accretion model is proposed
 

which leads to initial iron and refractory enrichment at thecenter
 

of the planet. The probable heat source for melting of the core is
 

the decay of 2 6A1. The refractory material is emplaced irregularly
 

in the lowermost mantle with uranium and thorium serving as.a long
 

lived heat source. Fluid motions in the core are driven by the dif­

ferential heating from above and the resulting cyclonic motions may
 

be the source of the geodynamo.
 



INTRODUCTION
 

The problems of the origin of the Earth's magnetic field and the
 

evolution of the Earth's interior have usually been treated separately.
 

Ultimately, a model for the accretion and evolution of the Earth will
 

need to satisfy the physical and geochemical constraints and will also
 

need to provide the necessary conditions for the existence and behavior
 

of the magnetic field. The model we present is primarily con­

cerned with the core and is a simple model in the sense that we
 

follow the events that would occur as the natural consequences of­

inhomogeneous accretion. This approach is rather successful in that
 

it is consistent with seismological and geochemical data and it also
 

provides necessary conditions for causing fluid motions within the core­

which might be sufficient for maintaining the Earth's magnetic field.
 

This last point is not certain, however, as the fluid motions are
 

dependent on some physical properties of the core which are poorly
 

determined. Also, the .argument for generation of the magnetic field is
 

not a complete dynamical treatment.
 

It should be noted that at this time, amid the controversy'of the
 

existence of 40K in the core, there is no model for the formation and
 

evolution of the core which provides for the necessary fluid motions and
 

energy demand of the magnetic field, particularly in view of the possibility
 

that the outer core is thermally or compositionally stratified. Our model
 

predicts a stratified core but can still cause fluid motions in this case.
 

The basic outline of this paper is the following: First we briefly
 

discuss the Earth's magnetic field, dynamo models and the requirements for
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the maintenance of the field. Next, we -describe the inhorogeneous
 

accretion hypothesis and present a model for the formation of the core and
 

lowermost mantle. Finally, the fluid motions implied by the model and
 

related dynamo processes are discussed.
 

1.1 Geodynamo
 

The Earth's magnetic field is still largely unexplained in terms of
 

physical processes within the Earth. The magnitude and geologic history
 

of the magnetic field require electric currents flowing in a highly conductive
 

fluid core (Elsasser, 1947; Bullard, 1949; Jacobs 1975). There have been
 

many efforts to find a dynamo process appropriate for the Earth, that is,
 

fluid motions within the outer core which regenerate the main magnetic field.
 

Due to the mathematical difficulties in treating the complete dynamical
 

system, dynamo models derived for the terrestrial and astrophysical magnetic
 

fields are generally kinematic models. The kinematic approach neglects the
 

equations of fluid motion and heat transfer and considers just the hydromagnetic
 

equation,
 

B
 
.w= (V x B) + n? B 

where B is the magnetic field, Y is the fluid velocity, and n is the magnetic
 

diffusivity. A particular velocity field is prescribed along with an initial
 

magnetic field and a regenerative solution to the above equation is then
 

sought. This approach has yielded several successful models (see Levy 1976
 

for a review). The successful velocity fields found vary from large scale
 

nearly axisymmetric motions (e. g. Moffatt, 1973, G. 0. Roberts, 1972, and
 

P. H. Roberts, 1971) to small scale turbulence with a particular statistical
 

nature (Krause, Padler, Steenbeck, see translation by P. H. Roberts and M.
 

Stix, 1971; Moffatt, 1970). Cyclonic fluid motions with a radial component
 

of velocity have appeared in several dynamo models (Parker, 1955,
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Levy, 1972) and in the limit of small length scale can be likened to the
 

turbulent dynamo model. The cyclonic model also has the capability of
 

producing a self-reversing dynamo (Parker 1969, 1971, Levy, 1972), an
 

important observed feature of the Earth's magnetic field. Although other
 

velocity fields can produce a dynamo, the cyclonic model is particularly
 

pertinent to our core model.
 

Kinematic models can thus describe velocity fields necessary for a
 

dynamo,'but they do not indicate the source of fluid motions. These are
 

usually assumed to result from thermal convection within the core. Efforts
 

toward a dynamic treatment including thermal convection have produced a
 

few results, notably the "convective rolls" dynamo of Busse (1973) and,
 

relevant to our core model, the Rossby wave dynamo of Gilman (1969) as
 

extended by Braginsky and Roberts (1975).
 

1.2 Geophysical Problems of the Magnetic Field
 

One ,strongconstraint on the geodynamo is that adequate energy be
 

supplied to maintain the magnetic field. Due to ohmic losses, energy must
 

be supplied to the magnetic field through the velocity field. Since the
 

magnetic field has existed at nearly the same intensity for at least
 

2.7 billion years (McElhinney, et al., 1968, Jacobs, 1975), and the decay
 

time for the fundamental mode of the magnetic field has been estimated at
 

about 10,000 years (Cox, 1972), there has seemingly been a near constant
 

energy supply over geologic time.
 

In a recent paper, Gubbins (1976) reviewed the energy requirements
 

of the magnetic field and provided lower and upper bounds on the energy
 

supply. The upper bound is of order 1020 erg/sec which is the observed
 

surface heat flux, and the lower bound is 2 x 1017 erg/sec by consideration
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of conduction and electric currents. This requires an energy source acting
 

over geologic time of considerable size. The precessional dynamo of large scale
 

motions has been eliminated on the basis of energy constraints (Rochester et al. 1975,
 

Loper, 1975, Rochester, 1977). Latent heat released from the supposed
 

growth of the inner core is marginal as an energy supply, producing
 

motions restricted to near the inner core. (Verhoogen, 1973, Gubbins,
 

1976). The secular variations of the magnetic field require substantial
 

fluid motions in the outermost core (Elsasser, 1946; Backus, 1968; Kahle et al..,
 

1967; Rikitake, 1967).
 

The only other potential energy sources are radiogenic heating and,
 

possibly,gravitational mechanical stirring (Urey, 1952, Braginsky, 1964,
 

Gubbins, 1976, Loper, 197.7). It was in the context of searching for an
 

energy source that 40K was suggested to be in the outer core (Lewis, 1971).
 

This suggestion is rather arbitrary and is not consistent with any known
 

differentiation process. Since the initial suggestion, some workers have
 

tried to demonstrate that under certain conditions potassium would partition
 

into a metallic phase (i.e. the Fe core) from a silicate phase (Hall and
 

Murthy, 1971, Goettel, 1972Y. Other experimental studies have indicated
 

that little or no potassium enters the metallic phase (Oversby and Ringwood,
 

1972, Seitz and Kushiro, 1974, Ganguly and Kennedy, 1977). The observational
 

evidence argues against significant potassium in the metallic phase at low
 

pressures. Bukowinski (1976) calculated that potassium would take on the
 

characteristics of a transition metal at high pressures, but this does not
 

imply that potassium will be selectively partitioned into the core (Ringwood,
 

1977). This issue is still controversial, but aside from whether or not
 

potassium would partition into the metallic phase is the problem of'the
 

amount required. Murthy and Hall (1972) require three-fourths of the
 

potassium within the Earth to be segregated into the metallic core. To
 

partition that amount of potassium into the core is inconsistent with any
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accretion and evolution model for the Earth including the homogeneous
 

accretion model (Ringwood, 1975). The question of potassium in the core is
 

coupled to the question of sulfur in the core. There are other candidates
 

for the lighter alloying element (Ringwood, 1977). Therefore, since the
 

initial assumption is rather arbitrary and because this assumption appears
 

inconsistent with the geochemistry of the Earth, the problem of the energy
 

source is still open.
 

To fill this gap, the idea of a mechanically stirred core has been
 

revitalized. The basic idea is that the inner core has grown continuously
 

over the age of the Earth by precipitating Fe and Ni, excluding the lighter
 

element from .the inner core. This process releases a lighter fraction
 

near the inner core boundary which then causes fluid motions. If the inner
 

core has grown with time and if there is a compositional difference between
 

the inner and outer core, this process may well occur. However, it is not
 

clear that it would be important for the magnetic field, particularly if
 

the core is stratified. The quantitative calculation of the potential energy
 

release (Loper 1977) assumed an adiabatic temperature gradient throughout
 

the core.over geologic time, and this assumption conflicts with many recent
 

results including those of Gubbins (1976). Any stability within thecore,
 

even if only in the outermost part, seriously affects the gravitational energy,
 

available for fluid motions, and, as will be discussed later, precipitation
 

of Fe from the outer core implies a compositionally stratified core.
 

Equation of state fits to the outer core have suggested that it iseither
 

non-adiabatic or chemically inhomogeneous, or both (Bullen, 1969;-Butler and
 

Anderson, 1978). This conclusion has implications for the dynamo mechanism,
 

particularly for a dynamo model that uses large-scale motions throughout
 

the outer core.
 

Therefore, at present there is no consensus on the most.fundamental
 

problem of a sufficient energy source much less any detail of the fluid motions.
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At this point, wa will preview the results of our core model which are
 

relevant to the above problem of an energy source. The final configuration
 

of the model predicts material enriched in U and Th around the core, the
 

20

radioactive isotopes producing up to 10 ergs/sec which represents the
 

upper constraint given by Gubbins. With this large amount of available
 

energy, why have U and Th not been seriously considered previously? In the
 

early development of dynamo theory, Bullard (1949) and Elsasser (1950) did
 

suggest U and Th as candidate radiogenic heat sources. However, at that
 

time it did not seem possible for U and Th to be associated with the
 

•core (Urey, 1952) and the idea fell into disfavor. Since that time,
 

however, therehas been considerable progress in the geochemical and
 

dynamical aspects of the accretion and early history of the Earth. In
 

particular, for the present discussion, the modeling of the condensation
 

sequence and the fall of Allende meteorite in 1969 have been essential in
 

the development of a quantitative inhomogeneous accretion model.
 

2. THE GEOPHYSICAL MODEL
 

We will only briefly summarize the general aspects of the inhomogeneous.
 

accretion model as there is an extensive literature concerning the model in
 

relation to the Earth, meteorites, and the entire solar system ( see Clark,
 

Turekian and Grossman, 1972, Grossman and Larimer, 1974, Anderson, 1972,
 

1973, Turekian and Clark, 1969, Larimer and Anders, 1967., Larimer, 1967).
 

The essential idea is the Earth acereted material during the condensation of
 

the solar nebula, as opposed to homogeneous accretion in which accretion is
 

delayed until after the completion of condensation. By accreting during
 

condensation, the initial structure of the Earth would be influenced by the
 

condensation sequence. The condensation sequence as determined by theoretical
 

calculations of Grossman is shown in Figure 2, calculated at the.supposed
 

appropriate pressure. One prediction from this 
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sequence is that most of the metallic iron would condense before most of
 

the silicates. The volatiles would condense and accrete toward the end of
 

the accretion process. Therefore, the metallic Fe core is present from the
 

beginning, avoiding many of the difficulties faced by core formation in
 

homogeneous accretion models (e.g. Ringwood, 1972, Anderson and Hanks, 1972).
 

This general consideration along with the gross structure of the solar system
 

have given support to this idea, but perhaps the more convincing evidence
 

comes from the detailed geochemistry of meteorites. This model has been
 

successful in predicting major and trace element chemistry and some minerology
 

of meteorites. In particular, the Allende meteorite contains "white inclusions",
 

which have a rather unique chemistry and mineralogy. It is now generally
 

accepted (Mason and Martin, 1975, Lee, Papanastassiou and Wasserburg, 1977)
 

that these white inclusions represent the initial refractory condensate.
 

We use the following variant of the inhomogeneous accretion hypothesis.
 

Planets accrete as the nebula cools and the accreting material has the
 

composition of the solids that are in equilibrium with the nebula at that
 

temperature plus the more refractory material that has condensed earlier
 

and escaped accretion. The mean composition of the Earth therefore becomes
 

less refractory with time and with radius. After dissipation of the nebula
 

the Earth continues to slowly accrete material that has condensed in its
 

vicinity and the more volatile material that condensed further out in the
 

solar system. It is not proposed that all of the refractories and iron
 

are accreted before the silicates. There is always unaccreted material
 

available for interaction with the gas. Iron, for example, is accreted as
 

metal at the early stages but reacts with the silicates to form the
 

ferromagnesium silicates that are accreted later. Likewise, Ca, Al, U
 

and Th are available for incorporation into the later condensates but they
 

are enriched in the early condensates.
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A "pure" inhomogeneous accretion model is not essential to the
 

arguments in this paper. It is only required that the iron and refractories
 

start to accrete before the majority of the silicates which form the present
 

mantle. The viability of the inhomogeneous accretion hypothesis, for our
 

purposes, depends on the relative time scales of nebula cooling and
 

accretion in the early stages of condensation. If cooling is slow relative
 

to accretion rates then the iron and refractories will form the initial
 

nuclei of the planets.- Alternatively, cooling can be rapid if temperatures
 

in the vicinity of the Earth did not drop far into the olivine-pyroxene
 

stability field before dissipation of the nebula. In this case, the majority
 

of the mantle would be added by material perturbed into Earth orbit from
 

cooler parts of the nebula. The earliest condensates also have more time
 

for accretion and possibly experience more viscous drag. Thus, there are
 

several arguments supporting the view that the proto-Earth was refractory­

and became more volatile rich with time.
 

One of the early criticism6 of inhomogeneous accretion for the Earth
 

was that it did not seem possible to melt the initial metallic core after
 

it was accreted and buried. Attempts to do this by the thermal history of
 

accretion (Hanks and Anderson, 1969, Clark, Turekian and Grossman, 1972)
 

were unsatisfactory. Anderson and Hanks (1972) pointed out that the
 

condensation sequence predicts a refractory Ca, Al rich initial condensate
 

before the condensation of metallic iron (see Figure 2). Therefore, there
 

would be Ca, Al rich silicates accreting with the metallic iron and both the
 

theoretical calculations and measurements of the Allende inclusions show
 

this initial condensate to be enriched in uranium and thorium as well as
 

other heavy metals (Figure 2). Therefore, the inhomogeneous accretion model
 

also predicts a long-lived heat source within the initial core.- However,
 

it will be shown that the short-lived nuclide 2 6AI can dominate the early
 

thermal history and be responsible for melting of the core.
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2.1 	The Inhomogeneous Core Model
 

If the inhomogeneous accretion model is interpreted literally one
 

would expect to acerete all the refractory material in a small protocore,
 

prior to the accretion of metallic iron. It is more likely that the iron
 

and refractories accreted together as suggested by the work of. Matsui and
 

Mizutani (1977) and Neukem (1968). Therefore, we allow an initial configuration
 

varying from "pure" to "distributed" as depicted in Figure 3. Regardless of
 

the details of the original configuration, the amount of refractory material
 

can be estimated by assuming that Fe and the refractory material were
 

accreted in accordance to their relative solar system abundance, i.e., the
 

Earth received its full complement of Ca, Al silicates relative to iron.
 

To cover a range of possibilities, we also consider a "one-tenth" model, where
 

we assume that only one-tenth of the refractory material was acereted with or
 

within the iron. The refractory component near the center is not the entire
 

refractory compliment of the Earth. In the later stages of accretion the
 

refractories continue to accrete in more nearly chondriticabundances.
 

The Earth, then is enriched in refractories by about the amount that it-is
 

enriched in iron, relative to cosmic abundances. By considering the complete
 

and one-tenth relative abundances with the pure and distributed
 

geometries, we have covered a broad range of accretion histories thereby
 

testing the stability of the model with regard to the particular accretional
 

history of the Earth.
 

The amount of refractory material accreted is calculated by considering
 

Al and Ca, the two major elements which would be completely condensed before
 

Fe. Table I shows the amount of Ca and Al oxides that are accreted with
 

the iron for the complete and one-tenth models. The mass of Fe in the core
 

is estimated by taking a density distribution close to Earth model Bl
 

(Jordan and Anderson, 1974) and subtracting 15% due to other elements within
 

the present core (Ringwood, 1966, Anderson, 1977). The amount of Ca and Al
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(as oxides) is then determined by their abundance relative to Fe (e.g. Ross
 

and Aller, 1976)
 

To obtain the total mass of the refractory material, we have used the
 

major element composition of Type A Allende inclusions which are considered
 

the best examples of early refractory condensates (Grossman, 1975). The
 

range of compositions of the major oxides in the Type A inclusions are
 

shown in Table 2 along with theoretical calculations at two temperatures.
 

The good agreement merely restates the conclusion of Grossman and others.
 

The composition we have chosen to use for the refractory material in
 

the Earth is indicated in Table 2. The total mass of refractory material
 

can then be calculated from the accreted mass of either CaO or A1203 given
 

in Table 1. The results for both of these oxides are shown in Table 3 for
 

complete and one-tenth accretion. Thus we now have the mass of refractory
 

material accreted with the core for either complete or one-tenth accretion.
 

It represents about 10% of the mass of the core. 

We now consider the present day distribution of Ca and Al oxides in 

the mantle. Taking estimates of the composition of the crust and upper 

mantle (Wyllie,, 1971) we calculate about 1026 g for both CaO and Al 2 0 3 , 

assuming the entire mantle has abundances similar to the upper mantle. 

This will be an upper bound if the upper mantle is a differentiate of the 

lower mantle. This is 30 to 50% less than the amount estimated to be in 

the Earth on the basisof the size of the core and the inhomogeneous 

accretion hypothesis. Although these calculations are crude they are 

consistent with the hypothesis (Anderson, 1975) that the lowermost mantle 

can be enriched in refractories. 

2.2 U, Th and Heat Production
 

From the predicted condensation sequence (Figure 2), we would expect
 

the initial condensates to be enriched in the rare earths and other
 



11
 

trace refractories such as U and Th. The enrichment factor for refractories
 

between Allende inclusions and Cl chondrites is about 20 (Wanke et al., 1974;
 

Mason and Martin, 1975, Ganapathy and Grossman, 1976). The only elements of
 

these groups that we consider in detail are U and Th due to their significance
 

as long-lived heat sources. It is also possible that short-lived isotopes
 

such asP'244pu could contribute to the early thermal history. -The concentra­

tions of U and Th are listed in Table 4. The value of U is the mean concen­

tration from nine coarse-grained Allende inclusions (Ganapathy and Grossman, 

1976) and is consistent with other results (Wanke et al., 1974). The 

concentration of Th is obtained by assuming the cosmic abundance ratio of 

Th/U n0 4. Some evidence suggests that this ratio is higher, perhaps 6-8 

(e.g. Mason and Martin, 1975). A Th/U of eight would increase heat production
 

by about 50% but since we are considering order of magnitude quantities,
 

this factor is ignored. We also ignore the time dependence of heat generatioyl
 

since the half-lives of U and Th are equal to and longer than the age of
 

the Earth.
 

It should be noticed that the estimates for heat production of the
 

order 1019 - 1020 ergs/sec are at the upper limit of the energy demand of
 

the magnetic field as discussed in part one, and these estimates are more
 

than two orders of magnitude higher than the minimum energy required.
 

Therefore, there is more than sufficient energy within or near the core as
 

a simple consequence of inhomogeneous accretion.
 

The Earth's crust is enriched in U relative to the average abundance
 

for the whole Earth and there is a gradation from high to low concentration
 

in rocks from the upper crust to the upper mantle. The total amount of U
 

in the early condensate is of the same order as the total amount estimated
 

for the Earth (see for example, Gast, 1972). A comparable additional amount
 

will be brought in by accretion of the mantle consistent with our version of
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inhomogefteous accretion. :Using the Ca, Al oxides in the mantle as a guide
 

to the distribution of other refractories in the mantle, we estimate that
 

there could be of the order 1019 gms. of U concentrated around the core,
 

sufficient to provide 1019 ergs/sec heat energy.
 

2.3 Initial and Final Geometry
 

As previously discussed, we will consider two initial configurations
 

of the refractory material within the core. The two geometries of pure
 

and distributed accretion are shown in Figure 3a, 3b along with simplified
 

density distributions for each. The distributed geometry represents the
 

case where individual planetesmials of Fe and refractory material were
 

accreted together throughout the core.
 

Since we know that the present core does not contain a silicate
 

protocore (e.g. Birch, 1968; Jacobs, 1975) within it and that the refractory
 

silicates would be gravitationally unstable in an Fe core, the refractory
 

material would be emplaced in the lowermost mantle at the core-mantle
 

boundary. Furthermore, this emplacement will be a very rapid event,
 

particularly as the core becomes more fluid. Thus, the refractory material
 

will be distributed irregularly as depicted in Figure 3c.
 

The gravitational potential energy difference between the initial
 

and final configurations is estimated by using the density profiles in
 

Figure 3. -We assume (i) a sharp boundary between the core and mantle
 

(ii) the equations of state of Fe and the refractories compensate each
 

other so that there is no change of volume (radius) and (iii) the value of
 

3
 
p = 8 gm/cm for the refractory protocore, a rather arbitrary extra­

polation from the lower mantle. 

37±1-
We estimate the potential energy release to be 107 ergs.
 

Using the physical properties for Fe listed in Table 5, 10 ergs could
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either melt the entire core, or raise the overall temperature 500K and melt 

half the core. As potential energy is released, the associated temperature 

rise would increase'the rate of potential energy release due to a lowering 

of viscosity or the melting of the -ore. Thus, there is a cascading 

effect that leads eventually to the emplacement of the refractories into 

the highly disturbed lowermost mantle. As a consequence of this event, 

the lowermost mantle could have lateral variations-of different size scales, 

We are mainly concerned with a size, scale of 1,000 kilometers for,considering 

the geodynamo.- The seismological evidence for lateral variations in the 

lowermost mantle will be discussed later.
 

2.4 Early Thermal History
 

To estimate the time scale of the segregation event we need to
 

specify the initial temperature and then determine the time scales of
 

radiogenic heating and gravitational rising of the refractory material.
 

Calculated initial temperature profiles of the accreted Earth (e.g.,
 

Hanks and Anderson, 1969) are not fully ppropriate as they have considered
 

the material accreted as a thin shell. Recent work on the details of
 

planetesmial impacts (O'Keefe and Ahrens, 1976) have shown that a larger
 

portion of energy can be trapped within the planet. Also, the effect of
 

an early atmosphere has not been evaluated. Consequently, we will consider
 

an ihitial temperature for the Fe core based on the accretion temperature
 

and adiabatic heating which will be'a lower bound as accretional heating
 

is neglected which could be important in the outermost core.
 

Although the condensation temperature of Fe is about 1400 K, we will
 

use an accretion temperature of 1200'K-as this is the temperature at which
 

most of the Mg silicates would be condensed. This provides a lower bound
 

on the temperature of-the accreted core. The adiabatic heating is on the
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order of a few hundred degrees (Jacobs, 1975); we'use-a value of 300 K.
 

Thus, the initial temperature of the inhomogeneously accreted core is
 

greater than 1500 K' This is indicated in Figure 4 along with some
 

estimates of the Fe melting curve and the Fe-S eutectic. Although we do
 

not require that sulfur be the light element in the core, the Fe-S eutectic
 

is shown to demonstrate the importance of the lighter element in lowering
 
the initial melting point. Other candidates for the light element should
 

also form a eutectic system with Fe (Ringwood, 1975).
 

There is a large uncertainty in how much the core must be heated to
 

initiate melting. The two Fe melting curves in-Fig.4 represent a range
 

of proposed values, and the time of melting depends-on whether the
 

eutectic curve is appropriate or not. Instead of making the most conservative
 

estimate of the temperature rise required atoinitiate melting of the core
 

(i.e., taking the initial temperature of 1500 K and using the
 

Higgins and Kennedy melting curve), we will consider the various heat
 

sources and the-associated temperature rise in the core within two billion
 

years (the time constraint to provide a fluid core from paleomagnetism,
 

McElhinny et al. 1968). 

The contribution to-heating from the long lived radiogens U and -Tb 

varies from-possibly useful to insignificant depending on which value of 

heat production is used, 1019 or 1020 ergs/sec. Using the heat capacity 

listed in Table 5and-assuming that the heat is retained in the core, 

Heat Production u 10 ergs/sec 500 K Temperature rise in 2 b.y. 

1019 ergs/sec + 50 K It It it 

A 500 K temperature increase could be important, however U and Th cannot 

melt the core in sufficient time. Using the heat of fusion from Table 5 

20and a heat production of 10 ergs/sec., the time required to melt the
 

entire core would be 12.2 billion years. Figure 4 shows that more than
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a 500 K temperature rise would be required to start melting. Therefore,
 

U and Th cannot heat the core and then melt it within 2 b.y.
 

The role of short-lived radiogenic.heat sources in the planets and
 

meteorites has been discussed to a certain extent (e.g. Urey, 1955;
 

Fish, Goles and Anders, 1960) Al is the most important isotope in
 

view of its heat production capability. However, with a half life of
 

0.72 m.y., Al would be a significant heat source for a limited time
 

after nucleosynthesis. We can quantify this, as there is now evidence
 

from the Allende white inclusions that 26 Al was present with an initial 

5
abundance ratio 26Al/27Al = 5 x 10- (Lee, Papanastassiou, and
 

Wasserburg, 1977). Using this abundance ratio and the refractory model
 

composition in Table 2, there would have been a total heat productidn
 

26 12
from Al of 1.2,x 10 ergs per gram of refractory material. For the
 

average model of 4' 2 x 1026 gms. .refractories, this would be a total 

heat production of 2 x 1038 ergs. This is enough energy to raise the core 

temperature by more than 10,000 K. Of the other short lived.radiogens, 244p and
 

U are the most important. The half-lives and heat production of these
 

244
isotopes are listed in Table 6. There is some evidence for Pu in
 

244the Allende inclusions (Shirck, 1974) and the concentration of Pu
 

236
in Table 5 is based on that data. The concentration of U was esti­

mated by Urey (1955) to be the same as 238U, and we have taken one
 

244 236
tenth that value. If the total heat production from . Pu and U was 

distributed throughout the core, it would raise the overall temperature 

by only 10 K.
 

We can conclude then, that of the known short-lived isotopes, 244Pu
 

and 236U are not important, whereas 26Al could raise the overall core
 

temperature by more than 1,000'K and melt -it even if the proto-core
 

accreted 3 m.y. after Allende. Given the assumption of inhomogeneous
 

accretion, it seems likely that 26Al is responsible for melting the core.
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26
It should be noted, however, that Al is not required to melt the
 

core. Another energy source is the potential energy release upon re­

distribution of mass in the core. This energy release will proceed before
 

the core is molten if we regard the core as a viscous fluid. We
 

will assume an upper bound on viscosity and find the characteristic time
 

for a planetesmial of refractory material to move 1,000 km. radially by
 

a Stokes calculation (Lamb, 1932), thereby indicating the time scale for
 

release of potential energy into heat energy. If we take a viscosity
 

of 1020 poise, then the characteristic time for a planetesmial'with a
 

size scale of 1 km. is 1 billion years, and if the viscosity is 10
15
 

poise the characteristic time for a 10 meter fragment of refractories
 

is 100 m.y. These time scales are less than the 2b.y. time constraint.
 

In summary, we find two significant heat sources which could
 

either independently or acting together in some combination raise the
 

core temperature 1,000 K or.more and be-responsible for the initial
 

melting. 'The decay of 26Al is the largest heat source and could
 

accomplish the above if.the Earth was accreted within 3 m.y. after the
 

formation of the Allende inclusions, assuming these to be representative
 

of early condensates in our nebula. We propose that 
26'

Al was important,
 

at least for providing a partially melted core. The other significant
 

heat source is the potential energy release associated with the rising
 

refractories, and our calculation for an assumed upper limit of the
 

available energy shows this heat source capable of melting at least
 

some fraction of the core. Even if there is no significant heating-of
 

the core due to either long or short lived radiogens, the refractory
 

material rising through the viscous solid core would release the
 

potential energy on a time scale of 1 b.y. or less.
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Therefore, we conclude that the inhomogeneous accretion model for the core
 

is capable of producing at least a partially molten core within. 2 b.y.
 

after-accretion. The refractory material would'be emplaced into the
 

lowermost mantle and we would expect an irregular distribution.
 

2.6 Physical Properties of Refractories
 

After the emplacement of the 'refractories in the lowermost mantle,
 

there remains the question of whether or not this material will stay
 

there over geological tie. If the refractory material is lighter than the
 

normal mantle around it, then it would rise through the mantle.
 

Therefore, we need to estimate the relative densities of normal mantle
 

and refractory material and we do this by using shock wave results.
 

The component phases relevant to the model compositions are compiled 

in Table 7 with their inferred shock wave densities at 1.2 Mbar, a 

pressure corresponding to 'u 250 km. above the core-mantle boundary. 

The uncertainty in shock temperatures (2,000-4,000 K Jeanloz, personal 

communication) roughly corresponds to the uncertainty in the geotherm 

at the core-mantle boundary (Jacobs, 1975). We are primarily concerned 

with relative densities between two compositions and we assume 

that any difference between the dynamic and static densities applies to 

both model compositions in approximately the same proportion. 

We have used a pyrolite composition (Ringwood, 1972) for "normal"
 

mantle. The pyrolite model has been developed to fit both the geo­

chemical and geophysical constraints of the upper mantle. The pyrolite
 

and refractory models are listed in Table 8. Calculated composite
 

densities are given in Table 9 for different mineral assemblages. The
 

densities in the lowermost mantle are estimated as 5.4 .± 0.1 gm/cm3 for
 

the refractory material and 5.3 ± 0.1 gm/cm 3 for normal mantle.
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It is concluded that the refractory material is gravitationally
 

stable In the lowermost mantle within the errors of the presently
 

available technique and data.
 

Though not crucial in terms of affecting the evolution of the core,
 

we also estimate the difference in bulk sound velocity between normal
 

mantle and the refractories. This physical property is important as
 

a seismological effect to test the model. The oxides and CaSiO3
 

(perovskite structure) and their seismic parameter 4 are given in Table 10. 

Using the additivity of 4 (Anderson, 1969), the pyrolite model gives
 

= 60 which agrees with the extrapolated lower mantle 4 (Anderson and 

Jordan, 1970). This corresponds to a bulk sound velocity of 7.7 km/sec 

for normal mantle. For the refractory material, with an oxidemineralogy, 

the bulk'sound-velocity is 7.35 km/sec which is v 5% lower than normal 

mantle. -With Ca in the perovskite structure the bulk sound velocity is 

7.1 km/sec, t 8% lower than normal mantle. Thus, from this cursory
 

treatmentj we would predict a difference in bulk sound velocity of around
 

52 betwen normal and refractory lowermost mantle. Observational seismology
 

related to'this is discussed later.
 

2.7 Inner Core and the,Light Element
 

- Two features of the core which are associated with core formation 

and eVolution are the solid inner core and the required light element 

in the outer core.
 

There are two processes that could cause a solid inner core;,
 

(i) the core did not become completely molten during the segregation
 

event and'the solid material coalesced into the solid inner core,
 

(ii) freezing of the inner core due to gradual cooling. It is.possible
 

that both of these processes have occurred, (i.e., there was an initial
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inner core due to incomplete melting and over geologic time-there has
 

been some addition of solid .precipitate). The details are obviously
 

dependent on the early thermal history, in particular the 26Al abun­

dance and the redistribution of potential energy. The second process
 

is controlled by the thermal gradient and the melting gradient. The
 

inner core is presently 5% of the mass of the core and it could either
 

have grown or eroded with time, depending on the balance between heating
 

and cooling.
 

Equations of state, seismid velocity, and shock wave analyses
 

have indicated that the Fe-Ni outer core contains 'v10% of a lighter
 

element (e.g., Birch, 1952, 1964; Knopoff and MacDonald, 1960; Anderson,
 

Sammis and Jordan, 1972). The candidates that have been given the
 

most attention are 0, Mg, Si, and S. In view of our model, sulfur
 

could only be added as CaS, a refractory, or as FeS, a late stage
 

condensate trapped in the mantle. The amount of CaS available is
 

likely to be trivial. FeS in the mantle would tend to drain to the interior because
 

of its low melting point and high density. Ringwood (1977) has recently
 

discussed the core in,terms of a FeO-Fe solution approximating Fe20 in
 

comuosition. Some fraction, presumably small, of the refractories may
 

be dissolved in the core.
 

After the core segregation event, the fluid outer core -would
 

be left in an adiabatic state., Whether or not the core remains ther­

mally stable depends on the distribution of heat sources and the
 

state of -the mantle. If all the U and Th is removed with the refrac­

tories to the lowermost mantle then the only energy sources in the
 

core are a growing inner core and further gravitational separation in
 

the outer core. Gubbins (1976) has indicated that-inner core latent
 

heat is not capable of maintaining an adiabatic gradient throughout
 

the core (See Figure 5 for this gradient and a range of core adiabatic
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gradients). The characteristic conduction time T is given by T ' L 1K
 

where L is the radial length scale and K is the thermometric conduction.
 

Using L u 1,000 km and K % 10 cgs, T r. 3 billion years. Therefore,
 

we would not expect an isothermal core even in the absence of heat
 

sources.
 

Two other possibilities for generating a super-adiabatic gradient
 

somewhere within the core both pertain to the outermost core; solubility
 

of some U, Th in the core and a sudden cooling from the mantle.
 

Assuming an internal heating appropriate for 10% of the initial U and
 

Th,the steady state gradient (Figure 5) is subadiabatic except perhaps
 

in the outermost core. The other gradient shown in Figure 5 is a transient
 

effect due to a sudden decrease of temperature in the lowermost mantle.
 

Since the characteristic conduction time of the mantle is much longer
 

than that of the core, this cooling could only be caused by downward cdn­

vection of "cold plumes" within the mantle in the sense of McKenzie
 

et al. (1974), or the upward removal of hot material as thermal (Morgan,
 

1971) or chemical plumes (Anderson, 1975). These processes involving
 

whole mantle motions might occur periodically but we do not consider them­

important for causing a superdiabatic gradient for maintenance of the
 

magnetic field.
 

In considering the gradients plotted in Figure 5, it seems
 

possible that the core could be adiabatic in some parts but probably not
 

throughout, therefore causing thermal stability against whole core
 

convection.
 

The subject of compositional stratification of the fluid outer
 

core has been considered by Usselman (1975). He assumed the fluid to be
 

at the iiquidus composition of the Fe-FeS system at core conditions.
 

The details of the calculation do not apply if the light element in the
 

core is not sulfur. -However, if the core is a eutectic system; a general
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conclusion is that for a core temperature between the liquidus and the
 

eutectic, the core is probably compositionaily stratified. This can be
 

seen in Figure 6 for a range of core adiabatic gradients. Only if the
 

temperatures are well above the liquidus throughout would one expect a
 

chemically homogeneous core. The fact that the inner core iszbelow the
 

liquidus argues for a compositionally stratified core if the outer core
 

is -lose to adiabatic. To be compositionally homogeneous the core would
 

be sub-adiabatic. Therefore it is possible that the core is either.
 

compositionally or thermally stable thus resisting whole core convection,
 

as required by the gravitational stirring mechanism which stipulates
 

a sub-liquidus adiabatic core. This conclusion restricts possible radial
 

fluid 	motions.
 

2.8 	Summary of Geophysical Model
 

Before discussing the fluid motions in the core we summarize the
 

main points of the present model:
 

The early condensates, Ca and Al rich silicates, heavy refractory
 

metals, and Fe accreted to form the protocore. The early thermal history
 

is likely to be dominated by 26Al which, for the average refractory model,
 

can produce enough heat to raise the core .temperatures by 1,000 K and
 

melt iteven if the Earth accreted 3 m.y. after Allende. In the absence
 

of 26Al, potential -energy release could still melt some fraction of the
 

core.
 

Melting of the core results in unmixing and the emplacement of
 

refractory material (including U, Th and possibly 26Al) into the lower­

most mantle. The lowermost mantle should be laterally inhomogeneous
 

from 	a scale of perhaps 1 to 1,000 km. Calculations of the physical
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properties of the refractory material and normal mantle demonstrate
 

that the refractories will be gravitationally stable in the lowermost
 

mantle, but will have a velocity difference of a few percent. The
 

lowermost mantle should, therefore, be inhomogeneous and a scatterer
 

of seismic energy, which is observed.
 

Depending upon the available heat energy, the Fe core could have
 

been either completely or partially molten at the time of unmdxing.
 

Therefore, the present solid inner core could be remnant solid Fe
 

(or Fe-Ni) from the segregation event, or it may have grown through
 

geologic time from the precipitation of the solid phase from the fluid
 

core.
 

Even if as much as one-tenth the initial U and Th is present in
 

the fluid'core, an adiabatic temperature gradient is not maintained
 

throughout the entire core. However, the core could be adiabatic in
 

some pairts. There is also a possibility of compositional stratification.
 

As a consequence, parts of or all of the core may be stable against
 

convection.
 

There is some seismic data relating to the state of the lower­

most mantle. There are two regions of the mantle which show significant
 

scatter in their properties; the.upper .mantle and the lowermost mantle.
 

There is a variety of evidence of anomalous lower mantle properties,
 

both large scale lateral variations and short period scattering (e.g., Julian
 

and Sengupta, 1973; Sacks and Beach, 1974; Husebye, King and Haddon, 1976;
 

Doornbos and Husebye, 1972, Haddon and Cleary, 1973).
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There have been some attempts to look at regional differences in
 

the 	lowermost mantle (Phinney and Cathles, 1969; Mondt, 1977; Wright
 

and Lyons, 1975). The general conclusion has been that there are
 

regional differences, but these results are not yet definitive. For
 

the purposes of determining the size and lengtC scale of some particular'
 

lateral variation in the 	lowermost mantle, a detailed high resolution
 

study of a portion of the lowermost mantle is required.
 

We will examine briefly 	the interaction of whole iantle convec­

tion 	with the lowermost mantle. If there is whole
 

mantle convection, then 	material in the lowermost mantle will be trans­

ported upward. The factors influencing this are; the stability of the
 

refractories (i.e., their density, viscosity and Grfneisea parameter
 

relative to normal mantle), the style of convection, and boundary layer
 

effects. We propose distributed'refractories as a cause of fluid
 

motions in the core. They could also serve to drive convection in
 

the mantle and may also 	actively participate in the convection and
 

thereby be removed. For example CaO, A12 03, U and Th are enriched in
 

the crust and it is usually assumed that they have heen'efficiently
 

removed from the mantle, or at least the upper mantle.
 

In the'following section,the basic assumption is that at least
 

some refractories have been retained in the lowermost mantle throughout
 

geologic time.
 

3. 	Fluid MNtions'and the Geodynamo
 

We have shown that U and Th &an provide enough heat energy to
 

maintain 	the Earth's magnetic field against-dissipative losses, These elements
 

40
 
have 	the advantage bver K of providing a uniform beat source'over
 



24
 

geological time. Fulfilling the energy demand of the geodynamo does
 

not, however, guarantee that the dynamo process will occur. Since
 

the basic mechanism of the geodynamo is fluid motions within the core,
 

a complete model for the core should provide sufficient fluid motions
 

for generation of the magnetic field. Though it is often stated that
 

almost any "sufficiently complicated" three dimensional fluid -flow
 

will cause a dynamo, the explicit demonstration of a regenerative
 

dynamo has been done for only a few flow geometries as mentioned
 

earlier. In view of this, we first consider the basic character of the
 

fluid motions, and then relate this to specific dynamo models appro­

priate to our model.
 

The dynamics of a rotating thermally stable fluid with laterally varying
 

surface-heating has been extensively studied both theoretically and
 

experimentally due to its relevance to atmospheiic motions (see Hide and
 

Mason 1974; Fowlis and Hide, 1965, Phillips, 1963). The geometry
 

usually bonsiderea in these studies is a rotating cylindrical system
 

with heating in the middle and cooling on the outside or vice versa.
 

The geometry of the system for the Earth is shown in Figure 7 where
 

the heating and cooling is also indicated. Lateral heat transport in
 

the mantle is negligible compared to the core, because the mantle
 

thermal conductivity is an order of magnitude lower, and the viscosity
 

orders of magnitude higher than the values for the core. Therefore,
 

the lateral heat transport takes place in the core where fluid motions
 

redistribute the heat. Although anyfluid with lateral surface heating
 

will have convection (e.g., Landau and Lifshitz; 1959), we need to
 

check if convection dominates conduction as the mode of heat transfer.
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The non-dimensional parameter'which compares the effects of advection
 

to conduction of heat is the Rayleigh number Ra, where Ra >> 1 indi­

cates that convection of heat dominates. Ra is given by:.
 

FLg
 
Ra
 2 

PCCppK V 

where L° is the largest characteristic length. With the physical
 

parameters given in Table 5 and the flux F given by'1/10 of the U and
 

Th of the initial condensates distributed over one-tenth of the surface
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of the core then Ra no 10 >> 1. Therefore, Conduction can be neglected 

and for the length scales considered the Taylor'number Ta % 108->> 1, 

indicating that the interior flow is inviscid. The effect of 

rotation is measured by the Rossby number Ro, and for our system the 

- 7
external Rossby number Ro n'10 << 1. Therefore, rotation is important
 

and the quasi-geostrophic approximation is valid so that there is an
 

azimuthal 9'thermal wind" rotating around the heat source (see also,
 

Holton, 1972), i.e., a cyclonic motion. This type of fluid flow is
 

shown in Figure 8a. The symmetric fluid flow is subject to wavelike
 

instabilities in the azimuthal flow lines, as depicted in Figure 8b,
 

which correspond-to the lateral transport of hot and cold fronts.
 

These baroclinic instabilities will occur for the dimensionless
 

parameter B < 1, where
 

B1/2 I B D
 
fBL
 

0
 

wB is the Brunt frequency and D is the'characteristic vertical scale.
 

For our purposes, a more useful criterion of stability is to use the
 

horizontal length scale of the baroclinically unstable waves LB as
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indicated in Figure 8b where
 

LB 1 B1
/ 2 L
 

Thus, if B / 2 'u I or B / 2 > , the azimuthal- flow is stable, while if 

BB1/2 <..l the preferred length scale of the system will be smaller than 

Lo . Theabove relation can be rewritten as 

L (agT*) 1/ 2 D
 

dT 

where T* = r --L is the difference between the adiabatic gradient and 

the actual temperature gradient. As the abtual gradient approaches the 

adiabatic gradient, T* -- 0 so that LB tends to zero. That is, the 

fluid flow breaks up into small eddies until a new balance with the 

viscous term is reached. 

Although we do not knowi T* exactly, from our earlier thermal con­

siderations we expect that the core is sub-adiabatic but not isothermal.
 

The characteristic depth scale D will also depend upon the vertical
 

stability of the fluid. If the core is adiabatic, then the fluid
 

motions could extend throughout the core. A core gradient less than
 

adiabatic will confine the motions to the outermost core. Given the 

uncertainty in the temperature gradients, we cannot provide a definite 

answer to-even an order of magnitude, but it is possible to determine 

an upper bound on LB by taking both T* and D as their largest
 

values which are, T* \r % 10o - 5 deg/cm and D ob 108 cm. This gives LB 

1,000 km r' L 
0 
, and since an isothermal core: and vertical scale length 

of 1,000 km are limit conditions, we are virtually assured that L3 < 

L0 1,000 km and, therefore, the style of fluid motions is that ofo 

a baroclinically unstable azimuthal flow which can break up into small
 

cyclonic and anticylonic eddies of scale LB. For example, with
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6
T* = 0.5-x 10- deg/cm and D n. 1.0 km,. LB ' 10 km, indicating the 

strong effect of vertical stability upon D. This regime of flow with 

a relatively small length scale is shown in Figure 8c and is referred to 

as the irregular regime from experimental work (Fowlis and Hide, 1974). 

Our treatment of fluid motions has been rather cursory. This is 

justified by the large uncertainties of the pertinent physical parameters. 

The main point is to establish the style of fluid motions in the absence of 

Lorentz forces and this simple scaling analysis indicates that the basic flow 

will be a baroclinically unstable azimuthal flow breaking up into small eddies 

for a sttong vertical stability. 

If the Lorentz force dots not alter the basic fluid motions, we could 

then argue that the cyclonic motions produced are those required by the 

kinematic dynamo models of either large scale cyclonic cells (Parker, 1955; 

Levy, 1972), or in the limit of small scale eddies the ca and a dynamos 

from mean field electrodynamics (e.g., Moffatt, 1972; Steinbeck, Radler and
 

Krause, 1971). This is not necessary, however, since work-exists that considers
 

directly the dynamo effects of baroclinically unstable waves. Gilman (1969)
 

introduced a Rossby wave dynamo with particular application to the Sun and
 

found regenerative dynamo action although his treatment was not.completely
 

rigorous. One difficulty encountered, particularly if the core is stably
 

stratified, thereby limiting the vertical scale height, is the regenerative
 

capability of the vertical motions. The horizontal motions will cause a large
 

toroidal field, but some vertical component is needed to regenerate the poloidal
 

field. Thus, work such as that of Braginsky and Roberts (1975) is important
 

as they found the regenerative effects-of baroclinic waves are, in fact,
 

concentrated at the "critical level" where the wave and thermal wind velocities
 

are equal.
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Although the argument is not complete, it appears that the fluid motions 

expected in the outermost core are those of a dynamo for which regenerative 

effects could be confined to a small vertical scale. 

Even if the character of fluid motions is appropriate for a regener­

ative dynamo process and there is sufficient heat energy available to 

the core, there still remains the question of converting the heat energy 

to magnetic field energy. This is made easier by Moffatt's (1972) analysis. 

He concluded that the magnetic energy density would be equal to, or greater 

than, the kinetic energy density. Therefore, we will consider just the 

conversion of heat energy to mechanical energy in.the absence of the 

magnetic field. As the efficiency of this conversion is strongly dependent 

upon the depth of fluid motions, we will instead choose a minimum desired 

efficiency and then find the corresponding depth scale by considering a 

cycle of heat transfer as 1.) cooling along the core-mantle boundary by -

AT, 2.) adiabatic sinking to a depth with temperature change AT, and 

then 3.) isothermal heating of the rising fluid. If we use the ideal 

thermodynamic efficiency'(Bullard and Gellman, 1954; Metchnik et al., 

1974), for the core and require a minimum efficiency (0.1%) so that 

1020 erg/sec heat energy is converted to 1017 ergs/sec mechanical energy, 

6
the depth scales for adiabatic gradients of 10 - 10- deg/cm are 0.3 ­

3.0 km. Therefore, the fluid motions extend to a depth of order 1 km and
 

more likely to 10 km or.more.
 

This section on the fluid motions and geodynamo is mostly
 

qualitative. To provide a rigorous connection requires specifying
 

the important physical parameters (e.g., T*) and solving the complete
 

dynamical problem. It is not possible to do either of the above
 

problems now, although in the future better estimates of T* and other
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parameters may be provided and dynamical treatments may 'be feasible.
 

The main emphasis of this section has been to at least qualitatively
 

demonstrate that though the fluid motions from a differentially heated
 

core may occur at a length scale ranging from 1 to 1000 km, they
 

correspond to types of motion used in various dynamo models, from the
 

Rossby wave dynamo for large scale motions to ao and a2 dynamos if
 

the motions are small scale.
 

To conclude this section, we should note that although we have
 

attributed the geodynamo to fluid motions caused by differential
 

surface heating, other motions of different size and time scales within
 

the core are not excluded. In particular, if the core is stable and
 

the inner,core has grown throughout geologic ,time; then either
 

suspended Fe precipitate or lighter'fluid at the inner core boundary would
 

collect until the stability is exceeded causing overturning in the core
 

(see Loper and Roberts, 1978). This effect could play a role in the
 

puziling behavior of the frequency of magnetic field reversals (i.e., the'
 

"quiet periods"), which displays a time scale on the order of 100 m.y.
 

(NcElhinny, 1971; Reid, 1972; Stewart and Irving, 1973). Thus, our view
 

is that core motions may be composed of steady motions in the outermost
 

core which provide the main magnetic field with possibly other motions in
 

the interior such as an occasional overturn. An interesting feature of
 

a geodynamo generated by laterally varying mantle heat' sources is that
 

field irregularities may persist over time and space as the irregular
 

heat sources are locked in the mantle.
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4. Summary 

A geophysical model for the formation and evolution of the core
 

and lowermost mantle is proposed which follows from the inhomogeneous
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accretion hypothesis. It is proposed that Al dominates the early
 

thermal history. One of the important consequences of the model is
 

that long lived radioactive heat sources are distributed irregularly
 

in the lowermost mantle and drive the fluid motions in the core which
 

may be responsible for the geodynamo. Seismological evidence indirectly
 

supports this model. -The anomalous lower mantle velocity gradient suggests
 

chemical inhomogeneity and/or a high thermal gradient. The evidence
 

for lateral variations suggests a varying composition. We have shown
 

that the refractory composition is stable in the lowermost mantle.
 

Although uncertainties in the model parameters and physical parameters
 

of the core do not allow a unique prediction of the state of the core,­

the questions of stability of the core and origin of the inner core
 

are clearly seen in context of the model.
 

In presenting the model, we have considered the known important
 

physical and geochemical constraints, including the existence of the
 

magnetic field, and conclude that an inhomogeneous accretion model is
 

at least hompatible with all factors. A new driving mechanism, differential
 

heating from above, is proposed to sustain the dynamo.
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TABLE 1
 

Abundances of fully aecreted Ca, Al and accreted mass of oxides calculated
 

with Fe core 'v1.7 x 1027 gms
 

ACCRETION ABUNDANCE RATIOS MOLAR ABUNDANCE TOTAL MASS OF OXIDES (GMS)
 

MODEL Ca Al 
 Ca Al CaO Al203
 
Fe Fe 

24024 126 12 

1.3 x 1.5 x102 6 

COMPLETE .074 .096 2 .2 x 1024 2.9 x 

23 23 25 *025 
ONE-TENTH .0074 .0096 2.2 x 10 2.9 x 1.3 x 10 1.5 x 10 



TABLE 2
 

Calculated condensate compositions compared with the compositions of Allende Type A inclusions.
 

Also shown is the model composition which is the mean value of the inclusion compositions.
 
(After Grossman, 1975)
 

TYPE A INCLUSION* CALCULATED CONDENSATE MODEL 
OXIDE (i) (ii) Composition.at Ptot = 10-3am COMPOSITION 

15000K 14750K 

CaO 29.7 36.5 35.7 32.3 33
 

A203 41.8 35.1 38.8 34.8 38
 

SiO2 18.0 22.2 19.3 21.7 20
 

MgO 9.7 5.4 4.3 9.4 8
 

TiO2 0.84 0.79 2.0 1.8 0.8
 

* (i) and (ii) are the compositions corresponding to the extremes of the spinel/melilite ratio. 



TABLE 3
 

Model composition of refractory material and calculated total mass
 

TYPE A INCLUSIONS TOTAL MASS OF REFRACTORIES (GMS) 
Anoles 

OXIDE wt.% 100 gm COMPLETE ONE-TENTH 

.59 3.8 x 1029 3.8 x 1025
CaO 33 


.37 3_9 x 1026 3.9 x 1025
Al203 38 


TiO2 0.8 .01
 

MgO 8 .20
 

SiO2 20 .33
 



TABLE 4
 

Heat production of U and Th contained in refractory material
 

Element Concentration(ppb) MASS (gms) TOTAL HEAT PRODUCTION
 
ergs/see
 

COMPLETE ONE-TENTH COMPLETE ONE-TENTH
 

ui0 2 0  U 163 6.3 x 1019 6.3 x 1018' fi019 

1020 1019 ,Th 635 2.4 x 10 2.4 x 1~
 



TABLE 5
 

Physical properties for the fluid core
 

PROPERTY SYMBOL VALUE SOURCE 

Density p M0 gm cm - 3 e.g. Jordan & Anderson 1974 

Gravity g io3 cm sec -2 " 

Thermometric 
conduction K fl0O- cm sec e.g. Kennedy & Higgins 1972 

Heat capacity Cp %5x10 6 erg gm-ldeg­ 1 Verhoogen 1961 

Heat of Fusion H A.4x109 erg gm -I " " 

Coefficient of -6 -1 
volume expansion a r5xlO deg Frazer 1973 

Kinematic viscosity v i cm2 see-1 See Gibbins 1976 

Coriolis parameter f O­ 4 sec - ' (mid-latitudes) 

Heat flux at c-m-b 2 -1 
from refractories F M0 erg cm se­

of c-m-b surface 



TABLE 6 

Heat production of short lived nuclides 

Total 
Heat Production 

Concentration for Average Refractory 
Energy in refractories Model (%2x10 2 6 gms). 

Nuclide 1/2 life erg/gm(nuclide) ergs 

244pu 76 m.y. 6.24 x 1016 .0.67 ppb 8.4 x 1033 

236U 24 m.y. 1.86 x 101 6  16.3 ppb 6.1 x 1033 

26Al 0.72 m'.y. 2.4 x 1017 5 x 10-6 2 x 1638 



TABLE 7
 

Mineral densities determined at a pressure of 1.2 Mbar
 

Molar
 
Oxides-and P 3 M voluwe
 
Minerals (g cm ) (g/mol) (cmJ) Reference 

SiO2 5.14±0:1 60.1 11.20 Ahrens et al.
 
(1977)
 

2(mg'.45 Fe.55)SiO4 6.11±0.1 175.4 28.7
 

2(Mg. 9 Fe.l)SiO 4 5.27±0.1 147.0 27.9
 

(Mg 9 Fe.)SiO3 5.30±0.1 103-6 19.6 "
 

CaO 5.71±0.1 56.1 9.8. Jeanloz & Ahrens
 
(1977)
 

Al203 5.18±0.1 102.0 19.7 Clark (1966)
 

79.9 12:1 Ahrens et al.
TiO2 6.60±0.1 (1977)
 

http:2(mg'.45


TABLE 8
 

Contrast in composition of normal mantle and refractory material
 

Oxides Normal Mantle Refractories 
wt. % #moles/100 gms. wt. % #/holes/100gms. 

SiO2 45.2 .773 20.0 .33 

MgO 37.5 .964 8.0 .20
 

FeO 8.00- .114 (1.44) (.02)
 

CaO 3.10 .057 33.0 .59
 

3.50 .035 38.0 .37
Al203 


TiO2 .0.70 .009 0.80 .01
 



TABLE 9 

Calculated composite densities for the model compositions 
(Fo4-Forsterite, En+Enstatite) 

Model 
'Composition 

Composite D nsity 
(gi cm - ) 

Normal 

Mantle 

Olivine 
rich 

.532 Fo + .007 Fo 
F'9) ("45)+ 

+ .035 Al203 + .009 TiO 2
23 9TO 

.236 SiO2+.057 
2 

CaO 
5.28 

Pyroxene 
rich 

.468 En + 298 Fo(.9) + .007 Fo( 4 5) 
" • 

+ .057 CaO + .035 Al203 + .009 TiO 2 

5.31 ± .1 

Refractory 
Material 

Olivine 
rich 

.11 Fo(.9) + .22 Si 
I.S)32AI2 

+.37 A20 + OlTiO2 

+59.Ca 
5.36 ± ; 

Pyroxene 
rich 

.22 En (.9)+ .11 SiO2 + .59 CaO 

+ .37 AI203 + .01 TiO 2 

5.38 ± .1 



TABLE 10
 

Seismic parameter (D6 of the component oxides
 

Oxides D00 (km/sec)2 Reference 

SiO2 85 Anderson (1969), Davies (1974) 

MgO 45 

FeO 27, 30 

CaO 32, 35 

Al 02 64 

50 Davies, (1974)
TiO 2 


MgSiO3 62 Lieberman et al. (1977)
 

perovskites
 

CaSiO 3 52
 



Figure Captions
 

Figure 1: Physical properties of the core and lowermost mantle; 

density; pressure, shear and compressional wave 

velocities. (After Jordan and Anderson 1974).. 

Figure 2: Condensation sequence from the solar nebula at total 

pressure = 10- 3 atm. The-heavy metals and Ca, Al 

silicates condense before Fe. Olivine (Mg2 Si04) begins 

condensation befoie all of the Fe/is condensed (after 

Grossman and Larimer"1974) 

Figure 3: Geometry and simplified density structure of initial 

and final configurations by conserving mass and radius. 

The initial core geometry from pure inhomogeneous 

accretion with the assumed density structure is shown 

in (a), (b) shows the average density structure for 

"distributed" geometry, and (c) shows the final geometry 

after the core segregation event idth the refractory 

silicates distributed irregularly in the lowermost mantle; 

(The near equivalence of refractory and normal mantle 

density is demonstrated in 2.6). 

Figure 4: Temperatures relevant to the core's early thermal 

history. A lower bound on the initial temperature is taken 

from the condensation temperature of mantle silicates. The range 

indicates-the temperature increase from adiabatic compression. A range 

of melting temperatures is shown to indicate the 

uncertainties involved in determining how much heating 

of the core is needed to commende melting. 



Figure 5: 	 Temperature gradients for the outer core. -The band
 

indicates the possible values-of the adiabatic gradient.
 

The two gradients for internal.heating.are calculated for
 

half and one-tenth of the accreted U and Th dispersed
 

within the core.' The gradient due tofreezing of the
 

inner core assumes the entire inner-core has frozen over
 

the age'of the Earth. Neither freezing of the inner core
 

nor internal heating from U -and.Th seem capable of main­

taining an adiabatic gradient throughqut. The gradient
 

caused by cooling from the mantle at a time scale << 1 b.y.
 

is also shown though of dubious imortance.
 

Figure-6: 	 If the lighter element forms a eutectic system with Fe,
 

then the fluid composition will vary with radius and.
 

temperature, as indicated by the c6ntours of lighter
 

element percentage. *The hatched region shows-the range
 

of core adiabats. Dependent upon the temperature gradient,,
 

the core could be compdsitionally stratified;. For example,
 

with the particular core adiabat shown -above,'the fluid
 

would contain 7% lighter element at the inner core and
 

14% at the core-mantle boundary.
 

Figure 7: 	 The geometry of heating and.cooling of the core by
 

refractory material. Though there are lateral variations
 

at smaller scales, the largest length scale of 1,000 km.
 

is the most important for fluid motions.
 



Figure 8: 	 The fluid flow within a rotating annulus viewed from above.
 

This is analogous to looking down on an individual refractory
 

heat source from above. The flow in (a) is azimuthally
 

symmetric. By either increasing rotation or decreasing the
 

Brunt frequency with constant length scales, baroclinic
 

instabilities will appear as azimuthal waves shown in (b).
 

Decreasing the length scale of the waves will eventually
 

give rise to the 	irregular regime of- fluid flow as in (c).
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