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1. INTRODUCTORY DESCRIPTION

1.1 ASSUMPTIONS AND PROBLEM DEFINITION

The fundamental mathematical assumption underlying CLASSY is that the data
may be usefully approximated by a mixture of multivariate normal densities.
That is, if p is probability and x is an observation vector,

m

P(xlm,lT) _	 aiPi(xlui,Ei)	 (1)
i=1

where

a i	= the a priori probability of occurrence of class i

p i (xlu i , E i ) = the multivariate normal probability density function for
class i

m	 = the total number of classes

= the full set of parameters
_ {al,-..,am, u l ,... ,Um , El,...,Em}

Given a set of unlabeled sample vectors 
{xj}, 

we may form the likelihood func-
tion in the following manner.

	

N	 m

L( {xj }lm,n) = T E a i p i (xj lu i ,E i )	 (2)

	

j-1	 i=1

where N = the total number of samples.

So far, the assumptions and equations parallel the usual maximum-likelihood
development. CLASSY makes the additional assumption that each value of the
parameters m and n occurs with an a priori probability A(m,Tr). The objective
of CLASSY is to determine the discrete parameter m and the continuous param-

eter vector Tr to maximize the following function.
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^	
N	

mi	 c
L({x^},m,n) = A(m,n)	 Lr a i p i (x3 hu i j i )	 (3)

J = 1 	 i=1

A(m,nm) must be chosen so that it satisfies the normalization constraint

A(m ,n)dn = 1	 (4)

m=1

Typically, in the absence of other information, the a priori probabilities

may be chosen as

m

A(m,n) _	 Ci

i=1

	 (5)

where Ci = a constant containing normalization factors over n. With this

choice for A(m,n), the function to be maximized becomes

m

L({x.},m,n) _	 C•
i=1	 =1 i=1 (2,r)` iF^1

ai

(x. _ u i ) TEi 1 (x- -ui)	

(6)exp -

4r•

where d = dimensionality of the samples.

1.2 SOLUTION PROCEDURE

Many approaches may be taken in maximizing eq. (4). The approach chosen in

CLASSY is to interleave the maximum-likelihood iteration (designed to maxi-

mize L({x
i
)^7)  with respect to the continuous parameter vector n) with a

discrete split, join, and combine process (designed to maximize L( {x1},m,n)

with respect to the discrete parameter m). It is expected that by alternat-

a
	 ing these two techniques, values of m and n corresponding to at least a local

0

@i
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maximum of L({xi},m,Tr) will be determined. Since the splitting and combining

techniques operate around each existing cluster, only in special cases will

this local maximum fail to be global.

The data are first scrambled to ensure that a true random sample is obtained.

This is especially important in the CLASSY algorithm since any correlation

in the data may cause the maximum-likelihood procedure to converge very

slowly or experience cyclic drifts. The initial values assumed are

m=1

al=1

0.04

	

u 1 =	 (7)

0.04

10	 0

	E _	 •
1	 .

0	 10

The data are then examined point by point, and the parameter vector 7r is up-

dated according to the maximum likelihood equations which may be expressed

as follows (ref. 1).

	

P(i Ixk•n	
m ai Pi( 

xkIui,E1)

) = 

aiPi(xkIui 9Ei)

N

(8)



ui = kA- N	 (10)

k;
= P('I xk 

7r)

N

F1P(ilxk'7r) ( xk - u)(x k - u) T
^^ = k=1	

(11)
i

E
P(i ( x k ''r)

where p(ilx k ,7r) is the posterior probability of class i, given the kth sample

vector and value of the parameters, and the primes refer to new or updated

values for the parameters.

This same technique is applied to the accumulation of the third- and fourth-

`

	

	 order moments and the logarithm likelihood for each cloister. These statistics

are used to test the fit of the hypothesized distribution to the data.

As each point is considered, the probability that it belongs to each class is

computed. These probabilities, which may be thought of as the fractional part

of each data point assigned to each cluster, are accumulated as the "weights"

for each cluster (eq. (8)). When the weight for a given cluster exceeds a

threshold value (which increases each time it is exceeded), the program checks

f. the likelihood ratio and the fit of the normal distribution to the data for

that cluster. Old data ( accumulated us'O,,g less accurate parameter values) is

also subtracted from each parameter suer eccumulation at this time.

The fit of the hypothesized normal distribution to the data for a cluster is

evaluated by examining the third- and fourth -order moments about the mean

for that cluster, which represent measures of skewness and kurtosis. The

statistics which are generated are given by

S l = (STE
-I S)	

(12)

1-4
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where

S = the skewness vector (trace of the rank 3 skewness tensor using the
inverse covariance)

S l = a scalar measure of skewness

ST = transpose of S

X-1 = the inverse covariance matrix

t
K1 = Tr( KE-1 )	 (13)

where

K	 = matrix of kurtosis values (trace of the rank 4 kurtosis tensor)

K19 K2 9"' = scalar measures of kurtosis

K2 = Tr(KE-1 KE-1 ) - d 
[Tr(E-lK)I2
	

(14)

In CLASSY, these three statistics are tested against their approximate sam-

pling distributions computed under the hypothesis that the samples were

drawn from the normal distribution specified by the current values of the

parameters. If any one of these three statistics exceeds the threshold

value, the hypothesis is generated that the cluster may be split into two

parts. The parameters for each of the two new component clusters are esti-

mated by minimizing the difference between the observed covariance matrix,

the skewness vector, and the kurtosis matrix, and the corresponding quantities

for the mixture distribution composed of the two new normal distributions.

Following the generation of a split hypothesis, the parent cluster is not

discarded immediately. When the maximum-likelihood iteration cycle is begun

again, it is carried out for the previously existing clusters, including the

parent cluster and the new subclusters (with the new parameters and an ini-

tial weight, which is currently set to 40 points for each cluster). Thus, a

hierarchial structure or cluster tree evolves as this process is repeated.

1-5



At the same time in the processing that a cluster is checked to see if it

may need to be split, certain other tests are performed. If a cluster has

subclusters (i.e., has been previously split), it is not split again; but

the likelihood ratio of the daughter clusters to the parent cluster is

examined. If this ratio is larger than a given threshold, the parent clus-

ter is eliminated and the daughter clusters take its place (i.e., the hypothe-

sis that the parent is split is accepted). On the other hand, if the

ratio is too small, the daughter clusters are eliminated in favor of the

parent (i.e., the hypothesis that the parent is split is rejected). In addi-

tion, a cluster may be eliminated if its prior probability becomes too small,

which may occur if another cluster has "taken" all its points. The program

also checks the degree of overlap between clusters at the same level in the

cluster tree. If the degree of overlap is too great and the two clusters

are not the only subclusters of a given parent cluster, the hypothesis that

'these are the same cluster is raised by joining the two similar clusters.

	

M	 The new cluster is given parameters which are a combination of the clusters

Joined to form it. All of these are tests restructuring the cluster tree at

certain intervals; namely, when the weight (or number of points assigned to a

given cluster on a fractional probabilistic basis) has accumulated to a cer-

tain point in the statistics accumulation portion of the program.

After tests have been made to determine if a cluster may need to be split or

if the cluster tree may need to be restructured, the old data are subtracted

from the cluster statistics previously accumulated, and the skewness vector

and the kurtosis matrix for that cluster are reset to zero. The program then

continues the statistical accumulation. If a complete pass through the data

set is made before a cluster is tested for possible adjustment, the values

of the means at that time are used in eq. (11) until another pass through the

r data set has been completed; that is, the program does full iteration for the

cluster rather than continuous updating.

The present program cycles through the data a fixed number of time, as con-

	

y	 trolled by an external parameter. When the desired number of passes is com-

plete, the program classifies the data by going through them point by point

1-6
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and assigning each data point to the cluster in the cluster tree for which the

probability of occurrence of this data point is the greatest. This is the

only time in the program that points are assigned to clusters. When all of

the points have been assigned, a cluster map showing the cluster symbol for

each point is printed out. The program also prints out the final values for

the parameters for each cluster in the cluster tree. A general flow diagram

for the CLASSY program is shown in figure 1.

I
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Figure 1.— Flow diagram for CLASSY algorithm.
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2. MATHEMATICAL BACKGROUND

Descriptions of the detailed mathematics and statistics used in CLASSY are

given in this section, noting variables which have a direct correspondence

•	 to theoretical quantities. In addition, preliminary remarks establishing

equations used in more than one routine are included.

2.1 FUNDAMENTAL EQUATIONS FOR CONTINUOUS STATISTICS

The fundamental equations for the continuous statistical parameters follow:

[N

	

a i - N E 
Poly	 (15)

j =1

N

a.VV	 xd P (ilxd )	 (16)
i	 -1

N
'+^
EZr 1 = a1N	

xjxJT P(iIx
d ) - 

uiuiT	
(17;

i j=1

where

P(iIxj) =	 ipi(x^ )	 (18)

E anpn(xi)
k=1

W,

whe'

N

w	 m

a 

ui

£i

and

re

• total number of points

• number of classes

• proportion

• mean

• covariance

values marked with a circumflex H denote estimates.
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These equations are the standard maximum-likelihood equations for a mixture

of normal distributions with unknown parameters and proportions. (CLASSY

actually solves the equations with the large-sample size approximation by substi-

tuting u for u in eq. (17).)

There are obviously many numerical procedures for solving these equations,

given a specific set of data points xJ . CLASSY uses direct functional itera-

tions for eqs. (16) and (17) (substitution of the right-hand side into the

left side), and a somewhat more complicated scheme for the proportion equa-

tion, eq. (15). Each iteration is subject to Aitken extrapolation, by fixed

parameters contained in arrays PACCEL, VACCEL, and MACCEL which are currently

all zero, corresponding to unaccelerated iteration.

2.2 MODE OF ITERATION

CLASSY does not use complete iterations on these equations at all times; when

the estimates for a cluster are considered poor, statistics are calculated in a

continuous or updated fashion. Mode selection is on a cluster-by-cluster

basis. The absolute value of the variable INDE WL) is used to store the

number or "name" of the cluster. The updating mode affects only the cluster

parameters a, u, and E, and does not change the processing of skewness, kur-

tosis, or likelihood ratio.

2.2.1 UPDATING MODE: (INDEX(KL) > O)

Every newly created cluster is in the updating mode, the normal mode for a

cluster whose statistics are not well defined. Also, a cluster processed

through the routine ADJUST because its weight (W) exceeds its weight adjust-

ment threshold (WADJ) is placed in the updating mode on finishing ADJUST.

Statistics are calculated on a current, or runninc, basis for clusters in

this mode. The values of a, u, and E appearing of the left of eqs. (15)-(17)

change from each point processed to the next. That is, the sums on the left

gain one additional point for each point processed, and this most recent

value of the parameters is used for the next data point. Cluster parameters

0
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are continuously varying, rather than corresponding to some particular itera-

tion of the numerical scheme. Although this procedure may seem somewhat

irregular, it follows the general dictum of numerical analysis, "use the most

recent data." In fact, the values for a, u, and E produced in this way should

be better estimates of their true values, and thus lead to faster convergence

of the numerical procedure. This technique, when combined with the short

iteration procedure in which only a fraction of the points are processed

between passes through ADJUST, allows the algorithm to find good coarse esti-

mates of the cluster parameters relatively quickly, often within the first

pass through the data rather than after several iterations. However, to be

effective, the updating iteration mode requires that the data sample have no

large-scale variation; i.e., that real data be scrambled or disordered to

destroy point-to-point and regional correlation.

In the update mode, the cluster vector SUM is used to store Wu (the current

mean), and OSUM (Old SUM) is used to save the value of SUM when the cluster

was last processed (created or last ADJUSTed). Similarly, the cluster array

OVAR (Old VARiance) contains WE' (the covariance at last processing), and

VRIN (VaRiance INverse) contains the inverse of WE (the current covariance

matrix).

2.2.2 ITERATING MODE: (INDEX(KL) < 0)

A cluster is placed in iterating mode by ADJUST if it is processed by that

routine due to a complete pass having been made through the data since its

creation or last ADJUSTment (IDADJ(KL) < NPTSO). A cluster in this mode

observes the complete data sample between processing passes through ADJUST,

and thus its numerical procedure can be considered to operate iteratively.

(There is no fixed relation between the start of the iterative cycles of dif-

ferent clusters — one may start at point 5, a second at point 3000, and a

third at point 12345. However, all the iterations for a given cluster start

at the same pixel, unless (very rarely) the cluster reenters update mode.)

When a cluster is being processed in the iterating mode, the parameters a,

u, and E appearing on the left side of eqs. (15)-(11) are fixed at the

2-3
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cluster's last pass through ADJUST and remain fixed until its next pass.

Thus, the sums are calculated for an entire data sample using the same values

of the parameters. This is necessary to actually solve the equations, since

processing in the update mode for full passes through the data would lead to

cyclic drifts in the parameters, which in turn would alter the value of the

sums and the actual estimates. Although this should not be a large effect

for scrambled or disordered data, the iterating mode is necessary to keep the

program within the design objective of well-defined mathematics.

In the iterate mode, the cluster vectors SUM and OSUM have the same meaning

as in the update mode, but OSUM is always used to calculate the mean used in

the probability calculation. For the arrays OVAR and VRIN, the situation is

different; VRIN contains the inverse of WE' (the old covariance) and OVAR

contains WE (the current covariance). This is necessary because VRIN is used

in numerous places as the inverse of the covariance matrix, both in the equa-

tions and as the metric for the space of data vectors.

2.3 TREE STRUCTURE

In addition to the continuous variables, CLASSY maintains a discrete tree

structure of clusters and several continuous statistics used in updating this

structure. This discrete structure differentiates CLASSY from a simple

3	 maximum-likelihood approximator using accelerated numerical techniques.

Under each cluster there may be two or more subclusters, each with a subclus-
f

ter structure of its own. The sum of the distributions of the subclusters of

a cluster is an alternative distribution to that represented by the cluster

itself. As CLASSY is presently constituted, only the case of one cluster

versus many can be represented; many versus many is not allowed. (One versus

one is effectively handled by the continuous statistics section.)

fi
Between each cycle through ADJUST, STATIS accumulates a likelihood ratio

between the parent cluster and its subclusters. The natural logarithm of

this ratio is maintained in the cluster variable SPFAC (SPlitting FACtor),

V
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V,

01

where SPFAC much less than 0 favors the parent cluster and SPFAC much greater

than 0 favors the subclusters.

This likelihood ratio is used in ADJUST to make a final decision in favor of

the parent cluster or its subclusters; the losing alternative is deleted by

SEPER or by SUBLIM. SPFAC is a!eo used in STATIS to choose the parent clus-

ter probability or the sum of the subcluster resultant probabilities. The

selection is done by a continuous changeover via (Pparent + 
ZP

subs MI + Z)'

where Z = exp (SPFAC) is the likelihood ratio.

SPFAC is initialized when a cluster is created and each time it is ADJUSTed,

and is set to the value returned by the subroutine APRIOR (currently a con-

stant). This is the point of entry in the program for the necessary bias

factor against large numbers of clusters, and for various volume normaliza-

tion factors discussed in more detail under the APRIOR routine. The cluster

variable OPRIOR (Old PRIOR) is also set to this initial value of SPFAC to

retain the initial value for reference.

Another statistic accumulated by STATIS is the square of the normalized

probability difference between a parent cluster and the sum of its subclusters,

PQRAT.
.J	

2

	

PQRAT = 2:( 
PsuubPparent	

(19)
 sub	 parent

This is a crude measure of how much a parent cluster differs from the mixture

of its subclusters. If the subcluster total becomes nearly the same as the

parent cluster density, and the likelihood ratio does not favor the subclus-

ters, then ADJUST assumes that the parent is the "real" cluster, and elimi-

nates the subclusters via SUBLIM. This is a common situation, since if the

subclusters do not fit the data better (e.g., if the data are best fit by a

single normal) then the subcluster parameters will change until the sum fits

the single normal. Thus, subclusters are generally eliminated by becoming

very similar to the parent cluster, rather than directly by an unfavorable

likelihood ratio.

'' 2-5



The other statistics maintained for each cluster are the traces of the skew-

ness and kurtosis tensors (not divided by the total weight).

SKEW i =	 x ix 2	 (20)

KURT ii = E xixix 2	 (21)

where

xi = x i - u i	 x2= xix^(E-1 ) iJ = xtE-1x

These are accumulated between ADJUSTments (or creation) of a cluster. (They

are zeroed each time through ADJUST.) These statistics are summarized to

make three scalar statistics in ADJUST and are then tested against thresholds

calculated in CLINIT, to decide whether to consider splitting a cluster. The

three summary statistics are derived in section 2.5 of this report. It is

not necessary to calculate these statistics for a cluster with subclusters

since such a cluster cannot be SPLIT again.

Three other variables maintained in CLASSY concern the normalization of the

distributions and the volume integrals which are included in the normalization

factors. These three are the cluster variables VOLIN, VOLRT, and DCON. The

overall coefficient for a cluster probability density (excluding its propor-

tion) is exp(-DCON/2)/VOLRT, VOLRT = VOLIN I/2 , thus

VOLIN * exp(DCON) = (2Tr) MQ det E

The splitting of the coefficient into two parts is made necessary by the fact

that the E actually used includes W as a factor, and after a determinant is

taken, this is raised to the power of the number of channels, which can lead

to exponent overflow/underflow conditions. The relative division of the

coefficient between VOLIN and DCON is made in a constant fashion in ADJUST.

2.4 EQUATIONS FOR THE PROPORTION CALCULATION

The mean and covariance parameters for a cluster are calculated using direct

substitution of the left-hand side of eqs. (15) through (18) into the right-

hand side.

F;+
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However, this procedure is not very sensitive for the proportion equations.

Because the proportion values enter very strongly into all the equations,

it was deemed desirable to use a somewhat more complicated but faster con-

verging system of equations to obtain the proportions.

It should be noted that there is no single iterative procedure for solving a

given set of equations; there are an infinite number of systems with the

same fixed point and differing rates and manners of convergence to this fixed

point. In particular, direct substitution using eqs. (15)-(18) commonly taken

to be the maximum-likelihood procedure is only one of many. While equa-

tions (15)-(18) are the maximum-likelihood equations, many differing techniques

for solving them can be found in any standard text on numerical analysis;

e.g., changes of variable, Newton's method, Aitken extrapolation, and methods

derived from these. It is almost never true that the apparently simplest

numerical technique is the best.

Although CLASSY was originally designed to use a sparse matrix variant of

Newton's method, the only special techniques actually employed are the update

mode, the extrapolations in ADJUST, a Monte Carlo method used in STATIS, and

the following modification of the proportion calculation system.

Substituting eq. (18) into eq. (15) :ind deleting j-sum parameters and

circumflexes:

_ 1	 aipi	
= 1
	 aipi

ai - N ^ m	 N

I.

	

 —	 (22)

L akpk

where

m

P = E a k p k	 (23)

k=1

Now a i does not depend on j, so the two sides may be canceled, getting

1 = iV
	 Pi	

(24)
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We may now define

M
_	 1

qi 	 a k=1 akPk

Vi

so P = ap + (1 - a)q. Transposing eq. (24) and combining, we get

r^ Y 1

where

	0 (1 - 	a i )E 	Pi - qi
=

	

N	 aipi + 0 - a i qi

= 1
 N ai
	

pi

	

_	 pi - qi
i	 aipi	 -(1 -a i )q^

(25)

Now D i just changes sign if p i and q i are switched, or equivalently, class i

and not class i. It is the simplest variable in which to represent the pro-

portion problem. In terms of D i , the direct substitution proportion itera-

tion is

a! = a i + a i (1 - ai) !E D
i 
	 (26)

As expected, when eq. (24) is satisfied, a' = a.

It can be shown that for completely separated classes (p i = 0 or q i = 0 always)

the direct substitution is exact in one iteration; that is p i = 0 implies

Di = 1 
_1ai 

and q i = 0 implies D i = ai . However, for points in between, the

behavior of this iteration is soft and may coverge slowly, because (as seen in

the derviation of eqs. (24) and (25))the intrinsic variability which allows

the system of equations to be solved is in the denominator, a
i pi + (1 - ai)gi'

since it contains the only dependence on a i . Because complete separation

allows the a i in the denominator to come out, it is possible for eq. (26) to

i
i•. t	

2-8



E1^

n OP

_ .

be exactly solved in this case. Mixed points always contribute part or all

of their weight to holding the "status quo," or delaying the convergence of

the equations; these points are always entered into the sums using the old

value of a i , and the form of the iteration does not take into account their

changing contribution.

For example, if we consider a Newton's method iteration (assuming we are

close to the solution), then we have

a! = a i + 1 1 
2 1	

Di	 (27)

N	 Di

using

da • L+ Di -^ Di

This approach substitutes 1 
1 2 for a. (1- a i ) in eq. (26).

N	 Di

This is exact for complete separation, but otherwise Newton's method gives

better convergence, because the points at p i = q i do not contribute to the

denominator at all.

The method used in CLASSY to calculate proportions is a simple system of this

same general type which should not display any major problems.

By splitting the sum in eq. (25) into parts corresponding to p i > q i and

p i < q i and dropping the class index i, we have

D + E D = 0
Vq	p`q

where every part of the first term is positive, and the second term is nega-

tive. In line with the cancellation leading to eq. (24), this becomes

a (a 1: D I+ 1 1 a , (1 - a)	 D= 0
p>q	 //	 p<q

2-9
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where a' - a implies a solution. Solving for a',

a E D

a'	 Pq
a1:D-(1-a) FD
Pq	Vq

E aD

	

p'q	 (28)N_ g ^

	

=a+a(l -a)	
^D

	

N-	 -q -1:p>q P p <q p

(recall P = ap + (1 - a)q). In the first form, both denominator terms are

positive.

The second form corresponds to the variables used in CLASSY — the numerator

is retained in the variable CIN, and the terms

P +	 P
Pq	p'q

used in the denominator are the variable CTOT. The actual proportions

currently used in CLASSY are the proportion of a cluster relative to its

parent cluster. The proportion as actually used is calculated for each pixel

in the first loop of STATIS (in update mode), and in ADJUST using eq. (28),

and is retained in the class variable PROP(KL). The routine DENCAL (Denomi-

nator CALculation) is used to readjust the values of CIN and CTOT when the

tree is restructured. This is required by the use of proportions relative

to the parent.

The third form shows the relation of this system to direct substitution,

eq. (26). The motion is amplified if there are mixed points, and the

denominator sums are 0 if p = 0 or q - 0. The relation of this amplification

and that used by Newton's method (eq. (27)) has not been analyzed.

0
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The proportion system in CLASSY could be improved. The use of proportions

relative to the parent cluster appears to be a design fault, although the

effects of this choice are fairly pervasive, and the chief benefit achieved

by making the change to absolute proportions would be a cleaner program.

The actual proportion calculation system used was a first attempt at achiev-

ing better convergence than is allowed by direct substitution, and it is sub-

ject to all the problems of first attempts. It appears at present that a

Newton's method approach, if combined with a change of variables or a model

which prevents overshoot (violation of 0 < a < 1) would be best. It is pos-

sible that such a scheme could be cast into a form sufficiently similar to

the one used here that only the equations for updating CIN and CTOT in STATIS

would need to be changed. Note that the separation between p > q and p < q

is somewhat arbitrary; in fact, a fractional separation which appears close to

eq. (27) and is a function of the current proportions could be used. In any

such system, the designer, besides making sure that Newton's method did not

overshoot, must also ensure that the system combines properly with the contin-

uous changes present in update mode. Such a change should improve the conver-

gence behavior of the program. In designing such a system, it is useful to

work in terms of the symmetric variables b = 2a - 1 and r = pp -q, where

-1 < b and r < 1. Then 0 =-F , and all the formulas pick up a useful

symmetry under b ; -b, r - ► -r. The overall proportion system must be invariant
:f	 under this transformation.

2.5 LINEAR ALGEBRA AND GENERAL LINEAR TRANSFORMATIONS

The CLASSY algorithm was designed to be invariant under arbitrary linear

transformations of the brightness space. That is, if we transform all the

pixels or data points via

x^ = MX 
	

(29)

where M is an arbitrary fixed nondegenerate matrix, then CLASSY should give

the corresponding results: same cluster tree, same probabilities for each

2-11
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point to be in a cluster, same proportions, etc. Means and covariances

should be changed by

(30)
Ei	 ME i Mt	-

Thus CLASSY is transparent to general linear coordinate transformations: it

does not "know" what coordinate system it is in.

There are two exceptions to this rule, both in ADJUST:

a. CLASSY assumes that the input data have been discretized with interval 1

along the coordinate axes. This must be compensated by a Shepherd's cor-

rection which is not generally invariant, since the discretization is not

coordinate invariant. When the algorithm was operated without this cor-

rection it tended to find point clusters, or clusters with zero covari-

ance along crystal planes of the discretization lattice, which are, after

all, the true clusters in the data.

b. To limit computing time, the calculations used to select candidates for

JOINing compare the diagonal elements of the covariance matrices for sim-

ilarity. This is a noninvariant operation.

In d channels, the set of nondegenerate matrices form a mathematical group,

called GL(d). Vectors form indivisible spaces under the group, loosely called

representations. Breaking the system down into irreducible representations

greatly simplifies the analysis of the clustering problem, since only certain

operations and relations are proper. This type of insight was used through-

out the design of CLASSY. In particular, the only way to take the product of

two vectors is with the inverse covariance matrix.

A method of notation for systems of the type which are invariant under GL

groups is called the "summation convention." In it, normal (column) vectors

are represented by quantities with subscript indices (x i ). Vectors in the

dual space (row vectors) are represented by superscript indices (not to be

confused with exponents which almost never occur in this context), as (Ai).
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A typical dual vector is the derivative with respect to a normal vector:
i
a = a/ax 

'i.	
Other objects may have multiple upper or lower indices, or both.

If an index appears twice in a term (as a superscript and a subscript), a sum-

mation over all values of the pair, called a contraction, is automatically

implied.	 All the rest of the indices are called free indices, and must appear

identically, including upper or lower position, in all terms added together,

and on both sides of an equation. 	 This notation is extremely convenient for

use with vector/tensor systems such as those appearing in CLASSY, and will be

invoked several places in this report, where it is irreplaceable.	 Examples

follow:

T	 Mi ordinary transformation matrices

PT' MJ = MJ T' their matrix product P = MT
r	 j	 r	 r	 j

• Q i 	 Tr 	= M'
j T

J their product P = TM
r	 r	 r

(Note that order does not matter:	 the order information is contained in the

index pairing.)

Mi the trace of M, Tr M

T Mi the trace of TM, Tr(TM) 	 Tr(MT)

61 the Kronecker delta, = I	 if i = J, otherwise 0 (equivalent to the unit

matrix; like all matrices must always have one upper and one lower index)

i = N Ex i definition of the mean

z	 r	 Ex i x	 definition of the covariance (Note that E is not a

matrix, but a rank 2 covariant tensor. No transpose operations appear using

this notation.)

(E-1)'3 its inverse; note the index motion, which is required

(E-1 ij
	 rEjr 6  the definition of the inverse

2-13



w

Ei3
Iii states that E is symmetric (cannot be said of a matrix)

Ai3 =
 -A 	 that A is skew-symmetric (cannot be said of a matrix)

xi - Tj xi transformation of x by the matrix T

Eij - Ti TI Ekt transformation of the symmetric tensor (covariance) by the

matrix T

E 11ij _ (T-
	
transformation of the inverse of E by T (Note

the index differences from above.)

Much of the conventional nomenclature for multivariate statistics becomes

incorrect in this viewpoint. The covariance is not a matrix, but a rank 2

covariance tensor, Ei3 , and its inverse is a rank 2 contravariant tensor,

W1)i^. Correspondingly, the use of the "transpose" operation is invalid;

it is only necessary in the standard nomenclature because of the attempt to

represent the covariance as a matrix. Except in this section or as stated

the standard nomenclature will be used to improve communication. The above

notational convention is well known and fairly standard; the reader may find

more detailed accounts in any elementary book on group theory, in texts on

mathematical physics, or in books on multivariate analysis.

Occasionally in this report, the term "scalar" is used to refer to quantities

that do not change under the transformation; e.g., ordinary numbers.

The measures of skewness and kurtosis used in CLASSY are the traces or con-

tractions of the complete skewness and kurtosis tensors. The complete ten-

sors are

	Sijk = N	 xix3xk	(31)

1

	

Ki3kt = A	
xix

i
xkxt	 (32)

where x - x - u. In 16 channels, S ijk has 816 components, and 
K
ij kx has 3876;

0
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they are thus too large to be employed efficiently in a program such as CLASSY,

and instead their traces are used:

S i - Si jk (E`l )jk - N	
Xixjxk(E-1)jk 

= n L.^ 
x i x2 	(33)

Kid = KijkR(E-1)kz
	

N	
xixjxkxk(E

-1)kk= 
n	 xixjx2
	 (34)

where x2 is the distance from the cluster center: z = 7E—X.

The cluster vector SKEW is (W - OW) * S i , and the array KURT is (W - OW) * Kij.

(The OW is present because SKEW and KURT are rezeroed each time out of ADJUST.)

S i transforms as an irreducible vector under GL(d), but K ij can be separated

into two components:

K = Kij (E-1 )^ J (35)

and Kij = Kij - 
d E

ij K (36)

Note that K?	 (E-1)'J = 0, so that this operation is referred to as separating

K
Kij into its trace and its traceless components, both of which are incapable

g

of further reduction. Kij has no associated scalar, therefore the lowest

order scalar terms available from these c-w tracted third 4nd fourth moments,

F in addition to K, are:

w
S2 = SiSj(E-1)ij

(37)

(Ko)2	 =	 K?	 K?,j,(E-1)ii'(E-1)jj'

(38)

_ K. .K.	 (E-1)ii'(E-1)jj^	 _	 K?
^^	 i'j'	 d

These are the simplest forms; the rest are of higher order in both K, S

and x (such as Si(E`1)'3Kjk(E- 1)kZSR).
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These three quantities are used in ADJUST to test whether a cluster appears

normal or is a candidate for splitting. Currently all three are used; but if

the algorithm were modified to allow nonnormal and skewed clusters, then only

(K°) 2 gives meaningful information about split clusters.

In ADJUST, TRK represents K (and later [K - d(d + 2)]1 V —6Gr), normalizing

to the expected random variation). SK represents DW * S 2 and URK represents

DW * (K")	 SK, URK, and the later TRK are all normalized so that random fluc-

tuations have a size independent of DW.

The three components each have a specific meaning:

a. S is a vector indicating how far and in which direction the base (hiqh x )

of the distribution is shifted from the peak (low x).

b. K has the value d(d + 2) for a normal distribution. Larger K's represent

distributions which are more pointed than a normal distribution indepen-

dent of direction (lepto-kurtosis); smaller K's represent distributions

which are less pointed and with smaller "tails" (endo-kurtosis).

c. The third tensor, K°, represents the tendency for points in each set of

opposite directions to be at a different distance from the center compared

to some of other pair of directions. In other words, K° measures how

"lumpy" the distribution is when observed on a sphere at some fixed dis-

tance from the center. Since this lumpiness is characteristic of multi-

modal distributions in several dimensions, K° is really the best measure

of multimodality used in CLASSY. The other tests have been included to

maintain consistency with the formal description of the proqram as fit-

ting the given distribution with a mixture of normals. Also, unless other

tests or a precise formal model were used, these tests could ultimately

mask multimodal situations if ignored.

2.6 EQUATIONSATIONS FOR A MIXTURE OF TWO DISTRIBUTIONS

The following formulae are the first four moments of a general mixture of two

normal distributions; essential use is made of them in the routines JOIN and

SPLIT. The summation convention is used.
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Consider a normal uistribution in d

(1) total weight 1, mean 0; and (2)

table, the portion in single quotes

which must then be symmetrized on ii

Weight 1,
Moment	 mean 0

variables with covariance a2 , in two cases:

total weight a, mean V. In the following

gives the basic character of the term,

ndices.

Weight a,
mean u

a

au

0 1

1 0

a22

3 0

4	 '364 = 
aijakk

++
 + 0ik0jk

a (,,i,,j + 0ij2)

'au(u2 + 2 )' = a(u i uj uk + uia^k

+ ujaik + ukaijl

'a(u4 + 611
262 + 304)' = a(uiujukuk

+ u i ujakk + u i ukait + uiUkajk

+ 
ujukaik 

+ 
ujUkaik

+ ukuka2 + ai
Jakk + ai kajk + a?kG2

A mixture of two such distributions will be used.

Cluster 1	 Cluster 2

Weight	 a	 b

Mean	 u

Covariance	 a2

V

2
T

Remark

a+b=1; letc=a - b

Let  - u - v

Let D2 = a2 - T2

These are viewed as a single distribution, with weight 1, mean u, covariance E2

(inverse E-2 ), skewness 5, and kurtosis K (with the 3E 4 term also subtracted),

as shown in table I.

r^
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TABLE I.— MOMENTS OF THE MIXTURE OF TWO NORMAL DISTRIBUTIONS

Moment	 Remark

0	 i=a+b

1	 u=au+bv

2	 'E2 = abd2 + aa2 + bT2'

Ei
J
 = abZ S + ao 2 	2+ bT ij

3	 Si = (E-2)kt Sikt

(E
-2 kit (1	 2	 2	 2	 t)	 NEx i xkxt - 

uiEkt - ukEit - utEik - uiukut)

_ 'ab(E-2 )d (3D2 - cd2)'

= ab(E-2)kt(dit 	 ktDk + dDi + dIDik
_ 	 cdidkdt)

4	 Kii = 

(E-2 
) 
kt 1

Kijkt

_ ' E
-2 

(1kZ 4 - 4uS (3) - 6E 211 - u4 - 3E4) '

(`
-2 kt 1L

_	 )	 NEx i xj x kxt - u i Sjkt - ujsikt - ukS
iii - uisijk

- uiujEkt - uiukEjt - uiutEik -. ujukEit - u j utEik - 
ukutEiJ

- u i uj ukut - Eij Ekt - EikEjt - EitE^k^

'E -2(3abD4 + ab(1 - ab)d 4 + 6cabd 2 D2)1

	

((2	 2	 .
_ ( E-2 ) kt (ab \Oij O2kt + D

2ikDJ1 + D2it 	 + ab(1 - ab)di dj dk d tt	

2+ cab `di dJ Dkt + d i d k Dot + 
di dtDf + di dkDit 

+ 
dJ 

d t Dik

+ dk d I Dij
ti

	

	 Jl

Using the definition of c,

2
a = 1	 b= c	 ab= c	 and i- 6ab = 3c_^ 1

fi

t
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3. DESCRIPTION OF SUBROUTINES

Most subroutines used in CLASSY have simple, nonmathematical descriptions;

they do simple bookkeeping, structural manipulations, or simple functions such

as printout or matrix algebra. These routines are not described in this section.

The following subroutines which have mathematical properties and mathematical

descriptions are described in this section:

STATIS (Statistics)

ADJUST (Adjustment)

JOIN (Combines)

SPLIT (Splitting)

DENCAL (Denominator calculation)

APRIOR (A priori distribution)

ISPLIT (Is split)

EIGROT (Eigenrotation)

STATIS and ADJUST are the subroutines which control the processing in CLASSY.

STATIS handles all the incremental statistics, essentially doing all the accu-

mulation required by eqs. (15)-(18). STATIS also contains the code generating

the DO loop over the data points (which could have been placed outside it).

ADJUST is called by STATIS for each cluster on a specified basis (if either of

two given thresholds are exceeded). ADJUST in turn does all action on a clus-

ter which is done on a lumped basis: making tests for split clusters, sep-

arable clusters, joinable clusters, etc. ADJUST is also in charge of all

extrapolation of continuous parameters, subtracting old data from the sums of

eqs. (15)-(18) so that the system can update or iterate properly, not depend-

ing on bad data values from earlier data or iterations. In general, ADJUST

handles any operation that is not executed every time a point is entered into

a sum and is in charge of testing for and calling all the tree-restructuring

operations. The structure of STATIS is fairly well dictated by the mathematics,

while that of ADJUST is largely heuristic.
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3.1 STATIS

STATIS, besides generating the pixels and triggering ADJUST, calculates the

quantities in eqs. (15)-(18), together with a few other statistics such as

skewness, kurtosis, and likelihood ratio which are used in the structural

change tests in ADJUST. STATIS also contains the logic which modifies the

calculations of these statistics, depending on whether a given cluster is in

update or iterate mode. The decision as to which mode a cluster should be in

is made in ADJUST.

STATIS is divided into two blocks, or loops, over the cluster tree. The first

of these calculates the class conditional and posterior probabilities for each

class, and the second updates all the statistical sums. The first loop consumes

most of the execution time of CLASSY, since all clusters must be processed

through each pixel, and for each a quadratic form must be evaluated. This loop

starts at FORTRAN statement 31 and continues to just before statement 150

(see section 4.1). For each point, the first pass defines for each cluster KL:

PCUM(KL) _ (Probability acCUMulator)

(39)

aipi(x)
icKL

where icKL indicates i is a subcluster of KL, and PCUM is later normalized

by PRIRCM.

PRIRCM(KL) _ (PRIORs acCUMulator)

(40)
Ea
icKL

PROP(KL) _ (PROPortion)

= CIN(KL)/[WF - CTOT(KL)]	
(41)

where W  is the weight of the parent

PCOND(KL) = (CONDitional Probability)

- P (x)	 1	 ! e- 1/2(x-u
KL )TE KL- 1 (x-u KL

)	 (42)

KL	 = (27T) d/2 IZKLI

n ',
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A selection is made whether to use PCUM, the sum of the subcluster probabil-

ities, or PCOND as the output probability for this cluster (PST). This is made

in a continuous fashion,

PCOND(KL) + e
SPFAC 

PC^UM(KL)
•	 PST(KL) = aKL

	 1+e SPFAC	
(43)

essentially selecting the cluster or its subclusters in proportion to the

likelihood ratio between them. For SPFAC sufficiently large or small, PST(KL)

is clamped to PCUM or PCOND, respectively, with thresholds XOVFLO and XUNFLO.

PST(KL) = (P STored) is the final output for cluster KL.

The subroutine CORECT has been used to calculate x - µ for each cluster, stor-

ing the result in REL ( RELative pixel), and the cluster variable DISS contains

the value of the quadratic form (x - 0 T C I (x - u) including DCON. When this

form is too large, the cluster is not processed for this point.
w

The second loop of STATIS updates all the statistics being accumulated for the

cluster: direct statistics, skewness (SKEW) and kurtosis (KURT), the log

likelihood ratios between a parent cluster and its subclusters (SPFAC), and

of the probability difference between the parent and its subclusters ( PQRAT).

This latter variable is used to determine if the parent cluster and its sub-

clusters have come to be practically the same distribution. The temporary ZQ

used here is r = p - q as described in section 2.4, and a short approximation

to the log is used in computing SPFAC.

All the basic variables updated (W, SUM, VRIN, CIN, CTOT, SKEW, KURT, SPFAC,

and PQRAT) were described in section 2.

Three dependent variables are also maintained by STATIS: VOLIN, VOLRT, and

DCON, described in section 2.3; with VRIN, these have special updating require-

ments which must be described.
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VRIN is the inverse of the covariance a id , which is not directly maintained.

aid =I: xiXJ

where x i = x i - Pi or

a = E X X
T

using matrix notation. Uodating a

at = a + X it

a:	 Then

VRIN' = (a + x xt)-1

= a-1 - a-1x x ta-1 + a -1x xta_ l x xta-1 - x ...

= VRIN - (a-1x)(xta-1)(1 -
 7ta-1X + (Xta-1X)2 ...	 (44)

= VRIN - (a-lx)(a-1X)t

1 + xta-1X

which may be verified by direct multiplication. Note that x ta-1 x is the

exponential argument from the multivariate normal distribution.

Similarly, if V = det(a), the determinant of a, then

V'=det(a+xxt)

= det(a)(1 + x ta -1 x)	 (45)

= V(1 + 3 ta -1 X)

This may be obtained by expanding x x t terms by minors, and using the defini-

tion of the inverse in terms of cofactors. VOLIN is the same as det(a) up to

a constant factor, and is updated by the same formula.

VOLRT is updated by one cycle of Newton's method to follow (VOLIN) 1/2 , and

DCON is updated (using an approximation to the log), to compensate for the

^fi
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factor of W**AMQ which appears in VOLIN and affects VOLRT. This factor appears

because the terms in the covariance are added before the determinant is taken,

but without dividing by the total weight to get the actual covariance. This is

unavoidable and is easily handled using the DCON variable. The formulas act-

ually used in the program are generalizations to the case with variable weights.

After updating all the statistics, STATIS checks to see if a variable is over

threshold (W > WADJ or NPTSO > IDADJ) and saves the index of at most one clus-

ter for passing to ADJUST after the current data point has been fully processed.

The delay is necessary to avoid overlapping usages of certain EQUIVALENCE clus-

ter variables and to otherwise ensure that processing is complete in spite of

the restucturings.

In iterate mode, everything but VRIN, VOLIN, VOLRT, and OCON is updated simi-

larly; PROP is not updated from CIN and CTOT in the first loop in this case,

and OSUM is used rather than SUM in calculating the mean. In addition, OVAR,

which in this case represents the current rather than the old values of the

variance, is updated directly. The vector COVEC is 
W 

( a -lx), ALOW = P,
ALPHA = W P , and

COFI =	
-WP

t -1-
W, 11 +P (xaW x

whe re

W	 = the old weight

W'	 = the new weight for the cluster

COFI = the coefficient used to update VRIN

Although eqs. (15)-(18) indicate that every point is added to every cluster,

certain shortcuts were taken in CLASSY to speed processing. Normally, each

data point will have fairly large probabilities for one or a few clusters. The

remainder will be far out of range, with their probabilities damped by a large

exponential argument. These terms could be deleted without causing any problem

and would usually be effectively eliminated by the machine's floating-point

hardware. Classy handles this situation in STATIS at the Monte Carlo loop

starting at statement 132.
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To avoid introducing a bias, a small number of the low-probability points are

given a correspondingly increased probability and processed normally. 	 The

procedure follows: first, any point with probability greater than the thres-

hold parameter PLIM (defined in CBLO) is automatically processed. For the

remainder, an integer from 0 through MONTE-1 is selected randomly by the ran-

dom number routine DISC. If that number is a specified value (1), then the

probability is multiplied by AMONTE. (AMONTE-MONTE is also a parameter.)

The program then returns to the PLIM threshold check and continues to loop

until P > PLIM or the random integer misses the specified value. If the ran-

dom integer ever misses, then the current point is not processed through this

cluster. Thus, if the probability for a given point in a given cluster falls

below PLIM, the probability hasa MO1
	

chance to be multiplied by MONTE and

considered further, and a MONTE-1—c hance to be ignored. The bias which easily
MONTE

crops up in a tail-truncation procedure is thus eliminated.

Presently, the values of PLIM and MONTE (AMONTE) are fixed throughout a run.

If the second half of STATIS should ever consume excessive time, a modifica-

tion could allow a large value of PLIM during early processing to be followed

by a drop to a small value for the last few passes.

3.2 ADJUST

ADJUST is entered periodically to adjust a cluster via extrapolation of data,

and elimination of old data from the continuous statistical parameters of a

cluster, and to make the tests required to decide on discrete transformations

of the cluster tree. Most of the separate operations occurrinq in ADJUST

are unrelated. ADJUST also gets and frees storage for temporary matrices used

by itself and by the discrete transformation subroutines it calls, particu-

larly SPLIT.

Before returning, ADJUST sets the old values of all the statistics to their

current values and calculates the thresholds WADJ (Weight ADJust) and IDADJ

r	 (ID ADJust) for the next call to ADJUST. WADJ is set to a quantity which

exceeds W by an amount which is the increase allowed in W before the next
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ADJUST. This increase is currently a fixed parameter DWFAC > 1 times W, but

could be set to a value dependent on the stability of the cluster. The IDADJ

threshold is included so that data is not double-counted; that is, to ensure

that every cluster is ADJUSTed at least once for every pass through the data.

ADJUST sets IDADJ to the current point number (NPTSO) plus the total number

of pixels in the data set (TOTPIX). Before returning, ADJUST also determines

the mode of the cluster (update or iterate), depending on whether ADJUST was

entered due to WADJ or IDADJ, respectively.

In processing the continuous statistics, ADJUST first subcontracts the old

values of the accumulated statistics from the current values to ensure that

no data older than the previous call to ADJUST (or the cluster creation) is

included in the new statistics. In addition, the motion of the parameters

since the last call to ADJUST is calculated, and the new parameters are set

to overshoot their current, subtracted values by this motion times certain

acceleration factors.

The acceleration factors (currently 0) are a function of whether the cluster

was in update or iterate mode, and are in the arrays PACCEL (Proportion

Acceleration), VACCEL (mean (Vector) Acceleration), and MACCEL (covariance

(Matrix) Acceleration). These are indexed by the internal temporary KADTY

(KADTY = 1 for update mode, = 2 for iterate mode). These extrapolations are

done using the temporary EXF, which contains various weight factors via the

'	 temporary WINFC. The scheme is an ordinary extrapolation or accelerated con-F`1.

vergence scheme for a set of equations in a set of variables, and will not

be discussed further since presently the parameters are zero. The CTOT's of

the subclusters and sibling clusters must be modified during the updating,

due to the use of relative proportions.

The discrete changes in the cluster tree are made whenever a cluster being

adjusted passes a test for some particular change. There are five such cluster

tree transformations; they are listed in table II with the routine makinq the

transformation, an abstract of the test used, and parameters from common, upon

which each test depends. Parameters used in the WADJ calculations are also

included.
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k	 The statistics and tests used to determine if a trial SPLIT is to be made are

}
described in sections 1.1 and 2.5. The likelihood ratio tests and PQRAT test

which govern the calls to SEPER, SUBLIM, and ELIM are also discussed in sec-

tions 1.1, 2.3, and 2.5.

The test to determine whether a trial join is advisable is based on a heuris-

tic criterion which compares the mean vectors for two clusters and the diag-

onal elements of the covariance matrices. This criterion is given by

whe re

1	 1	 d
W^- +W^

bi - uj ) T --ii iW + WW	 (ui - u3 ) + A kLrEn^okki ( - Enlokk 1i	 1	 j
W	 W^

Wi	
Wj/

W.
	

Rij =

+1

(46)

W 
	 = current weight for cluster i

A and B = arbitrary constants (currently, A = 0.3 and B = 0.18)

The first term in the numerator is the distance between the mean vectors of

clusters i and j, weighted by an average computed from the inverse covariance

matrix fcr clusters i and J. The second term in the numerator is a measure of

the difference in the diagonal elements of the two covariance matrices. The

diagonal elements rather than the full covariance matrices are used for compu-

tational simplicity. A more complete expression involving all covariance terms

is 0 det E I E2 1 . The denominator is designed to discriminate against small

clusters in the sense that R ij will be artifically reduced if the weight of

one cluster is small relative to the weight of the other cluster. This factor

is designed to give large clusters an opportunity to absorb small clusters if

such a join does not substantially affect the statistics of the larger cluster.

The Rij criterion is computed for certain clusters having the same parent as

cluster i; the clusters to be checked are selected on a Maine Carlo basis.
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If the cluster j for which R ij is a minimum is less than a fixed threshold,

the hypothesis is raised so that clusters i and j are really thn same cluster.

In practice, a new cluster at the next higher level in the cluster tree is

created, with parameters and other statistics obtained by combining the values

for the two similar clusters. This is accomplished by calling the JOIN sub-

routine.
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TABLE II,— CLUSTER TREE TRANSFORMAT

w
J0

Transformation Routine Test Parameters

Generate two subclusters SPLIT Trace kurtosis, skewness, or trace- TREND, SKBND, URKBND,
less part of kurtosis too large. TRCHI, SKCHI, URKCHI,
Must not yet have subclusters WAIT

Eliminate this cluster in SEPER Likelihood ratio strongly favors SEPTH.
favor of its subclusters subclusters

Eliminate all subclusters SUBLIM Likelihood ratio strongly favors SBLTH, PQRATH, SPMYTH
of this :luster parent clusters, or likelihood

ratio is mediocre and subclusters
very similar to parent cluster
(using PQRAT)

Eliminate this cluster and ELIM This cluster proportion too small ELIMTH, NOELIM
any subclusters (and NOELIM switch is off)

Make this cluster and a JOIN Sibling most similar to this in WDJOIN, PJOIN, VRJOIN,
sibling cluster subclusters mean and covariance diagonal RLIM
of a new, cluster elements is sufficiently similar.

Siblings to be checked are
selected on a Monte Carlo basis.
(Procedure is quite heuristic)

Next adjustment point WADJ DWFAC, WSIM, WDELSM



3.3 JOIN

The subroutine JOIN takes two clusters which are subclusters of the same

y parent and combines them into one cluster, which is a subcluster of the orig-

inal parent and has as subclusters the two original clusters. Aside from the

;	 bookkeeping necessary to modify the cluster tree, it must also calculate the

statistics of the new cluster.

The weight and adjustment threshold of the new cluster are defined by param-

eters. Its likelihood ratio is given the APRIOR value, and PQRAT, SKEW, and

KURT are zeroed. Its proportion is the sum of the proportions cf its com-

ponents, with the numerator CIN having the weighted average of the subcluster

CIN's. DENCAL is called to give the subclusters the same relative weights

they had previously, but relative to the new parent cluster.

The mean and covariance of the new cluster are u and E 2 from table I, calcu-

lated directly in the DO loops ending at FORTRAN statement 21. Referring to

table I, the relevant variables have the values

CA	 = a

CB	 = b (new statistics - update mode)

CBV	 = b (old statistics - iterate mode)

(Two values are necessary because of the different handling of some

variables.)

CF	 = temporary (contains ab)

FA	 = temporary for weight adjustments

WJ
DELTA = abd W

B

W 
	 = weight of the second subcluster

W 
	 = weight of the new cluster

The new statistics are stored in the standard form, and the mandatory calcu-

lations for VOLIN, VOLRT, and DCON are made, along with the mandatory storage

of "old" statistical values.
R
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3.4 SPLIT

SPLIT is, a subroutine which guesses the optimal axis on which to split an

existing cluster. SPLIT is called after ADJUST ascertains that the cluster

should be split; SPLIT has available the skewness and kurtosis data for the

cluster as additional information to use in finding the proper split. After

SPLIT has calculated the proper statistics for the component clusters, it

builds the clusters and links them into the cluster tree. The parent cluster

is not changed in any way, but the new clusters are linked to it as subclus-

ters. SPLIT does not actually split a cluster, but determines the best way

to consider splitting it. The actual decision to split is made on the basis

of likelihood ratio information. If final splitting is required, it is car-

ried out by the routine SEPER. The two new clusters formed by SPLIT are cre-

ated with small values of W and WADJ to allow theiu to move rapidly to fit the

actual distribution, and to be ADJUSTed quickly. The new clusters are con-

sidered to be guesses, and are treated accordingly.
..

The equations to be solved by SPLIT are those for the mixture of two distri-

butions (table I). SPLIT first puts everything in a frame with an overall

mean M of zero, and where the overall covariance is the unit matrix. Under

this convention, rank 2 tensors may be called matrices, or reference may be

made to the inner product of two vectors, etc. Whenever such a usage is made,

the covariance or its inverse intervenes; e.g., 6-8 for vector d really means

S i E-lij6
j

. Such requirements can always be tracked by the index summation

convention, as the only way an upper index may be converted to a lower index

or vice versa is with the covariance or its inverse. It is easiest to think

of the covariance as being a unit matrix, in which case the group GL(d) of

general linear transformations on spectral space is restricted to its subgroup

0(d) of orthogonal transformations, which leave the covariance unchanged.

In order to define the two new clusters, SPLIT must find two new covariance

matrices, the difference between the two new cluster means, and the difference

between the two new proportions for a total of 2(d 2 + d)/2 + d + 1 = (d + 1)2

variables. Covariance matrices are represented by their square roots, the

"standard deviations," to preserve positive difiniteness.
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The overall statistics of this combined distribution must match those of the

given cluster, including the skewness and kurtosis. The mean and proportion

of the given cluster are taken care of automatically, so there are d(d + 1)/2

equations each for the covariance (matching it to 1) and the kurtosis, and d

•	 equations for the skewness, for a total of d 2 + 2d equations, or one more

unknown than there are equations.

The method used to solve these equations in the current version of SPLIT is

rather crude, and could be greatly improved. After a first approximation is

made, the subroutine tries to minimize a quadratic form of the squared differ-

ence between the three classes of statistics and their values for the current

assignments of the independent variables, by using a steepest-descent type of

algorithm. The quadratic form to be minimized is thus

OBCOV 11E - Ell2 + OBSKEW 4,S - S'^ 2 + OBKURT liK - KI 1 2	 (47)

where the circumflexed values refer to those calculated from the current val-

ues of the independent variables using the equations from table I, and the

unmarked values are those derived from the statistics of the cluster to be

SPLIT. When K is referred to in SPLIT, the value is used with the normal

distribution offset of [(2 + d) E] subtracted; this offset is the trace on

one pair of indices of '3F 4 '. Using the summation convention

137,4.
	

F ij Ekk + F ik Eiz + EiJik

('3F
4, ) E-lij 

= F.jZ + dEjR + Yjk = (d + 2)Fjk

OBCOV, OBSKEW, and OBKURT are arbitrary objective function coefficients

defined in common. Written out, this objective function is:

ob j= OBCOV C g s d t + l	 c c2 + 1 2 c r 2 - I ^2

+ OBSKEW [g ( 6 TrD2 + 2D26 - C626) - S]2

+ OBKURT12gD2TrD2 + g(D2 ) 2 + g (3c2 1) 66t

- cg[6 2 D2 + (TrD2 )65 t + 2,S (D26) t + 2(A)8 t ] - K `	 (48)
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where Q, r, 02 , c, and 6 are parameters of the two clusters as defined in

table I and in section 2.6; g is (1 - c 2 )/4, S is skewness, and K is sub-

tracted kurtosis. The above expression is written in matrix notation in a

coordinate frame where E is the unit matrix (note the appearance of the unit

matrix in the covariance term), and all matrix products, traces, vector inner

products, etc., are taken using Z as the metric. d 2 is a scalar - 6t 6 and

66
t
 is a matrix.

As a steepest descent technique is used, the derivatives of the objective

function with respect to the independent variables are required. Note that

the derivative with respect to a vector is a vector, and that the derivative

with respect to a matrix is a matrix. Also, the notation {A,B} = AB + BA for

9

	

	 matrices A and B is used to denote the anticommutator calculated by routine

ACOM. The error terms in the objective function are written:

E=E-E	 I; T = S - S; V = K - K; E and V are matrices and T is a vector.
For brevity, A for OBCOV, B for OBSKEW, and C for OBKURT are written.

For the derivative,

1 	 A^ 2 6t E6+ 
2 

Tr(ED2)]
ac

+ BT(- Ca - a6 26 )

+ C- 
2 

[2Tr(VD2 )TrD2 + Tr(VD4)]

(^2
+ (3cg - 2	 tb)6 V6 + 	 - g62Tr(VD2)

+ 6t V6 TrD 2  + 4(V6 ) t (D26 )1	 (49)

where

I	 (VS ) t (D26 ) - 2s t {V, D2 }6	 ( 50)
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M 11

1 a 6 = 2AgES + gB[-2cT66 + (TrD2 - c6 2 + 2D2)T]2 a S

+ 2gC[(h - 2cTrD2 )V6 - cTr(VD2 )S - 2cfV,D2 16 1	 (51)

where

k

h_ 3c 2 - 1

If we write

p	 1 aobj =A 	 E+BTSI +T6 t +STt2 m	 2	 9 (	 )

,:-	 ty + gC (2TrD 2 - C^ 2 ) V + (2TrD2 - cS MI

	+ fV,D2 ? - 2c [(Vd) dt + d(Vd) tl^	 (52)Jtt
4	 1

then

a 6'^ = cr , a—o 2j- + 2
aD

(53)

- aobj	 E
CT	

T,	 2 + 2
aD

The body of SPLIT is taken up with calculating the above objective function

and its derivative. To handle the shortage of one available equation, the

system is allowed to approach a minimum naturally, but the objective function

is multiplied by (1 + c2 • GAMCEN)*, which tends to make the weights of the

two clusters equal.

Internal variable names, temporary variables, and accumulators associated

with variables used in this part of SPLIT are listed in table III.

*G"1;4CEN is a control parameter defined in a BLOCK DATA subroutine.
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The actual steepest-decents procedure is not complicated. There is a certain

ambiguity in any steepest-descents procedure in that the derivative vector is
i

of a different type from the dX needed as an increment. This is an example

of the mathematics elaborated in section 2.5; essentially, any steepest-

descents procedure yields different results in different coordinate systems.

In the case of the SPLIT routine, there are natural coordinate systems within

the vectors and within the matrices (due to the transformation of E to 1), so

the only ambiguity concerns the relative sizes of the scalar, vector, and

matrix terms. These are handled by means of control parameters GAMMET, DELMET,

and SGTMET, so that the square of the full derivative is

2	 2
GRADSQ = GA14MET aac^

	
+ DELMET*(2Vb

+ SGTMET	
aobi 

2 

+ 
aobi	

(54)
a^	 aT Y 1

In the steepest-descents procedure, SPLIT first calculates the objective func-

tion at its new test point. If this is an improvement over the last test

point ' s objective function, the derivatives are calculated and a steepest-

descent step is taken to a new point using these derivatives. (This is always

done at the first point.) If the new point is not an improvement, the deriv-

ative is not calculated, and the step size is made smaller than the step just

,nade, and points backward along the old step. Conceptually, the new point is

rejected in this case, and the program tries a new point in the same direction

but closer to the previous origin point.

The step size is controlled by the variable SSIZ, using the temporary SHRINK.

If the new point is an improvement (which is the change ratio of SSIZ), the

step size is increased by an amount dependent on the expected and actual

changes in the objective function, and bounded below by 3EXRM and above
by EXMAX, where EXMNSQ and EXMAX are control parameters. If the test point is

not an improvement, the new point is taken at the minimum of the parabola

defined by the test and old objective function values, and its derivative at

the old point.

E
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The iteration is terminated by a system using the variables PCTIMP, THIMP,

and DOBFAC, and the controi parameters DAMP, TIMO, and TIM1. Briefly, PCTIMP

is a running average estimate of the fractional improvement in the objective

function per iteration, where DAMP controls the length of the running average.

THIMP is the THeoretical IMProvement for the step (not greater than the new

objective function). After each iteration, the average improvement, PCTIMP*OBJ

is compared with DOBPMS (Derivative of OBjective Per MilliSecond), and if it

falls short of the required value, iteration is terminated. DOBPMS is calcu-

lated early in the program from the timing factors TIMO and TIM1 and from the

number of channels, since the cost of each iteration depends on the number of

channels. The purpose of this procedure is to balance off computer time

against the value of a better solution to SPLIT. There is also a direct limit

to the number of iterations using the control parameter ITERMX.

After the iteration is complete, SPLIT rotates the solution back to the orig-

inal coordinate system and builds the two new clusters. It was found necessary

to enlarge the covariances of the two output subclusters to enable them to find

the true distributions they were intended to match. This spreading of the

clusters is necessary due to the "guess" character of SPLIT; otherwise, the

generated clusters would be so far off the actual clusters they were intended

to model that they would get no points, and would be eliminated eventually as

having too small a proportion. Thus SPLIT adds to the covariance of each

cluster an amount SPRED (E ij + 0.26 
i 
6 i ), where SPRED is a control parameter.

The initialization of the steepest-descent procedure is based on a crude solu-

tion to the splitting problem. The system is transformed to a coordinate

frame where the overall covariance F: is the unit matrix. This is done by per-

forming an eigen decomposition on E to diagonalize it, and then stretching or

shrinking along each of the coordinate axes by the square root of the neces-

sarily positive eigenvalues to make them 1. A rotation can diagonalize the

kurtosis, leaving a unit covariance and a diagonal kurtosis. SPLIT uses this

kurtosis-diagonal frame of reference.
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For initialization, C is set to zero (actually 10 -5 ) and the skewness is dis-

regarded to first order. The direction of splitting is along the most negative

eigenvalue of KURT. (If there is none, the splitting is in covariance rather

than in mean, e.g., the cluster has a sharp peak and a broad base.) The length

of the vector in this direction is obtained by solving a cubic equation using

both the skewness and kurtosis along that direction; the skewness equation is

necessary to fix D2 in the given direction. The remaining components of the

displacement vector are calculated from the skewness components, and the co-

variance diagonals from them. The detailed equations used for the initiali-

zation do not appear to be available at present other than in the code itself;

however, they were derived from table I directly as described. Some variables

used in the initialization and their meanings are given in table IV.

SPLIT is a very crude routine, and could be much improved. It may also be a

little slow for 16 channels, since many of the operations involved are cubic
Y

in the number of channels. This cubic behavior multiplied by the number of

iterations can potentially be fairly expensive even though SPLIT is typically

called only a few times during the execution of CLASSY. This can be regulated

by the control parameters TIMO and TIM1.

Since SPLIT only generates a guess, it is possible that a much wider solution

will suffice. In fact, the initial guess used by SPLIT may be adequate, which

could be tested by making comparison runs with ITERMX = -1. Tests with other

small values might be profitable as well.

In any event, it should be possible to solve the equations used in SPLIT by a

more ordinary, direct approach, rather than the somewhat roundabout steepest-

descents method actually employed. The current version used this method only

to make the coding direct; an earlier version of SPLIT was written using a more

direct method of solution, but was judged too difficult to debug. It was

essentially an extension of the initialization method used in the current

SPLIT.
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SPLIT currently divides a cluster into two components. However, analysis indi-

cates that if the kurtosis has more than one negative eigenvalue, then the

distribution, if made of normals, must have three or more components. No

recognizance of this is made in the current code. Any later version should

address this, or at least gather statistics to determine if the case is

important.
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TABLE III.— VARIABLES ANA ACCUMULATORS USED IN SPLIT

FORTRAN variable Meaning

GAM c

GP (1	 + c)/2

GM (1	 - c)/2

2

AA g = 1 4 c

BB

2
h = 3c 2- 1

TRD Tr(D2)

DELSQ d 2

R D26

DUM D4 (temporary)

TMG Tr (D2 ) - c d 2

BBP h6  - cTr(D2)
GAM2 2c

GAMDEL C62 

ERCOV E2

ERSKEW
T2

ERKURT V2

OBJ objective = ERCOV*OBCOV + ERSKEW*OBSKEW

+ ERKURT*OBKURT

SPROA (TrD2)6	 + 2".28	 - c6'6

DEL d

SG a

TAU T

ERE Q2 (temporary)

VER T2 (temporary)

T T
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TABLE III.— Continued.

FORTRAN variable Meaning

ERE E (temporary)

VER V (temporary)

GMCF 1 + c2*GAMCEN

DKURT g*OBKURT

DKRTGM cg*OBKURT

DSKEW g*OBSKEW

DD5 -2cg * OBKURT

ERED ES

DSQT D 
2 
T

VDEL Vs

DUM {V, D2 } (temporary)

VDSQD {V,	 D2 } d

TDEL T%

DVDEL 6t V d

TSPROA T * SPROA

TVDSQ2 Tr(VD2)

TPVD gT * OBSKEW - 2cgV6 * OBKURT

DCOV2 20 OBCOV

D2 2g [h d tV d - 2 Tr(VD2 ), OBKURT

- 2cg Td OBSKEW

D3 g(TrD2 - c^^ 2 ) OBSKEW

D5 2g(h d 2 - cTrD2 ) OBKURT

D6 -4gc OBKURT

SG1 1 
2 
c OBCOV

TAU] I---c OBCOV

UNIDSQ gTt6 OBSKEW + g[2 Tr(VD 2 ) - c.StW 
I 
OBKURT
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TABLE III.— Concluded.

FORTRAN variable Meaning

DD3 g(Tr02 - C6 
2

)	OBKURT

DERED 6t E S

DVD2D2 6 t {V, D2 } d

DDEL 2 obi/a S

TEREDQ Tr(ED2)

TR2VD4 2Tr(VD4)

VER aobj/aa2 (temporary, note square)

ERE aobj/aT2 (temporary, note square)

DSG aobj/aQ

DTAU aobj/aT

DGAM aobj/ac

SUMV ( aobj/ad )2

SUMM (aobj/aa)2 + (aobj/3T)2

GRADSQ (square of total derivative - see text)

GRADRT YI-G—RADSQ
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TABLE IV.— INITIALIZATION VARIABLES USED IN SPLIT

Variable Meaning

EVURT Kurtosis eigenvalues

IBES Index of most negative eigenvalue

AMXVAL Most negative eigenvalue

TRN Tr(D2)

TRSQ TRN**2

RT Essentially 132-EOW

RTSM E RT +	 3	 J IBES	
- TRN

IBES

TCOF d + 4 + (1/3)

ORTSM
RT	 ( TRN )

 Where in RTSM, TCOF, and

ORTSM the term in parentheses appears

only if there is a most negative

eiqenvalue

FRT 3 AMXVAL

DELIN The displacement along the most negative

eigenvalue

DBES D2 along most negative eigenvalue

ERT A new approximation to RT

BTR Temporary coefficient

DELFAC Temporary coefficient
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3.5 DENCAL

This routine adjusts CIN and CTOT for a cluster to change the proportion for

that cluster by a given ratio. This adjustment is necessary because of the

notational convention that makes a cluster's proportion the product of its

parent cluster's proportion with its proportion as calculated from its own

proportion system (CIN and CTOT). If the proportion system design were changed

to work with absolute proportions, DENCAL would be unnecessary. DENCAL also

makes the mandatory calculations of the dependent and old variables DROP. OPROP,

and ODEN.

The proportion of a cluster relative to its parent is calculated via

PROP = CINW^T
F

where W  is the weight of the parent cluster. This form is necessary to keep

the proportions correct even if a cluster is skipped via the Monte Carlo sys-

tem in STATIS.

DENCAL keeps CIN constant in making the proportion change, making only the

changes required by the change in parent cluster and WF.

If RATIO is the change in proportion, we have PROP' = RATIO*PROP or

CIN	
= RATIO

WrCIN 	
(55)

F	 F

which becomes

CTOT' s WF - (WF - 
CTOT)/RATIO	 (56)

All the variables correspond to those in the program, except W(KF) - WF

ON = WF.

i
4

K
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3.6 APRIOR

APRIOR is a short routine which returns the natural logarithm of the additional

cutoff factor needed for one more class, times any volumetric factors needed

•	 to normalize the integrals over the continuous parameters. The cutoff factor

is a function C(m) of m, the number of classes, such that

OD

C(m) = 1	 (57)

l=m

It is necessary to multiply the overall probability by such a factor so it can

be normalized even if the number of classes is unknown. Additional factors

may be necessary to normalize various integrals over the continuous parameter

space.

The results given by CLASSY do not appear overly sensitive to the value given

to APRIOR, and this should be generally true except in the case of very sta-

tistically sensitive problems. As of this writing, no controlled study has

been made of the effects of changing the values returned by APRIOR. It is

possible that redefining the clustering problem handled by CLASSY without the

use of the Bayesian model approach would clarify the range of values allowed

for APRIOR without getting the one cluster per point (or n clusters for n2

points) divergences in the clustering behavior of the program.

At present, APRIOR returns a value of VFAC*MQ + BIAS, where VFAC is a control

parameter giving the dimensionality dependent volumetric factors (as a log-

arithm), and BIAS gives the logarithm of the overall cluster cutoff factor:

C(m) = (constant) exp(-m*BIAS) 	 (58)

It is possible that VFAC, the dominant term, could be made as high as -log 2,

or even -(log 2)/MQ, since when a cluster is split, the subclusters have

_ .
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effectively twice their own volume for their means to move around in. It

would certainly be useful to test CLASSY with some fixed and presumably arti-

ficial data set, and find what values of VFAC and BIAS are required for the

program to give anomalous behavior. Running close to these limits might make

i

	
the algorithm more sensitive. It should be noted that the terms represented

r

	

	 by APRIOR are quite small compared to those represented in the product prob-

abili ty over all the points, simply because there are so many more points than

classes in most cases. Thus it is probable that the results are almost

entirely independent of APRIOR, as they generally should be.

'	 3.7 ISPLIT

4

	

	 ISF:IT is a short logical function used during the mapping and output stages

of the program. Although CLASSY naturally uses fractional assignment of each

point to a number of classes, during the mapping stage a decision must be made

as to which single class each pixel should be assigned. A decision must also

be made as to whether to use a parent cluster or its subclusters; this latter

decision is the function of ISPLIT.

ISPLIT returns .TRUE. for a cluster if the cluster has subclusters, and either

the likelihood ratio favors the subclusters, or the subclusters are older than

the parent cluster. Otherwise ISPLIT returns .FALSE. The second proviso

concerning the age of the cluster is necessary to avoid selecting newly JOINed

parent clusters over their subclusters. Such parents have an advantage over

their subclusters due to the APRIORi factor in SPFAC, and would be automatic-

ally selected even if the subclusters were a much better fit to the data.

Thus the second proviso in ISPLIT forces a decision in favor of the subclus-

ters of a JOIN until the new parent cluster has succeeded in eliminating the

subclusters.

3.8 EIGROT

EIGROT is a general eigenvector-eigenvalue routine for symmetric matrices used

primarily by SPLIT. It calls system routin^s, and is thus computing-system

dependent. The routines used for EIGROT must handle the case of equal eigen-

values correctly.
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4. CONCLUSIONS

4.1 TIMING AND OPTIMIZATION

Although no detailed work has _vet been done on the timing and optimization

characteristics of CLASSY, a few of the main features are obvious. This anal-

ysis will not examine the time consumed in scrambling the data, but only the

timing of the CLASSY algorithm. The scrambling time should be measured, but

any reasonable coding should make it much less than that consumed by CLASSY

itself. The main timing at present should be the product of number of points

times number of channels squared times number of clusters times number of

iterations. The quadratic dependence on the number of channels should be

noted in particular. CLASSY was originally designed as a research program,

therefore many optimizing features were omitted.

The first loop of STATIS is executed for every point times every cluster. The

second loop is executed probably two or three times per data point. ADJUST

is called once per WADJ interval, typically every 100 or 200 points, and the

discrete transformation subroutines are called even less often, typically a

few times per run. The dominant factors in both the first and second loops of

STATIS are quadratic in the number of channels. ADJUST contains some opera-

tions which are cubic in the number of channels (matrix inversion, etc.) but

these are executed infrequently and therefore should consume little machine

time. With the possible exception of SPLIT, the discrete transformations

consume negligible machine time.

It can be seen then, that perhaps 80 percent of more of the execution time

for CLASSY is spent in the first loop, and of that time perhaps one-half (more

for 16 channels) is spent in the routine DOTSQ. Rewriting that routine as a

straight line (no indexing) assembly routine could speed up the algorithm by

30 percent or more. Expanding all the vector routines and writing a low-

precision assembly language routine for the function XP should double the

speed of the system.
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It is apparent that CLASSY is expending a great deal of effort in calculating

the probabilities of points in classes in which they have very low probabil-

ities. If these clusters could be eliminated from consideration without

introducing a bias, the performance of CLASSY should be improved by a large

factor. The second-loop processing of these clusters is eliminated by the

Monte Carlo system. By moving parts of that system into the first loop, or

making similar changes, timing could be considerably improved.

One simple method of eliminating the quadratic form evaluation for every clus-

ter is to maintain a lower bound of the form relative to some standard quad-

ratic form which is evaluated only once. Or, better, the system could bei

rotated to the frame where this form is unity. The only alteration that this

would require would be to the Shepherd's correction terms in ADJUST; the non-

invariant JOIN selection would be improved. Then, since the distance to a

point would be always greater than (x - u)2 relative to the standard form,

most of the expensive quadratic form evaluation could be eliminated. This

timing could be improved even more if techniques dividing the feature space

were used. Additionally, the bounds for a cluster could take into account

those of its subclusters, so that they could be eliminated with the main clus-

ter. In any event, the extra overhead for maintaining the bound value should

be small, and probably could be included in ADJUST rather than the updating

portion of STATIS. Together with the optimized coding of the inner routines,

this quick classification scheme might accelerate CLASS v by as much as a

{ factor of 10. The•other principal way to speed up CLASSY is to reduce the

number of iterations necessary to reach a satisfactory solution.

CLASSY currently takes a large, single cluster of low weight for its initial

condition. If a run sufficiently similar to the given run is available, a

spread out version of that run's final clusters could be used. However, in

the absence of a good signature extension this might not lead to significant

improvement. A more general procedure might be to make several iterations

using a subset or linear combination of the channels, and then switching to

f	 the full set for perhaps two passes. The two modes would be bridged by a

4-2

E



pass or a fraction of a pass using the old set of features to calculate the

probabilities, and the new set in updating the class statistics, basically a

variant of iterate mode. This technique should be short and easy to imple-

ment and should nearly double CLASSY's speed on the 16-channel problem. (Note

that WADJ must grow quite rapidly to go around the whole data set by the

second pass.)

The three major techniques just described would be quite simple to implement,

and should speed CLASSY up by a factor of 15 to 20. Minor techniques for

optimization might improve it by 40 percent more.

Some minor techniques for optimization include:

1. Making WADJ a function of cluster stability or rate of change

2. Variation of PLIM and MONTE in the Monte Carlo system

3. Finding good values for the acceleration parameters in ADJUST

4. Improving the proportion system

5. Newton's method for the convergence of the basic likelihood equations or

Newton's method corrections might be applied for overlapping clusters

(This is probably not warranted in the present version.)

6. Better methods for , guessing the component distributions after a SPLIT

7. The selection of points highly dependent on the parameters to be placed

on a temporary file and reprocessed intensively

4.2 MODIFICATIONS AND IMPROVEMENTS

Qualitative changes which might be made in the underlying model of CLASSY are

described in this section. CLASSY imposes on the data an underlying structure

of a mixture of normal distributions, probably not completely valid for Land-

sat data. In some cases CLASSY has given overlapping clusters as output,

which, if they correspond to the same class, are a result of skewed or kur-

totic distributions. Two simple modifications, allowing a skewness parameter

and a radial function or "form factor" for each class as additional parameters
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would eliminate these cases. Only the traceless part of the kurtosis would

then be available to detect and organize the splitting of clusters. Coming

closer to the real class of distributions appearing in Landsat data should

improve the resolution of CLASSY and subsequent classification. The skewness

might be fixed without modifying CLASSY itself by imposing a nonlinear coordi-

nate transformation on the brightness space.

Another change in the model for CLASSY would allow "bridges" between clusters,

to contain points which are themselves mixed. This technique might combine

well with the Newton's method system, but is probably less cost-effective than

simply doing a field recognition.

Numerous other modifications could be made to CLASSY. More complex models

requiring fewer parameters per cluster are among the most general. Here clus-

ters would be assumed to have equal covariances, sparse covariances, zero

skewness, etc., until the statistics prove otherwise. However, the question

of which type of model to use is complex and system dependent, and will not

be explored further in this report.

Finally, the actual classification, or assignment of points to clusters, used

in the final stage of CLASSY was added only for the purpose of obtaining read-

able maps. This point assignment procedure could be improved, if training

data were available to label the clusters. In this case, the proper procedure

would be to add the probabilities for clusters having a common label before

selecting the label with the maximum probability.

tr

=i

4-4

F



5. REFERENCE

1. Duda, R. 0.; and Hart, P. E.: Pattern Classification and Scene Analysis.
John Wiley and Sons (New York), 1973.

5-1

u-


