NASA Contractor Report 144880

BETA DISTRIBUTIONS: A COMPUTER PROGRAM FOR PROBABILITIES AND FRACTILE POINTS

James D. Brownlow and Ram Swaroop
System Development Corporation
Edwards, California 93523

May 1979

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Dryden Flight Research Center
Edwards, California 93523
INTRODUCTION

The family of beta distribution with density

\[f(x|a,b,\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x-a}{b-a}\right)^{\alpha-1} \left(\frac{b-x}{b-a}\right)^{\beta-1} \left(\frac{1}{b-a}\right) \]

with range parameters \(a < x < b \) and shape parameters \(\alpha, \beta > 0 \) is an extremely rich family of distributions. It includes J shaped, U shaped and unimodel distributions within finite bounds. In spite of such versatility and applications in physical and life sciences, tables and computer programs for probabilities for the beta distribution are generally not available. One might suspect that this is because the standard beta distribution \((a=0, b=1)\) probabilities and fractile points can be computed from F distribution tables which are generally available. However, this is not practical for even a moderate number of probabilities or fractile points, and is limited to integral values of \(\alpha \) and \(\beta \). In practice beta probabilities and fractile points are often needed. The enclosed computer program meets this need.

The program presented here computes the probability that a beta random variable, \(X \) with shape parameters \(\alpha \) and \(\beta \), on the range \(a \) to \(b \) will fall within an interval \((x_1, x_2)\) as \(x_1 \leq x \leq x_2 \). Also for any given probability \(p \) the program will compute the fractile \(x_p = F^{-1}(p) \). Additionally routines to calculate the density function \(f(x) \) and the gamma function \(\Gamma(x) \) are presented.
SYMBOLS

\[\Gamma(x) \] Gamma Function

\[\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} \, dt \]

X, Y Random Variables

a Real Number

\(X, y\) Real Numbers

F Distribution Function

f, b Density Functions, or Real Numbers

r Root of a Real Valued Function

t Dummy Variable for Integration

b, a Range Variables for Beta Distribution

\(\alpha, \beta\) Shape Parameters for Beta Distribution

\(n_1, n_2\) Degrees of Freedom for F-distribution

\(\chi^2\) Chi Squared Test Value

\[\Sigma \] Summation Notation

FORTRAN FUNCTIONS

BDIST Beta Distribution Function

BFRAC Beta Fractile

F Beta Density Function

G Gamma Function
PROCEDURE

The computation of probabilities and fractiles of beta distribution is based on the following procedure. The general beta density for random variable x is given by

$$f(x|\alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x-a}{b-a}\right)^{\alpha-1} \left(\frac{b-x}{b-a}\right)^{\beta-1}$$

The range of variable x is interval (a,b) and the shape parameters are α and $\beta > 0$. The transformation $y=(x-a)/(b-a)$ yields standard beta density with range $(0,1)$ and density

$$f(y|\alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \ y^{\alpha-1} \ (1-y)^{\beta-1}$$

which takes different shapes (see figure 1) depending, on the values of α and β. These include J-shaped, U-shaped and symmetric and skewed unimodel distributions.

![Figure 1. $p(y) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha-1} (1-y)^{\beta-1}$, the probability density for various values of α and $\beta.$](image-url)
The beta probabilities are found by numerically integrating the beta density function. The technique for this is Gauss-Legendre quadrature (Ref. 1). The integral is translated to the interval (-1,1) and the Legendre polynomial of order 15 is used.

Having determined the integral of the beta density function, the pth fractile point \(x_p \) of the beta distribution is obtained by solving the integral equation

\[
F(x) = \int_{-\infty}^{x_p} f(t)\,dt = p
\]

The distribution function \(F(x) \) is always a monotone-increasing function. As such, virtually any iterative algorithm will converge to the solution of the equation \(F(x) - p = 0 \). The technique used in the programs presented here is the method of bisection (interval halving) (Ref. 2). The procedure terminates at \(x \) whenever \(|F(x)p - p| < 10^{-6} \).

The gamma function \(\Gamma(x) \) for argument \(x \) is evaluated by using Sterling's approximation (Ref. 3)

\[
(*) \quad \Gamma(x) = \left(\frac{2\pi}{x}\right) \exp \left(\ln x - g(x)\right)
\]

where

\[
g(x) = 1 - 1/12x^2 + 1/360x^4 - 1/1260x^6 + 1/1680x^8
\]

using

\[
(**) \quad \Gamma(x) = \frac{\Gamma(x+n)}{x^n} \quad x(n) = x(x+1)\cdots(x+n-1)
\]

\(n \) can be selected so that \(x+n > 10 \) then \(\Gamma(x+n) \) computed by the series expansion, (*) and \(\Gamma(x) \) found by (**). From the calculation of \(\Gamma(x) \) the beta density function is easily determined. Appendix A lists the FORTRAN routines.

OUTPUTS

The four outputs available are:

- \(P(x_1 < X < x_2) \) where \(X \) is a beta random variable
- \(x_p = F^{-1}(p) \), where \(F \) is a distribution function of a beta random variable
- \(f(x|a,b,\alpha,\beta) \), the density function of a beta random variable
- \(\Gamma(x) \), the value of the gamma function for positive argument, \(x \).

These outputs and the parameters for each FORTRAN function are described
Beta Distribution Function

The distribution function value $F(x)$ for the beta distribution on the range (a,b) with shape parameters α and β is given by

$$BPROB(0., x, \text{ALPHA}, \text{BETA}, A, B).$$

The probability a beta random variable with parameters a,b,α, and β takes a value between x_1 and x_2 is given by:

$$BPROB(x_1, x_2, \text{ALPHA}, \text{BETA}, A, B).$$

Example: The probability that a beta random variable with range $(1., 3.5)$ and shape parameters $\alpha=4.1, \beta=16.2$ takes a value less than 1.75 is

$$BPROB(1., 1.75, 4.1, 16.2, 1., 3.5) = 0.864.$$

Beta Distribution Fractile Points

For a given p, the 100p-th fractile point from the beta distribution with parameters a,b,α, and β is given by:

$$BFRAC(p, \text{ALPHA}, \text{BETA}, A, B).$$

Example 1: The 75-th percentile of the beta distribution on the range 240 to 1400, with shape parameters $\text{ALPHA}=14.2, \text{BETA}=34.7$ is

$$BFRAC(.75, 14.2, 34.7, 240., 1400.) = 559.307.$$

Example 2: Appendix B presents a FORTRAN program which uses $BFRAC$ to generate ten equiprobability points of a beta distribution on the range $(0., 1.)$ with shape parameters $\text{ALPHA}=4., \text{BETA}=16$. Thirty beta random variables from this distribution are generated and a χ^2-test is performed, at the 5 per cent level, to test the null hypothesis that these observations are, indeed, from the standard (i.e. range$(0., 1.)$) beta distribution with shape parameters $\text{ALPHA}=4., \text{BETA}=16$. Not surprisingly, the χ^2-test statistic accepts the null hypothesis.

Beta Density Function

The probability density function $f(x|\alpha,\beta,a,b)$ for a beta random variable on the range (a,b) with shape parameters α and β is given by:

$$F(X, C, \text{ALPHA}, \text{BETA}),$$

where $C= \Gamma(\text{ALPHA}+\text{BETA})/(\Gamma(\text{ALPHA}) \Gamma(\text{BETA}))$ must be passed to the function. C may be computed using the gamma function.
\[C = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \]

Example: The beta density function on the range (.67 to 12.2) with shape parameters \(\alpha = 1.2 \), \(\beta = 3.5 \) at \(x = 5.2 \) is given by:

\[C = \frac{\Gamma(4.7)}{\Gamma(1.2) \Gamma(3.5)}, f(5.2, C, 1.2, 3.5) = 0.1045. \]
APPENDIX A

This appendix presents the computer programs used for computing the beta-density probabilities and fractile points.
FUNCTION BFRAC(X, ALPHA, BETA, A, B)
C****
C**** FORTUNE TO DETERMINE FRACTILE POINTS OF
C**** THE BETA DISTRIBUTION, WITH PARAMETERS
C**** ALPHA AND BETA
C****
C**** INVERSE DISTRIBUTION VALUE FOUND BY
C**** HALVING-THE-INTERVAL TECHNIQUE..:
C****
C**** BY BROWNLOW, SOC/ISI.
C****
C**** MAKE SURE PERCENTAGE POINT IS BETWEEN 0 AND 1.
C****
C**** IF (X .LE. 1. AND. X .GE. 0.) GO TO 2
C****
C**** PRINT 1, X
1 F0RMT(""X = ",%11.3"," FOR BETA DIST%N, SO FRACTILE POINT COULDN"
C****
C**** 0T BE FOUND")
C****
C**** BFRAC = 0.
C**** RETURN
C****
2 KOUNT = 0
C****
C**** TOP = 1. - 1.E-50.
C**** 30T = 1.E-50
C****
C**** BFRAC = (TOP + BOT)/2.
C**** F1 = BFRAC(L., BFRAC, ALPHA, BETA, A, 1.) - X
C****
C**** IF THE INTEGRAL OF THE BETA FUNCTION FROM ZERO TO
C**** BFRAC DIFFERS FROM X BY LESS THAN 1.E-9
C**** WE HAVE THE FRACTILE POINT..
C****
C**** IF (ABS(F1) .LE. 1.E-9) GO TO 4
C****
C**** OTHERWISE Reset THE upper OR LOWER INTERVAL
C**** VALUE AND REPEAT THE PROCEDURE..
C****
C**** IF (F1 .GT. 0.) TOP = BFRAC
C**** IF (F1 .LT. 0.) 30T = BFRAC
C****
C**** IN ANY CASE NEVER DO MORE THAN 20 ITERATIONS
C**** TO FIND A VALUE ON (0., 1.) TO WITHIN 2**(-19).
C****
C**** KOUNT = KOUNT + 1
C**** IF (KOUNT .GT. 20) GO TO 4
C****
C**** GO TO 3.
C****
C**** REDEFINE FRACTILE POINT FOR DISTRIBUTION ON THE
C**** RANGE A TO B..
C****
C**** 4 BFRAC = A + BFRAC*(B-A)
C****
C**** RETURN
END

8
FUNCTION BFR0B(X1,X2,ALPHA,BETA,A,B)
C**
C** ROUTINE TO INTEGRATE BETA DENSITY FUNCTION
C** DEFINED ON (A,B) WITH PARAMETERS ALPHA, AND
C** BETA. LIMITS OF INTEGRATION IS X1 TO X2.
C**
C** BY BROWNLOW, SOC/ISI, 1/79
C**
C** EXTERNAL F
C**
C** F IS THE BETA DENSITY FUNCTION,
C** F(X,Y,ALPHA,BETA) = C*(((X-A)/(B-A))**ALPHA/((B-X)/(B-A))**BETA)
C**
C** C = GAMMA(ALPHA+BETA)/(GAMMA(ALPHA)*GAMMA(BETA))
C**
C** UNDER THE TRANSFORMATION Y = (X-A)/(B-A),
C** Y HAS STANDARD DENSITY,
C** F(Y) = C*(Y**(ALPHA-1.)*(1.-Y)**(BETA-1))
C**
C** IF(A.LT.B) GO TO 2
PRINT 1,A,B
1 FORMAT(* IN ESTIMATING BETA PROBABILITY, THE LOWER BOUND,*,E12.4,
/* IS NOT GREATER THAN THE UPPER BOUND,*,E12.4)
BFR03 = .
RETURN
C**
C** IF(X1.LT.X2) GO TO 4
PRINT 3,X1,X2
3 FORMAT(* IN ESTIMATING BETA PROBABILITY, THE LOWER LIMIT,*,E12.4,
/* IS NOT GREATER THAN THE UPPER LIMIT,*,E12.4)
BFR03 = .
RETURN
C**
C** IF(X1.GE.A) GO TO 6
PRINT 5,X1,A
5 FORMAT(* IN ESTIMATING THE BETA PROBABILITY, THE LOWER LIMIT,*,
,E12.4,/ * IS LESS THAN THE LOWER BOUND OF THE DISTRIBUTION,*
,E12.4,* THE LOWER BOUND WILL BE USED*)
X1 = A
C**
C** IF(X2.LE.B) GO TO 8
PRINT 7,X2,B
7 FORMAT(* IN ESTIMATING THE BETA PROBABILITY, THE UPPER LIMIT,*
,E12.4,/ * IS GREATER THAN THE UPPER BOUND OF THE DISTRIBUTION*
,E12.4,* THE UPPER BOUND WILL BE USED.*)
X2 = B
C**
C** Y1 = (X1-A)/(B-A)
Y2 = (X2-A)/(B-A)
C**
C** GAUSSLO DOES GAUSSIAN-LEGENDRE QUADRATURE TO
C** ESTIMATE THE INTEGRAL OF THE BETA DENSITY FUNCTION.
C**
C** CALL GUSEL0(F,ALPHA,BETA,Y1,Y2,ANS)
C**
C** BFR03 = ANS
RETURN
END
SUBROUTINE GAUSSQ(F,ALPHA,BETA,X1,X2,ANS)
C***** ROUTINE TO DO GAUSSIAN-LEGENDRE QUADRATURE TO INTEGRATE BETA DENSITY FUNCTION FROM X1 TO X2
C***** F IS THE STANDARD BETA DENSITY FUNCTION
C***** F(X,C,ALPHA,BETA) WHERE C IS NORMALIZATION CONSTANT, C = GAMMA(ALPHA+BETA)/(GAMMA(ALPHA)*GAMMA(BETA))
C***** BY BROWNLOW, SDC/ISI, 3/79
C*****
C***** DIMENSION ROOTS(4),W(9)
C***** DOUBLE PRECISION ROOTS,W,ANSWER
C***** C = GAMMA(ALPHA + BETA)/(GAMMA(ALPHA)*GAMMA(BETA))
C*****
C***** DATA ROOTS/
C***** - C,J,1(1,2,4) 20119 4 39415 13475 7756300,
C***** - 0.57197 2176 035390 72441 77313 6117000 84920 6583 10427000,
C***** - 0.9327 3334 .7 6060 98799 25181 2648500/;
C***** DATA W/
C***** - 0.20257 1241 2556100 19943 14953 2711100 18516 10001 15562000,
C***** - 0.1625 9250 19940 12957 06779 261500 10715 92244 67172000,
C***** - 0.1735 64974 2341 9611700/;
C*****
C***** TRANSLATE THE INTERVAL (X1,X2) TO (-1,1)
C*****
C***** ANSWER = W(1) * F((X1+X2)/2,C,ALPHA,BETA)
C*****
C***** DO 1 I=2,9
C***** ANSWER=ANSWER + W(I) * F((X2-X1)*ROOTS(I) + (X1+X2))/2,C,ALPHA,BETA)
C*****
C***** ANSWER=ANSWER + W(I) * F(((X2-X1)*(-1))*ROOTS(I) + (X1+X2))/2,C,ALPHA,BETA)
C*****
C***** 1 CONTINUE
C*****
C***** ANS=ANSWER*(X2-X1)/2.
C*****
RETURN
END
FUNCTION F(X,C,ALPHA,BETA)
C****
C**** F IS THE BETA DENSITY FUNCTION...
C****
C**** C PASSED IN MUST HAVE THE VALUE
C**** C = GAMMA(ALPHA+BETA)/(GAMMA(ALPHA)*GAMMA(BETA))
C****
C**** BY BROWNLOM, SOC/ISI, 1/18/79
C****
C**** F = C*(X**(ALPHA-1.))*(1.-X)**(BETA-1.)
C****
RETURN
END
FUNCTION GAMMA(X)

C****
C**** WRITTEN BY BROWNLOW, SOC/ISI, JUNE 1978
C**** GAMMA FUNCTION, REAL ARGUMENT MUST BE
C**** GREATER THAN ZERO.
C****
C**** G(X) = INTEGRAL (EXP(-T)*T***(X-1) DT
C**** EVALUATED BY EXPANSION OF STIRLING'S
C**** FORMULA
C****
C**** GAMMA(X) = GAMMA(X+N)/(X*(X+1)***(X+N))
C**** WHERE X+N IS CHOSEN TO GET MAXIMUM
C**** ACCURACY FROM THE ALGORITHM. SEE
C**** HENRICI, "COMPUTATIONAL ANALYSIS
C**** WITH THE HP-25 POCKET CALCULATOR"
C****
A = X
P = 1.

1 IF(A .GT. 10.) GO TO 2
P = P*A
A = A + 1.
GO TO 1

2 CONTINUE

C****

C****

DATA PI/3.1415926538/

C**** GAMMA = (SQRT(2.*PI/A) * EXP(A*(ALOG(A)-E)))/P
C****
RETURN
END
This appendix presents the FORTRAN program which generates the ten equi-probability points of the standard beta distribution with shape parameters \(\alpha=4, \beta=16 \). Additionally thirty random variables from this distribution are generated and a \(\chi^2 \) goodness-of-fit test is performed.

```
C*****
C***** FROUTINE TO FIND ORDINATE VALUES
C***** OF THE BETA DISTRIBUTION WHICH
C***** DIVIDE THE (0., 1.) INTERVAL
C***** INTO TEN SUBINTERVALS OF EQUAL
C***** PROBABILITY..
C*****
C***** BETA DISTRIBUTION WITH ALPHA = 4.
C***** BETA = 16.
C*****
C***** BY BROWNLOW, SOC/ISI.
C*****
DO 2 I=1,9
  X = FLOAT(I)/10.
  PRINT 1, BFRAC(X,4.,16.,0.,1.)
1  FORMAT(*F10.5)
2  CONTINUE
C*****
C***** AND NOW GENERATE 30 SAMPLES
C***** FROM A STANDARD BETA DISTRIBUTION
C***** WITH PARAMETERS ALPHA = 4.,
C***** AND BETA = 16.
C*****
DO 4 I=1,30
  PRINT 3, BETAGEN(4.,16.,0.,1.)
3  FORMAT(*F5.3)
4  CONTINUE
END
```
FUNCTION BETAGEN(IALPHA,IBETA,A,B)

C***** FUNCTION TO GENERATE A RANDOM VARIABLE FROM A
C***** DISTRIBUTION ON THE RANGE (A, B) WITH SHAPE PARAMETERS
C***** IALPHA, AND IBETA.
C***** METHOD IS FROM HASTINGS AND
C***** FEAGOCK, "STATISTICAL DISTRIBITIONS", PAGE 72.
C*****
G1 = 0.
DO 1 I=1,IALPHA
 G1 = G1 - ALOG(RANF(U))
 1 CONTINUE
G2 = 0.
DO 2 I=1,IBETA
 G2 = G2 - ALOG(RANF(U))
 2 CONTINUE
BETAGEN = A + (G1/(G1 + G2))**(B-A)
C***** NOTE THAT G1 AND G2 ARE, IN
C***** FACT, GAMMA RANDOM VARIABLES.
C*****
RETURN
END

The equiprobability points for this distribution which partition the range (0,1) into ten intervals are: .09514, .12334, .14652, .16817, .18989, .21297, .23907, .27131, .31895, 1.00000.

Given the equi-probability points and the random sample found by using the computer programs given in this paper, the null hypothesis that the distribution from which these random variables are drawn is beta on (0,1) with shape parameters \(\alpha = 4, \beta = 16 \) may be tested. Specifically,

<table>
<thead>
<tr>
<th>Class</th>
<th>Observed Freq.</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000-0.09514</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0.09514-0.12334</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0.12334-0.14652</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>0.14652-0.16817</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>0.16817-0.18989</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0.18989-0.21297</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.21297-0.23907</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>0.23907-0.27131</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0.27131-0.31859</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0.31859-1.00000</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Each interval has equal probability (in this case 0.10) so with a random sample of size thirty we expect three observations in each interval.

The test statistic is given by

\[
\chi^2 = \sum_{i=1}^{10} \frac{(O_i - E_i)^2}{E_i}
\]

where \(O_i \) is the observed number of occurrences in the \(i^{th} \) cell; \(E_i \) the expected number.

hence \(\chi^2 = \frac{1}{3} (1^2 + 1^2 + 1^2 + 2^2 + \ldots + 1^2) \)

\[= \frac{1}{3} (31) = 10.333 \]

and \(\chi^2(9) = 16.919 \)

thus we accept \(H_0 \): the distribution from which the sample was drawn is \(\beta (4.16) \)
REFERENCES

Title and Subtitle

BETA DISTRIBUTIONS: A COMPUTER PROGRAM FOR PROBABILITIES AND FRACTILE POINTS

Author(s)

James D. Brownlow and Ram Swaroop

Performing Organization Name and Address

System Development Corporation
Edwards, California 93523

Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

Abstract

A beta distribution is specified by range parameters $a < b$, and two shape parameters α and $\beta > 0$. The computer program presented calculates any desired probability and/or fractile point for specified values of a, b, α and β. This program additionally computes gamma function values for integer and non-integer arguments.

Key Words (Suggested by Author(s))

Beta distribution
Probabilities
Fractile points

Distribution Statement

Unclassified-Unlimited

Security Classif. (of this report)

Unclassified

Security Classif. (of this page)

Unclassified

No. of Pages

20

Price

$3.25

For sale by the National Technical Information Service, Springfield, Virginia 22161