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PREFACE 

Exploratory mod81ing is presented for likely existing 

extended hydrogen atmospheres of the outer satellite[l 

Amalthea, Ganymede, Callisto and Titan. Primary emphasis 

is placed upon describing the spatial structure and Lyman-u 

intensity of these extended satellite atmospheres for a 

range of probable hydrogen atom emission and lifetime con-

ditions. The likelyhood of detection of these extended 

atmospheres by the Voyager and Pioneer 11 spacecrafts is 

assessed. The initial spatial distribution of the ions 

created by atoms lost from -these extended hydrogen atmos-

pheres and from the extended sodium atmosphere of 10, 

bec..~use of'ionization processes, is also presented. 

'l'he present study provides a valuable in-troduction and 

theoretical descrip-tion of ex-tended sa-telli-te a-tmospheres, 

in addition to presenting many interesting and useful 

exploratory and prototype model calculations. Data for 

extended satellite atmospheres, obtained from both earth 

based observations and spacecraft measurements, can be 

analyzed to yield important information about the outer 

satellites and their planetary interactions. Specific 

information can be deduced about the nature of the local 

satellite atmospheres, the character of the electromagnetic 

intera'.::tion of satellit:.es with their planetary magnetos-

pheres, and the energy density and spatial distribution of 

charged particles in the magnetospheres. At present very 
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little data for extended hydrogen atmospheres has been 

accumulated. In anticipation of data to be obtained in the 

near future, exploratory modeling has been undertaken. 

Exploratory modeling results for most probable atom 

emission and life'time condi tions indica'te 'that the extended 

hydrogen atmosphere of Amalthea should form a tightly-bound 

partial toroidal-shaped cloud about its planet. In contrast, 

Ganymede, Callisto and Titan should form rather large, 

complete and nearly symmetric toroidal-shaped clouds. The 

partial toroidal hydrogen cloud of Amalthea, tentatively 

detected by the UV instrument aboard the Pioneer 10 space-

craft, could be explained if the satellite atom escape flux 

11 -2 -1 
were of order 10 cm sec . Model results suggest that 

the Voyager spacecraft should be able to detect the Lyman-a 

emission from the extended hydrogen clouds of Ganymede, 

Callisto and Titan, assuming the most probable atom emission 

and lifetime conditions. The Pioneer 11 spacecraft should 

also be able to detect the hydrogen cloud of Titan. Voyager 

detec,tion of the Ganymede and Titan clouds under less favor-

able conditions is also possible. 
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CHAPTER I 

INTRODUCTION 

Interest in understanding the atmospheres of the outer 

satellites, their extended nature and their planetary inter-

actions, has grown significantly in recent years. Bot.h earth 

based astronomy and spacecraft measurements have made important 

contributions. These measurements and others to be obtained 

in the near future from the Pioneer, Voyager and Galileo space-

craft missions, provide a sufficiently broad data base to 

seriously constrain theoretical models and to facilitate def-

inite physical interpretation. In this report, modeling 

focused primarily upon providing a framework for understanding 

the extended nature of outer satellite atmospheres is presented 

and applied "Lo several satclli,te:o: of Jupiter and Saturn. 

T'JC concept of an extended satellite atmosphere is rela-

tively new and deserves some introductory comments. Briefly, 

an extended satellite atmosphere is that part of a satellite 

atmosphere which extends spatially beyond the gravitational 

control of the satellite. This situation is illustrated in 

Figure 1. Here is depicted a satellite, surrounded by a 

local or bound atmosphere, and the satellite's gravitationaf 

sphere of influence. Inside this sphere of influence, the 

satellite exerts more gravitational control over atmospheric 

gases than does its parent planet. If a gravitational escape 

mechanism exists, which is sufficiently energetic to allow at 

least some atmospheric gases to escape the sphere, an extended 

satellite atmosphere is created. Because of the relatively'" 
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Creation of an Extended Satellite Atmosphere. 
See the text for discussion. 
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small escape velocities of the outer satellites (between 2 

and 3 km/sec), such gra'li':ational escape of satellite gases 

is not unlikely. 

Gases entering the extended atmosphere in this manner 

arc basically collisionless and follow individual trajectories 

in the circumplanetary space. The spatial volume filled by 

the extended atmosphere depends upon the emerging atom veloc-

ities and the survival lifetime of these atoms in the planetary 

environment. Cloud atoms are lost from the extended atmos-

phere upon ionization. For short lifetimes, gases will be 

relatively confined to the near satellite environment, filling 

only a partial toroidal-shaped volume. For long lifetimes, 

however, gases will fill a complete toroidal-shaped volume, 

extending all the way around the central planet. 

Major emphasis in this report has been placed upon pro-
" 

vidinCJ exploratory and prototype models for extended hydro<.Jen 

Cl. tmosphcres of outer satolli tes which arc likely to exis t u.n(l 

be discovered by the Pioneer, Voyager and Galileo outer plan-

etary missions of NASA. Observational evidence for extended 

outer satellite atmospheres is reviewed in Chapter II. A 

theoretical fra.mework for describing extended atmospheres is 

presented in Chapter III and the model to be used to calculate 

its detailed spatial density described. Exploratory modeling 

results for extended hydrogen atmospheres for the satellites 

Amalthea, Ganymede~ Callisto and Titan are given in Chapter IV. 

Calculations describing t~e initial ion sources created by 

these extended hydrogen atmospheres and by the sodium cloud 

of 10 are also presented. Progress in modeling Io's sodium 
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line profile data is report~d in the last section of Chapter IV. 

Concluding remarks are given in Chapter V and complete the 

report. 
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CHAPTER II 

OBSERVATIONAL EVIDENCE POl< EXTENDED SATELLITE ATMOSPHERES 

Several satellites in the outer solar system - Amalthea, 

the fo~r Galilean satellites and Titan - have, or are likely 

to have, extended atmospheres of gases, forminq partial or 

complete toroidal-shaped clouds ~bout their parent planet. 

Our present knowledge of the existance of bound and extended 

atmospheres for these six satellites is summarized in Table 1. 

Discussion will be directed primarily to extended satellite I 
atmospheres of atomic hydrogen gas needed for prototype and 

exploratory modeling undertaken in later chapters. 

2.1 Extended Hydrogen Atmospheres 

Extended hydrogen atmospheres, tentatively detected for 

Amalthea (JV) and definitely observed for Io (JI) with the 

ultraviolet instrumentation on the Pioneer 10 spacecraft, 

are discussed by Judge et ale (1976). The average brightness, 

approximate vertical thickness and angular extent of these 

clouds, centered on the satellite and measured along its or-

bital tJ:ack, are given in 'l'able 2. Amalthea, with such a 

small escape velocity, cannot retain an atmosphere even for 

temperatures as low as ten degrees Kelvin. Io, on the other 

hand, requires a temperature of several hundred degrees in 

order for escape of hydrogen to occur. 

The other Galilean satellites Europa (JII), Ganymede 

(JIll) and Callisto (JIV) are also likely candidates for ex-

5 
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Table 1 Su~mary of Information on the Existance of Extended Satellite Atmospheres 

Satellite 

Amalthea 

10 

Europa 

GanYJ!l.ede 

Callisto 

Titan 

Escape 
Velocity (km/sec) 

0.155 

2.56 

2.06 

2.75 

2.39 

2.73 

Bound 
Atmosphere 

not likely 

yes 

probable 

probable 

probable 

yes(CH4 ,H
2

) 

Extended 
Atmosphere 

likely: H(tentative 
detection) 

yes: H, Na, K 

yes: ° suggested 

likely: 0, H, H2 

likely: 0, H, H2 

yes: H(tentative 
detection) 
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Table 2 
Hydrogen Toroidal Clouds Detected by the UV Photometer of Pioneer 10 

Average 
Vertical 

Orbital Brightness Thickness 
Extent 

Satellite 
(Rayleighs) 

llupiter Radii) (deg) 

J 

Amalthea 
100 

~l 
:-109 

10 
300 -1 ~ 60 

1 

I 
i 

1 
l 
1 
1 
j 

j 
l 
J 
'j 
1 
l 
I 
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tended hydrogen gas clouds. A source of H atoms may be 

supplied to the cloud by water, frost or ice, detected on 

these satellites'surfaces. This might occur through dis-

sociative surface sputtering processes by Jovian magnetos-

pheric particles for the satellite Europa (Wu et al., 1978) , 
or through solar evaporation and photolysis for the satel-

lites Ganymede and Callisto (Yung and McElroy, 1977), fol-

lowed by gravitational escape. A possible detection of a 

weak h..,drogen cloud for Europa may be present in the more 

recent reduction of Pioneer 10 ultraviolet photometer data 

(Wu et al.,1978) using improved procedures, although emis-

sion from oxygen atoms ma~l account for the complete signal 

observed. No such clouds have been detected for Ganymede 
or Callisto in Pioneer 10 and 11 spacecraft data, although 

they may well exist, having an intensity below the sensiti-
vity level of the UV instrument. 

A hydrogen toroidal cloud for Titan was first suggested 
by McDonough and Brice (1973) as a possible recycling mech-

anism to moderate the large amount of hydrogen thought to be 
escaping the satellite. p.stimates of the escape flux for 

hydrogen have' been somewhat reduced by more recent upper limits 
of the amount of H2 present in the atmosphere of Titan 

(MtiilCh et al., 1977), but a modest toroidal cloud of H atoms 

should still be expected at the satellite orbit. Tentative 

det'ection of this hydrogen cloud from the Copernicus satellite 
has been reported by Barker (1977). 

Estimated values of the atomic hydrogen escape flux for 
each of the six satellites of Table 1 are given in Table 3 

8 
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Table 3 Escape Flux of Hydrogen Atoms from the Outer Satellites 

Satellite Escape Flux Comment Reference 
(em -2 -1 sec ) 

Amalthea ? possible detection, Pioneer ]0 data Judge et al. (1976) I 10 1010 
calculated from Pioneer 10 data Carlson and Judge (1974) 

r Europa 210
8 

estimated from Pioneer 10 data l-lu et al. (1978) 
Ganymede "'5 x 10 7 

plausible model calculation Yung and l-fcElroy (1977) ~ 
r: 

Callisto ? may be similar to Ganymede 

Titan 109_4xlO10 
estimated from limited data Tabarie (1974) 
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along with their references. An estimated escape flux for 
Amalthea is unavailable. Values for 10 and Europa are inferred 
from Pioneer 10 data, whereas values for Ganymede and Titan 
are estimated from plausible model calculations. A likely 

upper limit to the hydrogen escape flux for Callisto is pro-
vided by the Ganymede value. 

Hydrogen atoms escaping the 'satellites will remain part 
of the neutral extended atmosphere until ionized and then are 
swept away by the planetary magnetosphere or by the solar 

wind. For the five satellites of Jupiter under consideration, 
change exchange vii th magnetospheric protons is thought to be 
the dominant lifetime mechanism for H atoms. Estimated life-
time values for this process are given in Table 4 and are con-
siderably smaller than the H atom photoionization lifetime of 

8 about 3-6 x 10 sec. Fu~ 3~turn, no measurements are nvai1-
able for magnetospheric proton fluxes at the orbit of Titan. 
If the satellite is within the planetary magnetosphere, the 
one gauss surface field of 8aturn implies a proton number 

,density at Titan's orbit of about 1.7 cm- 3 moving with the 
co-rotational field speed (8iscoe, 1978). This gives the 

hydrogen atom lifetime of about 8.4 x 106 sec shown in Table 4 
and is adopted for latter use. In the less likely event that 
< 
Titan lies outside the Saturn magnetosphere, solar wind impact 
ionization and photoionization would result in H atom life­

times of 2 x 10 8 
sec and 1-2 x 10 9 sec respectively. 

10 

I 
I 

I 
t 

1 
'1 
1 , 



: j 
i 
I., 

,; 1 

t·' 

~ 
.~ 

I 
If 

I I 

~i 
~, 
P. 

l 

" 
~ .. -~~~. __ -_~ ..... ·.d Wi 4 

'." :s 5 , - '-.-- ~.? SaL. 2. ,.:. IY ';JLlL.X .... 

Table 4 Estimated Lifetime of Hydrogen Atoms in the Extended Satellite Atmospheres 

Satellite ------- ~.~."-""-'- r..r.aSITl."l Pr.-.;· .. ~ Plasma 

Conditions 

Amalthea 

Frank et al. (1976) 

Brown (1978) 
10 

Frank e.t al. (1976) 

Siscoe (1978) 
Europa 

Frank et al. (1976) 
Ganyneje 

Callisto 
Frank et al. (1976) 

Titan 
Frank et al. (1976) 

Siscoe (1978) 

+ assuning protons co-rotating with the magnetosphere 

* value, calculated by BraHn for electrons at 3.3 Jupiter radii, is assurred £orprotons at Amalthea's 

orbit (2.54 Jupiter radius) as an uIJPAJ limit value. 
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2.2 Sodium Cloud of 10 

In addition to the hydrogen atoms, 10 has extended atmos-

pheres of sodium and potassium atoms, both detected from ground 

based observations. Diverse observations of the sodium cloud 

since its discovery (Brown, 1974) have produced a large and 

rapidly growing data base, sufficiently broad to seriously 

constrain theoretical models and to facilitate definite 

physical interpretation. The potassium cloud, in contrast, 

was discovered more recently (Trafton, 1975; Trarger et al., 

1976; MUnch et al., 1976). To date, very little data has been 

acquired and in'terpretative modeling is not yet warranted. 

Observations of the sodium cloud basically are of two 

types, (1) spatial cloud da'ta, describing the intensity of 

the sodium O-line emission in the vicinity of 10 and (2) line 

profile data, giving the doppler signiture of the emitting 

cloud atoms near the satellite. Data of the first type has 

been successfully modeled by Smyth and McElroy (1978) who 

compared their model calculations with the set of observed 

two-dimensional images reported by Murcray and Goody (1978). 

These results suggest that sodium atoms originate from the 

inner ~emisphere of 10 with an average flux of about 108 

atoms cm-2 sec-I and an initial mean velocity of 2.6 km sec-I. 

Atoms appear to be removed from 'the cloud by electron impact 

ionization with an effec:tive lifetime of between 15 and 20 

hours. Data of the second type, the line profile observations, 

has received less attention. Preliminary modeling efforts 

(Carlson et al., 1978; Smyth and ~1cElroy, 1977) need to be 

12 



continned and a compreheru:;ive program undertaken. Our develop-

ment of such a modeling program is already in progress and 

will be discussed in a later chapter. 
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CHAPI'ER III 

~lODELS FOR EXTENDED SATELLITE ATMOSPHERES 

A comprehensive ph~lsiG.'il des~ription for extended satel-

lite atmospheres is presented in this chapter. A simple 

theory, useful in initially estimating the spatial size of 

extended satellite gas clouds, is £ummarized and contrasted 

with a more exact physical (iescription used in our cloud model. 

The simple theory is applied to the one existing and five 

likely existing hydrogen atmospheres discussed in the previous 

chapter and overall spatial dimensions of these clouds are 

estimated. A brief description of the cloud model, capable 

of calculating the detailed intensity and density variations 

or line profile shapes of extended satellite atmospheres, is 

thcn prcscntc.1. 

3.1 Physical Description of Extended Satellite Atmospheres 

The atmosphere of an outer satellite may be divided into 

two parts: a portion that is gravitationally bound to the 

satellite and a portion that is gravitationally unbound, the 

so-called extended satellite atmosphere. The spatial boundary 

between these two portions of the atmosphere occurs where the 

gravitational force fields of the planet and satellite on an 

atom are comparable. The surface is effectively a sphere 

centered on the satellite with a radius r
L 

equal to the 

distance between the satellite and the near collinear Lagrange 

point. An approximate expressioti for the Lagrange radius is 

14 
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1/3 
(3.1.1) 

where a is the orbital radius of the satellite and ~ is the 

ratio of the satellite mass to the sum of the planet and 

satellite masse~ Values of r L as well as several other orbital 
and physical properties of the six outer satellites are given 

in TabJ.e 5. 

An atom emitted from the surface or exosphere of a satel-
lite will be confined to the Lagrange sphere unless it has a 
veloci ty nearly equal b) ":he satellite escape velocity (see 

Table 5 for values). The situation, including the effect of 
Jupiter gravitational field, is illustrated in Figure 2 for 

Ganymede, where an atom orbit, initially emitted from the 

exosphere, is shown as a function of increasing initial 

velocity. The escape velocity is reduced from 2.6 km/sec, 

the two-body value, to about 2.45 km/sec because of the 

gravitational attraction of Jupiter. 

3.1.1 Angular Extent of the Toroidal Clouds 

'l'he orbi-tal pa'th of a-toms escaping the Lagrange sphere 

will be controlled largely by the gravity of the planet. 

Those escaping atom orbits with initial emission velocities 

less than about vs (/2 -1), where vs is the orbital speed of 
the satellite (see Table 5) , will have elliptical orbits about 
the planet. For isotropic emission of many such orbits, atoms 
will diffuse both ahe~d and behind the satellite. An approx-

15 
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+ -3 }ffiss of Amalthea calculated assuming a density of 3 gm cm and a radius of 120 km. 
II 

Estimated values assuming a bound atmosphere except for Amalthea. 

* Two-body escape velocities computed for the exosphere radius indicated. 
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Ballistic and Escape Orbits of Atcrns Emitted from Ganyrrede. Orbits of an atom 
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Jupiter in the orbital plane of the satellite, are shown for increasing values 
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imate value for the forward and backward angular diffusion 

velocity of the resulting cloud relative to the satellite, 

QF and QB' can be estimated by using the expressions of Fang 

et ale (1976), which assumes a massless point satellite with 

an isotropic Maxwell Boltzmann initial speed distribution. 

Results of this calculation for the six outer satellites 

of interest are given in Figure 3 through Figure 8 and compared 

with the approximate expression for the angular diffusion 

velocity 

-
Q = 3 (.?kT) 1/2 

a 7Tm 
(3.1.2) 

where T is the temperature and m is the mass of the emitted 

atom. 'T'hc-! emissi.on t<:~mperflr.\lr0. 'T' rou<Jhly corrcspon<'l s to fln 

atom emerging from the Lagrange sphere with an average velo­

city V, relative to the satellite, given by 

v = (2kT) 1/2 = 7.28 x 10-2 km/sec ~A! 
7Tffi 

(3.1.3) 

where T is in OK and A is the a·tom rna ss in AMU. 

The angular extent of the forward cloud ElF and backward 

cloud ElB abou·t the planet, relative to the satellite location, 

is proportional to the lifetime T of the neutral clou0 atoms 

in the planetary environment 

= (3.1.4) 
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The forward and backward cloud will diffuse through an angular 
distance of 360 0 with respect to the satellite in a time inter-

D 
val 'P,B of order 

D 
Tli', B = (3.1.5) 

with a cylindrical syrrunetrical toroidal cloud forming if the 

lifetime T is somewhat in ~xcess of Tp~B. Values of Tp~B 
for atoms with an emission temperature to mass ratio of 

200 0 K/AMU are given in Table 6 for the six satellites and 
corresponds to hydrogen atoms escaping from the satellite 
Lagrange sphere with a mean velocity of 1.03 km/sec. 

The gravitational field of the satellite naturally com-

plicates this simple description near the Lagrange sphere. 
This is illustrated for the satellite Ganymede for both 

molecular and atomic hydrogen toroidal clouds. Thermal 

emission is assumed and the time evolution of the cloud is 

examined by solving the three-body gravitational problem. 

Using the Ganymede atomspheric model of Yung and McElroy 

(1977), an exospheric radius of 2935 km and a temperature of 

140 0 K are adopted, where II and H2 have an assumed Maxwell 

Boltzmann speed distribution. Restricting attention to 

particle orbits in the satellite plane only, the time evolu-
tion of the column density of the two toroidal clouds is 

shown in Figure 9 and Figure 10. Ganymede is positioned at 
the elongation point of its orbit in the Figures. A symmetric 
toroidal cloud is established for atom flight times of order 
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D D + Table 6 Angular Diffusion Times TF and TB for Outer Satellite Clouds 

Satellite D D TF TB 
(hr) 

Jh!l. 
106 101 

Amalthea 

248 233 
10 

402 371 
'Europa 

654 593 
Ganymede 

1189 1074 
Callisto 

835 808 
Titan 

o + Calculated assuming an.at.omemmission temperature of -200- K/AMU 
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of 800 - 1200 hours, excluding the immediate vicinity of 

Ganymede. The column density near Ganymede is larger because 

84% of the atoms and 98% of the H2 molecules emitted per unit 

time are gravitationally confined to the Lagrange sphere. 

3.1.2 Vertical Extent of the Toroidal Clouds 

The height of the toroidal cloud above the satellite 

plane H is only a function of the initial emission velocity 

if the lifetim'e is longer than about one-fourth of the satel-

lite period, a time required for an atom orbit to reach max-

imum vertical excursion. A simple expression for the height 

of the cloud directly above the satellite orbit is given by 

1-1 = = <1 

·:V 
S 

(2](rl') 1/2 
'ITm 

(3.1.6) 

where the latter expression follows from the definition (3.1.3). 

3.1.3 Radial Extent of the Toroidal Clouds 

For a cordinate frame centered on the planet, the inner 

radial boundary r_ and the outer radial boundary r+ of the 

gas toroidal cloud are given by the simple two-body formula 

r+ = a 
Vs 

) 2 2 -1 

(3.1.7) 

Vs + v 
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This is valid if the atom lifetime T is equal to or larger 

than half the atom orbit period T+, given by 

(3.1.8) 

where Ts is the period of the satellite. 

3.2 Estimated Spatial Extent of the Extended Hydrogen Atmospheres 

In order that a satellite have an extended hydrogen atmos-

phere, it must have 

(1) a source of hydrogen atoms 

(2) a sufficiently energetic atmospheric process for 

gravitational escape of these atoms, and 

(3) a planetary environment providing a sufficiently 

long lifetime for escaping atoms so they can popu-

late a spatially extended volume. 

The shape and size of the gas clouds depends critically 

upon the emission conditions (2) and the lifetime (3), 

whereas the density within this volume depends upon the mag-

nitude of the escaping atom flux. Estimated values of the 

hydrogen escape flux for the outer satellites are summarized 

in Table 3. These flux values suggest that detection of 

extended hydrogen toroidal clouds for Europa, Ganymede and 

possibly Callisto (if similar to Ganymede) should be of 

order 100 times more difficult than for Io. Titan's cloud, 

on the other hand, should be more comparable to Io's hydro-
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gen cloud and may well be more easily detected. 

In what follows, it will be assumed that the first con-

dition above is satisfied. Lifetime of hydrogen atoms in the 
planetary environment, needed in evaluating the third con-

dition, are given in Table 4. What then remains, in order 
to estimate the spatial extent of the toroidal hydrogen atmos-
phere, is specification of the emission conditions for H atoms. 

3.2.1 Emission Conditions 

The emission conditions for H atoms - the speed, disper-
sion and angular character of the initial atom velocity vec-
tors over the exosphere surface of the satellite - are not 
known for the satellites. In ·the absence of such information, 
a"ttention will be directed to isotropic emission nssumin9 \.l 

thermal-like escape mechanism. Thermal-like escape here will 
describe atoms which have an emission velocity distribution 
characterized by an exospheric temperature. For outer satel-
lites, a value 250 0 K corresponds to hydrogen atoms with a 
most pro~able exospheric emission velocity of 2.0 km/sec, 
assuming the simplest case of a Maxwellian distribution. 
This emission velocity is comparable to the escape velo-

cities of the outer satellites (see Table 5). The bulk of 
such H atoms, emitted from the exosphere and emerging from 
the Lagrange sphere, will therefore have an initial speed 

restricted to the tail of the thermal distribution and an 

exit speed of order 1 km/sec. This exit velocity corresponds 
for hydrogen to a two-body atom emission temperature, used 
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earlier in Figure 3 through Figure 8, of between 100 and 
200 0 K/AMU. 

3.2.2 Spatial Extent Estimates 

The angular extent of the extended hydrogen clouds of 
the six outer satellites cap now be estimated from the ex-
pression (3.1.4) using the angular diffusion velocities of 
Figure 3 through Figure 8 and the estimated lifetime values 
of Table 4. Results are given in Table 7 for atom emission 
temperature of 100, 200 and 500 0 K/AMU, and correspond to a 
velocity v for hydrogen atoms emerging from the Lagrange 
spheres of about 0.73, 1.03 and 1.63 km/sec. The lower two 
velocities represent thermal emission as discussed earlier. 
'1'he hi~hest velocity casc is J1l01~e appropriatc for non-thcr-
mal emission such as surfacc spu't-tering or electromagne·tic 
dr i ven escape processes. Observations for 10 and Z\mal'tl1ca 
(Table 2) sugges-t -tha·t thermal emission may be more appro-
priate, resulting in partial toroidal clouds for Amalthea, 
10 and E~ropa, and somewhat well developed complete toroidal 
clouds for Ganymede, Callisto and Titan. 

The vertical and radial extent of these clouds may be 
calculated using the expressions (3.1.6) and (3.1.7). 
Results are given in Table 8 for an atom emission tempera-
ture of 200 0 K/AMU. The estimated total height of 0.7 
Jupiter radii for the 10 cloud is in agreement with the ob-
servations of Table 2. Note that in Table 8 the individual 
clouds for the Galilean satellites overlap radially, so 
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'! Table 7 Estimated Forward and Backward Angular Extent of the Hydrogen Toroidal Clouds 
r' 
) 

r 

I I, 
100 0 K/M-tO 200 0 K/AMU 500 0 K/AMU 

e e e 0 0 e Hydrogen 
F B F B F B Lifetime 

Satellite (deg) (deg) (deg) (deg) (deg) (deg) (hr) 

Amalthea 120 130 170 180 270 280 50 
17 18 24 25 37 40 7 

10 50 50 70 80 110 120 50 
60 60 80 90 120 140 56 

Europa 130 140 180 190 270 300 200 

Ganymede 1000 1100 1400 1500 2000 2200 2500 

Callisto 560 600 760 840 1100 1100 2500 

Titan 750 830 990 1030 1340 1180 2300 

, 
r> 
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Table 8 Estimated Vertical and Radial Extent of the Hydrogen Toroidal Clouds+ 

Satellite 
H Satellite r 

Location r+ 
{Planet radii.l * (Planet radii) (Planet radii) (Planet radii) 

Ama1thea +0.099 2.18 2.54 2.98 
Io +0.351 4.69 5.91 7.56 
Europa +0.704 7.03 9.40 12.86 
Ganymede +1.003 10.42 15.00 22.41 
Callisto +3.309 16.31 26.35 45.54 
Titan +3.74 10.08 20.23 47.58 

+ Calculated assuming an' atom emission temperature of 200 0 K/ANU 

* Planet Radius, 7.135 x 10
4 

for Jupiter and 6.04 x 10 4 km for Saturn 
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that if each one exists, a spatially extended source of pro-

tons for the Jovian magnetosphere is provided in the radial 

annulus from 4.7 to 45.5. 

3.3 Cloud Model 

In the cloud model, atoms are released radially from a 
satellite's exobase with some specified distributions of 

speeds and emission flux. Atom trajectories are modeled by 
numerically solving the restricted three-body problem as 

described by Smyth and McElroy (1977). The contribution of 

individual atoms to the cloud density in any given volume of 
space is proportional to the initial source strength and the 
residence time appropriate to the volume element. Atoms are 
assumed emitted con'tinuou sly ancl at a constant rate, wi Lh 

individual trajectories teD"inated according to some pre-

specified lifetime. Calculations were performed on a CDC 
7600 computer with a typical model for the cloud assumin0 

that the exobase is divided into 1298 source elements. 

For extended hydrogen D:tmospheres, cloud intensi,ty 

contouIs are calculated assuming solar resonance scattering 
or LYlHun-Ci. radiation .by tho hydro<jcn atoms. In the case o[ 

sodium, the radiation intenSity in the D lines is calculated 
for the optically thin limit, also assuming resonance scat-
tering of sunlight. Proper account is taken of Doppler shifts 
introduced due to ,the mo,tion of sodium atoms with respect to 

the sun and the Fraunhofe'r absorption feature present in the 

solar spectrum. 
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CHAPTER IV 

MODELING RESULTS 

4.1 Introduction 

Exploratory prototype modeling of hydrogen toroidal gas 

clouds for the outer satellites Anlalthea, Ganymede, Callisto 

and Titan has been undertaken using our cloud model. Model 

calculations are performed ,for the probable atom emission 

and lifetime conditions outlined in earlier chapters. Results 

suggest than the tentative detection of a partial toroidal 

hydrogen cloud for Amalthea by the UV instrument of Pioneer 10 

could be explained if the satelli,te atom escape flux is of 

order loll cm- 2 sec- l . Model calculations confirm the earlier 

estimated results of Chapter III that the extended hydrogen 

a tmosphel:es of Ganymede, Callis to and 'ritan ,corm comple to 

toroidal-shaped clouds about their parent planets. The 

spatial structure, dynamics and cletectability of these hydrogen 

clouds arc discussed in tho following section. 

The initial spatial distribution of protons created by 

the model.ed extended hydrogen atmospheres of Amal thea, 

Ganymede, Callisto and Titan is calculated and presented 

in the third section. Also included is the initial spatial 

distribution of heavy ions created by the sodium cloud of Io. 

Finally, the current status of modeling the line profiles of 

sodium atoms emitting Dl and D2 radiation from Io's extended 

sodium atmosphere is discussed in the last section of this 

chapter. 
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4.2 Exploratory Modeling of Extended Hydrogen Atmospheres 

The model computations reported here were performed using 

our cloud model described in section 3.3, which includes both 

the gravitational effects of the satellite and planet upon 

the extended-atmosphere atoms. For the four satellites of 

interest, the most probable values for atom emission condi-

tions and lifetime, estimated earlier, were assumed to de:Eine 

modeling parameters. For each satellite, additional values 

for these parameters were also considered to illustrate the 

variety of results that might be expected due to uncertain-

ties in prescribing the atom emission and lifetime conditions. 

Isotropic emission of hydrogen atoms from the satellite exos-

phere was assumed in all model calculations. 

The resulting spatial structure of each toroidal-shaped 

extended a'tmosphere is presen ted in 'the form of several two-

dimensional contour plots. For the case of:' intonsity plots, 

tho contours were calculated ossuming rcsononcc scattcrirHJ 

of solar Lyman-a radiation by the hydrogen atoms. 

4.2.1 Hesul·ts for Amal·thea 

Primary emphasis in modeling the extended hydrogen atmos-

phere of Amalthea has been ,to es,timate the atom emission 

parame'ters necessary to form an H cloud, with Lyman-a inten-

sity comparable to that tentatively detected by the UV 

instrument aboard the Pioneer 10 spacecraft (Judge et a1., 

1976). The most favorable condition for the UV instrument to 
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detect the H cloud occurred at 18.0 hours on spacecraft time 

day 334 Gr.1.T (see Judge et al., 1976; P-I075) when Amalthea 

was in the field of view. 

A model computation, assuming isotropic emission of H 

atoms from the satellite surface with a radial velocity of 

1 km/sec, predicts a partial toroidal-shaped hydrogen cloud 

of approximately the correct angular extent for a cloud 

lifetime of 50 hours. The.column density contour plot of 
·this partial toroidal cloud viewed from above the satellite 
plane is shown in Figure 11. This model computation further 
indicates that the signal measured at 18.0 hours on day 334 
could be produced by solar resonance scattering of Amalthea's 
ex·tended hydrogen a·tmospherc i.E ·the escape flux of hydrogen 

11 -2-1 from the satellite surface were of order 10 atoms cm sec 

'1'he Lyrnnn-ct intensity c1ist;d.blltion of this cloud for n 
1] -2 -1 10 . cm sec flux is shown in Figure 12 from n Pioneer 10-

like viewing perspective nearly parallel to the satellite 

plane. The one degree width by ten degrees high aperature 

of UV instrument, assumed centered on the satellite for this 
calculation, sees all the Lyman-a .radiation emitted from the 
cloud within a slice 0.52 Jupiter radii left and right of 

Amalthea. 11 -2 -1 A flux of 10 cm sec , although large and per-
haps improbable, is not impossible. If supplied from the 

satellite surface, for example from H20 ice, it would be 

equivalent to depleting only a few kilometers of the surface 

in 4 x 10 9 
years. If supplied by satellite neutralization 

of energetic magnetospheric protons, a large flux of protons, 
in excess of lOll cm -2 sec ·-l, would be required. 
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AMALTHEA 50 hr: 

Figure 11 

Model for the ex~ended Hydrogen Atmosphere of Amalthea. Column density 
contours, calculated from the cloud model for a 1.0 km/sec emission 
velocity and a 50 hour lifetime, are shown as viewed from above the 
satellite plane. The outer contour value is about 1/20 of the maximum 
column density. The location of &~althea, its orbital track and Jupiter are indicated • 
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AMALTHEA 50hr. 

r404 

/ ,530 Rayleighs 

----------- -

28 

t 
Max. Signal ~ 1350 Rayleighs 

Model Parameters 

Emission Velocity = 1.0 km/sec 
Atom Lifetime = 50 hrs. 
Hydrogen Flux = 1011 cm-2 sec-1 

Figu:::-e 12 

Lyma~-a Radiation from A~althea's Extended Hydrogen Atmosphere. 
Intensity contours, calculated ass~ming resonance scattering of 
sunlight and the model paraceters indicated, are shown for the 
satellite orbit plane ti1tec by 3.254 degrees. 
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In the event that a higher emission velocity or a longer 
lifetime is appropriate; for the extended hydrogen atmosphere 
of Amalthea, the resulting toroidal cloud will exist all the 
way around Jupiter. This situation is illustrated in Figure 13 
and Figure 14 where model results are shown for an emission 
velocity of 1.5 km/sec and a lifetime of 50 hours. The 
toroidal cloud, although complete, is by no means symmetrical 
about Jupiter. 

4.2.2 Results from Ganymede 

Unlike Amalthea, the estimated lifetime for Ganymede's 
hydrogen cloud atoms is sufficiently long ( 2500 hr) so as 
to ensure formation of a complete, nearly symmetric, toroidal-
shaped gas cloud. The time evolution of this riloud is 
illustrated in Figure 15 through Figure 19, where the circular 
orbi t of the sa'telli te is viewed from above the orbi t plane. 
The column density contours are calculated assuming radial 
emission of H atoms from the satellite exosphere (2935 km 
radius) with an initial velocity of 2.7 km/sec. Such atoms 
emerge from the Lagrange sphere with a velocity of about 
1 km/sec and the cloud dynamics correspond approximately to 
the 200 0 K/AMU atom emission temperature results discussed 
in Chapter III. The forward and backward clouds diffuse 
ahead and behind the satellite (see Figure 15-17) with their 
outer contours (having about 1/20 of the peak column density 
value) meeting on the far side of the circular orbit in about 
600 hours of flight time. For longer times (Figure 18-19), 
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AMALTHEA 50 hr: 

FigurE -. 

!1odel for the Extended Hydrogen Atmosphere of Amalthea. Same 
description as Fig. 11 except with a l.5 km/sec emission velocity 
and an outer contour about 1/50 of the maximum column density 
value. 
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AMALTHEA 50hr. 

92 Royleighs 

169 
317 

-----------

242 

I 
Max. Signal = 738 Rayleighs 

Model Parameters 

Emission Velocity = 1.5 km/sec 
Atom Lifetime = 50hrs. 
Hydrogen Flux = 1011 cm~2 sec-J 

Figure 14 

Lyman-a Radiation froD Ar.~a1thea's Extended Hydrogen 
Atmosphere. Same description as Fig. 12. 
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GANYMEDE 200 hr. 

o 

Figure 15 

Cloud Dynamics for the Extended Hydrogen Atmosphere of Ganymede. Column 
density contours, calculated using the cloud model for an initial speed 
of 2.7 km/sec and the. lifetime indicated above, are shmvn as viewed from 
above the satellite plane. The location of Ganymede, its orbital track 
and Jupiter are indicated . 
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Figure 16 

Cloud Dynamics for the Extended Hydrogen Atmosphere 
of Ganymede. Same description as Fig. 15. 
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GANYMEDE 600 hr. 

Figure 17 

Cloud Dynamics for the Extended Hydrogen Atmosphere 
of Ganymede. Same description as Fig. 15. 
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GANYMEDE 1200 hr. 

Figure 18 

Cloud Dynamics for the Extended Hydrogen Atmosphere 
of Ganymede. Same description as Fig. 15. 
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GANYM EDE 2500 hr. 

Figure 19 

Cloud Dynamics for the Extended Hydrogen Atmosphere 
of Ganymede. Same description as Fig. 15. 

48 

... _ ....... ,~_..,""-.""~~ ___ •• ,",.~,_,-"-._._.", .. ,,,-,,_,,~~,. < c, ....... ~.,_,;....-~ ... _., ... _"'"."'. __ ~, .. ,~~ ..... .,_~ •.. ~_ ....... ,".. ....,,, ... ~..iU> .............. ,-"'~~ ........ ''" '''"";... ...... -_~~,~_'*"'. t"tT:iS- NtH'" &p"" ht*.~ br. 'ett.·O"*" "';'rtt.H' rd'. t' cri 

__ ... _.1 , 

.4 



the two clouds coalesce and produce a complete toroidal 

cloud which becomes increasingly more cylindrically s~nmetric. 

Voyager spacecrafts approaching Jupiter in 1979 will 

view the cloud nearly in the plane of the satellite so that 
the circular orbit appears as a thin ellipse. Results given 
in Figure 19 are also presented in Figure 20 as they would 
appear to the Voyager spacecrafts. Intensities resulting 

from resonant scattering of solar Lyman-a. radiation by 

7 cloud atoms are indicated nssuming an escape flux of 5 x 10 
-2 -1 H a'toms cm sec from the satellite. The UV instrument 

aboard the Voyager spacecrafts is capable of detecting a 5 

Rayleigh signal above 'the background ( 150 Rayleights) for 

a two hour period of observation (Broadfoo:t 1978). This 

instrument, with a rectangular viewing aperature of 0.1 by 
1.0 degrees, sees a field of view of 0.1 by 1.0 diameters 
of O'upi,ter when the spacec;cuft is about GO plane'tary radii 
from the satellite. The calculated cloud intensity should 

therefore be easily detectod by the UV instrument when ob-

serving near the end of the satellite orbit. Detection be-

comes more marginal when viewing spatial regions closer to 

Jupiter. Absence of a detectable signal will provide an 

upper limit to the hydrogen escape flux. 

If the lifetime of hydrogen atoms in the vicinity of 
Ganymede's orbi,t were much shor'ter than the 2500 hour 

estimate, detection of the cloud by Voyager would be more 

difficult. This situation is illustrated in Figure 21 and 

Figure 22 where model results are shown for a lifetime of 

200 and 900 hours respec,tively. '1'he emission velocity and 
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t 
Max Signal:; 42.2 Rayleighs 

Model Parameters 

Emission Velocity = 2.7 km/sec 
Atom lifetime = 2500 hrs. 
Hydrogen Flux = 5xl07 cm-2 sec1 

Figure 20 

15 

1.9 

t 
Max Signal = 32.6 Rayleighs 

Lyman-~ Radiation from Ganymece's Extended Hydrogen Atmosphere. 
Intensity contours, shmm for the satellite orbit plane tilted 
by 3.254 degrees, were calculated assuming resonance scattering 
of sunlight and the model parameters indicated. 
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Max. Signal = 15 Royleighs 

Model Porame.ters 

Emission Velocity = 2.7 km/sec 
Atom Lifetime = 200 hrs. 
Hydrogen Flux = 5x 107 cm-2sec-1 

Figure 21 

Lyman-~ Radiation for Ganymede's Extended Hydrogen 
Atmosphere. Same description as Fig. 20. 
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GANYMEDE 900 hr. 

10 6.6 RayJeighs [09 
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t t 
Max. Signal = 19 Rayleighs. 

Max Signal = 10 Rayleighs. 

Model Parameters 

Emission Velocity = 2.7 km/sec 
Atom Lifetime = 900 hrs. 
Hydrogen Flux = 5xlO 7 cm-2sec-1 

Figure 22 

Lyman-~ Radiation for Gany~ede's Extended Hydrogen 
Atmosphere. Same description as Fig. 20. 
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7 -2 -1 atom flux are assumed to be 2.7 km/sec and 5 x 10 cm sec 

repsectively, as before, For the smaller lifetime, the cloud 

is too faint to be seen by Voyager except very near the satel-
lite. Detection for the 900 hour lifetime case would be ex-
pected near Gaqymede and at the two elongation points of the 

satellite orbit. 

4.2.3 Results for Callisto 

Similar to Ganymede, the estimated lifetime for Callisto's 
hydrogen cloud atoms is sufficiently long to allow a complete 
nearly symmetric toroidal-shaped gas cloud to develop. For 
model computations, the initial velocity of H atoms emitted 
radially from the satellite exosphere is assumed to be 2.4 
kJ'n/sec, so that atoms eHlcrtjln9 Eromthe Lagrange sphere have 
a velocity of about 1 krn/sec. The flux of H atoms emitted 

7 -2 -1 by the sa·tellite is chosen to be 5 x 10 cm sec ,the 
value sugges·ted for Ganymede by Yung and .McElroy (1977). 

This value is likely on upper bound since Callisto has less 
H20 ice or frost surface cover than Ganymede, and would then 

be less capable of supplying H atoms through postulated 

evaporation, photodissociation and escape processes. 

Model computations, adopting the above conditions and a 
hydrogen lifetime of 2600 hours, are shown in Figure 23 and 

illustrate the nearly symmetric structure of the cloud as seen 
from the viewing perspective of a Voyager spacecraft in Figure 24. 
Here cloud intensity contours are less than 5 Rayleighs 
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CALLISTO 2600 hr. 

Callisto 

Figure 23 

Model for the Extended Hydrogen Atmosphere of Callisto. Column density 
contours are shmvn as viewed from above the sa'cellite plane and are 
calculated assuming a 2.4 km/sec emission velocity and a 2600 hour life­
time. The location of the satellite, its orbital track and Jupiter are 
indicated. 
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CALLI STO 2600 hr. 

Viewing Aperature of Voyager 
UV Instrument {at 60 RJ } 
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Model Para meters 

Emission Velocity = 2.4 km/sec 
Atom Lifetime = 2600 hrs. 
Hydrogen Flux = 5 x 107 cm-2 sec1 

FigurE 24 

,\:5.2 

t 
Max. Sign.ot =6.6 Rayleighs 

Lyman-a Radiation for Callisto's Extended'Hydrogen Atmosphere. Intensity 
contours, calculated assuming resonc~ce scattering of sunlight and the 
indicated model parameters, are shOim for the satellite orbit plane 
tilted by 3.254 degrees. 
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(Voyager's UV instrument detection limit) everywhere except 

very near the satellite and near ·the two orbit elongation 

points. Intensities near the satellite are no larger than 

about 10 Rayleighs and signals at the elongation points are 

just at the 5 Rayleigh limit. In the best of circumstances 

then, detection of the extended hydrogen atmosphere of 

Callisto is only marginal in the immediate vicinity (one 

Jovian radius) of the satellite. 

The probability of detecting a hydrogen toroidal cloud 

for Callisto would be considerably improved if the lifetime 
of H atoms were actually larger than ·'he value adopted here. 

This would be the case if the proton flux continues to dimin-
ish beyond Ganymede's orbi·t. The lifetime adopted here 

assumes it iu constant. No da·ta is presently available for 

the raCial variation of thu low-energy proton flux in this 
spatial region. Observations of a hydrogen gas cloud for 
Callis·to, significan·tly brlgh·ter and more symmetric ·than 

that shown in Figure 24, w()uld be consis·ten·t with such a 

radial behavior. 

4.2.4 Results for Titan 

The dynamic developmen·t of the extended hydrogen atmos-
phere of Titan is immediate to that of Ganymede and Callisto, 

for similar emission conditions. Model calculations were 

'. performed assuming H atoms to have an initial velocity of 

2.0 km/sec at the satellite exosphere (assumed to have a 

nominal radius of 5000 km). Atoms then emerge from the 
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Lagrange sphere with a velocity of about 1 km/sec. Estima-

tions of the H atom escape flux from Titan (defined with 

respect to the satellite surface) range 

to 4 x 1010 cm~2sec-l (Tabari~, 1974). 

9 from about 1 x 10 

10 A value of 1 x 10 
-2 -1 cm sec has been adopted. Assuming these emission condi-

tions and a hydrogen lifetime of 2300 hours, a column density 
contour plot of the toroidal hydrogen cloud of Titan .is shown 

in Figure 25 as seen from above the satellite plane. The 

cloud has a fair amount of circular symmetry except near the 
satellite where the column density is peaked. 

The Pioneer 11 and Voyager spacecrafts will see this 

cloud more nearly in the sa-telli te plane as shown in Figure 26, 
where intensity contours, assuming solar resonance scatter-

ing, are plotted. The cloud intensity is several hundred 

HZlyloir{hs near 'I-,he cl1onqtd-.'jon point:=: of Hl0. orh_H~, whC1r0 I-h(' 

geometry of the toroidal-shaped atmosphere enhances the gas 

column length and even 50 to 100 Rayleighs near J"upi ter. 

Such a signal should be detected by the Pioneer 11 spacocraft 
when viewed through the 1 x 10 degree "aperature of its UV 

instrument. Through the smaller aperature (0.1 x 1 degree) 

of the UV instrument on the Voyager spacecrafts, the cloud 

should be detected even if the H atom escape flux from Titan 

were reduced by a factor of 10 or 100. 

In the event that the lifetime of hydrogen atoms near 

the orbit of Titan is actually significantly smaller than 

the 23-00 hour estima'ce, a partial toroidal cloud could exist. 

This is illustrated in Figure 27 for a lifetime of 400 hours. 

For more energetic emission conditions, the cloud could also 
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TITAN 2300 hr. 

r 531 RayJeighs 

236 

40.8 

t 
Max. Signal = 901 Rayleighs 

204 

~ c:> .~ 

123 

ModeJ Parameters 

Emission Velocity = 2.0 km/sec 
Atom Lifetime = 2300 hrs. 
Hydrogen Flux = 1010 cm-2sec-1 

Figu::-e 26 

f 
Max. Signal =738 Rayleighs 

Lyman-a Radiation from Titan's Extended Hydrogen Atmosphere. Intensity 
contours, calculated assuming reso~ance scattering of sunlight and the 
indicated model parameters, are shown for the satellite plane tilted by 
3.254 degrees. 
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Figu:::-e 27 

Lyman-a Radiation fron Titan's Extended Hydrogen 
Atmosphere. Same descri~tion as Fig. 26. 
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be complete for this shorter lifetime, although not vertically 

and cylindrically symmetric. This case is illustrated in 

Figure 28 for an emission velocity of 2.6 km/sec and a life-

time of 450 hours. 

4.3 Ion Sources Created by Extended Satellite Atmospheres 

The presence of extended satellite atmospheres of neutral 

gases may have significant effects upon an existing planetary 

magnetosphere. Atoms lost from the toroidal atmosphere 

through ionization processeS, could provide a magnetospheric 

ion source which may locally dominate other ion sources 

sUJ?plied by the planet or by the solar wind. As a first step 

in unqerstanding this, the initial spatial distribution of 

lon~ c.t:'e.:tted by ext.ended rJilLel11to ntlllosphe:t7es will vu u:..;Ll-

lII.:tted using our cloud model. Hesults will Lo prcsentcu. [or 

thc proto·type hydrogen clouds of Z\mal thoa, Ganymec]e I 

C.:tl1isto and Titan discu~:::;eu. ill !';ection !J.2 .:.tnu. the :::;odiuJll 

cloud of 10 modeled by Smyth and McElroy (1978). 

4.3.1 Proton Sources 

An average radial distribution of hydrogen atoms in an 

extended satellite cloud may be calculated by integrating 

over the angular. and vertical dimensions of the cloud. 

Dividing this distribution by the lifetime of the cloud atoms 

provides a radial distribution for the loss rate of hydrogen 

atoms. This loss rate distribution for Amalthea, Ganymede 
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Figure 28 

Lyman-a Radiation from Titan's Extended Hydrogen 
Atmosphere. Sa~e description as Fig. 26. 
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and Callisto is shown in I?iqure 29 and corresponds to the 

modeled extended atmosphere presented, respectively in 

Fi~Juro 12, Pigure 20 and Piqure 24. The loss rute distribu-

tion for Titan is given in Figure 30 and corresponds to the 

model results shown in Figu~c 26. 

In l!"1igure 29, the maximum hydrogen loss rate per 0.1 Jupiter 

radii for Amal thea is about a factor of 50 larger than tha't for 

Ganymede and abou't a factor of 100 larger than that for Callisto. 

:F'or comparison, the maximum value provided by Io' s hydrogen 

cloud (located at 5.9 on tha horizontal scale in Figure 29) 
26 

might be of order 1 x 10 per 0.1 Jupiter radii per second, 

bu,t de'tailed modeling' no't par formed here is needed ,to more 

accurately specify ,this l1Ulllber. Although the loss rate per 

0.1 J'upi,ter rndii for Amal thea und Io would be compal:able 

l..mUor these circums tunG0S, Llm to tul numDur of hy(ll~oCJcn a toms 

lost per second by Io would bo of order 10 times ~Jrenter than 

for AllH,\J.theLL J.n It'iS)uru 30 r th.e 1l1l1XimUllI hydrogen loss .ca.to 

per 0.1 Saturn radii per S0conu by Titan is about 1.5 x 10 26 , 

with the comple'te cloud 10s.Lng about 7.8 27 x 10 hydrog'en 

atoms per second. 

Assuming a steady cloud state, the hydrogen atom loss 

rate is the rate a·t which new protons are introduced into 

t'.e rotating planetary magnetosphere (assuming it exists 

for Saturn). If charge exchange is the dominant lifetime 

process for hydrogen, the introduction of a new proton 

requires the loss of an old proton, so that only the energy 

distribution, not the number of protons is changed. A liet 

production of protons will however result from elecrol1 impact 
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Figu:::-e 29 

Satellite Proton Source. Model results for the radial distributions of 
·the loss rate of hydrogen atoms frcm the extended at:mospheres of A.1TIalthea, 
Ganymede and Callisto by charge exchange processes are shown. The total 
population of each cloud and. its o-.-erall loss rate are indicated. See 
the text for discussion. 
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Figure 30 

Satellite Proton Source for Titan. Model results for the radial 
distribution of the loss rate of hydrogen atoms from the extended 
atmosphere of Titan by charge exchange processes are shown. The 
total atom population anc overall loss rate of the cloud are 
indicated. See the text for description. 
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ionization of the extended hydrogen atmospheres, with a rate 

-2 
of approximately 10 times the charge exchange rate. The 

neutral atoms released from the charge exchanged process are 

on gravitational escape orbits from the planet if initially 

located outside of a cri tic~ll radius. Those neutral hydrogen 

atoms initially located inside this critical radius are on 

gravitational bound orbits of the planet and upon re-ioniza-

tion may enhance the proton densi ty locally. For Jupiter and 

Saturn the critical radius (located where the magnetospheric 

rotational and orbital escape velocities are equal) is 2.83 

and 1.86 planetary radii respectively. Such an enhancement 

is then only possible for the hydrogen cloud of Amalthea 

where the satellite orbi·t is 2.54 Jupi,ter radii. 

The impact of the sa·tellite protons on the Jovian rnag-

netospheres needs to be assussed by comparing this source 

with those provided by the solnr wind and the planet. In 

the cnse of Ti,tan and l\mal t.hea, ·the ne·t produc'tion of protons 

could be large enough to inflLltethe mngnetosphere locally 

and create unique planetary plasmaspheres. 

4.3.2 Sodium Ion Source 

Nodels for the sodium cloud of 10 (Smyth and McElroy, 

1978) suggest tha·t neutral sodium is emitted from the inner 

hemisphere with a mean initial velocity of 2.6 km/sec and 

8 -2-1 an average hemispherical flux of 10 atoms cm sec 

Atoms are lost from the extended sodium atmosphere by 

electron impact ionization with an effective lifetime of 
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between 15 and 20 hours. l~he radial distribution for the 

loss of sodium atoms from -the cloud for a 20 hour lifetime 

is shown in Figure 31. Th~ loss rate has a maximum value 

of 2.6 x 1024 atoms per O.l Jupiter radii per second at the 

satellite position and the cloud is localized between about 

4.2 and 8 Jupiter radii. 

For a steady state cloud, Figure 31 gives the radial 

distribution for production of sodium ions in the Jovian 

magnetosphere Once formed l the heavy ions are swept away 

by the rapidly rotating planetary field and become part of 

the local plasmasphere. Radial diffusion of these heavy 

ions will then follow and may distribute the ions in such a 

way so as to produce centr~fugal distortion of the Jovian 

magne-tic field. 

4.4 Modeliny Io' s Sodium l~ine Profile Da-l:a 

A model capable of caluulating the sodium Dl and D2 

line profiles generated by Io's extended sodium atmosphere 

when observed through a given viewing aperature has been 

developed. The positions and velocities of the satE!lli-t:e, 

sun and Jupiter may be selected to match a given observation. 

The modeling parameters are the absolute flux, the distribu-

tion of flux on -the emitting satellite surface or exosphere, 

the initial emission velocity distribution and the lifetime 

of sodium atoms in the Jupl"l:er environment. Preliminary 

efforts have been directed to understanding the effect that 

these modeling parameters have upon the line profile shape 
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Figure 31 

Satellite Sodium Ion Source for 10. Model results for the radial 
distribution of the loss rate of sodium atoms from Io's extended 
atmosphere by electron impact ionization processes are shown. 
The total atom population and overall loss rate of the cloud are 
indicated. See the text for discussion. 
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for a variable satellite phase angle. 

Comparison of modeled line profiles with existing obser-

vations is being used to linlit and define the range of the 

modeling parameters. In addition, a cooperative effort has 

been established with observers who are making specific 

measurements needed to test for the presence or absence of 

particular line profile features generated by model calcu-

lations. Progress to date has been most encouraging, but a 

considerable effort will be required before a consistent 

and accurate interpretation of the sodium line profile data 

is available. Bfforts to accomplish this line profile 

modeling goal will be pursued in continuing research work 

funded by NASA. 

;'.l ] l 
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CHAPTER V 

CONCLUDING REMARKS 

Exploratory and Prototype modeling of hypothetical 

extended hydrogen atmospheres of the outer satellites 

funalthea, Ganymede, Callisto and Titan has been presented. 

These results, given in Chapter IV, were calculated using 

our cloud model discussed in Chapter III, and a variety of 

atom lifetime and emission conditiops were considered. For 

the most probabl~ conditions, discussed in Chapters II and 

III, the extended hydrogen atmosphere of Amalthea forms a 

tightly-bound partial toroidal-shaped cloud about its 

planet, whereas Ganymede, Callisto and Titan - having much 

greater lifetimes - form rather large, complete and nearly 

symmc'tric 'toroin<11-shapccl cloucls. Model rcsul·ts sU<J<Jcst 

that the partial toroidal hydrogen cloud for Amalthea, 

tentatively detected by the UV instrument of Pioneer 10 

(Judge et al., 1976), could be explained if the satellite 

atom escape flux is of order lOll cm-2sec-l . Results also 

suggest that the Voyager spacecrafts should be able to detect 

the Lyman-a emission from the extended hydrogen clouds of 

Ganymede, Callisto and Titan, assuming most probable condi-

tions, and for Ganymede and Titan even under less favorable 

conditions. 

The initial ion sources, created when cloud atoms of the 

extended hydrogen atmospheres of Amal thea, Ganymf3de, Callisto 

and Titan are ionized, were calculated. These sources, 

together with the heavy ion source created by the sodium 
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cloud of Io were presented in Chapter IV. The impact of 

these ions upon the planetary magnetospheres of Jupiter and 

Saturn (assuming it exists qnd includes Titan's orbit) may 

be significant and warrants detailed investigation. 

Progress to date in modeling Io's sodium line profile 

data is discussed in the last section of Chapter IV. Using 

our fully-developed cloud model, initial efforts have been 

focused upon limiting and defining the range of modeling 

parameters. A variety of sodium observations will be used 

to accomplish this goal to be pursued in our continuing 

research work funded by NASA. 

Results presented in Chapter IV should be particularly 
useful for preliminary interpretation of data acquired in 

1979 by the Voyager I and Voyager II spacecrafts encountering 
,Jupi-ter tl11c1 ·the Pionoer. .11 npncoCl:-af.-t <emcQuntel:-i.n9 Sat.urn. 

In addition to these particular model results, information 

presented in Chapter III may be used to estimate the spatial 
extent of any extended satellite atmosphere and to estimate 

the atom emission and lifetime conditions from spatial extent 
data measured by spacecrafts. Analysis of such spacecraft 

data should yield important clues as to the nature· of the 

local or bound satellite atrr1ospheres, the character of the 

electromagnetic interaction of satellites with their plane-

tary magnetospheres and the concentration, energy density 

and spatial distribution of charged particles in the mag-

netospheres. 
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