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NOMENCLATURE

a(t) Two dimensional circular cylinder radius,	
d	

R(Z)
2a

a Characteristic length of two dimensional unsteady flow,
d/2 for constant afterbodies.

c Constant in Thwaites shape factor equation, = 5.1.

'
Cd Sectional normal force coefficient, Normal Force Per Unit Length

dq

CQ Sectional side force coefficient, Side Force Per Unit Len t!i
q.

CN Normal force coefficient, N/q. S

CY
i

Side force coefficient, Y/q. S

C
m

Pitching moment about the nose, M/q 	 Sk
o

Cm
R

Pitching moment about (0, 0, a)

Cn Yawing moment about the nose, MY/q. Sk
0

Cn Yawing moment about (0, 0, a)

Cp3D Three dimensional coefficient of pressure, P-P./q.

Cp Two dimensional coefficient of pressure, p-p./q

C
D

Two dimensional drag coefficient, D/2aq

CL Two dimensional lift coefficient, L/2aq

d Maximum body diameter

D Drag

f Fineness ratio, k/d

;'	
Q

is

Body length
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M

m Distance from cylinder surface at which vortices are
introduced into the outer flow.

M Pitching moment

N Normal force

P Three dimensional pressure

q Free Stream dynamic pressure, 1/2pV2

q Cross flow dynamic pressure, 1/2pU'

R Three dimensional body radius

rc Vortex core radius

S Frontal area, 7rd2/4

t Nondimensional time, Ut*/a
w

U Cross flow velocity, V sin a

V Frec stream velocity

W Axial component of free stream velocity, V Cos a

[u, v] Boundary layer polar velocity components

[u, v] Cartesian velocity components

[u e v r] Polar velocity components

[uo , vo} - Polar velocity components at the cylinder surface

[X, Y, Z] Three dimensional coordinate system, Z positive along the
axis from the missile nose.

[x, y] Two dimensional coordinate system

[r, e] Two dimensional polar coordinate system

GREEK

a	 a Angle of attack9

r Circulation

a Moment arm, moment center distance from nose
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Coalescence radius

p	 Densi ty

Vortex strength factor

Potential function

T	 Stream function

w	 Vorticity

Sub- and Superscript

)*	 Dimensional

( ) n	Point vortex n



1.0 INTRODUCTION AND SUMMARY
f

The increased performance requirements of current aircraft and

missile designs has caused a resurgence of interest in the aerodynamics

of bodies at high angles of attack. In the past most aerodynamic

design considerations were for angles of attack less than about 30

degrees where either linear thoery applied (a < 5-7 0 ) or the vortex

formations due to boundary layer separation were symmetric and could_

be adequately handled using available empirical theories. New missile

and aircraft designs, however, require consideration of angles of

attack up to 180 degrees. Asymmetric vortex development for angles of

attack greater than about 30 degrees require techniques for predicting

the resulting side forces and moments.

Once flow separation occurs on the lee side of an aerodynamic

body the assumptions of inviscid flow and linearized theory are invalid

and the only general approach is to solve the Navier.-Stokes equations.

The numerical solution of the three dimensional Navier-Stokes equations

is not at hand for general missile or aircraft shapes.

Other approaches to the problem must be sought for the present.

One alternative to solving the full equations of motion entails the use

of the viscous cross flow analogy. It was noted by early investigators

that for angles of attack where the flow is assumed to be steady, if

the flow is viewed in a cross flow plane, it appears similar to that of

the time-development of flow behind a two-dimensional circular cylinder

started impulsively from rest. This similarity is the basis of the

viscous cross flow analogy in which the flow field and forces and moments

on a missile are predicted from the analogous two dimensional time-

dependent cylinder flow. Virtually all of the existing methods for

predicting the aerodynamic characteristics of missile configurations at

high angle of attack are based on the use of the viscous cross flow

analogy. The methods have met with varying degrees of success.

On the simplest level, the steady state value of cylinder drag

suitably corrected for Mach number and Reynolds number effects is used
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n 0
to compute the normal force distribution. This procedure was initially

proposed by Allen (1) but has been extended by Jorgensen (2, 3, 4) and by

Saffel (5) who have applied it from subsonic to supersonic flow for

bodies of noncircular cross section, for angles of attack up to 180 degrees,

and for wing-body-tail configurations. Thompson (6) has taken the

analogy one step further and uses Sarpkays's (7) experimental impulsive

flow circular cylinder data to represent the viscous contribution to

normal force. Correction tables allow for Mach number, effect of nose

shape, and transition from laminar to turbulent flow to be accounted for.

The most recent cross flow models are those which replace the

separated shear layer with a number of free point vortices which are

allowed to roll up to form a concentrated vortex. Angelucci (8) and

Marshall and Deffenbaugh (9) used this model for symmetric shedding.

Wardlaw (10) and Deffenbaugh and Koerner (11) have extended the work

to include asymmetric vortex development.

If a large number of point vortices is used to model the wake

computer time can become prohibitive. Only a limited number of test

cases have been run using a large number of point vortices at high

angles of attack for medium fineness ratio bodies (f ti 10.0).

The objective of the current program is to modify the discrete

vortex wake method of Reference (11) to efficiently compute the aerodynamic

forces and moments on high fineness ratio bodies. The approach is to

increase computational efficiency by structuring the program to take

advantage of new computer vector software and by developing new

algorithms when vector software can not efficiently be used.

An efficient program was written and substantial time savings

achieved. However, greater time savings were realized by using efficient

FORTRAN programming techniques and by developing new algorithms than by

vectorization. Several test cases were run for fineness ratios up to

f	 16.0 and angles of attack up to 50 degrees. Prior to running the

test cases a parametric investigation was carried out on an ogive nose

fineness ratio, %/d = 2.598, afterbody fineness ratio, k/d = 7.754,

body. The parameters varied involved numerical and empirical parameters

'f

it
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used in the discrete vortex wake method. The results clearly point

out limits of the method and its advantages and will be useful to

anyone using this or similar methods involving discrete vortex wake

approximations.



2.0 TIME DEPENDENT VISCOUS CROSS FLOW

For aerodynamic bodies at small angles of attack, the boundary

layer remains attached except in the base region. For this situation,

the boundary layer may be ignored allowing for an inviscid flow

approximation and for slender bodies, application of linearized theory.

For higher angles of attack regions of vorticity caused by flow separation

along the body form on the lee side. Depending on the angle of attack

these body vortices may be symmetric or asymmetric. Asymmetric vortex

development can lead to large side forces and is currently the problem

of most interest.

An empirical method known as the cross flow analogy has been in

use for several years and forms the basis for most of the high angle

of attack prediction techniques used today. The difference in cross

flow methods lie in the determination of the cylinder lift and drag

coefficients. In the present study the time dependent flow about the

circular cylinder is determined by coupling an inner boundary layer

solution with an outer potential flow solution which models the wake

using a large number of discrete vortices.

2.1 CROSS FLOW TRANSFORMATIONS

The geometry transformations for the cross flow analogy are obtained

by considering the transformation

(X*, Y*, Z*, T*) = (x*, Y * ' z* + W t*, t*)	 (2-1)

and considering the flow in the z* = 0 plane. The basic cross flow

assumption is that the flow in the X*, Y* plane of the body at some Z* is

equivalent to the flow development at time t* around a two dimensional

circular cylinder of radius where

t* = Z*/W	 (2-2)

(from (2-1) taking z* = 0.).

4
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If the following nondimensional variables are defined

Z= Z*/k,	 a= a*/a,	 R = 2R*/d,	 t= Ut*

.	 a
where U is the cross flow velocity ( U= V cos a), Q is body length, d

is maximum body diameter, and a is a characteristic length of the two

dimensional problem, then the basic cross flow equations become

Q
t = Z	 tan a	 (2-3)

a

a(t) = 2 R (Z)	 (2-4)

For most missile shapes a may be defined as d/2. 	 However, for some

shapes such as an ellipsoid which have decreasing afterbody diameters

it may be more convenient to choose a as an average of the body radius,
s^

t^fi

0

2.2	 FORCE TRANSFORMATIONS!

The normal force, N, and pitching moment, M, on the three dimensionalu	

body of revolution are to be obtained by integration of the normal force
-3

per unit length dN/dZ* over the body length, where dN/dZ* is assumed to be
4-

the same as the cross flow drag D(t*) on the two dimensional cylinder for

t* = Z*/W.	 Similarily the side force, Y, and yawing moment, MY, are

obtained by integration of the side force per unit length dY/dZ*, which

is taken as equal	 to the cylinder lift, L(t* = Z*/W).'

The normal and side force acting on the body are then,

Q
^:

N =f 
dZ*	

dZ*	 (2-5a)
^.

0

k

!	 Y	 dZ*	dZ*	 (2-5b)_ ,f

5



and the pitch and yaw moments about some moment center (X*, Y*, Z*)

(0, 0, x.0 are:

MA 	 (Z* + R*
dZ* d* dZ* + XM	 (2-6a)

0 

dam) dYMYX f (Z* + R -
	 -T	

dZ* + xz y 	 ( 2-6b)
d7w R*

0

If the coordinates are non-dimensionalized as in Section 2.1 and the

forces and moments are non-dimensionalized as:

d
C d (Z) 

=N/dZ*
	 (2-7a)
112P V2d

dY/dZ*
C
k (Z)	

1/2p V2d	
(2-7b)

CN	 N_	 (2-8a)
1/2pV2S

CY	
Y	

(2-8b)
1/2PV2S

M
Cm

O	 = 1/2pV2Sk	
(2-9a)

Cm	
= C 

MO 
+ aCN	 (2-9b)

C	
MY	

(2-9c)
no	 1/2pV2Sk

Cn	
Cn + XCY	 (2-9d)

.
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CY = 4f 11 C, dZ0
(2-10b)

where S is the frontal area S = 7rd2/4, then the force and moment

coefficients become,

CN = 4f
	

C d dZ	 (2-10a)
0

A

Cm =
 [-4f  1 (Z + R	 dR) C d dZ + XCN	 (2-11a)

	

so	 4f2 d Z

C = _ 4f
J

R1 (Z + 
	

dR) CdZ + aCY	 (2-llb)

	n
7 

0	 4f2 dZ

where f is the fineness ratio, k/d.

The time dependent lift and drag on the two dimensional circular cylinder

are:

	

27T	 2Tr
D(t*) =	 p* cos o a*(t*) d o+ 

f 
T* sin o a* (t) d o

0	 0
( 2-12a)

27r	 27r
L(t*) =	 p* sin o a*(t*) d o+ 

J	
T* cos o a* (t) d o

	

0	 0
( 2-12b)

Introducing the non-dimensional quantities,

C = p* - P*.
 =	

p*	
T _	 T*

p	 1/2 
P 

U2'	 1/2 P D2 	 112 p D2

7



and defining lift and drag coefficients as,

C  =

	

	
U	

(2-13a)
1/2 p U2 2;

CL =

	

	 L 
2 -
	 (2-13b)

1/2 p U 2a

gives,

2T;

Cp =1/2 ^ C
p 

cos oa(t)do+1/2f ^T sin oa(t)do

0 0

(2-14a)

2Tr

	
2^CL = - 1/2 

J 
Cp sin a a(t) d e + 1/2 1  cos a a(t) d e

0	 0

(2-14b)

Now,cross flow analogy assumes that at t* = Z*/W

dN =
dZ*	

D (t*)
	

(2-15a)

dZ* L (t*)	 (2-15b)

or in non-dimensional form the basic cross flow analogy force transforma-

tions are

Ca (Z), = as sin 2a Cp (t)
	

(2-16a)

C^ (Z) = as sin 2a CL (t)
	

(2-16b)



1` and shear stress is neglected,then the sectional normal force coefficient

is

2^r

CO (Z) = 1/2 
J	

Cp3D cos a R(Z)d a	 (2-18)
0

The two dimensional analog, neglecting shear and rewritten here for

convenience is

7T
CD (t) = 1/2 	 C  cos a a(t) d e	 (2-19)

e

Now since the drag and sectional force coefficient are related as in

equation 2-16a the correspondence between two dimensional unsteady and

three dimensional pressure is

ti
Cp3D - 

d C
p sin2a	 (2-20)

The two dimensional unsteady flow solution is given in the next

section where it is shown that %olth the present formulation the above

relationships between pressures differ by a additive constant when

a(t) is varying, ie., on the missile nose.
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3.0 DISCRETE VORTEX WAKE (DVW) CROSS FLOW

The problem is to find the flow field induced by a circular cylinder

of time-varying radius in a uniform stream of a viscous incompressible

fluid. The time dependent lift and drag on the cylinder will be applied

as in Section 2.0 to predict the forces and moments on a three dimensional

body of revolution.

The flow field is that of a uniform flow with no body present for

t < 0. At t = 0 a circular body appears at the origin and then grows in

time, and in most cases (corresponding to typical missile shapes with

cylindrical afterbodies) finally reaches a constant value. During the

initial stages a boundary layer is formed on the cylinder. At later

times the boundary layer separates from the cylinder feeding vorticity

into the wake. Initially two symmetric regions of vorticity form

behind the cylinder. Eventually these vortices become unstable, one

breaks away and flows downstream initiating the Karman vortex shedding

process.

3.1 PROBLEM APPROACH

The basic solution technique is to treat the problem of the

impulsively started cylinder by assuming that for high Reynolds numbers

the flow may be divided into a region of viscous inner flow near the

cylinder described by a boundary layer and a rear shear layer, and a

region of essentially inviscid outer flow elsewhere. The outer flow

consists of the usual potential flow about a circular cylinder plus

awake region. The wake region is modeled by adding to the usual

circular cylinder potential flow (vortex, uniform flow, and doublet)

the potential flow induced by a set of point vortices. The point

vortices represent the vorticity introduced into the wake from the

separating boundary layer and rear shear layer. Since ideal point

vortices have infinite velocities at their centers it is necessary to

include in the model some kind of vortex core inside which the ideal

n 1^
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point vortex velocity is modified. This then is the discrete vortex

wake (DVW) model.

In the following sections the basic equations for the discrete

vortex wake model are presented. Except for the unsteady integral

momentum boundary layer solution, most of the theory presented has

been previously detailed in Ref. (9). The equations are briefly

rewritten here for completeness and to accompany the computer program

users manual which is a separate volume of this report.

3.2 OUTER FLOW

The outer flow is defined as the inviscid irrotational flow

outside of the boundary layer and rear shear layer. The exact equations

which govern the outer flow are

l

aw + u - VW = 0	 (3-1a)at

u = k x VT	 (3-1b)

Vey = w	 (3-1c)

The discrete vortex method approximates a solution to equations (3-1)

by replacing the continuous vorticity distribution w by a finite sum

of N delta functions such that

N
W(X) _	 r  6(x - xn (t))	 (3-2)

The velocity field is then found by summing the velocity field of the

'	 individual point vortices. To account for the presence of the

`

	

	 circular cylinder, image vortices are included. Vortex motion is

accomplished by integrating the equations

drn

dt	
= 0	 (3-3)

11
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dxn

dt	
un	 (3-4)

where un is the velocity induced by the distribution (3-2) at the

discrete point vortex location x n . The self induced velocity of the

point vortex is neglected.

Of particular importance is the relationship between the solution

of Equations (3-2, 3-3, and 3-4) and the exact solution of Equations (3-1).

As pointed out by Saffman (12) it is not clear that the solution of the

discrete vortex method converges to the exact solution for fixed N as t } ^.

Although, as Saffman mentions, Dushane (13) proved under restrictive

conditions that a form of the discrete vortex method converges in some form

to the solution of Equations (3-1) for fixed t as N

For practical uses of the method, i.e., fixed N and t, confidence

in the method depends on comparison with exact solutions and in some

cases comparison with experiment.

The complex potential for a circular cylinder with time dependent

radius in the presence of a set of discrete vortices is

2	 it
W = ^ + i T z + z - a A Qn z + 20 kn

	

7r 
	 (a )

N	 r	 (z-z )z

+ i ^	 2^ ^	 n -	 ( 3 - 5)
2

n=1	 z- a zn
^ ^2 Z zn

where

z = x + iy = re i e
	

(3-6a)

zn	 x  + iyn = zne7en
	 (3-6b)

z - zn = (x - xn) + i (y 	 yn) 	
rineieln
	

(3-6c)
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z - a 2z	

2	 2y

z2	 a
x -	 2 n + i y - 

a 

2 n = r2ne 1e2n (3-6d)
nj	 Qn	 Qn

On the cylinder surface z = a, r 2 = arInAn, and Y = 0.

The coordinate system is shown in Figure 3-1. The cartesian components

of velocity (U, v) and the tangential and radial velocity components

(ue , v r ) may be obtained by differentiating (3-5)

dz-u + i—v	 a-ie (-v r + iu e )	 (3-8)

The cartesian components are

-u + iV = 1 - 
a 2 (x2 - y2 - 2ixy) - aa(x - iy) + iro (X - iY)

r4	 r2	 27T	 r2

a2yn	 a2 n

	

Y -	 + i x -
N 

rw ( (Y - Yn) + i (x - Xn)	 Rn	 t2+
CC	 _	 n

nL1 2Tr	 r2	 r2
In	 2n

. ' Y -+-ix }

r2
	 ( 3 -9)

The polar velocity components evaluated at the cylinder surface

uo = u
e 

(r = a, e)

vo = yr (r = a, e)

become,

 r	 a2 - Q2
-vo + iuo	 -a + i 2 sin o + 

2,r° + i
	 2 {	 n + a
	

(3-10)
n=	 are

In
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o	 For completeness equation 3-5 includes a circulation term r° . This
f

	

	
is essentially an additional point vortex placed at the cylinder center.

For bodies with sharp trailing edges ro is usually chosen to satisfy

the Kutta condition. For the case of the circular cylinder where no

sharp edge exists other physical considerations should determine the

value of r o
However, to date there is no clear consensus on how to determine r

0
for this problem. The approach in the present work is to choose r  = 0.0,

but to leave the capability in the computer program for future use.

Pressure

The surface pressure coefficient is determined from the time

dependent Bernoulli equation. In non-dimensional form the Bernoulli

equation is

2	 2

	

t + ue + v  + p = 2F(t)	 (3-11)

b	 where from (3-5)	 N

2	 r o	 ^'` r
= +

a 
- aa^nr - ° - !^	

n ^O ln
o+(3-12)coso	 r

r27r	 n=127r 	 - 2n	 n^

such that	 N

'	 - 2aa cos a	 d(aa)	 roe _	 rn J
* ln 	 2n	 n)e- e	 e	

(3-13)
^'t -	 r	 dt	

Rn r - 2Tr
	

n=1 
27T

where

-yn(x - x n ) + x n (Y - Yn)

In =	 2
rin

o - - d (^nYn +da-^-y-a2yn

2n 	 dt 
	

dt Q n	 Rn	 r2
2n

yx -xy
on 	n n	

(3-14)
n

15
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If the pressure coefficient on the surface C  = p - P. and from (3-11)

p. = 2F(t) - 1.0 - lim 2 ,P, t (r, o, t)	 (3-15)
r -► oo

where

rn
(D, t (r	 o, t) _ - dt (aa) lim zn r +E 21r en

	
(3-16)

r-} co 	n

The pressure coefficient becomes

N	 r

	

Cp = 4 a Cos e - dt (aa) Rn a - 2

	

	
2^ 6n

n=1

	

- u ? + 1.0 + 2 dt (aa) lim Rn r	 (3-17)
o	

r-^- co

For times where a # 0, ie., on the missile nose, the last term in

(3-17) precludes an absolute determination of C p . The computations of

C in the resent program do not include the to terms in (3-17). On the
p	

p	 P 9	 9	 .

{

	

	 nose then, C  is only qualitative, on the missile after body (a = 0) C 

is computed exactly.

Lift and Drag

In the present program lift and drag are obtained by numerically

(Simpson's Rule) integrating the pressure coefficient distribution around

the cylinder. The additive constant in C  for a # 0 is integrated out

and does not effect lift and drag. Lift and drag due to shear stress are small

compared to the pressure forces and are ignored in the present formulation.

A consequence of using Equation (3-17) to compute the pressure is

y	 the occurrence of spikes in the distribution due to discrete vortices

being too near the surface point at which the pressure is being calculated.

k^	 A core radius is employed to account for the singular nature of

the point vortex approximation. In the present model point vortices

16



within a radius, rc = .05, of the point at which the pressure is being

computed are ignored in the computation. Even with this use of a

core radius, spikes in the pressure coefficient distribution may

occur. The discrete vortices, especially the ones introduced from

the rear shearlayer, may tend to cluster in regions of low velocity

on the rear of the cylinder. This concentration of vorticity which

is in effect a small secondary vortex will cause a spike. Also in

examining the results,it appears that the time derivative of the

potential term is a larger contributor to the pressure than is the

surface velocity.

Experimental pressure data is usually time-averaged and any

sharp pressure peaks in the data are averaged out.

Instantaneous pressure data, Ref. (14), may exhibit pressure peaks

which as in numerical mod0s. may be a consequence of small eddies in

close proximity to the cylinder surface. The numerical results could'

be filtered or smoothed before the pressure is integrated. The

difficulty which then arises is how much of the spike is "real" and

how much is not. In the present work the computed pressure distri-

bution is not smoothed. As a result the lift and drag may exhibit

high frequency variations, See Figure 3-2. However, the forces will

average out for frequencies on the order of the vortex shedding

frequency.

Vortex Motion

Equation (3-4) is integrated using a Euler scheme to determine the

development of the discrete vortex wake in time. Thus at each timestep,

tk , a new vortex distribution is calculated at t k + l t k + At  as

xn (tk + 1 ) = xn (tk ) + u(xn , yn , tk ) - otk	(3-18a)

yn (tk + 1 ) = Yn (tk ) + v(xn , yn, tk ) . 
At 
	 (3-18b)

17
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On occasion when a discrete vortex is close to the cylinder

surface the Euler scheme will allow the new discrete vortex position

to be inside the cylinder surface. To avoid this each new discrete

vortex position is checked and when found to be inside the cylinder

is moved to a point (r n = a + .001, e n (tk )) just outside the cylinder.

The integration step is then completed using only the tangential

component of the original discrete vortex velocity.

Vortex Birth

Discrete point vortices are introduced into the flow at the

boundary layer and rear shear separation points e s , and esrespectively.

The determination of the separation points is discussed in the next

Section (3.3). The vorticity flux across the boundary layer at e s is

00	 0	 2

at 	 ^ wudr = ,	 ar' u'dr'= u0 	 (3-19)
0	 0	 2

where the prime quantities denote inner boundary layer variables.

The vorticity flux out of the boundary layer in a time-step, ot k , is

summed into a point vortex of strength

rn = otk aar	(3-20)

The point vortex is placed in the outer flow at the separation angle

at some distance, m, from the cylinder surface. Images are created

simultaneously to satisfy the condition of zero normal flow at the

surface. In the present work, m is chosen so as to satisfy the no

slip condition on the cylinder surface. The just born vortex and its

images induce a velocity at the surface u j = rj. With the requirement
arm

that u  be canceled by the outer flow velocity then,

r	 At u

m = ^ru	 2^r o
	

(3-21)



Point vortices are introduced from rear shear layer separation points

in the same manner.

The distance from the cylinder surface, m, depends on the timestep

At. For large At, the point vortex may be placed outside of the boundary

layer. In keeping with the boundary layer approximation it may be that m

should be required to be within the boundary layer thickness. This

restriction would limit the choice of At. The point vortex, however,

could be required to remain within the boundary layer and the no slip

condition relaxed. Because the point vortex is in the outer inviscid

flow there is no real requirement for no slip to hold.
If

Vortex Coalescence

Even with the use of large scale computers and vectorized solution

techniques, it may be desirable at some point to coalesce two or more

vortices into one. In the present method, if the option is desired, two

point vortices at (x;,y i ), (xj n yj ) of strengths r ; , rj are coalesced into

one discrete vortex of strength

rc = r  + 
r 
	 (3-22)

at position

xc = (Ir ; l x i + I r^l x^)	 (3-22a)

(Ir ;I + Iril)



I

3

e

when the two vortices are within some specified coalescence radius, e,

ie., when

(xi - x^) 2 + (yi - yj ) 2 < E	 (3-24) a
Now, if

(xi - x i )/r and (yj -_ y i )/r	 j

where

r = (x - xi)2 + (y - yi)2

or

r = (x -X.) 2 + (y-y.
J

)2
J 	 ^

3

are of order 0(e ),
then it can be shown that the coalesced vortex yields a velocity field

u
c
 = (u + u.) (1 + 0 (e2))

i 	 J

v
C 	 1

= (v• + v.) ( 1 + 0 (E2)

	

J	 ^

As will be discussed later in the results section,coalescence of the

vortices can make a significant difference in the early time development

of lift on the cylinder even though the coalescence radius is no greater

than e = .1.

Wake Vortex Stability

The development of the wake will continue to be symmetric until some

sort of perturbation is introduced into the numerical scheme so far

outlined. The type of perturbation and magnitude of perturbation will

have a large effect on the early flow development although an equivalent

i	 steady state will be achieved eventually. In the present work the method

of perturbation is to reduce the boundary layer discrete vortex strength

f	
coming from one side of the cylinder for a short period of time

I	 early in the flow development.

'ii
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Vortex Strength Parameter, Q

In the two dimensional theory all of the vorticity created at a

solid body surface must eventually end up in the wake. Experimentally,

Fage (15) observed that only about 60% of the vorticity which is

generated in the boundary layer is later measurable in the wake. It is

generally felt that vorticity from the rear of the cylinder which is

opposite in sign to that of the boundary layer coalesces with the

boundary layer vorticity and accounts for Fage's observation. Since

rear vorticity is accounted for in the present model no further reduc-

tion of vorticity should be required or perhaps permitted, at least

for the two dimensional case.

For use in the cross flow analogy however a further reduction of

vorticity may be necessary. In previous work, Ref. (9), good results

were obtained by multiplying the boundary layer strength by a reduction

factor a < 1.0 such that

r  = Qrj

U2

where r  is the just born vortex of strength r j = At 22 , .

The use of the factor Q in the cross flow analogy is not yet

fully understood. So far no theoretical justification for its use has

been found. However, if one considers the problem of a three dimensional

separation it is not reasonable to expect that all of the vorticity

at the separation ends up in the cross flow plane. The vorticity vector

in a three dimensional flow has three components. The justification

for the use of the two dimensional vortex strength parameter a may be

found in a better understanding of the three dimensional flow separation.

I	 3.3 BOUNDARY LAYER

i

Governing Equations

The boundary layer equations non-dimensionalized as in the outer flow

and written in polar form for an expanding radius circular cylinder in

22'
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a

}	 incompressible flow are

auU 	 au	 v au _ a	 a a	 a2u

(1) at +	 +	
aU

a	at	
+ au	 U
--	 +	 (3-25a)

d2 
ax	 y	 a2	 ax	 ay2

(2) 2 ax + ay =
a (3-25b)

a

For a cylinder started impulsively from rest the initial conditions are

(1) t = 0, u=v=0
	

(3-25c)

and the boundary conditions are,

(1) y= 0,u=v=0

(2) y	 -, u	 all(x,t)	 (3-25d)

Here x and y are coordinates along and normal to the wall.

Equations (3-25) have in the previous work been solved directly using

an implicit finite difference technique developed by M. G. Hall (16).

The finite difference methods suffers from two aspects. The finite

difference method requires a large amount of computer storage and

computer time. Secondly, the finite difference method does not allow

for oscillation of the separation angles. The discrete vortex wake

solution requires only the determination of the separation angles at

each timestep. Therefore in past work the finite difference method

was replaced by a quasi-steady separation scheme developed by

Stratford (17, 18). However, it was still necessary to use the

finite difference solution for early times where the boundary layer is

unsteady, and for times where a ^ 0.

The objective of the present work was to increase the efficiency of

the discrete vortex wake method through efficient programming techniques,

by using "vector" software where ever possible, and by developing new

23
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algorithms. Therefore in the present work a method was developed to

predict separation-on a changing radius cylinder based on the integral

form of the unsteady momentum equations. This method based on the work

of Thwaites (19, 20, 21) replaces the finite difference method. For a

missile test case with ogive nose 2.59d and 7.727d afterbody at 45°

angle of attack the unsteady finite difference solution executed on

TRW's CDC6600 in 1207 CPU seconds. The new unsteady integral momentum

solution executed in 363 CPU seconds.

Unsteady Integral Momentum Formulation

Multiplying (3-25a) by (aU - u), adding to (3-25b) and integrating

with respect to y from o to - yields the integral form of the momentum

equations for time dependent radius,

a(U 6 1 )	 U	 au	 U2a6,

at + 
ao 

ax (61 + 262) 
+ ao	

ax	 a ^o	 ( ay ) o 	(3-26)

where Uo = aU

and
CO

6 1 = (1- ^)dy

0
0

6 2 = ( 1 - U ) dy
0	 0

0

Displacement Thickness

Momentum Thickness

The last term on the left side of the equation (3-26) is analogous

to a blowing term. Solutions to equation (3-26) based on the assumption

of a Pohlhausen velocity profile, i.e.,

24
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u = an + bn2 + cn3 + dn4

U 

n = a

(3-27)

u
may fail for strong blowing or suction because U  may be greater than

1, which Pohlhausen profiles do not permit. In fact, for this problem

a Pohlhausen solution was initially tried and did fail.

To circumvent this difficulty a velocity distribution is chosen

for which	 must always be < 1. Following the method developed by
0

Thwaites (19), if we consider the velocity distribution given by

S = F( U )
-o

or

	

8 	 F( s)	 s	
U

	

2	 0
(3-28)

where conditions at the boundary are

F(0)	 0

(3-29)

F(1)	 -

and require that S be monotonic for 0 < S < 1, then equation 3-28

represents a velocity distribution which has no maximum of u/U o other

than unity.

rFrom the definition of momentum thickness it can be shown that

!	 -	 the following condition must hold

j

	
(2s - 1) F(s) ds = 1	 (3-30)

0
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F(s) can be hose in an	 a	 -( )	 chosen	 y way such that the above equation (3 30) is

satisfied. The momentum thickness is no longer a function of the shape 	 I

of the velocity distribution since there are many choices for F(s): This
a

allows velocity distributions to be added simply and without imposing any

condition on the momentum thickness, 6 2 , ie., (3-30) is satisfied. The

idea behind Thwaites method is to add a Blasius profile and a suitable

separation velocity distribution. The details are the same as presented

by Thwaites (19) and the form of F(s) is

Ca	 a4 l
s2 = F(s)	 rl - 5 (1 - 5 )

J 
B(s)	 (3-32)

L

c	 1-al2	1-a 2

	

+ a	
2	 / + as
	 (	 2	 )

I
where B(s) is the Blasius profile and a a parameter. 	 From (3-28) and

(3-32) the following derivatives at the wall are obtained

S	 _ 2

UO 
(ay)o = 1JTAT--	 (3-33a)

0

82 ( 
a2u) = 2Ca 3

U 
	 ay2. o	 J3(a)

where

j(a)	 4.5345

When a = 0, d = B(s),
separation occurs. For
the constant, c, which

(1 - a 2 ) [1 - 6 (1 - 54 )] + ca	 (3-34)

the Blasius profile. When a = 1, ( au) = 0 ie.,
ay

the above formulation to be complete a value for
appears in equations (3-32), (3-33), and (3-34)

A
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needs to be determined. Thwaites (19) found that for the case of

Howarth's linear adverse velocity gradient U = so - s l x,a choice of

c = 5.1 resulted in separation of the boundary layer for sl x/so = .120,

ie., the solution obtained by Howarth.

Thwaites applied this method to a variety of steady problems

Refs. (19, 20, 21) with suction. In the present work Thwaites method

is extended to unsteady flows with a blowing like term. The value of

c = 5.1 found by Thwaites is retained in the present work.

Having chosen the form of the velocity profile as in (3-32) and

defining the quantities

62	
auH = 61 /6 2 ,	 Z = 6 2 ,	 e =	 ( — )

2 	
U 
	 ay o

Then the integral momentum equation (3-26) can be written after a few

pages of algebra as

U	 az	 2a	 dH az	 4ca3	 a

° — + H+	 - — = 2e+	 (H+2)+2/z a

a2 ax	 3( 1 - ak)	 da	 at	 J3

J

1	 dH	 x ag	 1	 aUo
-2z	 — — — - 2 —	 (3-35a)

3( 1 - A)	 da g at	 Uo at
J

For the case of impulsive start the initial condition is,

i

I.C.	 t= 0	 z	 0 on x	 (3-35b)

ie., momentum thickness is initially zero.

In equation (3-35) g is a function only of the outer flow ie.,

i
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1	 a U	 1	 DU
g = —	 0 + —	 0	 (3-36a)

a2 ax	 U	 at
0

ag	 1 92U  1 a 2U0 1	 DU  2	 2a 
9U  

(3-36b)

at	 a2 a X. at U	 at2	 U	 (at	 a3 aX

	

0	 0

Now, from eqns (3-33) and evaluating (3-25a) at y = 0

j3

hence knowing z and g

a can be found

and H. aH, E, j, and h are all functions of a, ie.,

H	 2.5911 1 - 6.^ (1 - 54)	 + 
ca 

(^6 + 3)	 (3-38)

dH = c	 -2.5911 (1 - a `') + a 3 (3a + 1) + 3	 (3-39)
da	 6

2

e _
6 2 ( au )0-	 1 - a	

(3-40)
Uo	y	 j(a)

y

j(a) = 4.5345 ( 1 - a 2 )	 1 - ^C5 ( 1 - 54 )	 + ca	 (3-41)

k(a)	 4.5345(1	 a2)	 6 (1-a')

- 2(4.5345)a	 1 - 6X ( 1 - 54 )	 + c	 (3-42)

r
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Equation (3-35) is quasi-linear partial differential equation, the

solution of which may be found by solving the following set of ordinary

differential equations.

dx	

U
o

_

dt	 a2 [H+2hadda^

1

d  _	 ^ a	 dH a ag _ 2 DUo

dt F 1 +2 z a -2z^h dx g at o 8t,

H+2hadH
dx

dz a 	 r dH 
a 

22 _ 2 aUodx=F1+2VI a -2z
l h dx g at Ua -tol

Uo/a2

where for convenience

(3-43a)

(3-43b)

(3-43c)



Equations (3-43) are integrated numerically using a simple Euler scheme.

Once z is found as function of x and t then a is determined from (3-37).

Separation occurs at x = x  when

z(x = xs , t) = 2

gc2

ie., when a = 1.

Figs. 3-3 and 3-4 present the separation angles calculated using

the method just outlined and using the previous finite difference

scheme. The separation angle predicted by Thoman, (22) using a Navier-

Stokes finite difference solution is presented for comparison. The

results for a constant radius cylinder are presented in Fig. 3-3. The

boundary layer finite difference and integral momentum methods are in

close agreement. Figure 3-4 presents the results for a changing

radius cylinder. (Thoman's results are for constant radius). The

results in Fig. 2-4 correspond to the rate of change of radius over

an ogive nose of fineness ratio 2.598. A constant radius would be

reached for this case at a time of t = 5.0. The time dependent radius

results show that for early times separation is promoted over the

constant radius case while for times t z 1.2 separation may even be

prolonged. A possible explanation for this behavior might be found

in examining the relationship between the 
a
 terms and the blowing term

- a Uo in equations (3-26) and (3-35) as, a, increases. The dependence

of the solution on the relationship between, a, and, a, has not been

investigated in detail in the present work.

Quasi-Steady Separation

Stratford (17, 18) derived a method to determine the separation

point of a laminar or turbulent boundary layer from an arbitrary pressure

distribution. For laminar flow separation occurs at x when

n
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2
R2 Cp(x) d
	

= Sk

dx

where the constant s  = .14, and x is an equivalent distance,

`x = x - xm - xs + f m fu) dx	 (3-47)
 m
x 

which accounts for regions of positive pressure gradient. For

turbulent flow separation occurs at x when

	

(2C
P 

)5/4 (x 
d
CP)1/2 = 1.06 a (10-6R)1/10	 (3-48)

d3Z

where R = Reynolds number based on local value of equivalent distance,

`x, and peak velocity, um , or velocity at transition, u tr , whichever

occurs later. The equivalent distance, x̀ , accounts for an initial

region of favorable pressure gradient and for a boundary layer which

is initially laminar. The distance along the surface from e	 0 to the forward

stagnation point is xs.

x̀ = x - x  - x  + 38.2(u
0/u tr)1/8 (Rtr)-3/8

!x	 u )5d 5/8(u	 x	 (x	
dx	 (3-49)

tr 	 +o (u )s
xs 	o	

xtr o
	 a

3

where

uo - um = u(xm )  xo- xm ^ xm > xtR

^	 a

P	 u =u	 u(x ),x =x	 x <x
o	 tr	 tr	 o	 tr m	 tr

The empirical factor chosen by Stratford is R = .73 and is the value

used in the present work. Mendenhall, (23), suggested that a factor

S'	 S sin a be used to account for 3D boundary layer effects.
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4.0 VECTORIZATION

Vectorization refers to the organization of individual steps in

an algorithm into loop operations on arrays of data. Current vector

processors exploit mainly pipelining rather than parallelism to

achieve vector speedup over scalar operation.

Pipeline processors consist of high speed arithmetic units which

are segmented 'into a series' of serial operations. The idea of vectori-

zation is to perform operations on long vectors (such as C(I) = A(I) + B(I))

so that an element of the vector flows into the pipeline at each clock

cycle. A clock cycle is defined as the maximum time it takes for an

element to pass through any segment of the pipe. The idea is to keep

all segments of the arithmetic unit continually busy on different

elements of the vector. Once the pipe is full a result will be produced

every clock cycle. In a scalar mode an element would have to traverse

the entire pipeline to produce a result. In scalar mode then the

operation C(I) = A(I) + B(I) would produce one result every 6 clock

cycles (see Figure 4-1) whereas in vector mode 6 results would have

been computed.

The discrete vortex wake method involves operations on a large

number of point vortices which are essentially vector operations. Most

of the computation time is spent operating on these arrays. The

present study was aimed at restructuring the current scalar code to

take advantage of vector processing capability.

Vector CDC7600

When the CDC7600 is used with the FTN FORTRAN compiler it operates

mostly as a sequential machine. However, by making efficient use of

certain features of the machine hardware, ie., the functional units,
S

and the instruction stack unit,the CDC7600 can exhibit a limited vector

capability. A high speed software vector processing subroutine library

1	 was written by R & D Associates (24,25) for use on the NASA AMES CDC7600

computer. When these subroutines are implemented on the CDC7600 it

I
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displays characteristics similar to other vector processor machines,

ie., TI's ASC and CDC STAR.

The approach in the present work was to restructure the discrete

vortex wake program into efficient FORTRAN code which then could be

replaced by calls to the RDA vector routines. In the listing of the

code the serial FORTRAN is left in as comment statements.

Discrete Vortex Wake Vectorization

Since conditional branches can not be handled in the vector method

it was first necessary to divide the loops into two segments. One

segment would contain all calculations required which were not dependent

upon the conditional. In this segment a number of scalars were changed

to vectors so that at the cost of a small amount of storage the vector

routines could be used.

In some cases the equations that followed the conditional could be

expressed in a manner such that a vectorization could be used. Arrays

containing either zeroes or ones were generated depending upon the

conditional and were used in the calculations. Hence terms would be

used or dropped depending upon the value in these arrays. In other cases

this method could be used but it was so complicated that the vector code

actually took longer to execute than the loop code with the conditional.

At the beginning of the present program a constant radius two

dimensional circular cylinder version of the discrete vortex wake program

(VTX) was vectorized and timing runs made on the CDC7600. This version

of the program used Stratfords criteria for separation. Timing runs on

the program indicated that about 75% of the total time was spent in

computing the motion of the vortices. The results of the timing runs

are presented in Figure 4-2. For a time where there are about 800 vortices

in the flow the optimized FORTRAN code resulted in an increase in speed

of 35 percent. Vectorizing the optimized code resulted in another 14 percent

increase.

The cross flow discrete vortex wake program was then rewritten in

structured FORTRAN code and then vectorized. Several algorithms

were rewritten and in the region of the missile nose a solution technique

:1
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based on the integral momentum form of the boundary layer equations was

developed to replace the finite difference solution. A summary of the

timing results is presented in Table 4-1. These results were obtained

with the integral momentum boundary layer solution.

The original cross flow program using the finite difference boundary

layer solution was run for the NIBI missile test case at 45 degrees angle

of attack. Using the RUNX compiler the program executed in 2694 CPU

seconds on TRW's CDC 6600. The unoptimized program using the unsteady

integral momentum solution executed in 2122 seconds using RUNX. The

vecotorized integral momentum solution on AMES CDC 7600 took 190 seconds

to execute using the FTN compiler. Allowing a factor of 5.0 for CDC 6600

to CDC 7600 conversion and a factor of 2.0 to equivalence RUNX and FTN 	 1

compilers the estimated time for the original finite difference program to

run for this case on the CDC 7600 would be 269 seconds. The final vectorized

cross flow program is then estimated to be approximately 30 percent faster than

the original program. The cross flow program could not achieve the same

f	 increase in speed as did the constant radius test case (twice as fast as the

original) because much less of the code could be vectorized.

Results obtained using the vectorized DIscrete VORtex Crossflow

Evaluator (DIVORCE) program are presented in the next section. The user's
i

manual for DIVORCE is a separate volume of this report.



TABLE 4-1 VISCOUS CROSS FLOW PROGRAM TIMING RESULTS

NlBl (tn/d=2.598, f= 10.325), a = 300

Cross Flow	 CDC6600	 CDC7600
Program	 CPU SEC	 CPU SEC

Unoptimized	 425

Structured	 317	 60
FORTRAN

Vectorized	 53

t`



5.0 METHOD APPLIED TO BODIES OF REVOLUTION

The vectorized discrete vortex wake cross flow program was applied

to several missile test cases of various fineness ratios with varying

nose geometry and nose fineness ratios. Table 5-1 lists the test cases

for which results are presented. Except for bodies NC (20 0 cone) and

NPP (pointed paraboloid), the nose geometries were sharp tangent ogives.

The results for cases NC, and NPP were non-dimensionalized using an average

characteristic radius instead of the base diameter. The highest fineness

ratio body tested was the ogive nose fineness ratio 5.0, afterbody fine-

ness ratio 11.0, N X configuration.

Input Values

In addition to body geometry several input values are required by the

current method. These values are numerical parameters such as the

integration timestep, At, and empirical constants like the vortex strength

factor a.

The numerical parameters are:

At = integration timestep

e = coalescence radius

KRCOAL = timestep, tk , at which to coalesce rear vortices

KCOAL	 timestep, t k , at which to coalesce all vortices

ZI = axial station at which solution is started ZI # 0.0

ZPERT = axial station at which a perturbation to newly born
vortex strengths is added

ZPEND = axial station at which a perturbation to newly born
vortex strengths is removed

The empirical constants are

a vortex strength factor

oa = vortex strength Derturbation a' = a (1.0 + Aa)

c	 constant in Thwaites method = 5.1 (see section 3.3)

a	 Stratfords turbulent separation criteria constant = .73

Sk	 Stratfords laminar separation criteria constant = .022

Xtr = transition location on circular cylinder in radius
measured from forward stagnation point = .5236

AO
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Angle of Attack	 Nose Fineness	 Fineness	 Afterbody Body	 Reference
Body	 a, DEG	 Ratio Q,n/d	 Ratio f=Q/d	 Diameter d(inches)

N1B1 10-50

N4B2 10-50

N4B7 45

N2C7 45

N3C7 45

NC 10-50
(20° Cone)

NPP 10-50
(Pointed
Paraboloid)

NX 10-50

NXI 35-50

N2C1 35-50

2.598 10.325 7.6 26

1.633 8.094 7.6 26

1.633 7.0 2.6

3.5 7.0 2.6

5.0 7.0 2.6

2.84 2.84 7.4 27

2.84 2.84 6.0 27

5.0 16.0 2.6 28

5.0 12.0 2.6 28

3.5 10.5 2.6 28

TABLE 5-1 MISSILE TEST CASES



The choice of these parameters and their effect on the solution is

discussed in the following.

5.1	 N1B1 RESULTS

The predicted normal force coefficient on N1B1 versus angle of

attack is presented in Figure 5-1 and is compared with MX results,

Reference (26).	 Past experience with the discrete vortex wake program

has shown that good normal force results can be obtained with the vortex

strength parameter, a = 0.6. 	 However these results, Reference (9), were

for angles of attack less than 30 degrees. 	 For larger angles of attack

only a very limited number of cases have been run. 	 Figure 5-1 shows that

good results are obtained tip to 30 degrees for a = .6, but at higher
r

angles of attack normal force is underpredicted. 	 The bar on the last

symbol denotes a range of values which may be obtained if during the {

solution the vortices are coalesced. 	 This effect will be discussed in

detail	 later.

At 45 degrees angle of attack normal force coefficient was predicted

using values of a = 1.0 and a = sin a = .707.	 The predicted values are

higher since increasing vortex strength produces a stronger wake which

increases pressure drag on the two dimensional circular cylinder. 	 Figure

5-2 shows that predicted pitching moment coefficients agree well with experiment

to 40 degrees angle of attack with, a = .6, but drops off at higher angles.

The distribution of normal force coefficient per unit length is presented

in Figure 5-3.	 Increasing the vortex strength parameter results in a better

prediction over the nose region but then overpredicts the load on the

afterbody.

Prior to exercising the discrete vortex wake program to predict

side forces and moments on the goemetries listed in Table 5-1 a parametric

s
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study was undertaken to determine the sensitivity of the method to the

various numerical and empirical parameters listed in Section (5.0). In

general normal forces and moments were not largely affected (except for

a). However side forces and moments were nearly always affected.

The parametric study was undertaken for the N1B1 body since the

largest amount of experimental data was available for that body.

Effect of Vortex Strength Parameter o

The effect of a on side force distribution is not well understood

as it is for normal force. While eventually (in the steady state)

stronger vortices would probably result in larger amplitudes of

oscillating lift it is not clear how stronger vortices affect the initial

vortex development. The side force coefficient on N1B1 is presented

in Fig. 5-4. The magnitude of the predicted coefficients bounds the

values obtained experimentally. However, at the same angle of attack the

side force coefficient may be positive or negative depending on the

choice of a. Figure 5-5 shows the side force coefficient per unit length

along the missile axis for three values of 6. The development of the

asymmetry is similar up to about half (Z = .5) the body length. In this

example a = .707, produced the largest side fo;°ce. The corresponding

yawing moment coefficient is presented in Figure 5-6.

Effect of Coalescence on Side Force Distribution

To save computer time it may be desirable to coalesce two vortices

into one if they are in close proximity. Virtually all of the discrete

vortex methods have some type of coalescence scheme. Normal force is

affected little by coalescence. Side force on the other hand is signifi-

cantly affected as is shown in Figure 5-7. Vortex plots at Z = .804

are presented in Figure 5-8 for the case of no coalescence and coalescence

using the largest core radius of e = .25. From Figure 5-8 very little

difference in the wake structure can be observed (aside from fewer vortices).

In examining the pressure distributionsat Z = .7516, Figure 5-9, however,

it appears that small differences in the pressure occur and result in

}
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the significant differences in side force when integrated.

The initial vortex growth is very sensitive to small perturbations.

Coalescing the vortices introduces an error of only order E2 at the

time of the coalescence. However this small perturbation significantly

affects the initial vortex growth and eventual asymmetry. At later times

a Kaman vortex street will always be established and the initial pertur-

bation is not important. However for times pertinent to the cross flow

analogy coalescence makes a difference as indicated in Figure 5-7 for

a	 ° and Figure 5-10 for a = 45°30	 .

For the same reasons described above the frequency of coalescence,

or the time at which the first vortices are coalesced can alter the

distribution of side force, see Figure 5-11.

Effect of At on Side Force Distribution

In the present work At is usually allowed to vary from At = .05

near the nose tip where the cylinder radius is small and a small time-

step is required to a constant value usually At = .125 at the nose

afterbody junction. Figure 5-12 shows the effect of constant At =

.125, .250. Letting of be variable had little effect. However, At

= .250 significantly reduced the amplitude of the sectional side force

coefficient. For 30 degrees angle of attack	 At = .0625 was also

tried with results significantly different from the At = .125, and

At = .250 cases. However the maximum amplitude of the sectional side

force coefficient for 30 degrees was only 0.1.

In addition to being the integration timestep, At also implicitly

determines the distance m (see Eqn 3-21) at which vortices from the boundary

layer and rear shear layer are introduced into the outer flow. Further

work needs to be done in examining the effect of At. The discrete

vortex wake solution may not be unique as indicated by many of the

present results. For many of the cases run in this and other studies

At = .125 has provided reasonable answers. For the rest of the results

presented in this work At = .125.
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5.2 OTHER TEST CASES

Based on the study of the N1B1 body, discrete vortex wake parameters

were chosen-as follows to investigate the effect of angle of attack, 9
nose fineness ratio, nose geometry, and overall fineness ratio:

a = .6 (unless otherwise specified)

oa = .1

ZI = .O1

AT = .125 (variable .05 to .125 on the nose)

ZPERT = .05
(unless otherwise specified)

VEND = .25

KRCOAL = 30 if vortices coalesced, ie., normally
KCOAL = 150 a = 10, 20, 30 does not require coalescence

NO2 a

The forces and moments on N4B2 ( Q n/d = 1.633) are presented in Figs.

5-13 through 5-17. The normal force coefficient agrees well with the

experimental data up to 45 degrees angle of attack. The pitching

moment coefficient is somewhat higher than the experimental values for

angles of .attack greater than about a = 30 degrees. Examination of the

normal force distribution shows that the predicted normal force is

higher over the nose region than that measured experimentally. This is

in contrast to the N1B1 results which underpredicted nose distribution

of local normal force coefficient. Predicted and experimental side forces

are small except at 45 degrees angle of attack. The predicted results

show a change in side force sign only at a	 40 degrees. Similarly the

predicted yawing moment changes sign whereas the force data does not.

The predicted force and moment results are of the same order of

k

	

	 magnitude as the experimental values. A plot of (CYO versus angle of

attack would show better agreement. However, the purpose of the present

work is to examine and disclose the applicability of discrete vortex

methods for the cross flow problem and therefore signed values are

presented.

r
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N2Cl, N3C1

The present method was applied to the data taken by Jorgensen

Ref. (28) on ogive cylinders of nose fineness ratio k n/d = 3.5, and

i'n/d = 5.0, and afterbody ratio 7.0. A calculation was also done

with afterbody fineness ratio 11.0. The purpose was to determine if

effects of nose fineness can be predicted using the discrete vortex

method. The normal force coefficient data in Figure 5-17 shows that

the predictions are significantly lower than the experiment. Part of

the discrepency is a Mach number effect. Figure 5-18 shows the

predicted normal force coefficient with Q = 1.0 to be in much better

agreement. Predicted aerodynamic normal force center also agrees

well with Jorgensens results, Figure 5-19. Jorgensen found maximum

side force to occur at 35 to 40 degrees on N3C1, Figure 5-20. Maximum

predicted side force coefficient occurs at 50 degrees angle of attack

and is only about one half of the maximum value obtained by Jorgensen.

Yawing moment is presented in Figure 5-21. Side force coefficient

results for N2C1 and for N3C (f = 16.0) are presented in Figure 5-22

in addition to the N3C1 results. The N3C1 configuration (zn/d=5.0,

f=12.0) resulted in the largest predicted side force.

Effect of Nose Fineness Ratio on Side Force Coefficient'Distribution

To examine in more detail the effect of nose fineness ratio on

asymmetric vortex develpment and side force distribution three bodies

of overall fineness ratio f = 7.0, and nose fineness ratios, zn/d=1.666,

3.5, and 5.0 were run at 45 degrees angle of attack. Discrete vortex

wake parameters were ZI = .01, ZPERT = .05, ZPEND = .25, a = . 6,

Aa = . 1, of = .125, and were the same for the three runs. The vortices

were not coalesced. The sectional side force coefficients Figs. 5-23,

all are initially perturbed to positive values and then reach a maximum

negative amplitude at about, Z = .4. The longest nose attained the

largest sectional side force amplitude. The effect of nose fineness

ratio on separation angle is presented in Figure 5-24. Separation is

in general further windward for the highest fineness ratio body. The
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short ogive tends to prolong separation. The jump in the separation curve

at Z = .3 for case N487 is a result of changing from the unsteady boundary

layer solution to Stratford'squasi-steady scheme. The separation angles

for all three bodies approach o s = 85 degrees at about 70% of the body

length. Figure 5-25 shows the vortex growth for the short, N4B7, and

long N3C7 ogives. The N2C7 development was very similar to N3C7. The

radii are to the same scale. Some differences are observable in the

vortex wake. However, overall the vortex development looks very similar.

While nose fineness ratio has an effect on the predicted asymmetric vortex

development and on the resulting side force distribution it is not clear

that these effects are any greater than the effect of changing one of the

other parameters in the method such as, At, or coalescence radius or

frequency, and probably has much less of an effect than changing a, or

PERT and ZPEND. Figure 5-26 shows the effect of applying the vortex strength

perturbation over different lengths of a fineness ratio k n/d	 5.0 ogive

nose. The length scale in Figure 5-26 is non-dimensionalized by the

longest body length, z Ref = 16.378 inches.

The effect of forebody geometry was briefly examined for the case of

a sharp 200 cone and a pointed paraboloid (z n/d = 3.5, f = 3.5). The

side force coefficient is presented for comparison with the available

data. Forebody geometry had little effect on the predicted side force

coefficient.

Pressure Distribution

One of the purposes of a complex method such as the discrete vortex

wake program is to be able to predict surface pressures and the

distributed aerodynamic load. The sectional normal- force coefficient and

sectional side force distributions on N1B1 at 45 degrees angle of attack

is presented in Fig. 5-28, and 5-29.
7

The corresponding vortex development and surface pressures are

presented in Figures 5-30 and 5-31. The numerical perturbation caused

an asymmetric vortex development which resulted in a side force distri-

bution opposite in sign to that obtained experimentally. Applying the
perturbation to the opposite point would change the sign of
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the predicted results. Rather than rerun the case the results can be

viewed as in Figure 5-30. The usual nomenclature is y positive to the

right. Figure 5-30 shows the vortex development on N1B1 at 45 degrees

angle of attack. Corresponding pressures are presented in Figure 5-31.

At Z = .124 the experimental and predicted pressures are almost

symmetric.

At Z = .222 the experimental pressures are still symmetric

whereas slightly asymmetric pressures are predicted at Z = .232.

Pressure recovery on the rear of the cylinder is considerably lower

for the experiment. At Z = .337 the experimental pressure begin to

show an asymmetry. The theoretical pressures at Z = .352 are asymmetric

but with lower pressures at 80 degrees as opposed to the experiment

which exhibits the lowest pressure on the opposite side at 285 degrees.

At Z	 .352 the vortex plot Figure 5-30 shows the left vortex

beginning to dominate. Hence, the lower pressures on she left half

of the body ( 0 < e < 180 degrees). At Z = .594, Figure 5-30, the left

vortex has entrained fluid from the right side and has weakened. This

allows the right vortex to increase in strength as the weakening left

vortex begins to move downstream. The corresponding pressure Figure

5-31 ( Z=.594 ) shows a large asymmetry with the lowest pressure on

the right side where the stronger right vortex exists. The agreement with

the experimental pressures, Z = .591, is very good. At the last station

the left vortex is again dominant as shown in Figure 5-30, Z = .835. The

predicted pressures at this station show the presence of a strong left

vortex. The experimental pressure data, Figure 5-31 Z = .845 reflects

a similar asymmetry.
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6.0 DISCUSSION

Effective numerical algorithms were developed to apply the discrete

vortex wake cross flow method of Ref. (9) to high fineness ratio bodies

at high 'angles of attack of 30 to 50 degrees. .Because of computer time

and cost limitations the method had been used previously only on a very

limited basis to demonstrate capability for predicting asymmetric wake

development.

The required computational ability was achieved by (1) developing

a method to solve the unsteady inte g ral momentum boundary layer equations

on a changing radius cylinder to replace the current finite difference

solution, (2) restructuring the program to take advantaae of Vector

Processor Architecture in the vortex array computations, (3) optimizing

the FORTRAN code which could not be vectorized, and (4) using a bigger

computer.	 a

After converting CDC6600 (RUNX) run times to CDC7600 run times

using the optimizing FTN compiler, the increase in execution speed

of the vectorized program over the original program was found to be

about 30 percent. A 30 percent difference in execution speed alone does

not justify using the method now, whereas it was too costly before.

However, coupled with the increased speed of the CDC7600, over TRW's

CDC6600, the method was able to be tested on various missile geometries,

and the effect of numerical and empirical parameters examined.

Only about 12 percent decrease in computation time was achieved

using the vector processing instruction set. Larger time savings were

not achieved primarily because of two reasons. The first reason is

linked to the fact that discrete vortex wake methods must include a

vortex core radius to modify the singular behavior of point vortices. The

vortex computations involve different operations depending on whether a

calculation point is within a core radius of any point vortex. This core

radius check interrupts the flow of data into the pipeline and results

in minimal vector performance.

Probably 60% of the computation time is spent in the point vortex

computations. The other 40% of the code could not be efficiently vectorized.
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r	 The FTN compiler optimizes CDC 7600 code very well. 	 To gain speed over I
the very efficient serial code, a significant portion of the code may

l
have to be vectorized.

The results obtained usin9 the vectorizod code 	 and the serial code

were found to be slightly different.	 To examine this further, the serial

program was stopped with about 1200 vortices in the flow. 	 The vector

program and the serial program were then started using the same 1200 vortex

positions and strengths.	 The results were identical out to about the 12th

significant digit.	 However, if the runs were continued for some time,

slight differences would develop.

.	 Predicted normal forces and moments in general agreed well with

experiment.	 Increasing the vortex strength parameter, a, resulted in

better agreement with Jorgensen's (28) M = .6 data.

Probably the most significant aspect of the present work was the

discovery of the extreme sensitivity of the side force development on the

numerical and empirical parameters used in the method. 	 Perhaps this

'	 result should not be surprising since experimental side force data is also

extremely sensitive to perturbations in the flow.

Sarpkaya (29), in a recent experiment using a vertical water tunnel a

measured the time dependent drag and lift force acting on impulsively

started circular cylinder. 	 Experimentally Sarpkaya found that in impulsive

flow the development of lift is strongly dependent on the initial disturbances j

which give rise to asymmetry and subsequent vortex shedding. 	 In some runs

Sarpkaya found that the vortices continue to grow symmetrically and result

in small lift forces while for repeated runs at the same Reynolds number

the asymmetry develops rapidly and the lift force not only starts at smaller

values of t but also reaches larger amplitudes.

The predicted results of the present study indicated the same type of

randomness in the early development of lift that Sarpkaya observed

experimentally.

It is possible that the discrete vortex wake problem is not well posed,

ie., a small	 change in the initial conditions result in a large change in

the answer.	 However, it may be possible to bound the problem. 	 By varying

the parameters in the method within reasonable limits, it may not be
i

possible to obtain a value larger than a certain maximum value.
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7.0 CONCLUSION AND RECOMMENDATIONS

The viscous cross flow analogy was employed using a two dimensional

discrete vortex wake cross flow solution to predict the flow field

around high fineness ratio bodies of revolution at high angles of

attack up to fifty degrees. A method was developed to solve the unsteady

integral momentum boundary layer equations for the expanding radius

circular cylinder started from rest in laminar flow. Since the integral

momentum equation is valid for either laminar or turbulent flow, an

extension of the present solution technique using a modification of

Thwaites shape factor could be developed to extend the method to high

Reynolds number turbulent flows.

Predicted normal forces and moments agreed well with experimental

data. Predicted side forces and moments fell within the range of the

experimental data but were found to be extremely sensitive to small 	 w

perturbations. The maximum value of predicted side force was generally

about half of the maximum experimental value. The predicted maximum

values also occurred at different angles of attack. 	 a

The distribution of side force is mostly affected by the numerical

perturbation applied to the method to induce asymmetric vortex develop-

ment and by the vortex strength parameter. Increasing the vortex

strength parameter always results in an increase in normal force coef-

ficient, but not necessarily in side force coefficient. A physical

explanation of the vortex strength parameter may be found by considering

that the probability that only part of the total vorticity shed from a

three dimensional separation line ends up in the cross flow plane.

Experimental and theoretical investigations of the three dimensional

flow separation on a typical missile shape n,2eds to be undertaken to

determine the cross flow component of vorticity.

Forcing a small asymmetric change in the strength of the newly

introduced vortices for a portion of the missile nose has a significant

effect on  the side force development. Forcing the separation angles to

be slightly asymmetric would be a similar perturbation mechanism. The
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initial disturbance may be due to asymmetries which develop first in the

wake (ie., free stream turbulence) and then feed back to the boundary

layer. The physics of the initial instability needs to he better under-

stood in order to determine how to model the initial distL.rbance.
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