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SUMMARY

The success of future permanent space stations depends on the
development of a space shuttle vehicle having aerodynamic maneuvering
capability, The purpose of this technical report is to investigate the
optimum maneuver of such a vehicle reentering a spherical, stationary,
and locally exponential atxﬁosphere. The use of Chapman's modified
variables and a rescaled lift-drag polar leads to the formulation of a
set of dimensionless equations of motion for flight analysis., The
resulting equations are exact in t.he sense that they are also Yalid for
flight in the vacuum. For the vehicle, we only have to specify the most
important performance parameter, namely the maximum lift-to-drag
ratio E*. On the other hand, the planetary atmosphereis characterized
simply by the so-called Chapman's atmospheric parameter k? = Br,

For planar flight several typical optimum maneuvers are investi-
gated at different altitude ranges, low, moderate and very high. In each
case the characteristics of the optimum lift control are discussed.

For three-dimensional flight, the procedure to solve the optimum
trajéctory for maximum cross range is discussed in detail, Finally,
using the equilibrium glide condition the maximum cross ranges for
entry from circular speed, for several values of E*, and the footprint
for E¥* = 1,5 are computed in this reduced problem., A technique of
coordinates rofation is used which makes the iteration procedure for
solving the footprint ofé. reentry vehicle much more effective and

geometrically meaningful,
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CHAPTER 1

INTRODUCTION

The purpose of this report is to investigate the optimum
maneuver of a space vehicle having aerodynamic maneuvering capa-
bility, The present day space shuttle is an example of such a kind of
space vehicle, In the previously published ]iterature; the analyses
are either for constant lift-to-drag ratio [1,7], or usually numeri-
cally oriented and is confined to the performance of a particular
vehicle [3]. In order to maintain the generality of the results, we
shall introduce a set of dimensionless variables and a rescaled lift-
drag polar, to derive the dimensionless equations of motion for flight
analysis inside a spherical, stationary, and locally exponential
planetary atmosphere. The resulting equations are exact in the sense
that they are also valid for flight in a vacuum and are almost free
from all the physical quantities of the vehicle and the planetary
a.tmosphére.. For ﬁight at very high altitude with orbital speed, a
Newtonian, inverse-squared force field is used. By a simple canon-
ical transformation [5,6], the corresponding equations for low
altitude and low speed flight over a flat ea;rth model are obtained,

Two main types of optimum maneuver in a vez‘-tical plane will

be investigated at three different altitudes, low, moderate, and very

1



high. In the pull-up type maneuver we either maximize the final speed
with the final altitude prescribed, or vice Versa;. At very high
altitude with orbital speed, the maneuver generates the useful skip
trajéctory. In the gliding type maneuver we maximize the gliding
range, The three-dimensional gliding maneuver for maximum cross
range will also be discussed and then solved in a reduced problem.
The footprint of a reentry vehicle will be assessed.

The organization of the reportis as follows. After this intro-

ductory chapter, the dimensionless equations of motion for three-

" dimensional atmospheric flight are derived in Chapter 2, The prob-

lem is then formulated as an optimal control problem with the adjoint
equations and the control law derived in Chapter 3. In Chapter 4, the
equations for planar flight are deduced from the general equaﬁons of
Chapter 3, Then in Chapter 5 they are transformed into the equiva-
lent form appropriate to the flat earth model. The numerical applica-
tions are carried out in Chapf.:ers 6, 7, and 8. The case of flight over
a flat earth is first analyzed in Chapter 6. The concept of a linear-
ized singul;.r arc [8] is introduced and tested. The case of planar
flight over a spherical earth is discussed in detail in Chapter 7. Then
in Chapter 8 we discuss the proéedure to solve the three-dimensional .
optimum trajectory, The problem is then simplified and solved with a
footprint obtained. The final chapter, Chapter 9, summarizes the

main results obtained,




CHAPTER 2

DIMENSIONLESS EQUATIONS OF MOTION

In this chapter,A the three-dimensional equations of motion of
a nonthrusting, lifting vehicle entering a stationary spherical plane-
tary atmosphere are introdu-ced. Then by using the modified Chap-
man's variables, a normalized lift coefficient, and a dimensionless
arc length as the independent variable, a set of dimensionless state
equations aré obtainéd for entry analysis, It will be seen that, by
this formulation, the only physical parameter involved is the maxi-
mum lift-to-drag ratio, and the planetary atmosphere is simply
characterized by a value referred to as Chapman's atmospheric

parameter,

2.1 Three-Dimensional Eqguations of Motion

The equations of motion of a nonthrusting, lifting vehicle
entering a stationary spherical planetary atmosphere are

dr

oL in Y
3t V sin

v pSCpV? .

@ T Tz - gsinY

o4y _pSCLVt (6 - L) cos
% - 2m coso - (g -") cos



de _'VcosY cos Y
dt = rcosd

(2. 1)

d¢ _VcosY siny

dt r
2
ayp _PSCLV" - ¥
th = Tmcosy sine - — cosYcostbtapqa

where t is time, (r, V, Y, 8, ¢, {) are state variables and are defined
in Figure 1, p is density of the atmosphere, S is the reference area

of the vehicle, Cp and Cy, are the drag and lift coefficients, m is the
mass of the vehicle, g is the magnitude of gravitational acceleration,

and o is the bank angle., The flight path angle Y is defined to be

I W4

Figure 1, State Variables, Control Variables, and Other
Parameters Defined with Respect to Inertial
Coordinate, OXYZ.



positive when the velocity is directed above the horizontal plane, The
bank angle o is taken to be positive for a bank to the left, For flight
in a Newtonian force field of a spherical planet, the magnitude of the

gravitational acceleration is of the form
g = % ' (20 2)

where p is the gravitational constant. The density of the atmosphere
p is assumed to be locally exponential, that is, it obeys the differen-
tial law

%3=-ﬁm (2.3)

where the inverse scale height 8 is a function of the distance from the
.center of the planet r,

There are two control variables, one is the bank angle ¢ and
the other is either the lift coefficient C, or the drag coefficient Cp.,
For a given vehicle there is a lift-drag relation; therefore either the
lift cdefficiént Cp, or the drag coefficient Cp can be used as the con-
trol., We shall use as lift control a normalized lift coefficient X such

that )
Cp=Crx ~ (2. 4)

where Cl.:k is the lift coefficient corresponding to maximum lift-to-

drag ratio E*, If CI; is the corresponding drag coeifficient, then
Ch = CL £ (2.5)
D - D ) ' .

where f(\) is the function specifying the chosen drag polar (see

Appendix A), When X\ = 1, the flight is at maximum lift-to-drag ratio,



Thus we also have £f(1) = 1. We shall consider a parabolic drag polar
with the simple function
1 2
fA) =2 (1 +X%) (2.6)
In general, the parameters ij, C]:;k, and E* are functions of Mach

nuinber; but in the hypervelocity regime they are essentially constant.

2.2 Dimensionless Equations of Motion

The following dimensionless variables are introduced,

2 2
SR . i (2.7)

where Z and v are the modified Chapman's variables [1]. Z is pro-
portional to the atmospheric density p and will r;epla.ce the altitude,
while the dimensionless kinetic energy v is a measure of the speed.
The remaining dimensionless variable s is the dimensionless arc
length., Itis monof;)nically increasing and will replace the time as
an independent variable, By using Egs. (2.4), (2.5), (2.6) and (2.7)
in Eqs. (2.1), we have the dimensionless three-dimensional equations
of motion

dZ |

az£ _ 2
ds than.Y‘

2 .
dv _ _KZv{I4M) o y)tany

ds E* cosY



dy _ kZ)\coso'+(l__

ds cosY
a8 _ cos ¥ (2.8)

ds cos ¢_

d¢
ds

siny

%3 = _____kfo)xs;s:(nc - cosy tand

where E* is the maximum lift-to-drag ratio, and k? is the dimension-
less ‘prod'uct Br. These equations are exact and hence are valid for
Keplerian motion outside the planetary atmosphere. The only slight
simplification is that in the equation for Z, the exact coefficient of

- Ztany is

=2 _ 2 A 1 4B .
ki=k (1'21<2+z¢sz dr) 2.9)

For a strictly exponential atmosphere, B = constant and

a8 _, (2.10)
dr

On the other hand, if an isothermal atmos'phere is considered,

B/g = constant and

A4 _ L (2.11)

In both cases K- is a function of k®* = Br, Chapman has shown that in

the reen.try range of the altitude, this prodﬁct is oscillating about and
near a mean value {1] . »Furthermorev, its value is much greater thaﬁ '
unity, e.g., for the earth's atr;nosphere k%= 900, thus we take

T2~ K2 (2.12)



The Eqs. (2.8) are the state equations for entry analysis. It

is seen that the only physical parameter of the vehicle involved is the

maximum lift-to-drag ratio E¥, Furthermore, any planetary atmo-

sphere is simply characterized by a properly selected value k?, This

mean value will be referred to as Chapman's atmospheric parameter,



CHAPTER 3

- VARIATIONAL FORMULATION

With an adjoint vector introduced, we formulate the problem
" as an optimal control problem by using the Pontryagin's maximum
principle. The control law is derived., The integrals of the motion
are obtained, - Then there is a change in the adjoint variables to have
a better form for the adjoint equat;lons, Finally, the parameters of

the problem under different cases are discussed,

3,1 Variational Formulation

The Eqs. (2.8) are the state equations with two control
variables, the lift control A and the bank angle ¢, They are subjected
to the constraints

In]

IA

A
max

(3.1)

IA

lo| <o

max
These controls are to be selected to bring the vehicle from a certain
prescribed initiai condition to a certain partially prescribed final
condition, such that a certain function of the final ;tate variables is
minimized.

Using the maximum principie, we introduce the adjoint vector

P to form the Hamiltonian
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2
H= - k? ZpZtanY - pv[kZ_v 11)) + (Z-V)tanY]

E*cosy

kZ\Ncoso .
+pY[ cosY (1 B >] Py OS¢ +p¢s1n¢

kZ\ sing _
+p¢[ cosZy —cosllJtancb:I

(3.2)

where Py s X = Z,v,Y,8, ¢, and ¢ are the adjoint components corre-

sponding to the six state variables, respectively. They are governed

by the following adjoint equations

dp 2 .
Z _ .2 kv(l+X ) _ kXcoso _ kX sing
ds k pztanY t P, E*cosY Py cosy Py costy

dp 2 Py
v - p [kZ>‘£1+>\ -tanY]——
ds v \' ETcosY V2

dp 2y o4
Y 1 2 [ka(1+7\ )sin¥Y :l
ds ~ cos?®Yy {k Zpg * E* T (2-v)
- kpyZ)\cos osinY - kaqJZ)\sinO' tanY}
dp
—8 .
ds
dpg, cos ¥
ds coszcb [- pS_ sin¢ + pxp]

dqu sin Y [

ds cos ¢ Py, sin ¢l - py cos ¥

¢

(3.3)

The solution is then obtaihed by integrating the two sets of state and

adjoint equations, subjected to the end conditions, and at each instant

selecting the lift control \ and the bank angle o such that the Hamil-

tonian is an absolute maximum,
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The Hamiltonian H will be maximum either at the bounda.ry of

the control set or at an interior, variable point where.

oH _ oH

w0 ¢ Be -0 (3.4)
Explicitly, we have
sk
E” py E*py
Ncoso == s A\ sinoc = T (3.5)
2vp, 2 vpvcosY

3.2 Integrals of the Motion

It is known that the problem has a number of integrals [2-4].

First of all,
H = CO (3o 6)

. where G; is a constant, Then by solving the last three equations of

Egs. (3.3), we have

pe = Cl
p¢=C2cose+C3sin6 (3.7)
plp = C;sind - cos ¢ (C,;sin8 - C3cos 9)

where C;, C,, and C; are constants of integration.
To simplify the first three equations which are not integrable
analytically in Egs. (3.3), it is convenient to use the modified adjoint

variables deﬁned as

P= kzzpz'
N =vp_ ' (3.8)
Q=p
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The corresponding modified adjoint equations are then

P  x'z N E* ., Py

®orz (2 ot

s cosY Lg 4N cos“Y

dN 1

s -5 R+ 2NtanY) (3.9)

2
. . . 3

daQ _ _ 1 [st;.nY (Z-V)] E*k Z sin [z’ pq,]
ds ~ cos®Y {P+N E* L B 4N Q4 cos?Y

In terms of P, N, and Q, the optimum lift and bank controls become

A = E*Q
cos 0 = 5
\ si - _Ezk_&‘h_ 3 10)
S8 0 = ONcosY (3.
2
KZ — ﬁ QZ + p¢
T 4N? cos?y
and the Hamiltonian becomes
-Ptany -N[ *k.Z + &-ﬂtan\(]- 1-v)Q
ETcosyY v v
E*k Z Py Y
' 2 | cos .
4N cosY Q"+ cos?‘\(> * pe cos ¢ * p¢s1n¢
cosY tan ¢ = C (3,11)

- pr
In summary, the optimal solutions of this problem are
governed by the Egs. (2,8) for the state variables, Eqé. (3.7) and
(3.9) for the adjoint va.ria.bles,' and Egs. (3.10) for the controls, It
requires six parameters C;, C,, Cq, Pi,A Ni’ and Qi to satisfy the
final and transversality conditions, where Pi’ N, and Q. are the

initial values of P, N, and Q, respectively. The Hamiltonian equation,

Eq. (3.11), can be used to check the accuracy of the integration.
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For the most practical cases, the arc length s is not

prescribed at the final time., Thus H = Cy; =0 and Eq. (3.11) becomes

k Z (2 -v) ] 1-v)Q
-Ptany - N [E*cosY + tanY| - -
e pz
__Iik_z_(u ¢ ) cos o sind
4N cosY cos? Y Po coso ' Po
- P, cos ytand = 0 (3.12)

Using this integral, one of the three equations in Eqs. (3, 9) can be
deleted. But there are some difficulties in so doi;lg. First, Eq.
(3.12) is quadratic in both Q and N, To solve either Q or N from
Eq. (3.12) requires frequent change in sign in front of the square
root each time the quantity under the; square root passes through the
value zero, Next, in Eq. (3.12) the coefficient of P is tanY, When-
ever Y goes to zero, P cannot be determined. Hence, it is more con-
venient to use Eq. (3.12) solely to determine one of the three initial
values, either Pi or Ni or Qi’ and to check the accuracy of the inte-
grati_on. Anyway, it is obvious that the number of parameters is

reduced by one, that is, from six to five.



CHAPTER 4

PLANAR FLIGHT

In this chapter, we deduce the.governing equations for the
opﬁmum reentry trajectories confined to the plane of a great circle
from the general three\-dimensional equations of Chapter 3, They are
the state equations, the adjoint equations, the control law, and the
Hamiltonian integral. Then by a change of adjoint variables, we

obtain a handy equation for the control variable A, and the number of

parameters is reduced by one,

4,1 Governing Equations

For entry trajectories in the plane of a great circle, we have
c=¢6=uy=0 (4.1)
and the independent variable s is simply the range angle 8, The state

equations and the modified adjoint equations are reduced to

4z _ .2
19 = -k“ZtanyY

2
dv _ _kzZvU+M) o) tany (4, 2)

de E*cosY

—==

Z
j_;{- - 1;os):{ (1 - %)

14
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and
&P KZ [_11 EQ]
d8 ~ cosYLE* 4N
%lé\l = % (Q + 2N tanY) (4.3)
aQ 1 [stinY (z-v)] E*k Z Q¥sinY
de ~ cos®y {P+N £* R T 4N
respectively, The optimum lift control is either In] = Nmax ©T 2

variable \ ,such that

_E*Q :
N =S (4. 4)

The Hamiltonian integral becomes

=- C; (4.5)

2
-PtanY-N[ kZ +(2‘V YJ LVQ EkZQ

E*cos Y 4 Ncos Y
where C; is the same constant of integration as in Eqgs. (3.7).

In general, this is a three-parameter problem, with P;, N;,
and Q; as the three parameters. For the special case where the
range angle 6 is not prescribed at the final time, i.e., éf is free,

C; = 0 and it becomes a two-parameter problem,

4,2 Change of Adjoint Variables

From the expression of Eq. (4.4), it is seen that a simplification
can be made if we use A as a new variable, Another variable which
will be seen to be useful is

D :
F=3 (4.6)

Using (F, N, \) as a new set of variables to'replace the modified
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adjoint variables (P, N, Q), and taking the derivative of Eqs. (4. 4)
and (4. 6) with respect to 6, we have

dF  k*Z(1-\%)  2F

de - E*cosY TExY & + E7tany)

dN _ 2N *

0 =" pF, M+ E¥tanY) (4.7)
2\ oz * *

D _kZ(@-M)sinY | 2A(+E7tan¥)  __E7 (F-1+3)

do 2cos“Y E¥v 2cos“Y v

The Hamiltonian integral Eq. (4.5) in terms of (F, N, \) becomes

KZ(1-2%3)  2(1-v)\ ( ;) e
% cos + BF v + F-1+V tan¥ = N (4.8)

In Eqs, (4.7), it is seen that the first and third equations are inde-
pendent of N~. It can be shown that Ni’ the initial value of N, is free
whenever the final value of N doesn't appear in the vtransversality
conditions, Thus the second equation of Eqs. (4.7) can be deleted.
It becomes a two-parameter problem for the general case. For the
special case if Gf is free, C; = 0 and it is simply a one-parameter
problem. The Hamiltonian integral for this special case is, from

Eq. (4.8),

kZ(1-\%)  2(1-v)\
E*cosY E¥*v

+(F-1+%)tan.Y=0 (4.9)

As has been mentioned in Section 3,2, there are difficulties in
using Eq. (4.9) to solve for A or F, To solve for \ from Eq. (4.9),
we have to determine the sign in front of the square root and change

this sign each time the quantity under the square root passes through
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zero, At that instant the equation has a double root

l-v)cosY
N1 =7z = "—"'——"'( kVZ)V ‘ : (4.10)

From the third equation of Eqs. (4.2), it is seen that this corresponds
to dy/d6 = 0.. Physically, the flight path angle passes through a maxi-
mum or a minimum and the trajectory has an inflection péint at this
instant. This behavior is typiéal in an optimal trajectory. Therefore
it is more convenient to obtain the optimum \ dire-ctly from integra-
tion., On the other hand to solve for F from Eq. (4.9) will become
impractical whenever Y is applfoaching and passing through the value
zero, Hence, Eq. (4.9) will be used solely to compute the initial

value F; in terms of A\; and to check the accuracy of the integration.



CHAPTER 5

FLAT PLANET SIMPLIFICATION

The equations we have derived in the preceding chapter are
the optimum equations for the general case of planar flight, They are
to be used When the speed of the vehicle is of the order of orbital
speed, v~ 1, which occurs at high altitude where the value of Z is
small, They are, of course, also valid at low altitude and low speed.
But in this case, without compromising the accuracy, it is simpler to
use the equations within the framework of a flat planet model, These

equations are to be deduced in this chapter.

5.1 Governing Equations for Flat Planet Model

It is interesting to know that by a proper change of variables
we can deduce the dimensionless equations for the flat planet case
from the general equations of planar flight in the preceding chapter,
At low speed and low altitude, itis more convenient to use the

following dimensionless variables

_2mB I AT
W_pSCf - u—g/{3 » ¥ =BY (5,1)

where w is the dimensionless wing loading which will replace the

altitude, u is the new dimensionless kinetic energy to represent the

18
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speed, and y is the dimensionless linear downrange. The relation-
ships between the two sets of dimensionless variables (Z, v, 0) in
Egs. (2.7) (where s has been replaced by 6 in planar flight case) and

(w, u, y) in Eqs. (5.1) are

k u v
Z=; , v=§z_,_9=—z (5.2)

o

2

Since the value of k® is much larger than u, e.g., for the earth's
atmosphere k* ~ 900 and u is of the order of unity at low speed, we

have
k? >>u (5.3)

This is the flat planet condition, Upon substituting Eqs. (5.2) into

Egs. (4.2) and using Eq. (5.3), we have

= _ v
dy w tan

2
du_  _U3A) 5 pany (5. 4)

dy T E*wcosy .

FARE S |
u

dy wcosY

These are the state equations for flat planet model. We will obtain
identical equations by stafﬁng out from the classical equations for
flight over a flat planet and using Egs. (5.1) in them. It is seen that,
although an exponential atmosphere is still used for this case, the
characterisﬁc parameter k? of the atmosphere is removed from the
equ.a;tions° Hence, the flight behavior is.independent of any particular

atmosphere,
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Again, we can use Egs. (5.4) to form the Hamiltonian and
derive the optimum equations, bas has been done in Chapter 3, 1Itis
more elegant and informative to use the condition of a canonical trans-
formation as a handy tool to effect the transfbrmation from the old to
the new. variables [5,6]. This, coupled with the condition of Egq. (5.3),
will lead directly to the equations for the optimal cont’rol of the flat
planet case.

For a transformation from the variables (Z, v, 0) with
Hamiltonian H to t‘he new variables (w, u, y) with the Hamiltonian c%
to be canonical, we have the necessary and sufficient condition that

the quantity

(p,dZ + p_dv - Hd6) - (pwdw+pudu-g7fdy) =dU  (5.5)

be an exact differential, In particular, for dU = 0, and using Egs.

(5.2), we have

H=rH

- (5.6)

P, remains unchanged. By using Egs. (5.2) and (5. 6) and the con-

Y

dition (5.3) in the Hamiltonian integral (4.8), we get the Hamiltonian

integral for the flat planet case

1-)\2 2\ 2 C,
Iz - - = 5.7
E"wcosY +E*u (G u)tan‘{ up, ( )

where again C; = - is a constant of integration with C; = 0 for the
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free range case, The variable G in Eq. (5.7) is the analogue of the

variable F in Eq. (4.8), and is defined as

G - —X ’ (5.8)

Similarly, performing the same transformation and using the same

condition on the first and third equations of Eqs. (4.7), we have

dG = __(1-2\3 2G
s . + Y
dy E*wcosY E¥*u O+ E"tan¥)

(5.9)
d.  (1-A%tany 2\ E* 2
-— = + == -— - -
dy 2w cosY E%u (& + E7tan¥) 2 cos?yY (G u>

Again, this is a two-parameter problem in general., It will be
reduced to a one-parameter problem when Ve is free and C; = 0. The

Hamiltonian integral for this special case is

1-)\2 2\ 2
- ) = 5.10
E*wcosY +E*u <G u)tan\( 0 ( )



CHAPTER 6

OPTIMAL TRAJECTORIES FOR FLAT EARTH

In this chapter, two categories of optimum trajectories are
computed numerically using the equations derived in the preceding
chapter for a flat planet model. The first category of optimum tra-
jectories is for the pull-up maneuver, We either maximize the final
speed with a prescribed final altitude or vice versa, The final flight
path angle can be either prescribed or free. We consider both cases
of unconstrained N\ and constrained A\, The second category is for the
glide trajectory which maximizes the finé.l range with prescribed final
altitude, final speed, and/or final flight path angle. Since the equations
used are independent of the planet and its atmosphere, so are the
results, But to have some idea about the physical quantities of the
flight, we use the flat earth model and its atmosphere as an example
to get di@ensional quantities from the dimensionless results, In fhe
last section of this chapter, the linearized singular control technique -
is introduced and tested., It.is proved to be useful in the saving of the

computational work,

22
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6.1 Maximum Final Speed or Maximum Final Altitude
In this case, it is proposed to find the optimum lift control to

‘bring the vehicle from the initial condition
y=vy.=0, w=w, , u=u, , Y =Y. (6.1)
to the condition at the final instant y £ such that either

w=w., u=u.= maximum (6,2)

= w,.= maximum (6.3)

or, ' u £

I
fo]

o—n
&

We call this the pull-up type maneuver, A sketch of this type of
trajectory is presented in Figure 2, The condition of Eq. (6.2) is to

maximize the final speed with a prescribed final altitude, while the

Figure 2, Geometry of a Pull-Up Maneuver
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condiﬁon of Eq. (6.3) is to maximize the final altitude with a pre-
scribed final speed, They areequiva.lgnt, and it will be shown that
their solutions are obtained through a single formulation, We shall
assume that the final range is free, thus C; = 0, and thus we can use
Eq. (5.10). Itis a one-parameter problem, -

‘As has been explained before, to avoid the difficulties in using
Eq.(5.10) to solve for either X or G, we shall integrate both of the Egs,
(5.9) along wii:h the state equations, Eqgs. (5.4). For the five initial
values required, since the initial state (Wi, u., Yi) is given, we need
only the two initial values \; and Gi to start the integration. We set
)‘i to be the only parameter of this problem, and obtain Gi from Eq.
(5.10)., This can be done except when Y; = 0, The case with Yi =0
will be discﬁssed later in this section,

For the numerical computation, we shall use the initial state

=) (6.4)

(Wi‘, u, Yi) = (.5, .5, -
Although a specific set of values has been used, it is found that the
optimum lift control has a generaltypical behavior, For the maxi-
mum lift-to-drag ratio E¥, we shall use E* = 10 which is typical for
a fighter aircraft, and E* = 4 5 which is somewhat higher than the
value of a shuttle vehicle at low .spged. To maximize the final speed -
with a prescribed final altitude, we start the integration with a

guessed )‘i’ and stopitatw =w If the final flight path angle Y is

fo

prescribed, this value is used to adjust A until the condition is met,
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The resulting trajectory is the optimal for maximizing ug with the

prescribed w; and Y, satisfied, If Y_is free, then by the transvers-

f f

ality condition, Py = 0. From the first equation of Eqs. (3.5), after
f
being transformed to the form for the flat planet case, we have at the

final instant
E*p
Y¢
)\f = _Zu =0 (6- 5)
fpuf

This condition is used to adjust )\i for the free Y  case. The resultis

f
the overall best since the final flight path angle is also optimized,

A similar procedure is used to find the optimum trajectory for
the case of maximum final altitude with a prescribed final speed.

Since the problem has one arbitrary parameter, namely the
initial value )\i’ the family of optimum érajectories is generated by
simply integrating the Egqs. (5.4) and (5. 9) for different values of )xi
until )‘f = 0, The results for E = 10 and 4,5 are presented in Figure
3, which is plotted in the ratio W/Wi versus the ratio V/ Vi‘ The
solid lines are the different optimum trajectories leading to the
terminal boundary represented by the dashed line, Frém the defini-

tion of w in Eq. (5.1), if an exponential atmosphere is used, the

actual altitude change is simply

1]

_ 1 i (6. 6)
Ah =By - b =3 log<w->

i
For any prescribed change in altitude, we can evaluate the corre-

sponding minimum speed reduction along the dashed line, Conversely,
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we can evaluate the maximum altitude gain if Wf/wi > 1, or the
minimum altitude loss if wf/vvi <1, for any prescribed speed
reduction,

Although the figure is plotted for a specific initial state given
in Eq. (6.4), the use of dimensionless variables allows a general
discussion of the influence of different physical characteristics of the
vehicle on its performance., For a numerical example, with u = 5
and taking g = 9.81 m/sec?, 1/ = 7162 m, the initial speed is 187,43
m/sec or 674, 7 km/hr, Assume a prescribed reduction in the speed,
say Vf/ vV, =, 7. Then flying optimally, the maximum final altitude
is identified in Figure 3 along the dashed line of E® = 10 to be
wf/vvi = 1,07, From Eq, (6.6) this represents an altitude gain of

484,57 meters, The initial altitude with Wi =, 5is

) je et

which is a function of the wing loading r'n/SCl’:k. For a higher wing load-
ing, the same gain in the altitude can only be achieved at a lower alti-
tude. In other words, small wing loading favors the pull-up maneuver,
Figure 4 presents the variation of the normalized lift coefficient
X as a function of the flight path angle Y for several optimal trajec-
tories, ‘Higher valﬁes of )\i correspond to smaller speed reductions,

It is interesting to notice that when Y = 0, that is, when the vehicle is

at the lowest point (or bottom) of the trajectory, the \ for different
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trajectories with the same E* have nearly the same value Ay From

the Hamiltonian integral Eq, (5,10) with Y= 0, we have

2\,

u
<-"—">b TAE -1 (6.8)

On the other hand, from the definition of u and w in Eqgs. (5,1), we

2\ /SC*
("ZV )(»;) (6. 9)

Therefore, if 7\b is nearly the same for all trajectories, the corre-

have

sponding dynamic pressure (3 p V2). is nearly the same, which in turn

b
means that the indicated speed at the lowest point is nearly the same,

Furthermore, at the lowest point, the normal acceleration as felt by

the pilot is the opposite of the acceleration due to the lift force, which

2
ay -be
<-—g— = (%) Ay = ~Z.1 (6.10)
b b b

Thus it is also nearly the same for all trajectories regardless of the

in terms of )\b is

final condition achieved,

It is possible to obtain an approximate analytical expression
for }\b by considering a particular trajectory in Figure 4 which shows
a near constant value of A from Y = Yi to Y = 0, From the second

equation of Eqs, (5.9), since d\/dy ~0 at Y = 0, we have

2
_4)\b
b~ E*¥

E¥* uG - 2) (6.11)

Secondly, from the Hamiltonian integral Eq. (5.10) at the initial
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instant,

1o ui (1 = )\iz)
E* (uG-2).tanyY, = ———— + 2\, (6,12)
1 i Wi cos Yi 1

It is confirmed by the numerical results that the product uG also

varies slowly, Thus

)\iu)\.b , (uC}—Z)ie'_(uG-Z)b , (6.13)

Combining Eqs, (6,11), (6,12), and (6.13) gives the approximate

equation for evaluating )\b

| u 4 l 2 u
- —_— . - =1 = 4
( )i ¥ sin Yl b 2)\] cos Yi ( )1 =0 (6, 14)

. The values of hb obtained from this equation is in excellent agreement

with the numerical results, as shown in Table 1,

Table 1, Comparison of Approximate A\, and Actual A

(u/w), variable, Y, = - 1/E*

(u/vv)i .6 .8 1.0 1.2 1.4

E*=10| Approx. A\p |3.83312.972|2.491 | 2.188 ;1,982

Actual A [3.825|2.9642.487 |2.186 [1.981

(u/w)i. .6 .8 1.0 1.2 1.4

E*=4.5| Approx. \y, - [3.598 | 2.861 |2.434 | 2.159
Actual 1\ - ]3.635]2.879 |2.456 | 2.172
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To assess the influence of the initial speed,  we use the same
values wi = 5 and Yi = -I/E*, and generate several families of opti- .
mum trajectories using u = . 3, .4, . 5,. .6, and .7. The solutions,
that is, the terminal boundaries of different families, are presented
in Figure 5. Itis obvious that higiuer altitude gain is obtained with

higher initial speed.

w/w,
i
1.2~
w. = .5
i
ui=o3l-4! 5,.6,.7
S 5
i Yi--Ezk
u,.=.7
i
E* =10
=7 .6 —— E¥*=4,5
- '
\.\ N
1.0 e e ——
0 ! .5 .6 .7

Figure 5. Influence of the Initial Speed on Optimum Solution
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Finally, using the same values W, = 5 and u = 5, we vary.
the s to analyze its effect on performance. The solutions are pre-
sented in Figure 6, Obviously, the performance improves as Yi
increases and becomes positive. One interesting observation is that
when Y; = 0, th;t is when the maneuver starts horizontally, A, can be

solved from Eq, (5.10),

N =(%) +4f 1 +(%)Z (6.15)
1

Figure 6. Influence of the Initial Flight Path Angle
on Optimum Solution
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Thus it is solely a function of the initial dynamic pressure (u/vv)i

(or the initial indicated speed), and has the same value for all tra-
jectories, | In the example here its value is 2,4142, This also means
that \; can no longer be a parameter in this case. To generate the
family of optimum trajectories, we have to use either Gi or (d)\/dy)i

as a parameter,

6.2 Pull-Up Maneuver with Bounded \

In the preceding section, to display the behavior of the lift
coefficient along an optimum trajectory, we put no restriction on its
upper limit. This is of no problem for vehicles with high maximum lift-
to-drag ratio since the optimum \ is within a reasonable limit, But
for vehicles with low maximum lift-to-drag ratio, as in the case of
the reentry vehicle, the optimum \ may be unacceptable since it can

exceed the stalling lift coefficient N

ax

To discuss the behavior of the optimum trajectpry in the case
of bounded \, we refer to Figure 7 which plots different optimum tra-
jectories in the (w,y) space for E¥ = 10, Trajectories for higher
final altitude (lower final speed) are started with lower )\i' The vari-
ation of X has been presented in Figure 4., Let us assume that the
upper bound of Ais N . = 2, 75, Thén from Figure 4, all trajecto-
ries with )\i < 2,75 are pure variable \ trajectories since the condition
X=X is never reached. On the other hand, to generate fhe '

max

remaining optimum trajectories, we must start with A\ = A < for a

ma
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Figure 7, Optimum Trajectories for Pull-Up Maneuver

certain distance and then switch to variable A\, The integration

starts with the state equations only using X = \ then at.a certain

max’
point called the switching point with the state (wg, ug, Y ), we use
the variational equations, that is the state equations and the .equations
for X and G, as before and continue the integration until )‘f =0, We
notice that in this example )\max >Ny the initial derivative of A\
(d)\/dy);1 with A, = N ax 8 negative. To generate the family of opti-
mum trajectories, we can switch at any point where d\/dy is negative,

But to solve a particular problem with a prescribed w; or U, the

switching point has to be found such that the final condition w = W, OT

u = ufs is satisfied.
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Next, we consider the same case of Figure 4 with E* = 10,

but now we have xmax = 2,0, Then all trajectories must start with

A=\ Since )\max <\, in this example, d\/dy is positive

max"® b

initially. The constant \ = N ax Subarc must continue for a certain

distanc'e until d\/dy < 0, which occurs after passage through the
lowest point in this example. Thus all the switches occur along the
ascending arc, with the constant X\ subarc longer for higher altitude
gain (smaller final speed) trajectory,

To give an explicit example, we solve the problem for the

following initial and end conditions,

w.=.,5, u=.5, Yi=-1/E’_" with E¥ = 10;

(6.16)

v./V.=.7, W, = maximum , Y. = free
f' i f f

The physical trajectories are plotted in Figure 8, For the trajectory
without lift constraint, it is found that A= 2.628314 leading to a

final value W = 0.53457 corresponding to a gain in altitude of hf - hi

= 478,81 meters, If the constraint A =2.55 >\, is enforced,
max b

the trajectory starts with \ = )\max until W= 49935, and switches
to variable A\. The switch occurs during the descending phase. The

final altitude is w, = 0, 53450 and .corresponding to a gain in altitude

f
of hf - hi = 477,87 meters, On the other hand, with the constraint

Y =2,0 <\

, the switch occurs at w_ = ,50877, at a point along
max b s _

the ascending arc, We obtain We = . 53402 which corresponds to a

gain in altitude of h;f - hi = 471,44 meters, The variation of the
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normalized lift coefficient N\ for these three trajectories is also

presented in Figure 8,

6.3 Maximum Range

In this case, it is proposed to find the optimum lift control A

to glide the vehicle from the initial condition until the final condition
Y=Y (6.17)

such that the final range y; is maximized. Since y;is not free,

C; # 0, and the Hamiltonian integral Eq, (5.7) is inoperative in our
formulation, We still have the same differential system, that is,
Eqgs. (5. 4) and (5.9), the difference here is that we have two arbi-
trary parameters )\i and Gi' The differential system is integrated
with a set of guessed values )\i and Gi until the prescribed final
altitude w = w_is reached, The other two prescribed final values ue

f

and Y

g are used to adjust the values of )\,1 and Gi° If the final angle is

free, the condition on Yf is replaced by the transversality condition

The advantage of using the variables A and G to replace the "
.adjoint variables is that their numerical values are nearly constant,
This is because in glide for maximum range, both Y and u vary
slowly so that dY/dy ~ 0 and du/dy ~ 0, and we have

_wcosY
u

_u(l+)?)
-tany¥ = u(d+h

T 2E*wcosY

(6.18)
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Hence
14+2\2
2E*\

(6.19)

- tan¥ =

In this so-called steady state approximation, the range is maximized
by selecting the lift coefficient X to minimize the glide angle - Y,
This leads to the selection A = 1, that is, to glide at maximum lift-

to-drag ratio. Then we have the minimum glide angle

- tany =E§; ‘ (6.20)

Of course, this solution is only approximate, The real optimum
solution is obtained by a lift modulation, Nevertheless, the steady
state solution provides an educated guess for the behavior of A and G,
First, using A = 1 and Eq, ‘(6. 20) in the first equation of Egs. (5.9),
we deduce that dG/dy ~ 0. This means that G is nearly constant
during the glide, Furthermore, using X = 1 and Eq. (6.20) in the
second equation of Eqs. (5.9) and noticing that d\/dy ~ 0, we have
G ~ 4 since u =~ u, =, 5. In summary, the range of values for )‘i is
close to 1 and the range of values for Gi is close to 4. In other
words, the optimum trajectories are very sensitive to the initial
va;lues N and Gi’ especially when E¥is large,

The results aré presented in Figures 9, 10, and 11 for the
case of fighter aircraft with E* = 10, Each figure presents several
optimum trajectories with different final altitude. To restrict the
plot to a one-parameter family of trajectories, we impose the

condition ug = wg at the final instant. For each trajectory, thatis,



39
for each prescribed final altitude wy, ‘the corresponding initial value
of the normalized lift coefficient )\i is also labelled in the figures,
For comparison, in each figure we plot in a dashed line the steady
state trajectory, that is, the trajectory generated by using A = 1,

Figure 9 gives the variation of N\ as a function of y for
different altitude drops. It is seen that, for large altitude drop,
optimum glide is effected at near maximum lift-to-drag ratio, i.e.,
A =~ 1, except for the initial phase and the final phase. Also, we
assume that Yf is free, thus )\f =0,

Figure 10 gives the variation of -Y as a function of y. For
large altitude drop, it is steadily increasing at a very slow rate
except for the initial and the final phases, Hence, as an approxima-
tion, along this portion of the optimum trajectory Y is neérly constaxxﬁ.

Figure 11 gives the variation of the dimensioniess dynamic
pressure m = u/w, For large altitude drop, it is nearly constant and
slightly less than mity during the main portion of the glide. To find

this near constant value, we take A\ = 1 in vKs. (6,18) and have

E*

n=s T—_—
, V1 + E¥

(6.21)

For E = 10, this value is M = . 99504 and is slightly less than the
optimum value of 1 which is near n =, 9965,
Cdncerning the actual performance, namely the maximized

range, the X\ = 1 trajectory gives a good approximation for large
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altitude drop., Its range is within 1% of the optimum range. A better
approximation is to use constant dynamic pressure glide. This also
has the advantage of flying with constant indicated speed. The value
of nis given approximately by Eq. (6. 2.1), and is purely a function of
the maximum lift-to-drag ratio E*,

In contrast with long range glide, the optimum glide for small
altitude drop is not close to the glide with X\ = 1, This is shown in
f‘igure 12 where again the dashed line represents the \ = 1 trajectory.
The short range problem is closely related to the problem of a pull-up

maneuver with prescribed range. In this respect, we have the final

: =.5 . =.5 =-1/E* E*=10
1.5 w, u Yl /

.2 .4 .6 .8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2.4 2.6

Figure 12, Variation of the Optimum Lift Coefficient for
Short Range (Small Altitude Drop) Glide
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condition either

w Y

g0 Ygr Vg T prescribed, u,. = maximum (6.22)

f

or

u Y

g0 Vgr Vg S prescribed, w_. = maximum (6.23)

f
We terminate the integration at y = Vs and use the other two pre-

scribed final values to find the two initial values )\i and Gi' If Yf is

free, the final condition in Y is replaced by the condition \_ = 0,

f

6.4 Linearized Singul_ar Lift Control for Maximum Range

An inspection of the data presented in Fiéure 9 clearly shows
the difficulty encountered in the numerical computation. More
explicitly, for large altitude drop, the initial value >‘i has to be found
with great accuracy for the final condition to be identically satisfied.
It is seen that, except for the initial maneuver and the final maneuver,
the lift control nearly follosz the same line. This line can be con-
sidered as a singular arc familiar to the problem in which the control
is linear, To reduce the computation work, if this singular arc can
be found, one can follow the line until near the end and then compute
separately the last arc where again, the control undergoes drastic
change,

In general, let us consider an optimum control problem with
the Hamiltonian

H=H(p, X, u,t) (6.24)
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where u is a scalar control subject to the constraint

a . <u<u (6.25)

To maximize the Hamiltonian, we either useu=u , oru=u .
min max

or an interior variable u such that

— =0 (6.26)

= uF (P, X, t) (6.27)

This control is of the Euler-Lagrange type and u* can be expressed
explicitly in terms of the state vector x and possibly the time t and
some constants of integration provided thaf the adjoint vector p can be
expressed in terms of the same variables. This, in turn, requires
the analytical intégration of the equations for the adjoint vector p.
But,unfortunately, for most realistic cases it is not possible,

Now, let us assume that we know an approximate law for the

optimum control, say

u™ 'zuo(§, t) (6.28)
Then by Taylor's series, we can expand the maximized Hamiltonian

"near the value u = u, to have

: —— 0
HY = H (5, %, uo, t) + (5o (@¥-u) + -+ (6.29)

If ug is near the optimum value, the difference ¢ = u¥ - uy is small
and, by retaining only the first order we have the approximate H*

which is now linear in u, Again, for this linearized problem, the
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optimum solution is either u=u_. oru=u or a variable u when
min max
the coefficient of the linear control, called the switching function,

vanishes identically., That is

(gg-)o -0 | (6. 30)

Here, since we have assumed that u is not on the boundary, it is of
the variable type. We have Eq. (6.30) which provides a reiation
between the state variables and the adjoint variables. This relation
is exact in the linearized problem, but is approximate in the original
non-linear problem. The accuracy of this approximation is of the
order of ¢, In the linearized problem, the Eq. (6.30) is valid as long
as the control is of the interior type. Hence, we can take its deriva-
tive with respect to the independent variable t, to generate another
relation between x and 5 It is known that we can take the derivative
successively until.the linear control appears for the first time, with
an even derivative, The linear control can then be deduced explicitly,
Then in the case where it can be expressed explicitly in terms of the
~state variables by using the additional relations obtained, we have an
approximate but explicit law for the optimum control,

As an exampie for our present case here, from the steady
state and the numerical analyses we have found a good approxi.rnation
for the lift control N\, Itis Ay = 1. We shall call this the zeroth order
solution. By applying the linearizing technique on this I:;roblern, we

can obtain the approximate law for the control
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wcos Y
u

(6.31)

St
We call this the first order solution. Then if we apply the linearizing
technique once again, based on the first order solution which is a

better approximation than the zeroth order, we finally have

wcos Y A

)\Z = u B (6-32)
where
A=E*¥y?[6tan?y - 4u(l-tan®yY) + 2ultan®y + (1+u)C]
-2E*u(3+u)(2+C) wsinY + 2C (2+ C) w? cos?Y
(6.33)
B=E®¥u [2(1+u)tan’Y - 4u-Cl-2E*u(4+C)wsinY
+ 8w?cos?Y
with
2
u
c=1- Toosty | (6. 34)

Eq. (6.32) gives the explicit second order solution for the lift control.
The details of the derivation of \; and A, will be given in Appendix B,
For the first order solution, from the third equation of (5. 4) we see
that using the near optimum law (6, 31), the flight path angle is
maintained constant, a fact which can be dbserved in Figure 10. It
is an improved approximation as long as the zeroth order solution

No = 1 is accurate., Then for the second order solution (6.32), we
have tested it numerically, and it gives excellent results., Using the
initial values of the No, 2 trajectory in Figures 9, 10, and 11, we

start the integration optimally, Then at y = 2.4 it is switched to the
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explicit control law (6.32). The integration keeps on going, and the
trajectory is generated by using this approximate control law,., As
compared with the nearly linear portion of the optimum trajectory
No. 4 in Figures 9, 10, and 11, the two lift coefficients, approximate
and optimum, agree to four significant digits, and the two trajec-

tories generated are identical,



CHAPTER 7

OPTIMAL TRAJECTORIES FOR SPHERICAL EARTH

As in the case of the flat earth, we shall consider two types
of optimum maneuvers, The first type is the pull-up maneuver,
and the second one is of the gliding type. The optimum trajectory
can be initiated from the top of the atmosphere, In some cases the
pull-up maneuver gives the skip trajectory. Since the state equations
we have derived for the spherical planet case, the Eqgs. (4.2), are
exact, they are also valid for the Keplerian motion of the vehicle
after skipping out of the planetary atmosphere. In the other cases,
the vehicle may reenter the planetary atmosphevre after a coasting
flight to initiate a new skip trajectory until effective entry at low
speed., We shall consider both cases., The computation is done with
the value k% = 900 for the earth atmosphere. For the maximum lift-
to-drag ratio, a reasonable value E¥ = 3 is considered since the flight
is effected at high speed. Again, the maximum lift-to-drag ratio
trajectofy, that is,the \ = 1 trajectory, is used for comparison in

the gliding type optirnum trajectory,

49
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7.1 Pull-Up Maneuver at Moderate Altitude

This is the same problem as discussed in Section 6,1, The
differential system consists of the Egs, (4.2) and the Eqgs. (4.7).
The initial condition is

8=0, Z=2Z., v=v., Y=Y, (7.1)
It is proposed to find the optimum lift control to bring the vehicle

from thisA initial condition to the final instant 68 _ such that either

f
Z = Zf, vEve= maximum (7.2)
or
V= Ve Z = Zf=minimurn (7.3)

The final range 6_.is assumed to be free and hence C; = 0. Since

f
' the second equation of Eqgs. (4.7) can be deleted, the only arbitrary

parameter is 7\1 and Fi can be obtained from Eq. (4.9). If the final

flight path angle Y. is prescribed, it is used to find the required

f

~ initial value )\].'-, If Yf is free, we have the transversality condition

The problem considered here involves relatively low speed

and altitude, and we shall take the initial values as

1
Zi='.5’ Vi':olso Yi"" ZE* <7°4)

At high altitude where Zi ~ 0, and vy is of the order of orbital speed,
v, = 1, this type of maneuver leads the vehicle to skip out of the

atniosphere. This case will be analyzed in detail later,
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The problem is solved by the same .rout'me as discussed in
the case of the flat earth, The results are summarized in Figure 13,
It is plotted as B(h-hy) versus V/V,, Wheré h is the actual altitude
and V is the actual speed. By the definition of Eqs. (2.7) for Z, if

an exponential atmosphere is used, the actual altitude change is

Ah =h h--l-l —Z—l- (7.5)
h = - b =3 og Zf .

f

4~ ph-h)

Figure 13, Solution for the Optimum Pull-Up Maneuver
at Low Speed over a Spherical Earth
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Again, the different solid lines are the optimum trajectories leading
to the final boundary plotted in dashed line.

The variation of the normalized lift coefficient A as a function
of the flight path angle Y for different trajectories is presented in
Figure 14, The behavior is the same as in the flat earth case, but
the values of A at the lowest point, Y = 0, are not so nearly the same,.
The difference is ;110re due to the fact that the value of the maximum
lift-to-drag raﬁo E* used is relatively low rather than due to the
additional centrifugal acceleration term which is included in the

spherical planet equations,

7.2 Keplerian Motion Following a Skip Maneuver

In a skip trajectory, the vehicle enters the atmosphere at

very high altitude with a speed at orbital magnitude and uses its

Figure 14, Variation of the Optimum Lift Coefficient for Pull-Up
Maneuver at Low Speed over a Spherical Earth
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lifting capability to negotiate a turn, It is then ejected from thé
atmosphere, This maneuver is depi;:ted in Figure 15,

The skip maneuver is an important maneuver. It can be used to
achieve maximum range or to assist a climb to orbital altitude with
maximum residual speed, hence minimizing the required character-

istic velocity for orbit insertion, In the three-dimensional maneuver,

Figure 15, .Geometry of a Skip Trajectory
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it can be used to change the orbital plane. The first order solution
for constant lift-to-drag ratio with. the centrifugal 'and gravity accel-
erations neglected has been obtained in the classical literature [17.
An accurate second order solution for constant lift-to-drag r;tio
skip trajectory has also been obtained [7]., In this chapter, we shall
analyze the optimum solution with lift modulation using the exact
equations,

The equations we have derived are valid for flight in the
vacuum by taking the limif Z =+ 0. But to initiate atmospheric flight
we must start with some nonzero initial value Zi" We shall adopt
the convention that afmospheric entry is initiated when the accelera-
tion due to atmospheric lift is equal to a certain small fraction of the
gravity acceleration, From the definitions of Z and v in (2.7), the
, 18

dimensionless acceleration due to a lift force with CL = CI:"

o jo

=4/Br Zv (7. 6)

For the earth atmosphere, ﬁ'r = 906. Taking afg=.015, i.e., 1.5%,
with an initial speed equal to the orbital speed, v = 1, we have
Zs = 0005, We shall use this value as the value of Z at the to>p of
the sensible atmosphere, For higher a.lf:ii:ude with Z < Z,, the flight
is considered as in the vacuum and Keplerian motion applies,

As shown in Figure 15, the initial point (ri, Vi’ Yi) is con-

sidered as the entry poiht, and the final point (rf = To, Vf, Yf) is
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considered as the exit point. Between the two points is the
atmospheric svkip trajectory, while beyond the exit point the fli'ght
is in the vacuum. Once in the vacuum, the vehicle climbs to the
highest point (ra, Va’ Ya = 0), the apogee of the Keplerian orbit.
Because of the obvious symmetry, the range angle § between the
exit point and the apogee is half of the range angle for the coasting
portion of the trajectory in vacuum, We shall be concerned with
the maximizing of either the apogee distance r , or the apogee speed
V,,or the coasting range angle 2£. Hence, it is necessary to express
these elements in terms of the variables at the exit point where
atmospheric flight terminates, These relations can eaéily be
obtained by using the classical Keplerian equations, However, we
shall derive the pertinent equations from the general equations (4, 2).
With Z -~ 0,. and using the equation for the variation of the
radial distance to replace the first equation of (4, 2) since it is

inoperative, we have

dr :
a6 r tanyY

dv

riai (2-v) tany (7. 7)

From the second and third equations of (7.7),

dv _v2-v) 0y (7.8)
dyY l-v



56
Upon integrating this equation, we have
v(2-v)cos?Y = (1 -¢&?) (7.9)

where the right hand side represents a constant of integration,

Next, from the first and second equations of (7, 7),

dr -r A
dv = 2-v (7. 10)
Its integration gives
r
S = 2-v (7.11)

where a is another constant of integration. Returning to the defini-
tionofv, v=r V?/p , it is easily seen that Eq. (7.11) expresses the
conservation of energy and a is the semimajor axis of the Keplerian
orbit, Furthermore, combining the two integrals (7.9) and (7.11)

and again using the definition of v, we have

r?V2coes?Y = up (7.12)
where
p=af(l-e? (7. 13)
Equation (7.12) expresses the conservation of angular momentum,
and it is now clear that e is the eccentricity of the orbit while p is

the semilatus rectum. Now, consider the derivative

a d '
d—e(f)z--r%d—g-z-ftan\{ (7.14)

where we have used the first equation of (7.7). By taking the
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derivative again and simplifying, we have

FO-@dm] o

Using the definition of v and the integral (7. 12) in Eq. (7.15), we

finally have the differential equation for the orbit

4 (Ry, (B).
de? <r>+<r>—1 (7. 16)
‘The general solution of this equation is
f—=1+Acose'+Bsine (717

where A and B are constants of integration., Starting the angular
variable at the perigee, 6 = 0, dr/d6 =0, r = a(l -e), and we obtain

the polar equation of the orbit

§=1+ecose (7.18)

Hence, we have derived the classical equations for Keplerian motion
from our general equations (4.2). With these equations, we can
deduce the performance indices for optimization in the following

sections,

7.3 Skip Trajectory for Maximum Final Speed

Again, we assume that Bf is free. Thus C; = 0, and we can

use Eq. (4.9). Itis a one-parameter problem. Referring to Figure

15, the vehicle enters the atmosphere at the initial point with the
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initial condition
(Zi 'V Yi) = (.0005, 1,0, variable) . (7.19)

It is proposed to find the optimum lift modulation such that at the
exit point

Z,= Zi R Yf = free, Ve = maximum (7, 20)

Since Y, is free, we again have A, = 0, We integrate the Egs. (4.2)

f f

and the first and third equations of (4, 7), from the initial state, with
a guessed )‘i and a Fi sqlved from Eq. (4.9). Then we use the con-

dition A\, = 0 to find the correct value of )\i .

f
The variation of the optimum lift coefficient as a function of
the speed ratio V/Vi is presented in Figure 16 for several initial
flight path angles Y., It is clear that less negative Yi gives higher
final speed. For all the trajectories computed, the. optimum lift
coefficient slightly increases at the beginning and then décreas es

= 0.

continuously to the final value ) £

7.4 Skip Trajectory for Maximum Apogee Altitude

In this problem, it is proposed tq use optimum lift modulation
to bring the vehicle to the exit point such that subsequent climb
in the vacuum leads to a maximum height. Since 6;is free, C, = 0,
and therefore the only parameter is )\i . From Eq. (7.11) we have

T 2-v
a a
r

= (7.21) |

2-v

f f
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i

. 0005

L.or = 1.0

1,4} Yy variable

.88 .90 .92 .94

Figure 16, Variation of the Optimum \ as a Function of the
Speed Ratio for Skip Trajectories with Maximum
Final Speed ‘

As re=To, maximizing r, is equivalent to maximizing ra’/rf or, to

minimizing -r_/r.. On the other hand, from Eq. (7.9),
g ~T,/T¢ q

_ _ 2
v, (Z-V'a) = vf(Z v. cos“y (7.22)

f) f

. Solving for v, from this equation and substituting into Eq. (7.21), we

have
ra
J=-—-=
r

f

— [1 +y1 - (Z—Vf)vfcos?‘Yf] (7.23)

f
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Since J is a function of v, and Yf, we have at the final time

f
9J aJ
P, = - P, =- (7.24)
Vf . Vf ! Yf Yf

Upon using the relation of Eq. (6.5), we have the following trans-
versality condition

E* (2 - vf)Z sinygcos Y

(7.25)

£ 2[1 - (Z-Vf)COSZYf+ Vl - (Z-Vf)VfCOSsz]

This condition is used to find the initial value }\i for the optimum
trajectory. Finally, the corresponding max (ra/rf) can be obtained
from Eq. (7.23),

This problem has been solved, and we have the following

results
Z. = ,0005 |, v.=1.0 , Y. = - 80
Z,=.0005 , ve=.377 Y£=43.36°

Tr
\. = - ,70225 , A= 2.04406 , max <—a—> = 1,12308
i f rf

In this flight program, the initial lift coefficient is negative., It
appears that the optimum trajectory starts with a plunge toward the
dense atmosphere with a slight increase in the speed, and then uses
the lift to rotate the velocity vector upward with a relatively high exit
angle, to achieve the absolute maximum apogee height, This
maneuver is purely an academic exercise, It incurs excessively

high acceleration, The value of Z at the bottom of the flight path is
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Zb = 4,7795. This represents a dip into the atmosphere with a
distance Ah = (1/B) log (Zb/zi) = 65, 641,5 meters; In practice, we

shall have the following problem.,

7.5 Skip Trajectory for Maximum Apogee Altitude with Prescribed
Apogee Speed

This is a more realistic formulation of the previous problem,
Specifically, we seek to maximize the apogee altitude while prescrib-

ing a residual apogee speed V..

Let
ra Va.z
R:;;' ’ va = |J./1‘£ (7.26)

Hence, we minimize J = 1/R with a prescribed Va.' From Egs.

(7.21) and (7.26), we have

1 —
-§=1+§v--§—v (7.27)
From this relation it is obvious that to minimize 1/R we simply

maximize the final speed v But this time, besides maximizing v

f° £’

the prescribed Va (or Va) must also be achieved. Since Va. =r, V;/%L

= RVa s by using this relation and Eq. (7.27) for 1/R in Eq. (7.22),

we have

v
—.—i——-‘_ 1= - 1. 2 =
Vfcossz (1 + 53 v, -2 Vf) 0 (7.28)

This is the final condition to be satisfied so that the prescribed Va

can be achieved. The procedure to solve this problem is the same
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as that in the preceding section, but here we use Eq. (7.28) to
search for the correct initial value )\i.

As this is a one-parameter problem, we can obtain the
tofa]ity of solutions simply by varying the parameter Ki. Then at the

end of the integration where Z_ = Zi’ Eq. (7.28) is used to solve for

f
Va and Eq. (7.27) for R, Figure 17 presents the solution for several
values of Yi . For each value of Yi there is an absolute maximum
apogee distance corresponding to the problem solved in the preceding
section, For any other prescribed ;a which is different from this
point, the maximized apogee distance is lower, The case of Va =0

corresponds to vertical ascent in a vacuum, and hence for a tra-

jectory leading to Yf =w/2.

7.6 Skip Trajectory for Maximum Apogee Speed with Prescribed
Apogee Altitude

This is a trajectory with practical importance., It is
proposed to use optimum lift modulation to bring the vehicle to the
exit point such that the subsequent ascent in the vacuum will lead
the vehicle to a prescribed apogee altitude r with a maximized
residual speed Va' Clearly, this leads to minimizing the character-
istic velocity AV for orbit insertion,

By eliminating Va between Eqs, (7.27) and (7.28) we have

2 2y -
R (Z-Vf)-2R+V£COS Yf—O (7.29)
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Figure 17. Maximum Apogee Distance for a Prescribed Apogee

Speed, or Maximum Apogee Speed
Apogee Distance

for a Prescribed
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For a prescribed T the’ratio R is specified, The procedure to
obtain the optimum solu{:ion is the same as in Section 7,4, ekcept
that in here Eq. (7.29) is used to adjust the initial value )\i ., For
the totality of the solutions, it isexactly the same as has been plotted
in Figure 17, But this time, the value ra/rf is prescribed while the
corresponding va.lﬁe Va is maximized. We notice that there exists a
range of ra'/rf that gives two trajectories both satisfying the neces-
sary condition for optimality, The optimum trajectory is the one

corresponding to higher value of ;’-a'

7.7 Skip Trajectory for Maximum Coasting Range

Again, we refer to Figure 15, For the initial condition we
are still using Eq. (7.19). .In this problem, it is proposed to find
the optimum lift control to negoﬁate a skip trajectory such that after
its exit from the.atmosphere, the vehicle coasts ballistically in the
vacuum to achieve a maximum coas'ting range 2§, We first solve

this problem by assuming that the final value 0_ at the exit point is

f
free, hence C; = 0. This is suggested by the fact that at orbital
speed with small value of Yi, the coasting range 2§ is significantly
larger and more sensitive to change than the atmospheric skip range

(6, - Oi). The next case to be addressed is the maximization of the

f
total range from the initial point, (9f - 91) + 2§,

From Figure 15, it is seen that § = 7w - Gf. Therefore, we

obtain from Eq. (7.18)
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cos ¢ =§<1 --p—). ' (7.30)

Ty

By writing the Eq. (7.9) at the exit point and solving for e, we have

e = \/1 - (2-vp) vfcoszYf (7.31)

Then by using Eq. (7.31) and the Eq. (7,11) at the exit point in the

relation (7,13), it gives

p= rfvfcosZYf (7.32)

Upon substituting Eqs. (7.31) and (7.32) into Eq., (7.30), it becomes

1 - VfCOSsz
cos § = > (7.33)
\/1 - (Z-Vf)VfCOS Yf

For the first case we maximize 2§, It is equivalent to minimizing
cos £ and thus J = cos £, Since J is a function of the two final

variables vf and Yf , we again have the relations (7, 24)., The trans-

versality condition is then

b3 2
E*{1 - Ve - tan Yf]

)\f = Ztaan (7.34)

This is the condition used to search for the exact value )\i. The

initial state used and the results obtained are

7. = .0005 , v.=1.0 y. = - 40
1 1 . 1

i

Zs

1]

,0005 , v, = .87475 , Y, = 6,02°
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N, = .2925
i

6.-6, =,17646
£ i

2¢ = 1,18958
max

To show the optimality character of this trajectory, we integrate the
state equations (4', 2) using a constant lift coefficient, X = constant,
The best constant X which gives the maximum coasting range is found

to be A = 1,024, and the results are

~ — — o
Zf-.OOOS, vf—,90876, Yf—3.58

6.-06, =.20633
£ i

2 émax =1.07743

It shows that using optimum lift modulation we have an improvement
of 10, 41% in the coasting range as compared to the best solution
obtained with a constant lift coefficient.

We now solve the second case, in which we maximize the
total range from the initial point to the end of the coasting flight,
That is, we maximize the following perfo_rmancg index

1 - VfCOSZYf
- ei) + 2cos™? : (7.35)
1 -

f F3
(2 - vf) vecos Yf

J = (0

This time, the final range is not free and hence C; # 0. There are

two parameters to be found, )\i and Fi" Actually C; is equal to pef,
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and from Eq. (7.35) we have, for a maximization problem,

8J
= =1 (7.36)

Thus C; = 1., Furthermore, we also have

a7 a7
Pv. =% Pv = Ay (7.37)
Vf avf Yf 2] f

Upon using the relations (7.37) in Eq. (6.5), it gives exactly the

same )‘f as given by Eq. (7.34). The_refore, Eq. (7.34) is also a

transversality condition for this case., We need one more transvers-
ality condition because this case has two parameters, It comes from
the Hamiltonian integral (4. 8) at the final time, With C;, = 1 and the

P, givenin Eq. (7.37), we finally have
O f

2
2l hy) +(1-V‘E)>\f +(1 *, F)tanv -0 (7.38)
E*cosz , E* 2 T Vst £° .

The problem is solved and this time it is found that

- = - o
Zf = ,0005 , i . 88101 , Yf =5,63

7\i =,57921 , Fi = 3,6873

Of - Gi = ,.18173

2¢ = 1,18692
The total range obtained is J = (Gf - Gi) + 2§ =1.36865, which is
slightly higher than the total range J = 1.36604 of the first case

where only the coasting range 2§ is maximized.
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For all the skip trajectories solved above, it has been
assumed that beyond the altitude Z = ., 0005, the flight is ina
vacuum, The corresponding altitude is given, through the atmos-

pheric density, by

« .
p_sc_l.;‘. r _ 0005 (7.39)
Zm ﬁ T e .

For most vehicle characteristics, the resulting altitude is generally
high enough such that beyond this altitude the subsequent trajectory
is practically Keplerian, For better accuracy, one can take a

smaller Z, The computational procedure remains unchanged.

7.8 Glide with Maximum Range

The maximum range obtained previously concerns the range
with one skip. We now generate the optimum control to maximize
the total range for a descent from an initial altitude Zi to a final
altitude Zf. The problem is first solved for the case of a relatively

low initial altitude, A reasonable set of initial values is

-1
(Zi, Vi’ Yi) - (05, 015’ - ZE*) (7040)

with again E® = 3, This can be considered as the gliding flight
f;)llc;wing a ballistic entry of a shuttle vehicle. The vehicle enters
the earth atmosphere at the reentry altitude 2 =~ 0, with a speed
v, = 1 and a certain reentry angle Ye‘ Then at the end of the

ballistic phase, the vehicle rotates to reduce the angle of attack,
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hence generating a lifting force and using lift modulation to glide to
a final altitude with a maximum range. The case of gliding from
the entry point will be analyzed in the last part of this section.

The numerical computation is carried out exactiy as in the
flat earth case., We integrate the state equations, Egs. (4.2), the
ﬁrst equation of (4.7) for F, and the third equation of (4.7) for \,
from the initial state (7,.40) and two guessed values Fi a‘nd A At a
prescribed final altitude the integration is terminated, and the other
and Y

two prescribed final values v are used for adjusting the Fi

f f

and )\i I A is not prescribed, then the condition on Yo is replaced
by the condition )‘f = 0. In order to generate a one-parameter family

of optimum trajectories, we impose the final condition

\“31' va =1 '(7,41)

Physically, this means that the final acceleration due to a lift force
with CL = Clik is equal to the gravity acceleration, For each pre-

scribed Zf , the corresponding v

£ is obtained from this condition.

Figure 18 presents the variation of the optimum lift
coefficient, It is seen that \ oscillates about the value of unity and
tends to this valt-J.e near the end of a long range glide which corre-
sponds to a large altitude drop. Figure 19 presents the variatioﬁ of
the flight path angle while the variations of the altitude and the speed

are depicted in Figure 20,
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For the case of glide starting from the entry point, a typical
initial condition is

(zi, Vi Yi) = (,0005, 1.0, -4°) (7.42)

The final condition to be satisfied is

£ Yf = free (7.43)

The variation of the altitude as a function of the range for the thirn'a.l
trajectory is plotted in Figure 21 as a solid line. The variation of
the flight path angle is plotted in Figure 22, Finally, Figure 23
presents the variations of the optimum lift control and the speed.
Again, the optimum lift control oscillates and tends to the lift control
for maximum lift-to-drag ratio, \ = 1.

In both cases above, the trajectory generated by using
maximum lift-to-drag ratio, N\ = 1, is plotted in the dashed line for
comparison, Bésides an improvement in the r'ange of about 2%, the
oscillation in altitude along the 6ptimum trajectory is less severe,
We can also see a more desirable behavior of the flight path angle
along the optimum fraje;tory. It also yiélds a2 more smooth variation

in the deceleration,.
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CHAPTER 8

THREE-DIMENSIONAL FLIGHT

Two elements are of interest in three-dimensional flight; one
is the maximum cross range, the other is the footprint. In this
chapter, we shall discuss the procedure to solve the absolute maxi-
mum cross range, We will see that it is a three-parameter problem,
Then by using the equilibrium glide condition as a simplifying device,
we shall compute the footprint of a gliding entry vehicle on the surface
of a plane‘;. A technique of coordinate rotation is used to make

the iteration much more effective,

8.1 Maximum Cross Range

It is proposed to find the lift and bank modulation to maximize

the final latitude ¢f while the final loﬁgitudinal range 6, is free, For

f

an initially circular orbit, if the position of departure is free, the

reachable domain will then be a zone between the latitudes "quax

and +¢ S & ) =w/2, the reachable domain is the entire
max max .
surface of the planet.

Since the final arc length s_is free, we have Cy, = 0 in Eq.

f

(3.6). The final condition in the state variables will be

7
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Z=Zf, V=Vf, Y=Yf=free, 9=9f=free,
_ (8.1)
Y = 4Jf = free, ¢ = ¢, = maximum
The Eqs. (3.7) at the final time then can be written as
pg = Cl =0
p¢f= - cos¢f(C251n9f- C3cosef)=0 (8. 2)
pq)f = C,cos Of + C3S1n9f =1
Solving for the constants of integration C, and Cs we obtain the
solutions for qu and p¢ ,
pHb = cos ¢ sin (6f -8)
(8.3)
pd) = cos (Gf - 8)
We also have, since Yf is free,
Qf=pr= 0 (8.4)
The Hamiltonian integral (3,11) becomes
..PtanY-N[ *kZ +_(2-V) tanY]- U-v)Q
E" cos Y v A
* p/ '
E"kZ > P > . -
+_-_4NcosY <Q +coszY +p¢51n¢—p¢cos¢tan¢—0 (8.5)

Thus for the specified final condition (8.1), the procedure to obtain -
the optimum solution is as follows. Starting from a certain initial

state, say
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- _40
(Zi’ Vi Yi’ Gi, ¢i, LIJi) = (,0005, 1,0, -4°, 0, 0, 0) (8.6)

with a given value of E*,' we integrate the state equations (2, 8) along
with the adjoint equations (3.9), using the control law (3.10) and
the Egs, (8,3) for pr and pd}° There are three parameters, namely,

the final longitudinal range 8 _ and two of the three initial values Pi’

f
Ni’ and Qi since one of them can be obtained from the Hamiltonian
integral (8,5), These parameters are to be selected such that when
the integration'is stopped at 6 = Gf, the two prescribed final values
Zf and 7 and one transversality'condition (8.4) are all saﬁsﬁed.
The resulting trajectory will be the optimum trajectory for maximum
cross range,

A simplification can be made by using the so-called equilib-

rium glide condition, assuming that the glide angle is small and

stays nearly constant, This is expressed as

ay
Y=0, =0 (8.7)

By substituting into the equation for ¥ in (2.8), we have

KZ = —

" Avcosgo (8.8)

This equation is used to evaluate the altitude Z. Thus we have the

following reduced set of state equations



80

dv.  1+\) (d-v)
ds ° ~ E*)cosc

d8 _ cosy
ds cos¢

(8.9)

l&

sin Y
¢ _ _(1_;_v_) tan o - cos Y tan ¢

The Hamiltonian of the reduced problem is

(L+2\3) (1-v) cos U .
Py E*\Ncosc Pg cos ¢ pd;

+p¢ [Q';Xl tano - cos¢tan¢] (8.10)

H= - siny

Then, it is clear that the optimum lift control is
N=11 (8.11)

that is the glide is effected at maximum lift-to-drag ratio. For the

bank control, we either have

el = @
max
or an interior bank control such that

E”‘pli

2vpV

(8.12)

sino =

We notice that the integrals (3,7) are still valid for this case, Hence,

with C; = 0, C, = 0, we can write the Hamiltonian integral of (8.10) in
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the form

2p,(l-v)
E*cos

+p¢sin¢+p¢ [(—I—-V—\%-tﬁl—g -»cos¢ tan¢>:|=0 (8.13)

Using the optimal law (8. 12) to eliminate P, and the Eqs, (8. 3) for

pr and pd), we have the explicit law for the bank angle
cosdsin(®, - 8
tano = (1-v) : i £ ) ‘
v cos (Gf-e)sinLlJ- cos ¥ sin ¢ sin (ef-e) (8.14)

The problem is thus reduced to a one-parameter problem in the

parameter 6 In this formulation the stopping condition is no longer

£
Zf but the final speed Ve
For numerical computation, we use the control law (8. 14) to

integra.i:e the full set of exact state equations (2. 8) with a guessed

£ This value is to be adjusted

value for the final longitudinal range 6
such that, at tﬁe final time when 6 = Gf, the prescribed final coﬁdition
vEveT . 001 is satisfied, The initial state used is (8, 6) except that
the initial speed is 0,99 instead of 1.0, The purpose of fhis change
is to give a defined o value at the initial instant. The maximum
value of the bank angle is selected to be 85°, Figure 24 presents
the maximum cross range solved by using the reduced control law
(8.14),as a function of the maximum lift-to-drag ratio E*, The
dashed lines represent the results of the gliding trajectory with A =1

and o = 45° where the bank angle is switched to 0° when the heading

angle ¥ reaches the limiting value 90°, The improvement in the
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Figure 24, The Longitudinal and Cross Ranges as Functions of E*

cross range is easily seen, We can also see that for vehicles with a
maximum lift-to-drag ratio E* greater than the value 3.5, the maxi-
mum cross range is larger than 90° and the reé.ch_able domain of the

vehicle is the whole surface of the earth if it has an initially circular
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orbit and the point of departure is not specified. For all the trajec-

tories, the final altitudes are about the same with Z_, ~ 30, which

f
corresponds to an altitude drop of about 50 miles from the initial

point. The final flight path angles vary with E¥ with larger E* giving

flatter flight path angles. For example, for E* = 1.5 the final flight

path angle is Yf -23.5° for both control laws Eq. (8.14) and ¢ = 45°

and 0°; for E

3.5, itis Yf = - 11.AO°. Figure 25 presents the
variation of the altitude and the speed of the trajectory generated by
the lift control \ = 1 and the bank control (8. 14) while Figure 26

presents the variation of the flight path angle and the bank angle, for

the maximum lift-to-drag ratio E¥*=1,5.

8.2 The Footprint

As has been mentioned before, if the reentry vehicle is
initially in a circular orbit and the position for leaving the orbit is
not prescribed, then the reachable domain on the surface of the earth
will be 2 zone between the latitude -q)ma,x and ¢max° The footprint of
a reentry vehicle is defined as the curve limiting the reachable
domain on the surface of the earfh if the reentry point is specified,
This problem is even more complicated since we have to find the
maximum cross range for each prescribed final longitudinal range
Gf, As the final longitudinal range is no longer free, Pg = C;y #0.

In Egs. (3.7), if we divide all the equations with C,, they become
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2,

o

22-& se+9—351n9 (8.15)
c, ¢C °° C, .
Py

g Cz Cs )

C, - sin¢ - coscb(c1 sin @ c, cos 6

Similarly, Eqs. (3.9) can be rewritten in the form
N ___E_*_[_Q_2+ 1 (&]}
*\C;/) " 4(N/Cy) L\C, cos? Y\C,
da [Ny _ 109 N ] ’
15 <C1> =-7 I_(C1> + 2 (C1> tan Y (8.16)
N [stinY +2-v]
Cl E* A\
E'kZsinY [ oy, 3 (P ]}
T 4 (N/Cy) C, cos? Y \C,

In terms of the new variables p¢/C1 , etc,, the Hamiltonian integral

& e

NN

Q-

Sa—”’
i

(¢}

o s

2N

—

H'._.

0o,
&l

N
OIO

~—
1}]

0

(o]

w |-
N

<
N

N

Q|

N~——
+

N

(3.11) becomes

P N k Z (2 -v) d-v) [Q
- <C1> tan¥ - (Cl) [E* cosY * v tanY] - v (Cl)
E*kZ Q) 1 f’g)z cos ¥ (Edg) ,
T Z(N/C))cos ¥ [<cl> T costy <cl ] teose T\C;) siRY

(qu)
-|l=) cosbtand =0 (8.17)
Cy

where again Cy = 0 since the final arc length is always free, The

control law is, from Egs, (3.5),
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E*(p,/C;) .
_ET(Q/Cy) N e
N coso = 2 (N/C,) s )\SIno-_Z(N/Cl)cosY (8.18)

The Eqs, (8.15) - (8,18) combined with the state equations (2.8) are
the equations for solving the exact footprint of a reentry vehicle from
a spe.c_iﬁed departure point., There are four parameters in this |
problem; they are (C,/C,), (Cs/C;), and two of the three initial values
(P/Cl)i s (N/C‘)i , and (Q/Cl)i since one of them can be obtained from
the Hamiltonian integral (8.17). Among them, one can be used as a
scanning parameter since we want to solve the whole footprint,
Hefxce, itis a three-parameter problem., For a typical example, a
vehicle is ini.tially at the specified point (8,6). To find the exact
footprint we pick a scanning parameter and guess the other three
parameters, and start the integration of Eqs. (2.8) and (8.16) along
with the using of Eqs. (8.15) and (8,18), The three guessed-
parameters are to be adjusted such that when the integration is

stopped at the final time with v = v, the prescribed Z = Z_and Y= Y

f’ f f

and the transversality condition

P
<—“£> - 0 (8. 19)
C, £ .

are all satisfied, Then by varying the scanning parameter the foot-
print can be solved, If the final flight path angle is not prescribed,

the condition ¥ = Y, will be replaced by another transversality condi-

f

tion, namely (Q/Cl)f =0,
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In the preceding section we have obtained ¢max by using the
equilibrium glide simplification, We shall use the same device in
this section again, The control law (8,12) is still valid in this case.
By using it in the Hamiltonian integral (8.10), an explicit law for the

bank angle is solved to be

A
tano'-B (8.20)
where
_(l-v Py,
A_( v )Cl
(8.21)

cos ¥ —251n¢' isintlltaﬁqb

cos ¢

" From the second and third equations of (3. 7) since C; # 0, we have

P .
Z:i = sin¢ - cos ¢ (k; sinB - k, cos 6)
1
(8.22)
Po
= k; cosB + k, sin$
Cq
where
: c, c,
ky = c, k, = o (8.23)

Hence, there are two parameters k; and k; in the reduced problem,
‘and it is a one-parameter problem since either k; or k, can be a
scanning parameter. For the transversality condition since the final-
heading angle Lpf is still free in this case, we have pLpf = 0 or from

the first equation of (8. 22),
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sin¢)f - cos ¢f (ky sin ef - k, cos ef) =0 (8.24)

The procedure to solve the footprint is as follows. Using the explicit
control law (8.20) in the full set of exact state equations (2.8), the
integration is started from the initial state (8, 6) with v, =, 99 instead
of 1,0, For the two paranﬁeters k, and k, we pick k; as the scanning
parameter and adjust k, such that when the specified value v = 7 is
reached, the transversality condition (8, 24) is also satisfied. By
varying k; and doing the same adjustment on k, for each value of k; ,
the whole footprint is solvéd. Although in this réduced problem the
final altitud.e is not specified, according to the numerical results it
is acceptable in general,

A technique of coordinate rotation has béen introduced by
Fave (9] for a flat planet model, Its application in the spherical
planet model enables us to use the cqntrol law (8.14) which corre-
sponds to C; = 0 for solving the footi:rint. We shall illustrate the

technique in the flat earth case at first, and then use it in the

spherical earth case, In Figure 27, let Miy z be the initial coordi-

£ be an optimal trajectory leading to the final

nate axes and M, M

point Mf on the footprint C for a given. longitudinal range Ve Let

M. y' z! be the rotated coordinate system with the axis Miy' parallel
i

to the tangent of the footprint C at the point Mf, Since the footprint

is the same if the initial condition is maintained, if we use the new
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Figure 27. Rotation of the Coordinate Axes,
Flat Planet Case

axes Miy' z' to find the point M, on the footprint, we have the problem

f
of maximizing z' while y' is free., As the axis My' is not known a
priori, we have a new parameter, namely the initial heading angie
llJi' with respect to the new axes, Besides the new parameter qu', we
also have another parameter yf' on the new axes, These two new
par_ameters correspond to the parameters k; and k, in Eqgs. (8.22),
but they are geometrical quéntities on the rotated axes, The
parameter qu' is the initial heading angle with respect to the rotated
axes.. It will be clear later on that, if we consider the upper half of
the footprint and translate the rotated axes to the points on the foot-

print, we will see that the maximum longitudinal range point

corresponds to the value llJi' = 90°, Then, as the new axes are moving



91

along the footprint, the lIJi' angle is decreasing from 90° to 0° and
then to -90°, The kbi' = 0° corresponds to the maximum lateral range
point of the footprint, and the LlJi'= -90° is the point where the slope of
the footprint fails to be continuous. On the other hé.nd, the other new
parameter yf' is the value .of y! where the maximization of z'! occurs,
Hence, for the two new parameters we can pick LlJi' as the scanning
parameter, For each value of nlJi' from +90° to -90°, the yf' is
adjusted such that the final condition is satisfied. Then, from the
values (yf', zf') and the angle 411', we can compute the coordinates

(yf, zf) of the resulting point'on the original axes Miy z by using the
relations

= ! 1 1 o3 1
y‘f yf cos 4‘1 + zf 51n¢i

(8. 24)

-l ai 1 1 1
vy 51nll»'i tz/cosy,

“f
By varying the . from +90° to -90°, the footprint can be obtained
. very systematically and effectively,

For the spherical earth model, the rotation of the coordinate
axes must be performed on the surface of a sphere, éince all the
coordinate axes must be along the great circle. The equations for
coordinate transformation are not apparent and théir derivation is
more elaborate, Again, in Figure 28, Mi 8 ¢ is the origina; coordi;

nate system and MiM is an optimal trajectory leading to a point M

f f

on the footprint C for a given longitudinal range Bf. There is a

tangent of the footprint C at the point My, At point Mj and parallel
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Figure 28, Rotation of the Coordinate Axes,
Spherical Planet Case

to this line we can draw a straight line which combines with the
center of the sphere O to decide the great circle plane for the rotated
axis Mie'. The rotated axis Mi ¢' is then on the great circle passing
through the poini? l\/Ii and perpendicular to the great circle of axis
MiB', Hence, Mi 8'¢' is the rotated coordinate system for the point

Mf on the fobtprint. Referring to this new axes system, the optimal
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trajectoi‘y Mi M, has an initial heading angle 4»‘1', but the point M_is

f f

the absolute maximum lateral range point. Thus, with respect to
the new axes Mie' ¢' we are maximizing ¢' with 8' free, and the
explicit control law (8, 14) can be used. For convenience, Eq. (8.14)

is rewritten on the new axes Mi 6'4$' as follows

(1 - v) cos ¢' sin (64 - 8")

tanco = (8.25)

Vv cos (Qf'-e’)sinlb' - cos Y'sin ¢'sin (95-9')_

£ and integrate

For each value of llJi' from +90° to -90°, we guess 6
the state equations (2.8) from the initial condition (8. 6) with viT . 99
instead of 1.0 by using the explicit control law (8.25). Then we

adjust ef' such that when the integration is stopped at 8' = Gf' the

final speed v, = ,001 is satisfied, The results (Qf', <1>f') obtained from

f

this iteration are the values on the rotated axes Mi 8'¢'. The
formulas to translate them to the values referring to the original axes
are

tan ¢f' sin lPi'

cosef'

f

1:an9f = tan8/! cos \Pi' +

(8.26)

sinqbf = s'intbf' cos lii' - sin Of' cos ¢f' sin¢i'

These formulas are derived in Appendix C, using the spherical
trigonometrical relations. To construct the footprint, we start from
the value sUi’ = 90° which corresponds to the maximum longitudinal

range point of the footprint, As llJi' is decreasing from 90° to 0°,
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which corresponds to the global maximum cross range point, -the
portion of the footprint to the right of the global ¢max point is
obtained., The portion to the left is constructed by LlJi' ranging from
0° to -90°, Figure 29 shows the footprint for the maximum lift-to-
drag ratio E¥ = 1,5, The trajectories leading to the points on the
footprint are also depicted with the corresponding Vallues of tlJi‘ and

Gf' given, This technique of rotating the coordinates is not applicable
to the short arc to the left end of the footprint beyond qu' =-90°, For
all trajectories from Lpi' = 90° to -90°, the bank anglé is always
positive, that is, to the left, or zero. But for the short arc beyond
Lbi' = - 90° we have to bank tbe vehicle to the right at first, and then to
the left ata certain switching point. Figure 30 presents the bank con-
trol as a function of the longitudinal range 6 for the trajectories, The
maximum bank angle is O-rﬁax = 859, For trajectories with long longi-
tudinal ranges, the bank angle is near |zero initially., It increases to
certain value and then decreases to zero finally. For trajectories
with short longitudinal ranges, the bank control hits the‘o-max for a
while and then decreases to zero_finally. Again, the final altitude is
not considered. But for all the trajectories the final altitudes are

very close to the value Z_ = 30 which is a reasonable low altitude,

f
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CHAPTER 9

CONCLUSIONS

A general solution for optimum reentry trajectories in a
vertical plane haé been presented. The three-dimensional optimal
trajectories leading to a maximum cross range and the footprint are
solved in a reduced problem, Unlike previous numerical studies in
the published literature where physical data have to be specified
numerically, here we only have to specify the most important perfor-
mance parameter, namely the maximum lift-to-drag ratio E*. The
numerical results obtained are valid for all vehicles having the same
maximum lift-to-drag ratio, For the other vehicles with the values
of E® around the value we have used for computation, the behaviors
of the optimum lift control and the trajectory variables such as
altitude, speed, and flight path angle are essentially the same, This
advantage of having a general study is made possible by the use of the
modified .Chapma.n's variables and the normalized lift coefﬁcient,
The plaretary atmosphere is assumed to be spherical and at rest,
with locally exponential variation in its density. It is found that the
characteristic for any atmosphere can be specified by the average

value of the dimensionless quantity k? = Br. For the numerical

27
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computation, we take k% = 900 for the earth's atmosphere. The
equations retain the generality and are also valid for flight in a
vacuum, Hence, the totality of the optimum trajectory, from entry
to landing, can be followed continuously even if at the beginning the
vehicle skips out of the atmosphere repeatedly before effective entry
at lower speed.

For the planar flight case, several optimum problems for
flight over a spherical earth are solved and the results analyzed in
detail, especially the skip trajectory. Atlow altitude and low speed, it
is more convenient to use a flat earth model, This has been achieved
by using a canonical transformation applied to the spherical equations
followed by a flat earth simplification, Optimum problems for flight
over a flat earth are solved using the simplified equations, The
optimum gliding tr\ajectory for maximum final range, as compared to
the maximum lift-to-drag ratio gliding trajectory, has better range
and smaller peak deceleration and is less oscillatory,

In three-dimensional flight, we have two more state variables,
namely the latitude and the heading, one mgre control, namely the
bank angle, and two more adjoint equations, But at the same time,
we have two additional integrals, Hence, the real difficulty in three-
dimensional analysis lies notin the analytical formulation but in the
practical computation of a two-point boundary value problem con-

taining three parameters instead of two as in the planar case, A
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simplification is thus introduced by using the so-called equilibrium
glide conditioﬁ, assuming that the glide angle is small and stays
nearly constant, Then, by using this simplification, the footprint of
a reentry vehicle is calculated. A technique of coordinate system
rotation has been used, which makes the iteration fnuch more
effective and geometrically meaningful.

A distinctive feature of the present formulation is that the
equations of motion and their variational derivations are valid
uniformly for flight in the dense layer of the atmosphere where the
aerodynamic force is predominant and for flight in the near vacuum
where the Newtonian gravitational force is predominant, Hence we
can use the same equations for the investigation of the effectiveness
of the optimum aerodynamic control at very high altitude. It is
expected that this tenuous aerodynamic control, coupled with a thrust
control with small magnitude, will be sufficient as optimum controls

for the guidance of skip trajectories,
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APPENDIX A

Normalized Drag Polar

Consider a generalized drag polar of the form

Cp = Cp, +K cf (A. 1)

where at very high Mach number, the zero-lift drag coefficient
CDO’ the induced drag factor K, and the exponent n are assumed to
have their constant asymptotic values, If E = CL/CD is the lift-to-

drag ratio, then

1 Do n-1
E- ¢ + K CL (A, 2)
L
Hence, E is a maximum when
‘CDo n-2
-——= +@n-1)K C =0 (A.3)
CL L

This corresponds to the lift and drag coefficients

n CDo

= Y= cl=—=—cCp (A.4)

*
L m-DK ' ©°D "n-1

The maximum lift-to-drag ratio E® is, of course,

o,

E” = clrrel (A.5)

If we define the normaliz'e'd lift coefficient N\ as
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7

1]

Q
i N

(A.6)

then it is clear that when'\ = 1, C_ = C_* and the operating point is

L L

at the point of maximum lift-to-drag ratio, Using (A,4) and (A.6) in

(A. 1), we have

p
0 n
Cp = le-D ]

Considering (A.5) we obtain

CD = CD"‘f()\)

where
n

£0) = n-1)+X\
n
For the case of a parabolic drag polar, n=2, we have

_xcX _ ok (AnE
CL=MCp cD‘CD<2

(A.7)

(A.8)

(A.9)

> , E*=CS/C5 (A. 10)
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APPENDIX B

Derivation of the Equations (6.31) and (6. 32)

The exact Hamiltonian for the flat planet case is

up (1+1\?) A
“u - ZputanY + —————pY - B-Y-

I- - .
: wpwtanY wcosY u

We use the approximate solution
No =1
to linearize A Then

S
Jfayfl)\:)\:aa—)\'

N = Ng) + -0
)\=)\o

By retaining only the first order term, we have

P A

’ Y
H= wp, tany -2 tanY - T+ RO ooy

(B. 1)

(B.2)

(B.3)

(E*pY - 2up ) (B.4)

From the linearized Hamiltonian (B.4), we can derive the corre-

sponding linearized state and adjoint equations. They are

-3% = wtanyY
du 2ul

— = - -2t
dy E*¥ wcosY any

dy A 1

d—yzwcosy u

(B.5)



104

and
?ﬂ - tan¥Y + ——5——— (E* 2 )
dy Py tan E¥*w?cosY Py 4Py
dpu Zpu)\ 'pY

dy =E*wcosY a (B.6)

dp wPp 2p | .
YW u Asin¥ (E*

dy cos?Y ' cos?’Y ~ E*wcos®y

py- Zupu)

respectively. Now, to maximize the Hamiltonian (B. 4), we consider

the switching function

® =E* pY - Zupu B.7)

Then, for tho be maximum with respect to N\, we use \ = )\max if

$ >0, and we use \ = )\min if ® < 0, In the finite time interval during
which ® = 0, we have A\ = variable, Since for maximum range glide,
in the plot for A in Figure 9 there is an interval in which the optimum
N\ is variable and near unity, we have the approximate singular

relation

- E*p - - |
d=E Py 2up, =0 (B.38)

By taking its derivative, using Eqs. (B.5), (B.6), and (B.8) itself,
we have

2 cos®Y '
wp = Zpu [1 +—SE':O—*S'2—— 1+E" ta.nY)] (B.9)

As the linear control does not appear in this first derivative, take
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the derivative again, This time the linear control appears and is
solved to be

A =E’L°_Sl ' (B.10)

This is the approximate but explicit control law in Eq, (6.31).
Now, let us use \; as an approximate solution to linearize the

Hamiltonian (B.1). Then

A - Jfl = N

\ = )\1 TN INED W

p
- wcosY u Y
= prtan‘{ +p TFu ~Efwecosy ZtanY) -
+<WcosY ) >)\ (B.11)

The corresponding linearized state and adjoint equations are

gw = wtanyY
dy
du wcosY u AN
— = - — -2 - = 1
dy E*u E™wcosY tan‘Y E* (B.12)
Y |
dy wcosY u
and
de _ tany - (cosY u ) pr
dy = Py P E*wfcosY/ wPcosY
dpy, _ wcos Y + 1 ) _ﬁ(_ (B.13)
dy ~ Pu\E*u? E*wcosY u? )
de B W Py . wsinY usinY 2 )_ pY)\s1nY
dy =~ cos?Y pu( E*u E*wcos®Y  cos’Y/ wcos®Y
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respectively. Again, by putting the switching function equal to zero,
we have

E pY = pru cosY (B. 14)
By taking the derivative of Eq. (B. 14), it gives

_ % 2cos’Yy 2w?cos?y
E pr - pu [ZE - E;{: + ‘E>{< uz

(1 +2u)

wcos?Y sinY + 2 sinY] (B.15)
u w

Then if we take the derivative of Eq. (B.15), we can finally solve a

new explicit control law which has been given in Eq. (6.32).
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APPENDIX C

Derivation of Formula (8, 26)

. H H
Flgure C. 1- (efl ¢f) and (gf 1] ¢f)

We have Lbi' and (Gif , ¢tf), and we want (9f s ¢f). By considering

the right spherical triangle MiAI, we immediately have

tan Gf'
t = 1
ana = ——T7 (C.1)
and
tana; = sin Gf' tan 4Ji' (C.2)

Since b; = ¢f' - a;, taking the tangent of b; and using (C. 2) in it, we

have
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tancbf' - sinef' tanLlJi'

tanb, = 1+ sin8 ! tan¢,) tany ! (C.3)
f f i
Now, from the right sphgrical triangle MiAI,
cosI = cos Gf' sinLlJi' (C.4)
On the other hand from fhe other right spherical triangle MfB I,
cosI = tanb cot b, | (C.5)
Solving for L(tan b) from (C. 4) and (C.5) and using (C. 3),
. cos Gf' sintbi' (tan ¢f' - sin Qf' tan 411') c.6)
1+ sian' tancbf' tantlJi' :

As Gf = a+b, again taking the tangent and using (C.1) and (C, 6), we

finally have

, tand ! sin !

tanB8, = £ - L 4 tan®! cos ! (C.7)
f cosGf f i

This is the first formula in (8, 26),
For the second formula, from the right spherical triangle
M_BI,

sind>f= sinb; sinl (C.8)
and from the right spherical triangle MiA I,
cos LlJi' = cosa; sinl (C.9)

Hence,
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sinb; cos LlJi'

sin ¢f = cos a (C. 10)

Now, taking the sine on both sides of b; = ¢£' - a; and then using

(C.2), we have

sinqnf = sincbf' cos Llli' - sinef' cos ¢£' sinlbi' (C.11)

This is the second formula in (8, 26),
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