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SUMMARY

The success of future permanent space stations depends on the

development of a space shuttle vehicle having aerodynamic maneuvering

capability. The purpose of this technical report is to investigate the

optimum maneuver of such a vehicle reentering a spherical, stationary,

and locally exponential atmosphere. The use of Chapman's modified

variables and a rescaled lift-drag polar leads to the formulation of a

set of dimensionless equations of motion for flight analysis. The

resulting equations are exact in the sense that they are also valid for

flight in the vacuum. For the vehicle, we only have to specify the most

important performance parameter, namely the maximum lift-to-drag

j-
ratio E . On the other hand, the planetary atmosphere is characterized

simply by the so-called Chapman's atmospheric parameter k2 * (3r.

For planar flight several typical optimum maneuvers are investi-

gated at different altitude ranges, low, moderate and very high. In each

case the characteristics of the optimum lift control are discussed.

For three-dimensional flight, the procedure to solve the optimum

trajectory for maximum cross range is discussed in detail. Finally,

using the equilibrium glide condition the maximum cross ranges for

*u.

entry from circular speed, for several values of E , and the footprint

for E* = 1 . 5 are computed in this reduced problem. A technique of

coordinates rotation is used which makes the iteration procedure for

solving the footprint of a reentry vehicle much more effective and

geometrically meaningful.

XI



CHAPTER 1

INTRODUCTION

The purpose of this report is to investigate the optimum

maneuver of a space vehicle having aerodynamic maneuvering capa-

bility. The present day space shuttle is an example of such a kind of

space vehicle. In the previously published literature, the analyses

are either for constant lift-to-drag ratio [l,?], or usually numeri-

cally oriented and is confined to the performance of a particular

vehicle [3] . In order to maintain the generality of the results, we

shall introduce a set of dimensionless variables and a rescaled lift-

drag polar, to derive the dimensionless equations of motion for flight

analysis inside a spherical, stationary, and locally exponential

planetary atmosphere. The resulting equations are exact in the sense

that they are also valid for flight in a vacuum and are almost free

from all the physical quantities of the vehicle and the planetary

atmosphere. For flight at very high altitude with orbital speed, a

Newtonian, inverse-squared force field is used. By a simple canon-

ical transformation [5,6], the corresponding equations for low

altitude and low speed flight over a flat earth model are obtained.

Two main types of optimum maneuver in a vertical plane will

be investigated at three different altitudes, low, moderate, and very

1



high. In the pull-up type maneuver we either maximize the final speed

with the final altitude prescribed, or vice versa. At very high

altitude with orbital speed, the maneuver generates the useful skip

trajectory. In the gliding type maneuver we maximize the gliding

range. The three-dimensional gliding maneuver for maximum cross

range will also be discussed and then solved in a reduced problem.

The footprint of a reentry vehicle will be assessed.

The organization of the report is as follows. After this intro-

ductory chapter, the dimensionless equations of motion for three-

dimensional atmospheric flight are derived in Chapter 2. The prob-

lem is then formulated as an optimal control problem with the adjoint

equations and the control law derived in Chapter 3. In Chapter 4, the

equations for planar flight are deduced from the general equations of

Chapter 3. Then in Chapter 5 they are transformed into the equiva-

lent form appropriate to the flat earth model. The numerical applica-

tions are carried out in Chapters 6, 7, and 8. The case of flight over

a flat earth is first analyzed in Chapter 6. The concept of a linear-

ized singular arc [s] is introduced and tested. The case of planar

flight over a spherical earth is discussed in detail in Chapter 7. Then

in Chapter 8 we discuss the procedure to solve the three-dimensional

optimum trajectory. The problem is then simplified and solved with a

footprint obtained. The final chapter, Chapter 9, summarizes the

main results obtained.



CHAPTER 2

DIMENSION LESS EQUATIONS OF MOTION

In this chapter, the three-dimensional equations of motion of

a nonthrusting, lifting vehicle entering a stationary spherical plane-

tary atmosphere are introduced. Then by using the modified Chap-

man's variables, a normalized lift coefficient, and a dimensionless

arc length as the independent variable, a set of dimensionless state

equations are obtained for entry analysis. It will be seen that, by

this formulation, the only physical parameter involved is the maxi-

mum lift-to-drag ratio, and the planetary atmosphere is simply

characterized by a value referred to as Chapman's atmospheric

parameter.

2. 1 Three-Dimensional Equations of Motion

The equations of motion of a nonthrusting, lifting vehicle

entering a stationary spherical planetary atmosphere are

£= V s i n V
dt

dv PscDv2

2m

P SC L V 2

cos<r



(2. 1)
d9 _ Vcos Y cos \\i
dt r cos 4>

d4> _ Vcos Y si
dt r

d4j PscLv2
 vz

V — = sin cr - — cos Y cos y tan cji
dt 2m. cos Y r

where t is time, (r, V, Y, 9, <$>, 40 are state variables and are defined

in Figure 1, p is density of the atmosphere, S is the reference area

of the vehicle, C-Q and Cj^ are the drag and lift coefficients, m is the

mass of the vehicle, g is the magnitude of gravitational acceleration,

and a is the bank angle. The flight path angle Y is defined to be

X

Y

Figure 1. State Variables, Control Variables, and Other
Parameters Defined with Respect to Inertial
Coordinate, OXYZ.



positive when the velocity is directed above the horizontal plane. The

bank angle tr is taken to be positive for a bank to the left. For flight

in a Newtonian force field of a spherical planet, the magnitude of the

gravitational acceleration is of the form

g = ^ k (2.2)

where JA is the gravitational constant. The density of the atmosphere

p is assumed to be locally exponential, that is, it obeys the differen-

tial law

^ = -Mr (2.3)

where the inverse scale height p is a function of the distance from the

center of the planet r.

There are two control variables, one is the bank angle cr and

the other is either the lift coefficient C^ or the drag coefficient C;p.

For a given vehicle there is a lift-drag relation; therefore either the

lift coefficient C-^ or the drag coefficient CQ can be used as the con-

trol. We shall use as lift control a normalized lift coefficient X such

that
C L = C £ \ (2.4)

a.

where C, is the lift coefficient corresponding to maximum lift-to-
JLj

drag ratio E"~. If C-T" is the corresponding drag coefficient, then

CD = CD*f(X) (2 .5)

where f(\) is the function specifying the chosen drag polar (see

Appendix A). When \ = 1, the flight is at maximum lift-to-drag ratio.



Thus we also have f ( l ) = 10 We shall consider a parabolic drag polar

with the simple function

f(\) = ! (1 + X2) (2 ,6 )

In general, the parameters CT , C-p , and E''~ are functions of Mach

number; but in the hypervelocity regime they are essentially constant.

2. 2 Dimensionless Equations of Motion

The following dimensionless variables are introduced,

pSC.*
Z =

2m 'V*
v2 v2

v =— =-~- (2.7)
gr ht/r

r* vs = / — cos\ dt
o r

where Z and v are the modified Chapman's variables [l]0 Z is pro-

portional to the atmospheric density p and will replace the altitude,

while the dimensionless kinetic energy v is a measure of the speed.

The remaining dimensionless variable s is the dimensionless arc

length. It is monotonically increasing and will replace the time as

an independent variable. By using Eqs. (2. 4), (2. 5), (2. 6) and (2. 7)

in Eqs. (2. 1), we have the dimensionless three-dimensional equations

of motion

ds

d v k Z v ( l + \ 2 ) , , ,
T~ ~ ' — * - - (2 - v)ds E ^ c o s Y



dY _ kZX coso-
ds cos Y

d9 _ cos 4^
ds cos cb

ds

kZX sino- . ^ ,
z r/ "" - cos y tan 4>ds cos

where E' is the maximum lift-to-drag ratio, and k2 is the dimension

less product pr. These equations are exact and hence are valid for

Keplerian motion outside the planetary atmosphere. The only slight

simplification is that in the equation for Z, the exact coefficient of

- Z tanY is

For a strictly exponential atmosphere, (3 = constant and

f - = 0 (2.10)
dr

On the other hand, if an isothermal atmosphere is considered,

p/g = constant and

In both cases k is a function of k2 = pr. Chapman has shown that in

the reentry range of the altitude, this product is oscillating about and

near a mean value [l]. Furthermore, its value is much greater than

unity, e.g. , for the earth's atmosphere k2^ 900, thus we take

k2 ^ k2 (2 ,12)
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The Eqs. (2 0 8) are the state equations for entry analysis. It
x

is seen that the only physical parameter of the vehicle involved is the

maximum lift-to-drag ratio E*. Furthermore, any planetary atmo-

sphere is simply characterized by a properly selected value k2. This

mean value will be referred to as Chapman's atmospheric parameter.



CHAPTER 3

VARIATIONAL FORMULATION

With an adjoint vector introduced, we formulate the problem

as an optimal control problem by using the Pontryagin's maximum

principle. The control law is derived. The integrals of the motion

are obtained. Then there is a change in the adjoint variables to have

a better form for the adjoint equations. Finally, the parameters of

the problem under different cases are discussed.

3, 1 Variational Formulation

The Eqs. (2,8) are the state equations with two control

variables, the lift control \ and the bank angle cr. They are subjected

to the constraints

I • 1 ~ max

I I < (3 '^0" — (T1 ' max

These controls are to be selected to bring the vehicle from a certain

prescribed initial condition to a certain partially prescribed final

condition, such that a certain function of the final state variables is

minimized.

Using the maximum principle, we introduce the adjoint vector

p~ to form the Hamiltonian
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H. - k« Zp z tanV - Py [^^ + (2-v) tanv]

fk ZX coscr /. 1 \~| , cosj1 .
+ p - + (1 - — ) + p - - + p sin

*Y L cosY \ v/J ^

k Z X s i n o - , . . ._ _.
(3.2)

where p , x = Z , v, V, 8, <j>, and 41 are the adjoint components corre-

sponding to the six state variables, respectively. They are governed

by the following adjoint equations

dPz . 2 .. k v ( I +X 2 ) k X c o s t r kX sino-
"" = k tanY + * ~ P - 2

d Z v E c o s Y Y cos\ c o s Y

ds

dPY i ( r k Z v ( l + X 2 ) s i n Y 1
~ds~~ = CQS2V | k2 Z pz + pv [ £* + (2 - V^J

- kp Z X cos cr sin Y - 2 kp Z X sin cr tanY f

(3.3)

ds ' ~

ds

-,
Q ,i, J - p cos 41

ds cos (j) r9 rMJ <|>

The solution is then obtained by integrating the two sets of state and

adjoint equations, subjected to the end conditions, and at each instant

selecting the lift control X and the bank angle cr such that the Hamil-

tonian is an absolute maximum.
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The Hamiltonian H will be maximum either at the boundary of

the control set or at an interior, variable point where.

= 0 (3.4)
OA. U u

Explicitly, we have

X cos o- = , \ sin <r = —~ ~ (3. 5)
2 vp 2 vp cos Y

3. 2 Integrals of the Motion

It is known that the problem has a number of integrals [2-4].

First of all,

H = C0 (3.6)

where C0 is a constant. Then by solving the last three equations of

Eqs. (3.3), we have

p = C2cos 9 + C3 sin9 (3.7)

p , = G! sin cj) - cos $ (C2 sin8 - C3 cos 9)

where Cj , C2 , and C3 are constants of integration.

To simplify the first three equations which are not integrable

analytically in Eqs. (3. 3), it is convenient to use the modified adjoint

variables defined as

N = vpv (3.8)
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The corresponding modified adjoint equations are then

~2
rlP \f5 7Vl-t^ -TV Z-J

~ds ~ cosY LE* ~ 4N ^ ' coszY
VI

J

= -~ (Q+ Z N t a n Y ) (3.9)
ds v

dQ 1 f F k Z s i n Y (2-v)- | E*k Z sinY f , 3 Pi|f 1 )
ds - c o s 2 Y | P + NL E* + v J- 4N L Q + c o S

2 Y j )

In terms of P, N, and Q, the optimum lift and bank controls become

and the Hamiltonian becomes

- N r^~ + ^—^ tanY
L E ^ c o s Y v

E * k Z

] -

4NcosY

- p , cos ^ tan <p = C0 (3.11)

^

In summary, the optimal solutions of this problem are

governed by the Eqs0 (2. 8) for the state variables, Eqs. (3. 7) and

(3.9) for the adjoint variables, and Eqs. (3. 10) for the controls. It

requires six parameters Cj , C2 , C3' , P., N. , and Q. to satisfy the

final and trans versality conditions, where P., N. and Q. are the

initial values of P, N, and Q, respectively. The Hamiltonian equation,

Eq. (3.11), can be used to check the accuracy of the integration.
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For the most practical cases, the arc length s is not

prescribed at the final time. Thus H = C0 = 0 and Eq. (3. 11) becomes

•>
,#,EkZ / 2 ^ \ cos

(Q + + p

- p cos Lp tan<j> = 0 (3.12)

Using this integral, one of the three equations in Eqs. (3. 9) can be

deleted. But there are some difficulties in so doing. First, Eq.

(3. 12) is quadratic in both Q and N. To solve either Q or N from

Eq. (3. 12) requires frequent change in sign in front of the square

root each time the quantity under the square root passes through the

value zero. Next, in Eq. (3. 12) the coefficient of P is tanY. When-

ever Y goes to zero, P cannot be determined. Hence, it is more con-

venient to use Eq. (3. 12) solely to determine one of the three initial

values, either P. or N. or Q. , and to check the accuracy of the inte-

gration. Anyway, it is obvious that the number of parameters is

reduced by one, that is, from six to five.



CHAPTER 4

PLANAR FLIGHT

In this chapter, we deduce the governing equations for the

optimum reentry trajectories confined to the plane of a great circle
V

from the general three-dimensional equations of Chapter 3. They are

the state equations, the adjoint equations, the control law, and the

Hamiltonian integral. Then by a change of adjoint variables, we

obtain a handy equation for the control variable \, and the number of

parameters is reduced by one.

40 1 Governing Equations

For entry trajectories in the plane of a great circle, we have

<r= 4> = ^ = 0 (4.1)

and the independent variable s is simply the range angle 9. The state

equations and the modified adjoint equations are reduced to

= - k 2 Z t a n Y

dY _ kZX
d9 O-i)

14



15

and

dP k3 Z F N E*Q21
d9 cos V LE* " 4N J

= -- (Q+ 2 N t a n V ) (4.3)
d9 v

dQ 1 (^ . ^ f k Z s i n Y . ( 2 - v ) 1 E*kZQ 2 s inY
d0" = P + N ~

respectively,, The optimum lift control is either |x | = Xmax or a

variable X ,such that

x-^p

The Hamiltonian integral becomes

- =

E*cosV v J v 4Ncos \ l

where Cx is the same constant of integration as in Eqs. (3,7).

In general, this is a three-parameter problem, with P^, Nj,

and QJ as the three parameters. For the special case where the

range angle 9 is not prescribed at the final time, i. e, , 6r is free,

GI = 0 and it becomes a two-parameter problem,

4. 2 Change of Adjoint Variables

From the expression of Eq. (4.4), it is seen that a simplification

can be made if we use X as a new variable. Another variable which

will be seen to be useful is

F=f (4.6)

Using (F, N, X) as a new set of variables to replace the modified
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adjoint variables (P, N, Q), and taking the derivative of Eqs. (4.4)

and (4. 6) with respect to 6, we have

dF k3Z (1 -X 2 ) 2F n
AB - E*cosY + i*^ + E't*"V)

(X + E*tanY) (4.7)

dX k Z ( l - X 2 ) s i n Y 2 X ( X + E t a n Y ) E* / i+l
d9 " 2cos 2Y E*v 2cos 2Y \ v

The Hamiltonian integral Eq. (4. 5) in terms of (F, N, X) becomes

(4.8)

In Eqs0 (4.7), it is seen that the first and third equations are inde-

pendent of N. It can be shown that N. , the initial value of N, is free

whenever the final value of N doesn't appear in the trans versality

conditions. Thus the second equation of Eqs. (4.7) can be deleted.

It becomes a two-parameter problem for the general case. For the

special case if 9,. is free, Cj = 0 and it is simply a one-parameter

problem. The Hamiltonian integral for this special case is, from

Eq. (4.8),

<>

As has been mentioned in Section 3.2, there are difficulties in

using Eq. (4. 9) to solve for X or F. To solve for X from Eq. (4. 9),

we have to determine the sign in front of the square root and change

this sign each time the quantity under the square root passes through
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zero. At that instant the equation has a double root

(1 - v) cos Y ,,
X* = X*=

 k Z v . (4

From the third equation of Eqs. (4. 2), it is seen that this corresponds

to dY/d0 = 0. Physically, the flight path angle passes through a maxi-

mum, or a minimum and the trajectory has an inflection point at this

instant. This behavior is typical in an optimal trajectory. Therefore

it is more convenient to obtain the optimum X directly from integra-

tion. On the other hand to solve for F from Eq0 (4. 9) will become

impractical whenever Y is approaching and passing through the value

zeroo Hence, Eq. (4. 9) will be used solely to compute the initial

value F. in terms of X^ and to check the accuracy of the integration.



CHAPTER 5

FLAT PLANET SIMPLIFICATION

The equations we have derived in the preceding chapter are

the optimum equations for the general case of planar flight. They are

to be used when the speed of the vehicle is of the order of orbital

speed, v ^ 1, which occurs at high altitude where the value of Z is

small. They are, of course, also valid at low altitude and low speed.

But in this case, without compromising the accuracy, it is simpler to

use the equations within the framework of a flat planet model. These

equations are to be deduced in this chapter.

5. 1 Governing Equations for Flat Planet Model

It is interesting to know that by a proper change of variables

we can deduce the dimensionless equations for the flat planet case

from the general equations of planar flight in the preceding chapter.

At low speed and low altitude, it is more convenient to use the

following dimensionless variables

where w is the dimensionless wing loading which will replace the

altitude, u is the new dimensionless kinetic energy to represent the

18
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speed, and y is the dimensionless linear downrange. The relation-

ships between the two sets of dimensionless variables (Z, v, 6) in

Eqs. (2.7) (where s has been replaced by 0 in planar flight ease) and

(w, u, y) in Eqs. (5. 1) are

z = k _ v = u ^ e = y _
w k k

/

Since the value of k2 is much larger than u, e. g. , for the earth's

atmosphere k2 ca 900 and u is of the order of unity at low speed, we

have
k2 » u (5.3)

This is the flat planet condition. Upon substituting Eqs. (5. 2) into

Eqs. (4.2) and using Eq. (5.3), we have

dw
-— = w tanV
dy

^ = -J i ( 1 + X I )v -**"" < 5 - 4 >dy E ' w cos Y .

dY X. 1
dy w c o s Y u

These are the state equations for flat planet model. We will obtain

identical equations by starting out from the classical equations for

flight over a flat planet and using Eqs. (5. 1) in them. It is seen that,

although an exponential atmosphere is still used for this case, the

characteristic parameter k2 of the atmosphere is removed from the

equations. Hence, the flight behavior is independent of any particular

atmosphere.
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Again, we can use Eqs. (5.4) to form the Hamiltonian and

derive the optimum equations, as has been done in Chapter 3. It is

more elegant and informative to use the condition of a canonical trans-

formation as a handy tool to effect the transformation from the old to

the new variables [5,6], This, coupled with the condition of Eq. (5.3),

will lead directly to the equations for the optimal control of the flat

planet case.

For a transformation from the variables (Z, v, 9) with

Hamiltonian H to the new variables (w, u, y) with the Hamiltonian «3r

to be canonical, we have the necessary and sufficient condition that

the quantity

(p zdZ + pvdv - Hd9) - (p dw + p d u - j d y ) = dU (5.5)

be an exact differential. In particular, for dU = 0, and using Eqs.

(5. 2), we have

p remains unchanged. By using Eqs. (5. 2) and (5. 6) and the con-

dition (5.3) in the Hamiltonian integral (4.8), we get the Hamiltonian

integral for the flat planet case

1 \ 2 o\•I - A. £A.

E ' w c o s Y E*u \ u/ up
(5.7)

where again Ct = -£n is a constant of integration with GI = 0 for the
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free range case. The variable G in Eq. (5.7) is the analogue of the

variable F in Eq. (4. 8), and is defined as

Wpw
G = (5.8)

up

Similarly, performing the same transformation and using the same

condition on the first and third equations of Eqs. (4 07) , we have

dG d - X z ) 2G .. ^ _*. v.
-— = - Z^* T7 + TT*— (X + E tanV)dy E^wcosY E^u

(5.9)
dX = ( l - X 2 ) t a n V + _2X_ + E*__ v , E* (^ 2
dy 2 w cos Y E*u

Again, this is a two -parameter problem in general. It will be

reduced to a one-parameter problem when y, is free and GI = 0. The

Hamiltonian integral for this special case is

TPE
- (G - - ) tanV = 0 (5.10)\ \i/ •



CHAPTER 6

OPTIMAL TRAJECTORIES FOR FLAT EARTH

In this chapter, two categories of optimum trajectories are

computed numerically using the equations derived in the preceding

chapter for a flat planet model. The first category of optimum tra-

jectories is for the pull-up maneuver. We either maximize the final

speed with a prescribed final altitude or vice versa. The final flight

path angle can be either prescribed or free. We consider both cases

of unconstrained X and constrained \. The second category is for the

glide trajectory which maximizes the final range with prescribed final

altitude, final speed, and/or final flight path angle. Since the equations

used are independent of the planet and its atmosphere, so are the

results. But to have some idea about the physical quantities of the

flight, we use the flat earth model and its atmosphere as an example

to get dimensional quantities from the dimensionless results. In the

last section of this chapter, the linearized singular control technique

is introduced and tested. It is proved to be useful in the saving of the

computational work.

22
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6. 1 Maximum Final Speed or Maximum Final Altitude

In this case, it is proposed to find the optimum, lift control to

bring the vehicle from the initial condition

y = y. = 0 , w = w. , u = u. , = Y. (6.1)

to the condition at the final instant y, such that either

w = w. , u = u = maximum

or, u = , w = w = maximum

(6.2)

(6.3)

We call this the ^pull-up type maneuver. A sketch of this type of

trajectory is presented in Figure 2. The condition of Eq. (6. 2) is to

maximize the final speed with a prescribed final altitude, while the

Y

—•— w

y

Figure 2. Geometry of a Pull-Up Maneuver
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condition of Eq. (60 3) is to maximize the final altitude with a pre-

scribed final speed. They are equivalent, and it •will be shown that

their solutions are obtained through a single formulation. We shall

assume that the final range is free, thus GI = 0, and thus we can use

Eq0 (5. 10). It is a one-parameter problem.

As has been explained before, to avoid the difficulties in using

Eq. ( 5 . J O ) to solve for either X or G, we shall integrate both of the Eqs,

(5. 9) along with the state equations, Eqs. (5.4). For the five initial

values required, since the initial state (w., u., V.) is given, we need

only the two initial values X- and G. to start the integration. We set

X. to be the only parameter of this problem, and obtain G. from Eq.

(5. 10). This can be done except when -y. = 0, The case with "Y. = 0

will be discussed later in this section.

For the numerical computation, we shall use the initial state

(w , u , Y ) = (.5, .5, - — j r ) (6.4)
1 1 1 i L i

Although a specific set of values has been used, it is found that the

optimum lift control has a general typical behavior. For the maxi-

mum lift-to-drag ratio Ev, we shall use E''~ = 10 which is typical for

a fighter aircraft, and E^ = 4. 5 which is somewhat higher than the

value of a shuttle vehicle at low speed. To maximize the final speed

with a prescribed final altitude, we start the integration with a

guessed X., and stop it at w = w.. If the final flight path angle "Y- is

prescribed, this value is used to adjust X. until the condition is met.
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The resulting trajectory is the optimal for maximizing uf with the

prescribed Wr and \, satisfied. If Y, is free, then by the transvers-

ality condition, p = 0. From the first equation of Eqs. (30 5), after
*

being transformed to the form for the flat planet case, we have at the

final instant
TT*~

PY

\f = r = 0 (6.5)
f 2ufPuf

This condition is used to adjust X. for the free V, case. The result is

the overall best since the final flight path angle is also optimized.

A similar procedure is used to find the optimum trajectory for

the case of maximum final altitude with a prescribed final speed.

Since the problem has one arbitrary parameter, namely the

initial value X., the family of optimum trajectories is generated by

simply integrating the Eqs. (5.4) and (5. 9) for different values of X.

«»-

until X = 0. The results for E"~ = 10 and 4. 5 are presented in Figure

3, which is plotted in the ratio w/w. versus the ratio V/V.. The

solid lines are the different optimum trajectories leading to the

terminal boundary represented by the dashed line. From the defini-

tion of w in Eq. (5. 1), if an exponential atmosphere is used, the

actual altitude change is simply

1 / Wr

Ah = h, - h. = - log —
f i p s \ w . y

For any prescribed change in altitude, we can evaluate the corre-'

spending minimum speed reduction along the dashed line. Conversely,
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we can evaluate the maximum altitude gain if w./w. > 1, or the

minimum altitude loss if w,/w. < 1, for any prescribed speed

reduction.

Although the figure is plotted for a specific initial state given

in Eq. (6.4), the use of dimensionless variables allows a general

discussion of the influence of different physical characteristics of the

vehicle on its performance. For a numerical example, with u. = . 5

and taking g = 9.81 m/sec2, l/(3 = 7162 m, the initial speed is 187.43

m/sec or 674.7 km/hr. Assume a prescribed reduction in the speed,

say Vr/V. = .7. Then flying optimally, the maximum final altitude

is identified in Figure 3 along the dashed line of E* = 10 to be

W£/w. = 1.07. From Eq. (6.6) this represents an altitude gain of

484. 57 meters. The initial altitude with w. = . 5 is

(6.7)

which is a function of the wing loading m/SC * For a higher wing load-

ing, the same gain in the altitude can only be achieved at a lower alti-

tude. In other words, small wing loading favors the pull-up maneuver.

Figure 4 presents the variation of the normalized lift coefficient

\ as a function of the flight path angle "Y for several optimal trajec-

tories. Higher values of X. correspond to smaller speed reductions.

It is interesting to notice that when "Y = 0, that is, when the vehicle is

at the lowest point (or bottom) of the trajectory, the X for different
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trajectories with the same E'1" have nearly the same value X. . From

the Hamiltonian integral Eq. (5. 10) with Y = 0, we have

(6 8,(6-8)

On the other hand, from the definition of u and w in Eqs. (5. 1), we

have

u 1 /£ViWSCA
• w ' .g(V)(— ) <6-91

Therefore, if X, is nearly the same for all trajectories, the corre-

sponding dynamic pressure (^ p V2) is nearly the same, which in turn

means that the indicated speed at the lowest point is nearly the same.

Furthermore, at the lowest point, the normal acceleration as felt by

the pilot is the opposite of the acceleration due to the lift force, which

in terms of X-, is

Thus it is also nearly the same for all trajectories regardless of the

final condition achieved.

It is possible to obtain an approximate analytical expression

for X, by considering a particular trajectory in Figure 4 -which shows

a near constant value of X from Y = Y. to Y = 0. From the second

equation of Eqs. (5. 9), since dX/dy ^ 0 at Y = 0, we have

Secondly, from the Hamiltonian integral Eq. (5. 10) at the initial
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instant,

*E*. (uG - 2). tanY. = ~L~ r~i i w. cos V.
(6.12)

It is confirmed by the numerical results that the product uG also

varies slowly. Thus

X. ^XL , (uG-2) . « (uG-2) ,
i b i b (6.13)

Combining Eqs. (6. 11), (6. 12), and (6. 13) gives the approximate

equation for evaluating X,

The values of X, obtained from this equation is in excellent agreement

with the numerical results, as shown in Table 1.

Table 1. Comparison of Approximate X-, and Actual X,

^(u/w). variable, "V. = - 1/E

E* = 10

(u/w).

Approx. X^

Actual X,

.6

3.833

3.825

.8

2.972

2.964

1.0

2.491

2.487

1.2

2. 188

2.186

1.4

1.982

1.981

E* = 4.5

(u/w^

Approx. Xb

Actual X^

.6

_

.8

3. 598

3. 635

1.0

2.861

2.879

1.2

2.434

2.456

1.4

2.159

2. 172
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To assess the influence of the initial speed,- we use the same

values w^ = . 5 and Y. = -1/E , and generate several families of opti-

mum trajectories using u. = .3, .4, .5, .6, and .7. The solutions,

that is, the terminal boundaries of different families, are presented

in Figure 5. It is obvious that higher altitude gain is obtained with

higher initial speed.

w/w.
1.2r

= .5

, . 4 , . 5 , . 6 , . 7

E" = 10

— E* = 4.5

u

Figure 5. Influence of the Initial Speed on Optimum Solution
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Finally, using the same values w. = . 5 and u. = . 5, we vary,

the Y. to analyze its effect on performance. The solutions are pre-

sented in Figure 6. Obviously, the performance improves as V.

increases and becomes positive. One interesting observation is that

when Y^ = 0, that is when the maneuver starts horizontally, X. can be

solved from Eq. (5. 10),

(6.15)

w/w.

1.1

1.0

v/v.

6 1.0

Figure 6. Influence of the Initial Flight Path Angle
on Optimum Solution
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Thus it is solely a function of the initial dynamic pressure (u/w).

(or the initial indicated speed), and has the same value for all tra-

jectories. In the example here its value is 2.4142. This also means

that \i can no longer be a parameter in this case. To generate the

family of optimum, trajectories, we have to use either G. or (dX/dy).

as a parameter.

6. 2 Pull-Up Maneuver with Bounded X

In the preceding section, to display the behavior of the lift

coefficient along an optimum trajectory, we put no restriction on its

upper limit. This is of no problem for vehicles with high maximum lift-

to-drag ratio since the optimum \ is within a reasonable limit. But

for vehicles with low maximum lift-to-drag ratio, as in the case of

the reentry vehicle, the optimum X. may be unacceptable since it can

exceed the stalling lift coefficient X .
ITlcLjC

To discuss the behavior of the optimum trajectory in the case

of bounded X, we refer to Figure 7 which plots different optimum tra-

ife ^_
jectories in the (w,y) space for E = 10. Trajectories for higher

final altitude (lower final speed) are started with lower X.. The vari-

ation of X has been presented in Figure 4. Let us assume that the

upper bound of X is X = 2. 75. Then from Figure 4, all trajecto-

ries with X. < 2.75 are pure variable X trajectories since the condition

X = ̂ max is never reached. On the other hand, to generate the

remaining optimum trajectories, we must start with X = X for a
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w
58

50

Figure 7, Optimum Trajectories for Pull-Up Maneuver

certain distance and then switch to variable X. The integration

starts with the state equations only using X = X , then at.a certain
iJTlcLX

point called the switching point with the state (w , u , Y ), we use

the variational equations, that is the state equations and the equations

for X and G, as before and continue the integration until X- = 0. We

notice that in this example X > X, , the initial derivative of Xr max b

(dX/dy). with X. = X is negative. To generate the family of opti-i i max

mum trajectories, we can switch at any point where dX/dy is negative.

But to solve a particular problem with a prescribed w^ or Ur, the

switching point has to be found such that the final condition w = Wf or

u = Uf is satisfied.
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Next, we consider the same case of Figure 4 with E"~ = 10,

but now we have X = 2 . 0 . Then all trajectories must start with
IX

X = X . Since X < X in this example, dX/dy is positive
iiicLX TTl.cL3£ D

initially. The constant X = X subarc must continue for a certainmax

distance until dX/dy < 0, which occurs after passage through the

lowest point in this example. Thus all the switches occur along the

ascending arc, with the constant X subarc longer for higher altitude

gain (smaller final speed) trajectory.

To give an explicit example, we solve the problem for the

following initial and end conditions ,

w. '= .5 , uj = .5 , V. = -1/E* with E* = 10;
1 X (6.16)

V ,/V. = .7 , w = maximum , "Y = free

The physical trajectories are plotted in Figure 8. For the trajectory

without lift constraint, it is found that X. = 2. 628314 leading to a

final value w, = 0. 53457 corresponding to a gain in altitude of h- - h.

= 478. 81 meters. If the constraint X = 2. 55 > X, is enforced,
max b

the trajectory starts with X = X until w = .49935, and switchesJ 7 max s

to variable X. The switch occurs during the descending phase. The

final altitude is w = 0. 53450 and corresponding to a gain in altitude

of h, - h. = 477.87 meters. On the other hand, with the constraint

X = 2.0 < X, , the switch occurs at w = .50877, at a point along
max b s

the ascending arc. We obtain Wr = . 53402 which corresponds to a

gain in altitude of h,. - h. = 4 7 1 . 44 meters. The variation of the



36

QJ

••-> rirt .-i
^ t(
H rt

X T3

^ s<u ™ _<
ti O
C j." JH

* I
M C-

3 <D £
<u o 3
fi rt g

a
I

a,
4

oo
(1)
M
d
00

• i-H

fri

a
o

©



37

normalized lift coefficient X for these three trajectories is also

presented in Figure 8.

6., 3 Maximum Range

In this case, it is proposed to find the optimum lift control \

to glide the vehicle from the initial condition until the final condition

w = wf , u = uf , V = Vf (6. 17)

such that the final range yr is maximized. Since y,. is not free,

Cj jt 0, and the Hamiltonian integral Eq. (5. 7) is inoperative in our

formulation. We still have the same differential system, that is,

Eqs. (5.4) and (5. 9), the difference here is that we have two arbi-

trary parameters X. and G.. The differential system is integrated

with a set of guessed values X. and G. until the prescribed final

altitude w = w. is reached. The other two prescribed final values ur

and "Y, are used to adjust the values of X. and G.0 If the final angle is
v

free, the condition on Y, is replaced by the transversality condition

X f = 0 .

The advantage of using the variables X and G to replace the

adjoint variables is that their numerical values are nearly constant.

This is because in glide for maximum range, both Y and u vary

slowly so that dY/dy ^ 0 and du/dy ^ 0, and we have

_ w cos Y
U (6.18)

_ t anY =
2 E*w cos Y
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Hence
1 + X 2

In this so-called steady state approximation, the range is maximized

by selecting the lift coefficient \ to minimize the glide angle - Y.

This leads to the selection X. = 1, that is, to glide at maximum lift-

to-drag ratio. Then we have the minimum glide angle

- t a n Y = ~ (6.20)
E

Of course, this solution is only approximate. The real optimum

solution is obtained by a lift modulation. Nevertheless, the steady

state solution provides an educated guess for the behavior of X and G.

First, using X = 1 and Eq. (6 0 20) in the first equation of Eqs. (5.9),

we deduce that dG/dy =* 0. This means that G is nearly constant

during the glide. Furthermore, using X = 1 and Eq. (6. 20) in the

second equation of Eqs. (5. 9) and noticing that dX/dy ^ 0, we have

G ^ 4 since u =* u. = . 5. In summary, the range of values for X. is

close to 1 and the range of values for G. is close to 4. In other

words, the optimum trajectories are very sensitive to the initial

j,
values X- and G., especially when E is large.

The results are presented in Figures 9, 10, and 11 for the

case of fighter aircraft with E* = 10. Each figure presents several

optimum trajectories with different final altitude. To restrict the

plot to a one-parameter family of trajectories, we impose the

condition U£ = w£ at the final instant. For each trajectory, that is,
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for each prescribed final altitude W£, the corresponding initial value

of the normalized lift coefficient X. is also labelled in the figures.

For comparison, in each figure we plot in a dashed line the steady

state trajectory, that is, the trajectory generated by using \ = 1.

Figure 9 gives the variation of X as a function of y for

different altitude drops. It is seen that, for large altitude drop,

optimum glide is effected at near maximum lift-to-drag ratio, i. e. ,

X ^ 1, except for the initial phase and the final phase. Also, we

assume that V,. is free, thus X, = 0.

Figure 10 gives the variation of -"Y as a function of y. For

large altitude drop, it is steadily increasing at a very slow rate

except for the initial and the final phases. Hence, as an approxima-

tion, along this portion of the optimum trajectory Y is nearly constant.

Figure 11 gives the variation of the dimensionless dynamic

pressure T| =• u/w. For large altitude drop, it is nearly constant and

slightly less than unity during the main portion of the glide. To find

this near constant value, we take X = 1 in Eqs. (60 18) and have

E*
(6.21)

VI + E*2

jj*

For E = 1 0 , this value is r\ = . 99504 and is slightly less than the

optimum value of rj which is near T| = . 9965.

Concerning the actual performance, namely the maximized

range, the X = 1 trajectory gives a good approximation for large
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altitude drop. Its range is within 1% of the optimum range. A better

approximation is to use constant dynamic pressure glide. This also

has the advantage of flying with constant indicated speed. The value

of r| is given approximately by Eq. (6.21) , and is purely a function of

the maximum lift-to-drag ratio E^.

In contrast with long range glide, the optimum glide for small

altitude drop is not close to the glide with X = 1. This is shown in

Figure 12 where again the dashed line represents the X = 1 trajectory.

The short range problem is closely related to the problem of a pull-up

maneuver with prescribed range. In this respect, we have the final

v = 10w. = „ 5 u. = . 5
1 1

X. = 1. 1 0 \ X . = 1.01\X. = 1.014
i x i

G. = 4..004\G.=3.996\G. = 4.024\ G- = 4.034i \ i \ i \ i
= .4581 W f=.4449\w f= . 4287\ wf= .4072

.2 .4 .6 1.0 1.2 1.4 1.6 1,8 2.0 2.2 2.4 2,6

Figure 12. Variation of the Optimum Lift Coefficient for
Short Range (Small Altitude Drop) Glide
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condition either

wf » ^r » y, = prescribed , u = maximum (6 ,22)

or

uf » ^r » 7f = prescribed, w. = maximum (6.23)

We terminate the integration at y = yft and use the other two pre-

scribed final values to find the two initial values X. and G. . If \r is
i i f

free, the final condition in Y is replaced by the condition X = 0.

6. 4 Linearized Singular Lift Control for Maximum Range

An inspection of the data presented in Figure 9 clearly shows

the difficulty encountered in the numerical computation. More

explicitly, for large altitude drop, the initial value X. has to be found

with great accuracy for the final condition to be identically satisfied.

It is seen that, except for the initial maneuver and the final maneuver,

the lift control nearly follows the same line. This line can be con-

sidered as a singular arc familiar to the problem in which the control

is linear. To reduce the computation work, if this singular arc can

be found, one can follow the line until near the end and then compute

separately the last arc where again, the control undergoes drastic

change.

In general, let us consider an optimum control problem with

the Hamiltonian

H = H ( p , x, u, t) (6.24)
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where u is a scalar control subject to the constraint

u . < u < u (6.25)min max

To maximize the Hamiltonian, we either use u = u . or u = u ,
min max

or an interior variable u such that

= 0 (6 .26)

In general, the solution of Eq. (6.26) provides the optimum control

u * = u * ( p , x , t ) (6.27)

This control is of the Euler-La grange type and u* can be expressed

explicitly in terms of the state vector x and possibly the time t and

some constants of integration provided that the adjoint vector p~ can be

expressed in terms of the same variables. This, in turn, requires

the analytical integration of the equations for the adjoint vector p".

But,unfortunately, for most realistic cases it is not possible.

Now, let us assume that we know an approximate law for the

optimum control, say

u * a * u o ( x , t ) (6.28)

Then by Taylor's series, we can expand the maximized Hamiltonian

near the value u = UQ to have

* /9H\ *
H* = H (p, x, u0, t) + (—) (u* - uo) + • • • (6. 29)

If UQ is near the optimum value, the difference e = u* - UQ is small

and, by retaining only the first order we have the approximate H

which is now linear in u. Again, for this linearized problem, the
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optimum solution is either u = u .. or u = u or a variable u when* min max

the coefficient of the linear control, called the switching function,

vanishes identically. That is

o-«
Here, since we have assumed that u is not on the boundary, it is of

the variable type. We have Eq. (6.30) which provides a relation

between the state variables and the adjoint variables. This relation

is exact in the linearized problem, but is approximate in the original

non-linear problem. The accuracy of this approximation is of the

order of € 0 In the linearized problem, the Eq. (6. 30) is valid as long

as the control is of the interior type. Hence, we can take its deriva-

tive with respect to the independent variable t, to generate another

relation between x and p. It is known that we can take the derivative

successively until,the linear control appears for the first time, with

an even derivative. The linear control can then be deduced explicitly.

Then in the case where it can be expressed explicitly in terms of the

state variables by using the additional relations obtained, we have an

approximate but explicit law for the optimum control.

As an example for our present case here, from the steady

state and the numerical analyses we have found a good approximation

for the lift control X. It is X0 = 1. We shall call this the zeroth order

solution. By applying the linearizing technique on this problem, we

can obtain the approximate law for the control
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We call this the first order solution. Then if we apply the linearizing

technique once again, based on the first order solution which is a

better approximation than the zeroth order, we finally have

, _ wcosY A
X2 - u B (6 .32)

where

A = E*2 u2 [6tan2Y - 4 u ( l - tan 2 Y) + 2u 2 tan 2Y + (l + u)C]

- 2 E * u ( 3 + u ) (2 + C) ws inY + 2C ( 2 + C ) w 2cos 2Y
(6.33)

B = E*2 u2 [2 (1 + u)tan2Y - 4u - G] - 2 E*u (4+Q w sinY

with

+ 8w 2cos 2Y

= 1 - 2 zv (6.34)
w cos Y

Eqc (6.32) gives the explicit second order solution for the lift control.

The details of the derivation of \i and X2 will be given in Appendix B.

For the first order solution, from the third equation of (5.4) we see

that using the near optimum law (6. 31), the flight path angle is

maintained constant, a fact which can be observed in Figure 10. It

is an improved approximation as long as the zeroth order solution

X0 = 1 is accurate. Then for the second order solution (6 .32) , we

have tested it numerically, and it gives excellent results. Using the

initial values of the No. 2 trajectory in Figures 9, 10, and 11, we

start the integration optimally. Then at y = 20 4 it is switched to the
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explicit control law (6.32). The integration keeps on going, and the

trajectory is generated by using this approximate control law. As

compared with the nearly linear portion of the optimum trajectory

No. 4 in Figures 9, 10, and 11, the two lift coefficients, approximate

and optimum, agree to four significant digits, and the two trajec-

tories generated are identical.



CHAPTER 7

OPTIMAL TRAJECTORIES FOR SPHERICAL EARTH

As in the case of the flat earth, we shall consider two types

of optimum maneuvers. The first type is the pull-up maneuver,

and the second one is of the gliding type. The optimum trajectory

can be initiated from the top of the atmosphere. In some cases the

pull-up maneuver gives the skip trajectory. Since the state equations

we have derived for the spherical planet case, the Eqs. (4. 2), are

exact, they are also valid for the Keplerian motion of the vehicle

after skipping out of the planetary atmosphere. In the other cases,

the vehicle may reenter the planetary atmosphere after a coasting

flight to initiate a new skip trajectory until effective entry at low

speed. We shall consider both cases. The computation is done with

the value k2 = 900 for the earth atmosphere. For the maximum lift-

to-drag ratio, a reasonable value E'1" = 3 is considered since the flight

is effected at high speed. Again, the maximum lift-to-drag ratio

trajectory, that is,the X = 1 trajectory, is used for comparison in

the gliding type optimum trajectory.

49
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7. 1 Pull-Up Maneuver at Moderate Altitude

This is the same problem as discussed in Section 6. 1. The

differential system consists of the Eqs. (4.2) and the Eqs. (4.7).

The initial condition is

9 = 0, Z = Z., v = v . , \ = \ . (7.1)

It is proposed to find the optimum lift control to bring the vehicle

from this initial condition to the final instant 0. such that either

Z = Z ~, v = v. = maximum (7.2)

or

v = v, , Z = Z = minimum (7.3)

The final range 9,. is assumed to be free and hence GI = 0. Since

the second equation of Eqs. (4.7) can be deleted, the only arbitrary

parameter is X. and F. can be obtained from Eq. (4. 9). If the final

flight path angle Yf is prescribed, it is used to find the required

initial value X... If Y, is free, we have the transversality condition

Xf = 0.

The problem considered here involves relatively low speed

and altitude, and we shall take the initial values as

Z. = .5, v = .15, Y = - ~rf (7.4)
1 1 1 £Hi

At high altitude where Z. c* 0, and v. is of the order of orbital speed,

v. ^ 1, this type of maneuver leads the vehicle to skip out of the

atmosphere. This case will be analyzed in detail later.
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The problem is solved by the same routine as discussed in

the case of the flat earth. The results are summarized in Figure 13,

It is plotted as p ( h - h ^ ) versus V/V^, where h is the actual altitude

and V is the actual speed. By the definition of Eqs. (2.7) for Z, if

an exponential atmosphere is used, the actual altitude change is

/Zi\
TrO (7 ,5)

-1

\ X. = 1.0
Z. = .5

E* = 3

v. =
i

= .15 Y- = - TF=i 2E

Terminal Boundary

V/V.

Figure 13. Solution for the Optimum Pull-Up Maneuver
at Low Speed over a Spherical Earth
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Again, the different solid lines are the optimum trajectories leading

to the final boundary plotted in dashed line.

The variation of the normalized lift coefficient X as a function

of the flight path angle "Y for different trajectories is presented in

Figure 14. The behavior is the same as in the flat earth case, but

the values of X at the lowest point, Y = 0, are not so nearly the same.

The difference is more due to the fact that the value of the maximum

lift-to-drag ratio E* used is relatively low rather than due to the

additional centrifugal acceleration term which is included in the

spherical planet equations.

7. 2 Keplerian Motion Following a Skip Maneuver

In a skip trajectory, the vehicle enters the atmosphere at

very high altitude with a speed at orbital magnitude and uses its

-.2

Figure 14. Variation of the Optimum Lift Coefficient for Pull-Up
Maneuver at Low Speed over a Spherical Earth
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lifting capability to negotiate a turn. It is then ejected from the

atmosphere. This maneuver is depicted in Figure 15.

The skip maneuver is an important maneuver. It can be used to

achieve maximum range or to assist a climb to orbital altitude with

maximum residual speed, hence minimizing, the required character-

istic velocity for orbit insertion. In the three-dimensional maneuver,

Figure 15. Geometry of a Skip Trajectory
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it can be used to change the orbital plane. The first order solution

for constant lift-to-drag ratio with the centrifugal and gravity accel-

erations neglected has been obtained in the classical literature [l] .

An accurate second order solution for constant lift-to-drag ratio

skip trajectory has also been obtained [?] . In this chapter, we shall

analyze the optimum solution with lift modulation using the exact

equations.

The equations we have derived are valid for flight in the

vacuum by taking the limit Z -* 0. But to initiate atmospheric flight

we must start with some nonzero initial value Z.0 We shall adopt

the convention that atmospheric entry is initiated when the accelera-

tion due to atmospheric lift is equal to a certain small fraction of the

gravity acceleration. From the definitions of Z and v in (2.7), the

dimensionless acceleration due to a lift force with CT = CT , isj-i LI

v (7.6)

For the earth atmosphere, (3r = 900. Taking a/g = .015, i.e. , 1.5%,

with an initial speed equal to the orbital speed, v. = 1, we have

Z. = . 0005. We shall use this value as the value of Z at the top of

the sensible atmosphere. For higher altitude with Z < Z., the flight

is considered as in the vacuum and Keplerian motion applies.

As shown in Figure 15, the initial point (r., V., V.) is con-

sidered as the entry point, and the final point (r,. = r., V , Y,) is
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considered as the exit point. Between the two points is the

atmospheric skip trajectory, while beyond the exit point the flight

is in the vacuum. Once in the vacuum, the vehicle climbs to the

highest point (r , V_ , Y = 0), the apogee of the Keplerian orbit.a o, a

Because of the obvious symmetry, the range angle £ between the

exit point and the apogee is half of the range angle for the coasting

portion of the trajectory in vacuum. We shall be concerned with

the maximizing of either the apogee distance r , or the apogee speed
cL

V , or 1he coasting range angle 2£. Hence, it is necessary to express

these elements in terms of the variables at the exit point where

atmospheric flight terminates. These relations can easily be

obtained by using the classical Keplerian equations. However, we

shall derive the pertinent equations from the general equations (4. 2).

With Z -*• 0, and using the equation for the variation of the

radial distance to replace the first equation of (4.2) since it is

inoperative, we have

= - ( 2 - v ) tanY (7.7)

de v

From the second and third equations of (7. 7),

(7.8)
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Upon integrating this equation, we have

v ( 2 - v )cos 2 Y = (1 - e2) (7.9)

where the right hand side represents a constant of integration.

Next, from the first and second equations of (7. 7),

T- = i*- (7. io)dv 2 - v

Its integration gives

f = 2-v (7.11)
cl

where a is another constant of integration. Returning to the defini-

tion of v, v = r V2/|J. , it is easily seen that Eq. (7. 11) expresses the

conservation of energy and a is the semimajor axis of the Keplerian

orbit. Furthermore, combining the two integrals (7.9) and (7. 11)

and again using the definition of v, we have

r2 V2cos2V = up (7. 12)

where

p = a ( l - e 2 ) (7.13)

Equation (70 12) expresses the conservation of angular momentum,

and it is now clear that e is the eccentricity of the orbit while p is

the semilatus rectum. Now, consider the derivative

where we have used the first equation of (7. 7). By taking the
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derivative again and simplifying, we have

Using the definition of v and the integral (7. 12) in Eq. (1 , 15), we

finally have the differential equation for the orbit

&(?)*(?)='

The general solution of this equation is

£ = 1 + A cos 6 + B sinG (7.17)

where A and B are constants of integration. Starting the angular

variable at the perigee, 6 = 0, dr/d0 = 0, r = a (1 - e), and we obtain

the polar equation of the orbit

E = 1 + ecos6 (7. 18)

Hence, we have derived the classical equations for Keplerian motion

from our general equations (4.2). With these equations, we can

deduce the performance indices for optimization in the following

sections.

7. 3 Skip Trajectory for Maximum Final Speed

Again, we assume that 9 is free. Thus Cj = 0, and we can

use Eq. (40 9). It is a one-parameter problem. Referring to Figure

15, the vehicle enters the atmosphere at the initial point with the
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initial condition

(Z. , v. , V.) = (.0005 , 1.0 , variable) (7.19)

It is proposed to find the optimum lift modulation such that at the

exit point

Z = Z. , Y = free , v = maximum (7.20)

Since Y, is free, we again have \. = 0, We integrate the Eqs. (4. 2)

and the first and third equations of (4. 7), from the initial state, with

a guessed X- and a F. solved from Eq. (4. 9). Then we use the con-

dition X, = 0 to find the correct value of X. .

The variation of the optimum lift coefficient as a function of

the speed ratio V/V. is presented in Figure 16 for several initial

flight path angles Y.. It is clear that less negative Y. gives higher

final speed. For all the trajectories computed, the optimum lift

coefficient slightly increases at the beginning and then decreases

continuously to the final value X = 0.

7.4 Skip Trajectory for Maximum Apogee Altitude

In this problem, it is proposed to use optimum lift modulation

to bring the vehicle to the exit point such that subsequent climb

in the vacuum leads to a maximum height. Since 0£ is free, Ct = 0,

and therefore the only parameter is X. . From Eq. (7.11) we have

r 2-v
— = - (7.21)
r f 2 -v f
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1.6-

1.4-

1.2-

1.0

Z. = .0005
i

v = 1/0

Y- = variable

1.00

Figure 16. Variation of the Optimum X as a Function of the
Speed Ratio for Skip Trajectories with Maximum
Final Speed

As r = r. , maximizing r is equivalent to maximizing r /r or, to
f i a ' a x

minimizing -r / r , . On the other hand, from Eq. ( 7 . 9 ) ,
3. i.

v ( 2 - v ) = v , ( 2 - v . ) c o s 2 Y , (7.22)

Solving for v from this equation and substituting into Eq. (7. 21), we
2L

have

J _ _ — _ __
r v

f f
- (2 -v f )v f cos z Y f J (7.23)
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Since J is a function of v, and V , we have at the final time

(7-24)

Upon using the relation of Eq. (6. 5), we have the following trans -

versality condition

E* (2 - vf)
2 sinyf cos Yf

\ = - - - — (7.25)
f 2[l - (2 - Vf)cos2Yf + V1 - (2 - vf) Vf cos2Yf ]

This condition is used to find the initial value X. for the optimum

trajectory. Finally, the corresponding max (r /r,) can be obtained
3, I

from Eq. (7.23),

This problem has been solved, and we have the following

r e suits

Z. = .0005 ,
i

Zf = .0005 ,

v. = 1.0 ,
i

vf = .377 ,

Y. = - 8°
i

Yf = 43.36°

X. = - .70225 , X = 2 . 0 4 4 0 6 , max (— 1 = 1. 12308
1 ± \ r f /

In this flight program, the initial lift coefficient is negative. It

appears that the optimum trajectory starts with a plunge toward the

dense atmosphere with a slight increase in the speed, and then uses

the lift to rotate the velocity vector upward with a relatively high exit

angle, to achieve the absolute maximum apogee height. This

maneuver is purely an academic exercise. It incurs excessively

high acceleration. The value of Z at the bottom of the flight path is
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Z, = 4.7795, This represents a dip into the atmosphere with a

distance Ah = (1/p) log (Z, /Z . ) = 65,641.5 meters. In practice, we

shall have the following problem.

7. 5 Skip Trajectory for Maximum Apogee Altitude with Prescribed
Apogee Speed

This is a more realistic formulation of the previous problem.

Specifically, we seek to maximize the apogee altitude while prescrib-

ing a residual apogee speed V .

Let

V 2

R = — , v = —r1- (7.26)r- a |j./r

Hence, we minimize J = 1/R with a prescribed "v . From Eqs.
ct

(7.21) and (7.26), we have

TT = l + i v a - ! v (7.27)

From this relation it is obvious that to minimize 1/R we simply

maximize the final speed v,. But this time, besides maximizing v, ,

the prescribed V (or "v ) must also be achieved. Since v = r V2/|j.
a a a a a

= R"v , by using this relation and Eq. (7. 27) for 1/R in Eq. (7 .22) ,

we have

This is the final condition to be satisfied so that the prescribed "v
3>

can be achieved. The procedure to solve this problem is the same
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as that in the preceding section, but here we use Eq. (7. 28) to

search for the correct initial value X..
i

As this is a one-parameter problem, we can obtain the

totality of solutions simply by varying the parameter X.. Then at the

end of the integration where Z = Z., Eq. (7. 28) is used to solve for

v and Eq. (7.27) for R. Figure 17 presents the solution for several
a

values of Y. . For each value of Y. there is an absolute maximum
i i

apogee distance corresponding to the problem solved in the preceding

section. For any other prescribed v which is different from this
cl

point, the maximized apogee distance is lower. The case of "v =0
cl

corresponds to vertical ascent in a vacuum, and hence for a tra-

jectory leading to Y, = ir/2.

7. 6 Skip Trajectory for Maximum Apogee Speed with Prescribed
Apogee Altitude

This is a trajectory with practical importance. It is

proposed to use optimum lift modulation to bring the vehicle to the

exit point such that the subsequent ascent in the vacuum will lead

the vehicle to a prescribed apogee altitude r with a maximized
3,

residual speed V . Clearly, this leads to minimizing the character -
a

istic velocity AV for orbit insertion.

By eliminating v between Eqs. (7. 27) and (7.28) we have

R 2 ( 2 - v ) - 2R + v fcos2Y f = 0 (7.29)



63

1. 14

^7
1.12

1. 10

1.08

1.06

1.04

1.02

1.00
.4 1.0

Figure 17. Maximum Apogee Distance for a Prescribed Apogee
Speed, or Maximum Apogee Speed for a Prescribed
Apogee Distance
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For a prescribed r , the ratio R is specified. The procedure to
3.

obtain the optimum solution is the same as in Section 7.4, except

that in here Eq0 (7. 29) is used to adjust the initial value X. . For

the totality of the solutions, it is exactly the same as has been plotted

in Figure 17. But this time, the value r /r. is prescribed while the
cL X

corresponding value "v is maximized. We notice that there exists a
3,

range of r
a/ r^ that gives two trajectories both satisfying the neces-

sary condition for optimality. The optimum trajectory is the one

corresponding to higher value of v .
3,

7. 7 Skip Trajectory for Maximum Coasting Range

Again, we refer to Figure 15. For the initial condition we

are still using Eq. (7. 19). In this problem, it is proposed to find

the optimum lift control to negotiate a skip trajectory such that after

its exit from the atmosphere, the vehicle coasts ballistically in the

vacuum to achieve a maximum coasting range 2£. We first solve

this problem by assuming that the final value 9 at the exit point is

free, hence Cj = 0. This is suggested by the fact that at orbital

speed with small value of Y., the coasting range 2£ is significantly

larger and more sensitive to change than the atmospheric skip range

(6 - 9.). The next case to be addressed is the maximization of the

total range from the initial point, (9. - 9.) + 2£ .

From Figure 15, it is seen that £ = tr - 6,. Therefore, we

obtain from Eq. (7. 18)
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cos^ ="Vl -^-j. (7.30)

By writing the Eq. (7. 9) at the exit point and solving for e, we have

e = yi - (2 -v f ) v fcos2Y f (7.31)

Then by using Eq. (7. 31) and the Eq. (7. 11) at the exit point in the

relation (7. 13), it gives

p = rf vf cos2Yf (7.32)

Upon substituting Eqs. (7.31) and (7.32) into Eq. (7.30), it becomes

cose = — 7= (7.33)
•y/1 - (2-v f )v f cos 2 Y f

For the first case we maximize 2£. It is equivalent to minimizing

cos £ and thus J = cos £. Since J is a function of the two final

variables vf and Y- , we again have the relations (7 . 24). The trans-

versality condition is then

E*[l - v, - tan2Y f]
(7-34>

This is the condition used to search for the exact value X.. Thei

initial state used and the results obtained are

Z. = .0005 , v = 1.0 , Y. = - 4 < >

Z = . 0 0 0 5 , vf = . 87475, Yf = 6, 02°
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X. = .2925i

8 - 8 = .17646

2 a = 1.18958
max

To show the optimality character of this trajectory, we integrate the

state equations (4. 2) vising a constant lift coefficient, X = constant.

The best constant X which gives the maximum coasting range is found

to be X = 1.024, and the results are

Z = . 0 0 0 5 , v =. 90876, Yf = 3.58°

6 - 9. = .20633
f i

It shows that using optimum lift modulation we have an improvement

of 10.41% in the coasting range as compared to the best solution

obtained with a constant lift coefficient.

We now solve the second case, in which we maximize the

total range from the initial point to the end of the coasting flight.

That is, we maximize the following performance index

f 1 - v fcos2V f "I
j = (9 - 9.) + 2cos- J - •• - - - ; - (7.35)

' X LV1 - (2-v f )v f cos 2 Y f J

This time, the final range is not free and hence Ct ^ 0. There are

two parameters to be found, X. and F.. Actually Cj is equal to pa ,
1 1 f



67

and from. Eq0 (7. 35) we have, for a maximization problem,

P e = l r = 1 < 7 - 3 6 >

Thus G! = 1. Furthermore, we also have

9J

Upon using the relations (7.37) in Eq. (6.5), it gives exactly the

same \, as given by Eq. (7.34). Therefore, Eq. (7.34) is also a

transversality condition for this case. We need one more transvers-

ality condition because this case has two parameters. It comes from

the Hamiltonian integral (4. 8) at the final time. With GX = 1 and the

p given in Eq. (7.37), we finally have

kZ v ( 1 - X 2 ) ( l - v ) X v

E*cosv f
 + -E*— + I1 - T + VfFf) t a n Vf = ° ( 7 « 3 8 >

The problem is solved and this time it is found that

Z = .0005 , v = .88101 , Y = 5.63°

X. = .57921 , F. = 3.6873
i i

9r - 6. = . 18173
f i

2£ = 1.18692

The total range obtained is J = (0f - 6.) + 2£ = 1.36865, which is

slightly higher than the total range J = 1. 36604 of the first case

where only the coasting range 2£ is maximized.
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For all the skip trajectories solved above, it has been

assumed that beyond the altitude Z = . 0005, the flight is in a

vacuum. The corresponding altitude is given, through the atmos-

pheric density, by

2m Vf- 0005 (7.39)

For most vehicle characteristics, the resulting altitude is generally

high enough such that beyond this altitude the subsequent trajectory

is practically Keplerian. For better accuracy, one can take a

smaller Z. The computational procedure remains unchanged.

7. 8 Glide with Maximum Range

The maximum range obtained previously concerns the range

with one skip. We now generate the optimum control to maximize

the total range for a descent from an initial altitude Z. to a final

altitude Z.. The problem is first solved for the case of a relatively

low initial altitude. A reasonable set of initial values is

( Z . , v., Y.) = ( .5 , .15, - ^pr) (7.40)

-'•*

with again E''~ = 3. This can be considered as the gliding flight

following a ballistic entry of a shuttle vehicle. The vehicle enters

the earth atmosphere at the reentry altitude Z =* 0, with a speed

v ^ 1 and a certain reentry angle Y . Then at the end of the
G G

ballistic phase, the vehicle rotates to reduce the angle of attack,
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hence generating a lifting force and using lift modulation to glide to

a final altitude with a maximum range. The case of gliding from

the entry point will be analyzed in the last part of this section.

The numerical computation is carried out exactly as in the

flat earth case. "We integrate the state equations, Eqs. (4.2), the

first equation of (4.7) for F, and the third equation of (4.7) for \,

from, the initial state (7.40) and two guessed values F. and \. . At a

prescribed final altitude the integration is terminated, and the other

two prescribed final values v. and V, are used for adjusting the F.

and X. . If Yf is not prescribed, then the condition on V,. is replaced

by the condition \, = 0. In order to generate a one-parameter family

of optimum trajectories, we impose the final condition

( 3 r Z f v f = l (7.41)

Physically, this means that the final acceleration due to a lift force

sit
with C, = CT is equal to the gravity acceleration. For each pre-

J-i J_i

scribed Z,, the corresponding v. is obtained from this condition.

Figure 18 presents the variation of the optimum lift

coefficient. It is seen that X oscillates about the value of unity and

tends to this value near the end of a long range glide which corre-

sponds to a large altitude drop. Figure 19 presents the variation of

the flight path angle while the variations of the altitude and the speed

are depicted in Figure 20.
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For the case of glide starting from the entry point, a typical

initial condition is

( Z . , v., V.) = ( .0005, 1.0, -4°) (7.42)

The final condition to be satisfied is

Z = Zf, v = v f , Vf = free (7.43)

The variation of the altitude as a function of the range for the optimal

trajectory is plotted in Figure 21 as a solid line. The variation of

the flight path angle is plotted in Figure 22. Finally, Figure 23

presents the variations of the optimum lift control and the speed.

Again, the optimum lift control oscillates and tends to the lift control

for maximum lift-to-drag ratio, X = 1.

In both cases above, the trajectory generated by using

maximum lift-to-drag ratio, X = 1, is plotted in the dashed line for

comparison. Besides an improvement in the range of about 2%, the

oscillation in altitude along the optimum trajectory is less severe.

We can also see a more desirable behavior of the flight path angle

along the optimum trajectory. It also yields a more smooth variation

in the deceleration.
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CHAPTER 8

THREE-DIMENSIONAL FLIGHT

Two elements are of interest in three-dimensional flight; one

is the maximum cross range, the other is the footprint. In this

chapter, we shall discuss the procedure to solve the absolute maxi-

mum cross range. We will see that it is a three-parameter problem.

Then by using the equilibrium glide condition as a simplifying device,

we shall compute the footprint of a gliding entry vehicle on the surface

of a planet. A technique of coordinate rotation is used to make

the iteration much more effective.

8. 1 Maximum Cross Range

It is proposed to find the lift and bank modulation to maximize

the final latitude 4>f while the final longitudinal range 0 is free. For

an initially circular orbit, if the position of departure is free, the

reachable domain will then be a zone between the latitudes -<f> _
1x1 cOC

and +cb . If d> = iT/2 , the reachable domain is the entireTmax Tmax

surface of the planet.

Since the final arc length s. is free, we have C0 = 0 in Eq.

(3.6). The final condition in the state variables will be

77
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Z = Zf , v = v f , Y = \f = free , 9 = 9f = free ,

(8.1)
4> = i|j = free , 9 = cj> = maximum

The Eqs. (3.7) at the final time then can be written as

PQ = C, = 0

p. = - cos 9 (C2sin9 - C3cos9f) = 0 (8.2)

p, = C2cos 9 + C3sin9 = 1
9f ± ±

Solving for the constants of integration C2 and C$ we obtain the

solutions for p , and p , ,

p . = cos <b sin (9 „ - 9)
1 f

p = cos (9 - 9)
9 f

(8.3)

We also have, since V is free,

Qf = PY = 0 (8.4)

The Hamiltonian integral (3. 11) becomes

_p tan , . N __ + iL-i tanvi .
* v J

E* k Z
+ P, sinJj - p, cos4jtan<() = 0 (8.5)

4NcosY \ c o s ^ V / 9

Thus for the specified final condition (8a 1), the procedure to obtain

the optimum solution is as follows. Starting from a certain initial

state, say
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(Z., v , V., 9., <}>., ^) = (.0005, 1.0, -4°, 0, 0, 0) (8.6)

with a given value of Er, we integrate the state equations (2.8) along

with the adjoint equations (3. 9), using the control law (3. 10) and

the Eqs. (8.3) for p and p.. There are three parameters, namely,

the final longitudinal range 9, and two of the three initial values P.,

N., and Q. since one of them can be obtained from the Hamiltonian
i i

integral (8. 5). These parameters are to be selected such that when

the integration is stopped at 8 = 9,, the two prescribed final values

Z- and v. and one transversality condition (8.4) are all satisfied.

The resulting trajectory will be the optimum trajectory for maximum

cross range.

A simplification can be made by using the so-called equilib-

rium glide condition, assuming that the glide angle is small and

stays nearly constant. This is expressed as

~ 0 , - s* 0 (8.7)
ds

By substituting into the equation for Y in (2.8), we have

kZ = . " (8.8)
X. vcos <r

This equation is used to evaluate the altitude Z. Thus we have the

following reduced set of state equations
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dv _ ( 1 + X Z ) (1 - v)
ds E*X cos <T

d£ _
ds cos cj>

(8.9)

ds

(1 -v ) tan <r - cos y tan
ds v

The Hamiltonian of the reduced problem is

u (l + X z ) ( l - v ) cosjj
H = - p ~^*r - *• + p,, - 7 + p.

^v E * X c o s c r ^9 cos c() K(

Fd - v) ~|1 - L tan o- - cos <\> tan <j) (8.10)

Then, it is clear that the optimum lift control is

X = ± 1 ' (8. 11)

that is the glide is effected at maximum lift-to-drag ratio. For the

bank control, we either have

cr = <r1 max

or an interior bank control such that

E*-

We notice that the integrals (3. 7) are still valid for this case. Hence,

with GI = 0, C0 = 0, we can write the Hamiltonian integral of (8.10) in
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the form

2 p v ( l - v )
p sin^ + p _ cos^ tan((J =

E*coscr "V Y ^

Using the optimal law (8. 12) to eliminate p and the Eqs. (8. 3) for

p and p , we have the explicit lav/ for the bank angle

., . cos c|> sin (8, - 9)
tan(r = ii^ , 1 _

cos (0- 9) sin 4" - cos 4" sin cj) sin (9 - 9) (8.14)

The problem is thus reduced to a one-parameter problem in the

parameter 9 . In this formulation the stopping condition is no longer

Z. but the final speed v, „

For numerical computation, we use the control law (8. 14) to

integrate the full set of exact state equations (2. 8) with a guessed

value for the final longitudinal range 9 This value is to be adjusted

such that, at the final time when 9 = 9^, the prescribed final condition

v = v- = „ 001 is satisfied. The initial state used is (80 6) except that

the initial speed is 0.99 instead of 1.0. The purpose of this change

is to give a defined cr value at the initial instant. The maximum

value of the bank angle is selected to be 85 . Figure 24 presents

the maximum cross range solved by using the reduced control law

(8.14), as a function of the maximum lift-to-drag ratio E*. The

dashed lines represent the results of the gliding trajectory with X. = 1

and cr = 45° where the bank angle is switched to 0° when the heading

angle 4> reaches the limiting value 90 „ The improvement in the
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Figure 24. The Longitudinal and Cross Ranges as Functions of E*

cross range is easily seen. We can also see that for vehicles with a

maximum lift-to-drag ratio E* greater than the value 3. 5, the maxi-

mum cross range is larger than 90° and the reachable domain of the

vehicle is the whole surface of the earth if it has an initially circular
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orbit and the point of departure is not specified. For all the trajec-

tories, the final altitudes are about the same with Z,. ̂  30, which

corresponds to an altitude drop of about 50 miles from the initial

point. The final flight path angles vary with E* with larger E* giving

flatter flight path angles. For example, for E* = 1 . 5 the final flight

path angle is Y - _ 23. 5° for both control laws Eq. (8. 14) and cr = 45°

and 0°; for E* = 3.5, it is V = - 11. 0°. Figure 25 presents the

variation of the altitude and the speed of the trajectory generated by

the lift control \ = 1 and the bank control (8. 14) while Figure 26

presents the variation of the flight path angle and the bank angle, for

it

the maximum lift-to-drag ratio E = 1 . 5 .

8.2 The Footprint

As has been mentioned before, if the reentry vehicle is

initially in a circular orbit and the position for leaving the orbit is

not prescribed, then the reachable domain on the surface of the earth

will be a zone between the latitude -4> and cb . The footprint of
max max

a reentry vehicle is defined as the curve limiting the reachable

domain on the surface of the earth if the reentry point is specified.

This problem is even more complicated since we have to find the

maximum cross range for each prescribed final longitudinal range

0,.. As the final longitudinal range is no longer free, p = Cj ^ 0.

In Eqs. (3. 7), if we divide all the equations with G! , they become
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O

Tj «J

.2 fe
h fi
nt (U
> O

vO
(VJ



86

p
_ - _ cos 9 4-7^ sine (8.15)
d d d

— - = sin <|> - cos cj> ( — - sin 9 - — - cos 9 1
d \ Ci d /

Similarly, Eqs. (3.9) can be rewritten in the form

( i (N\ E* r /QY _!_/M2-H
(E* \dy " 4 ( N / C X ) l\cj c o s 2 Y \ C i / J/

A. *. k3z
ds \d/ cosY

^2 i/— i .. 11 /"• j ' " i /- i —* • i '°° ^°'

_ _ .
ds c " cos 2Y (c , Cl E* v

E * k Z s i n Y r/^.\2 • 3
4 (N/d) L C i cos 2 Y

/Wll
\ d / J )

In terms of the new variables p , /d » etc. , the Hamiltonian integral
9

(3. 11) becomes

/P \ / N \ f kZ ^ ( 2 - v ) , v l ( 1 -v ) /Q\
- I— J tanY - (•^r) -^ - ~ + - tanY - - (— )

\Ci/ \ci/ L E ^ c o s Y v J v \Ci/

+
E*kZ

4 (N/Cj)cos Y

-(-r) cos^ tan<j> = 0 (8.17)
\Ci/

•where again C0 = 0 since the final arc length is always free. The

control law is, from Eqs. (3.5),
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The Eqs. (8. 15) - (8. 18) combined with the state equations (2.8) are

the equations for solving the exact footprint of a reentry vehicle from

a specified departure point. There are four parameters in this

problem; they are (C^Ci), (C^/Ci) , and two of the three initial values

(P/C t). , (N/Ci). , and (Q/Cj). since one of them can be obtained from

the Hamiltonian integral (80 17). Among them, one can be used as a

scanning parameter since we want to solve the whole footprint.

Hence, it is a three-parameter problem. For a typical example, a

vehicle is initially at the specified point (8. 6). To find the exact

footprint we pick a scanning parameter and guess the other three

parameters, and start the integration of Eqs. (2.8) and (8. 16) along

with the using of Eqs. (8. 15) and (8. 18). The three guessed

parameters are to be adjusted such that when the integration is

stopped at the final time with v = v., the prescribed Z = Z. and Y = Y-

and the transversality condition

M-^ ) = 0 (8.19)
^1 /£

are all satisfied. Then by varying the scanning parameter the foot-

print can be solved. If the final flight path angle is not prescribed,

the condition Y = Y, "will be replaced by another transversality condi-

tion, namely (Q/Cj) . = 0.
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In the preceding section we have obtained <j> by using the
m£Lx

equilibrium glide simplification. We shall use the same device in

this section again. The control law (8. 12) is still valid in this case.

By using it in the Hamiltonian integral (8. 10), an explicit law for the

bank angle is solved to be

tancr = ~ (8.20)
B

where

(8.21)

cos ^ p(j> . i. . iB = - - +.— x sin V - -?• sin ̂  tan d>
cos (j> Ci r

From the second and third equations of (3. 7) since C± £ 0, we have

P4— - = sin cf> - cos cjj (kj sin 6 - k2 cos 9)
^1

(8.22)

77- = kx cos 0 + k2 sin9
^i

where

k i=? r , k 2 =-^ (8.23)GI Ci

Hence, there are two parameters kj and k2 in the reduced problem,

and it is a one-parameter problem since either kj or k2 can be a

scanning parameter. For the trans versality condition since the final

heading angle fyf is still free in this case, we have p. = 0 or from

the first equation of (80 22) ,
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sin <|> - cos <j> (ki sin 6 - k2 cos 0 ) = 0 (8. 24)

The procedure to solve the footprint is as follows. Using the explicit

control law (8. 20) in the full set of exact state equations (2. 8), the

integration is started from the initial state (8. 6) with v. = . 99 instead

of 1.0. For the two parameters lq and k2 we pick kj as the scanning

parameter and adjust kz such that when the specified value v = v, is

reached, the transversality condition (8. 24) is also satisfied. By

varying kt and doing the same adjustment on kz for each value of ki ,

the whole footprint is solved. Although in this reduced problem the

final altitude is not specified, according to the numerical results it

is acceptable in general.

A technique of coordinate rotation has been introduced by

Fave [9J for a flat planet model. Its application in the spherical

planet model enables us to use the control law (8. 14) which corre-

sponds to GI = 0 for solving the footprint. We shall illustrate the

technique in the flat earth case at first, and then use it in the

spherical earth case. In Figure 27, let M. y z be the initial coordi-

nate axes and M. M be an optimal trajectory leading to the final

point M- on the footprint C for a given longitudinal range y . Let

M. y1 z1 be the rotated coordinate system with the axis M. y1 parallel

to the tangent of the footprint C at the point Mf. Since the footprint

is the same if the initial condition is maintained, if we use the new
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M.

Figure 27. Rotation of the Coordinate Axes,
Flat Planet Case

axes M. y' z' to find the point M on the footprint, we have the problem

of maximizing z1 while y' is free. As the axis My1 is not known a

priori, we have a new parameter, namely the initial heading angle

41.1 with respect to the new axes. Besides the new parameter i^.1, we

also have another parameter y ' on the new axes. These two new

parameters correspond to the parameters kj and k2 in Eqs. (8 .22) ,

but.they are geometrical quantities on the rotated axes. The

parameter 4>.' is the initial heading angle with respect to the rotated

axes. It will be clear later on that, if we consider the upper half of

the footprint and translate the rotated axes to the. points on the foot-

print, we will see that the maximum longitudinal range point

corresponds to the value 41.1 = 90°. Then, as the new axes are moving
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along the footprint, the 4^.' angle is decreasing from 90° to 0° and

then to -90°. The 4^' = 0° corresponds to the maximum lateral range

point of the footprint, and the 4".'= -90 is the point where the slope of

the footprint fails to be continuous. On the other hand, the other new

parameter y ' is the value of y1 where the maximization of z' occurs.

Hence, for the two new parameters we can pick 41.' as the scanning

parameter. For each value of 4j.1 from +90 to -90°, the y ' is

adjusted such that the final condition is satisfied., Then, from the

values (y ', z') and the angle 4J.', we can compute the coordinates

(y , z J of the resulting point on the original axes M. y z by using the

relations

yf = yJ cos 41.' + z ' sin41.'J f ' f i f i

z = - y ' sin 41.' + z ' cos 4".'
(8. 24)

By varying the 4J.1 from +90° to -90 , the footprint can be obtained

very systematically and effectively.

For the spherical earth model, the rotation of the coordinate

axes must be performed on the surface of a sphere, since all the

coordinate axes must be along the great circle. The equations for

coordinate transformation are not apparent and their derivation is

more elaborate. Again, in Figure 28, M. 9 $ is the original coordi-

nate system and M. M, is an optimal trajectory leading to a point M

on the footprint C for a given longitudinal range Qr. There is a

tangent of the footprint C at the point Mf. At point M^ and parallel
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Figure 28. Rotation of the Coordinate Axes,
Spherical Planet Case

to this line we can draw a straight line which combines with the

center of the sphere O to decide the great circle plane for the rotated

axis M. 9'. The rotated axis M. 4>' is then on the great circle passing

through the point M. and perpendicular to the great circle of axis

M. 9'. Hence, M. 0'4>' is the rotated coordinate system for the point

M on the footprint. Referring to this new axes system, the optimal
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trajectory M. M- has an initial heading angle 41.', but the point M is

the absolute maximum lateral range point. Thus, with respect to

the new axes M. 0' cj>' we are maximizing cf>' with 9! free, and the

explicit control law (8. 14) can be used. For convenience, Eq. (8. 14)

is rewritten on the new axes M. 01 (j>' as follows

coscj>' sin(9f ' - 9 f )

t a n o - = — - cos (9 i .9') sin 4" - cos <\> ' sin <f>» sin (0 '- 9r) (8' 25)

For each value of 41.1 from +90° to -90°, we guess 9 ' and integrate

the state equations (2. 8) from the initial condition (8. 6) with v. = .99

instead of 1.0 by using the explicit control law (8.25). Then we

adjust 9 ' such that when the integration is stopped at 9' = 9 ' the

final speed v = .001 is satisfied. The results (91 , < j ) ' ) obtained from

this iteration are the values on the rotated axes M. 9' <j>' . The

formulas to translate them to the values referring to the original axes

are

tan (j> ' sin <\>.*
tan 9, = tan 9' cos iK1 +,

f f i cos 9 '
(8.26)

sin cj) = . .cj) = sin cj> ' cos 41.1 - s i n 9 ' c o s c j ) '

These formulas are derived in Appendix C, using the spherical

trigonometrical relations. To construct the footprint, we start from

the value vk1 = 90° •which corresponds to the maximum longitudinal

range point of the footprint. As *\>.f is decreasing from 90° to 0 ,
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which corresponds to the global maximum cross range point, the

portion of the footprint to the right of the global $ point is

obtained. The portion to the left is constructed by 41.' ranging from

0° to -90°. Figure 29 shows the footprint for the maximum lift-to-

drag ratio E* =1 .5 . The trajectories leading to the points on the

footprint are also depicted with the corresponding values of 4".' and

9 ' given. This technique of rotating the coordinates is not applicable

to the short arc to the left end of the footprint beyond 41.1 = - 90°. For

all trajectories from ijj.1 = 90° to -90°, the bank angle is always

positive, that is, to the left, or zero. But for the short arc beyond

ijj.1 = - 90° we have to bank the vehicle to the right at first, and then to

the left at a certain switching point. Figure 30 presents the bank con-

trol as a function of the longitudinal range 9 for the trajectories. The

maximum bank angle is er = 85°. For trajectories with long longi-
rrlcLX

tudinal ranges, the bank angle is near zero initially. It increases to

certain value and then decreases to zero finally. For trajectories

with short longitudinal ranges, the bank control hits the <r for amsix

while and then decreases to zero finally. Again, the final altitude is

not considered. But for all the trajectories the final altitudes are

very close to the value Z = 30 which is a reasonable low altitude.
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CHAPTER 9

CONCLUSIONS

A general solution for optimum reentry trajectories in a

vertical plane has been presented. The three-dimensional optimal

trajectories leading to a maximum cross range and the footprint are

solved in a reduced problem. Unlike previous numerical studies in

the published literature -where physical data have to be specified

numerically, here we only have to specify the most important perfor-

jj>

mance parameter, namely the maximum lift-to-drag ratio E \ The

numerical results obtained are valid for all vehicles having the same

maximum lift-to-drag ratio,, For the other vehicles with the values

of E''" around the value we have used for computation, the behaviors

of the optimum lift control and the trajectory variables such as

altitude, speed, and flight path angle are essentially the same. This

advantage of having a general study is made possible by the use of the

modified Chapman's variables and the normalized lift coefficient.

The planetary atmosphere is assumed to be spherical and at rest,

with locally exponential variation in its density. It is found that the

characteristic for any atmosphere can be specified by the average

value of the dimensionless quantity k2 = pr. For the numerical

97
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computation, w.e take k2 = 900 for the earth's atmosphere. The

equations retain the generality and are also valid for flight in a

vacuum. Hence, the totality of the optimum trajectory, from entry

to landing, can be followed continuously even if at the beginning the

vehicle skips out of the atmosphere repeatedly before effective entry

at lower speed.

For the planar flight case, several optimum problems for

flight over a spherical earth are solved and the results analyzed in

detail, especially the skip trajectory. At low altitude and low speed, it

is more convenient to use a flat earth model. This has been achieved

by using a canonical transformation applied to the spherical equations

followed by a flat earth simplification. Optimum problems for flight

over a flat earth are solved using the simplified equations. The

optimum gliding trajectory for maximum final range, as compared to

the maximum lift-to-drag ratio gliding trajectory, has better range

and smaller peak deceleration and is less oscillatory.

In three-dimensional flight, we have two more state variables,

namely the latitude and the heading, one more control, namely the

bank angle, and two more adjoint equations. But at the same time,

we have two additional integrals. Hence, the real difficulty in three-

dimensional analysis lies not in the analytical formulation but in the

practical computation of a two-point boundary value problem con-

taining three parameters instead of two as in the planar case. A
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simplification is thus introduced by using the so-called equilibrium

glide condition, assuming that the glide angle is small and stays

nearly constant. Then, by using this simplification, the footprint of

a reentry vehicle is calculated. A technique of coordinate system

rotation has been used, which makes the iteration much more

effective and geometrically meaningful.

A distinctive feature of the present formulation is that the

equations of motion and their variational derivations are valid

uniformly for flight in the dense layer of the atmosphere where the

aerodynamic force is predominant and for flight in the near vacuum

where the Newtonian gravitational force is predominant. Hence we

can use the same equations for the investigation of the effectiveness

of the optimum aerodynamic control at very high altitude. It is

expected that this tenuous aerodynamic control, coupled with a thrust

control with small magnitude, will be sufficient as optimum controls

for the guidance of skip trajectories.
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APPENDIX A

Normalized Drag Polar

Consider a generalized drag polar of the form

CD = CD0
 + KCL ^

where at very high Mach number, the zero-lift drag coefficient

C,-. , the induced drag factor K, and the exponent n are assumed to

have their constant asymptotic values. If E = C^/Cy- . is the lift-to-

drag ratio, then
CD

Z-cf + K Si"1 < A - 2 >
J_i

Hence, E is a maximum when

Q

- 7rr + (n-.l) K CT
n"2 = 0 (A. 3)

CL L

This corresponds to the lift and drag coefficients

The maximum lift-to-drag ratio E''~ is, of course,

E* = CL / CD

If we define the normalized lift coefficient \ as
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^L" = CL* (A. 6)

then it is clear that when\ = 1, C = C * and the operating point is

at the point of maximum lift-to-drag ratio. Using (A, 4) and (A. 6) in

(A. 1), we have

c .-fa-Ifc.!,^-] ( A 7 )
D (n - 1)

Considering (A. 5) we obtain

(A. 8)

where
, ,. . n

f(X) = i£^-il±*_ (A. 9)
n

For the case of a parabolic drag polar, n = 2, we have

- * *
D ' D 2 -
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APPENDIX B

Derivation of the Equations (6. 31) and (6.32)

The exact Hamiltonian for the flat planet case is

up (1 + X2) p X p
3l= wp tanY - r l̂T1 — - 2p tanY + •L-— - — (B. 1)

*w E ' w c o s Y u wcosY u

We use the approximate solution

X0 = 1 (B.2)

to linearize £n?. Then

\ _ \
A. - A. \ _ \A. — \g

(B.3)

By retaining only the first order term, we have '

= wp t a n Y - 2 p tanY -—+rnr^ - ( E * P r / - 2 u p ) (B.4)rw MI u E w c o s Y Y ru

From the linearized Hamiltonian (B.4), we can derive the corre-

sponding linearized state and adjoint equations. They are

dw
- = w tan Y
dy

du 2 uX
- 2 tanY

dy E^ wcos Y

dY _ X 1
dy W C O S Y u
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and

-^ = - pw tanY + E»w2cQSY (E*pY - 2upu)

dp 2p X Pv
__E _ tt II , ,,
dy E*wcosY " u2 '

Pr, WP 2P -v • v
I- w 4. u X s m Y

dy ~ " cos2Y cos2Y " E*wcos2Y (

respectively. Now, to maximize the Hamiltonian (B.4), we consider

the switching function

$ = E * p Y - 2upu (B.7)

Then, for e>T> to be maximum \vith respect to X. we use X. = X. ifr max

& > Q, and we use X = X . if $ < 0. In the finite time interval during

which $ = 0, we have X = variable. Since for maximum range glide,

in the plot for X in Figure 9 there is an interval in which the optimum

X is variable and near unity, we have the approximate singular

relation

$ = E*p - 2upu = 0 (B.8)

By taking its derivative, using Eqs. (B.5), (B.6) , and (B.8) itself,

we have

wp =2p [l + 2C°^ (1 + E;;: tanY)1 (B.9)
*w *u L E'1-6 J

As the linear control does not appear in this first derivative, take



105

the derivative again. This time the linear control appears and is

solved to be

w c o s Y ._ ,„.
(B. 10)

This is the approximate but explicit control law in Eq. (6. 31).

Now, let us use Xj as an approximate solution to linearize the
w

Hamiltonian (B. 1). Then

(X -
X = X j

• cos Y u

( B - U >

The corresponding linearized state and adjoint equations are

dw >/~ — = w tan Y
dy

du wcos V u 2Xd? = "î r - E* wcosv - 2 tan v - F
dY _ X ^
dy w cos Y u

and

dPw f v / cosY x u \ PYX

dy ~ " Pw tanY ' P u\E*u E* w2 cos Y/ w2 cos Y

d?u / w c o s Y 1

dpY wpw / w s i n Y usinY 2 _ \ p Y X s i n Y

dy ~ cos2Y + Pu\ E*u + E*wcos 2 Y cos 2Y/ wcos 2 Y
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respectively. Again, by putting the switching function equal to zero,

we have

E*p = 2wp cosY (B. 14)

By taking the derivative of Eq. (B. 14), it gives

^* 2 c o s 2 Y 2w 2cos 4Y
E*u2

2u) 2 .
w cos

u
sinV + — sinvl (B. 15)

w J

Then if we take the derivative of Eq. (B. 15), we can finally solve a

new explicit control law which has been given in Eq. (6. 32).
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APPENDIX C

Derivation of Formula (8.26)

M.

Figure C. 1. (9^, ty and (9f ,

We have 41.' and (9 ' , 4 > ' ) , and we want (9 , <j> ). By considering

the right spherical triangle M. A I, we immediately have

tan a =
tan 9f'

cos 41.1 (C. I )

and

tanaj = sin 9 ' tan \\j.' (C.2)

Since bj = (j> ' , taking the tangent of bj and using (C. 2) in it, we

have
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tan<j>' - sin9 '

( C > 3 )

Now, from the right spherical triangle M. A I,

cos I = cos 9' sin 4V (C.4)

On the other hand from the other right spherical triangle MB I,

cos I = tanb cot bj (C. 5)

Solving for (tanb) from (C.4) and (C.5) and using (C.3),

cos 9J sin 4V (tancb' - sin9J tan 4V)
. , f i f f i ,_ ,,
tanb = :—; :——f— 77T Ti (C.o)1 + sin9J tan<bj tan y.'

f f i

As 9. = a + b, again taking the tangent and using (C. 1) and (C. 6), we

finally have

, t a n < f > ' sin^1.'
tan 9 = Q, X + tan 9j cos ^.' (C.7)

f cos 9' f i

This is the first formula in (8.26).

For the second formula, from the right spherical triangle

M f BI,

sin <j) = sinb! sin I (C.8)
f

and from the right spherical triangle M. A I,

cos 4V = cos ai sinl (C. 9)
i

Hence,
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sinbj cos 41.1

sincj> = — (C. 10)Tf cos a1

Now, taking the sine on both sides of bj = ( j > ' - a.\ and then using

(C. 2), we have

sin <j> = sin<|)' cos 4^.' - sin 9' coscj)1 sin 41.1 (C. 11)

This is the second formula in (8, 26).
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