General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14 blank. Complete the remaining items as follows:

3. Recipient's Catalog No. Reserved for use by report recipients.

7. Author(s). Include corresponding information from the report cover. In addition, list the affiliation of an author if it differs from that of the performing organization.

8. Performing Organization Report No. Insert if performing organization wishes to assign this number.

9. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72), which uniquely identifies the work unit under which the work was authorized. Non-NASA performing organizations will leave this blank.

10. Insert the number of the contract or grant under which the report was prepared.

15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with, Translation of (or by), Presented at conference of, To be published in.

16. Abstract. Include a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified. If the report contains a significant bibliography or literature survey, mention it here.

17. Key Words. Insert terms or short phrases selected by the author that identify the principal subjects covered in the report, and that are sufficiently specific and precise to be used for cataloging.

18. Distribution Statement. Enter one of the authorized statements used to denote releasability to the public or a limitation on dissemination for reasons other than security of defense information. Authorized statements are "Unclassified-Unlimited," "U.S. Government and Contractors only," "U.S. Government Agencies only," and "NASA and NASA Contractors only,"

20. Security Classification (of this page). NOTE: Because this page may be used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, indicate separately the classification of the title and the abstract by following these items with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for classified items.

21. No. of Pages. Insert the number of pages.

Orbiting Deep Space Relay Station
Final Report
Volume 1. Requirement Determination

John A. Hunter

April 1, 1979

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract No. NAS7-100.
Foreword

The concept of a deep space tracking station in Earth orbit has been of interest for many years. With the advent of the Space Transportation System (STS) and its capability to economically boost large payloads into orbit, it becomes practical to seriously consider such an orbiting station. The technical feasibility of an orbiting Deep Space Relay Station (ODSRS) was demonstrated in a 1977 study sponsored by NASA OSTDS. The present study (1978) had broader objectives, including an evaluation of the deep space communications requirements in the post-1985 time frame, a conceptual design of an ODSRS system, and an implementation plan with schedule and cost estimates and new technology requirements. The study was jointly sponsored by NASA OSS, OAST, and OSTDS. Volume 1 of this report presents the deep space tracking and communications requirements for 1985-2000. Volume 2 describes the ODSRS conceptual design and provides the baseline for implementation cost and schedule estimates. Volume 3 is an implementation plan for an ODSRS, including a comparison of the ODSRS life cycle costs to other configuration options for meeting communications requirements in 1985-2000.
Contents

I. Deep Space Exploration Tracking and Communications
Requirements for 1985 to 2000 AD ... 1
 A. Study Approach ... 1
 B. Post-1985 Mission Requirements 1
 C. Future Spacecraft Instrument Capabilities 7
 D. Future Telemetry Link Technology Requirements 7
 E. A Telemetry Strategy Based on Technology Advances 8

II. Post-1985 Tracking System Design Requirements 9
 A. Telemetry Requirements ... 9
 B. Command Requirements ... 9
 C. Navigation Requirements .. 12
 D. Operations Requirements .. 12

Reference ... 13

Tables

1. Tracking and Communications Requirements from Future Mission Studies .. 3
2. Major Drivers on Deep Space Telemetry Data Rate Requirements ... 7
3. Deep Space Tracking and Communications System Design Requirements 10

Figures

1. Required Bit Rate vs Range from Future Mission Studies .. 2
2. Required G/T vs Range from Future Mission Studies .. 6
3. Example Telemetry Performance vs Time Plan ... 8
Abstract

This three volume report describes the deep space communications requirements of the post-1985 time frame and presents the Orbiting Deep Space Relay Station (ODSRS) as an option for meeting these requirements. It is concluded that, under current conditions, the ODSRS is not yet cost competitive with Earth based stations to increase DSN telemetry performance. It is also concluded that the ODSRS has significant advantages over a ground station, and these are sufficient to maintain it as a future option. These advantages include the ability to track a spacecraft 24 hours per day with ground stations located only in the USA, the ability to operate at higher frequencies that would be attenuated by Earth’s atmosphere, and the potential for building very large structures without the constraints of Earth’s gravity. Future technology development to reduce the cost of the ODSRS and orbital operations and a need for its unique capabilities are expected to make the ODSRS attractive for implementation as an element of the long-term future DSN.
I. Deep Space Exploration Tracking and Communications Requirements for 1985 to 2000 AD

This volume of the Orbiting Deep Space Relay Station (ODSRS) study describes the development of a set of mission requirements for DSN tracking and communications support of deep space probes in the 1985 to 2000 AD time period. These mission requirements are translated into functional design requirements for a tracking and communications system. The functional design requirements used for the conceptual design of the ODSRS are described in Volume 2, and integration with the existing Deep Space Network (DSN) is presented in Volume 3. It is expected that these mission requirements will be useful for future tracking and communications system studies and will provide a basis for tradeoff studies to select optimum ways to meet these requirements.

Existing space missions planning for the post-1985 time period has not included the definition of functional and performance requirements to the level necessary to specify a tracking and communications system. An assessment of these requirements is needed at this time, so that ODSRS system planning, long-lead developments, and implementation can be started.

A. Study Approach

It is recognized that it would be virtually impossible to define a specific set of space missions for 1985-2000 that would be accepted by the National Aeronautics and Space Administration (NASA), the scientific community, and the Congress. Any definition of future missions will also be subject to change due to new scientific discoveries, changing budgets, and a changing political climate. Yet, a set of space mission requirements for the post-1985 time period is needed now to begin planning for tracking and communications systems to meet them. Attempts to define a credible set of requirements for a tracking system presented a dilemma since the missions which this system will be required to support have not been defined. This problem was approached by developing a set of requirements based on an envelope of existing future mission designs, combined with predictions of future instrument capabilities and data requirements. These items were then subjected to a sensitivity analysis to determine how system functional requirements varied with different assumed missions and instruments.

B. Post-1985 Mission Requirements

A search was made of existing candidate mission designs and projections for the 1985-2000 time period (Ref. 1). Requirements of these missions were then estimated for telemetry, command, navigation, radio science, and operations coverage. In cases where no previous studies have looked at the requirements for a proposed mission, the requirements were estimated by similarity to other missions of that type. In addition the requirements and needs of ground based radio astronomy and radio science were estimated.
1. Future Mission Design Studies. The mission types and specific missions from each type that were considered are listed in Table 1. This list is not intended to be a complete set of all possible missions for 1985-2000, nor is it intended to represent a judgment as to the most likely missions. It is intended to contain at least one mission of each type that is a candidate for this time frame. The requirements of a typical mission will be considered applicable to all missions of that type.

Note that Table 1 has some blank entries. This reflects the lack of design data for many candidate future missions and the absence of a basis for estimating the requirements. The potential effect of these mission requirements on a tracking and communications system design will be considered in the sensitivity analysis. As results of more detailed mission studies become available, Table 1 will be updated to reflect new requirements.

The requirements listed in Table 1 are, in general, the results of studies that have been done with the knowledge of existing tracking and communications system capabilities. This knowledge has biased the study results to be compatible with hardware and constraints that currently exist and are understood. It is likely that 1985-2000 technology will provide some significant new capabilities that are not now being considered by mission planners. In designing future tracking and communications systems, we must be careful not to be irreversibly constrained by requirements based on existing technology, and must provide flexibility to accept new requirements as the capability to meet them is developed.

2. Mission Requirements from Design Studies. From Table 1, the mission requirements can be derived for telemetry, command, navigation, and radio science for the period 1985-2000.

a. Telemetry. Mission requirements for telemetry bit rates from Table 1 are plotted as a function of range in Figure 1. These rates are converted to the ratio of required receiving antenna gain to system noise temperature (G/T) in Figure 2. G/T is the primary parameter that defines the overall receiving system performance.

From Figures 1 and 2, it would be concluded that little or no improvement in receiving system threshold performance or spacecraft transmitting performance for telemetry will be required between now and the year 2000. The most stringent telemetry requirements for most missions are based on 125 kbps capability at Jupiter (current Voyager capability) and scaled by range for closer or farther planets. Even the Venus Orbiter Imaging Radar (VOIR) requirement for 8 Mbps does not require an extension of current ground antenna and receiver capability due to the short communications range. VOIR does, however, require a major increase in ground data handling capability immediately after the signal leaves the RF receiver at the DSN stations.

When defining requirements for deep space telemetry systems in the post-1985 time frame, the impetus for advancing receiving system capability or spacecraft transmitting capability is not coming from mission designers. This is so even though it is clear that instruments can produce useful data at the same rate at Saturn or Pluto that they can at Mars or Jupiter. If we were to map some of the large outer planets to the same detail we have mapped Mars, we would have to either significantly increase the operations time (and cost) or the maximum bit rate at outer planets ranges. A JPL/NASA position on future telemetry bit rate requirements is needed so that candidate systems to meet these requirements can be properly evaluated. Section I-D of this report provides additional data that can be used for developing a position on
Table 1. Tracking and Communications Requirements from Future Mission Studies

<table>
<thead>
<tr>
<th>MISSION TYPE</th>
<th>MISSION OR APPLICATION</th>
<th>TELEMETRY PARAMETERS</th>
<th>COMMAND PARAMETERS</th>
<th>RADIOMETRIC PARAMETERS</th>
<th>OPERATIONS REQUIREMENTS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MAX BIT RATE</td>
<td>RANGE RATE * BIT RATE * AU</td>
<td>MAX RANGE</td>
<td>BIT RATE * MAX RANGE</td>
<td>THRESHOLD BIT ERROR RATE</td>
</tr>
<tr>
<td>CURRENT DSN</td>
<td>VOYGER</td>
<td>115 kbps</td>
<td>6 * 10^2</td>
<td>4.4 * 10^3</td>
<td>92.3 kbps</td>
<td>16 * 10^5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADAR MAPPERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOYGER</td>
<td>8 mbps</td>
<td>0.3 * 1</td>
<td>1 * 10^2</td>
<td>84 kbps</td>
<td>2 * 10^5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT OF ECLIPTIC</td>
<td>Solar POLAR</td>
<td>6 kbps</td>
<td>4.5 * 6</td>
<td>3 * 10^5</td>
<td>32 kbps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar Probe</td>
<td>4 kbps</td>
<td>6 * 1</td>
<td>5 * 10^5</td>
<td>32 kbps</td>
<td></td>
</tr>
<tr>
<td>SMALL BODIES</td>
<td>Halley's Comet</td>
<td>115 kbps</td>
<td>0.7 * 4</td>
<td>4 * 10^5</td>
<td>76.1 kbps</td>
<td>16 * 4</td>
</tr>
<tr>
<td></td>
<td>(Non-Drive)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asteroid Multiple Rendezvous</td>
<td>128 kbps</td>
<td>4 * 10^5</td>
<td>8 86 * 4</td>
<td>156 X 1</td>
<td></td>
</tr>
<tr>
<td>ORBITERS</td>
<td>Jupiter Orbiter (with Probe)</td>
<td>128 kbps</td>
<td>6 * 128</td>
<td>5 * 10^3</td>
<td>92.7 kbps</td>
<td>32 * 6</td>
</tr>
<tr>
<td></td>
<td>(with Galileo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-① CONSECUTIVE INNER CODE REDUCES ERROR RATE TO 10⁻⁵
-② POSSIBLE EXTENDED MISSION TO URANUS
-③ DECIMAL TOLERANCE WILL COVER ALL MISSIONS EXCEPT OUT OF ECLIPTIC
-④ WOULD LIKE 15 mbps. BUT IT IS MAX CAPABILITY OF CURRENT S/C - EARTH LINK
-⑤ WANT 5-BAND FOR SOLAR PLASMA - ALSO WANT SIMILAR TANDEM S AND X-BAND 2-WAY
-⑥ UV FOR OUT OF ECLIPTIC MISSIONS
-⑦ THAT 4 REGULAR SUN WILL AFFECT COMMUNICATIONS CHANNEL BIT RATE DROPS TO 1 * 4 Kbps
-⑧ DUE TO UNCERTAINTY IN ORBIT OF TARGET, OPTICAL NAVIGATION WILL PROBABLY BE REQUIRED FOR ENCOUNTER
-⑨ X AND S CHOSEN BECAUSE OF AVAILABILITY - NEED 2 FREQUENCIES TO CALIBRATE PARTICLES, HIGHER FREQUENCIES PROBABLY BETTER - FOR EXAMPLE X AND P.
<table>
<thead>
<tr>
<th>MISSION TYPE</th>
<th>MISSION OR APPLICATION</th>
<th>TELEMETRY PARAMETERS</th>
<th>COMMAND PARAMETERS</th>
<th>RADIOMETRIC PARAMETERS</th>
<th>OPERATIONS REQUIREMENTS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDERS</td>
<td>VENUS (WITH BOUYANT STATION)</td>
<td>260 kbps</td>
<td>0.5 1.7 - -</td>
<td>84.5 - -</td>
<td>1 -</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>SAMPLE RETURNS</td>
<td>MARS 250 kbps</td>
<td>0.5 2.5 20 10^5</td>
<td>75 175 16</td>
<td>1 0.05</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 MBPS</td>
<td>0.3 1 256</td>
<td>73.0 -</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COMET 155 kbps</td>
<td>0.7 4 4</td>
<td>73.0 -</td>
<td>0.1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTEROID 128 mbps</td>
<td>4 4 4</td>
<td>73.0 -</td>
<td>0.1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>OCCULTATION EXPERIMENTS</td>
<td>SMALL CONTAINED</td>
<td>1</td>
<td>0.1</td>
<td>DUAL</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PLANETARY GRAVITY FIELD OBSERVATIONS</td>
<td>100 cm</td>
<td>1</td>
<td>0.1</td>
<td>ALL</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GRAVITY WAVE</td>
<td>1 TO 300</td>
<td>1</td>
<td>0.1</td>
<td>6-STER RADIANS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RADIO ASTRONOMY WITH NATURAL SOURCES</td>
<td>110 cm</td>
<td>1</td>
<td>0.1</td>
<td>6-STER RADIANS</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>SETI</td>
<td>110 cm</td>
<td>1</td>
<td>0.1</td>
<td>6-STER RADIANS</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTES:
1. MARS SAMPLE RETURN requires rendezvous in Mars orbit. This would probably not be Earth controlled.
2. Not likely.
3. Requires orbiting spacecraft.
4. Initial proposals may require unreal accuracy. Further proposals in process.
5. Long mutual station view periods for VLBI.
6. Earth stations limited by atmosphere.
c. Navigation (Radiometrics). Navigation mission requirements in Table 1 generally represent a factor of 5 to 10 increase in accuracy from the existing capability. Means to achieve these improvements are largely understood, and implementation of some of them is currently underway (wideband one-way range and dual-frequency uplink). The only area in which a significant technology development may be required is in precision two-way ranging. To meet requirements for some applications, such as radio science and ODSRS, the capability to determine range to \sim10 cm will be needed. This implies a wider band, higher clock frequency system than now exists and would require a new spacecraft transponder and a new ground station system.

The improved radiometric capabilities for navigation will also satisfy many of the radio science requirements. Radio science requirements are generally more severe than for navigation, and ways to meet all of them are not clear at this time.

d. Operations. The mission operations requirements of Table 1 do not readily correlate to requirements on a tracking and communications system design. There is not an obvious basis to derive station tracking time requirements until launch dates and mission profiles are better known. If a mission from Table 1 is launched every 2 years, the existing DSN system will be unable to provide the mission support that is currently required by deep space projects. To resolve this problem would require either more tracking stations or a change in project philosophy about “nearly continuous” tracking.

A major factor which affects operations requirements is the need for 24-hour-per-day telemetry and command capability. Current deep space projects request the capability to command a spacecraft anytime an anomaly or problem is detected. This drives the DSN requirement to have stations located around the World in a geometry that allows at least one ground station with command capability to be in view of any spacecraft 24 hours per day. Future mission requirements have not been defined in this level of detail. If future missions can be constrained to require command capability for a maximum of 1 station pass per day, it would allow all command activities to take place from ground stations located in the territorial USA. If navigation and radio science requirements for 2-way doppler and ranging can be similarly constrained, the only stations with transmit capability could be located in the territorial USA, Goldstone for example. This constraint should reduce networks operations costs.

For comparison purposes, the effect that an ODSRS would have on DSN loading can be summarized as follows:

1. It would add the capability for 24 station hours per day
that could be available for receiving from one or more spacecraft, one at a time. This 24 hours would be reduced by the time required to slew between spacecraft and to reprogram the ODSRS for a new spacecraft. (2) it would add the capability for 2-way tracking by Goldstone of a spacecraft to which the 2-way round trip light time exceeded the length of a station pass.

C. Future Spacecraft Instrument Capabilities

This section will address future telemetry data requirements based on the expected spacecraft instrument capabilities. The major drivers on data rate capability are summarized in Table 2. Note that these are all imaging related devices. Instruments can generate data at the far-out planets as fast as they can at Jupiter. To define communications system requirements to support these instruments for future missions, a strategy for sending this data to Earth is needed. This strategy could range from requiring real time, non-compressed data transmission to having large data storage capability on the spacecraft and using the existing link data rate capability and long playback times. Future mission studies to date have chosen to require existing telemetry link capabilities and have assumed either slow real-time data rates (down to ~1000 bps at far-outter planets) or recording of all high-rate data and non-real-time playback at data rates down to ~1000 bps. It appears to be an unrealistic assumption, for missions 15 to 20 years in the future that will likely cost hundreds of millions of dollars, to return only about 1/100 the data of the existing Voyager class missions to Jupiter. If this assumption stands, the amount of data returned from Pluto, for example, may not justify the cost of a mission.

D. Future Telemetry Link Technology Requirements

At this time, the new technology needed to provide dramatic increases in telemetry link capability on the order of 20 dB (at least) is credible for the 1985 to 2000 time period. This includes both spacecraft and receiving station technologies, such as:

- Higher communications frequencies.
- Larger antennas.
- More powerful transmitters.

In addition, we can anticipate continued advances in the density and speed of solid state data generating instruments and processing equipment that will result in:

- Even higher raw data rates.
- On-board data processing to reduce telemetry channel data rates below the raw data rate.
- Requirements for lower bit error rate telemetry channels for compressed data.

Since the technology of the future contains many unknowns, it is likely that a new technology that is not currently being considered could play a major role in deep space tracking and communications in the year 2000. Therefore, it does not seem prudent to plan future missions based on existing capabilities. Nor does it seem prudent to plan future tracking and communications system performance requirements to be the same as they are today. A new strategy is needed for planning future deep space telemetry link capabilities. This strategy should be based on credible advances in technology.

<table>
<thead>
<tr>
<th>Instrument description</th>
<th>Data rates</th>
<th>Planets of interest</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real time TV, Voyager class</td>
<td>125-250 kbps</td>
<td>All</td>
<td>Assumes 10^9 bit on-board recorder. Requires 10 to 20 times longer operations time for playback.</td>
</tr>
<tr>
<td>Non-real time TV, Voyager class</td>
<td>10-20 kbps</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Real time TV, CCD camera</td>
<td>1-5 Mbps</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Active microwave coherent imaging, VOIR class</td>
<td>8 Mbps (15 Mbps desired)</td>
<td>"Cloudy" targets like Venus, Jupiter, and Saturn for surface features. Will require 5-10 yr to determine if microwave imaging has value at outer planets. Data rate will likely be compressed by on-board processing.</td>
<td></td>
</tr>
</tbody>
</table>
be flexible in time and cost, allow for technological "surprises" in the future, and be related to an overall mission plan including future science objectives and spacecraft systems to use the telemetry capability.

E. A Telemetry Strategy Based on Technology Advances

This section proposes a strawman future telemetry strategy. The numbers and years may be questioned, but the form of the strategy is the important factor.

Figure 3 shows communications range to the planets of the Solar System versus the delta dB required to maintain a constant bit rate. Jupiter has been assumed as the 0 dB point, so that performance improvement for real time TV at Voyager rates can be read directly for the chosen planet. Note that to achieve real-time TV at Saturn requires ~5 dB over Jupiter, Uranus requires ~6 dB over Saturn, and Pluto requires ~6 dB over Uranus. If a strategy of achieving real time Voyager quality TV from Pluto in even increments through the year 2000 were adopted, the plan would be as shown in Figure 3. Note that when the communications system capability will support real-time Voyager quality TV from Pluto, it will also support VOIR class active microwave imaging from Jupiter.

This form of a strategy has the feature of clearly defining when a communications capability will exist as a function of time and target planet. Mission designers can then determine if the planned capability matches planetary windows, mission plans, and science objectives, and can suggest changes to the time axis. Technology development plans can then be implemented to provide the improved performance when it is planned. Note that this is an iterative process between mission design, technology development, and communications system implementation. Integrating these elements with funding availability would be one approach to developing a total deep space tracking and communications plan for the future.

Fig. 3. Example telemetry performance vs time plan
II. Post-1985 Tracking System Design Requirements

From the mission requirements defined in Section I and Table 1, a set of design requirements can be derived. Table 3 contains these system design requirements and also shows the derivation from mission requirements. Due to the uncertainty in future mission set definition, it is important to determine how changes in the mission set affect tracking and communications system design requirements and technology development. This section will address the sensitivity of telemetry, command, navigation, and operations requirements to changes in the mission set.

A. Telemetry Requirements

From the telemetry requirements discussion of Section I, future missions that have been studied nearly all require the existing 64-meter DSN receiving capability. A first-order conclusion from this would be that telemetry reception requirements for future missions are insensitive to variations in the mission set chosen.

There are two factors which argue against this conclusion. First, the existing DSN capability provides only 1/100 of the existing Voyager (Jupiter) data rate when the communication range is extended to Pluto. This vastly reduced capability may not be adequate to justify the cost of a far-outer planets mission. The second factor indicating that telemetry communications requirements are sensitive to the mission set chosen is imaging radar. The missions studied to date have not assumed the use of imaging radar at ranges beyond Venus. If this technique proves valuable at Venus, it is possible that it will be planned for more distant planets, including Jupiter and beyond. Referring to Figure 3, the telemetry performance capability for imaging radar from Jupiter is equivalent to the capability for real time Voyager class video from Pluto. This level of performance will require major improvements in communications performance and will likely be a long-term requirement.

The conclusion is that increased telemetry communications capability will likely be required, and the amount of increase is sensitive to missions beyond Jupiter and to imaging radar. Telemetry performance can be increased in increments as a function of time leading to the final capability. Phasing mission designs to use performance increments as they become available could be one element of developing an overall deep space exploration plan.

B. Command Requirements

Command requirements vary considerably between missions described in Table 1. Variations in choice of mission set would have a large effect on command requirements if each mission was designed at command threshold. However, all future missions studied have large margins above command
<table>
<thead>
<tr>
<th>Function</th>
<th>Mission requirement</th>
<th>System design requirement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telemetry</td>
<td>Bit rates and bit error rate vs range: see Table 1.</td>
<td>Receiving antenna gain to system noise temperature ratio: (G/T > 56 \text{ dB}).</td>
<td>Considers S/C transmitter power and antenna gain as defined in mission studies. Existing 64-m X-band performance is (~56 \text{ dB}).</td>
</tr>
<tr>
<td></td>
<td>Bit rate vs range: per Fig. 3 for 1985.</td>
<td>S/C to receiver telemetry link performance 6 dB greater than existing DSN.</td>
<td>Assume real time transmission from RF receiver to telemetry processor.</td>
</tr>
<tr>
<td></td>
<td>Max bit rates: 250 kbps, 8 Mbps (VOIR).</td>
<td>RF receiver to telemetry processor channel bandwidth: 250 kbps 8 Mbps (imaging radar)</td>
<td>For ODSRS to earth link, assume a maximum degradation of 0.2 dB at threshold with worst case weather.</td>
</tr>
<tr>
<td></td>
<td>Max bit error rates: (5 \times 10^{-3}) to (1 \times 10^{-5}).</td>
<td>Receiver to telemetry processor bit error rate: (< 1 \times 10^{-6}).</td>
<td>Assume S/C receiving antenna pattern and system noise temperature equivalent to Galileo. Existing (P\cdot G = 133) (64 meter) and (= 123) (26 meter) at 20 kW.</td>
</tr>
<tr>
<td>Command</td>
<td>Bit rates and bit error rate vs range: see Table 1.</td>
<td>Transmitter power-gain product: (P\cdot G > 118).</td>
<td>For an ODSRS, would need 3 widely spaced ground stations – could be all territorial U.S. Would also require 10 cm ranging system for ODSRS to determine location to 1 m. Real time end-to-end group delay calibration technique desirable. ODSRS could be far-field calibration source for ground stations. Absolute configuration control after calibration is required. Implies use of hydrogen maser.</td>
</tr>
<tr>
<td>Radiometric</td>
<td>Absolute range accuracy 1 m (for navigation).</td>
<td>Station location known to 1 m in all 3 axes (relative to Earth-fixed reference system).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>End-to-end group delay calibration absolute accuracy: likely (~20 \text{ cm}). End-to-end group delay stability: likely factor of 10 better than 1978.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency and timing accuracy: 1 part in (10^{13}) (for Saturn-Neptune distance).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absolute range accuracy 10 cm (for science and for ODSRS).</td>
<td></td>
<td>Requires new wideband ranging system on ground and new wideband transponder on spacecraft. Implies some sort of near real time calibration of tropospheric changes. Would require stable S/C temperature when taking data. Attitude motion of S/C (and ODSRS) would have to be modeled. Navigation within (\pm 30^\circ) of the Sun would require 2-frequency 2-way capability (X-S is OK, X-X is better, X-K is even better). Note that radio science prefers S-Band near Sun. For an ODSRS, its velocity would have to be known to 0.1 mm/sec.</td>
</tr>
<tr>
<td></td>
<td>Doppler accuracy 0.1 mm/sec.</td>
<td>End-to-end phase stability controlled or calibrated to: 1 mm (10 sec averaging time; 10 mm (100 sec averaging time). Station location known to 1 m in all 3 axes (relative to Earth-fixed system).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency and timing accuracy: 1 part in (10^{13})</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Deep space tracking and communications system design requirements
<table>
<thead>
<tr>
<th>Function</th>
<th>Mission requirements</th>
<th>System design requirement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometric (cont)</td>
<td>Angle accuracy 0.05 µrad</td>
<td>Timing accuracy to 10^{-9} sec. End-to-end time delay calibrations to < 20 cm.</td>
<td>Requires either "ΔVLBI" or "wideband differential ranging".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-station simultaneous view-period or 2 each of 2 station simultaneous viewperiod with different baseline orientation.</td>
<td>Wideband differential ranging requires a signal generator and switching on the S/C; could use separate, smaller ground stations and require minimum S/C time. OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requires knowledge of Earth orientation to ±0.03 µrad.</td>
<td>ΔVLBI needs a Quasar catalog to ±0.03 µrad; requires long periods of taking data while alternating between a Quasar and the S/C (possible loss of telemetry).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capability to receive 2 RF frequency bands simultaneously.</td>
<td>Existing system meets requirement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Addition of K_A band would improve accuracy.</td>
</tr>
<tr>
<td>Dual frequency for calibration of transmission medium and radio science.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations support</td>
<td>DSN station critical mission phase support.</td>
<td>24 hr per day telemetry reception.</td>
<td>Assumes that future S/C designs will not require continuous command capability.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One pass per day uplink for tracking and command.*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSN station cruise mission phase support.</td>
<td>Tracking for telemetry and navigation periodically as required to maintain S/C analysis and radiometrics. Commands as required to update S/C computer and fix anomalies.*</td>
<td></td>
</tr>
</tbody>
</table>

*Proposed; not to be considered a firm requirement.
threshold for the existing DSN configuration. The conclusion is that if the existing DSN command capability is assumed, implementation of command communications requirements for the future are not sensitive to choice of mission set.

C. Navigation Requirements

Navigation requirements are stated in terms of accuracies for range, doppler, and angle determination.

1. Angle accuracy. Angle accuracy requirements for all future missions except small body rendezvous are 0.05 µrad. Small body rendezvous missions require 0.1 µrad. Since any mission set chosen will likely include more than small body missions, the more severe constraint of 0.05 µrad will be assumed and it will likely not be sensitive to variations in the mission set.

2. Range accuracy. Absolute range accuracy requirements for all of the deep space missions studied in Table 1 are 1 m. This number is not sensitive to a change in mission set, and is probably attainable with existing ranging techniques. Future navigation techniques will likely not rely on precision ranging data. However, there are other system requirements, including radio science and ODSRS, that need ~10 cm ranging accuracy. This will require a redesigned spacecraft transponder and a new ranging system. The conclusion is that the ground system should be designed to handle 1 m or 10 cm ranging requirements, and the individual projects can build and operate their spacecraft at whatever accuracy level they require.

3. Doppler accuracy. Doppler accuracy required for navigation purposes is 1 mm per second for most future deep space mission studies. There are specific missions that use doppler in conjunction with science experiments that require accuracy on the order of 0.1 mm per second. These specific missions include VOIR and ISP. Missions with occultation experiments desire 0.1 mm per second during the entry and exit occultation. Achieving 0.1 mm per second is significantly more difficult than 1 mm per second, and requires calibration and control of ground station and spacecraft hardware, and calibration of the interplanetary medium.

 The conclusion is that the requirement for doppler accuracy is sensitive to the inclusion of specific missions in the mission set. It is likely that the future mission set will include one or more missions with the requirement for 0.1 mm per second accuracy. The ground stations should be capable of supporting a 0.1 mm per second requirement. The spacecraft can then be designed, calibrated, and operated to provide 0.1 or 1 mm as required.

D. Operations Requirements

Operations requirements are very sensitive to the choice of missions, the number of missions flown, and the frequency of launches. Only a defined mission set for the post-1985 period would allow definition of a firm requirement for operations coverage. Several assumptions can, however, be made about post-1985 missions that affect operations requirements, and the sensitivity to change in assumptions of tracking system requirements can be assessed.

1. Length of missions. More future missions to the far-outer planets that require many years transit time are being studied. Inclusion of these missions means that more spacecraft will be in transit (cruise) at one time and will require some kind of monitoring.

2. Automation (autonomy) of spacecraft. Many future studies are considering a spacecraft that can take care of itself for long periods of cruise without continuous monitoring and intervention from Earth. Acceptance of this philosophy would reduce the total daily tracking load on the DSN and would result in the stations being used more for critical operations such as encountering and orbital data taking. Some provisions will be needed for detection of spacecraft emergencies during the period when the spacecraft is on its own. In general, inclusion of autonomous spacecraft missions in the mission set would reduce the total tracking time, reduce the number of DSN stations required to track a given number of missions, and increase the importance of tracking time to the spacecraft and mission.

3. Frequency of launch. Frequency of launch of missions to be tracked after 1985 is a major driver of operations coverage. As an upper bound, it is likely that no more than 1 launch every 2 years will occur. The lower bound is probably in the 1 launch every 3 or 4 year area, and this is highly dependent on funding availability. If 1 major deep space mission is launched every 2 years, the existing DSN would be overloaded unless current tracking requirements imposed by the projects are relaxed.

4. Timing of critical periods. Critical periods, such as encounters and orbital insertions, create a major strain on DSN facilities. Even with the addition of more DSN facilities, the timing of critical periods would have to be coordinated between projects so they don't all occur at the same time. This is a factor that should be considered when defining a future mission set.

5. Length of critical periods. If the mission set includes several missions, such as orbiters that have long critical operations periods, more stations would be required than if the mission set consists mostly of fast flybys.
6. Requirement for 24-hour per day tracking. If future missions can be constrained to require 24-hour per day telemetry only during critical periods, this would reduce the requirement on the total number of DSN stations. If they can be constrained further, to only requiring command and uplink capability for a maximum of 1 station pass per day, the Goldstone stations could be the only ones requiring a transmit capability.

Reference