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SUMMARY 

Hypersonic wind-tunnel tests have been conducted to obtain the static 
longitudinal and lateral-directional characteristics of the 140A/B space shut­
tle orbiter. Data were obtained at angles of attack from 120 to 36.50 at angles 
of sideslip of 00 and -50. Stability, control, and performance characteristics 
were determined for various deflections of elevons and body flap with the speed 
brake set at 550 • Tests were performed over a Reynolds number range, based on 
fuselage reference length, of 0.62 x 106 to 1.33 x 10 6 , with the majority of 
tests made at 1.03 x 10 6• Effects of aileron deflection on roll control and 
longitudinal stability were also determined. 

With the center of gravity located at 65 percent of fuselage length, the 
orbiter is neutrally stable at a 200 angle of attack for elevons and body flap 
set at 00 deflection. For a typical entry attitude of 30 0 , stable trim condi­
tions can be achieved with a resulting lift-drag ratio of 1.40. Deflecting the 
body flap can provide additional trim capability. Increase of the Reynolds 
number causes higher values of lift-drag ratio, but only for angles of attack 
up to 24 0 • 

The orbiter is directionally unstable over the angle-of-attack range with 
positive dihedral effect. Increasing the speed-brake angle from 55 0 to 850 

slightly improves dihedral effectiveness. 

Aileron deflection results in adverse yaw to roll control over the test 
angle-of-attack range. In addition, significant negative increments of pitching­
moment coefficient occur which affect orbiter trim and stability. 

INTRODUCTION 

The space shuttle transportation system described in references 1 and 2 is 
now well underway. The approach and landing flight tests were completed suc­
cessfully in 1977. A portion of the low-speed flight characteristics of the 
full-scale orbiter vehicle can now be evaluated with a high degree of confi­
dence. However, flight data at the higher speed regimes will only be obtained 
from the orbital flight test program with the first launch now scheduled for 
the end of 1979. Consequently, predictions of the aerodynamic characteristics 
of the orbiter at these higher speeds must rely on wind-tunnel test results and 
theoretical analysis. 

This report presents the longitudinal and lateral-directional characteris­
tics of a 0.010-scale version of the 140A/B orbiter obtained experimentally at 
a free-stream Mach number of 10.3. Static stability, control, and performance 
data were obtained over an angle-of-attack range from 12 0 to 36.50 at various 
elevon and body-flap deflections with the speed brake set at 550 • The majority 
of tests were conducted at a Reynolds number of 1.03 x 10 6 based on fuselage 
reference length; additional tests were made at Reynolds numbers of 0.63 x 106 



and 1.33 x 10 6 for selected control deflections. Lateral-directional data were 
generated by testing the model at a sideslip angle of -50 and included effects 
of control deflections and increasing the speed-brake deflection angle from 55 0 

to 850 • 

In addition, roll-control effectiveness was determined for aileron angles 
of up to 150 at an elevon deflection of 00 and included effects on the longitu­
dinal stability characteristics. 

This investigation, designated "Rockwell International test OA90," was con­
ducted in the Langley continuous-flow hypersonic tunnel and used a six-component, 
water-cooled balance to measure forces and moments. The complete test results 
are tabulated in reference 3. 

SYMBOLS 

The longitudinal characteristics are based on both the body- and stability­
axis systems. The lateral-directional characteristics are based on the body­
axis system only. Measurements and calculations were made in the u.S. customary 
units. Values are presented herein in the International System of Units (SI") 
with the equivalent values in the u.S. Customary Units given parenthetically. 

b 

C' 

Cz 

2 

model reference wing span, m (in.) 

Chapman-Rubes in constant based on reference temperature, ~'T/~T' 

Axial force 
axial-force coefficient, 

qS 

drag coefficient, 
Drag force 

qS 

Lift force 
lift coefficient, 

qS 

rolling-moment coefficient, 
Rolling moment 

qSb 

effective dihedral parameter, /1C9.,/ /18, per deg 

rate of change of rolling-moment coefficient with aileron deflection 
angle, /1C9.,//10a' per deg 

pitching-moment coefficient, 
Pitching moment 

qSc 



Normal force 
normal-force coefficient, 

qS 

yawing-moment coefficient, 
Yawing moment 

qSb 

Cns directional-stability parameter, ~Cn/~S, per deg 

Cy 

c 

IZ/IX 

L/D 

M 

q 

p 

RZ 

S 

T 

dynamic directional-stability parameter, 
per deg 

IZ 
CnS cos a - CZ

S 
sin a, 

Ix 

rate of change of yawing-moment coefficient with aileron deflection 
angle, ~Cn/~oa' per deg 

Side force 
side-force coefficient, 

qS 

rate of change of side-force coefficient with sideslip angle, 
~Cy/~S, per deg 

rate of change of side-force coefficient with aileron deflection 
angle, ~Cy/~oa' per deg 

wing mean aerodynamic chord, m (in.) 

ratio of moments of inertia about yaw and roll axes, respectively 

lift-drag ratio 

fuselage reference length, m (in.) 

free-stream Hach number 

free-stream dynamic pressure 

pressure, Pa (psia) 

Reynolds number based on fuselage length and free-stream conditions 

wing total planform reference area, m2 (ft2) 

temperature, K (OF) 

v~ viscous interaction parameter, M(C
RZ

')1/2 
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y 

angle of attack, deg 

angle of sideslip, deg 

ratio of specific heats 

aileron deflection angle, 

elevon deflection angle, 
down, deg 

oe,L - 0e,R 
-----------, deg 

2 

0e,L + 0e,R 
-----------, positive for trailing edge 

2 

6sF body-flap deflection angle, positive for trailing edge down, deg 

0SB speed-brake deflection angle, deg 

~ dynamic viscosity 

Subscripts: 

L left 

max maximum 

R right 

w model wall 

t tunnel stagnation conditions 

00 free-stream conditions 

.651 moment center 65 percent of fuselage length 

Abbreviations: 

FRL fuselage reference line 

IML inner mold line 

OML outer mold line 

OMS orbital maneuver system 

Model component designations: 

B26 fuselage 

Cg canopy 
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E37 elevons with V-slots 

FlO updated body flap 

M7 OMS pods 

N2S OMS engine nozzles 

RS rudder 

Vs vertical tail 

Wl16 wing 

A prime used after a symbol refers to reference conditions. 

MODEL DESCRIPTION 

The test model was a O.OlO-scale version of the 140A/B space shuttle 
orbiter which was fabricated from aluminum alloy by Rockwell International and 
designated "model 72-0." As shown in the sketch of figure 1 (a), the model had 
full-span split elevons, a vertical tail, and a body flap. The OMS nozzles were 
incorporated on the model~ however, the three main rocket nozzles at the base of 
the configuration were omitted to allow installation of the balance and sting. 
Elevon deflection angles were set by using small prebent brackets~ the body flap 
and speed brakes used separate interchangeable components for each deflection 
angle. Definitions of deflection angle for these controls are presented in fig­
ure l(b). This model was slightly modified in comparison to previous versions 
of the 140A/B orbiter. These modifications consisted of using an updated body 
flap and having a V-shaped slot between the split elevons. The various model 
components as defined by Rockwell International are shown in figure l(c) and 
are listed as follows: 

B26 fuselage 

Cg canopy 

W1l6 wing 

E37 elevons with V-slots 

M7 OMS pods 

N2S OMS engine nozzles 

FlO updated body flap 

Vs vertical tail 

RS rudder 
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The full-scale geometric characteristics of these components are presented 
in table I. 

APPARATUS 

This investigation was conducted in the Mach 10 nozzle of the Langley 
continuous-flow hypersonic tunnel which is designed to operate at stagnation 
pressures of 15 to 150 atm (1 atm = 101 kPa) at temperatures up to 1089 K 
(15000 F). The nozzle has a 0.79-m- (31.0-in-) square test section and is 
equipped with a movable second minimum section. To prevent liquefaction, air 
is preheated electrically by passing it through a multitube heater. For con­
tinuous operation, the air is circulated through this closed-circuit facility 
by a series of five compressors. Operation in the blowdown mode is also pos­
sible by drawing the exiting flow into a vacuum sphere. 

This facility utilizes a hydraulically actuated injection/retraction 
mechanism contained within a sealed chamber which is mounted adjacent to the 
test section wall (fig. 2(a». The chamber can be rotated about a vertical 
axis which permits easy access to the test model without disruption of tunnel 
flow (fig. 2(b». Two L-shaped pressurized air rakes, mounted in actuators, 
are discernible inside the chamber and are regularly used for rapid model cool­
ing after each test run. Model forces and moments are measured by water-cooled 
balances which are equipped with thermocouple wires for monitoring balance tem­
peratures. A specially designed computer system is normally used for record­
ing force data over the angle-of-attack range using a pitch-pause mode. The 
selected angles of attack and sideslip, duration of pause time, and data record­
ing are inputted to this system, resulting in a completely automatic operation. 
Overall details of this facility are presented in reference 4. 

TESTS 

Force and moment data were obtained by a six-component strain-gage balance 
which was mounted in a 200 prebent sting. A photograph of the model-sting 
assembly is presented in figure 3. The orbiter model was tested over an angle­
of-attack range of 120 to 36.50 at sideslip angles of 00 and _50. The lateral­
directional coefficient derivatives were calculated by assuming linearity 
between the basic data measured at these sideslip angles. Data were obtained 
for several elevon deflection angles ranging from -400 to 150 while body-flap 
deflection angles were limited to -11.70 ,00 , and 16.30• The majority of tests 
were made at a Reynolds number of 1.03 x 106 based on fuselage reference length. 
Additional tests were also performed at Reynolds numbers of 0.63 x 106 and 
1.33 x 106 at selected control deflection angles. A summary of tunnel test condi­
tions is presented in the follOWing table: 
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Pt Tt 
M RZ v' co 

MFa psia K of 

3.24 470 1023 1381 10.31 0.64 x 106 0.01 1 7 
5.06 734 101 2 1362 10.33 1.03 .0092 
6.62 960 1019 1374 10.37 1.33 .0082 

Values of the viscous interaction parameter v~ 
tions presented in the appendix of reference 5. 
repeated as follows: 

were calculated from the equa­
For completeness, they are 

v~ - ~~;r 
where 

(TO )'/2 ~oo + 
122.1 x 10-(S/T~ 

C' = 
Too T' + 1 22.1 x 10-(5/T') 

and 

T' Tw (y - 1 ) 
M2 = 0.468 + 0.532 + 0.195 

T T 2 
(x) (x) 

where Tw = 367 K. 

Real-gas correction factors were calculated from reference 6 to determine 
tunnel-flow properties. In addition, sting-deflection constants were obtained 
prior to the tests and were used in calculating true angles of attack and 
sideslip. 

Estimated inaccuracies in the measured balance data are based on 
±1/2 percent of balance design load. For the tests at RZ = 1.03 x 106, these 
inaccuracies expressed in coefficient form are as follows: 
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CN = ±0.0090 Cz = ±0.0002 

±0.0020 Cn = ±0.0003 

em = ±0.0018 Cy = ±0.0030 

For tests at RZ = 0.64 x 106, these values should be multiplied by 1.574; for 
the tests at the higher Reynolds number, the multiplier value is 0.784. Accu­
racy of the angles of attack and sideslip is ±0.1°, and accuracy for free­
stream Mach number is ±0.02. In this investigation, model base pressures were 
not measured. 

DISCUSSION OF RESULTS 

Longitudinal Aerodynamic Characteristics 

The longitudinal characteristics for combined deflections of the elevons 
and body flap are presented in figure 4. For the center-of-gravity location 
at 65 percent of fuselage length, the orbiter is neutrally stable at an angle 
of attack of approximately 200 with both controls set at 00 • (See fig. 4(b).) 
Maximum values of LID range from 1.90 to 1.78. These values occur at angles 
of attack of 160 to 200 , respectively. However, entry trajectory studies based 
on heating constraints have indicated that a 300 angle of attack is a more 
realistic value for a flight speed of Mach 10 and a resulting flight Reynolds 
number of 6 x 106• Stable trim can be obtained at this attitude by deflecting 
the elevons a few degrees negatively (trailing edge up) which results in a LID 
value of about 1 .40. In figure 5, the effects of body-flap deflections at an 
elevon setting of 00 are presented. For a positive deflection of 16.30 , the 
body flap produced sizable increments in Cm, especially at angles of attack 
greater than 200 , whereas the negatively deflected body flap yielded much 
smaller increments (fig. 5(b». In general, the body flap can provide some 
additional control power without any reduction in LID. 

A summary plot for all elevon and body-flap deflection angles is presented 
in figure 6 where a and em are plotted against CN. This figure, as pre­
sented, can be used to determine trim and stability at center-of-gravity loca­
tions other than the 65-percent station. An example is shown in this figure 
for a center-of-gravity location at 66 percent. Rotating the em axis (indi­
cated by the dashed line) shows that the orbiter can have a stable trim point 
at a = 370 with zero deflections on both controls. Some data extrapolation 
is required for this example. 

The effects of sealing the V-slots between the split elevons are shown in 
figure 7 for positive deflections of both controls. As expected, these effects 
are quite small. 

The effects of Reynolds numbers are presented in figure 8 for the control 
deflections set at full up, zero, and full down. As shown in figure 8(b), the 
major effect of increasing Reynolds number was to decrease axial force (drag) 
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by reducing skin friction. This effect resulted in increases of L/D at angles 
of attack up to about 240 • The highest value of (L/D)max was 1.90 at a 17.30 
angle of attack for zero control deflections. Reducing the Reynolds number to 
0.63 x 106 caused a reduction of (L/D)max to 1.81 at an angle of attack of 
17.70 • For a flight Reynolds number of 6 x 106 , higher values of (L/D) max 
could be expected. Other aerodynamic characteristics were only slightly 
affected by variation of Reynolds number in this investigation. 

Lateral-Directional Aerodynamic Characteristics 

The variations of CI, Cn' and Cy with angle of sideslip are presented 
in figure 9 for angles of attack of 200 and 300• The purpose of this figure 
is to determine the extent of linearity of these coefficients. The results 
indicate that linearity does exist for angles of sideslip up to at least -50, 
thus validating the technique used for the lateral-directional results pre­
sented in figure 10. 

The effects of elevon, body-flap, and speed-brake deflection on the side­
slip characteristics are presented in figure 10 for Reynolds numbers of 
1.03 x 106 and 1.33 x 106• In all cases, positive effective dihedral -CIS is 

indicated over the test angle-of-attack range~ however, the orbiter is direc­
tionally unstable. Favorable (positive) values of the dynamic directional­
stability parameter are obtained which increase with angle of attack. The 
effects of elevon and body-flap deflection are best illustrated by the data at 
the higher Reynolds number presented in figure 10(b). positive elevon control 
deflections cause a small improvement in effective dihedral -CIS while nega-

tive deflections clearly result in a decrease in this parameter. In general, 
the effects on Cns are essentially negligible. Increasing the speed-brake 

angle from 550 to 850 yields a small increase in dihedral effectiveness with 
little change in Cns. These effects are expected since the vertical tail is 

shielded from the flow for the test angle-of-attack range of this investigation. 

Aileron Effects on Aerodynamic Characteristics 

The effects of varying aileron deflection angle on rolling moment, yawing 
moment, and side-force derivatives are presented in figure 11 for a constant 
elevon deflection angle of 00 • The aileron deflection angles were 50, 100 , 
and 150 and are positive as defined in the section "Symbols" in this paper. 
Roll-control effectiveness Cl o increased with angle of attack and was only 

a 
slightly affected by aileron deflection angle. Negative values of Cno are 

a 
obtained, resulting in adverse yaw due to roll control over the angle-of-attack 
range. Consequently, the values for the ratio of Cno to Cl o are negative 

a a 
and remain essentially constant with increasing angle of attack. 
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In figure 12, the effects of aileron deflection angle on the longitudinal 
characteristics are presented. Significant negative increments in Cm are 
obtained as aileron angle was increased which, for this case, results in an 
unfavorable effect on orbiter trim as shown in figure 12(b). These negative 
increments are caused by the greater effectiveness of the elevon going down 
into the airstream. Some reduction in L/D is seen to occur; however, these 
performance losses are small. 

SUMMARY OF RESULTS 

Longitudinal and lateral-directional characteristics have been determined 
for the 140A/B space shuttle orbiter at a free-stream Mach number of 10.3 over 
an angle-of-attack range of 120 to 36.50 • Tests were conducted over a range 
of Reynolds numbers, based on fuselage reference length, of 0.63 x 106 to 
1.33 x 10 6• Effects of aileron deflection were also obtained. The results of 
this investigation are presented about a center-of-gravity location at 65 per­
cent of fuselage length and are summarized as follows: 

1. The orbiter is neutrally stable at an angle of attack of approximately 
200 with elevons and body flap deflected 00 • 

2. At a typical entry attitude of 300 , stable trim can be achieved with 
a lift-drag ratio of about 1 .40. 

3. Deflection of the body flap can provide some additional trim capability. 

4. Increasing the Reynolds number causes higher values of lift-drag ratio, 
but only for angles of attack up to about 240 • 

5. The orbiter is directionally unstable over the angle-of-attack range 
with positive dihedral effect. Increasing the speed-brake deflection from 550 

to 850 slightly improves effective dihedral with little change in directional 
stability. 

6. Aileron deflection results in adverse yaw to roll control for all angles 
of attack. In addition, sizable negative increments of pitching-moment coeffi­
cient occur, thus affecting the trim and stability of the orbiter. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
April 6, 1979 
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TABLE I. - FULL-SCALE GECMETRIC CHARACTERISTICS OF THE 

140A/B SPACE SHUTTLE ORBITER 

Body, B26: 
Length (measured 
Length (measured 
Maximum width, m 
Maximum depth, m 
Fineness ratio 

from OIviL) , m (in.) •• 
from IML), m (in.)a 
(in. ) 
(in. ) ....... . 

Canopy, C9: 
Length, m (in.) • • • • • 
Maximum width, m (in.) 
Maximum depth, m (in.) •••• 

Wing, Wl16: 
Planform area (theoretical), m2 (ft2)a 
Span, m (in.)a •••• 
Aspect ratio ••••••••• 
Dihedral angle, deg •• 
Incidence angle, deg 
Sweepback angle (leading edge), deg • 
Sweepback angle (trailing edge), deg 
Aerodynamic twist, deg ••••••• 
Mean aerodynamic chord, m (in.)a 
Root chord (theoretical), m (in.) 
Tip chord (theoretical), m (in.) 
Airfoil section at root • • 
Airfoil section at tip • • • • • • 
Fillet total planform area, m2 (ft2) 
Fillet sweepback angle, deg • • • • • 

Elevon, E37 (for one side): 
Plan form area, m2 (ft2) ••••••• 
Span (equivalent), m (in.) ••••• 
Inboard chord (equivalent), m (in.) 
Outboard chord (equivalent), m (in.) 
Sweepback angle at leading edge, deg 
Sweepback angle at trailing edge, deg •• 

Body flap, FlO: 
Area, m2 (ft2) ••••••••••• 
Span (equivalent), m (in.) ••••• 
Inboard chord (equivalent), m (in.) 

12 

Outboard chord (equivalent), m (in.) ••••• 
Sweepback angle at hinge line, deg 
Sweepback angle at trailing edge, deg • 

aReference values. 

32.85 (1293.3) 
32.77 (1290.3) 

6.65 (262.0) 
6.35 (240.0) 

• • •• 4.93 

3.64 (143.3) 
3.87 (152.4) 

0.63 (25.0) 

••• 249.91 (2690.0) 
23.79 (936.7) 

• • •• 2.26 
3.50 
0.50 

45.00 
-10.05 

• • • •• 3.00 
12.06 (474.8) 
17.51 (689.2) 

3.50 (137.8) 
• Modified NACA 0011.3-64 
•• Modified NACA 0012-64 

21.99 (236.7) 
• • • • • • • • 81 

19.51 (210.0) 
8.87 (349.2) 
2.99 (118.0) 
1.40 (55.2) 

0.00 
-10.05 

12.42 (133.7) 
6.42 (255.4) 

2.06 (81) 
2.06 (81) 

0.00 
0.00 



TABLE I.- Concluded 

Vertical tail, V8: 
••••••••• 38.39 (413.2) 

Planform area (theoretical), m2 (ft2) 
Span (theoretical), m (in.) • • • • • • • • • • 8.02 (315.7) 

. . . • • • • • •• 1.67 
Aspect ratio •• • • • • • • • 
Sweepback angle at leading edge, deg 
Sweepback angle at trailing edge, deg 

· . . . . . . . ... . 45.00 

Root chord (theoretical), m (in.) • • • • • 
Tip chord (theoretical), m (in.) •••• 
Airfoil section -

........... . 25.95 
• • • • • • • • 6.82 (268.5) 

• • • • • • 2.76 (l08.5) 

• • • • • • • • • • 1 0.00 
Leading \'ledge angle, deg 
Trailing wedge angle, deg · ...•..•.••••• • 14.92 

Rudder, R5: 
Area, m2 (ft2) ••••••• • • • • • • • • • 
Span (equivalent), m (in.) •••••••• 
Inboard chord, m (in.) •••••• 
Outboard chord, m (in.) • • • • • • • 
Sweepback angle at hinge line, deg 
Sweepback angle at trailing edge, deg •••••• 

OMS pod, M7: 
Length, m (in.) 
Maximum width, m 
Maximum depth, m 

OMS nozzles, N28: 
Left/right nozzle 

(in. ) 
(in. ) 

9.88 (106.4) 
5.11 (201.0) 
2.33 (91.6) 
1.29 (50.8) 

•••• 34.83 
• • • • • • • • • 26.25 

8.31 (327.0) 
2.40 (94.5) 

2.77 (109.0) 

Null pitch angle, deg • 
Null yaw angle, deg 
Gimbal pitch range, deg 
Gimbal ya\'l range -

• • • • • • • • • • • • • • • • • • • • • 1 5.82 

Outboard, deg • 
Inboard, deg 

• • • • • • • • • • • • • • • • • •••• 1 2.28 
±8.0 

• 1 3.28 
2.28 

13 



Outer mold line 

-Inner mold line 

.65 
---;;;.!ioE""" . 0023 

f 

~M'm,ot "ot" 

\ .0976 

\ >1 

i 

[ FRL 

1~t<<------------1. 000 ---------~ ~ r 
(a) Model details. 

.0035 

V-slot detail (enlarged) 

Reference values (0.01 scale) 

S = 249.910 cm 2 (38.736 in 2) 
C = 12.059 em (4.748 in.) 
b = 23.792 em (9.367 in.) 
I = 32.774 em (12.903 in.) 

--+--- - 3.50 dihedral 

.7260 1 

Figure 1.- Sketch of test model of 140A/B space shuttle orbiter (model 72-0). 
Dimensions are normalized by reference length 2. 
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Pm11.1 to FRLl_ 
~-======-~:;;?-~::::::... 

Elevon deflections 

Parallel to 

Body-flap deflections 

/ '\7.50 
Parallel to FRL J / 

~c::: -=--===::=t~, - + 
~.50 

Speed brake deflection 

(b) Definition of control deflection angles. 

Figure 1.- Continued. 

o QBF = -11.7 

o QBF = 16.3 
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(c) Designations of model components. 

Figure 1.- Concluded. 



(a) In closed position. 

Figure 2.- Photographs of rotatable sealed chamber located at tunnel test section. 
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(b) In open position. 

Figure 2.- Concluded. 

L-74-846 



Figure 3.- Hodel-sting setup in Langley continuous-flow hypersonic tunnel. L-74-991 
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Figure 4.- Effects of elevon and body-flap deflections on longitudinal 

characteristics. 0SB = 550~ RZ = 1.03 x 106• 
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