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EMULATION APPLIED TO RCLIABILITY ANALYSIS OF RECONFIGURABLE,
HIGHLY RELIABLE, FAULT-TOLERANT COMPUTING SYSTEMS
FOR AVIONICS

Gerard E. Migneault
NASA -Langley Research Center
Hampton, Virginia

SUMMARY,

This paper proposes that emulation techniques can be a solution to a difficulty arising in the
analysis of the reliability of highly reliable computer systems for future commercial aircraft, and thus
should warrant investigation and development.

The paper first establishes the difficulty, viz., the lack of credible precision in reliability
estimates obtained by analytical modeling techniques. The difficulty is shown to be an unavoidable
consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use
testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability
dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling tech-
niques whose precision outputs are quite sensitive to errors of approximation in their input data.

Next, the technique of emulation is described, indicating how its input is a simple description of
the Yogical structure of a system and its cutput is the consequent behavior. Use of emulation techniqu
is discussed for "pseudo-testing" systems to evaluate bounds on the parameter values needed for the
analytical techniques.

Finally an illustrative example is presented, albeit for a fanciful small scale application, to
demonstrate from actual use the promise of the proposed application of emulation.

INTRODUCTION

Research efforts are underway to develop more efficient civil transport aircraft for the future. One
facet of the effort involves active control technology which implies greater reliance upon computer
systems in order to obtain maximum benefits. This paper discusses the need and justification of develop-
ment and investigation of emulation techniques as adjuncts to theoretical reliability analysis models of
fault tolerant avionic computer systems.

REQUIREMENT FOR FAULT TOLERANCE

Designs of fault tolerant computer systems have arisen in response to anticipated needs of future
civil aircraft (8jurman, B. E. et al., 1976}, (Hopkins, A. L. et al., 1978), (Wensley, J. H. et al., 1978)..
Requirements for reliability of systems and associated components have been inferred from the expression
"extremely imprcbable” in regulatory documentation pertaining to safety in commercial transport aircraft
(FAA, 1970). The following, variously worded, informal statements indicate the range of interpretations:

"Thus we have a reliability requirement of 10-8 per hour of operation for a level 1 or level 2
function with no interral or external backup ..." * (Ratner, R. S. et al., 1973)

"... a number less than or equal to 1x10"9 has been imposed ... to represent the probability of
an event designated as extremely improbable. ... Loss of the CCV/FBW function, given a fault-
free system at dispatch, shall be extremely improbable." ** (Bjurman, B. E. et al., 1976)

"... the computer's failure rate will be designed below 10-9 failures per hour in flights of up
to tin hours duration, with a preferred goal of 10-10 failures per hour." (Smith, T. B. et al.,
1978

"... the extrapglated failure of the design in context with production system application shall
not exceed 10-2 computer-related system failures in flights up to ten hours." (sic) (NASA, 1978)

As an average of the interpretations, and for discussion purposes, an equally informal statement is
adopted here as the requirement, viz.,

the probability that a system containing no failed components at the start of operation will
fail during the first ten hours of operation will e less than approximately 10~

in which the term "failed components" refers, in a conventional manner, to failures caused by physical
defects occurring randomly in time, and in which a systemn is considered to have failed when it has not
correctly performed the function required of it as a subsystem in a larger, encompassing system.

Temporarily disregarding failures due to causes external to systems or to inadequately or incorrectly
designed and implemented systems, one can determine that, in order to satisfy the reliability requirement,
a computer system constructed of devices (in turn constructed of more basic components) with independent

:chels pertain to criticality of functions.
**CCV/FBW = control configured vehicle / fly by wire.
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failure distributions and constant failure rates would require, if it were intolerant of the failure of
any of its constituent dovices, a mean time to failure (MTTF) of approximitely ten hillion (1010} poyurs
for the Teast reliable of the devices. Such a system is unlikely to sce the tight of day in the near
future, to say the least, since realistic, available devices such as processors, memories, etc,, from
which systews can be constructed, do not have such lengthy MTTF's; values in the range from 102 to 105 are
more redsonable.  Consequently, computer systems intended to satisfy the reliability requirement have been
designed to tolcrate failures.

y

A_CONSEQUENCE_OF FAULT TOLERANCE

Several characteristics of fault tolerance give rise to a need to examine explicitly the reliability
implications of a failure mode conventionally handled implicitly by testing actual systems.

One rather obvious characteristic of a fault tolerant system is redundancy of components -- at the
very least when in an initial condition free of failed components. In the case of systems with require-
ments for reliability stated in terms of the first fow hours or a small fraction of expected equipment
lifetimes, the characteristic implies renewal activities which will be often repeated. While some form of
verification that systems are still in a (perceived) fault-free condition will be a minimum rencwal
activity, the MITF's of realistic, avionic devices insure that a not insignificant amount of repair
activity will also be nceded -- to return systems to the fauit-free, initial condition needed to fulfill
the assumptions underlying the reliability estimates. The characteristic further suggests, other things
unchanging, that the more "multifunction” the constituent devices are, the more efficient the systems are
in terms of total equipment used and maintained. Therefore, there is an economic pressure for designs
utilizing multifunction devices such as microprocessors with software. However, a cost is incurred in a
different coin, i.e., greater complexity in the synthesis, logic and analysis of systems with parallel
and/or intersecting signal and data paths and time-shared use of resources and algorithms.

Another necessary characteristic of a fault tolerant system is its possession of an agent or mechanism
capable of detecting failures in devices or components and utilizing available redundancy to nullify
failures. This characteristic may be accomplished in a passive manner when some convenient property of
nature permits -- a simple example is parallel rather than series wiring of Christmas tree lamps to avoid
an open circuit failure caused by one defective lamp -- or, as appears wiore likely to be necessary in com-
plex systems, in an active manner by the addition to a redundant system of still more devices and/or logic
to act as detectors and nullifiers. Of course, a price is paid again in increased complexity.

There is a notion which merits a few words as it occasionally arises at this point. The notion is
that the reliability requirement is unnecessarily stringent, as witnessed by the ten billion (1010) hour
MTTF previously cited. However, that value was for a fault intolerant system, a "series" system, and is
inappropriate as an approximation of the MTTF of a fault tolerant system of equivalent retiability at an
extremely early stage of its expected operation, i.e., ten hours, for one reason because the variance of
time to failure of fault tolerant systems tends to be much less than that of series systems. For example,
Figure 5 compares the failure density distribution of two systems having the same mean (i.e., same MTTF).
Density A is a series system. Density B is a representation (specifically a 2 out of 5) of a parallel
redundant system. Clearly, at an early stage in their operation, the parallel system has a greater relia-
bility. A better approximation is provided by the MTTF of systems composed of several r-out-of-n sub-
systems (i.e., n parallel, identical devices of which r must be operating for the subsystem to be operating)
in series. A system consisting of a single r-out-of-n subsystem serves as a reasonable upper-bound estimate
of the MITF of a fault tolerant system when the representative constituent device chosen is the fault
tolerant system's "worst" (i.e., the device type with the greatest MTTF in the set of constituent devices
whose functions cannot be performed by any combination of the other device types of the system; a processor
would be in this set). Assuming, as before, that constituent devices have independent failure distribu-
tions and constant failure rates, one can show that an r-out-of-n system has a MTTF not very much different
from that of its constituent device, and quite Tikely less because of factors accounted for by "coverage".
Figure 1 contains a simplified behavior model of an r-out-of-n system. FEach state corresponds to a set of
possible configurations having a stated number of operating constituent devices. The transition rate out
of a state is the appropriate multiple of the constant failure rate, A, of one device. Since, given the
occurrence of a component failure, a successful transition to another operating state of Tess redundancy
is problematical, so-called “coverage” parameters, Cj, conditional probabilities of successful transition
given a failure, are included. Unsuccessful transition is assumed to mean inmediate system failure.
Usually the coverage parameters are associated with systems having active recovery processes, but they are
also applicable to passive mechanisms as long as there are transitions which can go awry among distin-
guishable, operating states. MNo distinction is made here. Recognizing this model and assumptions as a
Markov process, one can develop the appropriate differential equations for the stochastic process
(Feller, W., 1966) and determine in a straightforward manner that the probability of system failure is
represented by the expression

n-r .
1 - e-Mit Zo aj(g)(ext -1)d
J=

where ag =1 and ay = Tlr C; for j=1,2, ..., (n-r).
i=1

Ratios of system MITF to constituent device MTTF are tabulated for various combinations of values
of r, n,and Cij in Tables 1 and 2. In Toble 1, Cj =1 for all 1, implying that coverage is perfect.,
Although the ratios are independent of the constituent device's failure rate (or cquivalently, MITF), not
all coubinations of r.and n are useful, qiven a specific device failure rate, when the 10°9 requirement
Is considered. For instance, a device with MITF Tess than 100 hours could he used to construct systems of
zones, p-1 and lower but not zones p or higher. More specifically a device with MTTF of five thousand
(5!103) hours would not be used to construct systems of zones 4 and 5, In Table 2, €} = 0.9 and Ci = 0.1
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for all 1 # 1, which is excessively poor coverage since systems are all in zones 9 or higher. 1In all-
cases in both tables, the ratios do not differ from } by an order of magnitude. Hence, to the extent that
fault tolerant systems are represented by r-out-of-n systems, a simple and reasonable approximation to the
MITF's ot such systems appears to be simply the MTTF of the "worst" device type, a far crv from the ten
billion (1010) hour value,

However, having identified a better approximation to MTTF for fault tolerant systems, it is well to
note that, in the application of interest, the systems will be effectively renewed cvery ten-hours or so.
Hence MITF, in the conventional sense of an unrenewed system used until system failure as computed above,
is not descriptive of system use. In order to consider the relationship of the reliability requirement to
safety, it is more meaningful to estimate the probability of system failures, to be considered emergency
situations, during the lifetime of a_flect of aircraft with realistic policies for renewal. Therefore,
assuming (1) systems mecting the 1077 requirement when all failure modes are conaidered, (2) system
renewal after every ten hours of operation, and (3) a fleet of two thousand {2~10°) aircraft each with a
Vifetime of sixty thousand (6<10%) hours, the probability is approximately 0.01 that one or more emergency
situations will occur because of a computer system. It is a matter of judgment, no doubt tempered by
economics, whether or not any greater risk to safety is acceptable. Indeed this estimate does not con-
sider latent failures, i.e., conditions where physical defects have occurred but have not yet contributed
to a data error because the failed components have not been party to a computation. Such a mechanism could
be modeled as an aging effect on the systems -- despite periodic renewals -- indicating that the value 0.01
above is optimistic. And this computation has not included any manner of considering increased complexity
as r and n varied.

Ironically the increased complexity, while ostensibly contributing to a reduction in the incidence of
system failures resulting from component and device failures, is a source of residual "definitional flaws"
in systems. The term "definitional flaw" is adopted here to denote an inadvertent system design which,
when the system is in some particular condition with some unexpected data and regardless of the presence
or absence of .onventional component failures or anomalous environments, produces undesirable results which
could have been avoided by another, proper design; the term includes design errors, specification errors
or inadequacies, missing requirements, etc. It matters not whether the flaw is in software or hardware or
is the result of the correct implementation of an erroneous or incomplete specification; the root cause i3
human error. One expects the incidence of such flaws to increase with growth in complexity. There is a
quite large pool of practical experience with such a failure mode -- everyone's 'bétes noires', the soft-
ware bugs found in operational software systems -- which indicates strongly that the failure mode must be
included, in some fashion, in the reliability analysis of complex systems. On the other hand, in the
avionic application of interest, the level of system reliability required effectively precludes the use
of thorough, lifetime/use testing of actual systems to determine with acceptable confidence (in a
statistical sense) that the probability of system failure due to residual definitional flaws is compatible
with the reliability goals and requirement. As a consequence, more analytical methods -- for example
(Costes, A. et al., 1978) -- must be developed and relied upon to address total system {i.e., logic,
largely software, and hardware) reliability -- with "acceptable credibility".

TJECHNIQUES FOR ADDRESSING DEFINITIONAL FLAWS

Analogously to "hardware redundancy", techniques for designing systems with "logical redundancy” to
(attempt to) prevent system failures attributable to residual definitional flaws are becoming a subject of
research -~ and development. The software fault tolerance studies at the University of Newcastle-upon-Tyne
are a leading example of recent innovations (Randell, B., 1975). Largely as a result of the sequential
nature of software algorithms, fault tolerant software has been oriented more to a method of sequential
test and selection, in accordance with stated acceptance criteria, from among alternate algorithms in a
software system, rather than to a method of comparison and voting over the results of a number of alternate
algorithms. But parallel alternate hardware logic or concurrent alternate software algorithms in parallel
processors are conceivable mechanizations. The "logical redundancy" techniques are therefore seen to
parallel hardware.

Fault tolerant software lends itself to an especially simple behavior model, as in Figure 2(a), on
the assumption that successful recovery from a software (or logic) failure implies immediate return to the
initial (software) state. The rationale for the assumption is that the flaw responsible for the software
data error has always been present in the system, having merely not been previously activated, so to speak;
the system remains ready to function as before (i.e., correctly) once it has survived the software data
error. Indeed, one might expect to not see a second, identical software error, assuming the initial error
to have been triggered by unusual data not 1ikely to soon be seen again. (As an aside, experiments using
the emulation technique to be discussed suggest themselves to determine whether or not software data errors
might not better be modeled as error "bursts".) Figure 2(b) is a simpler representation of the same
recovery/failure process. Again, for the sake of simplicity, software is assumed to have a constant
failure rate, 1, and fault tolerant software is assumed to have an aggregate recovery parameter, k,
analogous to the coverage parameters of the r-out-of-n hardware model. Inmediate system failure is assumed
to be the result of lack of successful recovery. MNo further elaboration of a software model is attempted
since there has been no credible empirical evidence available for the selection and justification of any
particular, more complex, general model of system failure due to software (Thibodeau, R., 1978), let alone
the more general case of residual definitional flaws.

ANALYTIC RELIABILITY ANALYSIS: HOW CREDIBLE?

The software model of Figure 2 and the r-out-of-n model of Figure 1 suffice, however, to show the
difficulty, when lifetime-usce testing of actual systoms is not feasible, of establishing with acceptable
confidence (in the statistical sense) that systems designed to satisfy the 10-9 requirement do achieve the
reliability goal. In Figure.3, the two models are cumbined to represent simply a system subject to and
tolerant of both hardware component failures and errors due to residual definitional flaws (here, software).
An additional assumption is made -- that the software and hardware are independent -- to kecp the
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iHustration simple again. It is possible to add more complexity in the model, but as stated before, there
is no empirical evidenze to justify selecting any pavticular model in preference to another. Also, the
conclusion below is not appreciably modified. Again recoqnizing the model and assumptions as a Markov
process, the probability of system failure is computed to be

n-r . j
1- c-(nuu(l-k))t Z aj(:il)(e,\t - 1)
3=0
where ag and ay are as before.

For a typical (and optimistic) value for A ¢=10‘4 failures per hour), typical values for n (=3 to 5)
and the required value for t (=10 hours), bounds on Cl, Cz <and p(l - k) required, in order for the
system to satisfy the 10-9 requirement, are calculated to be as follows:

12 € 2 0.999999
12Cp20.9999
u(l - k) < 10-10

There appears to be little margin for error in designing systems to satisfy the 10-9 requirement. Refine-
ment of the model cannot eliminate the difficulty in estimating precisely the reliability of such systems;
it can only transform it into a need for near perfect knowledge of different parameters, for the systems
must still.achieve the same aggregate behavior as above. ’ :

MORE COMPLEX MODELS .

In the process of investigating fault tolerant systems (previously, principally studies of hardware)
numerous models have been developed for analyzing the reliability of such systems. Of late, fnvestigations
have also been undertaken into models to relate the system failure modes to time-variable computational and
performance requirements, thus attaching the reliability of a system more tightly to its application
(Meyer, J., 1977), (Beaudry, M. D., 1978). Some model evaluation schemes have been "computerized" to
serve as more or less general purpose tools for the convenijent analysis, in the architectural design stage,
of systems composed of complex arrangements of elements, e.g., TAST (Cohn, R. B. et al., 1974), CARE II
(Stiffler, J., 1974), CARSRA (Bjurman, B. E. et-al., 1976), ARIES (Ng, Y., 1976). Although they consider
details of system behavior such as recovery (detection, isolation, reconfiguration) strategies, sparing
(active, stand-by, switching) strategies, transient and intermittent fault (duration, periodicity, leakage)
modes, functional dependence among devices, nonexporiential failure distributions, etc., the models still
are constructed essentially from parametric descriptions of aggregate system, subsystem and/or device
behavior in order to make use of mathematical techniques applicable to idealized stochastic process models
and for reasonably efficient computation. Hence all the models must be provided with parameter values
which need to be assumed or known, by some other means, in order to precisely represent any and each
particular system design of <nterest.

EMULATION
Digital Simulation

While the word "simulation" is widely used to denote all manner of technigres for, among other
purposes, analyzing the behavior of objects and their environments by means of implementation and manipu-
Tation o; more conveniently malleable surrogates, here the word is limited to mean the use of computer
"systems" as surrogates -- at whatever level of abstraction is meaningful to an application. The concept
of system is stressed because usefulness of a simulation scheme depends upon both software and hardware --
a characteristic more effectively utilized by emulaticn. For example, consider the reliability analysis
programs previously mentioned -- CAST, etc. Although they are essentially simulation schemes which are
normally discussed without regard to host computer hardware, in any actual application, host computer
hardware will be an important constraint upon the amount of detail which ft will be feasible to consider
with the programs.

Digital simulation, as opposed to emulation, at the level of gate logic has becen discussed in the
Titerature on computers and considered as a ‘ool for design and fault (signature) analyses of digital logic
circuits at levels of detail ranging from simple (e.g., assuming gates to have only two possible output
values) to complex (e.g., allowing undefined values of gate outputs and various timing anomalies)
(Szygenda, S. and Thompson, E., 1976). For the analysis of circuits the sizes of microprocessors, memories
and larger, in practice simulation techniques at the agregate, functional behavior Tevel begin to displace
gate level simulations (Menon, P. and Chappell, S., 1977) as the gate level simulation costs become pro-
hibitive when compared to perceived benefits.

However, for the purposes of reliability analysis of fault tolerant systems, gate level simulation
warrants considerable cost in view of the conclusion to be drawn from the preceding paragraphs that, at
the levels of reliability of interest, the probability of failure of such systems is less dependent upon
the modc of failure resulting from depletion of redundant resources than it s upon the less well under-
stood and questionably modeled modes considered under the terms “coverage" and "definitional flaws". A
similar conclusion to the effect "that the introduction of a redundancy at the hardwarce level increases the
relative influence of software faults" is made clscwhere (Costes, A., 1978). Unfortunately, while the costs



3-6-5

could be suffered, in Tight of the tencfits, gate Tevel simulation is not a feasible technique for appli-
cation to questions involving chance events and repeated trials because it is time consuming -- orders of
magnitude slower than likely target systems.. ' .

Emulation vs. Simulation

In ordinary use, the word "emulation" means an endeavor to equal or excel; in the present context, it
is reserved for a particular technique of implementing simulation possible when a host computer fs micro-
programmable. 1In order to avoid confusion, "simulation" acquires the added meaning here of being distinct
from "emulation". Microprogramning is significant because it allows a final definition of a computer's
“apparent" instruction set to be postponed until after the definition of hardwired logic is completed,
and it does this with an acceptably small risk that the hardware logic will nced redesign. This happens
because a "real" {instruction set is defined by the herdwired logic, is at a quite primitive level, and is
tailored especially for executing algorithms which, in turn, become operational definitions of less
primitive operations -- the "apparent® instruction set. .

Thus it may be said that a computer®dcfined by an “apparent® instruction set does not really exist;
it is “emulated" by microprogrammable hardware by means of microcoded algorithms. Admittedly, variations
in efficiency of variant microcode operations vis-a-vis various “apparent" instruction sets may exist, but
they can be ignored for the present purpose. What is notable is that, given reasonable care not to mis-
match host and target computers, microprogrammable computers can perform in the role of an "apparent" com-
puter approximately as efficiently as a hardwired version of the "apparent” computer would. Note that
“emulation” is at a level of detail which permits software implemented for another, “apparent"”, target
computer to be executed "directly" by a host computer. That is, no modification of the target software is
needed to make it compatible with the host computer, and no special software on the host computer needs to
be generated (more specifically, no simulation program in an "apparent" instruction set on the host to
{nterpret the instructions of the target software and mimic the target computer) as. would be needed on a
nonmicroprogrammable computer. R

Use as_a Diagnostic_Tool

Addition of diagnostic, control functions in the microcode permits a host computer to act not only as
a surrogate but also as a device for observing and recording (and possibly analyzing) target software per-
formance in an ostensibly natural environment. ~ Such "diagnostic emulation” use is becoming more common in
the development ‘and maintenance of special software systems and is, seemingly, "emulation" in the
dictionary sense. As might be expected efficient use of such a diagnostic system requires support capa-
bilities for readily modifying microcoded algorithms defining target computers. Such facilities are
beginning to be developed -- for example, EMULAB (Clausen, B. et al., 1977). What has been less well
considered is the fact that such capabilities can be extended to permit analysis not-only of software but
also of systems (i.e., software and hardware) -- and not only as they ‘are intended to be but also as they
are not. By generating the defining microcode such that it represents target computers in sufficiently
fine detall combinations of failures in individual components, anomalous data, and defimitional flaws can
be introduced and their effects at the system level observed rather than assumed. Thus emulation provides
a conveniently manipulated failure effects analysis tool. In addition the manner in which an emulation
technique fs irplemented, with automated diagnostic and system and environment controls, lends itself to
use for "pseudo-testing" as in Figure 4. .

“--., In general, emulation can be used to generate repeated trials of "emulated” systems from which

failure ratios and histograms can be tabulated for analysis <- hence, aggregate behavior models verified
and parameter values estimated with some measure of confidence (in a statistical sense). Clearly, assump-
tions about the manners and rates of occurrence of failures and flaws must still be made in order to intro-
duce these last into the emulations. However, while the credibility of precise assumptions will still be
questionable, it should be possible to develop credibly pessimistic assumptions to attempt to demonstrate
that particular fault tolerant system designs exceed the reliability requirement.

While, also in general, the use of emulation to perform such "pseudo-testing” is limited by the
efficiency (i.e., computation speed) of the emulation technique and equipment, it appears reasonable to
state that it is less restricted than in the case of digital simulation. Given the previously described
need and difficulty of establishing the reliability of the fault tolerant avionic computer systems of
interest, emulation techniques merit further investigation.

SAMPLE EXPERIMENT

Scope

An effort of limited scale was undertaken in order to determine whether or not an emulation scheme
could be devised which would be sufficiently efficient to support analyses of target systems of meaningful
sizes and complexities, and to demonstrate that such a scheme could be implemented in a manner convenient
for analysis purposes by users not well versed, if at all, in the emulation schome itself. As a demon-
stration, a sample analysis bearing upon reliability of fault tolerant systems was chosen.

The effort was experimental; time and effort were expended scarching out efficient inplementations
and superior microprogranming capabilities to support the implementations. Consequently no comitment to
any specific microprogrammable hardware was desirable initially. The experiment was performed on a large,
general purpose computer whose underlying microcode was sacrosanct. For this reason enulation was really
simylated. This last level of complication can be accounted for by introducing a time scale factor; it is
otherwise ignored here. While some variant emulation algorithms which have been conceived have not yet
been fmplemented and examined, the effort has provided a basis for selecting microprogrammable hardware
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for further studies. MNere, hdwevur. the experiment. is discussed merely to illustrate an actual, rather
than speculated, application of emulation to reliability anmalysis.

Emulation Technique

The scheme selected consists of an algorithm generated independently of any target computer.
Descriptions of particular systems to be emulated are provided to the algorithm at the time of operation.
The method is referred to as "table-driven” in contrast to a “compilation" mcthod in which a hardware
description is input to a hardware description ‘language "compiler" which generates a computer program to
enulate one specifically defined computer. The table-driven method was chosen because it was believed to
facilitate the infusion of failures and to provide better visibility to a user. That is, the target hard-
ware is visible as a distinct entity at emulation time rather than being dispersed and buried inside the
workings of an emutation program, and failures and faults can be added and removed without altering the
cyclic nature of the algorithm.

From a user's viewpoint, the emulation {is visualized as the repeated transformations of two variables.
One varfable, Sp, describes the structure of the system at time step n. The variable is essentially a
matrix which identifies the interconnections among the logic elements in a system, and also identifies the
functional behavior of each element. The most primitive element permitted is a generalized gate to which
constant behavior characteristics {neither correct nor faulty to the emulation algorithn) are attached.
More complex clements such as flip-flops and tristate devices are also permitted, if desired, as primitive
elements to be manipulated as indivisible entities by the emulation algorithm. (For the experiment, the
algorithm was limited to elements with scalar output values.) For example, a logic element X might have
been fdentified to act as a four (4) input NAND gate driving six (6) other identified elements and supposed
to have an irregular input-to-output signal propagation time. Hence, S, is effectively a time-varying,
annotated logic diagram. . '

A second Qaridb]e, Vp, is a vector containing the output values, at time step n, of each of the logic
elements defined in Sp. Target software corresponds to a subset of this variable, viz., those values
corresponding to logic elements defining some of the emulated system's memory..

A third auxiliary variable, Fp, can be visualized as a source of external perturbations into the
emulated system -- affecting Sp, Vp, or both. As currently implemented, this variable is generated
separately from the others in order to increase the speed of the emulation computations. It represents
the source of random failures, flaws, and anomalies at either preselected or random times and control over
the emulation process.

The emulation algorithm, a time invariant transformation, is a collection of techniques (so-called
"selective trace”, linked lists, data compression, parallel processing -- untested because of the limita-
tions of the general computers previously mentioned --, event scheduling) consistent with a model of the
behavior of a "generalized" logic element over an arbitrary time step. .

——

SAMPLE ANALYSIS: LATENT FAILURES

The experimental analysis performed was a study of the efficacy of five (5) particular algorithms,
each with a different instruction mix, as detectors of component “stuck-at" faults (i.e., latent failures)
in a particular "play” system. The analysis is documented in detail in (Nagel, P., 1978).

The “play" target computer was originally generated (i.e., defined at the gate logic level) as a
vehicle for checking out the initial and modified versions of the emulation algorithms, and for demon-
strating the ability of support software, a hardware description language translator and meta-assembler
for regenerating target software, to respond semiautomatically to hardware design changes. The "play"
computer has a memory of 8192, 16 bit wide words, a CPU with a count of approximately 2000 gate equivalents,
and a single input-output register/port. The logic is arbitrarily assigned to four (4) hypothetical chips:
a “clock" chip, an “"adder" chip, an “"op-decode" chip, and a miscellaneous odds and ends chip. The instruc-
tion set contains about a dozen basic instructions.

The emulated system trails were simple. The five algorithms, ranging in length from about a dozen
instructions to several hundreds, were repeatedly executed, with randomly selected initial data, and
randomly selected faults of random components. Distributions of time from fault occurrence to fault
detection {i.e., fault latency duration) were generated. Two analyses of the sort that would be of
jnterest in studies of fault tolerant systems were made. For one, the observed distributions were fitted
against comnonly used mathematical models, e.g., exponentials, as would be done in order to determine

_models and parameter values for use in reliability analysis programs. The results, of course, are not
significant, owing to the fanciful nature of the input data; still, it is interesting that the distribu-
tions were best fit by models of balls selected at random from urns. Another result, that the distribu-
tions each exhibited different nonzero probabilities of never detecting the faults, was predictable, but
only an experiment of this nature could determine the differences in magnitude. A sccond effort was a
search for correlations among the distinguishable characteristics of the algorithms and the distributions.
The only significant correlation found was between instruction mix and detection probability. Here too,
because of the nature of the target system, the magnitudes of the correlations can only be considered
fanciful. But the concept is useful in considering characteristics which should be avoided in algorithms
whose function {s to reconfigure a system after a failure has been detected.

A case has been made for the use of emulation techniques as a necded adjunct to reliability analysis
models for highly reliable avionic computer systems. Although no conclusion ahout the technique’s
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eventual usefulness is yet warranted, in light of its apparent usofulness as 2 failure modes effects
analysis tool and the promise and potential rewards of its use for probability distribution uses, further
developient and investigation of the technique appears warranted and is being pursued by the NASA.
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