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Abstract

The authors provide the formulation basis for nonlinear transient

analysis of finite element models of structures using energy minimi.za-

tion. With both geometric and material nonlinearities included, the

development is restricted to simple one and two dimensional finite ele-

ments which are regarded as being the basic elements for modeling; full

aircraft-like structures under crash conditions. The results presented

establish the effectiveness of the technique as a viable tool for this

purpose.
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I. Introduction

Nonlinear transient analysis of structures has been of increasing

interest to engineers by virtue of their motivation for minimizing human

and property damage resulting from the catastrophic failure of such

structures under crash or seismic conditions. Complexities of the

structural configuration and its equally complex transient response . in

the presen.:e of material inelasticity make finite element modeling of

such structures a very natural an4 plausible recourse. Portions of the

structures may remain elastic and undergo infinitesimally small deforma-

tions while other portions may experience finite deformations and mo-

tions and respond inelastically under time-varying loads that may lead

to a complete failure of the structure. If finite strains are to be

permitted in the model, distinction must be made between undeformed and

deformed configurations and the concepts of pseudo stresses and conjugate

strain measures which have intricate physical interpretations must he

introduced [1]. Furthermore, strictly speaking most elastic-plastic

theories which hypothesize an additive decomposition of the total strain

into an elastic and a plastic component lose their validity in the large

strain domain [2). Because of this, most developers of nonlinear analy-

sis codes restrict themselves to a small strain formulation but permit

finite displacements and rotations thereby allowing buckling and collapse

of the structure to occur. There are some indications that this may be

adequate for most practical purposes.

With this hypothesis as its basis, the present discussion fucuse.s

on the simulation of response of a structure modeled as an assemblage

of membrane, frame (3-D beam), stringer elements and rigid links (see

Figure 1). The mathematical model is a finite element displacement
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blage of finite elements and approximating the response of each element

by a finite number of deformation states expressed as linear functions

of the generalized nodal displacements.

Two distinct solution approaches exist: (i) the vector approach

and (ii) the scalar approach. In the former, the mathematical model is

derived on the basis of the principle of virtual work and reduces to a

system of nonlinear second-order differential equations in time. In

the latter approach, a scalar or potential function associated with the

energy of the model is introduced, minimization of which yields the

desired equilibrium configuration. In both approaches a temporal. finite

difference scheme is utilized to effectively eliminate time as a var-

iable. As a result, in the vector approach the equations of motion are

reduced to a system of nonlinear algebraic equations in the unknown

nodal parameters of the finite element model
[ 31-[b1

. In the scalar

approach, which is of relevance to this paper, the problem is reduced to

a well known problem in mathematical programming namely the unconstrained

minimization of a nonlinear function of several variables.
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II. Minimixation Technique for Nonlinear Analysis

a. Formulation Basis

The scalar approach has been successfully used for static and tran-

sient nonlinear structural analysis [11-[91. In this case the problem

of response prediction is equivalently posed as the minimization of a

potential function of the unknown nodal parameters of the finite ele-

ment model. For all structural problems with geometric and material

nonlinearities of the type considered herein such a potential function

always exists. Although this technique has been hitherto used for

mainly positive or negative definite systems, other systems which fail

to be positive or negative definite can be handled by using the least

squares method or the modified conjugate gradient method with precon-

ditioning [101. In some cases for such systems displacement incremen-

tation rather than load incrementation in conjunction with conventional

unconstrained minimization techniques can also be equally effective

[11).

The minimizatiun scheme as applied to the solution of transient

nonlinear structural analysis problems consists of minimizing a poten-

tial function associated with the system for an assumed relationship

between displacements and time. The displacement-time relation for each

generalized nodal displacement of a finite element model may be assumed

of the form (121

qei m R(At) 2 4ei + (Z - 0)(At)240i + (At)g 0, + q0i	 (1-a)

qei - Y(At)gei + (1 - Y)(AtAoi + q01 	
(1-b)

where qei is the i-th generalized nodal displacement at the end of the

time step and B and Y are constants. These constants are determined in

terms of the i-th generalized nodal displacement, 40i, velocity, q0i

and acceleration, 
q0i 

at the beginning of the time step and the generalized

5



nodal displacement, q ei , at the and of the time step. It can be easily

verified that the equation of equilibrium for an N degree of freedom

system with lumped masses

Migei - Fi 
+ aaU a 0	 1 - 1,2...N	 (2)

qei

correspond to the necessary conditions for the functional

N
N	 1	 2	 1	 1	 1__

S	
1-1 t(2000 2 qei - 

{ S{fit} 2 q0i + S{dt) q01 + ( 2^ - 1}g0i)geiIMI

- FI(t+At)gei } + U + C	 {3}

to be stationary. In Equation (3), U is the strain energy and C is an

i
arbitrary constant. Thus, knowing 

q0i' q0i and q
0i at time t for any

given load F  at time (t+At), the functional S may be minimized with

respect to the generalized nodal displacements, qei (i-1,...N), in order

to determine the corresponding stable equilibrium configuration. Thus,

this scheme satisfies equilibrium at the end of the time step, thereby

providing an implicit temporal integration scheme. The size of the time

step is automatically controlled so that the error at half time based

on Interpolated configuration data is less than a prescribed change in

total energy. In general, the strain energy U will be a nonlinear

function (at the very least a quadratic) of the generalized nodal_ dis-

placements qei . Details on the explicit evaluation of U as a fun tion

of qei will be touched upon later.

Of all the available techniques for unconstrained minimization only

the quasi-Newton or the variable metric methods have been more frequently

used for structural analysis, because of their higher effectiveness

113]. Again, unless one accounts for the sparsity of the variable

metric, one has to almost invariably resort to some form of a conjugate

gradient technique for problems wherein N is an extremely large number.
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The extension of the minimization techniques to extremely large scale

nonlinear structural analysis problems is a subject of separate research

1141 in itself and is beyond the scope of this pap, .

Most algorithms for unconstrained minimization seek a direction of

travel and the amount of travel in that direction. The manner in which

these are sought depends upon the sophistication of the particular

algorithm invoked. Most often the directions of travel are sought in a

manner which guarantees not only a decrease in the value of the function

to be minimivcd at each iteration but also a convergence to the minimum

in a finite number o. iterations (usually N+l for an N dimension:}1

space) in the case of quadratic functionals. It is important to nUtt

that all functi.onals are very nearly quadratic in the neighborho-1 of

the minimum. The iterative scheme is begun with an initial guts., which

Is usually the null vector in the absence of other better estimates.

For the variable metric or the conjugate gradient methods the required

gradient of S is evaluated either analytically or by a finite difference

operation on S. The use of an analytic gradient results in a substan-

tial saving in computational effort. This saving is the result of not

only a cheaper gradient evaluation but most often a faster convergence

of the solution because of higher accuracy of all computed quantities

1131. The i-th component of the gradient of S can be written as

aaS . Migei - 
Fi+ 

lu	
(4)

q e i	 qei

The term in Eq. (4) requiring significant computational effort is

au 
as it embraces the geometric and material nonlinearities. Using

agei

half-station central differences this is given by
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P

au

age, =

1
Uk (gel' qe2' •••• qei + 2 ®qei' qei+l " ' qeN)

m Uk(g el • qe2 .•,• qei - 2 Ages' qei+l .., qeN)
L	 (5)
k=1	 Agei

where Aqei is a small change in the i-th component and m is the number

of members or elements which has the 1-th degree of freedom in common.

In evaluating the gradient vector analytically (17], each of its com-

ponent involves the evaluation of only a single function similar to the

function for member energy evaluation. Thus,

m	 m
au = t+ 	 8W 

dvk• m	 (^W)k{a aE ) kdvk 	(6-a)
3q 	 k!=1 fvk 

a 

qei	 =1 f 
k 

d6	 qei

where

W - strain energy density

T(C xx + Eyy - 
xx yy + y YXy)112 for a

E = effective strain	
two dimensional stress state

(6-b)
C for a uniaxial stress state
xx

and for one step incremental loading or unloading

((J2 + a2 -
 oyya 

+ 3r2 )1/2
XY

dW	 for a two dimensional stress state

{—) = a - effective stress

do	
a	 for a uniaxial stress state
xx

Equations (6-a) through (6-c) imply the use of Hencky's total strain

theory along with its assumption that in the strain hardening r.inge she

inelastic, component of the total strain is predominant (15]. This in a

way is consistent witii the assumption that the total strain can be de-

composed into an elastic and a plastic part especially in cases where

the strains are large [2]. According to reference (2] it is only when

(6-c)



plastic strains are predominant that such a decomposition is justified.

The problem at hand could have equally well been formulated using

the incremental flow theories of plasticity in the strain hardening

range. The potential function instead of being a function of the total

quantities need then be expressed in terms of incremental quanties

and the minimization technique can still he used [16]. As a matter

of fact, it may be conjectured that the performance of the solucit:n

algorithm will perhaps be significantly improved using such a formula-

tion even though the material model may then be slightly more complex.

In any event, it is immediately obvious that a significant reduction in

computational time will be realized if analytic gradients are used in

preference to centr.l difference gradients.

The complexity of the strain energy evaluation for any element is

determined by its deformation model. This is discussed next.

b. Deformation model:

The deformation model of the entire structure is synthesized from

deformation states of each element of the structure. These state-s are

expressed in terms of generalized displacements of the nodes of the

structure at which the elements interface.

The displacement field within each element is chosen as a continu-

ously differentiable function of the local spatial coordinates and the

generalized nodal displacements. The field maintains interelement

continuity of its essential derivatives thereby providing a Galorkin

model of the system. The local generalized nodal displacements of each

element are then related to the global displacements of the assemblage.

These relat i ons, which can be interpreted as transformations of the

local coordinate system to the global coerdtnate system, may be linear



or nonlinear depending upon whether the motions and deformations of the

olements are infinitesimal or finite. For large rigid body rotations,

these transformations are accomplished using Puler angles which are

linearly independent by virtue of the fact that the rotations are per-

formed in a prescribed order.

There are three kinematic descriptions most commonly used for char-

acterizing large displacements of finite element models of structures.

These are: (i) the total Lagrangian formulation wherein the initial

undeformed configuration is the reference configuration, (ii) tlse up-

dated Lagrangian formulation which asses a total Lagrangian formulation

within each load or time step but updates the reference configuration at

the end of each step and (iii) the co-rotational or rigid convected

coordinate formulation which utilizes a coordinate system rigidiv at-

tacked to an element and moving with the element. For developmtat of a

large rotation formulation vital for crashworthiness studies the use of

the total Lagrangian formulation is unsuitable since most structural

theories permit only moderately small rotations [18]. The co-rotational

formulation decomposes the total displacements into a rigid body motion

component and a strain producing component. Thus, with the restriction

of small relative rotations within the eler.L:nt, this formulation leads

to a simplification of the strain-displacement relationship oil the

element level while still permitting arbitrarily large rotations of the

element. The present deformation model uses the co-rotational or r4jjd-

convected formulation for its kinematic description.

Through appropriate kinematic constraints modeling of massless

degrees of freedom or of deformation -free rigid links or even the simu-

lation of contact with an impenetrable, rough plane are easily achieved.
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Atis

-	 Rigid links can be used to simulate either joint eccentrices or rigid

parts of a structure. In the interest of a truly unconstrained minimi-

zation Lagrange multipliers or penalty functions are avoided. BFither

kinematic constraints are formulated as prescribed displacement- u, ► - r

reactive forcers provided by the gradients of the strain energy O th

respect to the corresponding degrees of freedom.

c. Material model:

Although closed Form analytic exnr^;ssions for ti can be dev(- h,-)vd

when the material is elastic the same is not true when elements ii•ld.

Then the response depends upon the current values of stress components

and the past history. Von Mices' yield cr!rerlon together with Henckey's

total strain theory provides a simple means of calculating strain

energy density distributions throughout an element that has yi,,1dt,d.

Because total stresses and total strains are no longer linearly rvl.it^-d

recourse must be made to numerical integration (Gaussian or Lob.tttc>) of

the strain energy density over the volume- of the element. Thus, a fr.unu

element which was strictly a uniaxial member in the elastic ran^,v,

typified by its cross-sectional area and moments of inertia, requirt:s a

full three dimensional characterization in the inel , tic range. In

other words, frame elements for inelastic: analysis require a

cation based on the different cross-sections. This development is

restricted to frame elements with thin-walled sections of the closed .wd

open (Box, Tube, Elip and E) variety - a characteristic of general

aviation aircraft frames. However, in the elastic range the devult^,•nL•nt

does permit frame elements with arbitrary cross-sections charact-rized

by their gross section properties. In the interest of simplicit;,

classical shear flow theory for thin-walled :sections is used and certain

I 



simplifying assumptions regarding torsion, warping and shear deforma-

tions in the inelastic range are introduced. This is characteristic of

most nonlinear analyzers mainly because the development of a truly three-

dimensional frame element for nonlinear inelastic response is a formid-

able task perhaps even more challenging than that of the development of

a plate bending or a shell element for the same purpose.	 In fact, in

the inelastic range it may be easier to model a thin-walled beam of

arbitrary cross-section by an assemblage of a large number of plate and

shell elements thereby permitting a faithful representation of very

complex effects like restrained warping, torsion, cross-sectional dis-

tortions, etc.

Thus, it is clear that when an element yields, the complexity of

the strain energy evaluation increases several times in relation to its

purely elastic behavior. A number of quadrature points have to be

assigned over the volume of the element and using the material model

stresses and strain energy densities have to be evaluated at each of

these points for known values of strains (Figure 2). Tile average strain

energy density which is simply the weighted sum of these strain energy

densities then enables the calculation of the total strain energy. It

must be noted, however, that the stress-strain history at each of these

quadrature points, which corresponds to a unique location on an ideal-

ized effective stress-effective strain curve for the material of the

element (Figure 3), must be made available at all times. This places

highly increased demands on computer storage as inelastic deformations

progress with time.

The material is assumed to unload elastically. For modeling plas-

ticicy under cyclic loading kinematic hardening with an idealized

'.2
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Bauschinger effect is assumed. Specialized elements like the gap ele-

ments and stays can be easily modeled simply through an appropriate

modification of the material model of the conventional elements.

The details of the total strain energy calculations for the dif-

ferent element types considered and the transformations relating element

behavior to global variables is relegated to the appendix.
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III. Results and Discussion

The effectiveness of the minimization technique in solving non-

linear problems is very much a function of not only the size of the load

or time step but also the extent and type of the nonlinearity-geometric

or material and even the type of the temporal discretization scheme used

which is to say the assumed values of s and Y in Eq. (1). With this in

mind, the process of selection of problems for validation was geared

towards providing an evaluation of the techniques under different types

of nonlinearities. Problems belonging to three distinct classes namely:

(i) quasi-static, elastic with geometric nonlinearities, (ii) quasi-

static, elastic-plastic with geometric nonlinearities and (iii) transient,

elastic-plastic with geometric nonlinearities were selected. Independent

solutions or experimental results for these problems were available for

comparison purposes.

Figure 4 shows the case of a rod-spring problem wherein the stiff-

ness of the spring is just enough to prevent a snap-through and provide

a single-valued load deflection response. Most researchers regard this

problem as geometrically highly nonlinear. Using stringer elements with

load steps as high as 1 lb., the energy minimization solution is indis-

tinguishable from the easily obtainable exact solution to this problem.

Higher load steps could have been chosen but caution must be exercised

with extremely large load steps since the performance (the number of

minimizations required for convergence) of the minimization algorithm

may be adversely affected. In other words, the computational effort

within a load step may increase substantially enough to offset the sav-

ings accured from fewer load steps.

16
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Figure 5 provides yet another example of such a nonlinearity except

that in this case the load response curve is no longer single valued but

is a composite of stable and unstable branches. Using straight-forward

load incrementation, it is possible to locate only the stable equili-

brium configurations as indicated in Figure 5. Using displacement

incrementation, however, the entire load response curve can be easily

obtained. The response predicted by energy minimization agrees very

closely with that predicted by the nonlinear analyzer developed by

Stricklin and Aaisler [19] for an identical model of the shallow arch

using frame elements.

While both of the previous problems involved only geometric non-

linparitins, Figure b presents the case wherein both material and geo-

metric noriinearities interact. The experimental prediction of the

post-buckling, elastic-plastic response of this beam-column with a thin-

walled channel cross-section was the result of a test carried out by

Anderson et al (20]. To prevent failure by direct compression, the

column was tested at an inclination of 5° from the vertical with both

ends of the column being clamped. A column under these conditions is

highly imperfection sensitive and hence Anderson et al assume an addi-

tional 1° offset, as shown in the figure, for the mathematical model

hoping to simulate the inherent imperfections of the actual column

tested. Because the response involves a highly unstable branch, dis-

placement incrementation had to be used in place of load incrementation.

The response predicted by energy minimization agrees extremely well with

the experimental prediction and even more so by comparison with that

predicted using UMVCS-1[21).
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Figure ] illustrates the case of the transient response in the

presence of both geometric and material nonlinearities. The impulse is

large enough to cause the entire beam to respond inelastically while

exreriencing moderately large relative rotations. The experimental re-

pone* for this beam was obtained by Krieg et al [22]. It is immediately

obvious that the quality of the response prediction is very much a func-

tion of the values of S and y. This is not to say that optimum values

of 0 and y exist which guarantee optimum fidelity of the response pre-

diction. Ait a matter of fact, optimum values of S and y appear to be

very much problem dependent. Again, the response may be significantly

affected by the use of a consistent mass matrix and with rotatory iner-

tia and shear deformation effects included.

With the possible exception of the problem of Figure 8, all the

previous problems involved only a relatively few degrees of freedom.

Furthermore, the state of stress in all of these prob'_eis was essen-

tially uniaxial for all practical purposes. Using constant strain

membrane elements the maximum strain in the vicinity of a notch in the

direction of loading is determined and compared with the experL,iental

results. The agreement between the two predictions is goad but couid

perhaps be improved upon by the use of nonlinear strain disnlacement

relationships in the co-rotational coordinate system.

This demonstration of the effectiveness of the minimization tech-

nique as a tool for nonlinear analysis has been, no doubt, restricted to

classical, idealized problems with a relatively few degrees of freedom.

Extensions to large scale problems like the section of an aircraft, as

in Figure 1, or even a full aircraft may involve several thousands of
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degrees of freedom. The effectiveness of the present technique for

response prediction of such structures remains to be demonstrated.

Using preconditioned conjugate gradient technique or variable metric

methods which exploit sparsity, it is believed that this is no longer an

insurmountable task. Its performance vis-a-vis the pseudo force and

hybrid techniques for such large scale problems will be the subject of a

follow-on paper. Incidently, however, for small scale problems of the

type considered herein the energy minimization technique has been shown

to be at least comparable to, if not better than, the pseudo force

technique [14).
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The scalar approach for the solution of problems of structural

analysis requires that the strain energy of the system be expressed,

explicitly or implicitly, as a function of the.global generalized nodal

displacements of the finite element model.

From a known vector of the generalized nodal variables in the

global co-ordinate system, consistent with the prescribed boundary

conditions, a vector of local generalized variables in the co-rotational

co-ordinate system of each element is established through transforma-

tions which are functions of its geometry and its rigid body rotations.

The assumption of deformation patterns of the element as functions of

these local generalized nodal variables (interpolating polynomials)

yields element strains. Recourse to the element material model then

yields the corresponding stresses and strain energy densities at various

predetermined points (quadrature points) over the extent of the element.

Barring purely elastic response, a simple weighted summation of these

quantities over the element volume yields stress resultants an4 strain

energies respectively. For purely elastic response these are provided

by well-known closed form expressions. For the elastic-plastic response

the strain energy density may be decomposed into an elastic part and an

incremental-dissipative part thereby providing an estimate of the total

energy of the system that has been dissipated through inelastic deforma-

tions. Thus, as shown in Figure 3 for a system with M elements

U f L Ui E Ue + AUd ^, ( f We idv + I '&W
d idv) (A-1)

i=1	 Jul	 i=1	 vi	 vi

where the dissipative energy AU  is the incremental dissipative energy
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computed from the previous stress state typied by the point a  on the

effective stress-effective strain curve of Figure 3.

In the following sections expressions for the strain-displacement

relations are developed for the different elements.

{i) Stringer Element

A structural component of uniform cross section which is initially

straight and which is capable of resisting only axial loads is known as

a stringer element.

From Figure (A-1) it can be seen that for assumed nodal displace-

ments (Up , Vp , W p ) and (Uq , Gq
, W q ) of nodes p and q, the change in

length, DL, of the element is given by

DL - [ (Xq + Uq - Xp - Up ) 2 + (Yq + Vq - Yp - Vp ) 2

• (Zq + W  - z  - Wp )
2 1 1/2 

- [(Xq - Xp ) 2 + (Yq - Yp)2

• (Zq - Zp ) 2 1 1/2	 (A-2)

which can be simplified to

DL L[1 + 
2(AMU+AYAV+AZAW) + AU2+AV2fAW2 ) 1/2 - 1
	 (A-3)

L2	L2

A being the difference operator for q and p end values. Assumption of

the usual linear interpolation function in the co-rotational co-ordinate

system then yields

(A-4)

(ii) Frame Element (3D Beam)

A frame element (Figure A-2) is a structural component which is

initially straight and which undergoes axial, bending and torsional

deformations resulting from finite displacements and rotations of its

ends.
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From Figure (A-3), the displacements of the end q relative to the

end p can be seen to be

(A-5)

or in terms of the three components as

6u	 X -X	 L	 U -U
q	 P	 q	 p

6v - [T] p Y  - Y 	 - 0 + [T] p V  - VP	(A-6)

16W	 Z- 2	 0	 W- W
9	 P	 q	 P

where again Ui , Vi and Wi (i-p or q) denote the global displacements of

the nodes. The matrix [T] p can be shown to be [9]

[T] p - [ T1 Ox , ^ y I OZ)] [ T1 (BXP 1 gyp , ezp )]	 (A-7)

with

c 
y 

c 
z
	 cysz	 -sy

[T1 (ax , ay , az )]	 -cXaz+8xaycz cxcz+sxsya z sxcy	 (A-8)

sxs z+cxsyc z 	-sxcz+cxsysz cxcy

c i = cos ai and si = sin ai for i=x,y and z. Angles Ox , ^y and ^Z 
are

the initial orientation angles described in Figure (A-2) and angles

8xp, 0 y and 
ezP 

are the rigid body rotations of the end p. In deriving

Eq. (A-7) Euler angle transformations are implied with the order of the 	 -_

rotations being az , ay and ax.

Similarly, with the restriction of small relative rotations within

the element, the rotations tPx , try and 
^z 

of the end q relative to the

end p are

^X	 exq exp

^y = [T]p	 6 y - eyp	
(A-9)

VIZ 	 ezq 0 z

With the relative generalized displacements {6u, 6v, 6wl and

{fix, thy , ^ z } known the usual deformation patterns of the reference axis

of the beam element in the co-rotational co-ordinate system are assumed

t
k	
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to be

u(E)	
$L

vt^) ' L (3^2 - 2&3)(dv - z st^x) + (f 3 - ^ )^z
(o-1a)

WW ' L (3&2 - 2^ 3)(dw + yS^ X) - 
( 
3 - E2)^y

R - Ox
where & - x/L and y$ and zs are the co-ordinates of the shear center of

the cross-section of the beam. The strain of the reference axis can

then be shown co be

e ' 
8L - 

n[^ ( 1-2t )(dv-z 	 ) + 2(3&-1)^i
(A-11)

- c[^ (1-'4^0( dw+ys* ) - 2(3^-1) iP I

with n - y/L and 4 - z/L. In the above equations it is implicitly as-

sumed that the lateral displacements and twists are referenced to a

longitudinal axis through the shear center while the axial displacements

and rotations are referenced to the centroidal axis. As shown in ref-

erence [23] this assumption necessitates the introduction of an addi-

tional degree of freedom in the axial direction in the interest of equi-

librium satisfaction in the inelastic range.

(iii) Membrane Element

The membrane element of Figure (A-4) is a plane triangular thin

plate element under constant strain. The element can undergo large

rigid body motions but its deformation is restricte3 to only in-plane

stretching resulting from finite displacements of its vertices.

The orientation of the element is uniquely determined by the global

ordinates of its three vertices, p°, q° and r°. The relative dis-

_ements duq, 6U  
and 6v  defined in figure (A-4) can be seen to be

3
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du - R - R°
9

dur - Q cos a - Q° cos a

dur - Q sin 8-Q° sin 

with

Re - (X2p + Y=p 
+ Z2p)1/2

R [(Xrp + Urp) 2 + (Yrp + Vrp ) 2 + (Zrp + Wrp)211/2

Q° (XQp + Yqp
 + Z2gp)1/2

Q 
[(X 9P 

+ U9P)2 + 

(Y 9P + V9P)2 + (Z 9P + Wgp)211/2

cos a- (X
9P rP	 9P rF 	 9P
X + Y Y + Z Z rP )/(Q°R°)

(A-12)

(A-13)

cos 0 _ [(XU + Ugp)(Xrp + Urp ) + (Ygp + Vgp )(Yrp + Vrp ) +

(Z 9P + W
gp)(Zrp + Wrp)l/(QR)

and typically 
aij - 

ai - a
j

. Next, as in the case of the two previous

elements, deformation patterns u(x,y) and v(x,y) in the co-rotational

co-ordinate system when expressed in terms of the local nodal displace-

ments yield
au	 au	 du

u(x,y) - up + ( R )x + [ Q°sina -	 cota I 
(A-14)

av	 dv	 dv

v(x,y) - vp + ( - }x + [ Q°sina - --I 
cotaiy

with the strains exx , Eyy and Yxy determined on the basis of the small

deformation theory as

au	
du

Exx	 ax = ( R° )

C av 6v 
YY	 ay Q sina	

(A-15)

au + av	 6u  du

Yxy ay	 ax	 ( Q°sina	
R° cota).
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Thus, with the assumption that the total deformation theory of plas-

ticity is applicable, the effective strain and effective stress defined

by Eqs. (6-b) and (6-c) yield estimates of the stresses and strain

energy densities from the material model. It is obvious that the inte-

grations over the volume of the element are rendered trivial by virtue

of the assumption that strains and hence the stresses and strain energy

densities within the element are constant.

(iv) Rigid Link

Rigid link is an element which merely translates and rotates

without any appreciable deformations. The element is identified by two

nodes located with reference to the global co-ordinate system. ©rte of

these two nodes is referred to as the master or primary node, p, with a

waximum of six independent degrees of freedom. The motions of the slave

or secondary node or nodes, q, are determined purely from kinematics by

setting the left hand side of equation (A-5) to zero. Knowing the

dependent displacements of the secondary nodes,

{u} q . {u} p + [T]p{L} + {R} p - {R} q	(A-16)

the contribution, to the total potential energy, of loads applied

directly at the secondary nodes can thus be determined.
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Figure Legend

Figure No.

1

2

3

4

5

6

7

8

A-1

A-2

A-3

A-4

Title

Finite Element Model of an Aircraft Fuselage

A Model for Strain Energy Integration

Effective Stress Versus Effective Strain

The Rod-Spring Problem

Snap-Through of a Shallow Arch

Post-Buckling Elastic-Plastic Response
of a Thin-Walled Column

Impulsively Loaded Clamped Beam

The Notch Problem

Deformation of a Truss Element

Frame Element Orientation

Deformation of a Frame Element

Deformation of a Membrane Element
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