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PREFACE

The advent of the space era in modern science has been instrumental in revitalizing

an active interest in a number of ancillary scientific disciplines. Spectroscopic

methodology is one. Most of the diagnostic study of planetary aeronomy and atmospheric

optics involves methods of spectroscopy - both qualitative and quantitative. Thus, pre-

cise and reliable information about various structural and quantitative parameters and

the nature of different types of radiative and non-radiative processes in respect to

relevant molecules and atoms has been significantly useful.

Optical spectroscopy is relatively a fairly established branch of scientific activity.

Huge amounts of knowledge relating to a large number of atoms and molecules, both in terms

of theoretical modelling and numerical data are now available. A closer perusal of the

relevant literature, however, would reveal that, in many respects, this information is

scattered and rather incoherent, especially in the case of molecular species. In recent

years, widespread and evergrowing use of spectrqscopic data in a variety of applications

(including planetary aeronomy and astrophysics) such as combustion, pollution, chemical

kinetics and thermodynamics, has prompted a critical review and consolidation of avail-

able information with regard to its application in diverse fields of academic and techno-

logical interest. Such data storage is particularly relevant as experiments and observa-

tions become progressively more automated.

This monograph is basically devoted to spectroscopic information of the molecules of

planetary interest. Only those molecules have been dealt with which have been confirmed

spectroscopically to be present in the atmosphere of major planets of our solar system

and play an important role in the aeronomy of the respective planets.

The entire text is divided into three parts. Part I presents an introductory survey

of the vast subject of planetary atmospheres and spectra. It also acquaints a non-

specialist with the general conditions of different planets, their atmospheres and the

various gaseous molecules that exist there. Some typical examples of planetary spectra

are also given.

Part II is primarily concerned with the basic concepts underlying optical absorption

and different quantitative molecular parameters that often have useful application in the

study of planetary atmospheres. Quantities like dipole moments, transition probabilities,

Einstein coefficients and line strengths, radiative life times, absorption cross sections,

oscillator strengths, line widths and profiles, equivalent widths, growth curves, band



strengths, electronic transition moments, Franck-Condon factors and r-centroids, etc., are
discussed and their interrelationships, if any, have been established. Basics of molecular
transitions in relation to the different parameters have also been presented.

Part III is devoted to the important spectroscopic information and relevant data of
the 12 major molecules, viz., 6 diatomics: HF, HC1, CO, H2, 02, N2 and 6 polyatomics:
C02, N20, 03, H20, NH3 , QU, so far spectroscopically identified in various planetary
atmospheres. Precise descriptions are presented about electronic, vibration-rotation
and pure rotational transitions and the observed spectral features. Absorption cross
section data are provided only in graphic forms. An exhaustive bibliography is given
for details.
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Speed of Light in Vacuum

Planck Constant

Boltzmann Constant

Universal Gas Constant

Loschmidt Number
Avogadro Number

Acceleration Due to Gravity

Gravitational Constant

(Sea Level at Equator)
Absolute Zero of Temperature

Normal Volume of Ideal Gas (STP)

Mechanical Equivalent of Heat

Rest Mass^of Electron

Rest Mass of Proton

Rest Mass of Neutron

Mass of an Atom of Hydrogen

Charge of an Electron

Radius of First Bohr Orbit

Rydberg Constant for Hydrogen

Rydberg Constant for Infinite Mass

Fine Structure Constant

Wein's Constant

Energy Conversion Constants:

Unit cm"1

1 cm"1 1

1 erg/molecule 5. 0345x1 O15

1 cal/mole 0.34976

1 eV 8.06573xl03

1 °K 0.69503

1 Hz (sec"1) 3.3356X10"11

Symbol

c

h

k
R

N
0

N

g
G

0°K

vo0
j
Me
M
P

Mnn
Mun

e

a,.
0

RUn
Ro
a
A Tmax

ergs/molecule

T. 9863x1 O"16

1

6.9473xlO"17

1.6021xlO"12

1. 3805x1 O"16

6.6256xlO"27

Value

2.99793xl010 cm sec"1

6.62559xlO"27 erg sec

1.3805xlO"16 erg °K~1

8.31429xl07 erg °K"] mole"1

2.687xl019 cm"3

6.0231xl023 mole"1

978.049 cm sec"

6.668xlO"8 dyne cm2 gm2

-273.15°C

2.24136xl04 cm3 mole"1

4.185xl08 erg cal"1
op

9.1066x10" gm

1. 67252x1 O"24 gm

1. 67482x1 O"24 gm

1.673xlO"24 gm

4. 803x1 O"10 esu ,

1. 602x1 O"20 emu

0'. 5291 7x1 0"8 cm

.109677.576 cm"1 " '
109737.309 cm"1

7.297xlO"3

0.2898 cm °K

cal/mole . electron volts (eV)

2.8591 1. 2398x1 O"4

1.4394xl016 6.2418X1011

1 4.3363xlO"5

2.3061xl04 1

1.9871 8. 61 70x1 O"5

9.5370X10"11 4.1356xlO"13

IX



SECTION I

SPECTROSCOPY AND MOLECULES IN PLANETARY ATMOSPHERES



Page Intentionally Left Blank



CHAPTER 1

SPECTROSCOPY AND THE ATMOSPHERES OF PLANETS

Spectroscopy basically is concerned with practically all phenomena that involve ab-

sorption and/or emission of electromagnetic radiation by matter. The spectral lines that

one obtains using a spectrescopic device are, in fact, the coded messages from atoms and

molecules. The spectroscopist deciphers these codes and derives valuable information

about the internal constitution of these basic entities of matter. The different spectro-

scopic techniques simply act as different windows to enable us to peep into these struc-

tures more and more closely and thus have a better understanding of matter, energy and

their interaction.

Although a considerable amount of semi-empirical work on atomic and molecular spectra

was done before the advent of the quantum era in physics, almost all the later developments

in the field relied heavily upon the quantum theory. Spectroscopy and quantum mechanics

are now inseparable and, as a matter of fact, both go hand in hand in supporting the

progress of each other. Spectrum analysis provides the bulk of useful experimental data

with which the predictions of quantum mechanics are tested and the theory refined. On

the other hand, theoretical deductions of quantum mechanics indicate possible directions

to a spectroscopist to explore newer vistas of nature.

Spectroscopic methodology has long been of considerable interest to space physicists

in their pursuit of knowledge about the universe. Perhaps the largest proportion of our

present day understanding of different celestial structures; e.g., planets, stars,

galaxies, nebulea, etc., is the contribution of different spectroscopic investigations

undertaken from time to time. In the case of planets, spectroscopic probes ever played a

very significant role. A great deal of information about the chemical composition.and

aeronomic diagnostics of planetary atmospheres has been obtained through judicious inter-

pretations of planetary spectra. Both earth-based and fly-by missions have been mutually

complementary in this respect.

Though the early investigations in planetary Spectroscopy were made by using conven-

tional spectrographs and big size telescopes, the state-of-the-art has undergone spectacu-

lar advances in recent years. The development of coude spectrographs, highly sensitive in-

frared sensors and airborne experimental facilities has enhanced the scope and efficacy of

modern planetary Spectroscopy tremendously. Perfection of high resolution Fourier trans-

form Spectroscopy and its application to the study of planetary radiation is another

significant step forward. The resolution and purity of Fourier transform Spectroscopy is

so high that many new identifications of spectral features, which were hitherto hopelessly



blended with the neighboring ones, are now possible. The technique was initiated by

Fellget (1958) and its first planetary application was made by Gebbie et al. (1962) to

record interferograms of Venus in the near infrared out to 3y. It is indeed a very

efficient and reliable technique of exploring planetary radiation.

PLANETS

The term planet owes its genesis to the Greek word 'Planetes' which means wanderers.

In ancient Ptolemaic astronomy, the word was applied to the seven heavenly bodies which

were observed to change their respective locations in the sky. These bodies were the sun,

the moon, Mercury, Venus, Mars, Jupiter and Saturn; all of which were supposed to revolve

around the earth. In modern astronomy, the term planet is applied to all dark and opaque

celestial bodies in revolution around the sun and shining by reflected sunlight.

There are nine known major planets in our solar system. In order of increasing dis-

tance from the sun, these bodies are: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

Uranus, Neptune and Pluto. They all revolve around the sun in certain specified orbits.

The major planets are normally classified into two groups:

(1) Terrestrial or Earth-like Planets. The planets which resemble Earth in

some respects come under this category. These are: Mercury, Venus, Earth,

Mars, and Pluto.

(2) Jovian or Giant Planets. Jupiter, Saturn, Uranus and Neptune come under

this category. They are much larger than the terrestrial planets and their

mean densities are considerably less than that of Earth. The terrestrial

planets are on an average twice as dense as the giant planets.

The planets Mercury and Venus whose orbits lie inside that of Earth are also sometimes

classified as Inner or Interior Planets. On the other hand, Mars, Jupiter, Saturn,

Uranus, Neptune and Pluto, whose orbits fall outside the Earth's orbit, are termed as

Outer or Exterior Planets.

All the major planets, with the exception of Mercury, Venus and Pluto are known to

have one or more satellites or moons: Neptune (2); Uranus (5); Saturn (9); Juoiter (12);

Mars (2); Earth (1). The number in parenthesis indicates the number of satellites

associated with each Planet.

Besides the nine major planets, there exist a large number of minor planets in the

solar system, called Asteroids. They are much smaller compared to the major planets.

Among the known minor planets, Ceres is the largest. Icarus and Hermes are the other

better known asteroids. The origin of these minor planets is still a mystery. They may

be the remnants of a shattered planet or, alternately, matter which did not form into

planets in the first place.



Tables (I and II) present the numerical values for the important physical and
orbital elements of the nine major planets. Most of the values quoted here are according
to Allen (1973). The values of the orbital parameters are not precise enough for use in
ephemeris work.

PLANETARY ATMOSPHERES

The planets are surrounded by gaseous envelopes called atmospheres which they retain
associated with themselves by their respective force of gravity. An atmosphere is a
rather different concept in the case of exterior planets (Jupiter, Saturn, Uranus and
Neptune) for it is believed these planets have no solid surface as such but consist of

homogeneous mixtures of gases, increasing in density with depth. Only the surface
layers can be studied visually or spectrescopically, and therefore the outer mantle may
be regarded as the atmosphere for the purpose of comparison.

The composition of the atmosphere of a planet is a function of geological time and
characteristically depends on the extent to which the gases escape from the exosphere,
the degree of replenishment by exhalation from the crust (slowly or through volcanic
activity), gas removal or addition by chemical reactions in the atmosphere and the capture
of gaseous material from interplanetary medium or meteors. The rate at which gases escape
is controlled by factors such as escape velocity, molecular weight of the gases concerned
and the temperature.

The velocity of escape for a given point near the surface of a planet depends uoon
the mass of the planet and the distance of the point from the center of gravity of the
planet. It is given by the relation:

v = ̂
where G is the universal constant of gravitation, E is the mass of the planet concerned,

and r is the distance from the point to the center of gravity of the planet.

The accepted values for the symbols in the above equation when applied to the earth

are:

G = 6.66 x 10"8 dynes cm2/g2

E = 5.98 x 1027g

r = 6.38 x 108cm

Inserting these values in the above expression as applied to earth

v = 11.18 Km S"1

Corresponding values of escape velocity for different planets are tabulated in Table (I),

column 8.
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It may be presumed that originally all the planetary atmospheres comprised a mixture

of elements similar to those obtained throughout the universe; i.e., hydrogen and helium
in quantities far exceeding those of other elements. Subsequently, these gases slowly

escaped depending on the escape velocity of the planet, the temperature and the molecular
weights of the gases concerned. Ultimately a position might arise when the entire inter-

planetary space will be filled up by an extremely tenuous gaseous mixture; no planet
having its own separate atmosphere. The rate at which a planet might lose its atmnsohere
will depend upon its size, mass and average temperature. The planets of our solar system

are presently in the intermediate stage and almost all "of them are known to possess their
own characteristic atmospheres with the exception of Pluto and possibly Mercury. The
giant planets have very vast atmospheres because of their relatively large force of
gravity. Furthermore, their temperatures are also low because of their greater distances

from the sun so that the mean velocities of atmospheric molecules are low and remain well
below the respective escape velocity.

In contrast to the giant planets, the planets Mercury and Mars, which are relatively
nearer to the Sun (Mercury) and on which the force of gravity is also small (Mars), have
much thinner atmospheres than that of Earth. The case of Venus is intermediate. It is

not very near to the sun and has a force of gravity greater than that of Earth.
In a way, for each planet, a prediction can be made as to which gases, if anv, will

be retained near its surface. It is found that Jupiter and Saturn will retain even the
lightest gases, hydrogen and helium, for astronomically long intervals of time; while
Earth and Venus will lose these light gases but will retain all heavier ones. Mars will
retain C02, Ar and probably N2 but may lose Oa, perhaps due to dissociative recombinations

processes, (McElroy, 1976).
The observations support these predictions in a general way. The spectra of giant

planets show strong absorption bands due to CtU and NH3. Uranus and Neptune show weaker
absorptions besides H2. Helium causes no visible absorption of its own but modifies the
absorption due to H2. CH4 was discovered on Saturn's satellite Titan by Kuiper (1944),
but no NH3, which would have frozen out. On Earth, hydrogen and helium are constantly
being replenished in the atmosphere by the photodecomposition of water vapor in the upper
atmosphere and radioactive decay in the crust, respectively. On Venus a dense atmosphere
of C02 was discovered (Adams and Dunham, 1932). A description of the atmospheres of
these planets is given in Table III.



TABLE III: GASEOUS CONSTITUENTS OF PLANETARY ATMOSPHERES

Figures in parentheses represent the abundance expressed in cm-atm.* (STP earth)

Planet

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Constituents

C02 (0.12); CO (0.05)

C02- (10
5); CO (=100); H20 (-.05%);

02 (=0.1); HC1 (1); HF (.01)

Remarks

Presence of N2, Ar,'CO and 02
postulated.

Presence of numerous polyatomic

molecules in trace amounts

postulated. Mention may be made

of 03, CH3cl, CH3F, C2H2, HCN,
S02, COS, C302, H2S.

N2 (625 x 10
3); 02 (168 x 10

3); H20
(3000-5000, variable); Ar (74 x 102);

C02 (200); Ne (15); He (4); CH,, (1.2);

Kr (0.9); N20 (0.4); H2 (0.4); 03 (0.3);

Xe (.07)

C02 (78 x 102); CO (7.3); H20 (10-15

microns) 02 (9-10); 03 (2 x 10"
4)

H2 (2.7 x
NH3 (700)

H2 (2.7 x 10
7); CH,, (1.5 x 104);

H2 (6.3 x 10
7); CH,, (35 x 103);

NH3 (200)

H2 (4.2 x 10
6); CH,, (2.2 x 105)

H2 (> 4.2 x 10
6); CH,, (3.7 x 105)

No data available

Presence of N2 postulated as a

minor constituent.

Presence of He, N2 and Ne

postulated in view of the low

density of the planet.

Presence of He, N2 and Ne

postulated in view of the low

density of the planet.

Presence of He and N2 postulated

in view of the low density of

the planet.

Presence of He and N2 postulated

in view of the low density of

the planet.

* 1 cm-atm = 1 cm-Amagat = 2.687 x 1019 cm"2.
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CHAPTER 2

PLANETARY SPECTRA AND PLANETWISE REVIEW

PLANETARY SPECTRA

There is almost negligible intrinsic radiation in the optical region of a planetary

spectrum. As a matter of fact, 'the radiation from other planets reaching the earth-based

instruments is the sunlight reflected from the surface of .the plane'ts. Evidently the

spectrum of this radiation is a blend of three superimposed component spectra, viz., the

solar, planetary and the terrestrial. All three atmospheres leave their imprint on the

spectrum so recorded. The strictures imposed by the Earth's atmospheres on the radiation

reaching an earth-based instrument reduce the scope of planetary spectroscopy considerably.

If the Earth's atmosphere opacity is very high in a certain wavelength range, that wave-

length radiation reflected from the planet will be absorbed and will, therefore, never .

reach the instrument. The transparent parts of the electromagnetic spectrum that lie

between these high opacity regions are called atmospheric windows and the scope of earth-

based planetary spectroscopy is limited to these windows. Consequently orbiting spectro-

scopes are used to obtain more elaborate planetary spectra.

03 is a very important gas which envelopes the Earth's atmosphere about 50 km above
o

the Earth's surface. It absorbs almost the entire ultraviolet radiation below 3000A.
o

This absorption shortward of 3000A prohibits ground based observations of other planets

at short ultraviolet wavelengths.
_ o

In the infrared, longward wavelength of 10,OOOA, the spectrum is highly divided

into a number of windows. The principal terrestrial absorbing agent in the near infrared
is H20 which is present in the troposphere. It is only through the use of balloons and

high altitude sites like aircraft rockets or satellites and simply very high mountains,

that one can avoid this terrestrial absorption and can obtain satisfactory observations of

planets in the infrared.

PLANETWISE REVIEW

Mercury

(C02> CO)

Because of very low escape velocity and high order of temperatures due to close

proximity of the sun, Mercury is expected to retain, if at all, only a very sparse atmos-
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phere. So far there is no confirmed observational evidence of any detectable atmosphere
on Mercury. The planet is considered essentially gasless.

Kozyrev (1964) reported spectroscopic observation of certain variable hydrogen

emission lines in the form of small humps in the bottom of hydrogen absorption lines in

the spectrum of reflected sunlight from Mercury. He suggested that perhaps atomic hydro-
gen might be surviving in the Mercurian atmosphere by being constantly replenished by

hydrogen nuclei emitted by the sun. Gott and Potter (1970) have also given a theoretical
model of a hydrogen atmosphere for Mercury originating in the solar wind. Spinrad and
Hodge (1965), however, refuted Kozyrev's inferences about the presence of atomic hydrogen

in the Mercurian atmosphere. These authors regard Kozyrev's emissions as simply spurious,

most probably caused by the overlapping of two solar hydrogen absorptions - one in the sun-

light scattered by the Earth's atmosphere and the other in the Doppler-shifted sunlight
reflected by the surface of the planet.

Belton et al. (1967) and Bergstralh et al. (1967) predicted the presence of some

traces of C02 in the Mercurian atmosphere. Moroz (1965) had earlier pointed out that

carbon monoxide might be present in the atmosphere of Mercury, with an upper limit of
10 cm-atm. Lately, Fink et al. (1974) identified both these constituents spectroscopically
and set an upper limit of 0.12 cm-atm for C02 and 0.05 cm-atm for CO.

It may, however, be pointed out that the results of the Mariner-10 flyby mission were
not positive for the presence of any of these molecules in the atmosphere of Mercury.

Venus

(C02, H20, CO, 02, HC1, HF)

The composition of the Venusian atmosphere has been a speculative matter ever since
the Russian scientist, Lomonosov (1891) discovered an atmosphere in Venus during a solar
transit of Venus in 1761. Besides numerous remote earth-based spectroscopic observations

and radio occulation methods, the atmosphere of Venus has been quite extensively studied

by a number of space entry probes such as the Russian Venera series and American Mariner
series flyby missions. Venera-7 transmitted data from the Venusian surface which indi-
cated a pressure of about 90 terrestrial atmospheres at the surface. The surface of Venus

is covered by a dense layer of cloud which accounts for its high albedo. There exist

varied opinions about the composition of these clouds. The latest view, however, is that

they are formed of droplets of water solution of H2SO... Many interesting papers on this
and allied subjects can be found in J. Atmos. Sci., Vol. 32, No. 6, June 1975, which covers
the recent 1974 - Goddard Conference on the Atmosphere of Venus.

Carbon dioxide (C02) is found to be the major constituent of the Venusian atmosphere.

The quoted concentration as derived from the data obtained through Venera 5 and 6 is

97 ± 4 percent (Vinogradov et al., 1971). Spectroscopic data obtained from an aircraft
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by Kuiper et al. (1969) correspond roughly to the absorption by 10-20 km of C02 at OJ bar.

Work done by Belton et al. (1968); and Moroz (1968) is also quite significant with regard
to Venusian spectroscopy. Connes et al. (1969) atlas provides a nice display of Venusian
spectra obtained by the Fourier transform technique.

Carbon monoxide (CO) was clearly identified as a Venusian molecule by Connes et al.

(1968). 'Spectral features corresponding to less abundant species, viz., C13016 and

C12018, were also identified in addition to the most abundant species C12016. The mixing
ratio C0/C02 is estimated to be 4.6 x 10"

5.
The presence of gaseous hydrogen fluoride (HF) and hydrogen chloride (HC1) in the

Venusian atmosphere was first reported by Connes et al. (1967). The halide-carbon dioxide
- 7 2 9mixing ratios were estimated as HCl/COz = 6 x 10 and HF/C02 = 5 x 10 . Figures (1) and

(2) depict the profiles of some of the observed spectral features of these halides in the

spectrum of Venus.
Belton and Hunten (1968) studied the Venusian atmosphere in greater detail with re-

gard to oxygen and the upper limit of 02/C02 was set at £8 x 10" . Lately, Traub and

Carleton (1974) reported the mixing ratio 02/C02 as 1 x 10" based on their study of the
o

7635A line of 02. Results from Venera-5 and Venera-6 implied less than 0.4% of 02 in the

atmosphere of Venus.
Study of microwave emission spectrum as well as absorption of radar signals both

indicate the presence of H20 vapor in the Venusian atmosphere and the upper limit set

by these experiments is about 1% (Pollack and Morrison, 1970). Doppler-shifted spectra
o

in the 8189A region and balloon spectra at 1.3y show a weak but definite planetary line
and give the mixing ratio as 10" (Belton et al., 1968; Spinrad and Shawl, 1966;
Botterma et al., 1965; Belton, 1968). A somewhat smaller upper limit was found in Connes

o
spectra at longer wavelengths (Connes et al., 1967, and by Owen, 1967) at 8189A. This

disparity has been discussed by Schorn et al. (1969), who reported clear evidence for
variability.

Earth

(02, N2, C02, H20, 03, CH.,, N20, N02, Ar, He, H2, Xe, Kr, Ne, CO)

The atmosphere that surrounds the Earth, commonly called air, consists of layers of

gases and mixtures of gases, as well as water vapor and solid and liquid particles. The

mean pressure exerted by this atmosphere at sea level equals that of a column of mercury

760 mm in height. Higher in the atmosphere, the pressure decreases and, roughly at an

altitude of six km is only one half that at sea level. The principal regions of atmos-

phere, each of which is characterized by the pattern of vertical distribution of tempera-

tures, are a) troposphere, b) stratosphere, c) mesosphere, d) thermosphere and e)
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Figure 1. The.,R(l );line, of the (1-0;) band of HF in the Venusian spectrum^ (Connes,
et al., 1969).

1 (Venus)

2 (Sun)
3 (Ratio) v.

\

Figure:2.. The R(4.). lines of the (2-0) band of HC]3S and HC137 isotopes in the
Venusian spectrum (Connes, et al., 1969).
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exosphere. The ehtire;atmosphere extends beyond 400 km, and broadly speaking it

can be" divided into'two regions:: -

(1) The lower atmosphere. This part extends roughly up to 100 km from the

Earth's surface. It includes the troposphere (upper limit 17 km at the

equator and about 6-8 km at the poles), the stratosphere (upper limit

' approximately 50 km) and the mesosphere (to a minimum up to 85 km; it is

subject to strong seasonal variations). -

(2) The upper atmosphere. This is the region beyond the mesopause and is

'•• entirely different in character compared to the lower atmospheric belts.

The first stratum of this region is the thermosphere characterized by a

continuous increase of temperature up to 500°K at night during minimum

solar activity and to above T750°K in daytime during maximum solar activity.
The altitude at which this increase of temperature ceases is the thermopause, which is at

the base of an 'isothermal region that extends into interplanetary space. As a matter of •

fact, the gas collisions become so rare at this level that the term temperature loses its

conventional meaning.

The strongest absorption of solar radiation in the Earth's atmosphere is due to the

triatomic molecules H20, C02 and 03. Methane and nitrous oxide (CHi, and N20) are present

only in trace quantities and therefore contribute only a little to the total absorption

although many of the spectral features of these gases show up in the solar spectrum.'

Some of the highlights of these absorption spectral features are' given below. :

Molecular Oxygen (02): Magnetic dibble transitions between the three lowest elec-

tronic levels lead to the red ( 3 E~ -»• 1Z and infrared ( 3 £ ~ - ; 1 A Q ) bands of 02. These are

sometimes called 'atmospheric bands'. Bands due to 0160^ and 016017 are also detected

in the solar spectrum. The main infrared'bands of oxygen are the (0,0) and (0,1) band

at 1.2683y and 1.0674y, respectively. The main bands of the red system are the (0,0) 'and

(0,1) bandsrlying' at .7621y and .6884y, respectively. The ultraviolet absorption

spectrum of 016016 commences with'weak Herzberg bands'at 2600A (3Z+ - 3 E~) . Below 2420A,

the transition becomes dissociative and the Herzberg continuum sets in. The absorption
-23 -24 2cross section of 02 for this wavelength region lies between 10 • and 10 cm and is,

therefore", of little importance as regards energy absorption.
o

the Schumann-Runge bands system of 02 'spectrum lies in the region'1950-1750A, and
o

has been ascribed to the electronic transition 3E~ - -3C- Around 1750A, the bands merge

into a continuum, which extends up'to 1300A and is the most important single1 feature of

02 absorption.
o

Oxygen Polymers (02)2: Dufy (1942) observed a weak band at 4774A in the solar
spectrum visible only from zenith angles greater than 85°. He ascribed this band to the
oxygen polymer (02)2. It may be pointed out here that the spectrum of the oxygen polymer
(02)2 has been recorded in the laboratory and it consists of three diffuse bands at 6290A,
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5770A and 4774A. Two weaker bands at 5325A and 4470A have also been claimed. Further,

since the density of (02)2 depends upon the square of pressure, it must form a very low
lying layer. The absorption becomes significant only at large zenith angles because the

low lying (02)2 path is much longer under such circumstances.

Water Vapor (H20): Water vapor forms an important constituent of Earth's atmosphere,

particularly in the low lying regions. In the solar spectrum, numerous vibration-rotation

lines of H20 and its isotopes have been identified from visible to the microwave region.

Four isotopic forms of H20 have identifiable lines in the solar spectrum: H201 6 , H2018 ,

H201 7 , and HDD16. Each of these molecules has a different vapor pressure and their abun-

dances depend to some extent on the evaporation-condensation cycle. The most important

H20 absorption bands in the solar spectrum center around 6.3y, 9y, 50y.

Carbon Dioxide (C02) : The v2 bands near 15y are probably the most intensively

studied bands in the solar spectrum. Besides the v2 fundamental, fourteen overtone and

combination bands have also been detected in the 15y region with a total intensity of

about 10% of the fundamental.

The three v3 bands are responsible for the great opacity of the atmosphere near 4.3y.

There are three bands superimposed, viz.: v3 band (C 1 20 2
6 ) - 2349.16 cm" ; v3 band

(C1302
16) - 2283.48 cm"1; and the combinational band (vi + v3 - 2v2) (C1202

6)

-2429.37 cm"1.

Ozone (O j ) : The solar spectrum exhibits characteristic absorption due to 03. The
o

Hartley bands centered at 2553A are the most characteristic ones. They consist of a

large number of weak bands, superimposed on a strong continuum. The spectral region from
o o

3100A to 3400A in the spectrum of the low sun is full of another set of well-marked 03

bands called the Huggins bands.
o o

Between 4500A and 7400A lie the 03 Chappuis bands. The overall 03 absorption is so

strong that solar radiation below 0.3y does not penetrate the atmosphere. The infrared

bands of 03 at 710 cm" , 1043 cm and 2105 cm" also show up in the solar spectrum.

In addition to-these main atmospheric gases, there are known to exist a few minor

constituent gases, viz., N20, QU, CO and also N02. Numerous bands due to N20 have been

reported in the solar spectrum in the region (2-17y). Similarly, CHi, absorption is

exhibited in solar spectrum in the region (1.67 - 7.66y). CO is known to be present

in the Earth's atmosphere in such trace quantities that it is of little significance to

atmospheric studies. No specific spectral features ascribed to N02 have been identified

'in the solar spectrum so far though the molecule is widely held responsible for the

creation of the D-layer of the ionosphere.
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Mars

(C02, CO, 02, H20, 03, N2, Ar)

Mars is known to have an extensive atmosphere almost transparent to the bulk of

the sun's radiation. It is very thin by terrestrial standards and is now considered

to be composed of mainly C02 gas. Water vapor (H20) and carbon monoxide (CO) have also

been positively identified as minor constituents. An admixture of gases, such as Ar,

N2, and 03, is also envisaged l;o be present in trace amounts. Molecular description is

as fol1ows.

Carbon Dioxide (C02) : It is the first gaseous chemical constituent ever identified

positively through spectrescopic methods in the Martian atmosphere. Kuiper (1949)

identified three bands at 1.96, 2.01 and 2.06y, respectively, in the Martian spectrum,

which were unequivocally ascribed to gaseous C02. More exhaustive investigations by

numerous workers, viz., Kaplan et al. (1964); Kliore et al. (1965); Belton et al (1966);

Owen (1966); Spinrad (1966); Belton et al. (1968); Giver et al. (1968); Carleton et al .

(1969); Young (1969); Rasool et al. (1970); McConnel (1973) followed later. The amount

of C02 as reported in almost all of the later reports lies within the range 50-90 m-atm.

The most probable value as established by McElroy (1973) is 78 m-atm. Data obtained from

Mariner space fly-by missions also support the theory that a very high abundance of gaseous

C02 is in the Martian atmosphere.

Carbon Monoxide (CO) : Kaplan et al. (1969) first detected CO molecules in the

Martian atmosphere by observing the (2-0) and (3-0) bands of carbon monoxide in a high

resolution Martian spectrum. These authors obtained an abundance of 5.6 cm-atm. of CO

in the atmosphere.

Later on Young (1971) and Carleton et al. (1972) also determined the CO abundance

in the Martian atmosphere, the value obtained by the latter being 7.3 ± 1.0 cm-atm.

Most probably CO in the Martian atmosphere is the photodissociation product of C02
o

under the sun's ultraviolet radiations < 1700A.

Oxygen (02): The presence of 02 molecules has been established by detecting an
o

absorption feature due to 02 at 7635A in the reflected solar spectrum (Carleton and

Traub, 1972; Barker, 1972). The observations were made under certain preferential con-
o

ditions so that a Doppler shift of about ± 0.3A could be obtained. The abundance has
been established as somewhere between 9-10 cm-atm. This value is consistent with the
earlier lower limit of 02 abundance proposed by Belton and Hunten (1968).

Uater Vapor (H20): Water vapor is considered to be a very minor, variable and uneven-
ly distributed constituent of the Martian atmosphere. Traces of water vapor were first
identified spectroscopically by Kaplan, Munch and Spinrad (1963). Normally the investiga-
tion of water vapor by earth-based spectrography is rendered very difficult because of the
masking of weak planetary lines by strong H20 absorption features by the Earth's atmosphere.
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Spinrad et al (1963) carried out extensive high dispersion studies of the Martian

atmosphere using the 100-inch reflector at Mount Wilson. These authors identified as

many as 11 rotational lines due to Martian H20 because the Doppler shifts from their
o

telluric counterpart were of the expected value (0.42A to the red). Measurement of the

average equivalent width and intensity of some of the unblended lines led them to get an

abundance ratio of about 14 ± 7 microns of precipitable water. (A precipitable micron
18 2equals 3.35 x 10 cm~ or 0.125 cm-atm.) Many more earth-based spectroscopic investi-

gations on water vapor in the Martian atmosphere followed later on (Dollfus, 1964;

Barker et al., 1970; and lull et al., 1972).

Lines attributed to H20 absorption have also been observed in the solar reflection
o

spectrum near 8200A. The amount observed is variable, usually between 10 and 40ym

precipitable water and frequently falls below the detection threshold (Schorn et al.,

1969; Schorn, 1971).
Water vapor spectra were also obtained by the Mariner-9 flyby mission using infra-

red interferometry onboard. The results indicated the abundance of H20 vapor at

10 - 20 microns of precipitable water (Hanel et al., 1972).

Atmospheric water vapor molecules can be destroyed quite vrapidly on Mars through

the 'action of ultraviolet light as a result of inefficient shielding by C02 and the
absence of 03. The light hydrogen atoms so released diffuse up through the atmosphere

and ultimately escape into space. This produces a net gain in the 02 content in the

atmosphere. This process may explain the observed hydrogen emission in the upper Martian

atmosphere as observed in Mariner-6 and 7 missions.

Ozone (03): The spectroscopic results obtained via the space probe Mariner-7

indicate the presence of about 10" cm-atm. of 03 in the Martian atmosphere. Particularly
o

the 03: band at 2550A was identified in this mission ,near the south "polar cap of Mars

during its late spring season. No 03 was detected in the rest of the planet (Barth et al.,

1971). The present upper limits of the abundance of 03 are however set on the basis of

data obtained through rocketborne spectrometry (Broadfoot and Wallace, 1970) as

2 x 10" cm-atm. Recently, Lane e.t al. (1973) have identified 03 absorption in Hartley

continuum in the spectra taken on Mariner 9 orbiter.

03 in the Martian atmosphere is perhaps formed by the association of 02 and 0 through

a three-body process 02 + 0 + M.-»• 03 + M. In the Martian middle atmosphere, perhaps the

photodissociation of C02 might supply sufficient atomic oxygen to promote this reaction.

It may however be remarked here that the presence of 03 appears to increase as the H20

abundance goes down (Lane et al., 1973).

According to the theoretical study of 03 abundance in the Martian atmosphere by Marmo

and Warneck (1960, 1961), 03 should be less than 0.0001 cm-atm.

Nitrogen (N2): Though N2 was once speculated to be the most abundant gaseous con-

stituent of the Martian atmosphere, the picture is entirely different now. So far, no
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spectroscopic detection of N2 has been possible. The results of Mariner 6 and 7, however,

indicate an upper limit of N2 abundance as less than 1%.
Argon (Ar): The relative cosmological abundance of Argon, combined with its chemi-

cally inert nature and atomic weight 40, marks it as a very prospective constituent of the

Martian atmosphere (Brown, 1949; Suess, 1948). The Mariner 4 results have shewn that
Argon may be the second most important constituent after C02, ranging anywhere between

0 - 20%.

Jupiter
(H2, CH.,, NH3, He, Me, N2)

The atmosphere of Jupiter is quite deep and turbulent. Hydrogen (H2), methane (OK)
and ammonia (NH3) have been positively established as the constituent gases through
spectroscopic evidence. Presence of inert gases like helium (He) and neon (Ne) as well
as nitrogen (N2) has also been proposed in view of the overall low density of the planet.
Any water on the Jovian surface, if at all present, must be frozen out because of the low
surface temperatures (-130°C).

The atmosphere is further covered by a thick envelope of clouds which are probably
formed from frozen ammonia. Since methane boils at -126°C and freezes at -150°C, almost
the entire quantity of methane that might be present is probably gaseous. The latest
accepted view is that the Jovian atmosphere is composed of about 90% molecular hydrogen
and nearly 10% helium, with very small amounts~6f methane and ammonia and perhaps some
traces of neon and nitrogen. Molecular description is given below.

Hydrogen (H2): Molecular hydrogen is known to be the main constituent of the Jovian
atmosphere. Normally H2 does not show any electric dipole absorption in the infrared
because of molecular symmetry but a number, of quadrupole transitions and pressure induced
dipole transitions have been identified in the Jovian spectrum. This is most probably
due to the high abundance of hydrogen in the planet.

Danielson (1966) first observed a broad, deep absorption from 2 to 2.5y in the
Jovian spectrum which was ascribed to a pressure induced dipole transition of H2. Quad-

o
rupole transitions of H2, particularly the 3-0 band around 8150A and the S(l) line of

o
the 4-0 band at 6367A were studied by many workers in the spectrum of Jupiter (Kiess

et al.:, 1960; Spinrad and Trafton, 1963; Beckman, 1967; Owen and Mason, 1968; Fink and

Belton, 1969 and Emerson et al., 1969). Almost all of these results are in good agree-

ment, and give the H2 abundance in the range 2.5 - 3 x 10 cm-atm. Figures 3 and 4 show

the profiles of 3-0 S(l) and 4-0 S(l) quadrupole lines of molecular hydrogen as reported

by Fink and Belton (1969).
Methane (QU) and Ammonia (NH3): First qualitative identification of a reasonable

abundance of gaseous methane and ammonia through spectroscopic evidence was made by
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Figure 3. The 3-0 S(l) quadrupole line of Hz in the spectrum of Jupiter (Fink
and Belton, 1969).
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Figure 4. The 4-0 S(l) quadrupole line of H2 in the spectrum of Jupiter (Fink
and Belton, 1969).
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Wildt (1932). Dunham (1933) later obtained high resolution spectrograms of the Jovian

atmosphere using the Coude focus at Mt. Wilson. Many rotational lines of NH3 in the

region 7900-6450A were well resolved. Similarly, CH,, bands at 7200A, 8000A and 8800A

were also well resolved.

Spectra taken with long tubes filled with NH3 and CH,, were compared with the Jovian

planetary lines. There were considerable differences in the relative intensities of

individual rotational lines in the NH3 spectrum; this is to be expected since the labora-

tory data were taken at room temperature (290°K) while the temperature in Jupiter's

atmosphere is near 150°K. According to Kuiper (1952) Jupiter has 700 cm-atm abundance

of NH3 and 15000 cm-atm abundance of CH.,.

Saturn

(CH,,, NH3 , H2, He, Ne, N2)

The planet Saturn, if taken alone without its fascinating set of rings, bears close

resemblance to Jupiter. However, our knowledge about Saturn's atmosphere is much more

limited as compared to that of Jupiter, mainly because Saturn is almost twice as far away.

The CHi, absorption lines in Saturn's spectrum show up more prominently than in

Jupiter's. The Hz quadrupole lines too appear a bit more strongly in the spectrum of

Saturn in comparison to their counterpart in the Jovian spectrum. The equivalent widths

of these lines lead to an abundance estimate of about 10 km-atm of molecular hydrogen in

Saturn's atmosphere. The estimated rotational temperature (~88°K) is also consistent

with the apparent absence of ammonia (NH3) in the Saturn atmosphere (NH3 lines could never

be identified on high dispersion spectra of Saturn). In view of the overall low density

of the planet, it is speculated that in addition to the large abundance of H2, there might

also exist trace quantities of helium, neon and nitrogen.

The rings of Saturn do not exhibit any characteristic absorption features in the

visible and the photographic infrared (X < l.Oy).

Uranus and Neptune

(CH,,, H2, He, N2)

Our current knowledge of the composition of the atmospheres of Uranus and Neptune

is worse than our guess for Saturn.

Both the planets show tremendous concentrations of methane in their spectra. The

CHi» absorption of Uranus corresponds to 2.2 km-atm; on Neptune the amount is about

3.7 km-atm. The methane bands on Uranus may hide weaker bands of other molecules. No

NH3 has ever been observed on Uranus or Neptune; it must be frozen out, as is C02 or

H20.
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Pressure induced dipole transitions of H2 also show up as several faint and broad

absorption lines in the red'and near infrared part of the spectra, of both Uranus and

Neptune. A number of sharp H2 quadrupole lines also appear, in high, dispersion spectra.

Pluto, - . • - . .

The low temperature and the low mass, both suggest that Pluto may not .have any :

atmosphere at all. Many potential molecular species, such as NH3, C02 or H20 would^

largely lie in the frozen state. Others such as hydrogen and helium, etc., may well
have escaped. Anyway, there is no reliable evidence so far available that might-.indi-
cate the presence of an atmosphere on this planet.
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SECTION II

MOLECULES AND RADIATION
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CHAPTER 3

BASICS OF MOLECULAR TRANSITIONS

A molecule in its simplest form may be regarded as a local assembly of two or more

atoms in dynamic equilibrium. The simplest known molecule is the molecular hydrogen ion

H2 which is composed of only two protons and one electron: At the other extreme is the

ribonuclease protein whose molecule consists of as many as 1876 nuclei and 7396 electrons.

The constituent nuclei of a molecule are held together by different chemical bonds, the
o

lengths and strengths of which normally range between 1 - 2A and 1 - 5 eV, respectively.

Such a circumstance allows a molecule to have numerous degrees of freedom, unlike atoms.

It undergoes rotational motions and consequently possesses different moments of inertia

depending upon the axes of rotation. It has vibratory motions and consequently involves

different vibrational frequencies depending upon the number of the constituent nuclei and

the bonds. Both these motions are non-existent in atoms. The total internal energy of

a molecule is also characterized not only by its electronic energy but,in addition, by

its vibrational and rotational energies too.

According to the Born-Oppenheimer approximation, these different energies of a

molecule can be considered as separately quantized. The total internal energy, E, can,'

therefore, be expressed as a simple sum of the three energies; i.e.,

E = E f i + Ev+ E r, (3-1)

where E , E , and E represent the electronic, vibrational and rotational energy compo-"' •

nents. The electronic energy, E , is the energy that the molecule would possess if'the

nuclei were fixed in their equilibrium positions. It consists of the kinetic and poten-

tial energy of the orbital electrons and the mutual potential energy of the repulsion

of the nuclei.

The vibrational energy, E , is the energy which the molecule would have if the

nuclei were vibrating about their equilibrium positions but still did not rotate. This

energy is never zero.

The rotational energy, E , is the additional energy that a vibrating molecule would

have if the nuclei rotate as a composite unit about an axis passing through the center of

mass of the molecular skeleton. It is not just the energy that the molecule would have

if it rotated with its nuclei fixed in the equilibrium position but also takes care of

the distortion of the molecule during rotation and electronic motions.

A molecule may also possess translational energy, E-,., by virtue of its kinetic

motion, but it is not quantized.
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Figure (3-1) depicts a schematic showing various vibrational and rotational levels
associated with an.electronic'state of a typical diatomic molecule.

J" A

T-
.. .t . - f

1 .... :•

ZERO POINT ENERGY -

Figure (3-1). Schematic showing different"rotational and vibrational levels
associated with an electronic state, A.

Radiative transitions in a molecule take place between different quantized energy
states subject to certain quantum selection rules. Transitions in which higher energy
levels are involved are simultaneously accompanied by transitions involving lower energy
levels; e.g., a transition between two vibrational states is accompanied by both rota-
tional and vibrational transitions. Consequently, a vibrational transition does not
Involve, quanta of single frequency but a series of quanta of different frequencies and,

similarly, an electronic transition normally .involves quanta of different frequencies.
Figure (3-2) depicts various possible radiative transitions in a typical case.
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Figure (3-2). Schematic showing various possible radiative transitions in a
typical diatomic molecule. •

DIATOMICS

Pure Rotational Spectrum

A dumb-bell with two mass-points rigidly bound to each other by a massless rod is

the simplest model of a diatomic molecule. However, a rigid dumb-bell cannot be con-

sidered a perfect model for a diatomic molecule because, as a result of the action of

the centrifugal force, the internuclear distance varies with the velocity of rotation.

A non-rigid rotator; i.e., a rotating system of two mass points joined by a massless

spring, is thus a more realistic model for a diatomic.

According to q'uantum theory, the rotational term value, F(J), for a non-rigid

rotator can be written as
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F(J) = • = BJ(J + 1) - DJ2(J + I)2 + (3-2)

where E is the rotational energy of the molecule in a rotational state characterized by

the rotational quantum number J.

J is related to the magnitude of angular momentum vector P by the relation

|P| = 7^- •J jTj+l) and can assume any integral value 0, 1, 2 - - -
71 4R3

B and D are the rotational constants, interrelated as D = -?—
-1 ^oj is the vibrational frequency in cm

B = g~zT£- . where I = yr2 and y = ̂ f^r nil and m2 being the masses of nuclei

forming the molecule -

D « B and is a measure of the centrifugal distortion in the molecule during

rotation.

The wave number of a rotation line arising from a transition, J1, J", can be

expressed as

= [BJ'(J' + 1) - D(J' + I)2 J2] (3-3)

- [BJ"(J" + 1) - D(J" + I)2 J"2]

or, putting J1 = J + 1 and J" = J, we get the following running expression for the

various rotational frequencies.

VJ'J" = V(J + 1), J = F(J + 1} - F<J)

' • • i (3-4)
= 2B(J + 1) - 4D(J + I)-5

The above relation indicates that in a pure rotational spectrum, we get a number of

non-equidistant lines; the interline separation decreasing, of course, slightly with

increasing J. Since D « B, this effect usually is very small. For example, in the

case of HC1 , while B = 10.395 cm" , D is only 0.0004 cm" and the observed rotational.

lines appear to be almost equidistant, having interline separation almost equal to 2B.

Currently microwave techniques are widely utilized in the 3mm to 20 cm wavelength

range,. where the rotational lines of most of the diatomics normally lie. These methods

provide a resolving power much higher than optical gratings and a very high order of

accuracy in frequency determination.
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Vibration-Rotation Spectrum

Vibration-rotation spectrum of a diatomic molecule is usually an ensemble of a few

vibration rotation bands, each of which is again an ensemble of numerous rotational lines

located in a certain specific order in a certain frequency range. Each line corresponds

to a radiative transition from a rotational level, J', associated with a vibrational level,

v', to another rotational level, J", in another vibrational level, v", in the same elec-

tronic state.

If we consider a diatomic to be a harmonic oscillator, then, according to the

classical concepts, the fundamental vibration frequency of a diatomic vibrator can be

written as

vosc. = 2?^p bet (3-5)

where y = "j1^ , the reduced mass of the molecule, and K is the force constant which

is a measure of the strength of the chemical bond between the two atoms.
2

Now if we substitute the potential energy value, U = 1/2 k (r - r ) , as obtained

by Hooke's law for such an oscillator in the Schrodinger equation the following quantized

vibrational energy expression is obtained.

Ev = hv_ (v

(3-6)
= hcu>e (v + 1/2)

where v is the vibrational quantum number and can assume values 0, 1, 2, 3, .

Although the assumption that a diatomic acts as a harmonic oscillator following a
p

quadratic potential function V = 1/2 k (r - rfi) is satisfactory at small values of
(r - O> it is no more valid for large displacements. If we assume the vibrations of
a diatomic molecule as anharmonic and for this purpose add a cubic term to the simple
quadratic function as given below,

U = 1/2K (r - re)
2 - k1 (r - rg)

3 (3-7)

Schrodinger equation gives the following relationship for the quantized vibrational

energy or in other words, the energy values of the anharmonic oscillator are given by

EV = hcue (v + 1/2) - hooexe (v + 1/2) + hctoeye (v + 1/2)3 + - - (3-8)

where x and y are the anharmonicity constants; or the term value for the vibration

energy can be written as
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G (v) = ufi (v + 1/2) - uexe (v + 1/2) +• hcu>eye (v + 1/2)3 + - -. • (3-9)

Here v is again the vibrational quantum number and the constant to x « u> and

u) y « to x . The zero point energy of the anharmonic oscillator is obtained from the
c c c c

above equation by putting v = 0;

6(0) -

If the energy levels are referred to the level v = 0, we obtain

GQ (v) = 6(v) - G (0) = UQV - toQX0v
2 + wQyov3 + - - (3-11)

where VQ = Vfi -

- Ve + Ve

Radiative Transitions in a Vibrating Rotator. - Vibrational transitions in a
vibrating-rotating molecule are normally accompanied by almost simultaneous rotational
transitions and, therefore, in considering a vibration-rotation spectrum, we have to take
into account the joint effect of the two molecular motions.

The term value, T = (E /he), of a vibrating-rotator can be written as

T = .G(v ) + Fy(J)

= [o>e (v + 1/2) - uexe (v + 1/2)2 + o)eye (v + 1/2)3 + - - ] (3-12)

= + [ByJ (J + 1) - Dy (J + I)2 J2 + --- ]

where B and D are the rotational constants for a particular vibrational level v.
These are related to the equilibrium rotational constants by the following relations:

Bv = Be - ae (v + 1/2) + (3-13)

and Dy = De + 0e (v + 1/2) + (3-14)

Here a « Bg and 6 « D and have the same units.
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The various vibration-rotation frequencies (cm" ) can thus be obtained using the

following expression:

vyr = T' - T" = [G(v ' ) + F V , ( J ' ) ] - [G(v") + Fv,, (J")]

(3-15)

= [G(v ' ) - 6(v") ] + [F V , (J ' ) - FyM (J")]

The first part of the right side of this equation, viz. [G(v ( ) -6 (v" ) ] , gives the gross

structure and the second part, [F , (J ' ) -F ,,(J")]. explains the fine structure.

The selection rules for the rotational and vibrational transitions are:

AJ = 0, ± 1

and Av = 0 , ± 1 , ± 2 , ± 3 - - -

Gross Structure of the VR Bands. - The frequency v of the band origin in a

vibration-rotation spectrum is given by the equation:

VQ = G ( v ' ) - G(v")

= [ue(v' +1 /2 ) - uexe (v + 1/2)2 + ]

- [u>e(v" + 1/2) - o»exe (v" + 1/2)2 + - - ] (3_16 )

which, in the case of a (v,o) progression, might reduce to

VQ = v[ue - (v + 1) o)exe] (3-17)

The band origin frequencies of the fundamental and successive overtones in this progres-

sion can be expressed by the following relations:

2 «- 0; [vQ]2 = 2o)e - 6o)exe = (1 - 3x^2^

3 - 0 ; [vQJ3 = 3(oe - 12o)exe = 0 - 4xe)3uie (3-18)

v «- 0; [vQ]y = v[ue - (v + l)uexe]
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Fine Structure of Vibration-Rotation Bands. - If we consider G ( v 1 ) - G (v") = v ,
the frequency corresponding to a particular vibrational transition (v1 - v") as fixed,

the rotational structure can be given by

V = vo+ [Fv' (J1) - Fv" (J")]

= VQ + [Byl (J1 + 1) J' - Dyl (J1 + 1)2J'2]

- [Bv,, (J" + 1) J" - Dv,, (J" + I)2 J"2] (3-19)

Using selection rule AJ = ± 1, (AJ = 0 has only restrictive use in vibration-rotation

spectra of diatomics since, in most cases, A = 0 in the ground state). Therefore, we
get the following relations:

VR = R(J) = VQ + (By, + BV,,)(J + 1) + (Bv, - Byl, - Dv, + Dy,,)(J .+ I)2

(3-20a)
for AJ = + 1 and where J = 0 , 1 , 2 , 3

and

vp = P(J) = VQ - (Bv, + By,,) J + (Byl - Bv,, - Dv, + Dv,,) J2

(3-20b)

for AJ = - 1 and where J = 1, 2, 3

or neglecting the rotational constant D , since D « B , we have the simplified forms

of (3-20a) and (3-20b) as

VR = R(J) = VQ + 2Byl + (3Bv, - Bv,,) J + (Byl - By,,) J2

(3-21 a)

where J = 0, 1, 2, 3

and

vp = P(J) = VQ - (Byl + ByM) J + (Byl - Byll) J2

(3-21b)
where J = 1 , 2 , 3 - - -

R(J) and P(J) correspond to the wave numbers of the different rotational lines forming
R branch and P branch, respectively.
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A vibration-rotation band thus consists of normally two series of lines called R and
P branches. The branch where AJ = 0 is termed as the Q-branch. It has been identified

in the VR spectrum of only NO in the domain of diatomics.
Figure (3-3) depicts the various branches which constitute the fine structure of

a vibration-rotation band of a simple diatomic. (Fundamental band of CO.)
A better picture of a vibrating-rotating molecule would be obtained if we take into

consideration the rotation of the molecule about the internuclear axis as well. The
moment of inertia resulting from the revolution of electrons about the nuclei was not
involved yet. Since the mass of the electron is very small, this moment is very small
too but not exactly zero. The term value for rotational energy of a symmetric top in

the vibrational level, v, can be expressed as

FV(J) = Bv (J + 1) J + (A - By) A2 - DVJ2 (J + I)2 + (3-22)

where A = 0 . T „ and B
87T2 IC U"U "V 87T2

I A corresponds to the moment of inertia of the molecule about the internuclear axis and

Ig corresponds to the axis perpendicular to it (I. « Ig).
A is another quantum number, related to J by the relation

J = A, A + 1, A + 2, A + 3 - - -

The selection rules for the symmetric top are given by AJ = ± 1, where A = 0 and

AJ = 0, ± 1, where A t 0. The energy levels of a symmetric top are almost the same as

those of a non-rigid rotator except that there is a constant shift towards higher values

by (A - BV) A2. Levels with J smaller than A are absent and Q branch corresponding to the

rule, AJ = 0, also manifests itself in the spectrum.

Electronic Spectrum

An ensemble of various radiative transitions between different vibration-rotation

levels associated with any two electronic states of a molecule is called an Electronic

Band System.

An ensemble of transitions within a system corresponding to a particular pair of

upper v1 and lower v" vibrational quantum numbers is called an Electronic Band. A group

of bands having the same v1 or v" is called a v'-progression or a v"-progression as the

case may be. A group of bands for which (v1 - v") has a fixed value is called a "band

sequence."

The lines which make up a single band come from the ensemble of all possible changes

in the rotational quantum number, J, associated with the two vibrational levels involved.
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Figure (3-3). Schematic showing rotational branches of a typical vibration-
rotation band. (Fundamental band of CO.)
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The ensemble of lines resulting from a particular change in J is called a branch of

the band. As J is subject to the selection rule, AJ = 0, ± 1, there can be three

branches accordingly, commonly known as Q, R and P branches. The wave number of spectral

lines in an electronic band can, therefore, be expressed as

v = T' - T" = (Te' - Te") + [ G ' ( v ' ) - G"(v") l + [FV , (J ' ) - FV,,(J")] (3-23)

i
where the single-primed letters refer to the upper electronic state and the double-

primed letters refer to the lower electronic state.

For convenience of discussion, let us divide the spectral features of an electronic

spectrum into two parts.

(1) Vibrational structure or the gross structure concerns the disposition

of various band-heads (or band origins) in the entire band system.

(2) Rotational structure or the fine structure of different bands of the

system concerns disposition of different rotational lines in a band.

Vibrational Structure of Electronic Transitions. - The various possible transitions

between the different Vibrational levels of the two participating electronic states can

be expressed by the following relationships:

v = ve + G ' ( v ' ) - G"(v")

= vfi + [coe ' (v' + 1/2) - u>e 'xe ' (v '

- [uje"(v" + 1/2) - ue"xe"(v" + 1/2)2 + u)e"ye"(v" + 1/2)3 + --- ]

Since y ' « x ' and also y " « x ", we can write

v = v +(v' + 1/2) u ' -(v" + 1/2)2 u 'x ' -[(v" + 1/2) u> " -(v" + 1/2)2 coe"xe"]
e 6 (3-25)

In principle, in an electronic transition, Av can have any integral value, plus or minus.
That is» any Vibrational state of the upper electronic state can combine with any Vibra-
tional state of the lower electronic state and thus we can expect a large number of
Vibrational transitions.

The above formula may also be written in a simpler way:

v = v + (u 'V - u ' x ' v ' + -u 'yo o o o o o o
2 + -u 'y 'V3 + --- )o o

2 + oj "y "v"3 + --- )
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Here v corresponds to the transition v1 = 0 ->• v" ->• 0 and the to 's and x 's are as
o o O Q

defined earlier.

By comparing the two equations above, we get

oo

u_5
(3-27)

8

Usually, while attempting vibrational analysis of an electronic band system, one can

tabulate the wavenumbers of the different band-origins in the form of a Deslandres'

scheme as shown below (Table 3-1). When the band origin data are arranged in such a

scheme, it is very easy to evaluate the different vibrational constants.

0

1

2

3

TABLE 3-1. DESLANDRES1 SCHEME FOR AN ELECTRONIC SYSTEM FOR A DIATOMIC MOLECULE.

0 1 2 3

V6'1 v +G'(0)-G"(1) v +G'(0)-G"(2) v +G' (0)-G"(3)
c c 6

5 ' ( 1 ) -G" (0 )

+G'i

+G'I

e+G'-(2)-G"(2) e+G'(2) -G"(3)

C3

AG'(JS)

AG'(2J - 2 )
I .......

t
First

Differences

On the basis of the analysis of the gross structure of an electronic band system of a

molecule, we can calculate the position of the vibrational levels, the vibrational

frequencies, and the harmonicities, as well as the force constants of the molecule in

the two participating electronic states. Finally, knowing v and the various vibrational
constants, one can obtain v , the difference in electronic energy of the two states.

This v is also called the "origin of the band system."
Rotational Structure of Electronic Bands. - Various possible transitions between

the different rotational levels associated with any two participating vibrational states
can be expressed as
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v = vo + [Bv, J ' (J ' + 1) - Dy, (J1 + I)2 J'2 + --- ]
(3-28)

- [B , , (J" + 1)J" - D,, (J" + I)2 J"2 + - - -]v,

where VQ = [vg + yy]

If one of the participating states is other than E, i.e., A = 0 the selection rule for

J is AJ = 0, ± 1. However, if A = 0 in both the electronic states (E - E transition),

the selection rule, AJ = 0, is forbidden and only AJ = ± 1 appears, as for most infrared

bands. Thus, in general, we expect three -series of lines (branches) corresponding to the

three cases, viz., AJ = 0 or ± l.

AJ = + 1; R Branch; VR = VQ + Fy l(J '+ 1) - FV,,(J) = R(J) (3-29a)

AJ = 0; Q Branch; vg = VQ + FV,(J) - FV,,(J) = Q(J) (3-29b)

AJ = - 1; P Branch; vp = VQ + Fy, (J - 1) - Fyll(J) = P(J) (3-29c)

If we substitute the values of F's in terms of the rotational constants, neglecting the

small correction term in D , we get the following formulae:

VR = VQ + 2BV, + (3Byl - Bv,,)J + (Byl - Bv,,)J
2; [J = 0, 1 , 2, 3, - - ] (3-30a)

VQ = VQ + (Byl - Byl,)J + (Bv, - Bv,,)J
2; [J = 0, 1, 2, 3, - - ] (3-30b)

vp = VQ - (Bv, - BV,,)J + (Bv ' - BV,,)J2; [J = 1, 2, 3, 4 --- ] (3-30c)

These equations have exactly the same form as those derived for the vibration-rotation

bands.

The appearance of the three different series of rotational lines in an electronic

band is depicted in Figure (3-4). A typical 'n - 'E transition is chosen for the

illustration. As a result, the lowest level. in the upper state has J = 1. The various

transitions, with J = + 1 ,0 , and -1, are indicated in this figure. It .can be seen

that the first lines in the R, Q and P branches are those having J = 0, "1 , and 2,

respectively. As a result, there are now two lines missing, viz. , at v = VQ and

v = VQ + 2By. However, the gap in the series formed by the R and P branches is not so

apparent in the present case since the Q branch begins in the neighborhood of v ... The

first Q line, J = 1, -:l-1es -at v -. v + 2(B' - B") . For more detailed studies of these

transitions and the frequencies arising out of them, any book on diatomic spectros copy;

e.g., Herzberg's spectra of diatomic molecules, may be referred.

37



o1 Jf 1TT

7

1

:v

"\

Q

Tfr

ct

i/>

U" J"

8

•£.

£>

a:

-, CN

• — i

£

rv

_.

'

: -

r

( L

i

)

•

C

•̂

o-

r£
y V

•'.••

'

"r

&

?
c

— i
y

i1

•y

c

.

C

t

G~
y"

C

a.

OJ

' C

arm
I 07

u •

33

9fi

: f

•; 't

i J

•q

'

a.

If)
c.

L.

j'-j ;, -

.'

i^fj ;

„

i,

IV

• '

--

-

''

--<•••> >G

to:

Figure (3-4). Schematic showing various rotational branches of an electronic band
of a diatomic spectrum.

Interaction of Nuclear Rotation and Electronic Motion: Hund Coupling Rules

A molecule, in general, possesses four types of angular momenta which are ascribed

(1) orbital motion of the electrons,
(2) spin motion of the electrons,
(3) nuclear spin, and
(4) nuclear rotation.

If we neglect, for the time being, the angular momentum arising out of nuclear spin, the
total angular momentum of the molecule is equivalent to the resultant angular momentum
combining (1), (2) and (4).
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In general, the angular momentum ar is ing out of nuclear rotation and the orbital
and spin angular momenta of the electrons interact magnet ical ly , and upon the relative
magnitudes of these interactions depends the resultant rotational energy of the molecule.
There are five ways in which these angular momenta may be coupled and are known as Hund
cases a, b, c, d and e. For each of these cases, appropriate equations can be obtained
for the rotational energy in terms of the quantum numbers. All of the five cases are
only the characteristic ones and many intermediate cases are found in practice. However,
cases (a) and (b) are the most common.

To'avoid use of lengthy phrases for the various angular momenta and their projections
on the internuclear axis in our discussion for these coup l ing cases, let us designate
them by the fol lowing symbols:

t = Total orbital angular momentum
1 = Projection of t on the internuclear axis
5 = Total spin angular momentum
? = Projection of t on the internuclear axis
3' = Total angular momentum of the molecule
ft = Angular momentum which arises from molecular rotation.
Hund Case (a ) . - This case arises when the spin-orbit coupl ing in the molecule is

very strong and the coupling of nuclear rotation and electronic motion is rather weak.
The t vector and the ? vector, both precess about the internuclear axis and have component
angular momenta, 1 and ?, respectively, along the internuclear axis. Both these momenta
components are quantized separately and the total electronic angular momentum of the
molecule along internuclear axis is the algebraic sum | A + Z | = ft. W h i l e A is con-
stant for a particular electronic state ? takes (2S + 1) values from -S to +S, and is
regarded as positive or negative according as its direction is parallel or anti-parallel
to that of A. Therefore, for a given pair oft a n d ? , Stakes (2S + 1) values , v i z . ,
| A - S | to | A - S |.

^ is compounded vectorially with the nuclear angular momentum, ft, to form the net
angular momentum, 3, of the molecule. 3 is given by -^ J j(J + 1) where J is called
the quantum number characterizing the resultant angular momentum and can have values
fi, n + 1, n + 2 and so on. ft is related to ^ and 3 by the relat ion, R = Jj(J + 1) - n2 ,
and is not a good quantum number. Thus, associated with each vibrational state of case (a)
electronic state, there w i l l be a set of rotational states starting with J . = n. For
example, for a state, 2n or 3n , none is miss ing but in the case of 2n , J = 1/2 w i l l

1 2 0 3 2

be absent. Further, since by def ini t ion Hund case (a) demands that A > 0 and S > 0, it
can not arise in a E state where A = 0, of any mul t ip l ic i ty or in a singlet state of any
type. The rotation energy in case ( a ) , therefore, is given by the expression
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Er = Bvhc {J(J + 1) - n2} (3-31]

where J = n, n + 1, ft + 2,

Hund Case (b). - Case (b) arises when the spin-orbit coupling in the molecule is very

weak in comparison to the coupling between molecular rotation and spin, f is not coupled

to the internuclear axis and so Z is no more a good quantum number. 1 and ft, which are

respectively parallel and perpendicular to the internuclear axis, form the resultant

angular momentum, ft = j^ J¥(N + 1) , and both "K and ft precess around ft. N here is a

good quantum number whose possible values are A, A +• ! , A + 2 and so on.

N . = 0 for states having A = 0; i.e., for E states, and Nm.n = 1 for states having

A = 1; i.e., for n states, and so on. Here again, R is not a good quantum number and its

values are obtainable from the relation

R = J N (N + 1) - A2 (3-32)

ft and ? then combine to form the resultant angular momentum, 3, and corresponding to

(2S + 1) orientations of $ with respect to ft, the total quantum number, J, will take

(2S + 1) values; i.e., J = | N - S | , | N - S + l | |N + S | . Thus, fo r each

value of N, there will be (25 + 1) component rotational levels differing in J values from

N - S to N + S. Doublet states will have levels with J = N + 1/2 and J = N - 1/2 and

triplet states will have levels with J = N + 1, N, N - 1, respectively. (See Figure 3-5.)

7/2 : 3
,,, ——-— 4 (3)

(2)

CD \'il === :====:=:::= \ w
(0) 1/2 - . - - 0 (0)

00 " (b) '

Figure (3-5). Schematic showing spin-multiplets of rotational states; (a) for a
doublet state and (b) for a triplet.
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The rotation energy in such a case is given approximately by

Er = Bhc {N(N + 1) - A2}

where N = A, A-+ 1, A + 2 (3-33)

Hund Case (c). - In the circumstance when the internuclear distance of the molecule

is large the electric field along the internuclear axis is not sufficient enough to stop

spin-orbit coupling. The spin and orbit angular momenta, $ and t, couple to give a

resultant angular momentum, 3 , which processes about the internuclear axis. The vectors,

? and t, precess about the axis of j" . (The symbol j", is used here to indicate its
-*• ->correspondence to the J used in atomic spectra which is formed from the coupling of L and

?.)
3 has the axial projection ft(n 5- ), where n takes the values J,, J, - 1, 1/2 or 0.a CT\ a a

The vector, fi and R, then combine to give the resultant, J, the total angular momentum

and precess about its axis.

It may be pointed out here that in cases where-Hund case (c) is operative, A loses

its meaning and hence the symbols signifying electronic states; viz., Z, n, A, <J>, etc.,

will not correspond to A = 0, 1, 2, 3, -etc. They are classified according to ft values.

The rotational energy in case (c) can be given approximately by

Er = Bhc [J(J + 1) - ft2] (3_34)

Hund Case (d). - This coupling case applies in a situation where the orbital angular

momentum, t, is coupled not to the internuclear axis, but to the nuclear rotation angular

momentum, "ft, which in this case is quantized. The two angular momenta give a resultant

ffi about which both ^ and t precess. Finally, ft and t are compounded vectorially to give

the resultant 3 in a fixed direction about which both ft and $ precess.

The rotational energy expression in this case takes the form

F(R) = By (R) (R + 1) (3.35)

Highly excited states of H2 and He2 have been found very close to this case.
Hund Case (e). - This case would occur if t and ? are strongly coupled to each other

to give 3, which in turn would be coupled directly to 3, rather than to the internuclear
a '

axis, to give the resultant angular momentum d. This case has not been found to be of
any practical use.

States Representing Stages Between Hund Case (a) and Hund Case (b). - When A = 0 and
S > 0; i.e., in the case of higher multiplicity Z states, it is normally the Hund case
(b) which is operative but.the states n, A, $ - (A > 0, S > 0) may conform to either case
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(a) or case (b) according to whether the spin-orbit coupling is strong or weak in compari-

son with the coupling of spin vector to the rest of the molecule. If neither coupling is

negligible, these states are to be represented as intermediates between Hund case (a) and

(b). The condition for case (a) will be fulfilled at low speeds of rotation (R and J

small) and for case (b) at high speeds (R, N and J large) and consequently the rotational

levels will represent a gradual transition from case (a) to. case (b) as J increases. In

the case of doublet electronic states, (S = 1/2), Hill and Van Vleck (1923) derived the

following general expression for the term value of the rotational energy

F ( J ) = B [J + 1/2] 2 - A2 ± {(J + 1/2)2 - A2 £- (1 - V )}h (3'36)

f\ f*

To this, the distortion term D J (J + 1) --- and a small interaction term ^ [J(J + 1)

- N(N + 1) .- S(S + 1)] - - - have to be added for precision. All these coupling schemes

are summarized in Table (3-II). Figure (3-6) gives a schematic of their vector representa-

tions.

TABLE 3-11. RELATIONSHIPS OF ANGULAR MOMENTA IN DIFFERENT HUND CASES.

Hund Case Relationships

(a) ^ = | A + Z | ; U = i$ + f t

(b) ft = A" + ft;-3 = ft + ?

(c) n = (t+'S) • 1 s3 • 1; 3 = fi + fta

(d) ft = t + 3; 3 = fl + ?

(e) 3 = t + $; 3 = 3 + ft
a a

A-Type Doubling. - The A-Type splitting of rotational levels differs significantly

from the spin splitting in Hund case (b), due to the effect of the magnetic field

generated by molecular rotation. For illustration, let us consider a singlet electronic

state. In the absence of a magnetic field the same energy results no matter whether A

is parallel or anti-parallel to the direction of the electric field along the internuclear

axis. However, when a magnetic field is set up by the rotation, the two positions of A

give two slightly different energies for each value of J. The difference between them

42 .



(a)

(e)

Figure (3-6). Schematic illustrating different coupling schemes of angular
momenta. [Hund cases (a) to.(e).]

increases with the magnetic field, therefore with the speed of molecular rotation, i.e.,
with R and J. If A = 0, however, the two energies of a given J remain constant but, in
electronic states where A > 0, each rotational level is split up into two slightly differ-
ent sublevels, which are coincident for J = 0 and become gradually wider apart as J
increases.
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This type of doubling of the rotational states is quite independent of electron spin

and, therefore, occurs for all multiplicities in all electronic states except E states.

Figure (3-7) presents a schematic showing A-type doubling in a 'n state.

j

a+

1TT,,

i;

Figure (3-7). Schematic showing A-type doubling of rotational levels in a typical
xn electronic state.

Rotational Structures of Certain Typical Electronic Bands.

(1) [Z - I] Transitions

(a) 1l - 1H' : The simplest rotational structure of a diatomic electronic

band arises in the case of a ll - 1Z transition. Both the involved

states have (S = 1/2, A = 0) and, therefore, there is no distinction

between Hund case (a) and (b). If we consider case (b), since AJ = 0

is forbidden and because J = N; so AN = 0 is also forbidden. Thus

only those transitions for which AJ = AN = ± 1 are permitted. We get

a single P and a single R branch just like the two branches of a

vibration-rotation band (Figure 3-3).

(b) 2E - 2Z: Since 2Z states belong strictly to Hund case (b) in such

transitions, the selection rule AN = ± 1 holds, AN = 0 being for-

bidden. We have spin-doubling in both the states, corresponding

to J = N + 1/2 and J = N - 1/2 for a given value of N. These spin

separations are normally small compared to the separation of succes-

sive rotational levels. Each line of the P and R branches, according

to the rule AJ = 0, ± 1 is split up into three components. In the
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case where AJ = 0; AJ f AN, the intensity falls off very rapidly with
increasing N. In practice, however, except for very small N, one
would expect each of the lines splitting into two components of about
equal intensity and their separation increasing with N. Various
branches in such electronic bands are schematically represented in
Figure (3-8).
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Figure (3-8). Schematic showing different rotational transitions to the formation
of a 2Z - 2Z electronic band.
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(2) 2JI - 2Z Transitions
While (a) 2£ states always conform to Hund case (b), the 2n state may be-
long to either case (a) or case (b) or to a case intermediate between (a)
and (b).
(a) 2n(a) - 2X: When the state 2n belongs to case (a), there is large

separation between 2n and 2n components. The selections rules
1 2 3 2

are AJ = 0, ± 1 and + + - » • - . There will be six branches for each sub-

band, making twelve in total. The branches of the first sub-band

(with F, upper levels) are designated as P,,, Q ^ , , R,, and P-.^' Qi?'

R-|2 depending upon whether the lower levels are F, or F«.

(b) 2n(b) - 2Z: When the state 2n belongs to case (b), the separation

between the 2n and 2n components is normally very small. We
1 / 2 3 / 2

get .a total of six branches designated as R,, R^, Q- i , Qo> PI > and

P£. The three doublet branches correspond to the selection rules

AN = + 1, 0, -1. However, in addition to these six main branches,

there exist four satellite branches for which AJ J AN and whose

intensity decreases with increasing N. These satellite branches
R n o P

are designated as Q2i > R-i?' ^21 anc' ^12'
Schematic representation of the rotational structure in a typical band arising from

the 2I - 2n(a) transition is presented in Figure (3-9). However, in a majority of actual

cases, the 2n state belongs neither strictly to case (a) nor strictly to case (b) but

usually to a transition case which approximates case (a) for small rotations and to case

(b) for large rotations.

POLYATOMICS

Polyatomics, as distinguished from diatomics, possess a number of degrees of freedom;

i.e., one has to consider a number of coordinates to specify the positions of all the

constituent nuclei for a particular electronic state of the molecule. There are three

degrees of freedom for each nucleus, making a total of 3n for a molecule of n atoms.

Three of these are required to specify the position of the center of mass and three more

to describe the rotation of the molecular skeleton as a whole about each, of these axes.

The remaining (3n - 6) specify the positions of the nuclei relative to one another and

are thus concerned with the vibrational motions of the molecule.

In the case of linear molecules, such as C02, N20, etc., since rotation about the

internuclear axis does not change the nuclear coordinates, only two degrees of freedom

are needed for rotation, leaving (3n - 5) for vibration.

It is possible to choose these (3n .- 6) or (3n - 5) coordinates in such a way that

each describes a normal mode of vibration, in which all the nuclei vibrate with the same
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Figure (3-9). Schematic showing different rotational transitions in a 2E - 2n band;
2n state belonging to Hund case (a).

frequency. In each normal mode the molecule behaves.as a one-dimensional harmonic
oscillator, with its energy quantized as in a diatomic. In simple molecules, it is often
possible to regard each normal mode as almost equivalent to either a change in length
of the bond between one pair of the atoms (stretching vibration) or change in the angle
between two bonds (bending vibration). In complex molecules, the normal mode may describe
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vibrations either of the entire molecule or of functional groups, such as OH, NH, CH3 ,

N02, etc. Vibrations of the second type are characteristic of the group concerned and

are almost independent of the particular molecule to which it is attached.

Classification of Polyatomics

A non-linear polyatomic molecule may rotate about an infinite number of axes. How-

ever, for mathematical convenience, this rotation is described in terms of three orthog-

onal axes intersecting at the center of mass. If we neglect zero-point energy and assume

a polyatomic to be a rigid body, these three principal moments of inertia of the molecule

can be expressed as

j = m / 2 + 2} + , 2 + 2}
X X i j ) c 2 2

lyy = "1] (XJ + z2) + m2 (xf + z2) + (3-37)

2 1 O O
£ » / t £ \

*zz = "'1 vxl V + m2 (X2 + y2> +

where the coordinates of atoms of mass m,, ITU . . . are (x,, y1, z ^ ) ; (x2, y2, z2),

respectively. The center of gravity of the molecule is taken as the origin of coordinates.

Conventionally, these three moments of inertia about three axes (x, y and z) are designated

as I., !„ and I_. On the basis of relative values of these moments of inertia, polyatomics

are generally classified in the following four groups.

Linears. - In a linear polyatomic, the moment of inertia along the axis of the

molecule is zero and the other two principal moments of inertia, In, Ip, are equal to

one another; i.e., IA = 0; Ig = Ic> The molecules like C02, HCN, N20, C2H2 , etc., come

under this category.

Spherical Tops. - In such molecules, all three principal moments of inertia are

equal to one another, none being zero; i.e., I. = In = I/. 7* 0. The molecules like CHi,,

SF6, CCU, etc., come under this category.

Symmetric Tops. - In such molecules, there exist three non-zero principal moments of

inertia, two of which are necessarily equal; i.e., I. ? Ig = Ic ^ 0 or I. = Ig f I- f 0.

Further, if I. < In = I., the molecule is classified as prolate symmetric top. The

molecules like CH3F, CH3C1, come-under this category. If IA = IB < Ic> the molecule

is classified as oblate symmetric top. The molecules such as BF3, BC13, etc., come under

this category.

Asymmetric Tops. - In asymmetric tops, all of the three principal moments of inertia

are non-zero and they all differ; i.e., I. f IB ? Ic 1 0. Molecules like H20, CH2C12,

C2Hi,, CH20 come under this category. In special cases, if the molecule is planar, we
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have I. + IB = I-. Table 3-III presents a summary of these classifications; Figure (3-10)

gives the schematic representation of the rotations.

TABLE 3-III.. CLASSIFICATION OF POLYATOMICS ON THE BASIS OF PRINCIPAL MOMENT OF INERTIA.

Moments of Inertia

Oblate

Prolate

Asymmetric Top

IA - 0; !„ - Ic

Type

Linear

Spherical Top IA = IR = IG f

Symmetric
!B

=

""rot.
J(J+l)Bhc

Examples*

C02, C2H2 , OCS, etc.

CH4, CCL4, SiH4, SF6, UF6

J(J+l)Bhc + K2(C-B)hc BF3

J(J+l)Bhc + K2(A-B)hc C2H

No simple equation HO , CH20, CH3OH, etc.

-•-X

^CENTER OF
MASS

IA=O

LINEAR (IA=0 ;.IB=IC)

SYMMETRIC TOP

/

CENTER OF
MASS

SPHERICAL TOP (IA=IR=Ir^O)

ASYMMETRIC TOP

Figure (3-10). Schematic representation of the rotations in different polyatomics.

49



Rotation of Polyatomics and Rotational Spectra

Just like diatomics, the essential factor determining the rotational spectrum of a

polyatomic is the moment of inertia of the molecule about the rotation axes. In symmetric

molecules, the symmetry axes are always the principal axes and planes of symmetry are

perpendicular to the principal axes.

Linear. - Since, in such molecules, there is only one moment of inertia, the rota-

tional level scheme can be obtained using the relation:

Er = Bhc J(J + 1) - DhC (J + 1)2J2 (3_38)

where B and D are rotational constants and J is the rotational quantum number. B » D
h 9

and is given by B = opr̂ - » where I = Z m.r. m. is the atomic mass at a distance r. from
the axis of rotation. The selection rule is AJ = ± 1 and obviously the corresponding
absorption frequency is given by

v = 2B (J + 1) - 4D (J + I)3 (3-39)

Linear molecules may belong to the point groups C and D^. Molecules"of the latter

groups dp not exhibit any rotational spectrum, since they do not possess a permanent

dipole moment.

Spherical Tops. - Spherical top molecules, usually do not have any permanent dipole

moment and, consequently, do not exhibit any rotational spectrum in the far infrared

or microwave region. Practically all polyatomics with cubic point groups belong to this

category.

Symmetric Tops. - The rotational energy scheme in the case of a symmetric top

molecule, is given by

Er = F(J,K)hc - (3-40)

= Bhc J(J + 1) + he (A-B)K2 --Djhc J2(J + I)2 - he DJK - (J + 1)J K2 - he D/

where A and B are rotational constants and J and.K are the rotational quantum numbers.

The terms involving the constants DK, D, and D,,, take into account the centrifugal
stretching and are usually very small in magnitude. The selection rules that are

applicable to obtain different frequencies in the case of the symmetric top are AK = 0;

AJ = ± 1, 0. -

Asymmetric Tops. - These molecules, as already stated, have at most, one or several

two-fold axes and three different moments of inertia. Consequently, the theory of rota-

tional energy levels for such molecules involves much more complicated equations. No
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simple single expression for the rotational energy can be written down in such cases.

For details, refer to any treatise on the subject, such as Herzberg's Infrared and Raman

Spectra of Molecules.

Vibration-Rotation Spectra of Polyatomics

The random motions of atomic nuclei in a vibrating polyatomic can be described in

terms of what is called normal modes. In such a mode, all the nuclei of the molecule

vibrate with the same frequency and usually in phase with each other. Exact calculation

of the different normal vibration modes of a polyatomic needs a thorough understanding of

group theory in which each vibrational mode is an irreducible representation.

As in diatomics, the vibration-rotation bands of polyatomics also represent the

fine structure envelopes of the P Q R rotational branches. The form and intensity of

these branches are determined by the selection rules based on the symmetry of vibrations

and on the ratio of the moments of inertia about the three principal axes of the molecule.

Linear Polyatomics. - In contrast to diatomics, such molecules may have deformation

vibrations in addition to stretching vibrations. The stretching vibrations with a transi-

tion moment in time with the symmetry axis are called parallel vibrations. These bands

do not show any Q branches and are subject to the selection rules AJ = ± 1. On the other

hand, perpendicular bands (corresponding to deformation vibrations with a transition

moment perpendicular to the axis of symmetry also show Q branches too (AJ = 0, ± 1).

The vibration-rotation energy, E , is simply given by the expression (neglecting

centrifugal distortion terms):

Evr = Z1 (v + 1/2) hV. + he Bv J(J + 1) (3-41)

where B is the rotational constant in the vth vibrational level of the ith mode.

Spherical Tops. - Spherical top molecules such as CH^, S..hU, and CClin, etc., have

three equal moments of inertia. All the infrared active frequencies have the same

selection rules, viz., AJ = 0, ± 1. Since the rotational energy equation is the same

as that for linear molecules, the vibration-rotational bands resemble the perpendicular

bands of a linear molecule with simple P, Q, and R branches.

Symmetric Tops and Asymmetric Tops. - Vibration-rotation bands of such molecules

show quite a complicated rotational structure. Numerous branches with different spacings

are observed.

Neglecting centrifugal distortion terms, the vibration-rotation energy may be

expressed as

E
ur = * (v + l/2)h v + he [BJ(J + 1) + (A-B)K2] (3-42)vr
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For parallel bands; the selection rules are AJ = 0, + 1 and AK = 0, where AJ = 0 is

forbidden when K = 0. For perpendicular bands; the selection rules are AJ = 0, ± 1 and

AK = ± 1.

It may, however, be remarked here that the real nature of the vibration-rotation

structure of bands of all of these different types of molecules is significantly affected

by vibration-rotation interactions. An exact solution of the problem involves due allow-

ance for the vibrational anharmonicities, centrifugal distortion, resonance excitation

and coriolis interaction. For an exhaustive account of these and allied phenomena one

may be referred to any treatise on molecule vibrations, for example, Allen and Cross

(1963); and Avram and Mateescu (1972).

Electronic Spectra

Almost all of the theoretical methods used to describe the electronic states and

spectra of diatomics are also applicable in the case of polyatomics. These states are

specified by the symmetry species or the irreducible representations of the point groups

to which the particular molecule in the equilibrium conditions conforms. For example,

the electronic states of a linear polyatomic, such as H-C-C-H (acetylene), conform to

the point group D ̂  and are therefore Z , E", n , A , etc. Similarly, the molecule NH3

conforms to the point group C, and the resulting electronic states are A,, Ap and E.

In general, a linear polyatomic molecule has a distinct value of orbital angular

momentum along the internuclear axis unlike most nonlinear.polyatomics where the angular

momenta are usually quenched and, consequently, the symmetry species labels provides

less information in the latter case.

One special feature of polyatomics is that the ground state and excited state con-

formations may differ, and consequently, it may be necessary to use different point groups

to specify the symmetry of the possible states of ground and excited state molecules.

For example, CS2 is linear in ground state (DiJ but is bent in its first and second

excited states (Co..) •
Like diatomics, the electron spin in polyatomics is also accounted for by affixing

multiplicity 2S + 1 to the symmetry label as superscript.

Once the possible electronic states of a polyatomic are delineated, it would be

easier to bring out different possible radiative transitions using group theoretical

methods.

Electronic spectra of polyatomics are quite an involved subject and needs a thorough

understanding of the group theoretical methods: Consequently, it does not appear

expedient to examine in' detail the problem of electronic molecular spectra of polyatomics

in this monograph.
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CHAPTER 4

DISSOCIATION AND IONIZATION OF MOLECULES

Both dissociation and ionization basically, relate to the splitting up of molecules
into two or more fragments. The fragmentation may be caused either by photon-molecule
interaction or thermal decomposition or through any other stimuli, such as high energy
particles, etc. If the break-up results in normal or excited uncharged atoms or radicals,
the process is called dissociation; if the resulting products are a molecular ion and one
or more electrons, we call it ionization.

The total energy required by a molecule in an electronic state to dissociate into two
neutral fragments is called the dissociation energy of the molecule in that particular
electronic state. However, if the molecule dissociates from its ground electronic state,
the energy necessary for this process to occur is normally called the dissociation energy
of the molecule and, in principle, should be equivalent to the heat of dissociation of the
molecule. It is usually represented by the symbol D° and corresponds to the asymptotic
limit of the ground state potential curve with reference to the zero-point energy level.

The energy required to strip off one or more electrons from the molecule is called
the ionization energy of the molecule. The energy (eV) required to singly ionize the
molecule corresponds to what is called first ionization potential of the molecule'. Sim-
ilarly, there are second, third, fourth. . . ionization potentials when two, three or more
electrons are removed from the molecule.

To clarify the distinction between dissociation and ionization, let us refer to the
simple case of the 02 molecule figure (4-1). The potential curves X, A, B, C, and D
represent the ground and three electronic (excited) states. E represents the ground state
of the molecular ion. I.E. corresponds to the first ionization potential. The different
D values represent the different dissociation energies of the molecule in different
electronic states. D° signifies the heat of dissociation.

DISSOCIATION, DISSOCIATION ENERGIES AND THEIR DETERMINATION

The term dissociation signifies a molecular process in which a molecule is split
into two fragments. One or both of these fragments may or may not be electronically
excited depending upon the nature of the electronic state of the molecule just before
splitting. A molecule may thus have different dissociation energies corresponding to its
different electronic states. However, the energy needed to dissociate a molecule in its
ground state into two fragments without losing any charge is normally defined as the
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Figure (4-1). Schematic showing various electronic states of a diatomic molecule and
its corresponding ion. A typical case of molecular oxygen is depicted.

dissociation energy (D°) of the molecule. In a potential energy diagram it is represented

by the energy difference between the vibrational level v = 0 and the horizontal asymptotic

limit of the potential curve:

D° = v
e

- 6(0) (4-1)

where Vg (°°) corresponds to the asymptotic limit and G(0) corresponds to the zero point
energy of the molecule.
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This energy is almost equal to the thermodynamically defined heat of dissociation in
the limit of low temperatures.

There exist various methods to determine dissociation energies of molecules. These
can be divided into two broad categories.

Spectroscopic Methods

There are numerous spectroscopic methods which have been adopted to determine molecular
dissociation energies:

(1) Band convergence limits,
(2) Birge-Sponer extrapolation,
(3) Predissociation limits,
(4) Long wavelength limits of absorption continua,

(5) Photodissociation,
(6) Chemiluminescence, and
(7) Atomic fluorescence.

Although most of the above methods have been usefully employed to determine dissociation
energies under favorable circumstances, only the first two, discussed below, have been
frequently used.

Method^ of Band Convergence Limits. - When a well-defined electronic band system appears
converging to a continuum, the energy of dissociation of the molecule can be estimated by
knowing the frequency at the point of convergence. If the transition probabilities are
.such that the absorption transitions from the v" = 0 level of the ground state are observed
up to the limit of vibrational structure of the upper electronic state, it is only then
that one can precisely locate such a limit in an actual spectrum. Now, if one knows the
wave number corresponding to the excitation energy in which the dissociation leaves the
atoms, the dissociation energy of the molecule can be estimated using the following
relation:

D° = he (VL - VA) (4-2)

where v, and v. correspond to the asymptotic limit of the upper state and the excitation
energy of the atoms, respectively.

There are, however, two difficulties in the practical application of this method:
(1) the exact point of convergence is often difficult to fix in the crowded vibrational
lines, and in some cases the lines corresponding to higher vibrational quantum numbers
become extremely weak before the continuum is reached; and (2) even when the frequency of
the beginning of the continuum is precisely known, one or both the products of dissociation
may or may not be electronically excited. Quite often, it may cause confusion; however,
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if the circumstances favor this is one of the best methods of determining dissociation
energy. (Dissociation energies of I~ and (L have been quite precisely determined using
this method.)

Method of Extrapolation to Convergence Limits. - The transition probabilities for
vibrational transitions are usually such that the vibrational levels are not located all
the way up to the dissociation limit. Birge and Sponer (1926) introduced the method of
extrapolating the vibrational levels up to the limit at which they show vanishing interval
spacing as a way of knowing the convergence limit estimating v, . The method is based on
extrapolation of the vibrational quantum numbers according to the relation:

G(v) = (oe(v + 1/2) - <oexe (v + 1/2)
2 +o)eye(v + 1/2)

3 + ... (4-3)

The averaging spacing between successive vibrational levels can be put as

AG(v) = - [G(v)] = u - 2(v + 1/2) u)x (4-4)

neglecting the^cubic term.
As the dissociation limit approaches, AG(v) should gradually decrease until at a

certain critical value, v = v , which represents the dissociation limit, it is almost zero.

i.e. AG(v) = 0

or u)e - 2(v + 1/2) uexe = 0

or v- [^- 1/2] =v c. (4-5)

Substituting v = v in the above equation, we get

6(vc) -^ . ' (4-6)

As a matter of fact G(v ) is equivalent to D in cm" and, therefore, to get D°, we should
subtract G(0) from G(v ); i.e.

0)
Do = 6Cvc)-GCO) . « .,£ .

e (4-7)

Dissociation energies determined using Birge-Sponer extrapolations are normally

higher than the thermochemical values. When a large number of vibrational energy levels

are known, and these can be accurately represented by a formula requiring only the termsf\
in (v + 1/2) and (v + 1/2) , a more reliable result can be expected graphically. Neverthe-
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less, it is the only method by which dissociation energies have been actually determined
in most of the cases.

Non-Spectroscopic Methods

Non-spectroscopic methods to estimate dissociation energies of molecules can be
classified into the following two broad categories:

(1) Thermal and Therrnochemical Methods
(2) Electron Impact and Mass Spectrometric Methods

Although these methods are not basically spectroscopic, a closer perusal of the different
steps -taken till one gets dissociation energy would bear out that the thread of a spectro-
scopy does run practically through the whole process. In thermal and mass spectroscopic
work, spectroscopic observations are normally necessary to determine the degeneracy
factors of the atomic and molecular states.

In electron impact methods, we make use of the Franck-Condon principle and the con-
cept of potential energy curves representing electronic states. The problem of determining
the state of excitation of the dissociation products is always there, the solution of
which is possible only through spectroscopic knowledge.

For detailed discussions on the merit and demerit of different spectroscopic and non-
spectroscopic methods, one may refer to the excellent monograph, Dissociation Energies
by A. G. Gaydon.

PREDISSOCIATION

Predissociation, in fact, is the molecular analog of the Auger effect observed in
atomic spectra. In molecular spectroscopy, the effect was first identified by Henri (1923)
in the electronic bands of diatomic sulphur. It was later observed to occur in many spec-
tra, both diatomic and polyatomic.

In actual spectra of the molecules, predissociation manifests itself in the following
forms:

(a) Abrupt termination of the banded structure or, in some cases, sudden falling off
of the intensity of the band-structure beyond a certain limit in an electronic emission
band system.

(b) Diffuseness in the band structure beyond a certain stage in an electronic
absorption band system.

The former, however, is now regarded as the key test for the occurrence of the
phenomenon.

In theoretical framework, predissociation is understood in terms of a radiationless
transition from a stable excited state onto another unstable state of a molecule, having
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almost the same energy. A non-radiative transition of this type leads to a spontaneous
dissociation of the molecule. If this transition occurs in a lifetime that is of the
order of the rotational period (approx. 10" sec.), the rotational energy that controls
the rotational structure no longer remains strictly quantized and, thus, the rotational
structure is no longer well defined. However, since vibrational frequencies are normally
10 to 100 times larger than the rotational frequencies, the vibrational energies which
determine the gross structure of the system remain unaffected. The vibrational structure
of the system thus remains intact. In borderline cases the rotational lines are simply
broadened and the predissociation effect may not be clearly evident. So, for an effective
display of predissociation effect, the radiationless transition should occur rapidly
enough to give sufficient line broadening. However, even if this radiationless transition
occurs, say 10 times the rate of spontaneous emission, most of the molecules in the first
excited state will pass over to the second state and get dissociated. Although in such a
case there may not be any apparent diffuseness in the absorption bands, emission bands
will be drastically reduced in intensity since most of the molecules will not survive
long enough in the first state to radiate spontaneously. Thus breaking-off the bands in
the emission spectrum is a more sensitive test of predissociation than is diffuseness in
absorption.

It may however,be pointed out that there may not be any such break-off in the bands
observed in thermal emission, though predissociation may be there. In thermal equilibrium,
the population of the rotational levels of the upper state is also determined by the
Boltzmann factor and so the number of predissociating molecules is exactly compensated by
an equal number of new molecules formed by the inverse process. There is, however, a
broadening of rotational structure just as in absorption. Similar effects are observed
at sufficiently high pressures. Though in such circumstances, there is no actual thermal
equilibrium, the break-off in the banded structure is suppressed because of greater
quenching of the non-predissociated lines by collisions. These considerations indicate
that in order to detect weak predissociations, it is necessary to investigate discharge
spectra at low pressures. It may, however, be pointed out that predissociation in
diatomic molecules, is relatively not a frequent phenomenon. This is most probably due
to the fact that the probability of a radiationless transition into the dissociating
state is usually so small that long before the decomposition would have taken place, the
molecule has already gone over into a lower lying discrete state with the emission of
radiation.

In order for the radiationJess transition probability to be so large as to make pre-
dissociation feasible, there exists certain selection rules known as Kronig's selection
rules, which must be fulfilled in addition to the condition of energy. These are given

below:
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AJ = 0; AN = 0 (For Hund Case (b) only)
+ +-+ -

S «-»• a
and in Hund cases (a) and (b), in addition

AS = 0 and AA = 0, ± 1
If both states belong to case (a) or both to case (b), we have, respectively

AZ = 0 or AN = 0
In Hund case (c), AS = 0 and M = 0, ± 1 may be replaced by

AH = 0, ± 1 .

Although Kronig's selection rules restrict the possibility of predissociation to

occur considerably, they are not sufficient to exclude the theoretical possibility of
its occurrence in all cases. The Franck-Condon principle plays an equally important role

in this context. According to this principle, predissociation is more probable if the
potential curves of the participating states intersect or at least come very close to one
another. It-is only in such a situation that a transition to the dissociating state is

possible without an appreciable alteration of position and momentum.
It is therefore the combined effect of the three factors, viz., proximity of energy,

selection rules, and the Franck-Condon principle that the occurrence of predissociation

is determined.

Forms of Predissociation

Corresponding to different forms of molecular energy, three types of predissociation

phenomena are normally observed: (1) Predissociation by electronic transition, (2)

predissociation by vibration, and (3) predissociation by rotation. Case (1) involves a

radiationless transition between discrete levels of one electronic state and the dissociat-
ion continuum of another electronic state. This type of predissociation is the most

common in diatomic predissociations and applies whenever the band structure becomes diffuse
or breaks off at a distance from the point of convergence of the band system (figure (4-2)),

Case (2) applies to polyatomic molecules only and has been of considerable importance
in that area. Most unimolecular decompositions belong to this type. Here a radiationless

transition takes place onto the continuum associated with a different vibration within the

same electronic state.
Case (3) is applicable to both types of molecules but it has so far been observed in

certain cases of diatomics only. It occurs for those vibrational levels of an electronic
state that lie in the neighborhood of the dissociation limit, since the higher rotational

levels of such vibrational levels can lie above the dissociation limit. This case is most
readily observed when the dissociation energy of the state is too small.
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Figure (4-2). Two typical examples of predissociation (case I)

In a stable type electronic state of a diatomic molecule, the potential curve without
rotation shows a pronounced minimum, which becomes less and less marked and finally dis-
appears altogether, as we go to higher rotational levels. The electronic state will not

have a minimum corresponding to such high J values and will be rotationally unstable.
Excitation to such high rotational levels may thus lead to dissociation of the molecule.

The onset of predissociation by rotation, therefore, does not correspond to the dissociation

limit.

Miscellaneous Predissociations

1 Apart from the regular predissociation normally observed wherein the molecule under-
goes non-radiative transition 'from a stable electronic state to a non-stable repulsive
electronic state crossing it, a few other types of predissociation effects have been

identified in certain electronic spectra:

(1) Forbidden predissociation . . - • ,..
(2) Induced predissociation . "", '..

(3) Accidental predissociation
(4) Inverse predissociation

A brief discussion follows.
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Forbidden Predissociation. - For a predissociation to occur, we know that certain

selection rules must be obeyed for the nonradiative transition. These are commonly known

as Kronig's selection rules. Particularly, the rule AS = 0, which applies to both Hund

case (a) and case (b), holds only to the same degree as it does for radiative transitions.

Since a strong predissociation has a probability y = itf'1 sec"*, a predissociation forbidden
8 -1by the rule AS = 0 may still have a probability 10 sec~ . Such a predissociation probabil-

o
ity may still compete with the radiative transition probability which is normally <_ 10
sec . It may be sufficient to cause a breaking off, or at least a drop in intensity, in
emission bands even if in absorption the spectrum may remain noticeably unaffected.

The ultraviolet bands of P? (singlet-triplet intercombination) and Angstrom bands
of CO, may be cited as typical examples in this context (Herzberg, 1932) ;(Coster and
Brons, 1934). Another type of forbidden predissociation is one that is produced by
magnetic fields. Quenching of !„ fluorescence under the influence of a magnetic field is
a typical example. (Turner, 1930).

Van Vleck (1932) has shown that the selection rule, AJ = 0, no longer holds strictly
in a magnetic field.

Induced Predissociation. - Kronig's predissociation selection rules are, as a matter
of fact, ideally derived for free molecules undergoing radiative or nonradiative processes
rather independently. When the molecular assembly is at a high pressure, because of
collisions, these rules no longer remain strictly operative. Therefore, a predissociation
which may otherwise be forbidden, can occur under high pressure conditions. Such a pre-
dissociation is termed an induced predissociation.

This phenomenon has been studied by many workers in a number of electronic spectra
(I2 [Turner (1931)]; N? [Kaplan (1931)]; NO [Wolf (1934)]; S2 [Kondratjew and Olsson (1936)];
Te2 and Se2 [Rosen (1936)] etc.) An article by Zener (1933) provides a good theoretical
perspective of the phenomenon.

Accidental Predissociation. - If a stable electronic state is perturbed by a predis-
sociation state, one or more of the rotational levels of the perturbed state assume the
properties of the corresponding predissociating levels; i.e., they also predissociate.
Therefore, in emission, the corresponding lines of the bands under consideration should be
missing or have abnormally small intensities. At the same time, their positions may not
differ appreciably from the normal positions. In absorption, an accidental predissociation
of the upper state should give rise to a broadening of a few successive lines in the band
considered.

The second positive N2 spectrum is a typical example in this context(Coster, Brons
and Van der Zeil, 1933). Experimentally, accidental predissociation differs from normal
predissociation, whether only a few lines, or a large number of lines, or all lines beyond
a certain limit, have abnormally low intensity. Theoretically, while in normal predis-
sociation the radiationless transition takes place from a discrete level directly into the
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dissociated state; in the case of accidental predissociation this happens only through an
intermediate third state. (Articles, by Ittmann (1934) and Kovac's and Budo (1947) are

quite exhaustive in this context.)
Inverse Predissociation. - In regular predissociation, as a result of a radiationless

transition from a regular stable electronic state to an unstable repulsive state, the
molecule gets dissociated. The reverse is also sometimes true. Two atoms may approach
each other and, during the collision, a radiationless transition from the continuous
range of energy levels to one of the discrete levels may occur if the energy coincides
with that of one of these levels within their width. The molecule thus formed may pre-
dissociate again unless it radiates spontaneously.

The spectrum of AIM provides a typical example in this context (Stenvinkel, 1939).

IONIZATION AND PREIONIZATION

lonization is a process by which a net electrical charge may be imparted to an atom
or molecule. In gaseous media, the atoms or molecules are stripped of one or more
electrons under the action of some external stimulii. lonization can b.e broadly classi-
fied in the following categories:

(a) Photoionization (ionization produced by electromagnetic radiation).
(b) Thermal ionization (ionization produced by thermal energy).
(c) Corpuscular ionization (ionization produced by high energy particles - may be

electrons, protons or cosmic particles).
Although all of these processes are significant to the study of planetary atmospheres,
the first two are of immediate concern in the framework of the present monograph.

Photoionization

If the absorption of a photon raises the molecule or atom above the lowest energy
level in the molecular ionic ground state, it results in the ejection of an electron from
the system.

The frequency, v, of the incident radiation should satisfy the condition hv » V
where V is the ionization potential. lonization potential may thus be defined as the
energy required to remove completely an electron from an atom or molecule in the ground
state leaving the resulting ion in its lowest state. Quanta possessing energy less than
V- may give rise to excitation- of internal states or may lead to dissociation, or both,
after getting absorbed.

The process of Photoionization is quite significant in the study of energy balance
in various astrop'hysical and aeronomic problems. A precise knowledge of Photoionization
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cross sections with regard to various molecules and atoms of planetary interest is,
therefore, no less important than that of absorption cross sections.

Photoionization cross section, a., may be defined as the absorption cross section,
a, multiplied by the ionization yield, y:

a. = ja (4-8)

The photionization yield or efficiency, y> represents the ratio of the number of ion-pair
produced per second, as a result of interaction of incident photons with the molecular or
atomic assembly in the ionization chamber.

Number of ion-pair produced per second ,. g*
^ Number of photons absorbed per second ^ " '

From the definition of a, the absorption cross section we know that

I = I exp(-anl)

or 'abs = lo - l = lo [1 - exP(-°nl)l (4-10)

The number of photons (N.) actually absorbed per second by the molecular or atomic
assembly can be expressed as

NA = T IQ [1 - exp(-anl)] (4-11)

where T represents the transmission coefficient of the window of the ionization chamber.

The number of primary ion-pairs produced per second or the rate of ion-pair production
is thus given by

T IQ y [1 - expt-o-nl)] (4-12)

For an efficient ionization chamber, this rate is equal to the average charge flow; i.e.,

--1 , where i is the ionization current and e is. the electronic change.
We have, therefore

= T
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For a rare gas atom, y =1—-j is taken as 1 in the region of the onset of ionization

continuum and, therefore

= T IQ [1 - exp(-onl)] (4-14)

Thus, using a rare gas ion chamber an absolute photon flux can be determined if the
absorption cross section is known.

Ionization Limit and Rydberg Series

In principle, a large number of electronic states are possible for each electron in
a molecule before it leaves the molecular skeleton. Molecular transitions to these states
give rise to Rydberg series, as in atomic spectroscopy, represented by

a = A - — (4-15)
(n+a)2

where A is the ionization energy expressed in cm~ (A = r^—) . R is the Rydberg

constant, 'a' is a correction term and 'n1 is a running term.
Normally in the case of molecules, the Rydberg series is observed in the vacuum

ultraviolet region. The various series limits correspond to different ionization potent-
ials of the molecule.

For a detailed description on the molecular Rydberg series, Duncan (1971) may be
referred.

Thermal Ionization

The Maxwell-Boltzmann distribution law gives a very satisfactory picture of the
distribution of population in different excited states in a molecular or atomic assembly
if the system is in thermodynamic equilibrium. However, at a particular temperature and
density there is thermodynamic equilibrium not only among the excited states but also
between the neutral and ionized atoms and electrons. The atoms will strip off electrons
at a rate depending upon the temperature and ionization potentials of the atomic species.
The extension of population distribution equation to ionic and neutral species in a gas
assembly at a particular temperature and density under thermodynamic equilibrium was first
proposed by Saha (1921). Later, the theory was extended by Menzel (1933).

According to Saha, if N° is the total number of atoms present in an enclosure and N
and N represent the total number of singly ionized'atoms and number of electrons,
respectively,then
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exp
N° h3 Q0(T)

where Q0(T) and Q, (T) are the partition functions at temperature, T, for neutral and ioni
zed atoms in the system and V- is the ionization potential.

This equation may easily be generalized to any two adjacent stages of ionization to
give

Qq(T)
r !\i
L kT J

where eV is the energy necessary to ionize the atoms from the qth stage of ionization to
the (q-H)th stage.

Preionization

It is a phenomenon that is almost parallel to predissociation. Just as it is possible
for a molecule to undergo a radiationless transition leading to spontaneous dissociation
(predissociation), so it is also possible for a molecule with sufficient energy to under-
go spontaneous dissociation to a molecular ion and a free electron.

For preionization to occur, the upper state involved in the transition must lie
higher than an ionization limit. For molecules, usually the ionization potential lies a
good deal higher than the dissociation energy and therefore preionization is not a common
occurrence in diatomics. In polyatomics, particularly in molecules like CO*, N?0, etc.,
which are of great planetary interest, examples of the occurrence of preionization do

o

exist. Diffuse absorption bands of CO in the region 785-750A and the far ultraviolet

diffuse absorption bands of H~ have also been ascribed to preionization (Henning, 1932;

Beutler and Junger, 1936).
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CHAPTER 5

QUANTITATIVE THEORY OF MOLECULAR ABSORPTION AND RELATED

SPECTROSCOPIC PARAMETERS

Whenever a beam of electromagnetic radiant energy is allowed to interact with an
assembly of molecules, there are in general, two major processes, viz., scattering and
absorption, that mainly contribute to the attenuation of energy from the traversing

. radiation. The relative importance of each of these phenomena depends upon the nature of
the medium; i.e., its physical state and the structure of its constituent atoms or mole-
cules and the wavelengths present in the incoming beam.

In an absorbing medium, the process of absorption is normally associated with two
other competitive processes, viz., (a) spontaneous emission, and (b) stimulated or induced
emission. The relative significance and the role that each of these three processes
plays vis-a-vis each other depends upon the nature and lifetime of the participating mole-

cular or atomic states, energy range of the spectral features involved, and the physical
state of the medium. Let us discuss these three processes a bit elaborately.

ABSORPTION

In this process the molecule undergoes radiative transition from a lower energy state
to a higher energy state at the expense of the energy of the incident beam. The molecules
lying in the beam path interact with the traversing photons and selectively absorb only
those quanta whose energies correspond to the energy differences between their different
eigen states. The molecules are raised to higher energy states and eventually may come
back to the lower states either radiatively or through non-radiative processes.

If v is the frequency of an incident beam of light which is isotropic and unpolarized
and p(v) is the radiation density, i.e., p(v)dv is the optical energy per unit volume in
the frequency interval v and v + dv, then for an optically thin absorbing molecular layer,
we have

where Inm = Intensity of absorption corresponding to the transition E_ -*• E_./ L \ m n
^ ' It is the electromagnetic energy absorbed from the incident beam

2
of 1 cm cross section per second.
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N = Number of absorbing molecules per cm present in the initial (ground)

state m.

B = Einstein coefficient of induced absorption and is a function of the

electric dipole transition moment.

Ax = Thickness of the absorbing column measured in cm. The product

Nm B p(v) represents the number of photons absorbed or the number ofin mn f\
m ->• n transitions which take place per cm per second in the system.

According to quantum mechanics, B , when defined relative to radiation density, is

given by.

3 I ni mkl2

B .-fei 'n1 M (5-2)

where
ni mk

R is the matrix element of the electric dipole moment and is given by

I n,- mu
U1 k - / * : M * m d T . (5-3)

Here ij> and fy represent the total wavefunctions of the molecular states n, m and M

represents the electric dipole moment of the molecule. The degeneracy of the ground state

m is signified by gm, and the subscripts i and k signify the number of degenerate sub-

levels of the upper state n and the lower state m, respectively. The summation is carried

over all possible combinations of the sublevels of the upper state with those of the lower

state.

SPONTANEOUS EMISSION

The excited molecules may undergo radiative transitions from the upper energy states

to the lower energy states randomly and thereby release radiant energy. This random

creation, of photons results in the light waves of random phase relationships and, there-

fore, the electromagnetic radiation so obtained is almost incoherent. For such a process

to occur, the primary requisite is that the molecules should, somehow, be excited to some

higher energy state and the respective transition be allowed by the selection rules.

Under conditions for which self-absorption is negligible, the intensity of spontane-

ous emission for the radiative transition n -*• m is given by the following relation.

I""1 = Nn Anm hv (5-4)
(emission) . " nm

where I(pmjssi0 ) is the total emission intensity.
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It is also a measure of the total number of photons emitted by the source per second.
N is the total number of molecules in the initial (upper) state n.
A is the Einstein transition probability of spontaneous emission. It also repre-

sents the fraction of excited molecules actually undergoing radiative transition
from n •> m per second.

hv represents the energy of an emitted photon.
According to quantum mechanics, A is related to the transition moment by the following
relation

3hc3 gn

n. rr
where R i and various other symbols convey the same meanings as spelled out
earlier, g represents the degeneracy factor for the upper state n. ,fi i n _ m. ^

If the two states m and n are nondegenerate, g = g = 1 and the numerator
be written as R n m 2

INDUCED EMISSION

vl ^i
2_/|R can

When an excited molecule undergoes radiative transition under the influence of, or by
being induced by, another photon, the emission of radiation so caused is called induced or
stimulated emission. The photon leaving one excited molecule strikes another excited
molecule and stimulates it to give up its photon sooner than it would have been released
spontaneously. This collision process between photons and excited molecules may start a
chain reaction which causes more and more excited molecules to give up photons, thus
releasing vast amounts of energy. This energy build-up starts a massive wave front which
grows with each collision between a photon and an excited molecule. Each collision
triggers the release of another photon and both the trigger photon and the newly released
photon become part of the wave front. Of course, in order to let the energy build up in
this way, the special condition of 'population inversion1 in the system must be created.

There are two very distinctive features of induced emission. (1) The photon pro-
duced in induced emission is almost of the same energy as that of the inducing photon and,
hence, the frequency spread of the light waves associated with induced photons is very
small. (2) The photons emitted via induced emission are coherent and thus there exists
a close phase relationship between any two photons emitted in this process.

Basically the process of induced emission can be regarded as a converse of the process
of absorption. The intensity of induced emission is accordingly given by the following
relation.

Remission, induced) = M Nn Bnm ̂  ^
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where B is Einstein coefficient for induced emission and various other symbols
carry their usual meaning.

KINETICS OF OPTICAL ABSORPTION

Let us consider two molecular energy states m and n (E > Em) coui.ied by an electric
dipole allowed transition and interacting with a radiation field of energy density p(v)
in a system which is in thermal equilibrium.

As discussed earlier, the rate of radiative transitions from the lower level, m, to
the upper level, n, (i.e., absorption) in the case of such a system can be expressed as

dNrc

Similarly, the rate of radiative transitions from the upper level, n, to the lower level,

m, is given by

dNn

dN dN
At equilibrium, -rz— = —-r~- = 0, so the two competing rates are equal, i.e.,

' Nn An» + Nn

According to the Maxwell -Boltzmann distribution, which is applicable in thermal equilibrium,

we have

ym

where g. is the degeneracy factor of the i state (i = m or n).

Now, if we combine the two relations (5-10) and (5-11), we get

Bmn p<v> /Jn\ -hv/kT
Anm + Bnm
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"mn "nm ("n /g I e-hv/kl

The energy density per unit frequency interval, p(v), according to Planck's black body

radiation law, is gp^en by

ft-TT h-41 ^ 1

p(V) = ^ "V r-ipj, (5-13)
3 r«." V/ l\ I i -ic le -1J

Comparing the above relations (5-12) and (5-13) we get the following

(1) B = B t^/g] <5-14)v'; mn nm y ' ymy

, / . . « . _ 8irh y3 _ Sirhv^3 gm/g B (5-15)
nm= c3 nin= c3

Now, if we combine the relations (5-13) and (5-15), we can write

A,nm [ehv/kT_i] = R ( say ) - . (5-16)

where R is the ratio of the rate of spontaneous emission to that of induced emission under

thermal equilibrium conditions.

Now, for example, if v corresponds to the frequency of green light (5 x 10 Hz), the
op oc

value of R comes out to be equal to e ; i.e., roughly 10 . Thus, the likelihood of

stimulated emission taking place is almost negligible as compared to the spontaneous

emission. However, if a frequency corresponding to a microwave transition is taken
Q

(10 Hz); R becomes approximately 0.0001. This presents a completely different situation
as regards occurrence of the two processes. Radiowaves and microwaves thus arise almost •
entirely through stimulated effects and so are always coherent. Whatever may be the
contribution of spontaneous emission to the net intensity, it manifests itself as 'noise1

within the system. R becomes 1 for a wavelength, approximately 60 ym, which lies in the
far infrared region; therefore, in this frequency range both emission intensities are more
or less of the same order. Creation of population inversion disturbs the thermal equili-
brium and then it becomes possible to obtain considerable stimulated emission even at
visible and ultraviolet frequencies.
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EQUATION OF ENERGY TRANSFER

If we consider a more general case of the passage of radiation through a low

pressure gas in thermal equilibrium, which can emit or absorb radiation, and confine

ourselves to the radiative transitions between the two states, m and n, the kinetics

of the three radiative processes can be expressed by the following equations:

«v dv ' -^T hv Nn dx + -T hv dx [Bnm Nn ' Bmn Nm]

or-3T dv= A - B I v <
A

where A = ,"m .hv N ; the spontaneous emission term

and B = fe Np - Bmn N! -ĵ - ; the effective absorption term

Equation (5-17) is known as the equation of radiative transfer. In this equation, if

we neglect A; i.e., the spontaneous emission is assumed negligible, we have

dl
dv = -BIv (5-18)

which is equivalent to the differential form of the Lambert-Beer absorption law; i.e.,

dlv dv = - a dv ! dx

I dx (5-19)v

where a' is the effective integrated absorption coefficient.
Now, if we compare equations (5-17) and (5-19), we get

' - . ' £„ % dv = «'v = B ' (Bnm Nn ' Bmn Nm) IT

k. . / I, T I

(5-20)

which in the case of e ' » 1 becomes

Bmn Nm hv

'Av v - c
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In this relation, while f a. dv is purely an experimentally measurable quantity, B
J Av

is completely a theoretical parameter and is computable from wavefunctions representing
the energy states involved.

TRANSITION STRENGTH AND RELATED MOLECULAR PARAMETERS

Quantum theory of radiative transition provides that, for electric dipole radiation,

the transition strength S with respect to a molecular transition, n - m, be given by

Snm = !R"m|2 = l< n | M | m >|2 = \ fy* M ̂  dx|2 , (5-22)

where the sub or superscripts, n and m, signify the two quantized energy states involved

in the transition (E > E ); |Rnm| is the matrix element of the electric dipole moment,

M (also called 'transition moment' ).The Vs represent the complete wavefunctions for the

upper and lower states and dx is the configuration space element. This factor, S , plays

a very prominent role in most of the radiative transfer phenomena in molecules. The

various important quantitative molecular parameters such as energy flux, molecular
absorption coefficient or cross section, oscillator strength, mean life time, optical depth,

photon mean free path and Einstein A & B coefficients, etc. which are frequently used in

the diagnostic study of the aeronomy of planetary atmospheres and of numerous other

radiative processes, are all closely linked with this factor.

Commonly used transition probability parameters defined in terms of transition

strength, S , are summarized below:

(a) Intensity of emission ^nm^ " vnm ̂ nm
(b) Molecular absorption / ^ <-

Cross Section nm' " nm nm

(c) Oscillator Strength (fnm) - vnm Snm

(d) Radiative life time (xn) « [v*m S^-j
-1

(e) Optical depth (xj - vnm Snm

(f) Photon mean free path (Â ) « jynm Snm]
 -1

Basic Theory

In the case of a molecule, since there exist numerous internal degrees of freedom un-

like atoms and they all influence the total wavefunction corresponding to a certain energy

state, ijj, in general, could be written as fy = .̂.JAM where e signifies the electronic
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functional part, v the vibrational quantum number, J the total or the rotational quantum
number, A the quantum number for the electronic angular momentum along the internuclear
axis and M the magnetic quantum number, which refers to the component of J in the
direction of an externally applied magnetic field.

Applying the Born-Oppenhiemer approximation, ̂ Mv can be further written as

( r ) < r ) * < e*x.*). (5'23)V F JAM

where fy , ty and iK... are, respectively, the electronic, vibrational and rotational

(symmetric top) wave functions, r~ are the electron coordinates relative to the inter-

nuclear axis, and 6, x and $ are the Euler angles of molecular coordinates relative to a

fixed frame of reference.

The dipole moment, M,. also can be written M = M + M as the sum of contributions

from electrons and nuclei. M can be further expressed as

Me D (e.x,*) (5-24)

where r is the position vector of the s*n electron relative to th,e .external axes,
r is the position vector relative to the figure axis of the molecule, and Ô e.x.̂ ) is
the dyadic appropriate to the axes transformation. Its elements are the direction cosines
of the angles between respective coordinate axes of the two systems. Also,

dt =. dTedv = drer
2 sin 6 de d* dr. (5-25)

where dv refers to the volume element for vibration and rotation and dt refers to
the configuration space element for the electrons.

Now, using equations (5-23), (5-24) and (5-25), the matrix element for a component
of a molecular band line can be expressed as

V
V ~ ^J"A"M" dTe dv

/**, *e,, » . . " d v

and since /i|r, \p „ dT = 0; (^ , and fy „ are orthogonal)
J c c c c c
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£;:̂ :MH: • /*:• ^ WH- ** *.- ^ *•<•"
= /V(/V I E e ?s"l V dTe) V dr

, , , , dre dv

I'A'M1 I'D (6,x,<))) | <J\j»A"M" Sln 8 de d* (5~27)

The first integral on the right hand side of equation (5-27); i.e.,

/v (/v I E ers I i|)e,, dTe j i|)v,, dr

when summed, if necessary, over degenerate electronic states and squared is called 'Band
Strength' and is designated as s|,/,, or, simply, S , „. It is jointly controlled by the
vibrational and electronic wavefunctions of the molecular states involved in a transition
and, in fact, is also responsible for the Franck-Condon principle, discussed later.

The second integral, / ^JIAIMI I B (6»X»<i>) I ̂ J»A"M" sin e d9 ^v^5 responsible for
the selection rules. Dennison (1926); Kronig and Rabi (1927); Reiche and Rademacher (1926;
1927) have studied this integral for various types of molecular transitions, and Schadee
(1964) has presented a review of such investigations. When this integral is summed over
magnetic quantum numbers, M' and M", and squared, it becomes the 'line intensity factor'

J I A I

or the 'Honl-London factor' represented by the symbol $,„.„ or simply S,,,,,. It is often
a quotient of simple polynomial functions of the J's and A ' s . We thus have the relation-
ship

| D |2 ( .e 'v 'J 'A ' _ .e'v' t -J 'A ' = c c ic 9o\
IKI = Vv"J"A" " Vv" aJ"A" v 'v " J'J" VD~";

Band Strength - Sv,v,,. - The band strength s
v"v" is> 1<n fact, an average of the

electronic transition moment ^*, |-E er I 41 „ dr = R (r) with respect to the vibration
C J C C C

wavefunctions ip , and 4» „

Sv'v" = l * v ' Re(r) *v" dr!2 (5-29)

It may be recalled here that Re(r), the electronic transition moment, is also an average
of the electric dipole moment with respect to the two electronic wave functions ^e, and i|> „-.
Now if R (r) is independent of r, equation (5-29) becomes

" ' ' , t« d r l2 (5-30)
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but if R (r) varies with r, in a polynomial fashion, as is more realistic, for example if

RQ(r) = I an r
n, the equation (5-30) can be written ase n n

Vv" = 'V(S an r") V dr!2 (5'31)

Now, at this stage, if we use r-centroid approximation (Fraser, 1954a, b) which is char-

acterized by the following relations

/V V r dr

Vv" = -7-*—~ 5-32

and
/V i|»v,, dr

.- n /V V r" dr

ir i .,; - - ,

/ v v d r (5-33)

we can write

S . - . -
Vv" /V V d r l '

= Rg (VVM ) Vv" ' (5"34)

The vibration overlap integral square, qv ,vn, is called the Franck-Condon factor, and the
characteristic internuclear separation, r , „, is called the r-centroid associated with a
(v ' . v " ) band.

Hb'nl -London Factors - S,,,,,. Honl -London factors, or line strength factors or
intensity factors as they are sometimes called, are mainly responsible for determining
the intensity distribution within a band; i.e., from line to line within a band. The
significance of these factors was first pointed out by Honl and London (1925), hence,
the name. Subsequently these factors were investigated by various workers as applied to
different types of radiative transitions under different coupling schemes. Detailed
tables of these factors applicable to a large number of important transitions have been
provided (Dennison, 1926; Hill and Van Vleck, 1928, Budo, 1935, 1936, 1937). For example,
Honl-London factors for the various branches applied in the case of a symmetric top
molecule could be written as:

S R = (J" + 1 + A") (J" + 1 - A") _ (J1 + A') (J1 - A1)"
J J" + 1

= (2J1 + 1)A ' 2

J"(J" +1) J ' (J '
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s P = (J" + A") (J" - A") = (J1 + 1 + A1) (J1 + 1 - A') ^ (5_35)

J J" J1 + 1

for AA = +1

S R (J" + 2 + A") (J" + 1 + .A") = (J1 + A1) (J1 - 1 + A1)
J 4(J" +1) 4J1

SQ (J" + 1 + A") (J" - A") (2J" + 1) _ (J1 + A1) (J1 + 1 - A') (2J1 + 1)
J 4J" (J" + 1) " 4J1 (J1 + 1)

S P (J" - 1 - A") (J" - A") = (J1 + 1 - A1) (J1 + 2 - A') ,5_3g)
J 4J" 4(J' +1)

and for AA = -1

S R = (J" + 2 - A") (J" + 1 - A") = (J1 - A1) (J1 - 1 - A1)
J 4(J" +1) 4J1

s Q (J" + 1 - A") (J" + A") (2J" + 1) = (J1 - A1) (J1 + 1 + A1) (2J1 + 1)
J 4J" (J" +1) 4J1 (J1 + 1)

S P (J" - 1 + A") (J" + A") = (J1 + 1 + A') (J1 + 2 + A') (5_3 7y
J 4J" 4(J' + 1)

Here the superscript, R, Q or P, indicates the branch for which the particular expression

holds. Further, of the two alternative forms given, the first is more useful for

absorption and the second for emission. For further details on calculating Hb'nl-London

factors in respect to different transitions, one may refer to Kovacs (1969). The sum

rules for Ho'nl-London factors are:

£ S,,,,, = (2J" + 1); £ S1M11 = ( 2 J ' + 1 ) (5-38)
J, J J JM J J

France-Condon Principle. Since nuclear motions in molecules are much slower compared

to electronic motions, one can reasonably expect that, while the electron architecture of

•a molecule changes instantaneously from one potential U(r) to another in a radiative

transition, it will leave the nuclear motion—both internuclear separation and momentum--

unaffected. This is called the Franck-Condon principle.

A molecular oscillator (v1 or v") spends most of its time in the neighborhood of the

classical turning points at the extreme ends of its motion. Thus, a transition is most

likely to originate at a turning point of oscillation. By the Franck-Condon principle,
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it must terminate at the same internuclear separation and possess the same momentum of
nuclear oscillation. Thus a 'vertical' transition, i.e. a transition with no change in
internuclear separation will occur. The transition starts at a turning point of vibratory
motion in another potential to conserve momentum, which is zero at each turning point.

The Franck-Condon principle thus asserts that the most probable transitions occur
between those v' and v" levels which have one pair of classical turning points in common.

The quantum statement of the principle is embodied in the expression for the Franck-Condon
factors; i.e., qv,v,i = l^i ^v» dr|2,qv,v,, is the square of an overlap integral of
vibrational wavefunctions. The relatively large, terminal antinodes of ty , and \l> „ in

the region of r,1 2 and >",' o respectively imply in quantum terms, a large probability of
finding the molecule in regions near the turning points of the classical oscillator. This
overlap integral will have a large value when there is strong overlap between pairs of
terminals antinodes which are located in the region of classical turning points. Thus,
vertical transitions will be necessary.

Franck-Condon factors (qv.vii). Squares of the vibrational overlap integrals

l^v' "V1 ^ r l2 in resPect to different vibrational transitions in an electronic band
system are called Franck-Condon factors. The nomenclature for this derived physical
parameter was given by Bates (1949) in view of the close correspondence of these factors
with the Franck-Condon principle in molecular spectroscopy. Normally, in literature,
Franck-Condon factors have been expressed as q , „ arrays and represent basic molecular
data which are very useful in interpreting intensity distribution in an electronic band
system.

The first requirement for the calculation of q arrays is a knowledge of the vibra-
tional wavefunctions appropriate to the molecule in the upper and lower states of the
transitions. Once these are known, a number of derived quantities of the wavefunctions,
including q-values, can be calculated.

No completely realistic analytic potential is, in fact, available for the diatomics.
All analytic potentials are empirical and constitute representations of what has been
thought to be a reasonable approximation to the molecular behavior. The parabolic or
simple harmonic potentials were the first to be used. Many other empirical functions
have been suggested. (These have been reviewed by Varshni, 1957, and Steele, Lippincott
and Vanderslice, 1962.) However, the Morse (1929) potential function* was freely used in
molecular calculations. Rydberg (1931, 1933), Klein (1932), and Dunham (1932) developed
methods of constructing molecular potentials numerically from the location of the classi-
cal turning points of the oscillator at each value. Rees (1946) placed this method on a

*U(r) = De

where 3 = 2
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sound analytic basis. The starting point of such calculations was a set of measured
molecular constants, particularly the By values derived from band analysis. These
potentials are named RKDR potentials after the authors. A number of realistic RKDR
potentials for many molecular electronic states have been computed. The resulting wave-
functions have then been used to compute Franck-Condon factors by straightforward
numerical integration of their products. For more details about computing methods
for Franck-Condon factors, one may refer to a recent article by Chakraborty and Pan
(1973).

A comparison between arrays of Franck-Condon factors computed from realistic mole-
cular potentials and from Morse potentials indicates that, in general, there is very good
agreement between the two arrays at low quantum numbers and l imi ted agreement at h igh
quantum numbers. However, in some cases, the divergence is much smaller than might have
been expected a priori . ... . Av,

j ™w' v"r-centroids. - The r-centroid (r , „) given by r, .H\ = is an
J ty i ty ii dr

important derived quantity of vibrational wavefunctions and is frequently used in the

theoretical calculations of intensities in molecular spectra.
It is a characteristic internuclear separation to be associated with each (v'v")

transition. Based on numerical computations on a number of diatomic transition, Fraser
(1954) showed that the relations

, rn ̂ v,, dr = [rv.v.il " / V V dr (5-39)

or /ipv, f(r) ,|)vl, dr = f(rvV,) / *vi V
 dr (5-40)

hold good provided: (1) yu^-lO" for the molecule under consideration, where y is the
reduced mass of the molecule in atomic mass units, and w is the vibrational frequency. o o e
in cm" . (2) 0.01 A < |r , - r-J < 0.25A, r , and r 2 being the two internuclear
separations related the transition. (3) v' and v" do not exceed about 10. (4) if f(r)
is a polynomial in r, the highest power of r should not exceed about 10.

Recent studies by Drake and Nicholls (1969) have, however, shown that these limits
are probably conservative. Nevertheless, this approximate property allows us to resolve
the integral of the product of ty , and ip „ and a function of r taken at an argument
r/ i H\. The validity of this approximation has been tested for a wide variety of
transitions for which q , „ was not extremely small.

In relation to physical meaning attached to r/ , ,,v, we can say the following:, . »\

f V r V dr

(a) From the relation r/ . ,,\ = • - — —i - , it is seen to be a weighted average/ . ,,\ • - — —i
\\ v ; ^ ' v"
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with respect to ^ , ty „ in the range of r values experienced by the molecule in both
the states v1 and v". (b) From the same relation, O . » N represents the r-coordinate
of the centroid of the 'area represented by the overlap integral.

A simple relationship between r-centroids and the average of r experienced by a
molecule in a certain vibrational level, v' or v", may also be written as below:

= " "v ^r, nvv" w

and rv,, = L qvV, rvV, (5-42)

These equations clearly indicate that the average internuclear separation, r , experienced
by a molecule in the vibrational level, v1 or v", may be considered as a weighted average,
with respect to q/ , „*, of the r/ , ,,\ values taken over all transitions which involve

that level. Thus, q/v iv i i ) ^ ( v ' v ») is tne appropriate contribution from the v1 - v"
transition to each of r , and r „.

An array of r-centroids for a band system is a set of discrete values of r over the
range experienced by the molecule in all the vibrational levels of both potential energy
curves. It has been found that the r-centroids vary slowly from band to band. Various

methods of evaluating r-centroids have been discussed by Nicholls and Jarmain (1955).

Electronic Transition Moment Rc(r). - The electronic transition moment, R (r), is an
average of the electric dipole moment, M = (-Z er), with respect to the two electronic
wave functions, ij» ' and ty ", involved in a radiative transition.

Re(r) = /ie' Me <J>e" d Tfi (5-43)

R (r) can be determined experimentally in two main ways: (1) intensity measurement of
emission or absorption bands, and (2) measurement of life time of the upper state.
Inter
that
Intensity measurements and Re(r):for the integrated intensity of a (v ' ,v " ) band, we know

V *v'v" Vv"

,, R»(rv,v,,) qv,v,,

where K is a constant which allows for the units and the geometry of the apparatus.
(v1 v" )Iv 'is measured band by band either by photographic or photoelectric methods

and S , „ values are compared band by band.

V v" * lV< V " / K V v v ' v " (5'45)
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This approach requires either a knowledge of N , or the determination of S , „ along
progressions of bands for which N , is constant. The method, though straightforward in
application, has the disadvantage of the relative error varying from band to band. Strong
bands have large area profiles and are therefore more accurately measured than weak bands.

Another method is to plot I(V'V")/
C1(V'V")

v4(v'v") vs< ^(v'v") for Pr°9ressions

I/? n /- \of bands' for which v1 is common in each. This plot is equivalent to N , • R
ev

r
v>v»)

 vs'
r/ , „,. It has been applied to many band systems. The result is a set of
segments which delineate the relative variation of R0(r) with r. These segments are

1/2displaced in ordinate from each other by an amount controlled by N ' . Rescaling proce-

dures allow all of the segments to be placed on the same ordinate scale and provide a

knowledge of N . All the measured intensities have then played a role in the delineation

of R (r) and a smooth empirical curve can be fitted by least square methods to the final

set of points.

Relationship of S with Other Molecular Intensity Parameters

Intensity of Emission. - The intensity of a spectrum line* in emission 11"1^ ,...•-„ 1S
"" ~~ ~ " GUI i -> o i on

defined as the total electromagnetic energy of wave number v that is emitted by the

light source per second in all directions of space.

According to quantum mechanics, ^m^ssion in resPect to radiative transition (n ->- m)
is given by

T(nm) - N he \j A
^emission " n nm nm

[,. u
Hfr-= V<*nJ^ ,L JVH (5-4S)

where [Rnm[2 is represented by S , called the transition strength.

*The phase 'intensity of a spectrum line 1 in emission is used frequently in spectroscopy
but is often confused with the'brightness of a line 1, which is conceptually different
from the former. Brightness or radiance is not the rate at which the electromagnetic
energy is received (in the wavelength region covered by the line) per unit area of the
receiver from unit solid angle of an extended source. It is measured in watt m~2strad~1.

81



In the case of a molecular rotational line (e'v'J1 •*• e'V'J") equation (5-46) takes the
following form after substituting the value of S from equations (5-28) and (5-34),

.NeVJ' veVj; «(F } j-A.
re'V'J" I Vrv'v"' qvV SJ11A,,\ /

where N . , ,, is the molecular population-in the J level of the v vibrational level,
th

in the upper electronic state, e'. 9eiv>j'
 is tne net 'statistical weight1 of the J

level, which is equal to (2-6 .)(2S + 1)(2J' + 1) where 6 . is the Kronecker delta
OA 0 j A

symbol.

6^ = 1 when AY 0, i.e., for states other than z states

and 6 . = 0 when A = 0, i.e., for E states.
O j A

(The vibrational statistical weight is always unity.) R~(r . „) is the electronic transi
J 'A'tion moment, ( T I M ) is the f-centroid; q , „ is the Franck-Condon factor and Sj,,A,, is

the Hbnl-London factor; all relevant to the J1 -> J" transition.

(2S + 1) is the spin multiplicity of the electronic state concerned
(2J1 + 1) is the statistical weight of the J1 level.

e1 v1

Similarly, the integrated intensity of a complete (v'v") vibration band I „ „ or
(v'v") •"simple Iv , which is often a measured quantity, can be obtained through proper

summations of the relevant terms:

64Tr"c q, e ' v ' J ' X ^ (.J'J"
2(j '+l) / ->3 / g0, V V'v" / Vv"

J1 J" (5-48)

According to sum rule, we have

2JSJ'J" = <2J ' + ]) (5-49)
J"

where N , is the molecular population of all the rotational levels of the vibrational
level v1 and also,

2>e'v'J' = V (5-50)

J 1
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L I I 1 II ^-^ p "I

S , L, N i -,, and also of g ,; g = (2 - 6 .)ji, ji e v u e L e O,A j

(2S + 1) in equation (5-48) we have, for the integrated intensity of a (v ' ,v " ) band, the

following expression:

T ( v ' v") _ (e^c) Re (Vy"> l - v ' v " ) N
Emission \ 3 / (2-6QA)(2S+lj \v / Vv" v1

Absorption: Intensity of Absorption. - Because of the effects of natural line width,

the definition of the intensity of an absorption line is relatively complicated. However,

these effects could be ignored if the absorbing layers are thin. If i^nm' = cp is the

intensity of incident radiation; i.e., the energy falling on unit area (1 cm^) of the

absorbing layer per second, the intensity of absorption; i.e., energy absorbed from the

incident beam of 1 cm^ cross section per second, is given by

Absorption = pnm Nm Bmn Ax hcvnm

(nm) , (5"52)

o m mn nm

where Ax is the thickness of the absorbing layer, p is density of radiation of

incident beam of wave number v , N' is molecular number density in the initial lower

state m, and B is the Einstein transition probability of absorption. Naturally,

[P«m Nm B_n Ax] denotes the total number of radiative transitions taking place per secondniri in inn
in the layer of thickness Ax. N' Ax = N , the total number of molecules in the lower

state m.

It is, however, assumed here that the incident radiation has a constant intensity

for a wave number interval about v sufficient to cover the whole line width.

According to wave mechanics, for a dipole radiation,

n 3 I nlim I 2
B« ' & H^ (5-")

where gm is the degeneracy factor for the state m, and Rnm is, as usual, equal to

< n | M | m > the matrix element of the electric dipole moment M.

If we now substitute the above value of Bmn in equation (5-52)

m >

(5-54)
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0
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M
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If we define l"
= knm as 'absorption coefficient

1,
o

-

wehave knm - 3h- vnmsnm (5-55)

g 3

In the case of a molecular rotational line (J1 •<- J"), equation (5-55) takes the

following form

Vv»

where g i v i j i is the net statistical weight of the J" level associated with the v"
level in the lower electronic state e".
Equation (5-56) may be modified to take account of the normalized line profile factor,
F(v), which obeys the relation F(v) dv = 1 and, therefore, it can be written in the form

k e 'v ' J ' _ 8 i r s Ne"v"J" ) | e ' v ' J ' ) R 2 /? ] o SJ 'A '
' ' " - - ' - " ' " S " "e'V'J" \3"~/\geV'J"/ \ e"v"J"/ ev'vV" Hv'v" JJ"A

It may be remarked here that various instrumental, thermal and environmental influences
control F(v) and therefore its value should be determined pertinent to the circumstances
of the experiment.

e' v'In the case of a vibration band, k ,, „, or simply k/ , ,,x, can be given as follows:

V* iii / s \ R2(r i ») V*'
k ( v ' v " ) = frrf, ke"v"J" = \3R~/ V! V vv 'v"

E SJ 'J". =. (2J" + 1) and ^ N „ ,,1,'
J' J" e V J .

Equation (5-58) reduces to the form

(5~58)

TT y.y N
k ( v ' v " ) = \3fT) (2-6 ,)(2S+1) v v ' v " q v ' v "

Oscillator Strength 'f™1. - The oscillator strength of a radiative transition is a

dimensionless parameter and is defined through the relation
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where [k ] is the 'absorption coefficient1 for the transition m -»• n and e and m are
electronic charge (in esu) and mass (in g /electron), respectively. According to the
preceding discussion, the 'absorption coefficient', [kv]mn> for a transition, m -»• n, is
related to the transition strength, S , through the following relation

N
mn 3hc g nm nm

Now, comparing equations (5-60) and (5-61), we get

mn ~ \ 3he2 J \ g_ / nm

In the case of a molecular rotational line m(e"v"J") -»- n (e ' v ' J ' ) , f j i jn can be expressed

as

fJ'J» • lC v nM
where (k ) corresponds to a rotational line (J 'J") and N = N , ,,,.

(5-64)

Substituting (k )j iy> value for (k ) from equation (5-61), we get

Similarly for a (v',v") band, f or f , „ can be expressed as

- r' 'v" " [T
f , * , ,, , (5-65)
Vv" |Tre2Nv,, J [vjv'v"

Substituting for [k ] , „ from equation (5-61) in equation (5-65), we have

f . 1 _- L e Yr,J v , „ q , . (5-66)v'v" 3he2 T^l J(2S+1) J v'v" Hv'v"

The electronic oscillator strength, f , „ , for the entire band system can also be
formally defined likewise, though it would not be a uniquely defined parameter.

2
fe'e" = Z^ fv'v"

where ge,, = (2 - <5QjA) (2S + 1)
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If we could average v ,„ for the whole band system at a characteristic frequency v and

similarly R (?) . i, could be averaged across the complete system as Rg then

8ir2m i _ 2

since £ _ qv,v,, = 1

= —— -J 5 (5-69)
R 2 (r . ,.) v ' v " q v 'v"g X ' y l y l l / Y » Y »

and 1f Re(?vV.) ~ «e

'•" " '"v .,.

These parameters are found quite useful in discussions on the emissivity and opacity of

thick molecular vapors.

Radiative Lifetime ' T ' . - Radiative lifetime, T, of a molecule is directly linked with

A , the Einstein A-coefficient for spontaneous emission which, in turn, is controlled by

nm'

We have, T = J- (5-71)
rtnm

where A - 6^ V"m snm 3h C3 nm

However, if there is,a possibility of radiative transitions to more than one low lying

state, it would be necessary to SUIT

equation (5-71) will take the form

state, it would be necessary to sum A over all the possible lower states and, therefore,

.
5

A (5-72)
Anm

In the case of a simple two-level radiative transition, n -> m, Einstein A-coefficient,

A , actually signifies the fraction of total number of molecules in the upper state, n,

that undergo radiative transitions per second. The total number of photons thus emitted

per second would be A__ N . where N represents the total number of molecules in the upperrun n n -i
state n. This means that, on .an average, after every „ - TJ— sec. one photon would beHnm "n
emitted by the system if there are Nn molecules in the upper state. Had there been only

1one molecule in the upper state, it would have shed off its photon after the time •* — sec.Hnm
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T is therefore defined as follows:

If a molecule is in an excited state and is completely free to emit spontaneously,

then, on an average, after the time T = •* — it will emit a photon. This is why T is also
"nm

called 'mean lifetime of the excited state .

The law control ing spontaneous emission is, in fact, the usual exponential law, very

similar to that of radioactive decay, or first order reaction, in chemical kinetics or

molecular absorption.

dNN
-- - = A N where N is the number of excited (5-73)

molecules at any instant t.

dN_
or -- — = A m dt

"„

°r - '°9 Nn ° A™, * + C

Now, when t = 0, N = N° and consequently C = - log N°

N°
we can thus write, log - = Anm t. N

or Nn - N° e Am

Further, if t = —*— , we have
nm

N = -~ (5-75)„

Equation (5-75) suggests that after time T = —R , the original number of excited

molecules will be reduced to —times.1 times.

In the case of a rotational level, T,, may thus be written as

2 ,- . / e 'v 'JV
J_ = 64TT1* 1J Re t

r
v ' v "J qv 'v" VVv"J7 • 5J'J" (5.75)

TJ' 3hc3 (2 - 6Q A) (2S + 1) (2J1 + 1)
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and for the vibrational level v1, we can write

— - —— — — ^- (5-77)
V 3hc3 (2 - 60>A) (2S + 1)

where T . is the mean life time of the upper level v'.

88



CHAPTER 6

LINE PROFILES AND THEIR SIGNIFICANCE IN ABSORPTION

Integrated absorption due to a molecular band system is, in fact, a cumulative
effect of the integrated absorption caused by the constituent bands in the system.
Similarly, the total absorption due to a band is the resultant of the absorption by
numerous rotational lines that form the band. When the spectral lines in a band do not
overlap appreciably, the integrated absorption by the entire band can be computed by just
summing the individual contributions from the constituent lines. However, in most cases,
the rotational lines in a band do overlap appreciably and this fact must be taken into
account while calculating the integrated absorption by a band. Moreover, the intensities

and relative spacings of these lines and also the absorption cross sections quite often
differ widely. Therefore, the computation of integrated absorption due to a band needs

great care.

INTEGRATED ABSORPTION DUE TO A SINGLE LINE

A spectral line is not a geometrical line but it exhibits a certain intensity pro-

file, which, apart from being dependent on certain intrinsic properties of the absorbing
or emitting atoms or molecules, depends upon certain external physical parameters such
as pressure and temperature. Every spectral line is associated with a finite spread
of energy and hence of frequency. Even if we record the spectrum on a spectrograph
of infinite resolving power, the spectral line emitted by a real source will have a

certain width.

There are three different processes which normally contribute to the finite width
of spectrum lines.

Natural Broadening

The natural width of a spectrum line is directly associated with the natural life-
times of the two participating energy states involved in the radiative transition.

According to the Heisenberg uncertainty principle, if an energy state, n, has a finite
lifetime, At, then the energy uncertainty, AEn, for that state is given by

'A En * At " fe> - :W
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or the corresponding frequency spread, Avn, for that state is given by

Now, whereas Av is negligible for the ground state, the upper states of allowed
- 6 9

electric dipole transitions have lifetimes of the order of 10 to 10 sec. Any spec-

tral line involving this level and the ground level must therefore have a frequency
-5 ? 1

spread of the order of 10 to 10 cm" . However, if both the levels have frequen

spreads Av and Av , the width of the resulting line will be given by

The radiative lifetime of an excited state, n, in the absence of collisions, is

related to the transition probability for spontaneous emission, A , by the relation

Tnm

(6-4)

1

if i represents the number of transitions that occur from the level n. Since A is

proportional to v3, the natural width of a spectrum line decreases rapidly in the infra-

red and microwave regions, but may become appreciable in the far ultraviolet.

The shape of the broadened line depends on the profile of the energy distribution

of the two levels involved in the transition. According to quantum theory of radiation,

the shape factor, f(v-v ), of a naturally broadened spectrum line is given by the

relation,

where a is called line width and v , the central frequency. It represents a Lorentzian

profile. In the case of an absorption line, the shape factor is related to the absorption

coefficient, kv, by the relation k^ = S • f(v-v ) where S represents the line intensity.

Thermal Doppler Broadening

Doppler broadening of spectrum lines is a result of the well known Doppler effect

which is the apparent shift in wavelength of a radiation from a certain source moving

towards or away from the receiver.
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According to Kinetic theory, atoms or molecules in a gas at a certain temperature
are in perpetual random thermal motion; any movement of these particles, along the line
of sight, according to Doppler effect, is likely to create some modification in the
frequency of the radiation actually absorbed or emitted by the moving particle. In an
actual source, therefore, a large number of atoms having different velocities emit a
spread of wavelengths, i.e., a broadened line. In the case of an emitter approaching
the observer with velocity u, the Doppler shift in a line of wavelength X is given by

X = Xo (1 +£) (6-7)

or - f = $L . | (6.8)
o o

Now, if we know the proportion of atoms that possess velocities in a given range, we can
calculate their contribution to a particular spectral line and hence build up the profile.

If the gas under consideration is in thermal equilibrium, then according to Maxwell-
Boltzmann distribution law, the fraction of atoms having velocity lying between u and
u + du along any one axis (the line of sight in the present case), i.e. -^- is given
by

dn, -u2/a2
du (6-9)

onr

/

V ""
2RT

where. a . < . 2RL

Here m is the atomic mass, M the mass number, K the Boltzmann constant and R the universal
gas constant.

Substituting the value of u from equation (6-8) in equation (6-9), we have for the
fraction of atoms emitting in the frequency interval, v, and v + dv, the following
relation

a2

cm2

Since the intensity at v is proportional to dny, the line profile can be expressed in

terms of the central intensity I as

Iv = IQ e-c2(v-vo)2/vo °2 (6-11)

Equation (6-11 ) represents a Gaussian distribution about the central frequency VQ with a

width determined by a. The half-intensity points (v35) in this profile would be for which
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Iv = 1/2 I0 (6-12)

that is, ^z- (v-vj2 = In 2 (6-13)

The Doppler width 6vD is therefore given by

2v a
«VD = -j2- in 2 (6-14)

-0
7 IN5

= 7.16 x 10'7 VQ (^j (6-15)

Equation (6-15) can conveniently be .expressed in the dimensionless form as

6-vn 6Xn / \ %
^ = F1 = 7.16 xlO- 7 I • (6-16)
o o ' ^ '

It may, however, be pointed out here that the observed Doppler widths are not

necessarily attributable to the gas kinetic motion at some temperature. In many astro-

physical and some laboratory sources, there may be strong turbulence or bulk motion of
the gas. Usually this also results in a Gaussian profile but in certain circumstances

departures from the Gaussian shape have been observed. For a detailed discussion on this

subject, one may refer to Gill (1965).

Pressure Broadening

If the. pressure of an emitting or absorbing gas is increased, .it is observed that the

spectral lines, in general, get broadened and in many cases also exhibit peak-shift and
asymmetry in their profiles. All these phenomena arise due to the interactions with

other particles in the system. We may classify pressure broadening i.nto two categories.

Collision Broadening. - This type of broadening of a spectral line is caused due

to premature foreshortening of the oscillator lifetime by a collision between the light
emitting center and another atom, the perturber.

If the rate, j = - , at which an excited state actually decays with the emission

of light, exceeds the natural decay rate, - — = Anm = ynm> by the collision rate
1 nm

92



or 1 . J_ + J_ . (6-18)
nm co

the spectral line shape in such a situation can be simply given by the relation similar
to natural broadening except that now ynm should be replaced by y. The resulting profile
is thus given by the following relation

According to Kinetic theory, TCQ is equal to half of the mean free time, i.e., - , where

1 = 4(2̂
T
2p)% . the mean free path for a cross section irp

2, pressure P and v = (8KT/ifM) 2 ,

the mean velocity.
The line widths due to collision broadening can thus be easily computed if the

collision cross sections and the velocities of the interacting particles are precisely
known.

Stark Broadening. - An emitting particle at a distance r from an ion or electron is

perturbed by the electric field, F = ̂  rZ . In general, such a perturbation is propor-
2 °tional to F except in the case of hydrogen where it is found proportional to F.

The linear Stark effect results in a symmetric line pattern. The statistical
averaging process effectively smears out this line pattern to give a symmetrically
broadened unshifted line.

The quadratic effect splits the levels asymmetrically and also shifts their center
of gravity. Since the shift is usually greater for the higher states, the frequency of
the transitions is usually reduced. A line broadened by the quadratic effect therefore
tends to be asymmetric and shifted to longer wavelengths.

Pressure dependence of line profiles is quite an involved phenomenon; a full
discussion on the various facets of the problem is not intended here. Apart from the
various early articles, e.g., Lorentz (1906); Weisskopf (1932); Kuhn and Margenau (1935);
Lindhom (1942); Anderson (1949), etc., recent reviews by Hindmarsh and Farr (1972) and
Burgess (1972) deal with the subject quite elaborately.

LINE PROFILES AND ABSORPTION COEFFICIENTS

According to the Lambert-Beer law, the fractional absorptance, A, over a wavenumber
interval Av at v can be expressed as
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r i -i r
"= I —?— dv = /

•'A., * 0 J A

«
Mv = -V- dv = (l-e~*) dv (6-20)

yAv . ° •'Av

where k is the absorption coefficient for the gas at the wavenumber v and L is the
length of the absorbing gas in a column of unit cross section.

In the case of a spectrum line having Lorentzian profile, kv is given by the relation

where S is the integral coefficient of absorption for the line and S = /k dv; v is

the frequency of the line center and a is the line width. •>

According to kinetic theory, the line width a depends on both pressure P and the

absolute temperature, T, as

where the subscript o refers to the value of the quantity corresponding to STP.

In the case of a Doppler-broadened line, k is expressed as

k v AVD

where AV is the line width of the Doppler broadened line and is given by the relation

The equation (6-22) shows that the Doppler line shape is concentrated more near the

line center and falls off exponentially in the wings of the line.

However, in most cases spectral lines subjected to both pressure broadening as well

as Doppler broadening, i.e., the resultant profile is a blend of both Lorentzian and

Gaussian (Voigt profile). In such cases, the ky value is given by

+ °° ,„£

I/ _ v n i ^ y jo / 6

^ a ^ 2(v-v •) /s \ .
where a = (In 2)^ -^- ; w = (In 2)2 —Av and x = ( —— ) .

Substituting appropriate k values depending upon the circumstances, in equation

(6-25), the integrated absorptance due to a spectrum line can be determined. For details

in the subject, one may refer to Wolfe (1965); Hottel and Sarofim (1967); or Penner (1967),
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Integrated Absorption Due to a Band

When the constituent rotational lines in a band do not overlap appreciably, the
integrated band absorptions can be computed by summing up the contributions from the
individual lines. The absorptance of a band of overlapping lines, as is usually the
case, depend upon the details of the relative spacing between the lines and their inten-
sity distributions. The absorption coefficient quite often varies rather rapidly in a
band and hence it is very difficult to integrate the equation

AAv = /(I - ekv L) dv (6-26)
- /Av

even with a large computer. In order to compute effective integrated absorptance due
to a band, there are currently four models that represent the absorption from an actual
band with reasonable accuracy in a number of cases. These models are discussed below.

Elsasser Model. - This model assumes that the constituent rotational lines of a
molecular band are evenly spaced and that they all have the same intensity and line-
width. This model represents a typically ideal case but is far from reality in the
majority of cases. However, some portions of the C02 spectrum can be represented with
fair accuracy by this model. Actually, a band is normally a blend of numerous weak and
strong lines with varying intensities not evenly spaced. The weak lines absorb an in-

creasing share of radiation as the path length becomes longer. The Elsasser model,
therefore, is not of much practical value in computing integrated band absorption.

Mayer-Goody or Statistical Model. - The rotational lines within a band quite often
show a random distribution of intensities and position. A very simple expression for
the average transmittance of such a band model may be derived in terms of equivalent
width A, of a single line, evaluated at a mean line intensity, S, and the mean spacing

id between the lines. The contribution, K^, of one line to the net absorption coefficient
is a function of the line intensity S, the half line width bi and the displacement (v-v..)
of the line center from the wavenumber of interest, i.e.,

*J = f (S. , b., Vj) (6-27)

Typically, for a Lorentzian line shape

Ki = !l [ (v_v
bj, + b? (6-28)

Since there is no correlation between the different line intensities and line positions,

the total transmissivity is the product of the transmissivity of the individual lines.
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Random Elsasser Model. - This model assumes the random superposition of several

different Elsasser bands forming one single band. Each of these superimposed bands may

have a different line intensity and spacing. As many different Elsasser bands as desired

may be superimposed in this model. Thus all of the weak spectral lines that contribute

to the absorption for longer path lengths can be included in the absorption calculations.

This model is particularly suited to the computation of absorption for such gases

whose vibrational-rotational bands show an almost regular line spacing and which as a

result of the excitation of higher vibrational levels have several such bands superimposed

over one another. For a critical study of this model, one may refer to Plass (1958).

Quasi random Model. - This model is the most accurate and by far the most complicated

of the band models. The absorptance is calculated first for a frequency interval that

is much smaller than the interval size of interest. This localizes the stronger lines

to a narrow interval around their actual positions and prevents the introduction of over-

lapping effects. The absorptance of each of the N spectral lines in the frequency

interval is calculated separately and the results combined by assuming a random placing

of the spectral lines within the small interval. The absorption from the wings of the

lines in neighboring intervals is also included in the calculation. Finally the absorp-

tance values for all of the small intervals that fill the larger interval of interest

are averaged to obtain the final value. An electronic computer is commonly used to

calculate absorptance according to this model. For a detailed review on the various

theoretical and applicational aspects of these band models, one may refer to Penner (1967)

or Hottel and Sarofim (1965).

96



CHAPTER 7

PRINCIPLES OF THE MEASUREMENT OF ABSORPTION

• AND

DETERMINATION OF ABSORPTION CROSS SECTIONS

The quantitative measurement of absorption of electromagnetic radiant energy by
different absorbing media has long been of great scientific interest. These measurements,
in most part, have been based on the well-known exponential absorption law; i-.e., Beer's
law, which works quite satisfactorily in many cases. It is, however, subject to certain
intrinsic limitations and boundary conditions in its application, which must be taken
into consideration while making actual measurements and drawing inferences therefrom.

LAWS OF ABSORPTION

It was Bouguer (1729) who probably was the first to propose a precise formulation
of the exponential law of optical absorption. The law, basically, was applicable to
optically thin layers of absorbing media and truly monochromatic radiations. Lambert
(1760) reformulated Bouguer's principle into an analytic form and later Beer (1852) intro-
duced the concept of concentration into the Bouguer-Lambert formulation.

Bouguer-Lambert Law

According to Bouguer-Lambert law, the loss of radiant intensity (-dl) after
traversing an optically thin absorbing layer of thickness (dl) is proportional to the
incident radiant intensity (IQ) and the thickness of the layer, dl ; i.e.,

-dl = b I dl. (7-1)

(where the
intensity is I), equation (7-1) takes the form
On integration between limits, 1 = 0 (where the intensity is I ) and 1 = L (where the

I = I e-
bL ' (7-2)

or

I = IQ 10"
aL (7-3)
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where a and b are commonly called the Naperian absorption coefficient and Decadic absorp-

tion coefficient, respectively, and a = 0.4374b.
The relation (7-3) sometimes is also expressed in its logarithmic form

log10 (f) - aL (7-4)

where the product aL is called optical density (O.D.). In the equation (7-4), if we put

I = y°r , we get aL = 1 or a = r- which means that the coefficient, a, is numerically

equal to the reciprocal of the path length when the intensity is reduced to -^ of its
initial value.

Beer Law

According to Beer law, the coefficients a or b in equations (7-2) or (7-3) are
taken as linearly proportional to the concentration of the absorbing entities interacting
with the traversing radiation beam; i.e.,

b = k"C (7-5)

and

a = eC (7-6)

where C represents the concentration of the absorbing particles (mole/litre) and k and e

are called Molar Naperian absorption coefficient and Molar Decadic absorption coefficient,

respectively.
If, however, the absorbing medium is composed of different absorbing constituents

with k or e values as i^ R2 k"3 and EI e2
 £3 » tnen accordl'n9 to Beer law

one can also write

kc = k1C] + k2C2 + k3C3 (7-7)

and

eC = e ]C1 + e2C2 + e3C3 (7-8)

These relations, under favorable circumstances, are found quite useful in quantitative

analysis of mixtures of absorbing species.
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Bouguer-Lambert-Beer Law

Combining the Bouguer-Lambert Law and Beer Law, a single expression can be written

which incorporates the underlying concepts of both.

I = Io e"RCL (7-9)

or -i
I = IQ. 10"el-L (7-10)

Now, if we choose to express concentration in terms of number density, n; and L in

cm units, we have

I = IQ e'aXnL (7-11)

°r I - I 10-(0-434KnL (7-12)
o „

where a, is a constant, commonly known as absorption cross section. rMA I*NA
Comparing relations (7-11) and (7-12) and using the relation n = ^ggg ; where NA

represents the Avagadro number, we can establish a relation between e and a^ as

e = (2.6 x IO20) ax (7-13)

a, is related to another constant k by the relation a, = £- where n is the Loschmidt'sA A n u
-in 3

number (2.7 x 10 molecules per cm at STP). k is called the absorption coefficient

at STP.

we can also express the Lambert-Beer Law as:

or I = IQ e'kLo (7-14)

or I = IQ e"°AnoLo

Q a r ewhere L = (|M L = ({5-) I -p) L,according to kinetic theory of gases; L and L
\ O/ \ O/ N '

called geometrical length and reduced length, respectively. P and T represent the ambient
pressure and temperature of the gas and P and T are the standard values; PQ = 760 mm Hg
and T = 273.2°C. However, if cr, varies appreciably over the wavelength range of the

0 A
incident radiation and varies smoothly, the law as stated in (7-14) will not hold and its
modified form (7-16) should be used:

I = I e'noLo/ a,d, . (7-15)
0 J A A
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ABSORPTION CROSS SECTION (a) AND ITS DETERMINATION

Absorption cross section is an important observable that one often looks for

while computing various physical parameters in atmospheric optics. It is closely related

to the transition strength of the molecular transition involved in the process of absorp-

tion. It has dimensions of area and, in fact, represents the effective absorbing area

of the molecule, assuming that it is completely opaque to the given radiation. It is
-18 2usually expressed in units of megabarn where 1 Mbn = 10" cm .

The measurement of absorption cross section of a molecular gas for a particular

wavelength is based on the Lambert-Beer Law as expressed in equation (7-14); i.e., .

(7-16)

Keeping L and T constant, we obtain different values of log \r—/ for the wavelength in

question and at different pressures, preferably in the low pressure range. If a plot of
/I \

log (-p-) versus P gives a straight line passing through the origin, a, can be determined

from the slope of this line.

At times it so happens that in a certain pressure range, we may get a linear plot

for log \Y-J versus P but the straight line, on extrapolation, does not pass through

the origin. In such circumstances, the slope of the line will not'give the characteristic

absorption cross section.

It is usual in absorption spectroscopy to limit the values of I /I to a maximum of

2.80 (65% absorption) and to a minimum of 1.1 (10% absorption).

Applicability of the Lambert-Beer Law and its Limitations

On many occasions, it is observed that certain measurements in optical absorption do

not obey the Lambert-Beer Law. As a matter of fact, Beer Law in its simplest form, is

subject to certain basic assumptions and if these conditions are not maintained, the law

is to be regarded as not applicable rather than not .valid.
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Monochromaticity and Intensity of the Incident Radiation. Lambert-Beer Law is valid
only for truly monochromatic radiation of an infinitely narrow band pass. Departure from

this prerequisite is likely to involve deviation from the applicability of the law.
No apparent deviations from the Beer Law have been observed with regard to the

variation of incident radiation intensity. However, according to Vavilo.v (1950), absorp-

tion cross section does vary with incident intensity when the optical absorption in
question involves electronic transition with long life times.

This aspect of dependence of a, on incident intensity can be well explored where
powerful lasers are used as the radiation source. Here the dependence of a. on I (A)

A O

should manifest itself differently for different lines (Zuev, 1974).
Absorbing Medium. - The absorbing gas should be homogeneous, isotropic, chemically

or otherwise non-interacting and optically thin. There should exist no simultaneous
processes of attenuation of radiant flux; e.g., induced emission, fluorescence, scattering,
ionization, dissociation, etc., by which the transmitted energy flux can get modified.

The absorbing gas should be free from effective molecular interactions; i.e., each
molecule should absorb independently of other molecules in the system. It has been shown
by numerous experiments that this assumption is, in general, truly valid only in a very
low pressure range. Increasing the concentration of the absorbing gas and the addition
of some foreign non-absorbing gas in the system very often ends up in the amplification
of intermolecular collisions. Temperature is another factor which influences the inter-
molecular interaction because of increased thermal motion. The nature of the absorbing
entities may also change with pressure due to hydrolysis, polymerization, ionization,
hydrogen bonding, etc. Beer Law is no longer applicable in such circumstances.

Instrumental Conditions. - We know that Beer Law is ideally suited for truly mono-.,
chromatic radiation of an inifinitely narrow band pass. However, if the absorption cross
section does not vary, or is a slowly varying function of wavelength over a given band
pass, an effective absorption cross section can be determined for the band pass range.

This method usually gives satisfactory results in the case of smooth absorption continua.

The situation becomes more involved in the case of discrete structures, unless the
instrumental band width is less than the line width. True absorption cross sections are
difficult to determine in such cases. Previously, the criterion to measure true absorption
cross sections was based on the observations of the pressure dependence. Beer's Law was
assumed to be applicable if a plot of log( i—\ versus n was linear. The true absorption

\ o/.
cross section was then equal to the slope of the curve. If the instrumental band width
was greater than the line width of discrete structure, the linearity relation did not hold
good and a pressure effect was observed. In such a case, the common practice has been to
extrapolate these pressure-dependence curves to zero pressure to obtain true absorption
cross section. However, both these criteria could be misleading.
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Hudson and Carter (1968) have shown that the absorption cross section can decrease

rapidly by a fraction of 1 to 0.4 of its peak value as the ratio of the band width to

line width varies from 0 to 2, even though a straight line plot of log (I/I ) versus n

could be obtained over this range.

If A (x ' .AX) denotes the integrated flux reaching the photomultiolier when there is

no absorbing gas in the path, A ( X ' . A X ) represents the corresponding qdantity when the

absorbing gas is in the path and X1 is the wavelength of the center of the band width AX,

then we have:

X l+AX

/

X + A
S ( X ) G ( X ) d X

~ - (7-17)v / u>A (X ' .AX ) . X '+AX

f S(X)6(X) e'N0
x dx

X1- AX

where S(X) is the flux from the light source at the wavelength X, which is incident on
the entrance slit; G(X) is the slit function of the spectrograph, N is the total number
of atoms or molecules in the light path, a, is the absorption cross section at wave-
length X.

In the case of the continuum source, S(x) is a constant across the band width of the
spectrograph and, hence, will cancel from equation (7-17), the shape of G(x) versus X
can be calculated from the known grating parameters.

Further, if a, is a constant across the band width of the spectrograph, then
A

equation (7-17) reduces to

A
o

A ( X ' . A X ) = exp CNff/) (7-18)

It has been recognized that the above equation will not hold at the peak of a line which
is narrow compared to the instrumental band width and that a pressure dependent absorption
cross section results-. . But another assumption that often seems to be made is that, if at

/A \
a peak a plot of log \-ir-i versus N is a straight line passing through the origin; i.e.,

\" /
if Beer Law is obeyed, then the slope of that line is assumed to be the peak absorption
cross section.

It is well known that the absorption cross section in the vicinity of the peak is a
rapidly varying function of X and thus the slope of the line should represent an average
cross section across the band width of the instrument. Hudson and Carter (1968)
calculated, using equation (7-17), the values of the ratio AQ/A versus N for different
functional forms of OA in order to determine the relationship between a^ the absorp-
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tion cross section at the center of the band width and a,.A, the slope of the line obtained
/A\ * A X

by plotting log I Tp-1 values against N.

Figure (7-1) represents a semi-log plot of the ratio (AQ/A) versus N for different

values of ^r- where AL is the line width and AX is the band width. The functional form

of a, here has been assumed as Lorentzian.

2.0

N(1018cm2)

3.0

Figure (7-1). Semi-log plot of the ratio (A /A) versus N for different values of
a = AA/AL. °
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It is evident from this figure that as XT = a 9ets Iar9ei% the shape of the
curve diverges from that of a straight line. However, for a <_ 1, we get straight line
plots but with different slopes. Hudson and Carter (1968) made a detailed analysis of
the band pass dependence of absorption cross sections, taking different functional forms
of a,, and their analysis has shown that:

A

(1) All measured cross sections are necessarily the cross sections averaged

over the bandwidth of the spectrograph. Resolving power of the spectro-

graph thus plays a very vital role in these determinations.

(2) The Beer law criterion is not a sufficient indication that the true peak

or minimum absorption cross section has been measured.

(3) In general, the a, value obtained from a Beer Law plot will always be less

than the true peak absorption cross section and more than the true minimum

absorption cross section.

(4) The relationship between the average absorption cross section and the true

absorption cross section at the center of the bandwidth is a function of

the instrumental band width and the functional form of the absorption cross

section across the band width.

PRESSURE-INDUCED EFFECTS IN MOLECULAR ABSORPTION

Absorption of electromagnetic radiation by a molecular gas, either composed of one

single species or a mixture of species, is quite often found to be intrinsically influenced

by the pressure, particularly in the high pressure range. Significant deviations from the

applicability of the Lambert-Beer Law are observed as regards absorption under such condi-

tions. The phenomenon is generally ascribed to the involvement of intermolecular inter-

action which become appreciable at high pressures and play a significant role in modifying

the effective absorption cross section of the gas.
Two types of pressure-induced effects are generally observed in the case of radiative

transitions in molecules.

Distortion of Spectrum Line Profiles :

The perturbation of a spectral transition by pressure significantly modifies the

energy distribution of radiation emitted or absorbed by an atom or a molecule.

The effect of the modification of integrated molecular absorption resulting from

the line profile distortions induced by pressure was first observed experimentally in the

infrared region by Angstrom (1889; 1890; 1892; 1901) in the study of integral absorption

by C02. Schaefer (1905) investigated spectral absorption of C02 bands at 2.7y and 4.3y

and also found that the absorption coefficient was a function of partial pressure.
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Von Bahr (1909, 1910, 1911) investigated the absorption of infrared radiation by mixtures
of various absorbing and non-absorbing foreign gases and observed departures from the
appl icabi l i ty of the Beer Law. For all of these changes in the absorption coefficient
values, broadening of spectral lines due to intermolecular col l is ions was held to be the
responsible factor.

Induced Spectral Features

Pressure-induced spectral features can be broadly classif ied into two categories:
(1) A radiative transit ion, which is forbidden by normal selection rules for

electric dipole radiation in the case of isolated molecules and which may
become effective as a result of strong intermolecular forces. Appearance
of forbidden transitions, combination frequencies and satellite bands are
a few of the examples of this nature.

(2) A transition, which is normally allowed by the selection rules, and which
may get modified under the induction effect of the intermolecular forces.

In compressed gases, the distortion of the electron distribution due to binary and
higher order collisions induces a dipole moment in the col l i s ion system. Dipole absorp-
tion can thus occur, though in the case of a free molecule it does not. The induced
dipole moments which are responsible for the induced absorption depend strongly on the
separations between interacting molecules; whereas, the permanent dipole moments respon-
sible for the allowed spectra are, to a good approximation, independent of the inter-
molecular separations. As a result, the dependence of the absorption on the density and
the temperature of the absorbing medium is quite different in the two cases.

These induced dipole moments are modulated by the vibration and rotation of the
col l is ion partners and also by their respective translational motion. A variety of induced
spectra are, therefore, known, ranging from pure translational spectrum in the far infra-
red to the fundamental and overtone rotation-vibration spectra in the near infrared and
electronic spectra in the v is ib le and ultraviolet regions.

General Characteristics of Pressure-Induced Spectral Features. - The salient features
of different types of pressure induced spectra which have been borne out on the basis of
experimental observations can be summarized as fol lows.

In the case of a mixture of gas (1) of density ( p i ) and another gas (2) of density
(p 2 ) , the integrated absorption coefficient, /adv, for an induced transition in gas .(1)
can be expressed as a power series of densities of the two constituent gases.

/adv = [ /an(P l)
2 + / a l i ( P l )

3 + ]

+ [ /a i 2 (p l P 2 ) + / a l 2 p i (p 2 ) 2 + /<a' i2(pi)2P2] (7-19)
+ — „ _ _ _
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In the above equation, while the first set of terms arises from (1) - (1) collisions,

the second set arises due to (1) - (2) collisions. In such regions of pressures where

binary collisions predominate, only the quadratic terms in this expression need to be re-

tained as first approximation; i.e.,

/ctdv = J an(pi)2 + fan z (piPa) (7-20)

For example, in the case of pure H 2gas at room temperature and a pressure of 100

atmospheres, the cubic term, /o^H (PH )3, contributes only about 7% to the total inte-

grated absorption (Chisholm and Welsh, 1954).
The rotational selection rules operative for induced transitions are AJ = 0, ± 2,

which are the same as for Raman effect. The normal dipole transition rules, AJ = 0, ± 1,

do not hold good here.
Double or simultaneous transitions are also of common occurrence. Both molecules of

the collision-pair simultaneously undergo the same or different transitions with the absorp-

tion of a single photon. Welsh, et al. (1951) were the first to postulate the occurrence

of such simultaneous transitions while studying the induced vibrational spectra of H2.

This hypothesis of double or simultaneous transitions was confirmed later on by the

study of induced spectra in a number of cases (Fahrenfort and Ketelaar,. 1954; Fahrenfort,

1955; Coulon, et a., 1955, 1956; Vodar, 1958; Colpa and Ketelaar, 1958; Rettsschnick,

1962; Farmer and Houghton, 1966; Dianov-Klokov and Malkov, 1973.

Induced transitions are greatly broadened as a result of high collision frequency,

which can be construed as a consequence of the Heisenberg uncertainty principle. As the

temperature of the absorbing gas is lowered, the duration of a collision increases and

the breadth of the transition decreases.

The broad induced transition is, in effect, a continuum of summation and difference

tones of the molecular frequency with the continuous distribution of relative kinetic

energies of the colliding pairs. The intensities in the low and high frequency wings at

frequencies displaced by Av (cm" ) from the molecular frequency v are, therefore, related

by the Boltzmann distribution. This imparts a characteristic asymmetry to the intensity

profile of the spectrum line.

The intensity distribution of the high frequency wing has, to a good approximation,

a dispersion line shape (Kiss and Welsh, 1955). Detailed theory of pressure induced

molecular absorption has been developed by Van Kranendonk, 1957, 1958. According to his

proposed model, the induced dipole moment, y, is regarded as the sum of two contributions;

viz., the quadrupole interaction and the electron overlap forces and can be expressed as

y = (A/r*) + 5 e' p (7-21)
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where r is the intermolecular separation and A, 5 and p are different constants. The
first term is due to quadrupole interaction and has a relatively long range. The second

iL)
term [5 e V] arises from the electron overlap forces and has a shorter range. The in-
duced moment is strongly dependent on the relative orientation of the molecules in the
collision pair. Numerous examples of different types of induced spectral transitions
have been reviewed by Colpa (1965) and Vodar (1965) in the book "Physics of High Pressures
and the Condensed Phase" edited by A. Van Itterbeek.

OPTICAL DEPTH, EQUIVALENT WIDTH AND THE CURVE OF GROWTH

Optical Depth

f I
to / kThe optical depth of a medium is usually defined as equivalent to / k vdv, which

o v

for a homogeneous medium becomes k L; where k represents the absorption coefficient and
L the optical path length. In this definition, k is assumed to be independent of depth.
In many astrophysical conditions, this assumption is, however, not valid.

A layer of gas is defined as optically thin if kyL « 1 and optically thick if
k L » l. Because of large variations of k with v, the medium may be optically thick
for one line and thin for another or thick at the center of a single line but thin in the
wings. In absorption, an optically thin path is that in which the absorption shows no
signs of saturation; i.e., doubling the path length halves the transmitted intensity. In
emission, it is one in which there is no self absorption.

When the medium is optically thin over the entire profile of an absorption line the
effect of increasing the optical depth either by increasing the absorption length or the
number density can be investigated using Beer Law. According to the Lambert-Beer Law,

I = Ioe-C Tvn L = IQ e'Nav = Io e'T (7-22)

where T represents the optical depth; n is number density; L is the length of the absorp-
tion column, N is the total number of absorbing molecules in the line of sight and ay

represents the absorption cross section. Optical depth is thus the product of absorption
cross section and the total number of absorbing particles in the line of sight.

Equivalent Width

As optical depth increases, while the curve kvL versus v stays the same shape
throughout, the shape of the curve I versus v changes significantly. Since the dip in
the latter cannot go down below the baseline, i.e., the line corresponding to the zero
transmitted intensity, the absorption must saturate first at the center of the line and
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then outwards toward the wings. The area of this dip, as a matter of fact, is equal to
the rate at which the energy is absorbed from the incident beam in a particular spectral
line. The fractional radiant absorptance over a finite wavenumber interval dv is called
equivalent width W of the spectral line.

dv (7-23)

The equivalent width is so called because it is the width of the rectangle that has the
same area covered by the actual dip in the I versus v curve, Figure (7-2). Now, if we
express equations (7-23) in terms of absorption coefficient k , we get

Wv = /" (1 - e'kvL) dv

Line
and, since kv is proportional to Nmfmn, for an optically thin absorber we can write

(7-24)

/ k vLdv

dv = N_f L.4e me m mno
(7-25)

where fmn denotes the oscillator strength for the transition m •*• n.

* \%

t

Iv

Wv

Figure (7-2). Schematic illustrating the concept of equivalent width of a spectral
line.
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Curve of Growth

The curve of growth for a given spectral line describes the behavior of its equiva-
lent width as the number of absorbing species in the line of sight is increased. It
usually takes the form of a plot of log W against log NfL. The exact form of the curve
depends on the width and the shape of the line, but the width dependence can be taken
care of by plotting as ordinate the dimension!ess quantity W /SVp.

Wv = e2 . NfL

= 2.65 x 10"6 ^=- (N is in m~ » L is in m and

or D 6vn is in sec~ )

log - = -5.58 + log (7-26)

The curve of growth must therefore start as a straight line of unit gradient. When
the medium is no longer optically thin for the center of the line, W increases less
rapidly than NfL and the curve starts flattening out. The linear limit and the behavior
of the curve thereafter depends on the profile of the spectral line. In a Lorentzian
profile, the wings are more prominent than in a Doppler profile and consequently there is
a lower peak height for the same total area. However, in many cases of practical interest,
the net line shape is a blend of both Lorentzian and Doppler (Voigt profile); therefore,
the relative importance of the two components - - i.e., the Lorentzian and Doppler - - is
measured by the ratio of their half widths.

6v,
a = -^ (7-27)6vD

For relatively small values of a, the central part of a Voigt profile is almost Doppler
type, while the wings are Lorentzian. As a result, all of the curves in this region
remain fairly flat and the absorption is mainly confined to the Doppler core.

If NfL is increased still further, i.e., in the optically thick region, the absorp-
tion in the Lorentzian wings becomes significant and MV increases much faster. In such a

case, it is shown that

Io9 ( TZT } = const- + V2 log a + 1/2 log ] (7-28)
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which means, the curve of growth finishes up as a straight line of gradient one half, but
lines having different values of, a, are separated according to the value of 1/2 log (a).
A typical growth curve is depicted in Figure (7-3). Details on the various aspects of
the use of growth curves particularly in the context of astrophysical problems can be found
in Aller (1963) or Cowley (1970).

O H

-2

REGION C

4 5 6 7

LOG NfL/6vD

Figure (7-3). Growth curve in the case of a typical spectrum line.
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CHAPTER 8

BAND SPECTROSCOPIC METHODS OF TEMPERATURE DETERMINATION

Spectroscopic methods under favorable circumstances, are often quite useful in
determining temperature of the source of emission or absorption. Effective temperatures
corresponding to the degree of rotational, vibrational or electronic excitation can be
computed using intensity measurements on different spectral features. These 'spectro-
scopic1 temperatures are sometimes called 'rotational', 'vibrational' and 'electronic'
temperatures and are normally different from the true thermodynamic temperature of gas.
However, if the gas under consideration is in thermal equilibrium, all of these spectro-
scopic temperatures should be identical and equal to the true kinetic or thermodynamic
temperature.

From the theoretical standpoint, if the gas under consideration is in thermodynamic
thermal equilibrium, the particles conform to Maxwell i an velocity distribution and gas
temperature is equivalent to the kinetic temperature defined by the relationship

where v" is the average particle velocity, K is Boltzmann constant, T is absolute
temperature and m is mass of the gas particle.

Most methods of measuring spectroscopic temperatures are subject to the condition
that energies of all the particles in the gas assembly conform to the Maxwell -Bol tzmann
law. Making intensity measurements on individual rotational lines in a band, or integrated
intensity measurements on the different bands in a system, relative populations of the

relevant energy levels are determined and subsequently corresponding spectroscopic temper-
atures are evaluated using the Maxwel 1 -Bol tzmann distribution law.

ROTATIONAL TEMPERATURES

Rotational temperatures may be determined from the observed intensities of the
rotational lines, using the general intensity relations as applied to rotational transitions.

The intensity of a rotational emission line in a (v',v") band can be given by

'em0" = DNv' Ev'v" p(v"'v")
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where D = a constant depending upon the geometry of the instrument and the units
employed.

N i = molecular population of the upper vibrational level
Ei ii = energy corresponding to the (v ' ,v") band
p(v ' ,v") = vibrational transition probability given by the relation

e u |2

.,, = line strength factor
p(v',v") = | *yl Re(r) ̂ u dr |

Q = rotational partition function
Ej, = rotational energy of the upper level J', given by E,, = B ,(J'+l)J'hc.

Now, since the integrated intensity I , „ of the band (v',v") is expressed as

Iv'v" = DNyl E*v, P(v',v") . (8-3)

Equation (8-2) can be rewritten as

/<; \
J i iii .. i..ii / -^ 11 iJ _ Tv v i J J exp[ -Bv, J ' (J ' +1) hc/KT] (8-4)

or taking log of each side of the above, we have

/TJ 'J" \ /TV 'V" \
log VjM = Io9 ro " Bv' J ' ( J ' + Dhc/KT. (8-5)

Vs / \ r /
J'Now, when log •? is plotted versus J'(J' + 1), the curve is a straight line with

slope equal to (-By/KT).
Although the determination of a rotational temperature is the most precise when the

rotational lines are completely resolved, it is possible to obtain an average value of
the rotational temperature even whenvlesser resolution is available. If a group of rota-
tional lines in a single branch is not resolved, the transition probabilities and fre-
quencies of the blend can be averaged and treated as a single rotational line. If only
the band envelope with some of the gross fine structure is resolved, it may be possible
to obtain the approximate temperature by comparing the observed band envelope with
envelopes calculated for several temperatures. The method is obviously not very sensitive
and the error may be significant.

Determining temperatures by means of rotational intensity distribution is often the
most accurate of the spectroscopic methods, the advantage being that relative rotational
transition probabilities can be explicitly calculated from theory for most diatomic mole-
cules. There are some disadvantages too. The first one is the requirement of quite high
resolutions. The second one is that sometimes, there is non-negligible coupling between
the rotational and vibrational modes which introduces appreciable error.
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VIBRATIONAL TEMPERATURES

Vibrational temperatures may be obtained from the measurements of integrated
intensities of two or more vibrational bands by using the intensity relations as applied
to vibrational transitions. There are, however, a number of difficulties in these deter-
minations which do not come across in the determination of rotational temperatures. One
of the most serious of these is the lack of precise 'information on the transition proba-
bilities for various vibrational transitions. Further, if the vibrational bands overlap,
it may not be possible to measure correctly the total band intensity.

The basic equation for the intensity of a (v ' , v " ) emission band is expressed as

Vv" = DV E v 'v " P (v '»v l l ) (8-6)

where D = a constant depending upon the geometry of the recording instrument and

the units.

N , = population of the upper vibrational state v1.
E , „ = energy difference in the transition (v1 - v")
p(v ' ,v" ) = | ty , Re(r) ip H dr|2, relative transition probability whose de-

pendence on rotational angular momentum is often extremely small;

^v" *V' are t'ie wave^uncti°ns °f tne states v' and v", respect-
ively, and Rg(r) represents the electronic transition moment.

If the system is in thermodynamic equilibrium, the relative molecular population N ,
of the upper vibrational level, v1, can be expressed as

Ny, = (N/Q) exp [-G(v') hc/KT] (8-7)

where N is the molecular concentration in the system, Q is the partition function

which is constant for a given temperature and electronic state, and G , is the term val

for the upper vibrational level v' and is given by the following expression:

6V. = "e
(v + 1/2) ' Ve (v ' 1/2)2 + Ve (v + 1/2)3 (8'8)

Here, u , CD x and to v are the vibrational constants for the chosen state and are

obtainable from the analysis of the spectra.

Substituting for NV, in equation (8-6) we now have:

IyV = DNQ- Ejlyll P(v ' .v") exp [-G(v') hc/KT] (8-9)

log [lv.v../E*v, P(v',v")] = G(v')/0.6925T + Constant (8-10)
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In a plot of log 1,,1.,11/E,,,,,,, P(v',v") as a function of G(v')/0.6925, the slope of
V V V V 1

the curve gives the reciprocal of the vibrational temperature -•?— . If the curve is not
a straight line, it is inferred that the vibrational thermodynamical equilibrium is not
approached or there is non-negligible self-absorption and the above method is unsatisfac-

tory under such conditions.
It may however be remarked that measurement of temperatures via intensity measurements

on rotational and vibrational features must be ruled out for temperatures beyond 5000°K
because the molecular species are essentially all dissociated at such elevated temperatures.
The molecule CN is perhaps the only exception but its spectrum also disappears at temper-
atures in the neighborhood of 8000°K.

ELECTRONIC TEMPERATURES

Electronic temperatures of gases are normally determined from the intensity of
atomic transitions, though in principle the same approach is applicable to molecular
electronic transitions. In general spectroscopic determination of temperatures from the
degree of electronic excitation has had rather limited application except in arcs and in
a few flames. The method is particularly susceptible to errors .caused. by abnormal
excitation and self absorption. It is also quite difficult to obtain a reliable detector
calibration over the wide wavelength range necessary for any reliable results.

KINETIC OR TRAN .ATIONAL TEMPERATURES

A direct measure of kinetic temperature of a gas can be obtained spectroscopically

util izing. Doppler effect in the frequency of the emitted radiation. If the line, broaden-
ing arises solely from the thermal motion of the emitting atom, the intensity distribution
within the line is given by

I(v) dv = IQ exp j-(Mc2/2RT] [(VQ - v)2/v*][ (8-11) .

where M, R and T are molecular weight, universal gas constant and absolute temperature,
respectively, and the intensity I(v) dv emitted in the interval dv is assumed to be pro-
portional to the number of atoms dN having values of v in the appropriate range.

X

Accordingly, the half width AX of the line can be expressed as
/2

= 7 .16 ,10- 7 v- (8-12)v c y M /
where T is the temperature in degrees Kelvin. It may be remarked here that this method
of temperature determination is not very precise even when interferometric methods are .
employed. Its use, therefore, is very limited.
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In plasmas, there is however another temperature called ion temperature. The elec-
tron and ion temperatures are not generally the same. The only established technique for
measuring the ion temperature is the Doppler broadening of a spectral line. However, the
Doppler broadening is often small compared to the stark broadening, and some independent
check must be made to determine which broadening mechanism is predominant before reliable
measurement may be obtained.

The rotational temperature obtained from molecular band spectra may also be used as
a measure of ion temperatures, but the technique is limited by molecular dissociation to

4
temperatures below about 10 °K.
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SECTION III

SALIENT SPECTROSCOPIC FEATURES

AND

DATA ON PLANETARY MOLECULES
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CHAPTER 9

SALIENT FEATURES OF THE SPECTRA

AND

SPECTROSCOPIC CONSTANTS OF PLANETARY MOLECULES

Spectroscopic investigations have so far confirmed the presence of twelve gaseous
molecules in the planetary atmosphere: six polyatomics, viz., Methane (CHiJ, Carbon dioxide
(C02), Ammonia (NH3), Water vapor (H20), Ozone (03), Nitrous oxide (N20); and six diatomics,
viz., Hydrogen (H2), Nitrogen (N2), Oxygen (02), Carbon monoxide (CO), Hydrogen chloride
(HC1), Hydrogen fluoride (HF). The presence of numerous other molecular constituents,
such as C2H2, C2H^, C2H6, C2N2, CH3NH2, S02, HCN, CH3C1, CH3F, CH20, COS, etc., has
been either postulated or is subject to further confirmation.

Salient features of the observed spectra and important spectroscopic constants for
the above mentioned well-established 1_2 molecules are presented in this chapter. Poly-
atomics are discussed first, since as a class they are known to have an overall higher
abundance in the complex of planetary atmospheres. All the molecules, 1n their own groups,
are also arranged in the order of their relative planetary abundance. Spectroscopic con-
stants of frequent use in aeronomical studies, such as dipole moment, ionization potential,
dissociation energy, ground state electron configuration, fundamental vibration frequencies,
and rotational constants in respect to each molecule are presented in the beginning of each
molecular discussion for ready reference. This is followed by a brief account of the
observed spectral features of the individual molecule. The diatomics N2, 02 and CO are
discussed only very briefly since there already exist reasonably extensive reviews covering
these molecules individually. An adequate bibliography is provided in each case.

POLYATOMICS

Methane (CHO

Dipole Moment, M: Zero, (.02 Debye in the v3 vibrational state)
Ionization Potential, I.P.: 12.99 eV

Dissociation Energy, D(CHs-H): 4.40 eV

Ground Electronic State Configuration: (la^2 (2a ])
2 (If2)6 - 1A]

Fundamental Vibration Frequencies: Vi v2 v3 - v,»

2916.7 1533.6 3018.9 1306.2
Rotational Constants: BQ r (H-H) r (C-H)

5.2412 cm"1 1.81A 1.11A
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Methane is perhaps the simplest and the most abundant stable aliphatic hydrocarbon

in nature. It is a colorless, odorless gas often resulting from the decomposition of

organic matter under water in marshes and stagnant pools. It burns with a faintly luminous

flame; forms an explosive mixture with air; and can be liquefied at -164°C and solidified

at -186°C. It happens to be a major constituent of natural gas too.

Methane molecule (CHi,) is a non-polar tetrahedral type spherical top five-atomic

molecule characterized by the T . point group symmetry. The four hydrogen atoms are known

to occupy the corners of a regular tetrahedron at whose center lies the carbon atom. The
o o

bond lengths r (C-H) and r(H-H) are 1.11A and 1.81A, respectively (Figure 9-1).
C C

H

Figure (9-1). Geometrical configuration of methane molecule.

Molecular Spectrum

The observed spectra of methane can be well classified into three broad categories:
(1) Electronic Spectrum, (2) Vibration-Rotation Spectrum, and (3) Rotational Spectrum.

Electronic Spectrum. - Methane exhibits a fairly widespread electronic spectrum that
o o

has an onset around 1600A and extends through 20A in the extreme vacuum ultraviolet. The
early spectrographic work on the ultraviolet absorption of methane is due to Leifson (1926);

Rose (1933); Duncan and Howe (1934), etc. Photoelectric measurements on the absorption

cross sections were made later by different workers in different frequency segments,
notably, Wilkinson and Johnston, 1950; Moe and Duncan, 1952; Watanabe, et al., 1953;

Ditchburn, 1955; Sun and Weissler, 1955; Wainfan et al., 1955; Schoen, 1962; Thompson
et al., 1963; Metzger and Cook, 1964; Rustgi, 1964; Lukirskii et al., 1964; Laufer and
McNesby, 1965.
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The observed spectra can be put in two broad spectral subdivisions:

(1) 1650-1000A
For the most part the optical absorption in this region of the spectrum is

characterized by almost a continuous band with superimposed banded structure

appearing in certain narrow regions. According to Uatanabe et al., (1953)
o o

there definitely exist at least two flat maximum (Am, ~1260A and 1190A) ando ffldX

a possible third maximum with Xm3U around 1075A. The continuum with
u ITlaX \

Am,« ~1260A is only a broad one with apparently no superimposed bandedmax
structure. Mulliken attributes this absorption to the electronic transition
I T o

1 "*" 2 ̂  "*" ^' ^e 9̂0A continuum is found to have several super-
imposed weak and diffuse bands with approximate wavelengths as 1178; 1190;

o
1201; 1207; 1218; 1230 (A). No proper analysis seems to have been proposed

so far for these bands. Regarding the third reported continuum with probable
o o

Xfflax ~1075A there exists no verification yet. In the region 1642-1606A,

Watanabe et al., 1953, reported about 11 bands, which are again weak and

diffuse. The wavenumbers for these bands are reported as 62260; 62970;

63530; 64180; 64810; 65360; 66010; 66620; 67200; 67800; 68400 (cm"1)- The

frequency interval of these bands is about 600 cnf , and their intensity

decreases as the region of continuous absorption is approached. Watanabe's

results are presented in Figure (9-2).

(2) 1000-20A

Absorption by CH4 molecules in this region is almost a smooth continuum
o

with Xm=u ~9300A. Absorption cross sections in these spectral limitsmax
have been studied by different workers in different wavelength segments:

Ditchburn (1955) [1500 - 400A]

Sun and Weissler (1955) [1300 - 400A]

Wainfan et al. (1955) [960 - 470A]

Schoen (1962) [1000 - 600A]
Metzger and Cook (1964) [1000 - 600A]
Rustgi (1964) [1000 - 170A]

Lukirskii et al. (1964) [250 - 20A]

An overall picture of the absorption cross section profile in the region
o

(1000-200A) is presented in Figure (9-3) which is according to Rustgi (1964),
whose results agree fairly well with those of others. Rustgi's data for

o
the region (500-170A) and the data of Lukirskii et al. for the region

o
(200-20A) - all data unconfirmed - is all that is available to date.
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Vibration-Rotation Spectrum. - Being a spherical top, the molecule of methane
possesses a high degree of molecular symmetry, which in turn creates a high degeneracy
in its vibration frequencies. Out of the (3 x 5 - 6)= 9 possible fundamentals, one is
two-fold degenerate and two are three-fold degenerate and consequently the molecule is
effectively left with only four fundamental frequencies, viz., Vi = 2916.7 cm" ,
v2 = 1533.6; v3 = 3018.9 cm and v.» = 1306.2 cm" . Vi is fully symmetric; v2 is two-
fold degenerate and the others, v3 and v^, are each three-fold degenerate. Further, the
frequencies Vj and \>2 are infrared inactive; thus, as regards the fundamentals, only v3
and vi, show up in the absorption spectrum. All of the four frequencies are, however,
Raman active. It may, however, be noted that, since 2v2 - Vi = v3, there exist numerous
possibilities for mutual interaction both by Fermi resonance and Coriolis effect.

(1) Overtones and Combination Frequencies
A large number of overtone and combination bands of methane have been
identified in the visible and infrared region and, from the viewpoint of
planetary spectra, these are quite important. A number of bands in the
spectra of giant planets, viz., Jupiter, Saturn, Uranus and Neptune have
been positively identified as CH., bands. In the laboratory, these have been
observed using thick absorbing layers of methane gas (Wildt, 1932; Mecke,
1933; Dunham, 1933; Adel and Slipher, 1939). Data on numerous harmoni_cs
and combination bands that have been identified in the laboratory spectra
are given in Table (9-1). Quite a few of these bands have also been
observed in the solar spectra (see Table 9-II). Photographic records and
numerical data on the rotational structures of many of the CHi, bands that
lie in the region 2.8 to 8.9p are given in the atlas of Migeotte, Neven
and Swensson (1958). High resolution studies of many of the vibration-
rotation bands of CHi, have been reported by Boyd, Thompson and Williams
(1952); Margolis and Fox (1968); Bregier and Hi lice (1970); Henry, Husson,
Andin and Valentin (1970); Husson and Dang Nhy (1971), Hunson and Poissique
(1971); Botineau (1972). It may, however, be remarked that correct assign-
ments of the higher overtone and combination bands are rather uncertain
for several reasons (Herzberg, 1945):
(a) Because of the anharmonicity, the overtones of the triply degenerate

infrared vibration split into a number of subbands.
(b) Since Vi = v2 = v3, the combinations (nvi + mv3), (2kv2 + m\>3) are

close to (n + m) v3 and (k + m) v3, respectively. They too are split
into subbands.

(c) Perturbations between the sublevels of (a) and (b) bring about further
deviations from the simple quadratic formula.

(d) Band centers are often very ill-defined because of overlappings.
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TABLE 9-1 FREQUENCIES OF THE INFRARED-VIBRATION-ROTATION BANDS OF METHANE

v(cm ) Assignment Intensity v(cm ) Assignment Intensity

1720

2600

2823

4123

4216.3

4313.2

4546

5585

5775

5861

6006

7514

8421

8604

V2 - V3

2v»

V2 + V»

V2 + 2V»

V! + V,,

V2 + V3

V3 + Vt

Vj + V2 + \>»

Vi + \>3 t V4

2v3

V2 + 2V3

2v3 + 2vn

8807 2vi + V3

8900 vi + 2v3

9047 3v3

10114

10300

11270

11620

11885

2v + v

Vl + V2

V2 + 2\1)

3vj t v3

1

vi + 3v3

4v3

12755 j * "* v '
\ 2

VS i

REMARKS

s = strong
w = weak
m = medium
vs = very strong
vw = very weak

13790

vs

s

s

s

s

3\>i + 2v3

TABLE 9-11 METHANE BANDS IN THE SOLAR SPECTRUM

Band
-1

cm

6005

5861

5775

4420

4313

4216

4123

3019

3823

2660

1306

Center

f

1.67

1.71

1.73

2.20

2.32

2.37

2.43

3.31

3.55

3.85

7.66

Transition

0000-0020

0000-1101

0000-0111

0000-0110

0000-0011

0000-1001

0000-0102

0000-0010

0000-0101

0000-0002

0000-0001

Molecular Strength of
Band under Standard
Conditions, cm

n-203.6.10 (1)

"1.26.10"'7 (2)

1.04.10"17 (3)

6.9.10',-13 (2)

(1) Goldberg, L.; Mohler, 0. C.; and Donovan, R. E. (1952).

(2) Burch, D. E. and Williams, D. (1960).

(3) Thorndike, A. M. (1947).
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Clements and Stoicheff (1970) investigated the Q-branch of vi Raman band at

2917 cm" using a pressure scanned Fabry-Perot interferometer and a 400 mW .

He - Ne laser. The relative positions and intensities of the Q-branch lines

were computed and the calculated band profile was shown to fit fairly well with

the observed frequencies.

Rotational Spectrum. - Although CHi, is a nonpolar molecule, it has been found that

the molecule possesses a very small permanent dipole moment in the degenerate vibrational

state, v3s which is of the order of 0.02 Debye (Mizushima and Venkateswarlu,. 1953; Uchara,

Sakurai and Shimoda, 1969; Luntz and Brewer, 1971).

Curl, and Oka (1973) observed a rotational transition of CH,, in the v3 state caused

by the small vibrational induced dipole moment. The rotational transition which corre-

sponds to a frequency 6900 MHz, occurs between two components of the 6^ levels which are

split by vibration-rotation interaction. This is a very weak transition (calculated

absorption coefficient being of the order of 6 x 10 cm ) and conventional microwave

absorption spectroscopy is unable to cope with it. Curl and Oka (1973) detected this

transition in their microwave-infrared double resonance experiment using a 3.39pm He Ne

laser cavity.

Curl (1973) also observed the F2(2) «- F ] (2) and F2(2) <- F^l) transitions of the

J = 7 level of the ground state of methane using the above technique. For details,

original papers by these authors may be referred.

Carbon Dioxide (C02)

Dipole Moment, M: Zero

lonization Potential, I. P.: 13.769 eV

Dissociation Energy, D(CO-O): 5.453 eV . .

Ground Electronic State Configuration: (3a )2(2au)2(4ag)2T3au)2(lTru)4(liTg)4 ^

Fundamental Vibration Frequencies: Vi v2 \>3 .

1388.2 667.4 2349.2 (cm"1)

1285.5*

Rotational Constants: B r (C-0)

0.3902 cm"1 1.162A . . .-.

Carbon dioxide is a colorless gas with a pungent odor and acid taste. It may be
liquefied at any temperature between its triple point (-70°F) and critical point (87.8°F)
by appropriate compression.. C02 does not support combustion but it plays a very vital
role in plant growth through photosynthesis.

* Fermi resonance between vi and 2v2
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Carbon dioxide (C02) is a symmetrical, linear, triatomic molecule belonging to the
Dooh point group symmetry. The geometrical configuration of the molecule is illustrated
in Figure 9-4.

) re (C-0)

Figure (9-4). Geometrical configuration of the carbon dioxide molecule.

Out of the (3 x 3 - 5) = 4 expected fundamental frequencies, spectroscopically we get

only three, the deformation frequency (v2) is two-fold degenerate. Further, of the three

frequencies, viz., \>i, v2 and v3, it is only the latter two which are infrared active.

On account of symmetry considerations, the mode V! involves no change in dipole moment and

hence under normal conditions, this frequency does not show up in the infrared spectrum.

Carbon dioxide is known to exist in the following principal isotopic forms: C1202
16 ,

C1302
16 , C12016017, C12016018. The species C1 202

1 6 is the most abundant in Earth's

atmosphere, the other three isotopic forms, v.iz., C1 302
1 6 , C12016017 , C1 201 601 8 constitute

only 1.108, 0.0646 and 0.4078 per cent of the total C02 concentration..

Molecular Spectrum

The observed spectra of carbon dioxide can be described in the following two

categories: (1) Electronic Spectrum, and (2) Vibration-Rotation Spectrum. On account of

symmetry considerations, C02 does not normally exhibit any pure rotational spectrum.
Electronic Spectrum. - Carbon dioxide gas is known to possess a widespread absorption

o
spectrum, ranging from about 2000A in the extreme vacuum ultraviolet. It does not show
any significant optical absorption in the visible or near ultraviolet and is therefore
almost transparent to these wavelengths. Electronic absorption spectrum of C02 has been
extensively studied both through spectrographic methods as well as absorption cross
section measurements (Lyman, 1908; Leifson, 1926; Henning, 1932; Rathenau, 1932; Price
and Simpson, 1938; Preston, 1940; Wilkinson and Johnston, 1950; Inn, Watanabe and
Zelikoff, 1953; Sun and Weissler, Samson, Ogawa and Cook, 1959; Tanaka and Ogawa, 1962;
Schoen, Judge and Weissler, 1962; Dixon, 1963; Judge, Morse and .Weissler, 1964; Nakata,
Watanabe and Matsunaga, 1965; Cairns and Samson, 1965 and 1966; Cook, Metzger and Ogawa,

1966; Belozerova, 1967; McCulloh, 1973). For the convenience of discussion, the observed
spectra can be divided in the following wavelength segments, according to Herzberg, 1966.

126



(1) A <- )T (1750-1 400A) Absorption; (3800-3100A) Emission

These bands are fairly well studied (Price and Simpson, 1939; Inn, Watanabe

and Zelikoff, 1953; Dixon, 1963; and Nakata, Watanabe and Matsunaga, 1965).

The spectrum consists of a number of weak and diffuse bands overlapping a
o

broad continuum with Amau ~ 1450A. The intensities and the spacings between
max

the bands are quite irregular. The upper state A of this electronic transition
most probably conforms to the electron configuration ITT a~ bg a-, - - ( 62)
which represents a bent molecule with an apical angle equal to 122° ± 2°
and r =* 1.246A.

0 o
(2) B - X (1390-1220A)

This part of the spectrum has also been investigated by Price and Simpson

(1939); Inn, Watanabe and Zelikoff (1953); Dixon (1963); and Nakata et al.

(1965). It consists of numerous fairly sharp bands superimposed upon a con-
o

tinuum with A ~ 1332A. This continuum is somewhat more intense than the

one at 1450A and the bands are also more intense, less diffuse, and more
regularly spaced than the 1450A band. There exist perhaps two progressions

in the frequency 1228 cm" . The state, B,
represented by the electron configurations:
in the frequency 1228 cm" . The state, B, may be a two-state ensemble

These bands therefore might be the outcome of two different electronic

transitions and thus possibly represent band systems with T values as

73100 cm"1 and 72480 cm"1 respectively.

(3) C - X (11 70-11 30A)

Besides the early studies of Rathenau (1934), these bands have been quite

thoroughly investigated by Tanaka, Jursa and LeBlanc (1960). The bands

are grouped together in two progressions - one weak and another strong.

The strong progression corresponds to the frequency difference 1270 cm"

and the weaker one to the frequency difference 1165 cm" . The corresponding

T values are reported as 85160 cm and 85840 cm" respectively.

(4) ff*- 7 (11 29-11 22A)
(5) £<-* (1070-1010A)

(6) ?'-<-'X (1035-969A)

(7) SV X" (-1007A)

(8) ff̂ )T(~994A)

(9) T + X (~ 991A)
Rathenau (1934) and later Tanaka, Jursa and LeBlanc (1960) studied this

absorption in detail. It consists of a host of strong bands which have
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been classified into a number of Rydberg series leading to the first ioniza-

tion limit of C02. Tanaka et al . grouped these bands in five Rydberg series,

viz., (a) two main series (I, II), (b) two minor series (III, IV), (c) one

vibration series (V), and (d) three independent transitions.

(a) Main Series I and II; 3" «- X* (1129-1122A)
Bands of these series are quite strong and degraded to the violet. The

formulae representing these bands are as follows (Herzberg, 1966).

v(I) = 111240 - R/(n-0.65)2; n = 3, 4, 5, --- 15

v(II) = 111060 - R/(n-0.65)2; n = 3, 4, 5, --- 15

According to Tanaka, et al. (1960) these two series are represented by

v(I) = 111240 - R/(n + 0.35)2; n = 2, 3, 4 ---

v(II) = 111060 - R/(n + 0.35)2; n = 2, 3 ----- 11

The separation of about 180 cm in the T values of these series is
-1ascribed to the doublet separation of about 160 cm in the case of

the ground state of C02 (
2n ).

(b) Minor Series III and IV; ? <- "x (1070-1 01 OA)

The bands that fit into these series are not so strong and according to
Herzberg (1966), the representative formulae are

v(III) = 111250 - [R/(n - 0.57)2]; n = 3, 4, --- 11

v(IV) = 111250 - [R/(n - 0.97)2]; n = 4, 5, - - - 11

Tanaka et al (1960) gave the following formulae for these serie.s

v(III) = 111250 - [R/(n + 0.43)2]; n = 2, 4, 5 --- 10

v(IV) = 111250 - [R/(n + 0.43)2]; n = 3, ..... ,10

(c) Vibration Series; F" <- )T (1035-969A)
There exists another series of bands representable by the following

formula

v(V) = 112510 - [R/(n + 0.30)2]; n = 4, 5, 6 ---

Tanaka et al . (1960) called it a "Vibration Series" as it corresponds
to the first AG in the ground state of CO^. .

(d) Independent Transitions; of «- )T (~ 1007A); HI «- JT (-994A); T '«- Y (-991A)

Tanaka et'al. (1960) have mentioned three more transitions, G •*- X,
O

H t- X, and I -<- X, with centers approximately at 1007,. 994 and 991A,

respectively. No more details are available on these transitions.
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(10) t *• 5T (787-712A)

(11) M «- 7 (787-758A)
(12) ?+- X (752A)

(13) R ̂ "X (765A)

(14) P\ «- >T (146490 cm"1)

(15) P~2 «- X~ (147280 cm"
1)

(16) F3 «- 7 (149500 cm"
1)

Absorption in this wavelength region has been investigated by Henning, 1932;
Tanaka, Jursa and LeBlanc, 1960; Tanaka and Ogawa, 1962; Nakata et al., 1965;

and Cook, Metzger and Ogawa, 1966. Two Rydberg series converging to the 2Z

state of C02 and three Rydberg series converging to the
 2Z state of C02 have

been identified. The five series are classified as series I to V. The

formulae representing these are given below (Ogawa et al., 1962).

[R - X]; \>(l) = 145800 - [R/(n + 0.068 + 3.25/n3)2]; n = 3 - - 18

[S - X]; v(II) = 145800 - [R/(n - 0.305)2]; n = 3 18

[Pi - X]; v(III) = 156390 - [R/(n - 0.29)2]; n = 3 8

[P2 - X]; v(IV) = 156390 - [R/(n + 0.44)2]; n = 2 8

[P3 - X]; v(V) = 156390 = [R/(n - 0.05)2]; n = 4 8

The first two series correspond to the second ionization potential of C02
and the last three series, most probably, correspond to the third ionization

stage. In addition to these five series, Ogawa et al. (1962) identified

two more Rydberg series which are represented by the following formulae.

[L - X]; v = 139726 - [R/(n - .063 - 0069/n)2]; n = 3 10

[M - X]; v = 139634 - [R/(n - .044 - 0.34/n)2]; n = 4 9

While the first series is composed of six members lying in the region (787-
o . . o

712A), the second series lies in the region (784-758A) and only five members

of ft are known so far. Both of the series converge to the 2II state of
I . . U

C02; L - X to the
 2Hi/2 component, and M - X to the

 2n3/2 component.

(17) 600-200A
C02 absorption in this region has been investigated by Astoin, Sanson and

Bonne-lie (1960). Three distinct continua having X at about 570, 350 ando • '• max
280A have been identified. These have been ascribed to the different
dissociative ionization processes. For want of reliable data, nothing

specific can be said about the nature of these transitions.

Figure (9-5) presents a schematic showing various electronic states which are involved

in the various known transitions. Figure (9-6) presents the energy level diagram of cot
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including the Rydberg levels of C02. Absorption cross section measurements on gaseous
carbon dioxide as made by Inn et al., 1953; and Nakata et al.; are also presented in
Figures (9-7a, b, c), (9-8a, b), (9-9a, b) and (9-10a, b), respectively.

lO-'cm"1

150

100

50

0 "—

CO,

BYu

A2n

Figure (9-5). Schematic showing relative disposition of the various electronic
states of C02. [According to Herzberg (1966)]
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Vibration-Rotation Spectrum. - The vibration-rotation spectrum of carbon dioxide has

been the subject of numerous investigations since the beginning of infrared spectroscopy.

The early work up to 1945 is reviewed by Herzberg (1945). Important references that

cover the later work on the subject are: Kaplan, 1947; Kaplan, 1950; Jones and Bell,

1950; Benedict and Silverman, 1952; Goldberg, 1954; Mohler, 1955; France and Dickey, 1955;

jRossman, Rao and Nielson, 1956; Migeotte et al., 1956; France, Rao and Nielson, 1956;

Kaplan and Eggers, 1956; Madden, 1957; Courtoy, 1957; Kostkowsky and Kaplan, 1957;

Yamamoto and Sasamori, 1958; Burch et al., 1960; Edwards, 1960; Madden, 1961; Plyler,

Tidwell and Benedict, 1962; Maki, Plyler and Thibault, 1963; Gordon and McCubbin, 1965

and 1966; Burch, Gryvnak and Patty, 1968; Yamamoto, Tanaka and Aoki, 1969; Gordon and

McCubbin, 1971; Korb, Stafwik, Hunt and Plyler, 1971; Val , 1971; Burch and Gryvnak, 1971;

McCubbin et al., 1974, besides many others.

Of the three fundamentals (vi,v2,v3) for the C02 molecule, only the latter two, i.e.,

v2 and v3, are infrared active. The infrared spectrum of carbon dioxide is thus composed

of two main strong bands. The band corresponding to v2 (667 cm" ) is located around 15y

and the other that corresponds to v3 (2349 cm"1) lies at 4.3y (C 1 2 0£ 6 ) . The 15y band

shows a strong Q-branch while the band at 4.3y does not.

The fundamental frequency vi is Raman active and shows up strongly in the vibrational

Raman spectrum. However, when we examine the Raman spectrum of C02 for the V! Raman

displacements 1285.8 cm and 1388.4 cm" . The mean of these frequencies (~1337 cm" ) is

almost equal to 2v2. This doubling was first explained by Fermi (1931) as due to resonance

phenomenon occurring between Vi and 2v2. This results in a mutual sharing of the wave

functions of the two states and hence in the appearance of two bands instead of one. The

resonance interaction between vibrational levels corresponding to different fundamentals

in polyatomics is known as Fermi Resonance, which also manifests as displacement of many

combinational bands in C02 from their normal positions.

(1) The 15y Band

The v2 fundamental is located at 15y.~ It is accompanied by about 15 over-
. tone and combinational bands occupying a wide spectral range from 12 to 20y

approximately. The total intensity of these additional bands has been
estimated at about 10% of the intensity of the fundamental. This whole set
of bands around 15y is frequently called the C02 - 15y band. In the

vicinity of the central part of this band (13.5 - 16.5y), atmospheric C02
absorbs the entire solar radiation of these wavelengths and that is why

the 15y C02 band is of significant importance in atmospheric physics.
These bands are listed in Table (9-III).

(2) The 4.3y Band •-'••

The v3 fundamental centers around 4.3y. It is almost overlapped by two
other bands, viz., the v3 fundamental of C1302

6 (2483.48 cm"1) and the
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TABLE 9-1II C02 BANDS IN THE 15y REGION

Isotope

C 1 20 1 60 1 6

C 1 20 1 80 1 6

C 1 20 1 60 1 6

Transition

OoVoi'O

ooVoi'o
ooVoi'o
0110-02°0

0110-10°0

Ol'0-0220

loVos'o
loVn'o
0220-0310

O22o-n1o
0220-0330

02°0-0310

0330-0420

0330-1220

0310-1220

0310-12°0

04"0-1330

Band Center
cm" y

667

648

662

618

720

667

647

791

597

741

668

544

581

756

828

740

769

.40

.52

.39

.03

.83

.76

.02

.48

.29

.75

.3

.26

.2

.75

.18

.5

.5

15.

15.

. 15.

16.

13.

15.

15.

12.

16.

13.

, 15.

18.

17.

13.
12.

13.

13.

0

4

1

2

9

0

5

6

7

5

0

4

2

2

1

5

0

E"
cm"1

0.

0.

0.
667.

667.

667.

Molecular
Strength of
Band at
cm

0

0

0

4

4

4

1285.43
1285.

1335.

1335.

1335.

1388.

2003.
2003.
1932.

1932.

2674.

43

16

16

16

19

28

28
45

45

76

7.

7.

3.

1.

2,

6

4,

8,

5,

5,

3.

1,

1.
2

1.

5,

1,

,89

.9.

,7.

,75

.3.

.2.

.2.

.2.

.83

.2.

.2.

.64

.56

.2.

.8.

.2.

.5.

-18
.10 '

10~20

10~2°
-1Q.10 Iy

10"19
10

10 Iy
-1910 Iy

TO"20

.10"22

10"21

10"21

.10"2Q

.10"22

10~22

TO"22

TO"22

10"23

combinational band vi + v3 - 2v2 of C 1 20^ 6 (2429.37 cm"1). All the three bandsx

are parallel and consequently exhibit no Q branch. The cumulative strength of

this 4.3y band is so high that up to 20 km altitudes, the solar radiation in

the range 4.2 - 4.4y is totally absorbed by the vertical layer of the atmosphere.

(3) Weaker Bands

Besides the two strong bands at 15y and 4.3y, the infrared absorption of C02

shows quite.a few relatively weak bands whose centers lie at 104y,'9.4y, 5.2y,

4.8y, 2.7y, 2.0y, 1.6y, and 1.4y. A number of still weaker bands also appear

in the region (1.24 and .78y) particularly in long path infrared absorption

of C02 (Herzberg and Herzberg, 1953). Recently, McCubbin, Pliva, Pulfrey,

Telfain and Todd (1974) obtained extensive data on the emission spectrum of
12C02

6 from 4.2 to 4.7y. Electrical excitation of the C02 emission spectrum

in a COa - N2 - He mixture made possible the observation of the bands in the

00v3 -*• 00 (v3 - 1) sequence to v3 = 4 as well as some other bands. The two

parallel bands in the lOy region (10.4y and 9.4y) have frequencies 1063.8 cm"

(020 - 001 transition) and 961.0 cm (100 - 001 transition) respectively.

Absorption in the regions 1.4, 1.6, 2.0, 2.7, 5.2 and 4.8y region is due to

the bands as detailed in table (9-IV, 9-V, and 9-VI). Herzberg's photographic

infrared bands are listed in table (9-VII).

-1
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TABLE 9-IV C02 ABSORPTION BAND NEAR 2.0, 1.6 AND 1.4y

Band

y

2.0

1.6

_

Isotope

C12016

C120l6

C1202
6

C120l6

C1202-6

C120l6

C130l6

C130l6

C130i6

C12016018

C12016018

C12016018

. C12016

C120l6

C120^6

C120^6

Transition

00°0-04°1

00°0-12°1

00°0-20°1

Ol'O-OS'O

OO'O-IS1!

0010-2111

00° 0-04° 1

00°0-12°1

00°0-20°1

00°0-04°1

00°0-12°1

00°0-20°1

00°0-06°1

00°0-14°1

00°0-22°1

00°0-20°1

Band
i

cm"1

5100
4978

4853

5132

4965

4808

5046

4887

4748

5042

4905

4791

6503

6350

6228

6076

Center

y
1.96

2.00

2.06

1.94

2.01

2.07

1.98

2.04

2.10

1.98

2.03

2.08

1.53

1.57

1.60

1.64

E"
1

cm.

0
0
0

667.40

667.40

667.40

0

0

0

0

0

0

0

0

0

0

Molecular
Strength of
Band at

259°K, cm

1.6.10-20

3.7.10-20

i.o.io-20
-
-
-

1.8.10"22

4.1.10"22

1.1. ID'22

7.10-23

1.5.10-23

4.10-23

_

_

2.9.10'22_

1.4 00°0-00°3 6973 1.43
-

8.6.10

TABLE 9-V C02 ABSORPTION BAND NEAR 2.7y

Band

y
2.7

Isotope

C120l6

C130l6

Transition

000-02 1

000-101

Ol'O-OS'O

000-02° 1

000-101

Ol'O-OS1!

Band Center

cm" y

3613.03

3714.56

3580.81

3723.05

3527.70

3632.92

3498.72

2.76

2.69

2.79

2.68

2.83

2.75

2.85

E"
cm'1

0

0

667.40

667.40

.0
0

667.40

Molecular
Strength of
Band at

259°K, cm

1.0. 10"18

(1.4xlO"18)

1.3.10"18

(2.10"18)

-

1.1. ID'20

1.4.10"20_
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TABLE 9-VI 5.2 AND 4.8v ABSORPTION BANDS OF C02

Band

u

5.2

4.8

Band Center

Isotope

C120l6

C130l6

C120|6

C12Q16

Q12Q16

Transition

000-03 1Q

000-11 *0

000-11*0
0110-1220

01rO-200

cm'1

1932.45

2037.08

2076.86

2093.35

2129.79

y

5.17

4.90

4.81

4.77

4.69

E"

cm'1 -

0

0

0

667.40

667.40

Molecular
Strength of
Band at
259°K, cm.

2.4.10'21

4.0.10"22

3.2.10-20

2.0.10'21
-??

8.0.10 "

TABLE g.-vn PHOTOGRAPHIC INFRARED BANDS-OF co.

A

12334.2

12262.5

12177.3

12054.9

12030.4

10626.7

10487.6

10361.7

8688.7

8735.9

7882.8

7820.1

7158.2

-I
cm

8105.3

8152.7

8209.7

8293.0

8309.9

9407.6

9532.3

9648.2

11505.9

11443.8

12682.3

12784.0

13966

Intensity

2

8

100

8

100

4

20

8

1

0.05

.1

.3

.02

Band Heads

Assignments

2v2 + 3v3
3v2 + 3v3 - v2
2v2 + 3v3
vi + v2 + 3vi - v2
Vi + 3v2

3v34v2
Vi + 2v2
2vi + 3v3
5v3
v2 + 5va

2v2 + 5v3

3v3
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Ammonia (NH3)
;Dipole Moment, M: 1.44 Debye

lonization Potential, I. P.: 10.166 eV

Dissociation Energy, D(NH2-H): 4.3 eV

Ground Electronic State Configuration:
Fundamental Vibration Frequencies:*

Rotational Constants: B
"1

- A

Vl
3337.2

3336.2

_ 1

V2

968.3

932.5

r.(N-H)
1 u o

V3

3443.9

3443.6

r (H-H) a(HNH)
_ . _ o

9.9443cm"1 6.196cm"1 1.0173A 1.631& 107.8°

1627.4 , -1,(cm ')
1626.1 !

Ammonia is a colorless gas at ordinary pressures. It is lighter than air and

possesses a pungent odor. It is fairly stable at ordinary temperatures and decomposes
into nitrogen and hydrogen at 450°C under atmospheric pressure. On compressing and
cooling, it condenses to a liquid about 60% as heavy as water.

The molecule of ammonia (NH3) is a symmetric top type tetratomic molecule. It is
characterized by the symmetry group C~ in its ground electronic state but in excited

states, the symmetry configuration of the molecule changes and conforms to the point

group D3h.
The geometric configuration of the ammonia molecule is pyramidal, in which the nitro-

gen atom lies at the apex and each of the three remaining corners of the pyramid is
occupied by an atom of hydrogen. It is illustrated in the figure (9-11) given below.

Figure (9-11). Geometrical configuration of the ammonia molecule.

*Double values correspond to the inversion components,
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The apical angle a is known to be about 107° and the bond lengths N-H and H-H as
o o o

nearly 1A and 1.6A, respectively. The vertical height of the pyramid is about 0.38A.
Ammonia occurs mainly in two isotopic forms, NH3 and ND3.

Molecular Spectrum

The observed spectra of gaseous ammonia can be described under the following three

categories: (1) Electronic Spectrum, (2) Vibration-rotation Spectrum, and (3) Microwave

Spectrum.

Electronic Spectrum. - Ammonia is almost transparent to the visible and near ultra-
violet radiation. The characteristic optical absorption has been observed with an onset

o o o
around 2400A down through 370A in the vacuum ultraviolet. The spectral region (2400-1000A)

o o
is full of band structure and the region below 1000A, i.e., 1000-370A is occupied by
almost a continuum. All these features have been extensively studied by many workers in
the past. (Leifson, 1926; Dixon, 1933; Duncan, 1935; Duncan, 1936; Duncan and Harrison,

1936; Thompson and Duncan, 1953; Watanabe, Zelikoff and Inn, 1953; Tennenbaum, Coffin
and Harrison, 1953; Thompson and Duncan, 1946 and 1953; Watanabe, 1954; Sun and Weissler,

1955; Walker and Weissler, 1955; Sun and Weissler, 1955; Watanabe and Mottl, 1957; Walsh

and Warsop, 1961; Douglas and Hollas, 1961; Thompson, Harteck and Reeves, 1963; Metzger

and Cook, 1964; Douglas, 1963; Watanabe and Soodi 1965; DeReilhac and Damany, 1970.)

A summary of various known electronic band systems is presented below.

(1) A - 7 Bands (2170-1700A) []A£ - ^j
These bands of ammonia were first observed by Leifson (1926) who obtained a

o
long progression of diffuse bands in the spectral region 2168-1700A. Dixon

O

(1933) reported a few additional bands of this group up to 2431A. Later,

Duncan (1935) and recently Walsh and Warsop (1961) obtained detailed vibrational

analysis of these bands based on high resolution spectra. Corresponding

bands for the isotopic molecule ND3 were studied by Benedict (1935), Duncan

(1935), Walsh and Warsop (1961) and Douglas (1963). According to Walsh

and Warsop (1961), frequencies of the Q-heads of the main progression of

these bands in the case of NH3 can be represented by the following relation:

VA_X = 46136 + 874 vj + 4.0 (v^)2

The frequency 874 cm is interpreted as that of bending vibration v2 in the

upper state and the progression of the bands arises from excitation of the

out-of-plane vibration ^2. A similar conclusion has been drawn on the basis

of the rotational analysis of some of the bands in the corresponding system of

ND3 (Benedict, 1935; Douglas, 1963). In the case of NH3, the bands are too
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diffuse to show any measurable rotational structure. Table (9-VIII) provides
band data on this system (Walsh and Warsop, 1961).

(2) B - X Bands (1690-1400A) [V - ]Aj]
This is a weak system, consisting of a long progression of fairly sharp bands

o
occupying the spectral region 1690-1400A. Besides the early work on this
part of the spectrum by Duncan (1935) and Duncan and Harrison (1936), lately,
Walsh and Warsop (1961), Douglas and Hollas (1961) and Douglas (1963) investi-
gated this system under high resolution conditions. According to Douglas, who
obtained a complete rotational analysis of a number of these bands, these are
the perpendicular bands and the upper electronic state in the transition is
a V state of the planar molecule NH3. The band origins in this progression
can be represented by the following relation:

VB_X = 59225.5 + 880.60 v£

+ 18.437 (v£)2 - .71863 (v£)3

Vibrational analysis of these bands further shows that the vibronic levels

of the upper state are degenerate and this degeneracy, most probably, is

electronic as is supported by the observation of a Zeeman effect with a g-

value of 0.6. Table (9-IX) provides data on these bands.

(3) (T- X Bands (1570-1480A) [ ] Aj - ^1

This is a progression of relatively weak bands which lie in almost the same
spectral region as the stronger bands belonging to the system B - X. Some
of these bands, particularly on the long wavelength end, are almost coincident
with the £ - )? bands. These bands exhibit a fairly well-resolved rotational
structure and the rotational analysis of quite a few of them has shown that

they are parallel bands. It may be pointed out that though the line width
in these bands is considerably greater than that of the B - X bands, the
analysis has been quite satisfactory. The corresponding bands in the case
of ND3 have been reported by Douglas (1963). The assignment of the state, C
as A , having an electron configuration (le1) (la^) (3pap as discussed
by Douglas (1963) is however not certain. It is possible that these bands
represent a forbidden component of the B - X system made possible by vibronic
interaction.

(4) Q - 5f, t - X, ? - X Bands (1435-1220A)
'It was Duncan (1935) who first observed strong characteristic bands of NH3

o
in the region (1433-1248A). Later, Walsh and Warsop (1961) studied these
bands extensively and grouped the observed bands into three distinct, though

o

partially overlapping, progressions in the region 1450rl220A. The three
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TABLE (9-VIII) FREQUENCIES OF THE BANDS IN THE 2168A ELECTRONIC TRANSITION

Walsh and Warsop (1961)

V

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Observed

Duncan
heads band centre

cm cm

46,126
46,164*

46,202

47,010 4?>040/

47,069

47,914. 47,939*

47,962

48,803 .ft me*
'48,868 48,836*

49,712.

50,663

51 ,555

52,501

53,444

54,411

55,341

56,287

57,272

58,225

59 ,209

Frequencies

Walsh
heads

cm"

46,130

46,231

47,002

47,104

47,903

47,988

and Warsop
band centre

cm'1

46,181*

47,053*

47,946*

48,842

49,735

50,659

51,550

52,504

53,430

44,388

55,324

56,297

57,244

58,170

59,196

Calc.
Frequencies

cm'1

46,180

47,059

47,946

48,841

49 ,744

50,655

51 ,57.4

52,501

53,436

54,379

55,330

56,289

57,256

58,231

59,214

*mean of heads.
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TABLE (9-IX) FREQUENCIES OF THE Q HEADS OF THE BANDS IN THE 1665A ELECTRONIC TRANSITION

(Walsh and Warsop, 1961)

Observed Frequencies

V

1
2
3
4

5

6

7

8

9

10
11

12

(Duncan)

cm'1

60,136

61,069

62,026

63,024

64,017

65,025

66,042

67,091

68,140

69,192

70,248

71,316

(Douglas)

cm'1

60,066

61,019

61,991

62,971

63,972

64,981

66,001

67,045

68,083

69,145

70,230

calc.
Frequency

cm"1

60,064

61,021

61,991

62,974

63,970

64,980

66,001

67,039

68,088

69,150
70,226

vobs

cm'1

2

-2

0

-3

2

1

0

6

-5

-5

4

' vcalc.

progressions correspond to three different electronic states D, E and f",

each coupled to the ground state X. These are discussed below.

(a) D" - 7 (1435-1270A) [^ - 1A]]; or 1440A Progression

The Q heads for cf - )T bands cati be represented by the relation:

VD_X = 69731 + 901.6 (v1)2 + 10.04 (v1)2

(b) T - I (1330-1270A) []A, - V]; or 1330A Progression
o f- I

At 1330A there begins a progression of bands which overlaps some of
o

the bands in the 1440A progression. These bands are quite sharp and

their intensity increases as one moves towards shorter wavelengths as
o

distinguished from the R-branches of the 1440A bands which are diffuse
and decrease in intensity towards shorter wavelengths. The observed fre-
quencies of this progression can be expressed by the relation:

V_ = 75205 + 917 v1 + 10.0 (v')2
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(c) F- Y (1290-1220A); or 1286A Progression
The bands of this progression overlap the Q branches of some of the bands

o
of the 1440A progression. The two progressions can be distinguished by
their intensities and their slightly different vibrational frequencies.

o - -
The first observed band is at 1286A. The bands observed are the strongest
bands of the progression, the weaker ones being obscured.

e o o
The Q heads of the 0000 <- 0000 bands of the 1286A, 1434A and 1330A progressions

can be arranged in a Rydberg series, as follows:

v = 82150 - 7 , n = 3, 4, 5
(n - 1.02r

The ionization potential obtained using this formula agrees very well with

the photoionization value 10.15 eV. Table (9-X) provides data on these

transitions.(Walsh and Warsop, 1961).

(5) 6 - X Bands (1210-1150A)
o o

Duncan (1935) observed a progression of bands running from 1207A to 1164A, i.e.,
o

at wavelengths below 1220A that correspond to the first ionization potential.
Walsh and Warsop (1961) could not identify these bands but Watanabe (1954),
Watanabe and Mottl (1957) did find banded structure in the continuum beyond
the first ionization potential. Absorption cross sections of gaseous ammonia

o

have been measured by Watanabe (1954) in the region (2200-1050A). Sun and
Weissler (1955) and later Metzger and Cook (1964) measured the absorption

0

coefficients in the region 1300-374A. Recently, DeReilhac and Damany (1970)
W-

made measurements in the region 500-100A. These results are presented in

figures (9-12), (9-13), (9-14) and (9-15). Figure (9-16) presents a

schematic showing a few known potential energy curves of ammonia molecule

and figure (9-17) depicts the known transitions.
Vibration-Rotation Spectrum. - Vibration-rotation spectra of NH3 and its various

isotopic forms have been the subject of numerous detailed investigations in the past.

(Benedict, 1935; McCubbin, 1952; Hansler and Oetjen, 1953; Benedict and Plyler, 1956;

Benedict, Plyler and Tidwell, 1958; Curing, Nielsen and Rao, 1959; Benedict, Plyler and

Tidwell, 1960; Rao, Brim, Hoffman, Jones and Mellowell, 1961; Jones, Brim and Rao, 1963;

Rao, 1964; Walsh, 1969; Shimizu and Shimizu, 1970; McBridge and Nicholls, 1963.)

In addition to the four fundamental frequencies,. which are,all infrared active, the

vibration-rotation spectrum of NH3 exhibits quite a large number of overtone and combina-

tional bands. The series of bands with frequencies Vi, 2vi, 3vi, 4vi, 5vi, and 6vi is

very prominent. Further, since v3 is very close to Vi, the bands (vi + v3) and 2v3 over-

lap 2vi; 2vi + v3, vi + 2v3; 3v3 overlap 2vi and so on. While the overtones Vi, 2vi, 2v2,

etc., are parallel in character, the bands overlapping them are usually perpendicular or
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TABLE (9-X) WAVENUMBERS-OF THE BAND PROGRESSIONS 1440A, 1330A, 1286A AND 1266A

n1

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8 .

9

Walsh

69758

70644

71569

72516

73498

74497

75508

76545

77590

78649

Duncan

80618

81597

82606

83600

84749

85769

86839

1440A Transition

Watanabe and

69579

70637

71562

72516

73486

74488

75500

76540

77574

78640

79713

80769

0

1286A Transition

Watanabe and

(77715)

(78645)

(79600)

80580

81579

82597

83633

84688

85756

86821 .

Sood

878

925

954

970

1002

1012

1040

1034

1066

1073

1056

Sood

930

955

980

999

1018

1036

1055

1068

1065

Walsh

75212

76133

77064

78045

79031

80042

81072

82098

Duncan

78931

80832

81884

82857

83843

84872

85928

1330A Transition

Watanabe and

75216

76138

77083

78034

, 79008

80039

81061

82122

83188

84239

85302

O

1266A Transition

Watanabe and

(78940)

(79880)

(80840)

81820

82816

83836

84875

85925

Sood

922

945

951

974

1031

1025

1058

1066

1051

1063

Sood

940

960

980

996

1020

1039

1050
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Figure (9-12). Absorption coefficient profiles of NH3 for the wavelength

regions 1000-600A and 1190-1000A. [Watanabe and Sood (1965)]
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Figure (9-13). Absorption coefficient profiles of NH3 for the wavelength regions
1330-1170A and 1490-1330A.
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Figure (9-14). Absorption coefficient profiles of NH3 for the wavelength

region 1650-1480A. [Watanabe and Sood (1965)]
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Figure (9-15a). Absorption coefficient profiles of NH3 for the wavelength

region 2200-1640A. [Watanabe, et al (1953)]
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Figure (9-15b). Absorption coefficient profiles of NH3 for the wavelength
region 1650-1050A. [Watanabe et al (1953)]

Ne

(2P)5(3P)

(2p)5(3»)

NHj 3H(2S).N

r(3H-N)CD3h)

Figure (9-16). Schematic showing potential energy curves for-a few important
electronic states of NH3. [Douglas (1963)]
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Figure (9-17). Schematic showing various observed electronic transitions of NH3.

consisting of parallel and perpendicular sub-bands. All these circumstances give rise
to different types of resonance interactions in the vibrational and rotational states.
High resolution studies of many of the infrared bands of NH3 and those of its isotopic
forms have been reported in a series of papers specially by Benedict et al., and by Rao
et al. Reference may be made to these articles for details.

Table (9-XI) gives- the prominent overtone and combination bands of NH3. Some data
on the known vibrational states is presented in Table (9--XII). Table (9^X111) gives
the rotation-vibration inversion interaction constants.

Microwave Spectrum. - The most widely studied microwave spectrum of ammonia is its
inversion spectrum. NH3 is pyramidal in its equilibrium configuration with a relatively
low potential barrier separating the two equivalent potential minima. A plot of the
potential energy curve shows two minima with a hump in between (figur^ 9-18). The eigen-
functions are alternately symmetric and antisymmetric with respect to a reflection through
the plane defined when all the four atoms are coplaner. The first two levels are almost
coincident and the inversion doubling becomes larger as the levels approach the barrier-
top. Above this point, the levels approach a harmonic spacing which corresponds to an
out-of-plane bending vibration.

The separation of the symmetric and antisymmetric sublevels of the 0 vibration
level is about 23700 MHz. Since the selection rule is S ->• a, the pure rotational transi-
tions. J, K-> J + 1, K appear as doublets. These fall in the far infrared. In addition,
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AJ = 0 transitions between the 0s and Oa levels are also allowed and these give rise to

a very intense microwave spectrum.

.. In the zeroth approximation, all the AJ = 0 lines are coincident. Actually, the

vibration-rotation interactions are quite large in NH3, and the transitions extend over

a wide range. The strong lines which involve low rotational states fall near 24000 MHz.

It may, however, be mentioned that inversion splitting is a very sensitive function

of both the barrier height and the geometry. No such spectra have been so far observed

outside of NH3 and its isotopic species.

Detailed discussion on the inversion spectrum of NH3 may be found in Townes and

Schawlow (1955).

4176

4216

4269
4302

4433

4595

w

vs

vw

TABLE (9-XI) INFRARED VIBRATION ROTATION BANDS OF NH3

Assignmentvfcm"1)

629.3

932.58

968.08

1627.5

1922.

2440.1

2472.6

2861

3219.1

3335.9

3337.5

7/1 T3

Assignment

2v2-v2

V2

V4

2v2

v3-v2; v2+Vi,

3v2

2V,,

"- Vi

Intensity

w

vs

vs

vw

w

vw

m

vs

c

vCcnf1)

5953

6016

6595

6624

7665.

7899

8177

8202

8460

9760.4

10099.7

10104.9

Vi+V2

V2+V3

weak

very strong

very weak

s = strong

m = medium

11364

12609.2

12619.8

15440

18150

2V1 S (2V3.V! +V3)

6v1,2v1+2v3

5vi,4vi+v3

Intensity

s

m

m

w

w

w

w

w
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TABLE (9-XII) VIBRATIONAL LEVELS OF AMMONIA (cm"1)

Vi

0

0

0

1

0

1

0

1
0

0

0

0

0

1
0

0

1
0

Ja v\ V2v = 0

0°

op

0°

0°

I1

0°

I1

I1

I1
22

0°

0°

0°

o°-
I1

I1

I1

21

0°

I1

2°

0°

0°

I1

T1

0°

2°

0°

0°

I1

2°

0°

0°

2°

0°

0°

0.00

1626.1

(3216.4)

3336.18

3443.59

4955.94

5052.61

6608.71

(6700.?)

6849.96

0.00

1191

(2359)

2420.05

2563.96

4887.29

4938.44

5100.66

0 1 1 2

0.793 932.51 968.32 1597.6

1627.4 2539.6? 2585.0?

(3218.6)

3337.18 4294.51 4320.06

3443.94 4416.91 4435.40

4956.8

5053.18 6012.72 6036.40

6850.39

ND3

0.053 745.7 749.4 1359

3093.01 3099.46

2420.64 3171.89 3175.87

3327.94 3329.56

4887.67

2 3 3

1910 2383.46 2895.48

x21(= -14.5?

Xi2= +20.58

x 23= +32.36

x1(,= -6.7

x 3 ^= -17.25

x2i,= -10.73

X i 3 = -92??

x 3 3 = -18.50

1429 1830 2106.60

x21(= -5??

Xi2= +5.9

X 2 3 = +17.1

x 3 ^= -18??

X l 3= -45.84?

X 3 3 = -13.63
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TABLE (9-XIII) ROTATION-VIBRATION-INVERSION INTERACTIONS IN AMMONIA

Rotation-Vibration Interactions Rotation-Inversion Splittings

AVl

0

0

1

1

0

0

0

1
0

0

1
0

0

0

0

1
0

1
0

0

0

1
0

0

V2

1
0 .

0

1
0

1
T

0

0

1
0

0

2

3

3a

0

1
1
0

1
0

0

0

3a

V3

0

0

0

0

1
1
0

0

1
1
1
22

0

0

0

0

0

0

1
1
1
1
22

0

vu

0

1

0*

0*

0

0

1
1*
1
1
of

0

0

0

0

of

2°

0

0

0

2°

0

0

0

VBo

•00.032

0.235

-0.085

-0.1280

-0.176
-0.1975

0.26

0.12

0.035
0.012

0.03

-0.33

0.31

-0.45

-0.76

-0.004

0.0935
-0.0535

-0.0650

-0.119

-0.03

0.00

-0.126
-0.133

VCo

-0.105

-0.066

-0.083

-0.1360

0.009
-0.0863

-0.14

-0.105

-0.0535
-0.152
-0.12

0.00

-0.35

-0.09

0.09

-0.02

-0.11

-0.051

0.0002.

-0.0286

-0.058

-0.040

0.0026
-0.03

P -Puo Lv

NH3

7.756

5.934
5.9958

7.82

7.739

4.830
4.882
5.98

6.72

ND3

2.702

2.709

2.844

2.704

3.946

AG°

35.81

1.3

1.0-

25.55

0.35

18.49

44.8

0.86

0.57

23.68

0.73

0.59

6.45

3.98

1.62

AB AC

-0.179 0.053

-0.012 0.003

-0.1265 0.0470
-0.003 0.001

-0.0984 0.0429

-0.21 0.06

-0.130 0.054

-0.011 0.03

-0.005 0.00

-0.002 0.0005

0.0037

0.016

* Levels are in partial Fermi resonance; constants for resonating level not available.

Levels are in close Fermi resonance; constants for resonating level not available.
a Levels are in close Fermi resonance; constants for both levels as listed.
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Figure (9-18). Potential function and observed energy levels for the v2 mode of NH3.

Water Vapor (H 2 0)

Dipole Moment, M: 1.854 Debye

lonization Potential, I.P.: 12.61 eV

Dissociation Energy, D(OH-H): 5.113 eV

Ground Electronic State Configuration: (la-,) '
Fundamental Vibration Frequencies: vx

3656.7
Rotational Constants: A

(Ib2)'

27.8778 cm"
BQ
14.5092 cm"

V2

1594.8

C.

9.2869 cm"

3755.8 (cm"1)

r.(O-H)
I °1 0.9572A

a( H-O-H)

104.52°

Pure water is a colorless liquid at ordinary temperatures and has a vapor pressure
of about 6 millibar at 0°C. The water molecule (H20) is a nonlinear, asymmetric top tri-

atomic molecule characterized by the C- point group symmetry. The three principal

moments of inertia are known to be as I. = 1.004 x 10" ; IR = 1.929 x 10"
40 and

/in 9 " "
Ic = 3.104 x 10

 W (g x cnT).
The two hydrogen atoms and one oxygen atom lie at the three vertices of an obtuse

isoceles triangular framework (figure 9-19). The apical angle a( H-O-H) is 104.52 and
o

the bond length re(0-H) is about 0.957A which is slightly less than the bond length in
OH radical.
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H CT >5 H

Figure (9-19). Geometrical configuration of the water molecule.

The principal isotopic species of the water molecule that usually occur in nature

are: H^O16, DlO16, H1D2016, H^O17, H^O18.

Molecular Spectrum

The observed spectra of H20 can be classified into three broad categories: (1)
Electronic Spectrum, (2) Vibration-rotation Spectrum, and (3) Rotational Spectrum.

Electronic Spectrum. - Water vapor exhibits quite a rich electronic spectrum lying
• o o

in the vacuum ultraviolet. It has an onset of around 1860A and is known to extend to 500A.
The different features of this absorption have been quite extensively studied by various
workers in the past (Leifson, 1926; Henning, 1932; Rathenau, 1933; Preston, 1940; Price,
1936; Wilkinson and Johnston, 1950; Harrison, Cederholm and Terwilliger, 1959; Johannin-
Giles, 1956; Watanabe and Zelikoff, 1953; Watanabe and Jursa, 1964; Astoin, Johannin-Giles
and Vodar, 1953; Wainfan, Walker and Weissler, 1955; Watanabe, Zelikoff and Inn, 1953;
Thompson, Harteck and Reeves, 1963; Bell, 1965; Metzer and Cook, 1964; Johns, 1963;
Hopfield, 1938; Hopfield, 1950; Astoin, 1956; Laufer and McNesby, 1955; DeReilhac and
Damany, 1970). For the convenience of discussion the observed spectra can be divided
into the following wavelength segments.

(1) 1860-1430A
O

This spectral region is occupied by a continuum with Am= ~1650A at which•i max
the absorption cross section is about 120 cm" . Results of various authors
on the absorption in this continuum are in fairly good agreement. However,
Wilkinson, and Johnston (1950) reported three diffuse bands with A ~1608,o max
1648 and 1718A superimposed on this continuum. Johannin-Gilles et al. (1956)
identified as many as six bands superimposed on this continuum. Watanabe
et al. (1953) and Laufer and McNesby (1955) could not observe any banded
structure.

(2) 1450-1250A
O _•!

An absorption continuum with Am= ~1290A (absorption cross section 200 cm )
O ITIuA

mainly occupies the 1450-1250A region. There also exist several strong but
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diffuse bands superimposed on the short wave side of this continuum. This banded

structure was earlier reported by Rathenau (1933) and Price (1936). Their rota-

tional, structure also was studied by Price (1936). Most of these bands fit into

a Rydberg series. Watanabe et al. (1953) scanned this band structure using

photoelectric recording. Table (9-XIV) presents Am data for the various bands
fflaX

identified by them and figure (9-20) represents the absorption profile for this
entire region.

(3) 1250-1050A

Early studies on the absorption of H20 in this region are those of Rathenau

(1933) and Price (1936). There exist numerous strong bands, some of which are

diffuse and others which possess discrete rotational structure. A number of

these bands have been identified as members of two Rydberg series, which have a
o

common limit of 12.62 eV. The band of 1204A is the (0-0) band of the first mem-
ber of the npa,, B series. It shows discrete rotational structure which has been

extensively investigated recently by Johns (1963). Bell (1965) has carried out
o

an exhaustive vibrational analysis of the band systems having origins at 1240A
o o

and 1219A with a common convergence limit at 982A. He also reported discrete
bands at 1185A, 1166A, 1144A and a diffuse band at 1156A. Watanabe, Zelikoff

and Inn (1953) measured absorption cross section of water vapor using photo-

electric techniques and identified quite a few of the reported bands. Higher

members of the Rydberg series could not be scanned because of experimental limi-

tations. Figure (9-21) presents the results obtained by Watanabe et al. (1953).

TABLE (9-XIV) WAVELENGTHS (A) OF THE DIFFUSE BANDS OF H20

VAPOR IN THE REGION FROM 1250' to 1450A

Rathenau Watanabe et al
1411
1392
1378

1361-1372 1364

1346-1357 1348

1332-1341 1335

1318-1324 1321

1306-1309 1308

1291-1297 1295

1279-1284 1281

1267-1271 1269

1253-1257 1257
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WAVELENGTH IN ANGSTROMS

1800

Figure (9-20). Absorption coefficient profile of H20 vapor for-the wavelength

region 1850-1250A. [Watanabe. et al. (1953)]
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Figure (9-21). Absorption coefficient profile of H20 for the wavelength
1250-1050A. [Watanabe et al. (1953)]



o
(4) 1000-200A

Earlier studies of H20 absorption in this region are of Henning (1932)

and Hopfield (1938) who observed a banded structure superimposed over a
O

broad continuum in the region 1000-850A. Absorption cross sections in
this region were measured by Watanabe and Jursa (1964) and Metzger and Cook
(1964) using photoelectric measurements. While Watanabe et al. reported

o
banded structure throughout the region 1110-850A, Metzger et al. reported
a smooth curve. However, in view of the support from spectrographic obser-
vations, Watanabe and Jursa's results are preferred. The results of Watanabe
and Jursa (1964) are depicted in figure (9-22). The data on absorption

o
cross sections in the region 850-600A are quite conflicting. The region
is covered by a continuum whose absorption is estimated differently by
different workers. While Metzger and Cook (1964) reported only a continuous

absorption .band, Dibeler et al. (1966) found a banded structure between
o o

860-690A and around 687A they observed the onset of dissociative ionization

of H20. Lately, Katayama, Huffman and 0'Bryan (1973) reported absorption
and photoionization cross sections for H20 and D20 over the wavelength

o
range 1050-580A. Besides identifying a number of new members of the already
known Rydberg series that converges to the (000) level of the ionic state,
a host of unreported bands superimposed on broad continue peaking at

0 0

approximately 720A and 925A were also observed. These bands are most likely
due to progressions belonging to Rydberg states converging to the first and
the second excited states of H20 (figures 9-23 and 9-24). At shorter wave-

o
lengths (500-100A) absorption coefficients were measured by DeReilhac and

Damany (1970). Earlier, Astoin (1956) had reported several intense absorp-
o

tion bands and an underlying continuum in the region 500-200A. The absorp-

tion is found to be pressure dependent. Astoin's results are presented in
figure (9-25). The dashed curve shows the continuum shape, and the curve A
is from Wainfan, Walker and Weissler (1955). There appears to be good

' agreement b'etween the two in the region of comparison. Absorption dis-

continuities were also observed from 12.4, 16.7, 24.2 and 33.5 eV. The

33.5 eV discontinuity (270,000 cm" ) is probably due to the fourth ioniza-
tion potential of the H20 molecule. Smyth and Mueller's (1933) experiments

on ionization by electron impact show the appearance of H2 ions at 33.5 eV.
Figure (9-26) presents a schematic showing various observed electronic
states of the molecule H20.
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Figure (9-26). Observed electronic states of H20 molecule. [Herzberg (1966)]

Vibration Rotation Spectrum. - Since the three principal moments of inertia of a free
HaO molecule differ appreciably (roughly in the ratio 1:2:3), the vibration-rotation
spectrum of water vapor appears quite complex. Besides the three fundamental frequencies,
the infrared spectrum consists of numerous overtones, combinational frequencies and higher
state bands. Out of all of these, it is the v2 fundamental (called the 6.3y water band)

which is most intense; v3 comes next and then the Vj which is considerably weaker than the

v3. Another prominent band of H20 is the 2v2 harmonic at 3.7y. Tables C9-XV, 9-XVI, and

9-XVII) give lists of the various vibration-rotation bands that have been identified and
studied in the laboratory spectra. For more details, papers by Plyler and Tidwell, 1957;

Eldridge, 1967; Zuev et al., 1968; Fraley et al., 1969; Williamson et al., 1971; may be
referred.
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TABLE (9-XV)

Transition

000-411

000-203

000-401

000-302

000-321

000-113

000-311

000-103

000-400

000-301

000-202

000-221.

000-013

000-112

000-211

000-210

000-131

H20 BANDS IN

Band

(cm'1)

18 394

17 495

16 899

16 898

16 822

15 832

15 348

14 319

14 221

13 831

13 828

13.653

12 565

12 408

12 151

12 140

11 813

THE VISIBLE

Center

(v)
0.54

0.57

0.59

0.59

0.59

0.63

0.66

0.69

0.70

0.72

0.72

0.73

0.79

0.81

0.82

0.82

0.85

SPECTRAL REGION

Strength (Sn)

(cm)

2.10-23

i.io-22

3.10-22

3.10-23

2.10-22

2.10"23

2.10-22

i.io-21

i.io-22

3.10-21

2.10-23

6.10-21

i.io-22

6.10-21

6.10-23

i.io-22

2.10"21

TABLE (9-XVI) H20 BANDS IN THE NEAR INFRARED SPECTRAL REGION

Bandname Transition Band Center Strength (Sn)

t 000-003

-000-102

r 000-201

' 000-300

i 000- 121

I 000-220

000-041

000-012

000-121

000-210

000-130

000-131

000-002

000-101

000-200

000-021

000-120

t 000-011

1 000-1 10

(cm'1)

11 032

10 869

10 613

10 600

10 329

10 284

9 834

9 000

8 807

8 762

8 274

8 374

7 445

7 250

7 201

6 871

6 775

5 331

5 235

(y)
091

092

094

094

097

097

101

111

113

114

120

119

134

137

138

145

147

187

191

(cm)

2.10-21

4.10-22

i.io-20

6.10-22

2.10-21

< 4.10-23

6.10-23

3.10-22

8.10"21

1.10'23

7.10"24

3.10"23

1.10"21

1.5.10"19

1.5.10-20

i.io"20

2.10-22

2.2.10"19

7.10-21

000-030 4 667 214 3.10>-22
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TABLE (9-XVII) BANDS OF HIGHER STATES OR H20

Transition Frequency Strength (S )

(cm'1) (y) (cm)

010-001 2161.64 4.62 2.10'22

010-100 2062.27 4.84 8.10'23

010-020 1556.82 6.42 9.10'22

on
010-010 0-500 ~ - 2 0 4.6.10

Rotational Spectrum. - Since H20 has a relatively h igh value of dipole moment, it
iexhibits an intense and extensive rotational spectrum runn ing from about 8y to several
cms of wavelength. Recent laboratory work of Lichtenstein, Derr and Gal lagher (1966);
Wal l and Dowl ing (1967); Izatt, Sakai and Benedict (1969); Fraley, Rao and Jones (1969);
Fraley and Rao (1969); Ha l l and Dowling (1970); Steenbeckeliers and Bellet (1971); Luc ia ,
Cook, Helminger and Gordy (1972a); Lucia, Helminger , Cook and Gordy (1972b) is worth
mentioning in this context. Mol ler and Rothschild (1971) calculated and tabulated the
frequencies of some 278 rotational l ines in the range 12-305 cm" .

Lately Lucia, Helminger and Kirchhoff (1974) have presented a critical review on the
microwave spectrum of water w h i c h , besides providing the wavelength data on different
observed rotational transitions, presents data on rotational constants, centrifugal distor-
tion constants, hyperfine coupl ing parameters and dipole moments for the water molecule
and its deuterated forms. Table (9 -XVII I ) presents the observed data on the microwave
spectra of two principal isotopic forms of H20 (Hi 60 and H 2

8 0) .
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Dipole Moment, M: 0.58 Debye

lom'zation Potential, I.P.: 12.8 eV

Dissociation Energy, D(02 -0) : 1.04 eV
? 2 2 2 1

Ground Electronic State Configuration: (5aJ (4b2) (6a,) (Ia2) - AI

Fundamental Vibration Frequencies: Vi \>z v3

1110 705 1042.2 (cm";

Rotational Constants: AQ BQ C0 re(0-0') a (> OO'O)

3.55345cm"1 0.445276 cm"1 0.394749cm"1 1.2717A 116.8°

Ozone, at ordinary temperature, is a blue unstable gas with a characteristic pungent

odor. It transforms to a deep blue liquid at critical values of temperature and pressure

equal to -12.1°C and 54.6 atm., respectively.

The ozone molecule (03) is a nonlinear, asymmetric top triatomic having a C~ point

group symmetry. The three oxygen atoms form three vertices of an obtuse isoceles

triangular framework with apical angle, ct( >00'0) = 116.8°, and the bond length re (O-O 1 )

= 1.2717A, as illustrated in figure (9-27).

o O <-> o
Figure (9-27). Geometrical disposition of the molecule 03.

The bond length O-O1 (1.2717A) is shorter than the single 0-0 bond (1.48A in H202)
o

and longer than the double 0=0 bond (1.21A in 02), which indicates that the 0-0 bond

in ozone should have a considerable double bond character. The binding may be considered

as consisting of two a bonds between the central and the outer oxygen atoms and a delocal-

ized TT orbital spread over the entire molecular skeleton. According to the valence bond

approach, 03 is described as a hybrid resonance structure, as shown in figure 19-28).

Figure (9-28). Resonance structure of molecule 03,
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Now, if such a hybrid structure is taken to be true, it gives a higher dipole moment

than determined experimentally. In order to explain this discrepancy, Shand and Spurr
(1943) proposed the involvement of two additional resonance structures (figure 9-29),
which also contribute to the main resonance hybrid. They tend to neutralize each other's
polarity and decrease the resultant dipole moment of the hybrid.

- o

Figure (9-29). Proposed resonance structure of molecule 03.

The smaller than expected dipole moment can be accounted for by assuming the a bonds

to be formed by sp2 hybridization of the central oxygen atom, leaving two electrons in
the third sp2 atomic orbital, directed upwards, and producing a negative center, opposing

the dipole of structure a and b.
Ozone is known to exist in nature in three principal isotopic forms, viz., 016016016;

Qi6Qie0i6. 0i6Qi60i8> jnie first two species are symmetrical while the third one is

asymmetrical and, hence, behaves differently as regards spectra.

Molecular Spectrum

Ozone exhibits a fairly rich electronic spectrum that extends from the microwave
through the visible to the shortwave ultrav-iolet. The observed spectral features can be
divided into three main categories: (1) Electronic Spectrum; (2) Vibration-Rotation

Spectrum; and (3) Rotational Spectrum.
Electronic Spectrum. - The electronic spectrum of ozone has been studied very

extensively in absorption. The observed features can be grouped in the following sub-
heads. (1) Vacuum Ultraviolet System (2000-500A); (2) Hartley System (3000-2000A);

(3) Huggins System (3500-3000A); (4) Chappuis System (8500-4400A); and (5) Near Infrared
System (10.000-7000A).

(1) Vacuum Ultraviolet System (2000-500A)

The vacuum ultraviolet absorption spectrum of ozone is almost continuous

with a few diffuse and rather indistinct overlapping continuous bands
(Price and Simpson, 1941; Tanaka, Inn and Watanabe, 1953; Ogawa and Cook,
1958). There exist at least six distinct continua whose maxima occur at:
(a) 1725A; (b) 1450A; (c) 1330A; (d) 1215A; (e) 1120A; and (f) 750A. The
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continuum which has its peak at 1725A merges around 2000A with the
Hartley continuum (discussed later). Two subsidiary weak continua with

o o
peaks around 1165A and 1170A were also reported by Tanaka et al. (1953).
These authors found that the diffuse bands overlapping the continua at

o
1330, 1215 and 1120A form progressions with spacings of about 600 and
800 cm" . Ogawa and Cook (1958) reported yet another continuum with a

o o
peak at 750A. The band starts at 950A, a wavelength that corresponds

to the first ionization potential of 03 (12.8 eV). A few weak bands
overlapping this continuum were also reported by Ogawa and Cook (1958)
in the spectral region 520-750A. The figures (9-30), (9-31), and (9-32)
present profiles of ozone absorption in this region.

10.3 12.4 15.5 20.7 e,,

CM'1

1200

1000

800

t 600

400

200

IP 12.8 ev /

.:-'

1200 1000 800 600 A

Figure (9-30). Absorption coefficient profile of Os for the wavelength region
1000-500A. [Ogawa and Cook (1958)]
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Figure (9-31). Absorption coefficient profile of 03 for the wavelength region

2200-1050A. [Watanabe et al. (1953)]
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Figure (9-32). Absorption coefficient profile of 03 for the region 1350-1000A.

[Watanabe et al. (1953)]
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(2) Hartley System (3000-2000A)
Hartley absorption represents the strongest of the absorptions by ozone. Most of
the total heat budget of the upper atmosphere is due to absorption of the sun's
energy by the ozone layer in the Hartley region. This spectrum consists of a

o
broad absorption continuum lying between wavelength limits 3000-2000A, with a

o
high and almost symmetrical peak near 2550A. A number of weak diffuse bands from

o o
2340A to about 2850A overlap the continuum. It is not yet certain whether these
diffuse bands belong to the same electronic transition as the Muggins System (to
be discussed next) or whether the Huggins System and the Hartley System arise from
two entirely different transitions. However, there is an enormous difference in

o
the intensity budget of the two systems. The peak of the Hartley band at 2550A
has an absorption coefficient around 160 cm" while the absorption coefficients

1 ° 1 ° 1for Huggins bands range from 5 cm at 3000A to 0.01 cm at 3430A and 0.0003 cm
o

at 3650A. Figure (9-33) depicts the data of Inn and Tanaka (1953) which are con-
sidered the most reliable so far. Recent laboratory studies made by Griggs (1968)
using pure 03 and a much higher resolution, (Beckman DK-1A dual beam spectrometer)
have also yielded results concurrent with those of Inn and Tanaka. It may be remarked
here that absorption in the Hartley bands is somewhat temperature sensitive. The
ratio K(6) (18°C) for 6 between -72°C and -46°C varies from about 0.88 at 3100A
to 0.97 near 2500A. At 9 = -30°C this ratio is 0.92 at 3100A and 0.98 near 2500A.

(3) Huggins System (3500-3000A)
These ozone bands were first discovered by Huggins (1890) in the spectrum of
Sirius and hence the name. Fowler and Strutt (1917) later identified this
group of bands in the spectrum of the low sun. Detailed laboratory investiga-
tions on the structure and absorption cross sections were later made by
Jakovleva and Kondratiev, 1932; Vassy, 1937; Vigroux, 1953; Inn and Tanaka,
1953; Griggs, 1968. The system consists of numerous diffuse and weak bands

o
lying in the spectra region 3500-3000A. The short wave end of this system is
overlapped by the Hartley continuum. These bands are relatively weak compared

o
with the Hartley band and, within the short spectral span of about 500A the

-1 °absorption coefficient changes about 200-fold; i.e., about 5 cm at 3000A to
about 0.01 at 3430A and .0003 at 3650A (Vigroux, 1953). The data of Inn and
Tanaka (1953), which are almost the same as reported by Griggs (1968), are
depicted in figure (9-33). Absorption in the Huggins bands is quite sensitive
to temperature variation. Extensive measurements in this regard were made by
Wulf and Melvin, 1931; Vassy, 1937; Eberhardt and Shand, 1946; Barbier and
Chalonge, 1942; and Vigroux, 1953. A striking effect at low temperatures is
the sharpening of the bands. This may be due in part to the shortening of the
rotational branches in the bands but it may also be due to the absence of 1-1
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Figure (9-33). Absorption coefficient profiles of 03 for the region 7500-2000A.

[Inn and Tanaka (1953)]
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and 2-2 bands in the bending fundamental which accompany every main band of the
system. Jakovleva and Kondratiev (1932) had found several progressions in the
diffuse bands overlapping the Hartley continuum. The spacing of 300 cm" in
these progressions probably corresponds to the bending vibration v£ in the
upper state. The large extent of the Huggins and Hartley bands strongly suggests
that there is an appreciable change of angle between the upper and lower state.
The possibility that both band systems really represent only one electronic
transition can not, however, be ruled out altogether.

(4) Chappuis System (8500-4400A)
Chappuis bands form the main visible band system of the ozone absorption and

o
occupy the spectral region 6100-5500A. At long path lengths, the spectrum
extends to shorter wavelengths merging into a weak continuum around 4000A.
The two strongest bands of the system are at 6020 and 5730A (Wolf, 1930) and
under high resolution they have been found to be genuinely diffuse (Humphry and
Badger, 1947). The occurrence of predissociation at this long wavelength is
quite possible in view of the dissociation energy of the molecule being around
1 eV. Absorption cross sections in this region have been measured by Vigroux,
1953; Inn and Tanaka, 1953; and recently, by Griggs, 1968. The very low absorp-
tion cross section in this region, however, renders the measurements difficult,

21 2the maximum absorption cross section being only 5 x 10~ cm . No satisfactory
vibrational analysis of these bands has been proposed so far. Figure (9-34)
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Figure (9-34). Absorption coefficient profile of 03 for the wavelength region
8500-440A. [Griggs (1968)]
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depicts the absorption profile of this system, according to Vigroux, 1953. Inn
and Tanaka's (1953) results for this spectrum are about 9% lower than those of
Vigroux (1953). Griggs (1968) results support Vigroux (1953). Numerical data

o
on the absorption coefficients of Oa for the region below 3000A can be found in
Sullivan and Holland (1966) and Hudson (1971).

(5) Near Infrared System (10.000-7000A)
Ozone gives a number of weak electronic bands in the near infrared out to

o
10.000A, though the long wave limit of this absorption has not been established
as yet. Wulf (1930) was probably the first to report a progression of ten
members with a spacing of 567 cm" , the first one being at 10,000 cm" . Obser-
vations by Lefebvre (1934) confirm these findings. The experimental knowledge
of the various excited electronic states of ozone is only limited and most of
the present understanding comes from theoretical calculations. Papers by
Mulliken, 1942; Mulliken, 1958; Phillips, Hunter and Sutton, 1945; Walsh, 1953;
Fisher-Jhalmar, 1957; Peyerimhoff and Buenker, 1967; Hay and Goddard, 1972;
Hay, Dunning and Goddard, 1973; Wang and Overend, 1974; Grimbert and Devaquet,
1975, are noteworthy in this context. Mulliken (1942) proposed the following
electronic configuration for 03.

Ib2
2 3ai2 4ai2 Ibi2 2b2

2 2ba
2 5ai2 Ia2° 3b2° 4b2°

18.5 17.5 16.5 13.5 13 12.5 11.5 10.8 4.5

The first line gives the molecular orbital s of 02 and 02, interspersed with
atomic orbitals of 0 or 0", in the order of ionization energy. In the second
lines, symbols appropriate when there is considerable mutual interaction, are
given. The third line gives the estimated ionization energies which are based
on the known values for 02 (12 eV for irg 2P, 16 eV for ir^P, 18 eV for a 2P)
and for the 0 atom (about 14.7 eV for an uncoupled 2P electron in 0 or less in
0") after allowance for the 02-0 mutual perturbations. All of these states
are depicted in figure (9-35). Recently Hay, Dunning and Goddard (1973) made
extensive configuration interaction calculations on ozone for its various
excited states as a function of bond length and bond angle. Reasonably accurate
estimates of the vertical and adiabatic excitation energies of the equilibrium
geometries of excited states were reported. Figure (9-36) schematically repre-
sents these results.
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Figure (9-36). Schematic showing equilibrium geometries of the various excited

states' of 03 as a function of bond angle. [Hay, Dunning and
Goddard (1973)]

Vibration-Rotation Spectrum. - Gaseous ozone exhibits an extensive vibration-
rotation absorption spectrum. Besides the three fundamental frequencies, Vi, v2, and v3,
a number of overtones and combinational frequencies have been identified in the region

3100-700 cm"1.
Early infrared studies of ozone spectra were carried out by Lefebvre, 1935; Adel and

Dennison, 1946; Wilson and Badger, 1948; Klein, Cleveland and Meister, 1951; Kaplan,

Migeotte, and Neven, 1956. Vigroux, Migeotte, Neven and Swenson (1958) published a photo-

metric atlas containing high resolution infrared spectra of ozone from 3.2 to 10.2p.

Five bands, viz., 3.27y (3v3); 3.59p (v2 + 2v3) ; 4.5u (vi = v 3 ) ; 9.Dip (vi) and 9.59y (v3)
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of 03 have been, detailed in this document. McCaa and Shaw (1968) recorded as many as 14

vibration-rotation bands due to 03 but, because of poor resolution, no satisfactory

analysis could be obtained. Four bands recorded in high resolution have been analyzed:

vi and v3 by Clough and Knezys, 1966; Vi + v3 by Trajmar and McCaa, 1964; and \>i + v2 + v3

by Snider and Shaw, 1972. Recently, Barbe, Secroun and Jouve, 1974, recorded the infrared

spectra of gaseous 1603 and fifteen for 1 803. Some of the observed bands clearly present

the following features:

(1) (v2 + v 3 ) ; (u! + v2 + v 3 ) ; (2v2 + v3 ) ; (2v2 + vi + v 3 ) ; and (2vj + v3) exhibit

characteristic Q branches, although (2v2 + v3) and (2v2 + vi + v3) are weak.

(2) v2, vi, (vi .+ v 2 ) , 2v3> 2vj, (2v3 + v2) and (2v3 + vi) correspond to the type

B bands (tables 9-XIX and 9-XX) . For detailed data on the rotational lines

forming the various bands, one may refer to the original paper (Barbe,

Secroun and Jouve, 1974). It may be mentioned here that the v3 fundamental

(1043 cm" , 9.6p) is the strongest of all the observed frequencies of 03

when considering solar radiation absorption by the earth's atmosphere. It

is of considerable meteorological interest because of its role in the heat

balance of the upper stratosphere. This band is also instrumental to some

extent in reducing the escape of terrestrial heat radiation into space and
thus adding to the greenhouse effect of our atmosphere.

Rotational Spectrum. - 03 molecule has a large dipole moment of about 0.58 Debye

units and thus it exhibits an intense pure rotational spectrum in the microwave region.

Hughes (1952) was probably, the first to report on the microwave spectrum of the ozone

molecule. Such transitions were studied more elaborately later by Trambarulo, Ghosh,

Barus and Gordy (1953a, 1953b) and also by Hughes (1953). Hughes (1956) obtained quite

extensive rotational spectra of six isotopic ozone molecules in the microwave region

(9000-45000 MHz) and presented a satisfactory analysis, which gave remarkable consistency

between the parameters for the different isotopic molecules. Hughes data are presented

in Table (9-XXI). Details of the spectra of isotopic ozone molecules may be seen in the

original paper (Hughes, 1956).
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TABLE (9-XIX) INFRARED SPECTRUM OF 1603

Observed Wave Calculated Aobs - calc

Assignment

V2

V3

Vi

V2 + V3

Vi + V2

2v3

2vi

Vi + V3

2V2 + V3

Number (cm )

700.93

1042.096

1103.15

1726.4

1795.3

(cm~ ) (cm )

0.

0.

0.

1726.0 0.

1795.0 0.

2058.0 J2057.8 00

2201.3 1

2110.79

2409.5

2201.6 0.

2110.5 0.

0

0

0

4.

3

2

3

3

2408.0 1.5

(2v 3 + v2 2725.6 . {2725.5 0.1

J2vi + v2

Vi + V2 + V3

\3v3

iZvi + v3

J2v3 + Vi

)2884.2

2785.24

3046.0

3185.7

2785.2 0.04

,3045.2 0.8

'3186.5 0.8

3084.1 J3085.2 1.1

J3V! 13291.3

2v2 + Vj + v3

3V3 + ^2

2vi + v2 + v3

|3v3 + Vi

/3\>, + \),

3457.5

3697.1

3849.4

4026

3458.1 0.6

J3697.1 0.0

'3850.2 0.8

4026.9 0

4252.3

.9
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TABLE (9-XX) INFRARED SPECTRUM OF 1803

Observed Wave Calculated Aobs - calc

Assignment

V2

V 3

Vi

V2 + V3

V! + V2

2v3

2vi '
Vi + V3

2v3 + v2

2vi + v2

Vi + V2 + V3

3v3

2v2 + v: + v3

3v3 + v2

2vj + v2 + v3

3v3 + Vi

3Vj + v3

Number (cm" )

661.7

984.6

1041.9

1631.2

1695.9

1945.4

2079.4

1995.1

2579.5

2634.3

2883.2

3012.6 1

3271.0

3501.4

•

3814.1
.

(cm"1) (cm"1)

661.7 0.0

984.6 0.0

1041.9 0.0

1631.5 0.3

1695.9 0.0

1946.0 0.6

2079.6 0.2

1995.1 0.0

2578.4 1.1

2725.6

2634^3 0.0

2882.3 1.1

3011.9 0.9

3271.7 0.7

3501.2 0.2

'3642.0

3815.2 1.1

'4020.0
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TABLE (9-XXI) MICROWAVE SPECTRUM OF OZONE 1603

Identification

212,20 "*"

92,8 *

31,3 -

243,21 *

264,,22 -

192,15+

466,40 +

395,35 -

171,17 +

406,34 -

253,23 +

162,14+

151,15 +

191,19"

223S19 -

173,15-

20,2 ^

131,13"

203,17

101,9

40,4

234,20

273,25

183,15

457,39

386,32

162,14

415,37

241,20

153,13

142,12

182,16

232,22

182,16

]1,1

122,10

Observed
Frequency
(MHz)

9.201

10.226

11.073

' 15.116

16.413

23.861

25.300

25.511

25.649

27.862

28.960

30.052

30.181

30.525

36.023

37.832

42.833

43.654

Calculated
Frequency
(MHz)

9.228

10.209

11.073

14.795

16.219

23.912

25.235

25.790

25.634

28.246

29.060

30.096

30.141

30.578

36.000

37.962

42.833

43.621

Difference

+ 27

- 17

0

-321

-194

+ 51

- 65

+279

- 15

+384

+100

+ 44

. - 40

+ 53

- 23

+130

0

- 33



Nitrous Oxide (N20)

Dipole Moment, M: 0.166 Debye

lonization Potential, I.P.: 12.89 eV

Dissociation Energies: D (Ni-0) - 1.677 eV; D2(N-NO) - 4.930 eV

Ground Electronic State Configuration: a2a27r1)TT1' - 1E

Fundamental Vibration Frequencies: Vi v2 v3

1284.9 588.8 2223.8 (cm"1)
Rotational Constants: BQ rQ(N-N) rQ(N-0)

0.419 cm"1 1.128A 1.184A

Nitrous Oxide, commonly known as "laughing gas" is a colorless gas with a faint

smell. It condenses to a colorless limpid liquid at 0°C under 30 atm. pressure. Gaseous

nitrous oxide resembles oxygen in its behavior towards combustion; therefore, it is

sometimes mistaken for oxygen in that respect.

Nitrous oxide molecule (N20) is a linear, non-symmetrical triatomic molecule,

characterized by the point group symmetry C . It possesses 16 valence electrons and

two characteristic single bonds, viz., N-N and N-0. Its geometrical disposition is

illustrated in figure (9-37).

Figure (9-37). Geometrical configuration of N20.

There exists as many as twelve stable isotopic forms of nitrous oxide formed by

the different combinations of Nllf, N15, N16, and O16, O17, O18 atomic isotopes of nitro-

gen and oxygen, respectively. The most abundant species is N2"0
16.

Molecular Spectrum

The observed spectra of N20 can be classified into the following three groups:

(1) Electronic Spectrum, (2) Vibration-Rotation Spectrum, and (3) Rotational Spectrum.

Electronic Spectrum. - Nitrous oxide exhibits a fairly rich electronic spectrum that
O O

extends from 3100A through 100A in the extreme vacuum ultraviolet. The spectral features
are mostly characterized by several continue, superimposed by banded structures in some

cases. Several workers in the past carried out extensive investigations on these features
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(Leifson, 1926; Dutta, 1932; Henry, 1934; Sen Gupta, 1935; Duncan, 1936; Sponer and Bonner,
1940; Romand and Mayence, 1949, 1955; Zelikoff, Watanabe and Inn, 1953; Astoin and Mayence,
1955; Walker and Weissler, 1955; Astoin, 1957; Young, 1960; Tanaka, Jursa and LeBlanc,

1960; Thompson, Harteck and Reeves, Jr., 1963; Cook and Ching, 1965; and Cook, Metzger

and Ogawa, 1967, 1968).

For the sake of convenience in discussion, we can divide the observed spectra-in the

following spectral regions:
(1) 3065-2100A

Dutta (1932) was probably the first to observe the tail of an absorption
o

continuum near 2600A in this region. Sponer and Bonner (1940) reported
o

three absorption continua in this region, viz., (a) starting at 3065A with

a flat maximum near 2900A, (b) starting at 2820A with Ama ~2730A, and
o o IlldX

(c) starting at 2600A with A ~1820A. The third continuum, superimposedmax
by a few weak diffuse bands, was later found by Zelikoff, Watanabe and Inn

(1953), who also pointed out that these features might involve an electronic
transition that is quite different from the one responsible for the continuum.

These continua have been correlated with the following dissociation processes
of N20 (Sponer and Bonner, 1940; Zelikoff, et al., 1953).

(a) - N20 (
3n or 3l) -»- N2 (

JZ) + 0(3P) - - - (1.71 eV)

(b) N20 (
1E, 'n or *A) + N2 (

1E) + 0(1D

or (3.68 eV)

N2o (
3n) - NO (2n) + NTs)

(c) N20 (
ll) -> N2 (

JZ) + 0(1S) (5.9 eV)

(2) 2100-1600A

This spectral region is occupied by a weak continuum superimposed by a few

weak diffuse bands for which no satisfactory analysis has been proposed so
far. The weak character of these bands indicates that perhaps this transi-
tion is forbidden. In this case too, it may be that two different transi-

tions are involved; i.e., one giving rise to the banded structure and other
to the weak continuum (Duncan, 1936; Zelicoff et al., 1953; Thompson et al.,

1963).
(3) 1600-1380A

Absorption in this spectral region is characterized by a broad continuum on

which are superimposed a number of diffuse bands, Table 9-XXII (Duncan, 1936;

Zelikoff, et al., 19.53) give the details. vm=v values for these bands could
ITldX

be represented by the following equation:
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v = 59590 + 1005 n - 30.0 n2 + 0.53 n3 where n - 0, 1, 2, - -

The band spacing in the progression is found to be 800 cm" at the long nd

and 400 cm" at the short end. The strongest absorption lies at v = 6' JO cm" ,

The continuum is broad and symmetrical, with A at 68940 cm" .
DlaX

TABLE 9-XXII ABSORPTION OF N20 IN THE SPECTRAL REGION 1600-1380A

n

0
1

2
3
4

5

6

7

8

9

10

11

12

13

14

15

16

17 .

18

19

20

Calculated

59,590

60,565

61 ,484

62,349

63,164
63,931

64,654

65,337
65,981
66,591

67,173

67,720

68,246

68,749

69,234

69,703

70,160
70,609

71,050
71,490

71,930

Observed

59,520

60,510

61 ,580

62,460
63,250

64,020
64,720

65,360
65,980
66,580

65,160

67,700

68,210

68,730
69,230

69,710

70,180

70,650
71,100
71,530

71 ,940

Av

70

55

-96

-111

-86

-89

-66

-23
1

11

13

20

36

19

4

-7

-20

-41

-50

-40

-10

Relative Intensity

0.06
0.08
0.18
0.20
0.68

1.68

1.60

5.0

8.0

24

43

70
102

102

69

44

17

1

1

1

1

o
(4) 1380-1215A

Absorption in this region is characterized by a number of weak diffuse bands

and also a sharp band, superimposed over a broad continuum (Zelikoff, Watanabe

and Inn, 1953). Duncan (1936) earlier had reported only a structureless smooth
continuum for this region. Wave numbers of these bands are:
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(a) 77100 cm"1

M 76250cm"! Diffuse Bands
(c) 75600 cm"1

(d) 75100 cm"1

(e) 77400 cm"1 Sharp Band
•̂

The underlying continuum is quite symmetrical with ̂ max~77900
 cm~ • According

to Zelikoff, Watanabe and Inn (1953), the sharp band might be the first member
(n = 3) of a Rydberg series represented by the following equation:

v = 102567 - - - - where n = 3, 4, 5.
(n - 0.92)2

Duncan (1936) classified the continuum peak to correspond to this Rydberg

series rather than the band peak. It is probable that more than one excited
state is involved in the appearance of these features; and one state may be

repulsive which accounts for the continuum.

(5) 1215-1080A
Numerous diffuse bands superimposed over a broad continuum characterize the

absorption profile of N20 in this region. Approximate wavenumbers of the

various band peaks are: (a) 85450 cm"1; "(b) 85800 cm"1; (c) 86200 cm"1;
(d) 86700 cm"1; (e) 87500 cm"1; (f) 88500 cm"1; (g) 89450 cm"1; (h) 90400 cm"1;

(i) 91000 cm ; and (j) 91800 cm" . The underlying continuum is asymmetric
o

with a maximum, most probably, at 1080A. Its intensity falls rapidly from
• o

1080 to 1060A. According to Duncan (1936), who proposed a tentative analysis

of the various spectral features of N20 absorption in this region, this

underlying continuum corresponds to an electronic transition which is

different from the one that is involved in the banded structure. Apart from

the above mentioned weak bands, there appears another band at 84,900 cm"

' (\« ) which is the strongest of all the known ultraviolet absorption bandsm a x ' . • - • • • i
for N20. Its absorption coefficient at Xm,v is estimated to be 3010 cm .

. . . " , ' UIQA

Whether the diffuse bands form two different Rydberg series or represent

other electronic transitions cannot be ascertained in view of the uncertain
measurements on account of diffuseness. The absorption cross section pro-

. •• . o
files for the region 2100-1080A in four wavelength segments is- presented

in figure (9-38).
(6) Below 1000A

- O

The absorption spectrum of N20 in the spectral region below 1000A consists
of several series of Rydberg bands and also a few progressions' of non-

Rydberg bands, superimposed on underlying ionization and dissociation

continua (Dunca, 1936; Walker and Weissler, 1955; Astoin and Mayence, 1955;
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(9-38). Absorption coefficient profiles of N20 for the wavelength region
(1080-2100A). [Watanabe et al. (1953) AFCRL Report]

Astoin, 1957; Tanaka, Jursa and LeBlanc, 1960; Cook and Ching, 1965; Cook,
Metzger and Ogawa, 1968). Following are the results of the paper of Cook,
et al., which agree fairly well with those of Tanaka, et al. It may be
mentioned here that while the former group used a photoelectric method for
scanning the absorption, the latter employed the high resolution photographic

technique. These results with regard to different wavelength segments are
discussed as follows,
(a) 1000-960A

There exist two Rydberg series (I and II) in this region which converge
to the first ionization limit of N20. Tanaka, et al., (1960) had repre-
sented these series by the following formulae:
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v(I) = 10400 - R/(n - 0.60)2

v(II) = 104300 - R/(n - 0.68)2

and identified members up to n = 13 in series (I) and n = 9 in series (II)

The corresponding bands, with the same n in both the series form close

doublets and converge to 12.89 eV and 19.93 eV, respectively. The values,

approximate to the first ionization potential of N20. The 300 cm

difference in the two series limits perhaps indicates that the ground

state of N20 is 2n and that its doublet separation is about this

magnitude. Ogawa, et al., (1968) identified members up to n = 9 in both
o

the series and in addition identified two rather strong bands with 990.5A
o

and 966.OA, respectively. The onset of the ion current occurring at
o

961.8A is in good agreement with the convergence limit of Series I as

reported by Tanaka, et al. No verification could be obtained about

Tanaka's series II limit although numerous bands of this series could

be clearly identified.

(b) 960-850A
This region is covered by a continuum rising from k = 340 cm" at

960A to k~ = 850 cm"1 at 850A. Overlapping the continuous absorption

are several discrete bands belonging to two progressions called P(4)

and P(5) .

(c) 850^750A
The following three Rydberg series (series III, IV and V) bands

identified in this spectral region by Tanaka, et al. (1960), are

represented by the following equations:

Rv(III) = 132210 -

v(IV) = 132250 -

v(V) = 133490 -

(n - l.O)2

R
(n - .22)2

R

(n - ..II)2

While in series III, and IV, members from n = 3 to 13 and n = 3 to 8,
respectively, have been identified, in series V only the members from

n = 8 to 12 could be located. Series V may be the vibration series

associated with series IV. These series converge to the second ioniza-

tion potential of N20 (16.39 eV). Series III is stronger than series
IV and their individual bands showed almost no shading. The vibration

frequencies of the upper states in both series are about 1300 cm"
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which approaches the value vi = 1288 cm" for the ground state of the
molecule.. Ogawa, et al., identified most of the bands in these series.

o
The n = 3 member of series III (836.A) was found to have an especially

strong absorption coefficient equal to 2780 cm" .

(d) 750-600A
This spectral region is occupied by bands belonging to Rydberg series

VI, VII, VIII and IX and in the longer wavelength range by several .

unidentified bands. According to Tanaka, et al., (1960) these Rydberg

series are expressed by the following relations:

v(VI) = 162130 - ; n = 3, 4, 5
(n - .31)2

v(VII) = 162200 - ; n = 3, 4, 5
(n - .06)2

v(VIII) = 162200 - ; n = 3, 4, 5, 6 - -
(n - .58)2

v(IX) = 162200 - ; n = 3, 4
(n - .68)2

The absorption and photoionization coefficients for the wavelength segments

(a) 810-600A and (b) 1000-790A are presented in figures (9-39) and (9-40).

Figure (9-41) presents the overall absorption profile for the entire region
o

1000-600A. Further, while series VI and VIII are absorption series, series
VIII and IX have been designated by Tanaka et al., as "Apparent Emission
Series." The bands in these two series give an appearance of emission bands,
though recorded in absorption experiments. In fact, they are the reduced
absorption bands in the ionization continua. All these series converge to
a frequency which corresponds to the third ionization limit of .N20 (20.1 eV).
Series VII is stronger than series VI and the doublet separation in both
cases diminishes rather rapidly as n increases. Ogawa, et al., (1968) iden-
tified lower members of these four series in their absorption and ionization
measurements. However, because of overlapping of the apparent emission
bands and the absorption bands, no reliable data could be obtained.

o
(e) Below 600A

o
Astoin and Mayence (1955) extended the study of N20 absorption to 150A in
the vacuum ultraviolet. The absorption spectrum consists of three band

o
systems superimposed on a continuum in each case in the region TOOO-150A.

. The first continuum (6.00,000-400,000 cm" ) is very weak at the shorter
wavelength side of the spectrum. On the longer wavelength side, it starts
with a discontinuity near 380,000 cm" (47.5 eV), which may be ascribed to
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an ionization potential of the N20 molecule. The second continuum is of
o

a more symmetrical shape and the third, beyond 500A, shows an absorption

discontinuity near 104,000 cm , which agrees closely with the first
ionization potential of N20 (12.9 eV) observed in electron impact experi-

ments. Figure (9-42) depicts the absorption cross section profile for
this region. Figure (9-43) presents a schematic showing different poten-

tial energy curves of N20 (Zelikoff et al., 1953).

2000

1500

- 1000

500

ENERGY, eV
20.66 19.57 18.23 17.22 1631 15^50

T
r SERIES Eem

-SERIES HI

5 4 -SERIES YI

-SERIES V

i ; , I

600 700

WAVELENGTH, A

800

Figure (9-39). Absorption and photoionization coefficient of N20 in the region

810-600A. [Cook et al., 1968]
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Figure (9-40). Absorption and photoionization coefficients at N20 in the region
O

1000-790A. [Cook et al., 1968]
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Figure (9-41). Total absorption cross sectional profile of N20 for the entire
o

region 1000-600A. [Cook and Ching, 1965]
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Data on the Absorption Spectra of Gaseous N,O, NO and H,O

XDOO
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Figure (9-42). Absorption cross section profile of N20 for the region "IOOO-150A.
[Astoin and Granier - Mayence, 1955]
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Figure (9-43). Schematic showing different potential energy curves of N20.
[Zelikoff et al. (1953)]

189



Vibration-Rotation Spectrum. - Nitrous oxide (N20) exhibits a rich vibration-rotation
spectrum that covers a wide spectral range in the infrared region. While most of this
spectrum has been studied in absorption, quite a number of these transitions have been
observed in emission as well.

In addition to the three fundamental frequencies, viz., vi, v2 and v3j which are
both infrared and Raman active, many overtones; combinational frequencies and higher state
bands have been reported in the laboratory spectra. These bands lie in the region from
500 cm'1 through 10,000 cm"1. Prominent band frequencies are tabulated in Table (9-XXIII).

The solar spectrum also exhibits some of these bands (Table 9-XXIV).
Important references that cover most of the work on the infrared absorption of N20

are: Herzberg and Herzberg, 1950; Thompson and Williams, 1951; Thompson and Williams,
1953; Douglas and Mollar, 1954; Lakshmi and Shaw, 1955; Lakshmi, Rao and Nielsen, 1956;
Plyler, Tidwell and Allen, 1956; Clough, McCarthy and Howard, 1959; Tidwell, Plyler and
Benedict, 1960;'Rank, Eastman, Rao and Wiggins, 1961; Fraley, Brim and Rao, 1962; Gross
and McCubbin, 1964; Pliva, 1964;' Plyler, Tidwell and Ma'ki, 1964; Gordon and McCubbin, 1964;
Pliva, 1968; Griggs, Rao, Jones and Potter, 1968; Mantz, Rao, Jones and Potter, 1969;
Pearson, Sullivan and Frenkel, 1970. Burch, Gryvnak and Pembrook (1972) have presented a

survey of most of this work.
Lately, Krell and Sams (1974) reported a detailed study of the N20 infrared absorption

in the region 2265-2615 cm" and presented extensive data on the rotational constants for
a large number of vibrational states. Farreng, Gaultier and Rossetti (1974); and Farreng

and Dupre-Maquaire (.1974) reported high resolution measurements on the vibrational
luminescence of N20 as obtained in a N20 - N2 plasma discharge and identified as many as
15 vibrational transitions in the spectral range of the fundamental (4.7ym).

Amiot and Guelachvili (1974) recorded the N^O16 infrared absorption (1.2 - 3.3y)
using the Fourier transform technique and presented extensive data on a large number of
bands. Rotational constants for as many as 51 vibrational states have been presented.
For details, refer to the original articles.

Rotational Spectrum. - Pure rotational transitions in nitrous oxide have been studied
up to J 19 + 20 in the microwave region at 25123 MHz (Bloor'et al., 1961). These authors
made precise measurements on a number of rotational transitions; e.g., J 14 ->• 15;
J 15 ̂  16; J 16 + 17; J 17 +-18; J 18 -> 19 and J.19 -* 20 in the region 600-800 cm"1.

Earlier investigations that cover mostly the lower transitions are those of Coles.,
et al., 1947; Smith et al.,' 1948; Coles and Hughes, 1949; Jen, 1949; Townes, et al., 1949;
Shulman, et al., 1949, 1950; Johnson et al., 1951; Tetenbaum, 1952; Douglas and Moller,
1954; Palik and Rao, 1956; Burrus and Gordy, 1956; White, et al., 1957; Costain, 1958;
Pierce, 1959; Brit, 'et al.,'1961. Details may be seen in the original papers.
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TABLE (9-XXIII) N20 BANDS IN THE SPECTRUM

Obs. v and Band Type Calc. v

0000

0110

0000

0110

0200

1000

1110

0001

1200

2000

0111

0201

1001

0002

2001

0200

0220

1220

1200

0201

0221

1000

0001

589.0 '

1167.3

1285.4

1868

2224.1

2462.2

2564.2

2799.1 '

3366.5

3482.2

4420.7

4736.0

579.5 '

590.5 '

1845 '

1829 ' .

2777 '

2786 '

1283 Raman
2226 Raman

*
*
*

1869.6

*

*

*

2799.2
*

*

*
4733.7

578.3

*

1866.4

1854

2777.4

2789.7

1285.4

'2224.1

cm-1

TABLE (9-XXIV) N20 BANDS IN THE SOLAR SPECTRUM

Transition Type

Molecular Band Strength
Under Standard Conditions

(cm)

4730.86 -
4630.3]
4417.51
4389.06
3481.2

3365.6
2798.6
2577
2563.5
2461.5

2223.5
2210
1285.0
1167.0
588.8

2.11 -
22.16
2.27
2.28
2.87
2.97
3.57
3.88
3.90
4.06

4.50
4.52
7.78 '
9.56

17.0

00°0-20°1
00°0-12°.l
0000-00°2
01 '0-01 '2
00°0-10°1
00°0-02°1

OO'O-Ol1!
01 '0-21 '0
0000-20°0
00°0-12°0

OO'O-OO1!
01 '0-01 °1
00°0-10°0

. 00°0-02°0

O0.°0-0110

Parallel
II

II

II

-
M

Perpendicular
Parallel

II

11

II

II

II

II

Perpendicular

V.29.10-18

9.10 ,-20

1.6.10

4.3.10

6.88.10

9.78.10

4.08.10

7.75.10

-18

-10

-17

-18

-19
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DIATOMICS

Hydrogen (H2)

Dipole Moment, M: Zero

lonization Potential, I.P.: 15.422 eV

Dissociation Energy, D(H-H)': 4.476 eV '
2 1 +Ground Electronic State Configuration: (Isa) - £

Ground State Vibration Frequency and Anharmonicity Constants: to = 4403.186 cm

o)exe = 121.34 cm"1

Rotational Constants: B a rg(H-H)

60.8679 cm"1 3.0622 cm"1 0.74116A

-toey- = 0.8129 cm

Hydrogen is a colorless, odorless, tasteless gas, which is lighter than air. It

is combustible but does not support combustion. The critical temperature for hydrogen

is about -240°C and just below this point, a pressure of about 20 atm. turns the gas

into a clear and colorless liquid of density 0.07 gm/ml. If liquid hydrogen is evaporated

in a partial vacuum, we get solid crystalline hydrogen, which is white in color, and has

a specific gravity 0.08.

Hydrogen (H2) is perhaps the simplest stable molecule known in nature. Basically it

is composed of four elementary particles viz., two protons and two electrons held together

by electrostatic forces. If the spins of the two electrons are aligned in such a way that

the electron moments are anti-parallel, the two hydrogen atoms form a stable molecule but

in the case where these moments are parallel, the two H-atoms fly apart and we do not have

any molecular formation.

Two types of molecular hydrogen.exist in nature, viz., ortho-hydrogen and para-

hydrogen. At room temperatures, molecular hydrogen which has its ortho and para forms

in equilibrium contains about 75% ortho and 25% para varieties. Hydrogen occurs in the

following principal isotopic forms; H2, D2, T2, HD, HT, DT (D = 2H; T = 3H).

Molecular Spectrum

In spite of having a simple structure, hydrogen exhibits a very complicated elec-

tronic spectrum consisting of thousands of lines. Since H2 does not possess a permanent

electric dipole moment, it does riot exhibit any vibration-rotation or pure rotational

spectrum under normal conditions. Certain pressure-induced and quadrupole rotation

vibration transitions have, however, been observed. Isotopically substituted molecules

such as HD and HT have a lower symmetry however, and therefore, the electric dipole

moment in the free molecule is not zero. Vibration-rotation and pure rotational
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transitions in respect of such forms of molecular hydrogen have been obtained and studied
quite extensively (Herzberg, 1950; Wu, 1952; Durie and Herzberg, 1960; Trefler and Gush,
1968; Bunker, 1973; McKellar, 1973; Bejar and Gush, 1974).

The observed spectra of molecular hydrogen can be classified under the following

subheads: (1) Electronic Spectrum, (2) Vibration-Rotation and Pure Rotational Spectra,

and (3) Quadrupole Vibration-Rotation Spectrum.
Electronic Spectrum. - Electronic spectrum of molecular hydrogen and its various

isotopic forms has long been subject to many detailed investigations, both experimental
and theoretical. The books by Richardson (1934) and Herzberg (1950) and the paper by

Tanaka (1944) present a nice survey of most of the early work. There has been a heavy
and continuous influx of research papers on this subject all along and it is not feasible

here to mention all of them. Following are a few of the important references: Herzberg

and Howe, 1959; Herzberg and Monfils, 1960; Monfils, 1961, 1962, 1965, 1968a, 1968b;
Namioka, 1964a, 1964b; Wilkinson, 1968; Herzberg and Jungen, 1972; Bredohl and Herzberg,
1973; Miller and Green, 1974; Brottcher and Dockey, 1974; Dabrowski and Herzberg, 1974.
We can classify the observed spectrum in the following two categories:

(1) Singlet-Singlet Transitions

As many as, 32 singlet-singlet electronic transitions have been identified in

the electronic spectrum of molecular hydrogen. These are listed in Table

(9-XXV). While the transitions (1) and (2) have been studied in both absorp-

tion and emission, transitions (3), (4), (5), and (7) could be studied only in

absorption. Transitions (8) through (32) have been identified in emission only.
o

Further, while emission features have been observed in the region 13000-1000A,
o

absorption observations were confined to only 1100-750A. System (1),
[B ll, - X JZ ] which is also called the Lyman System, is the strongest of
all. The other strong systems are the Werner System (2) and the Hopffeld-
Beutler System (4). Almost all the systems which are found to involve the
ground state XE exhibit strong perturbations.

(2) Triplet-Triplet Transitions

The spectral features that correspond to this type of electronic transitions
o

lie in the spectral region (15000-8000A) and have been observed only in

emission. These have been classified into as many as 18 different transitions
and listed in Table 9-XXVI.

Rosen (1970) has compiled details of the relevant data in respect of all these

transitions. Figure (9-44) presents a schematic showing various known singlet and

triplet electronic states of H2 (Herzberg, 1950).

Absorption and photoionization cross sections of H2 were measured by a number of

workers in the past, particularly in the vacuum ultraviolet region (Weissler, 1952;

Wainfan et al., 1955; Bunch et al., 1958; Cook and Metzger, 1964). The results of Cook
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TABLE (9-XXV) VARIOUS OBSERVED ELECTRONIC TRANSITIONS OF MOLECULAR HYDROGEN

S.N. Transitions

(1) B ' Z ^ X ' Z g "

(2) c 'n- - x 'Z+

(3) B 'Z* - X 'Zg

(4) D 'n; - x 'z+
(5) B"'ZU * X 'Zg

(6) D- 'n- * x 'z;

(7) Dnln" - x 'z+
U g

(8) E 'Z+ - B 'z*

(9) F 'z; -» B >z;

(10) Q H- B 'Z+

(11) K -* B 'Z*

(12) G 'Z+ -> B 'Z*

(13) I 'ng * B 'z;

(14) J 'Ag -> B V

(15) H ' Z ^ B ' z ;

(16) L 'Z* * B 'Z*

' ( 1 7 ) M ' Z ^ B ' z ; .

(18) N 'Zg - B >z;

(19) T 'Zg - B 'Z*

(20) P V + B ' z ;

(21) R ' n g - B ' z ;

(22) S 'Ag * B 'z;

(23) 0 :Zg -> B 'Z*

(24) K - C 'n~

(25) G 'Zg * C 'rf

(26) i «ng * c 'n-

(27) J >Ag * C «n-

(28) H 'Zg * C '!I~

(29) P 'Z+ - C 'n'
g u

(30) R 'ng - C 'If

( 3 D D > n - * E > z J
+ .

(32) X 'Z * E »Z*

Designation Y

Lyman System 90203.55

Werner System 99081.72

110478.54

Hopfield-Beutler 112871.74

116882.00

117834.65

120172.21

8961.2

-14000

21151

21425.4

(21609)

21813

22150

22754.1

23054.8

23190

24896

27130

27148

- 27400

27460

27487

12541.2

12725

12925

1 3264 .

13866.6

18260

-18400

13713.3

- 137000

Degradation

R

R

R

R

R

R

R

V

R

R

R

V

V

V

V

R

R

R

R

R

R
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TABLE (9-XXVI) VARIOUS OBSERVED ELECTRONIC TRANSITIONS OF MOLECULAR HYDROGEN

S.N.

(D

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Transitions

e 3^u "

"V
f 3z+ -

k 3 n u -

m 3z* -

n 3nu-

t 3V

u 3n u -

a 3Z+ -

g 3z -

h 3z+ -

1 V
JY
P 3Zg -

DV

r 3 n g -

V3

q3 -

a 3Zg

a

a

a

a

a

a

a

>'<

c n*

c

c

c

c

c

c

c

c

Designation VQO Degradation

11605.7

Fulcher (a) 16619.0

20526.0

(g) 22271.5

23295.1

(Y) 24847.5

25343

(6) 26232.5
0

Continuum 5000 > A > 1600A

16926

16990 i

17162 |

17355

22588

22626

22699

22487

25220

R

R

R

R

R

R

R

R

R

R
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Figure (9-44). Schematic showing various known singlet and triplet electronic

states of the molecule H2. [Herzberg, 1950]

o

and Metzger (1964) which cover the spectral region (1000-580A) are presented in figures
(9-45 and 9-46). The most prominent features of this study are: (a) weak band absorption
between 970A and 860A with k =20 cm"1 and k ~ T ~-~1max
tinuum, (c) an ionization continuum with k ,max

= 1 cm"', (b) a predissociation con-
approximately equal to 300 cm" for the

underlying continuum, and (d) superimposed on these two continue strong absorptions due
to the D - X system with variations ink value from 680 cm" for the v' = 3 band to

-1 1 °330 cm for the v1 = 8 band. The ionization coefficient rises from k. = 10 cm at 808A
-1 °to k- = 150 cm at 780A and approaches the absorption coefficient value at shorter wave-

lengths, where the ionization efficiency is 100%.
There is a strong continuous spectrum of H2 which has a long wavelength limit in the

o

neighborhood of 4500-5000A. It increases in intensity towards the ultraviolet with a
o

maximum at about 2500A, after which the intensity falls off again. The conditions which
favor the excitation of ct-system of the triplet spectrum favor also the continuous spec-
trum. There is a pressure discrimination with respect to its excitation when the compari-
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Figure (9-45). Photoionization0and absorption coefficients of H2 for the wavelength

region 1000-580A. [Cook and Metzger, 1964]
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Figure (9-46}. Absorption and photoionization spectra of molecular hydrogen (H2).
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son is confined to the lines of the a-system. The lines are enhanced relative to the
continuous spectrum at low pressures while high pressures favor the continuous spectrum.
A minimum potential is required for its excitation by electron impact (12.6 eV). Figure
(9-47) presents potential energy curves for a few important electronic states of H2. The
transition C -»• A corresponds to this continuum.

Hydrogen exhibits yet another continuum which shows up in spark discharges in hydro-
gen gas at high pressures. This is most probably caused by an interatomic stark effect
on the Balmer lines of the atomic spectrum (Finkelburg, 1931).

14 -

12 -

10 -

t-
O
0.

6 -

4

- .2 3 4

INTERNUCLEAR DISTANCE (A)

Figure (9-47). Potential energy curves for a few important electronic states of
molecular hydrogen. Transitions B •*- X and D * X correspond to the
important absorption bands at 1109 and 1002A\ C ->• A corresponds
to the well known H2 ultraviolet continuum.
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Vibration-Rotation and ,Pure Rotation Spectra. - H2 does not exhibit any vibration-
rotation of pure rotational spectral features under normal conditions on account of
symmetry considerations. However, it does exhibit quadrupole vibration-rotation absorption
features and in the compressed state, certain pressure-induced dipole transitions in the
infrared. Besides laboratory interest, both these types of spectra are quite important
from the viewpoint -iff planetary spectroscopy.

Pressure induced dipole features show up only when the hydrogen is in the compressed
form. The intermolecular forces operative during collisions produce a distortion in the
normal electron distribution of the molecule. The resulting electric dipole of the system
is modulated by the vibration and rotation of the colliding molecules, so that frequencies
which are otherwise inactive in a free molecule appear in the infrared absorption. At
such pressures where only binary collisions are important, the intensity of the induced
absorption is proportional to the square of the density of the pure gas. This induced
absorption is explained in terms of electron overlap and quadrupole interactions. The
overlap interaction produces mainly those transitions for which AJ =0, i.e., Q lines.
The quadrupole interaction on the other hand is strongly dependent on the mutual orienta-
tion of the molecules in a pair and produces transitions for which AJ = ± 2, i.e., S and
0 branches and'in addition also contributes a little towards the Q lines. Details on the
theory of pressure-induced transitions may be seen in the articles by Van Kranendonk and
Bird, 1951; Van Kranendonk, 1952, 1957, 1958; and also by Britton and Crawford, 1958. The
fundamental vibrational band of H2 at pressures in the range 100 atm. has been studied by
Welsh (1969) in pure H2 and in mixtures of H2 with N2, Ar and He. These results are pre-
sented in figure (9-48). Figure (9-49) depicts the results of Hare and Welsh (1958) who
studied the fundamental absorption band of hydrogen in H2 - N2 mixture at various total
pressures in the range 1137-4665 atm.

o
Kuiper (1952) was probably the first to report a diffuse feature at 8260A in the

spectrum of Uranus which was later on identified as the pressure-induced dipole absorption

due to H2 (Herzberg, 1952). Similar induced dipole absorptions of H2 were identified in

the spectra of Neptune and Uranus. Belton and Spinrad (1973) found that the S 3 (0) line

of the pressure induced 3-0 band was roughly of the same shape and strength in both planets

suggesting close similarities of the two atmospheres.

Danielson (1966) and Moroz (1966) reported characteristic absorption in the case of

Jupiter near 2.2y which they attributed to the (1-0) pressure induced dipole transition

of H2.

In addition to induced vibration-rotation transitions, hydrogen also exhibits pure

rotational transitions (Ketelaar, Colpa and Hooge, 1955; Colpa and Ketelaar, 1958; Kiss,

Gush and Welsh, 1959). The Raman spectrum of H2 shows four rotational lines S(J) with

J =0, 1, 2, 3, at 354.4, 587.1, 814.4 and 1034.7 cm'1, J = 0 ->• 2, 1 -» 3, 2 -» 4, 3 ->• 5

respectively (Stoicheff, 1957). In the induced spectrum of H2 all these lines have been
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Specific absorption profiles of the induced fundamental vibrational
band of H2 for the pure gas and mixtures with some foreign gases at
300K. The shapes of the profiles correspond to total pressure of
100 atm. The triangles on the abscissa axis show the frequencies

of the transitions as calculated from the constants of the free
molecule. [After Welsh (1969)]
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identified in the region of the CsBr optics. Figure (9-50) and (9-51) depict these

induced features (Kiss, Gush and Welsh, 1959).
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Figure (9-50). Absorption of pure H2 in the frequency range 300-1400 cm at room

temperature (298°K). [Kiss, Gush and Welsh (1959)]
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Figure (9-51). Absorption of H2-Xe mixtures in the region 300-1400 cm at room

temperature (298°K). [Kiss, Gush and Welsh (1959)]*
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Quadrupole Vibration-Rotation Spectrum. - Molecular hydrogen (H2) exhibits numerous
quadrupole absorption features in the infrared region. Herzberg (1949) was probably the
first to observe the first and second overtone of the H2 vibration using a long path multi-
ple reflection absorption cell. Extensive laboratory investigations on this type of tran-
sitions have been reported by Rank, Fink and Wiggins (1966). Karl and Poll (1967) present-
ed new calculations of the quadrupole moments using rigorous wave functions and the calcu-
lated line strengths are in good agreement with the experimental results (Table 9-XXVII).

TABLE (9-XXVII) EXPERIMENTAL AND CALCULATED VALUES OF THE

QUADRUPOLE-MOMENT MATRIX ELEMENTS

v Qexptl Qcalo
amagat) (cm'1) (D - A) (D - A)

S^O) 2.8xlO"2 4497.8 0.103 0.105

S^D 9.0xlO~2 4712.9 0.0989 0.0969

S,(2) 1.4xlO"2 4917.0 0.0945 0.0886

SjO) 8.4xlO"3 5108.4 0.0833 0.0804

Qid) 4.5xlO"2 4155.3 0.103 "0.118

Qi(2) 6.5xlO"3 4143.5 0.112 0.119 .

Qi(3) 4.4xlO"3 4125.9 0.111 0.119

S2(l) 1.4xlO"2 8604.2 0.0158 0.0159

Q2(l) 7.8xlO"3 8075.3 0.0159 0.0151

S3(l) 1.3xlO"3 12265.5 0.00283 0.00282

Table (9-XXVIII) presents the laboratory data on the various known quadrupole lines
of 3-0 and 4-0 bands of H2 (Rank, Fink and Wiggins, T966). Table (9-XXIX) gives wave num-
bers (calculated) for the various quadrupole lines as might be expected (Herzberg, 1938).

Kiess, Corliss, and Kiess (1960) first identified four quadrupole absorption lines of
hydrogen in the spectrum of Jupiter. Later a number of other workers identified numerous
quadrupole lines in the spectrum of Jupiter and other giant planets (Zabriskie, 1962;
Spinrad and Trafton, 1963; Foltz and Rank, 1963; Owen and Mason, 1968). Most of these in-
vestigations have been primarily based on observations of the 3-0 and 4-0 quadrupole bands.
The (2-0) and (1-0) bands are badly blended with methane and ammonia absorption lines. In
a quadrupole spectrum, one has S, Q and 0 branches and for the temperatures in the Jovian
atmosphere, the strongest lines should be S(0), S(l), S(2) and Q(l). All these four lines
have been reported by Kiess et al . (1960) in the case of 3-0 quadrupole band. The S(l)
line is purer than others, i.e., this line is more free from serious blending with telluric
or solar absorptions than others. In the case of 4-0 band only S(.l) has been reported in
the spectrum of Jupiter. S(0) is highly blended with NH3 lines and Q(l) is not yet detected;
S(2) has been predicted to be too weak to be visible (Spinrad and Trafton, 1963).
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TABLE (9-XXVIII) WAVELENGTHS AND STRENGTHS OF H2 QUADRUPOLE LINES

Band

3-0

4-0

Line

Q(D
S(0)

S O )

S(2)

Q(D
S(0)

S(D

X Air (A)

8497.5

8272.7

8150.7

8046.4

6565.0*

6435. lf

6367.8

* Predicted Value Blended with Ammonia
"*" Predicted Value

4.2 x 10

3.2 x 10

1.3 x 10

2.4 x 10

3.7 x 10

3.5 x 10

1.6 x 10

-4

-4

-3

-4

-5

-5

-4

TABLE (9-XXIX) QUADRUPOLE R-V SPECTRUM OF H2 (CALCULATED VALUES IN cm"1)

(Herzberg, 1938)

1-0 2-0

0

1
2

3

4

5

4498

4713

4917

5108

5280

5448

--

4155

4143

4126

4103

4074

--

--

3807

3568 '

3339

3091

8403

8101

8782

8945

9090

9213

--

8072

8048

8014

7968

7911

--

--

7729

7485

7234

6979

3-0 4-0

0

1
2

3

4

5

12080

12264

12420

12556

16667

12753

--

11760

11725

11674

11605

11521

--

—
11423

11173

10911

10639

15530

15695

15832

15940

16018

16066

--

15222

15176

15108

15017

14905

--

--

14890

14635

14362

14073
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Nitrogen (N2)

Dipole Moment, M: Zero

lonization Potential, I.P.: 15.576 eV

Dissociation Energy, D(N-N): 9,760 eV

Ground Electronic State Configuration: (Isa)2 (2pa)2 (2sa)2 (3pa) (2pir't) (3da2) - - 1E +

Fundamental Vibration Frequency and Anharmonicity Constants: o>e = 2358.027 cm" ;

Ve = 14'1351 cm"1;

<Ve = -1-7510 x 10"2 c"1"1

Rotational Constants: B a r (N-N)

1.9980 cm"1 0.01772 1.0977A

Nitrogen is a colorless, odorless and tasteless diatomic gas, constituting about

four-fifths of the earth's atmosphere. Its presence in trace amounts has also been

postulated in certain other planetary atmospheres too. Except when heated to high tempera-

tures where it combines with most metals to form nitrides, it is an extremely inert gas.

N2 is a simple homonuclear diatomic molecule formed of two atoms of nitrogen joined
o

together by a covalent bond of about 1A in length. The most abundant isotopic species of
nitrogen is the 11(N2; the other much less abundant species are

 15N2 and
 15Nll4N.

Molecular Spectrum

Nitrogen (N2) exhibits only such spectra that arise as a result of electronic transi-
tions. Pure rotational and vibration-rotation transitions do not show up in this case

because of symmetry considerations.

Electronic Spectrum. - Molecular nitrogen exhibits a very rich and widespread elec-

tronic spectrum. As many as 35 electronic transitions involving 22 distinct electronic
states are known. Most of these transitions show up in emission only and there are only

a few that appear simultaneously or exclusively in absorption. As a matter of fact,
o

molecular nitrogen is a very weak absorber in the wavelength range beyond 900A upwards.
Lofthus (1960) has presented an exhaustive review of most of these transitions and

another review by the same author is forthcoming in 1976. We are therefore not presenting

details of all the known transitions here. A brief account of those transitions which

appear prominently in absorption is however presented in view of their significance in

aeronomy.

N2 absorption can be classified into the following three wavelength segments: (1)

2600-1000A; (2) 1000-600A; and (3) Below 600A.

(1) 2600-1000A

Since almost all the known electronic states of molecular nitrogen having
o

excitation energies less than 12.5 eV (1000A) are of valence type and their
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radiative combinations with the ground state are forbidden by electric dipole

selection rules, the resulting spectra are usually very weak. Worley, 1953;

Wilkinson, 1956; Wilkinson and Mulliken, 1959; Ogawa and Tanaka, 1959; Ogawa

and Tanaka, 1960; Tanaka, Ogawa and Jursa, 1964; Tilford and Wilkinson, 1964;

Vanderslice, Tilford and Wilkinson, 1965; Tilford, Vanderslice and Wilkinson,

1965; Miller, 1966; Joshi, 1966; Dressier and Lutz, 1967; Carroll and Yoshino,

1967; Dressier, 1969 made important contributions in our understanding of this

segment of N2 spectrum. The following band systems have been reported in

absorption which lie in this region:

(a) Wilkinson (1690-1630A): B3n •*- X *£*

(b) Ogawa-Tanaka-Wilkinson (2240-1120A): B3i;~ «- X ll+

(c) Lyman-Birge-Hopfield (2600-1090A): a *n <- X 'E*
~ y y

(d) Ogawa-Tanaka-Wilkinson-Mulliken (2000-1080A): a1 ll~u •*- X 1T,+

(e) Tanaka (1400-1140A): w 1Au *- X !Z+

(f) Tanaka (1130-107QA): C 3ny <- X »z+

(g) Dressler-Lutz (-1009A): a" 1Z+ «- X 1T.+
y y

Transition (f) was first predicted by Mulliken (1957), and it was experimentally
identified later by Dressier and Lutz (1967).

(2) 1000-600A
o

The spectrum of molecular nitrogen in the region 1000-830A is quite strong but
very complex. Dressier (1969) and Carroll and Collins (1969) have interpreted
these features in terms of the following transitions.

(a) b 1nu * X ̂ g; (995-855A)

(b) b ̂ «- X ̂ (965-830A)
. y y

(c) c 1E + X 1E*; (960-865A)^ y

(d) c ll* <- X 'Z*; (960-840A)« y

(e) o \ t- X 1Z+; (950-880A)

Besides, four Rydberg series have been identified in the absorption spectrum
o

of N2 in the spectral region below 960A. These are:
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(a) Worley-Jenkins [X *Z* (N£) <- X ^l

(b) Carrol 1-Yoshino [X 2E+ (l£) +- X 'it]

(c) Worley [A 2ny (N+) «- x 1Z+]

(d) Hopfield [B 2Z* (N£) <- X 1Z+]

(3) Below 600A
o

Na absorption below 600A exhibits a continuum overlapped by a weak banded
o

structure in the wavelength range (570-470A). The structure corresponds to
two autoionizing states, members of a Rydberg series, converging to the C state
of Nz at 23.6 eV.

Table (9-XXX) gives spectroscopic constants for the different known electronic
states and (9-XXXI) presents a resume of all the known radiative transitions so far
observed. Figure (9-52) depicts relative disposition of these states and various
radiative transitions. Absorption cross sections of N2 have also been measured by many

o o
workers in the past, particularly below 1450A through 200A (Clark, 1952; Weissler et al.,
1952; Curtis, 1954; Lee, 1955; Watanabe and Marmo, 1956; Astoin and Granier, 1957;
Watanabe, 1961; Itamoto and McAllister, 1961; Huffman et al., 1963; Cook and Metzger,
1964; Samson and Cairns, 1964). Figures (9-53), (9-54), (9-55), and (9-56) present the

O

results of Huffman et al. which cover the spectral region 1000-600A.

TABLE (9-XXX) SPECTROSCOPIC CONSTANTS FOR KBOWN ELECTRONICS STATES

2 'a

y 'ng

* 'Z<3

d' '?g

" X

c ' '^u
c X
b' '£u

0 l£u

"X
a" '1
c' *n

E 'E*

c x
w 'i

a 'li

a* 'l~

B' 3Z~

W '6

B'ng

" 'Zu

X 'I*

115365.9

114166.3

113212.1

111333

105682

104322.4

104139.2

103672

103573

100816.9

99032

97580

95771

88977.9

71698.8

68951.2

677~39.3

65852.4

59328

59306.8

49754.8

0

(1700)

1707.9

1910.0 20.7

-

2020.0 32.28

2046

2410

746

-

635

-

-

2185

2047.178 28.4450

1559.236 11.8874

1694.208 13.9491

1530.254 12.0747

1516.883 12.1810

1539 17

1733.391 14.1221

1460.518 13.8313

2358.027 14.1351

(1.76)

1.78

1.750

-

1.694

1.929

1.50

1.154

1.961

1.448

-

1.0496

-

1.82473

1.498

1.61688

1.47988

1.47359

1.6374

1.45455

1.9980

(0.0153)

0.0225

-

-

-

0.0048

-

-. ,. .

-

-

0.018683

0.0166

0.017933

0.016574

0.016861

-

0.01791

0.018009

0.01772

(1.16)

1.16

5.88 1.168

-

1.19

1.12

1.27

1.444

20 1.108

29 1.230

-

10.9 1.508

-

5.80 1.1487

5.53 1.2678

5.89 1.2203

5.54 1.2755

5.56 1.2782

5.84 1.2126

5.77 1.2866

5.74 1.0977
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TABLE (9-XXXI) OBSERVED ELECTRONIC TRANSITIONS OF THE MOLECULE N,

S.N.

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31.

32

33

34

35

Electronic
Band System Transition

Vegard-Kaplan A3Z «-* X'Z

Wilkinson B'n - X'zt

First Positive B3n~ •+ A3Z

Wu-Benesch W3A *-* B3n

Ogawa-Tanaka B ' 3 Z •*- X'Z
-Wildinson

Infrared B ' 3 Z~ * B'nQ
residual
Luminescence

Lyman-Birge a'n — * X'E
Hopfield 9 .9

Ogawa-Tanaka a'^u *~* ^'^o
Wilkinson- 3

Hul liken

Tanaka ^'^u *" ^'^n

g u

Tanaka C3ny * X1E

Second
positive C3nu - B

3n

Herman-Kaplan EJZ •* A3I

Goldstein- C ' *n •* BJn
Kaplan y

Fourth D3£* •* B3n
Positive

Dressier- a'"Z -^X1!
Lutz 9 9

b-n u ~x>z g

b-zj-x-z;

c."u-x'zg

C-Z;««T;

o-nu - x'z;

Gaydon-Herman b'n -+ a'n

Gaydon Herman b ' 'Z -*• a'n

Gaydon Herman C'n -^a1!!

Gaydon Herman d^( ) •* a'H

Gaydon Herman O'n •+&1R

Fifth positive x lz" •* a'1^

Kaplan (I) y'n •* a (1zj]

Kaplan (II) y'ng •* u'i u

^g-\'

Gaydon (Green)

Herman (IR)

Rydberg

Favorable
Sources

Residual
Luminescence

Absorption

Positive
column

Discharge -

Absorption
(N2 + Xe)

Residual
Luminescence
High Tension
discharge

Absorption,
Low pressure
discharge

Absorption
(N2+Ar)

Absorption

Absorption

Positive
Column

Residual
Luminescence

Residual
Luminescence

Residual
Luminescence
Ordinary
discharge

Absorption

Absorption
ordinary
discharge

Absorption
ordinary
discharge

Absorption
ordinary
discharge

Absorption,
ordinary -
discharge

Absorption
. ordinary

discharge

Ordinary
discharge

Ordinary
Discharge

Ordinary
discharge

Ordinary
discharge

Ordinary
discharge

High pressure
discharge
Electron-
bombardment

Low tempera-
ture discharge

Absorption

Wavelength Limits

5060-21 OOA R

1690-1630A R

IR-4700 V

41000-22000

2240-1120 R

8920-6060 R

2600-1090 R

2000-1080 R

1400-1140 R

82000-33000

36500

1130-1070 R

5450-2680

2740-2130 V

5060-2860 R

2910-2250 V

1009

995-855 R

965-830 R

960=865 R

960-860 R

950-880 R

3420-2740 R

2500 R

3010-2220R V

2550-2350

2860-2720 R

2850-2030 V

2470-2070 V

2860-2260 V

2480-2360 V

6340-5040 V

8550-7000 V

< 960

Characteristic
Bands, A

2760.8(0,6)

10510.1(0,0);
8912.40(1,0)

-

-

2125.9(5, 14)
2041.2(5,13)

-

-

3576.9(0,1);
3371.3(0,0)

2471.4(0,4)
2391.6(0,3)

4728.0(0,11)

2448.0(0,2)

-

-

-

2411.7(1,4)

2225.9(0.1)

2536.6(0,2)

5815 (0,1)

8057(0.0)

Remarks
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headed
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headed
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Unresolved
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headed
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headed

Five- headed
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headed
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headed
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headed
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headed
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resolved

Six headed
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Figure (9-52). Schematic showing various known electronic states of N2 molecule
and radiative transitions.
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Figure (9-53). Absorption coefficient of N2 for the wavelength region 700-600A.
[Huffman et al. (1963)]
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Figure (9-54). Absorption coefficient of N2 for the wavelength region 800-700A.
[Huffman et al. (1963)]
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Figure (9-55). Absorption coefficients of N2 for the wavelength region 900-800A.
; [Huffman et al. (1963)]
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Figure (9-56). Absorption cross section of N2 for the wavelength region 1000-900A.
[Huffman et al. (1963)]
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Oxygen (02)

Dipole Moment, M: Zero

lonization Potential, I.P.: 1.2.075 eV

Dissociation Energy, D(O-O):- 5.114 eV

Ground Electronic State and Configuration: KK(2o )2 (2a )2 (3a )2 (liru)
4 (lir )2 - - 3£~

y w y u y y

Fundamental Vibration Frequency and Anharmonicity Constants: u = 1580.2

co.xo = 11.98e e i
u y = 0.0474 (cm )

Rotational Constants: B a r (0-0)

1.446 cm'1 0.0159 cm"1 1.2075A

Oxygen is a colorless, odorless gas at ordinary temperatures. It is the second most

abundant constituent of the earth's atmosphere and happens to be an important species of

certain stellar and possibly of certain planetary atmospheres. Gaseous 02 condenses on

cooling below its critical point to a bluish liquid, which freezes to solid form around

54°K. Liquid oxygen is made up of polymeric Oi, molecules in equilibrium with the simple

02 molecules.

02 is a highly paramagnetic diatomic molecule. Due to the presence of two unpaired

electrons in its configuration, the molecule has a permanent magnetic moment in its ground

state. The principal isotopic forms of oxygen are the various combinations of its atomic

isotopes O1 6 , O17 and O1 8 , the most abundant being Oi6.

Molecular Spectrum

The observed spectral features of 02 molecule can be classified into the following

groups: (1) Electronic Spectrum, and (2) Microwave Spectrum.

Electronic Spectrum. - 02 is a weak light emitter because for most of its excited

states, transitions to the ground state are strongly forbidden by the electric dipole

selection rules. Further, since 1602 has zero nuclear spin, alternate lines in the

rotational structure of the electronic bands do not show up. A brief account of the

prominent transitions so far identified in the 02 spectrum is presented.
(1) a *A •£ X 3Z~ Infrared Atmospheric System (15,800-9240A)R

This system of bands corresponds to a magnetic dipole intercombinational transi-

tion. It is a weak system and consists of red-degraded bands which are charac-

terized by 0, P, R, S, and Q branches. These bands have been identified in

liquid oxygen absorption spectrum, solar spectrum, day and night airglow and

nightsky spectra (Ell is,and Knesser, 1933; Herzberg and Herzberg, 1947; Babcock

and Herzberg, 1948; Gush and Buijs, 1964).
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(2) b - x Z g *. X 3I~ Atmospheric System (9970-5380A)R

This band system also corresponds to a magnetic dipole intercombinational
transition. The constituent bands are red-degraded and are characterized by

P Rdoublet P and R branches, i.e., P, Q, R and Q branches. The most extensive

measurements on these bands are of Babcock and Herzberg (1948), who studied

them in long column air absorption in the laboratory as well as in solar

absorption by the earth's atmosphere. Earlier, work on these bands was done

by Dieke and Babcock, 1927; Babcock, 1929; Mulliken, 1928; Giaugne and Johnston,

1929; Ossenbrugen, 1928; Curry and Herzberg, 1934.

(3) b J£g -> a 'A Noxon System (19.080A)

Noxon (1961) reported an emission band at 19080 ± 30A in the spectrum of a

low pressure discharge through helium containing traces of oxygen. He ascribed

it as the (0,0) band of an electric quadrupole electronic transition li - *A .

Since AA = 2 in this case, such a transition is not allowed even by magnetic

dipole selection rules.

(4) c 'E" + X 3Z~ Herzberg II System: (4790-4490A); (2715-2540A)

This system represents a weak spin-forbidden transition first identified by

Herzberg (1953). The bands whi'lch are red-degraded lie overlapping the

stronger bands of Herzberg System I (A 3Z - X 3O- They possess fine

structure similar to that of th'e atmospheric system b 1z~ - X 3Z~ bands but

are weaker by a factor of 10 . Herzberg (1953) and later Degan (1968)

studied the fine structure of many of these bands.

(5) C 3AM - X 3Z~ Herzberg III System (2630-2570A)R
u 9 o

High Pressure Bands (2924-2440A)
These are the fragments of two very weak and triple headed bands identified

by Herzberg (1953) using a 350 meter absorption column at about 2.7 atm.
pressure. These underlie the far stronger A 3Z -*• X 3Z~ bands.

(6) C 3AU ->• a JA Chamberlain System (4380-3700A)R

This represents an intercombinational electric dipole transition. Chamberlain
(1958) observed about 27 weak bands in the spectrum of,airglow which he

ascribed to 02. Identification of these bands is, however, uncertain.
(7) A 3Z* £ X 3Z~ Herzberg I System (4880-2430A)R

This is a forbidden electric dipole transition first reported by Herzberg

(1932). The bands are quite weak and degraded to the red. The dominant-

Q-branch lines consist of six components QQs, QPs2, QQi, QRi2,
 QR23,

 QP2i
and P23 which was observed only in the case of the strongest bands. Faint

branches R2i, Qis, Pi2 and P23 were also observed in certain bands
(Herzberg, 1953). Dufay (1941) identified some of the bands of the ultra-

O

violet night airglow (38QO-3100A) as members of this system. Chamberlain (1955)
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confirmed these identifications by fine structure analysis of the bands.

Broida and Gaydon (1954) produced these bands in laboratory afterglow too.

Barth (1957, 1958, 1959) observed this system in oxygen-nitrogen afterglow
o

in the region (4500-2500A).

(8) B 3£~ ? X 3E~ Schumann-Runge System (5350-1750A)R and (1750-1300A) Continuum.

This system consists of a large number of strong single-headed bands which

appear readily both in absorption as well as emission. The discrete band

structure merges into an intense dissociation continuum extending almost up

to 1250A. Starting from the early studies by Schumann (1903) and Runge (1921),

this spectrum has been extensively studied by numerous workers (Fuchtbauer

and Holm, 1925; Ossenbruggen, 1928; Lochte-Holtgreven and Dieke, 1929;

Fesefeldt, 1927; Pulskamp, 1929; Curry and Herzberg, 1934; Knauss and

Ballard, 1935; Millon and Herman, 1944; Feast, 1949; Lai, 1948; Feast,

1950; Garton and Feast, 1950; Herczog and Wieland, 1950; Durie, 1952;

Brix and Herzberg, 1954; Rakotoarijimy et al., 1958; Ogawa, 1966; Ogawa

and Chang, 1968; Hudson and Carter, 1968; Ackerman and Biaume, 1970).
.. . o

(9) Miscellaneous Absorption Transitions: (1585-1140A)

(a) AAD (Alberti-Ashby and Douglas) bands a *£* «- b *Z* (1585-1538A) V

(b) Tanaka Progression II a 'Z* <- X 3I~ (1280-1196A) V

(c) Tanaka Progression I @ 3Z* +- X 3Z" (1294-1181A) V

(d) One Single Band »AU <«- a :A (1243.8A)

(e) One Single Band 1n(j •«- a 'A (1229.OA)

(f) Ogawa-Yamawaki Band 3Z+ <• X 3Z~ (1144.6A)

Besides early work on the ultraviolet absorption of 02 by Tanaka (1952) ,

Alberti, Ashby and Douglas (1968) lately carried out extensive studies of
o •

02 absorption in the region (1585-1195A). They identified as many as

sixteen bands, some of them quite weak, but almost all of them overlapped

by a strong continuum. Some of these bands were assigned a new electronic
i ' i O

transition *z «- *Z (1585-1538A) and several of them were the same as

of Tanaka's progressions I and II. In addition to the two single bands at
o o

1243.8A and 1229.OA,. Ogawa-Yamawaki (1969) reported yet another band at
O • : ' • ' - • _ | .

1144.6A whose upper state was designated as 3Z . It is perhaps a member

of the Rydberg series converging to the X 2n state of 02.

(10) Rydberg Series

Numerous Rydberg series whose convergence limits are the .various states of

02 are known in the VUV absorption spectrum of 02. Significant contributions

to the study of these series are of Price and Collins (1935); Cook and Metzger

213



(1964); Huffman, Larrabe and Tanaka (1964). These are summarized below:

(a) X 2n «£

(b) b "E~

X 3r (02) (1290-1180A) V

X 3E~ (0 2) (730-660A) R
y

(c) B 2E~ (0) «- X 3E~ (02) (650-600A) R

(d) c *E- (Ot) *• X 3E~ (02) (595-510A)
y y

Lately, Lindham (1969) has reported a number of new Rydberg series and re-
interpreted others.

Detailed information with regard to band head data and spectroscopic constants in
respect to all these transitions are compiled by Krupenie (1972). Table (9-XXXII) gives

spectroscopic constants for the different known electronic states. Figure (9-57) pre-
sents a schematic showing relative disposition of these electronic states and the impor-
tant transitions, and Table (9-XXXIII) provides a summary of all the known radiative
transitions so far observed.

TABLE (9-XXXII) SPECTROSCOPIC CONSTANTS FOR KNOWN ELECTRONIC STATES

States

\

\
0 3y+

P i-

a.

B

A

C

c

b

a

X

u

>E+

U

3E~
u

3E+

u

SAU
lzu
lv+

9

lAg
3C

To

89244.

88278.

79228

76262.

49358.

35007.

-

33057.

13120.

7882.

0

8

4

4

15

15

3

9080

39

1844

1889.

709.

799.

(-750)

794.

1432.

(1509.

1580.

2

31

08

29

6874

3)
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U)

-20

10.

12.

(-14)

12.

13.

(12.

11.

exe

65

16

736

95008

9)

99 .

1.

1.

1.

1.

0.

0.

0.

1.

1.

1.

Be

451

446

65

691

81902

9106

-

9155

4004

4264

445572

v10

-

12.06

1.416

- -

1.391

1.8170

1.71

1.581

re

-

-

-

-

1.517

1.22685

1.2157

-
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2

Figure (9-57). Schematic showing various known electronic states of
important radiative transitions.

02 and
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TABLE (9-XXXIII) OBSERVED ELECTRONIC TRANSITIONS OF THE MOLECULE

S.N.

1

2

3

4

5

C

7

8

9

10

Electronic
Band System Transition

IR (Atmospheric) a'A •|->-X3j;

Atmospheric b'l <->X3£~
bands 9 9

Noxon b'z -t-a'A

Herzberg II c'E'-^X3;:'

Herzberg III C 3 A~ *-X3E~
(High Pressure 9

bands)

Chamberlain ^3A -* al^n

Herzberg I A3ZU «-»• 3Z~

Schumann- B3£ •<-* X3E
Runge 9

Rydberg series x2nq(o+) <-X3zT
v Q
T

b3! (09K X3S9 2y g

2 ~f +\ V3 "

U 2 g

ot E •*" b Z

u g

IAU * a 'Ag

1nu -i- a ]Ag

3Z+ * X 3 Z~

Favorable
Sources

Absorption;
Emission

Numerous
sources

Discharge in
H + 02 Traces

Luminescence:

Absorption

Absorption
l<b<600 atm.

Luminescence

Absorption;
Luminescence

Numerous
Sources

Absorption

Absorption

Wavelength

15800-9240

9970-5380

19080

4790-4490

2715-2540

2630-2570)
2924-2440)

4380-3700

4880-2430

5350-1750
1750-1300
continuum

1290-1180

730-660

650-600

595-510

1585-1538

1280-1196

1243.8

1229.0

1144.6

Limits

R

R

O

A

R

R

R

R

R

V

R

R

V

V

V

Characteristic
Bands (cm" )

7882.39 (0.)

13120.908 (0,0)

5240 (0,0)

32664.1 (0,0)

(calculated)

34319~(0,)

35007.15 (0,0)
(Calculated)

-

63141.5

80396.0

81362.5

87369.1

Remar

Band
heads

Band
head

Numerous unclassified bands
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High Pressure Bands of Oxygen. -.The observed spectral features of compressed oxygen

are normally divided into the following four groups:
(1) 3.3ym and 6.4ym induced infrared absorption corresponding to 02 fundamental

and first overtone.
o

(2) 12600-6800A: Intensity proportional to pressure. Includes bands of 02

(a-x, b-x) transitions as well as bands of (02)2 .
o 2

(3) 6800-3000A: Intensity proportional to (Pressure) . Simultaneous transitions

in coupled 02 molecules, e .g. , (>A n + *A ) - ( 3 £ ~ + 3 Z~) .
o y y y y

(4) 2900-2400A: Bands whose frequencies are tentatively correlated with

\ - 3v °-
A brief description of these features is presented.

02 does not exhibit any rotation-vibration spectrum on account of symmetry considera-

tions. Crawford, Welsh and Locke (1949) and Shapiro and Gush (1966), however, observed .

both fundamental and the first overtone 02 bands appearing at high pressures. Smith and

Johnston (1952) found a shoulder at 1610 cnf in the case of infrared band of condensed

oxygen, which is consistent with a possible vibration in (02 )2 .
Ellis and Kneser (1933) while studying optical absorption of liquid oxygen observed

o

bands in the region (6800-3000A) which were attributed to simultaneous transitions in

the collision-complex 02 - 02. Some of these bands have also been identified in the

spectrum of gas phase oxygen under pressures less than 10 atmospheres (Herzberg, 1952;

Herzberg, 1952b). These bands were diffuse and showed no fine structure. Several of

these bands have been identified in the atmospheric absorption during sunset (Herman,

1939; Vassy and Vassy, 1939; Dufay, 1942). More detailed studies on the high pressure

absorption of oxygen by Dianov-Klokov (1964) and Cho et al. (1963) indicate the pressure
induced effects above 1.5 atm. pressures. Robin (1959) identified some of these bands at

oxygen pressures up to 5000 atm.

Cho, Allin and Welsh (1956) observed simultaneous transitions 2 ( J A ) - 2 ( 3 £~ ) lying

close to 02, XZ - X 3Z transitions in the absorption spectrum of QZ - N2 liquid measures.

Landan, Allin and Welsh (1962) observed violet degraded bands involving simultaneous

transitions superimposed on a continuous distribution of lattice frequencies. They all

refer to the induced absorption features in the condensed phase of oxygen.

According to Diano-Klokov (1959) all the absorption bands in the 12600-3000A region

in liquid and condensed oxygen are fundamentally related to intermolecular interaction and

that the spectra correspond to induced dipole transitions in the (02 )2 complexes. Accord-

ing to Rettschnick and Hoytink (1967), the simultaneous transitions in a (02 - 02) complex

arises due to electron exchange between the two oxygen molecules during collisions.

Studies by Jorden et al., 1964; Cairns and Pimentel, 1965; Barrett, Meyer and Wesserman,

1967; Blickensderfer and Ewing, 1967; on condensed oxygen further support the formation

of the collision complexes like (02 - 02) .
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Finkelnburg and Steiner (1932) observed.the high pressure bands of oxygen in the
o

region 2900-2300A. In oxygen absorption at pressures of 60-600 atm. they observed a long

progression of diffused, almost headless and red-degraded bands, which do not appear at

lower pressures. The convergence limits of these bands was roughly coincident with the

dissociation limit of 02. This together with the quadratic increase of absorption with
pressure suggested that the bands originated from a collision induced forbidden transition

in 0 2 ( 3 A U «- X *£"). Herman (1939) studied the variation of absorption of oxygen with

pressure up to 30 atmospheres. The triplet bands were shown to be independent of the
. o

Herzberg system (3000-2400A) of 02 and were attributed to (02 - 02) . Studies by

Blickensderfer and Ewing, 1969; Krishna and Cassen, .1969; Robinson, 1967; Tsai and

Robinson, 1969; Tabisz, 1969; are significant in this context.

There is no doubt that many spectral features of compressed or.condensed oxygen do

not show up in the low pressure gas. The simultaneous transitions can be considered as

if induced by collisions or due to the formation of unstable collision-complexes. How-
ever, the virtually unchanged infrared spectrum is not consistent with the idea of dimer

formation but the shoulder at 1610 cm could represent vibration in (02)2 .
o

The triplet bands (2900-2400A) are also now assigned to 02. The quadratic pressure
dependence on the intensities of simultaneous transitions as observed by some only indi-
cated dependence on initial reactants; i.e., two 02 molecules, but does.not indicate whether

or not the final product is a (02)2 molecule. The slight displacement of band frequencies
as compared with low pressure 02 indicates only a very weak interaction between the pairs
of 02 molecules. It may, however, be remarked here that though various..physical proper-
ties provide some evidence for a stable (02 - 02) collision dimer, the matter has not been

solved unequivocally.

Absorption cross section measurements on molecular oxygen (02) have been made by ...

many workers (Schneider, 1937; Weissler and Lee; 1952; Ditchburn and -Meddle., 1953;
Watanabe et al., 1953; Wainfan et a]., 1955; Watanabe and Marino, 1956; Wilkinson and "..
Mulliken, 1957; Ditchburn and Young, 1962; Thompson et al., 1963; Huffman et al., 1964;
Cook and Metzger, 1964; Samson and Cairns, 1964, 1965; Cook and Ching, 1967; Goldstein
and Mastrup, 1966; Matsunaga and Watanabe, 1967; and many others). The results of most
of these investigations have been reviewed by McNesby and Okabe, 1964; Sullivan and
Holland, 1966; Huffman, 1969; and recently by Hudson, 1971.

Figures (9-58), (9-59), (9-60), and (9-61) present the, absorption cross section
O

profiles of 02 for the spectral region 2500-800A. Figures (9-62) and (9-63) depicts
the absorption cross sectional curves for the Herzberg and Schumann Runge continue
respectively. Figures (9-64), (9-65), (9-66), and (9-67) present the absorption cross

o
section profiles for the region 1000-600A.
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Figure (9-58). Absorption coefficients of 02 for the wavelength region 1100-850A.
[Watanabe and Marmo (1956)]
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Figure (9-59). Absorption coefficients of 02 for the wavelength region 1350-1050A.
[Watanabe, Inn & Zelikoff (1953)]
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Figure (9-60). Absorption coefficients of 02 for the wavelength region 1750-1250A.
[Watanabe, Inn and Zelikoff (1953)]
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Figure (9-61). Absorption coefficients of 02 for the wavelength region 2500-1200A.
[McNesby and Okabe (1964)]
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Figure (9-62). Herzberg dissociation continuum cross sectional
[Ditchburn and Young (1962)]
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Figure (9-63). Schumann-Runge dissociation continuum cross sectional curve.
[Metzger and Cook (1964)]
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Figure (9-64). Absorption coefficients of 02 for the wavelength region 700-600A.
[Huffman et al. (1964)]
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Figure (9-65). Absorption coefficients of 02 for the wavelength region 800-700A.
[Huffman et al. (1964)]
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Figure (9-66). Absorption coefficients of 02 for the wavelength region 900-800A.
[Huffman et al. (1964)]
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Figure (9-67). Absorption coefficients of 02 for the wavelength region 1000-900A.
[Huffman et al. (1964).
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Microwave Spectrum. - The 02 molecule, though it is electrically non-polar, possesses

a permanent magnetic moment associated with the aligned spins of two unpaired electrons.

Consequently, magnetic dipole transitions (AN = 0, AJ = ± 1) are allowed.
Beringer (1946) first observed weak absorption corresponding to such transitions.

It was followed by detailed investigations made by Burkhalter et al., 1950; Anderson,

Johnson and Gordy, 1951; Zimmerer and Mizushima, 1961; West and Mizushima, 1966; McKnight
and Gordy, 1968; Wilheit and Barrett, 1970; Tankham, 1954; Tinkham and Stranberg, 1955a,

b, c; Gebbie et al., 1966; Miller, Javan and Townes, 1951; Miller and Townes, 1953. For

details one may refer to the original papers.
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Carbon Monoxide (CO)

Dipole Moment, M: 0.1 Debye

lonization Potential, I.P.:. 14.013 eV

Dissociation Energy, D(C-O): 11.09 eV

Ground Electronic State Configuration: (la)2 (2a)2 (3a)2 (4a)2 (lir)4 (5ir)2 1T*

Ground-State Vibration Frequency and Anharmonicity Constants: u>e = 2169.826

coexe = 13.295

u^o = 0.0115 (cm"1)
C C

Rotational Constants: B a rg

1.93127 cm"1 0.0175 cm"1 1.1283A

Carbon monoxide is a fairly stable, light and toxic gas. In earth's atmosphere, it

exists as a major pollutant. Its presence has been confirmed in certain other planetary

atmospheres, e.g., Venus and Mars, as well as in stellar atmospheres, comet tails and the

solar chromosphere.
CO is a simple heteronuclear polar diatomic molecule, composed of one atom of carbon

o
and one atom of oxygen joined together by a covalent bond of length approximately 1A in

its ground electronic state. Carbon monoxide is normally available in the following

isotopic forms: C12016; C12017 ; C1 301 6 ; C1 301 8 ; C^O16.

Molecular Spectrum

Carbon monoxide exhibits a fairly rich and extensive spectrum ranging from microwave

to the vacuum ultraviolet. The observed spectral features can be grouped into three

categories: (1) Electronic Spectrum, (2) Vibration-Rotation Spectrum, and (3) Rotational

Spectrum.

Electronic Spectrum. - Electronic bands of carbon monoxide cover a wavelength span of
O O

about 8000A in the region 8600-600A. As many as 31 electronic transitions involving 24

electronic states of the molecule are now known. A number of Rydberg series have also

been identified. Birge, 1926; Krupenie, 1966; and lately, Tilford and Simmons, 1972;

have presented exhaustive reviews covering various aspects of these features. Table

(9-XXXIV) presents a classified resume of all the electronic transitions so far identified

for ready reference. Brief description of the spectral features of each of these transi-

tions follows:

(1) a nr 2 X 1Z+ Cameron System (2580-1760A)R

The Cameron band system is an electric dipole forbidden system consisting

of red-degraded quintupole headed bands covering the spectral region 25800-
o

1760A. The system is heavily overlapped by the stronger Fourth positive
o

system (discussed later) that covers a wider range 2800-1140A and also by
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TABLE (9-XXXIV) OBSERVED ELECTRONIC TRANSITIONS OF THE MOLECULE CO

S.N.

1

2

3

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25.

26

27

Electronic
Band System Transition

Cameron a!nr •"• X'Z+

Hopfield- a' 3Z - X'Z
Birge

Asundi a' 3Z -» asnr

d'4f -X'Z*

"Triplets" d!4j -» a3np

e3Z~ *• X'Z+

Herman e3Z" -> a3nr

Fourth Positive A'n <- X'S*

I'Z' «- X'Z+

Hopfield- b3£ *-*X'E
Birge

Third Positive b3Z -» a!n

Hopfield- .,.+ i +
Birge B i «x i.

Angstrom B!Z ••-» A'n

Kaplan K - a3n

Eo'Z+ - X 'Z*

J3Z* «- X'Z+

Hopfield- C'Z* -» X 'Z*
Birge

Knauss C'Z * a' 3Z

Herzberg C'Z* -» A'n

"3A" c3n * a3n
r

Tilford c3n » XJZ+

Hopfield- E'n »-» X'Z+

Birge

'Z - X'Z+

Hopfield- F('Z+) * X ]Z+

Birge

Hopfield- G('n) » X'n+

8i rge

Tanaka P » X'Z+

Q - X'<
R * X'Z*
S * X'zt
T * X'Z

Favorable
Sources

Absorption,
Discharges
(low pressure)

Absorption

Positive
col umn

Absorption

Discharge
(CO + He)

Absorption

Discharge
CCO + rare

gases)

Absorption
positive
col urnn

Absorption

Geissler
tube

Absorption

Positive
column

Absorption

Positive
Column

Discharge

High
Pressure
discharge

Absorption

Absorption

r.f. discharge

Positive
Column

Geissler
tube

Absorption

Absorption

Absorption

Absorption

Absorption

Absorption

Characteristic
Wavelength Limits Bands, A Remarks

2580-1760A R 2575.3(4,8) Five

headed

1810-1280A R 1439.0(13,0)

8600-3900A R 6513.5(9,1) Many
Headed

1620-1230A R 1402.8

6464.6
7500-3770A R 6433.1

6401.0

10,0) Simple
Heads

(3,0) Triple
headed

1575-1240A R 1542.8(1,0)

5430-4270A R Dense
Heads

2800-1140A R 2089.9(5,12) Simple
2067.6(4,11) heads
2046.3(3,10)

1550-1260A R

2980-2G70A R

Only Q

1190-1130A V

3830-2260A V Z833.1(0.o) Five^

1150-1100A V

6620-4120A V 4510.9(0,0) Simple
heads

2750-2520A V

1310-1100A R

1100-1070A R

1100-1060A V

3250-2930A

5710-3680A V 3893.1(0,1) Simple
heads

2710-2300A V 2389.7(0,1) Multiple
heads

1 086A V

1080-1050A V

1130-1010A R

1000A R

950A R

790-730§ R
780-7404 R
780-730A R
690-670A R
650-640A R

28 Rydberg Rydberg Absorption 950-600A
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the B 2Z+ - X 2Z~ First negative bands of C0+. Cameron (1926) first d is- .
covered these bands in an uncondensed discharge in neon gas wi th traces
of carbon monoxide and hence the name. Hopf ie ld and Birge (1927) later
observed them in absorption. It was followed by more detailed investigations
by Knauss and Cotton, 1931; Gero, Herzberg and Schmid, 1937; Schmid and Gero,
1937; Gero, 1938; Herman, 1947; Rao, 1949; Tanaka, Jursa and LeBlanc, 1957;
Krupenie, 1966.

(2) a-1 3Z+ - X "Z"1" Hopfield-Birge System (1810-1280A)R
This system arises out of a forbidden electric dipole transition. Hopfield
and Birge (1927) first reported a group of five red-degraded bands with the

o
one at 1696.9A as the (0,0) band of the system. The system was later studied

by Estey, 1930; Beer, 1937; and lately by Herzberg and Hugo, 1955; Tanaka,

Jursa, and LeBlanc, 1957. High resolution studies are due to Herzberg et al.,
1955; and Simmons et al., 1972.

(3) a1 3z+ - a 3nr Asundi System (8600-3900A)R

This system consists of numerous multiheaded red-degraded bands stretching

right through deep red. Asundi (1929) first discovered these bands in a

gaseous discharge through carbon monoxide. Studies by Beer, 1937; Schmid

and Gero, 1937; Gero and Lorinezi, 1939; Garg, 1949; Herzberg and Hugo, 1955;

are worth mentioning in this context.

(4) d 3Ai - X 1Z.+ Transition (1620-1230A)R

This is a weak progression of single-headed and red degraded bands extending

to high v1 values and assumed to correspond to the R-heads of the transition.

The system was first reported by Tanaka, Jursa and LeBlanc, 1957; and lately

studied by Herzberg, Hugo and Tilford, 1970.

(5) d 3Ai - a
 3nr "Triplets" (7500-3770A)R

The d 3A. - a 3n "Triplet" bands form a fairly extensive system of moderate

intensity and cover almost the entire visible region. Merton and Johnson,(1923)

first observed two progressions of this system in a gaseous discharge in helium
with traces of carbon monoxide. Later, these bands were produced and studied

using different sources in emission (Birge, 1925; Gero and Szabo, 1939; Asundi,

1940; Herman and Herman, 1947, 1948; Mulliken, 1958; Sato, I960, 1962; Carroll,

1962; Kovacs, 1964).
(6) e 3Z~ - X 1Z+ Transition (1570-1240A)

This band system also corresponds to a forbidden transition and lies in the

vacuum ultraviolet. Herzberg and Hugo (1955) first observed a long progression

(v1 = 0) of weak, red-degraded single headed bands in absorption which con-

stitutes this system. Later, Tanaka, Jursa and LeBlanc (1957) and also Simmons

and Tilford (1971) studied these bands in detail.
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(7) e 3Z~ - a 3Hr Herman System (5430-4270A)R

This system is composed of closely spaced red-degraded bands. Though Merton

and Johnson (1923) first observed some of these bands, it was Herman and

Herman (1947, 1948) who identified them forming as a separate system. Later

Herzberg and Hugo 0955) and Tanaka, Jursa and LeBlanc (1957) studied these

bands in absorption. Barrow (1961) and Simmons, Bass and Tilford (1965)

presented a modified analysis.

(8) A Jn - X 'Z* Fourth Positive System (2800-1140A)R

This is the most prominent group of bands in the electronic spectrum of carbon

monoxide. It consists of a large number of single-headed, red-degraded bands
o

lying in the region 2800-1140A. Besides early studies by Birge (1923), these

bands have been studied by many workers (Leifson, 1926; Birge, 1927; Estey,

1930; Headrick and .Fox, 1930; Read, 1934; Gero, 1936; Schmid and Gero, 1936;

Tschulanowsky and Stepanow, 1936; McCulloh, 1951; McCulloh and Glocker, 1953;

Tanaka, Jursa and LeBlanc, 1957; Tanaka, 1957; Simmons, Bass and Tilford, 1969).

Detailed line structure study of the various bands has been recently made by

Tilford and Simmons (1972.).

(9) I rZ~ - X JZ+ Transition (1550-1260A)R

This is a smaller group consisting of three red-degraded bands showing only

Q-heads. It appears only in absorption. It was first identified as a separate

system by Herzberg et al. (1966). Recently Simmons and Tilford (1971) studied

these bands quite extensively.

(10) f 3£+ - a 3n]. Transition (2980-2670A)R

This is a relatively weak system consisting of several red-degraded bands

lying very near to the (1,0) and (0,1) violet degraded bands of the Third

positive system. Schmid and Gero (1937) who first observed these bands,

ascribed them to the electronic transition, 3Z - 3n. Gero (1938) also per-

formed rotational analysis of two of these bands. The system was studied

more extensively later by Garg, 1949; Stepanov, 1940; Gaydon, 1953; and

. Herzberg, 1961.

(11) b JZ+ £ X 1E+ (1190-1130A)

. Discussed later under the heading "Hopfield-Birge Singlet-Singlet Transitions".
o

(12) b 3Z+ - a 3nr Third Positive System (3830-2260A)V

This system is composed of strong quintet-headed red degraded bands charac-

terized by intensity .fluctuations. First systematic measurements on these

bands date back to 1888 by Deslandres who observed them in a gaseous dis-

charge in carbon monoxide. Johnson (1926) made first assignment of the vibra-

tional quantum numbers for the various bands in the system and identified the

lower state of the transition with the upper state of the Cameron bands.
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Detailed investigations were later made by Birge, 1926; Duffendack and Fox,
1926, 1927; Asundi, 1929; Dieke and Mauchly, 1932; Schmid and Gero, 1935;

Gero, 1936; Beer, 1937; Stepanov, 1940.
(13) B 'Z+ * X 'Z+ (1150-1100A)

Discussed later under the heading "Hopfield-Birge Singlet-Singlet Transitions."

(•14) B 'Z* - A xn Angstrom System (6620-4120A)V

This band system is composed of fairly strong single-headed and violet

degraded bands, characterized by numerous perturbations and predissociations.

The first rotational analysis of some of these bands was carried out by Hulthen

(1923) and Jasse (1926). Later, Rosenthal and Jenkins, 1929; Schmid and Gero,

1935; Johnson and Asundi, 1936; Coster and Brons, 1934; McCulloh, 1951; McCulloh,

and Glockler, 1953; Douglas and Holler, 1953; studied this spectrum under high

dispersion and resolution and using better sources of emission.

(15) K - a 3nr Kaplan System (2750-2520A)V

Kaplan (1930) observed three bands forming a new system when a trace of carbon

monoxide gas was excited in a long atomic hydrogen tube. The bands were

violet degraded and each showed six subheads. They resembled quite closely

with the "3A" bands. Kaplan attributed the system to a transition K-a 3nr,

the upper state being most probably a metastable quintet.

(16) EQ
 ll+ - X 'Z+ "High Pressure Bands " (1310-1100A)R

These are weak red degraded bands and were first observed by Tschulanowsky
o

and Gassilewitch (1937) in the region 1200-930A in a high pressure discharge

in carbon monoxide. Tschulanowsky (1939) classified these bands as belonging

to a new system E *Z - X 1Z .

(17) j 3Z+ - X 1Z+ Transition (1100-1070A)R

This system of red-degraded bands was discovered by Tilford and Vanderslice

(1968). It consists of mainly two bands at 1073.5A and 1099A, respectively.

(18) C 1Z+ t X 'Z* (1110-1060A)

Discussed later under the heading "Hopfield-Birge Singlet-Singlet Transitions."

(19) C 1Z+ - a1 3Z+ Knauss System (3250-2930A)V

Knauss (1931) observed four violet degraded bands in an electrodeless dis-

charge through carbon monoxide. These bands were ascribed to an entirely

new transition C *Z - a1 3Z+. More recent data on the vibrational structure

of the state a1 3Z indicated that the v" values as proposed by Knauss should

be raised by 2.

(20) C 'Z+ - A 'IT Herzberg System (5710-3680A)V

This system, which partly overlaps the Angstrom system, consists of only a

few bands of the v" - 0 progression. Three bands of this system were first

observed by Duffendack and Fox (1927) who perhaps wrongly identified them as
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part of the Angstrom system on account of their similar structure. Herzberg,

(1929) observed eight bands of this group and identified them as arising

out of a new transition, now designated as C ll - A 1E. The system was

later studied in detail by Asundi, 1929; Asundi and Johnson, 1929; Schmid

and Gero, 1935.

(21) C 3n - a 3nr , 3A System (2710-2300A)V

This system is composed of fairly strong multi-headed and violet degraded
o

bands lying in the region 2710-2300A. Five of the bands assigned to this

system were first observed by Duffendack and Fox (1926, 1927). Later studies

were made by Asundi, 1929; Schmid and Gero, 1937; Gero, 1938; and lately by

Tilford, 1969; and Ginter and Tilford, 1969. These bands have the same final

state as the Third positive system b 3I - a 3n but originate from a state

about 1.02 eV above the b state.
(22) c 3n - X 1Z+ Tilford System (~- 1086A)V

Tilford (1969) first identified this transition. It is composed of only one

violet degraded band, the (0,0) band located at 92076.8 cm"1.

(23) E ln t X 1Z+ (1080-1050A)
Discussed later under the heading "Hopfield-Birge Singlet-Singlet Transitions."

(24) Ml - X 1T+ Transition (1130-1010A)R

Tschulanovsky (1939) reported a group of weak and overlapping red degraded
O ' .j.

bands in the region 1100-1000A, which form a new 'n - X *E system. The
o

best resolved band is the (0,1)-band located at 1034.65A which shows longer

and stronger P and R branches than the Q branch.
(25) F ('Z*) •*- X 1Z+ (1000A)

Discussed later under the heading "Hopfield-Birge Singlet-Singlet Transitions."

(26) G ( l n ) •»• X 1l+ (950A)

Discussed later under the heading "Hopfield-Birge Singlet-Singlet Transitions."

(27) P, Q, R, S, T - X ll+ Tanaka Absorption Systems (800-630A)R

(a) P «- X 'I* (790-730A)R

(b) Q «- X *Z+ (780-740A)R

(c) R •«- X 1I+ (780-730A)R

(d) S <- X 1z+ (690-670A)R

(e) T «- X »z+ (650-640A)R

Tanaka (1942) observed in absorption five new progressions of red degraded

bands with approximately constant differences of frequency. These progressions

were ascribed by Tanaka to the electronic transitions from the ground state to

the P, Q,.R, S and T states... Ueissler et al.(1959), and later.Kaneko (1961),

identified some of these states in the photoionization and electron impact

experiments. • . ' . • • . .

230



(28) Rydberg Series (950-600A)
Five Rydberg series have been identified in the absorption spectrum of

O

carbon monoxide in the vacuum ultraviolet region (950-600A) (Henning,
1932; Tanaka, 1942; Anand, 1942; Takamine, Tanaka and Iwata, 1943; Woods,
1943; Ogawa, 1965; Ogawa and Ogawa, 1972). These are as follows:

n = 6 - - - 14 Takamine- -, + ,+> ., +
Tanaka-Iwata; XV (C(f).- X 'Z

V =

V =

V =

V =

V =

113029 -

133380 -

158692 -

158670 -

158680 -

(n - 1.88)2 >

R
(n - 1.69)2 >

R
(n - 1.68)2 '

R
(n - .93)2 >

R
(n - .20)2 '

n = 5 - - - 9 Tanaka , .
a Series; A 2nt (.C0

+) «- X V

n = 4 - - - 12 Tanaka , , ,
6 Series; B 2Z (CO ) «- X JZ

Ogawa; B 2Z+ (C0+) «- X JZ+

(29) Hopfield-Birge Singlet-Singlet Transitions (11, 13, 18, 23, 25, 26)

(a)

(b)

(c)

(d)

(e)

(f)

b 'z -
B 1Z+ £

C 'Z+ +

E 'n t
F ('Z+)

G ( :n) -

x ir
x :z+

x :z+

X »Z+

- x :ZH

> X JZ+

( 1190-1 130A)

(1150-1100A)

(1110-1060A)

(1080-1050A)

(1000A)

(950A)

Hopfield, 1927; and Hopfield and Birge, 1927; reported these band systems,

a majority of them appearing both in absorption and emission. Full details

of this work was never published, though several of these bands have since

been observed elsewhere and studied (Read, 1934; Tanaka et al., 1957; Tilford,
et al., 1965; Tilford, Vanderslice and Wilkinson, 1965; Simmons and Tilford,

1966; Simmons and Tilford, 1971). Band head data in, respect to all these
systems can be found in the NSRDS-NBS-5 report by Krupenie (1966) and the

.review article by Tilford and Simmons (1972). Table (9-XXXV) gives the

various spectroscopic constants for all the known radiative transitions

and figure (9-68) presents a schematic showing the relative disposition of the

various known states of CO and its ion, C0+. Various radiative transitions
are also indicated.
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TABLE (9-XXXV) SPECTROSCOPIC CONSTANTS FOR KNOWN RADIATIVE TRANSITIONS Of CO

State
Nomen-
clature T

T 154362

S 144735

R 128866

Q 128738

P 126410

G(1n) 105266

F(1Z+) 99730

'II 98836

E1!! 92930.03

C3n 92076.1

C'Z+ 91919.1

i3Z+ 90988.0

VZ+

K (89889)

B'Z* 86916.2

b3Z+ 83832.5

f 3Z+ (83744)

A1!! 64746.5

I'Z~ 64546.65

e3Z" 63708.92'

d3Ai 60646.93

a3Z+ 55353.91

a3nr 48473.97

X'Z* 0

(a) First member of
(b) Value of B
(c) Value of r°

0) U) Xe e e

(1354) (9)

(1641) (4.8)

1568 11.6

1558 10.6

1567 13.6

(1097)

2112 198

_

(2134)

-

2175.92 14.76

2196 15

-

-

2212.70 15.22

(2188)

-

1515.4 17.25

1092.03 10.754

1113.67 9.596

1152.58 7.2812

1230.651 11.0130

1743.55 14.47

2169.8233 13.2939

a Rydberg series

Be

1.139<b)

1.9644^b)

1.9563(b)

1.9533

1.889

1.182(b)

'-

1.9612

1.986

(0.83)^

1.6104

1.2702

1 . 2848

1.3099

1 . 3453

1.6911

1.931271

°e

-

-

-

0.0196

0.020

-

-

0.0261

0.042

-

0.0205

0.01815

0.0181

0.01677

0.01872

0.0195

0.017513

D «10 r
e e

1.469(c)

6.5 1.1188^

1.121l(c)

5.7 1.1219

1.141

1.442(c)

-

6.1 1.1197

1.113

-

7.3 1.2356

9.0 1.3913

6.5 1.3834

5.8 1.3700

6.5 1.3519

1.2058

6.1198 1.128322

Remar

(a)

(a)

(a)

(a)

(a)

(a)
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X 2Z+ (C0+) 14.009 eV
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A'n
I'z"
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\
\

C3!i

(CO)

Figure (9-68). Schematic showing various known electronic states of CO and
important radiative transitions.
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. Absorption cross sections for carbon monoxide have also been measured by
o

.different workers in different wavelength segments, especially below 2000A
(Watanabe et al., 1953; Sun and Weissler, 1955; Cairns and Samson, 1955;
Huffman et al., 1964; Thompson et al., 1963; Myer and Samson, 1970), The

o
results of Myer and Samson (1970) for the spectral region (1700-1050A) pre-

sented in figure (9-69) and those of Huffman et al. (1964) for the region

(1000-600A) are presented in figures (9-70), (9-71), (9-72), and (9-73).

Vibration-Rotation Spectrum. - Vibration-rotation spectrum of carbon monoxide has

been the subject of numerous investigations in the past. Mention may be made of the

following few important references (Herzberg and Rao, 1949; Plyler et al., 1952; Goldberg

and Mueller, 1953; Mills and Thompson, 1953; Locke and Herzberg, 1953; Plyler et al.,

1955; Rank et al., 1957; Mould et al., 1960; Rank et al., 1961; Pierre, 1964; Rank et al.,

1965; Kaplan et al., 1969).

Though most of these studies have been limited to absorption many of the vibration -

rotation features have been identified in emission too in combustion or ablation of cer-

tain organic compounds. Some of the bands have been identified in sun's spectrum as well

as in the spectra of-certain planetary atmospheres. (Connes, 1969; Goldberg and Mueller,

1953). Mantz et al. (1970) and recently Roh and Rao (1974), and Johns, et al. (1974) made

extensive wavelength measurements for a- large number of vibration-rotation laser lines

lying in the spectral region 2000-1200 cm
The fundamental band 1 «- 0(6y) appears as strongest of all the known vibration

rotation bands of carbon monoxide. Two other weaker bands 2 •<- 0 (2.35y) and 3 +• 0 (1.58y)

are also of common occurrence. A list of the known vibration-rotation transitions of
carbon monoxide is given in (Table 9-XXXVI) . For detailed data on the fine structure of

these bands, papers by Rank et al., 1957; Plyler et al., 1955; Pierre, 1964; may be

referred.

Rotational Spectrum. - Pure rotational transitions in carbon monoxide have been

studied both in the microwave ( A < 2.6 mm) as well as in the far infrared (600-lOOy)

regions (Gilliam, Johnson and Gordy, 1950; Bedard, Gallagher and Johnson, 1953; Palik

and Rao, 1956; Gordy and Cowan, 1957; Rosenblum, flethercot and Townes, 1958; Jones and

Gordy, 1964; Rao, deVore and Plyler, 1963). Details can be seen in the original

references.
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WAVELENGTH, A

Figure (9-69). Absorption cross sections profile of CO for the wavelength

region 1750-1050A (Myer and Samson, 1970).
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O

5
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WAVELENGTH(I )
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Figure (9-70). Absorption coefficient of CO for the wavelength region

700-600A (Huffman et al, 1964).
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Figure (9-71). Absorption cross section of CO for the wavelength region

800-700A (Huffman et al., 1964).
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Figure (9-72). Absorption coefficient of CO for the wavelength region

900-800A (Huffman et al., 1964).
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Figure (9-73). Absorption coefficients of CO for the wavelength region

1000-900A (Huffman, et al., 1964).
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TABLE XXXVI. VIBRATION-ROTATION BANDS OF t (

(Kruperne, 1966)

S.N.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Band
Classification

2-1

1-0

7-5

6-4

5-3

4-2

3-1

2-0

3-0

4-0

IN THE INFRARED REGION

vo(0bs.)

2116.80 cm"1

2143.274

3996.88

4049.24

4101.73

4154.404

4207.168

4260.064

6350.436

8414.458
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Hydrogen Chloride (HC1)

Dipole Moment, M: 1.04 Debye

lonization Potential, I.P.: 1 2 . 7 4 e V

Dissociation Energy, D(H-C1): 4.433 eV
Ground Electronic State Configuration: KL(3so)2(3po)2 (3pir)4 1E+

Ground State Vibration Frequency and Anharmonicity Constants: w = 2990.95 (cm" )

Rotational Constants: B a rg(H-Cl)

.10.5934 cm"1 0.3072 cm"1 1.2745A

co x = 52.8186

weye = 0.2243

Hydrogen Chloride is a colorless gas denser than air. It is fairly stable at tempera-

tures up to 1500°C, after which it dissociates into chlorine and hydrogen. It easily

condenses to the liquid form by pressure alone and the liquid so formed freezes to a white

solid which melts at 112°C.

HC1 is a highly polar diatomic molecule composed of one hydrogen and one chlorine
o

atom separated by a bond length about 1.27A in its ground electronic state. Hydrogen
chloride occurs in the following principal isotopic forms: JH35C1, 2H35C1, 3H35C1,

^"Cl, 2H37C1, 3H37C1.

Molecular Spectrum

The observed spectra of gaseous hydrogen chloride can be described under the

following three categories: (1) Electronic Spectrum, (2) Vibration-Rotation Spectrum,

and (3) Rotational Spectrum.

Electronic Spectrum. - Besides early work by Price (1938) and Romand and Vodar (1948),
many workers in recent years have investigated electronic spectrum of HC1 (Jacques and

Barrow, 1959; Stamper, 1962; Tilford, Ginter and Vanderslice, 1970; Myer and Samson, 1970).
The observed features of the electronic spectrum include:

(1) V ^+ - X 'I*.System (2375-1800A)

Jacques and Barrow (1959) studies this system in its various details. Electrode-

less discharge through hydrogen chloride vapor gave rise to a multi-line spectrum
o

in the spectral region 2375-1800A. Of the 2000 lines measured, about 1000 which
include most of the strong lines, have been assigned to 15 bands involving

v1 = 0, 1, 2 in the v lz+ and v" = 10, 11 16 in the ground X 1Z+ state.
(2) V 'E+ - Q1'3!! Continuum (Ama -2570A)max o

Jacques and Barrow (1959) reported a broad continuum with A -2570A in themax
electrodeless discharge spectrum of HC1. Further details about this emission

continuum are not available.
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o
(3) Q 1 ' 3 - X 'Z* Continuum Uma -1535A)

niaX o

Romand and Vodar (1948) reported a broad absorption continuum with ^max~
1535A

in the vacuum ultraviolet region. Similar observations have been made recently

by Myer and Samson (1970). It is a broad absorption band extending in the

region 1800-1400A with A -1535A.
. max o

(4) B [b '1^] - X JZ Band at X-1340A

It is a sharp band first reported by Price (1938) in the vacuum ultraviolet

absorption spectrum of HC1. Studies on the absorption cross sections of HC1

by Myer and Samson (1970) confirmed the existence of this band. Recently,

Tilford, Ginter and Vanderslice (1970) photographed this band under high disper-

sion and also scanned it using photoelectric methods. A detailed rotational

structure analysis of the band suggested it to be the (0,0) band of a b *E. -

X 1Z+ transition. Table (9-XXXVII) presents the fine structure data for this

band.

TABLE (9-XXXVII) WAVENUMBERS OF THE BANDS OF THE b 3n. <- X 1E+ TRANSITION OF HCV

J

0

1
2

3

4

5

6

7

8

9

3n2 - x(o-o)b

Q(J)

74 824.9

815.5

802.2

786.0

769.3

750.2

3n ]

P(J)

75 100.5

076.9

052.5

027.0

75 000.3

74 972.6

944.0

913.3

t - X(0-0)C

R(J)

75 161.4

180.8

198.3

214.5

229 . 1

242.6

255.7

266.2

275.0

3n0

P(J)

75 448.8*

426.8

405.2

385.4

363.1

340.6

318.3

- X(0-0)C

R(J)

75 531.5

551.8

572.4

591.2

610.4*

630.0

647.0

664.5

681.5

All branches are diffuse with the degree of diffuseness increasing with increasing
rotational energy. Bands too diffuse for rotational analysis are listed in Table
(9-XLI). An asterisk indicates a blended line.

b R-head observed at 74 917 ± 5 cm"1 P(5) - 74 710.7; P(6) = 74 676.7 cm"1.

0 Q-branch unresolved.
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(5) C [xn] - X az+ System (1290-1210A)

This is a very strong electronic band system of HC1. It was first identified by

Price (1938). Myer and Samson (1970) measured absorption cross sections of HC1 in
o

this region and reported as many as 5 vibrational members, viz., (0,0) - 1291.1A;

(1,0) - 1247.3A; (2,0) - 1208.7A; (3,0) - 1175.OA; (4,0) - 1143.8A. The vibration

analysis of these data yielded the molecular constants as w = 2880 cm" and w x

= 80 cm"1 which differed slightly with those derived by Price (1938). Tilford,

Ginter and Vanderslice (1970) studied rotational structure of (0,0) and (1,0)

bands of this system and obtained rotational constants for vibrational levels up

to v = 3 of the upper state. These data are presented in Table (9-XXXVIII).

TABLE (9-XXXVIII) WAVENUMBERS OF THE BANDS OF THE C 'n «- X »z+ TRANSITION OF HC1£

(0-0) Bandb (1-0) Bandc

P(J) Q(J) R(J) P(J) R(J)

80- 187.4

204.8

219.0

0

1
2

3
4

5

6

7

8

9

10

77 440.47
416.27
388.58
359.93
327.22
293.22
257.80
218.36
177.86

77 482.89*
478.86
472.18
463.34*
452.29
438.67
422.86
405.93*
384.63*

77 503.94
520.38
534.69
546.43
556.20
563.20
568.09

80 125.5

100.2

071.3

041.3

80 010.5

79 976.0
938.2

All branch lines are somewhat diffuse with the degree of diffuseness increasing with in-
creasing rotational energy. An asterisk indicates a blended line.

A number of very diffuse lines corresponding to higher J levels have been observed but
are not reported here.

cBranch lines for this transition are very diffuse and no H3SC1-H37C1 splitting is resolved.
The head of the unresolved Q-branch is at 80 170 ± 3 cm"1 and the R-head is observed at
80 252 ± 5 cm"1.

(6) Rydberg Series (1150-1050A)
Myer and Samson (1970) reported numerous overlapping bands, some sharp and

O

some diffuse in the spectral region 1150-1050A. These may be the members
of some Rydberg series. The results of Myer and Samson are presented in

figure (9-74). Figure (9-75) presents a schematic/of the important elec-

tronic states of HC1 so far known. ,. .: .

2 4 0 . . .
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VIBRATIONAL BANDS

2100 2000 1800 1600 1400 1200 1050

WAVELENGTH (A) _ <r
Figure (9-74). Absorption cross sections of HC1 for the wavelength region 2150-1050A.

[Myer and Samson, 1970]

H*Cl • —••

r(A)

Figure (9-75). Schematic showing some important electronic states of HC1,
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Vibration-Rotation Spectrum. - Vibration-rotation spectrum of hydrogen chloride has
been the subject of numerous investigations (Randall and Imes, 1920; Meyer and Levin,
1929; Herzberg and Spinks, 1934; Lindholm, 1943; Naude and Verleger, 1950; Mills, Thompson,
and Wiggins, 1960; Rank, Eastman, Rao and Wiggins, 1962; Stafford, Holt and Paulson, 1963;
Rank, Rao and Wiggins, 1965; Roberts, 1966; Newman, 1952).

These bands which are degraded to the longer wavelengths lie in the spectral xregion
(4.8 - 0.7\i) and appear in emission as well as in absorption. Table (9-XXXIX) provides
the data on the rotational structure for the fundamental band.

TABLE (9-XXXIX) OBSERVED BAND ORIGINS (cm"1)

Band Observed

1-0 2885.9775

2-0 5667.9841

3-0 8346.7816

3-1 ' 5460.8041

4-2 5254.8555

5-3 - 5049.503

4-0 10922.803

5-0 13396.217

Data presented here for HC135 are due to Rank et al. (1960, 1965) who made extensive
measurements on these spectral features in absorption using high dispersion echelle
spectrographs and long absorption columns of heated .vapor of hydrogen chloride. Table
(9-XL) gives the band origin data for the various observed bands. Detailed data can be
seen in the original papers on other bands, viz., (2-0), (3-0), (.3-1), (4-2), (5-3),
(4-0), (5-0). Corresponding data on DC135 and DC137 have been presented by Van Home and
Hause (1956).

Traces of gaseous HC1 have been discovered in the atmosphere of Venus by identifying
numerous weak absorption lines in the spectrum of Venus that have been assigned to the
(2-0) vibration-rotation band of HC1 (Connes, Connes, Benedict and Kaplan, 1967). These
lines have been found to be consistent with approximately 2 mm Amagat of HC1 gas in the
optical path at temperatures around 240°K and presssure 0.1 atm. The observed data along
with accurately measured laboratory data are presented in Table (9-XLI).

Laser action in HC1 spectrum was first studied by Kasper and Pinentel (1965) in a
system pumped by the H2 - C12 photoflash induced explosion. It was later investigated
by many workers using a variety of systems (Deutsch, 1967; Moore, 1968). Table (9-XLII)
presents the HC1 transitions where laser action has been observed.
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TABLE (9-XL) CALCULATED AND OBSERVED FREQUENCIES IN VACUUM WAVE NUMBERS (cm"1)

OF THE 1-0 BAND OF HC135

R(J)
J

0

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

(calc)

2906.2479

2925.8977

2944.9146

2963.2866

2981.0015

2998.0476

3014.4134

3030.0876

3045.0592

3059.3171

3072.8509

3085.6502

3097.7048

3109.0050

3119.5413

3129.3042

3138.2848

3146.4743

3153.8642

3160.4462

3166,2125

3171.1552

3175.2670

3178.5405

3180.9690

3182.5455

3183.2635

3183.1167

3182.0990

3180.2044

3177.4271

3173.7614

(obs)

.2521

.8950

.9154

. 2865 -

.0013

.0438

.4114

.0862

.0569

.3179

.8490

.6539

.7034

.0026

.5362

.3031

. 2869

.4700

.8637

.4418

.2135

.1514

.2644

.5395

.9669

.5403

.2574

.1090

.0857

.4142

.7417

calc-obs.

X103

- 4.2

+ 2.7

- 0.8

+ 0.1

+ 0.2

+ 3.8

+ 2.0

+ 1.4

+ 2.3

- 0.8

+ 1.9

- 3.7

+ 1.4

+ 2.4

+ 5.1

+ 1.1

- 2.1

+ 4.3

+ 0.5

+ 4.4

- 1.0

+ 3.8

+ 2.6

+ 1.0

+ 2.1

+ 5.2

+ 6.1

+ 7.7

+13.3

+12.9

+19.7

P(J)

(calc)

2865.0991

2843.6254

2821.5691

2798.9433

2775.7609

2752.0353

2727.7797

2703.0074

2677.7320

2651.9668

2625. 7255

2599.0216

2571.8686

2544.2801

2516.2696

2487.8507

2459.0367

2429.8412

2400.2774

2370.3585

2340.0976

2309.5078

2278.6019

2247.3926

2215.8926

2184.1142

2152.0696

2119.7709

2087.2299

2054.4583 .

2021.4673

(obs)

.0967

.6234

.5713

.9401

.7602

.0363

.7774

.0068

.7320

.9664

.7272

.0208

.8703

.2817

.2724

.8560

.0406

.8409

.2773a

.3622a

.0977a

.5138a

. .6037a

.3964a

.8989a

.1146

.0775

.7868

.2392

.4582 . .

calc-obs

X103

+ 2.4

+ 2.0

- 2.2

+ 3.2

+ 0.7

- 1.0

+ 2.3

+ 0.6

0.0

+ 0.4

- 1.7

+ 0.8

- 1.7

- 1.6

- 2.8

- 5.3

- 3.9

+ 0.3

'+ 0.1

- 3.7

- 0.1

- 6.0

- 1.8

- 3.8

- 6.3

- 0.4

- 7.9

+14.1

- 9.3

.. .- 0.1

'Computed from A2F"(J) and corresponding R line.
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TABLE (9-XLI) HC1 LASER

Wavelength

3.7071

3.7383

3.7408

3.7710

3.7735

3.8050

3.8074

3.8401

3.8425

3.8768

3.9149

3.8509

3.8840

3.9181

3.9205

3.9536

3.9560

3.9909

4.0295

TABLE (.9-XLI I)

Wavelength

13.8720

14.09,94

14.3434

16.2125

16.6085

16.664

17.0340

17.4923

Frequency

v(cm'1)

2697.52

2675.01

2673.23

2651.82

2650.08

2628.13

2626.45

2604.09

2602.48

2579.42

-2554.34

2596.79

2574.70

2552.26

2550.70

2529.31

2527.79

2505.68

2481.69

HC1 LASER PURE

Frequency

v(cm"1)

720.921

709.279

697.232

616.809

602.114

600.10

587.070

571.686

Transition

HC135 HC137

2-1

P(4)

P(5)

P(6)

P(7)

P(8)

P(9) .

P(10)

3-2

P(4)

P(5)

P(6)

P(7)

P(8)

P(9)

Band

P(5)

P(6)

P(7)

P(8)

Band

P(6)

P(7)

ROTATIONAL TRANSITIONS

Transition

HC135 HC137

v =

R(40)

R(39)

R(38)

R(32)

R(31)

R(30)

R(29)

0

R(31)
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Wavelength Frequency Transition

Avac(ljm)

17.9874

17.997

18.522

19.122

20.4106

21.1556

21.9706

22.8637

23.8485

24.9367

26.1462

27.508

16.765

17.125

17.575

18.035

18.555

18.593

19.145

19.7002

20.3455

21.0470

21.8127

22.6514

23.5705

24.6177

24.5833

25.7040

19.183

20.9991

24.3178

19.783

19.821

v(cnf )

555.969

555.65

539.928

522.96

489.949

472.701

455.175

437.380

419.326

401.023

382.483

363.53

596.48

583.94

568.99

554.48

538.94

537.84

522.33

507.628

491.526

475.130

458.449

441.491

424.268

406.215

406.789

389.065

521.29

476.215

411.232

505.48

504 . 52.

HC1J3

R(28)

R(27)

R(24)

R(23)

R(22)

R(21)

R(20)

R(19)

R(18)

R(17)

v = 1

R(31)

R(30)

R(29)

R(28)

R(26)

R(25)

R(24)

R(23)

R(22)

R(21)

R(20)

R(19)

v = 2

R(28)

R(26)

RC21)

v = 3

R(28)?

HC10/

R(28)

R(26)

R(32)

R(28)

R(27)

R(20)
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Rotational Spectrum. Pure rotational spectrum of HC1 has been studied both in

absorption as well as in emission. Hansler and Oetjen (1953) and MacCubbin (1952)
identified pure rotation transitions in the far infrared region (480-45). Strong (1934)
had earlier studied them in the region (29-15) in the emission spectrum of H2/C12 flames.
Jones and Gordy (1964) studied one of these transitions (J = 0 -»• 1) in the microwave

region too (0.48mm).
The J = 0 -»- 1 transition in DC135 and DC!37 was also studied using microwave

techniques by Cowen and Gordy (1958). Details can be seen in the original papers.

Laser action has also been found in a number of pure rotational transitions (Deutsch,
1967; Akitt and Yardley, 1970). Table~(9-XLIII) presents a list of these features.
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TABLE (9-XLIII) DC1 LASER

Wavelength

(Avac (urn)

5.0445

5.0514

..0743

5.0811

5.1049

5.1118

5.1363

5.1431

5.1688

5.1511 .

5.1811

5.1879

5.2118

5.2186

5.2435

5.2503

5.2760

5.2829

5.3097

5.3443

5.3799

5.3244

5.3562

5.3629

5. 3889

5.3956

5.4295

5.4577

5.4935

5.5304

5.5084

5.5423

5.5776

5.6137

Frequency

v(cm'1)

1982.35

1979.65

1970.72

1968.08

1958.90

1956.25

1946.94

1944.35

1934.67

1941.35

1930.10

1927.56

1918.73

1916.24

1907.13

1904.67

1895.37

1892.91

1883.35

1871.15

1858.77

1.878.13

1867.01

1864.65

1855.66

1853.36

1841.79

1832.27

1820.34

1808.20

1815.38

1804.31 .

1792.89 .

1781.36

Transition

DC135 DC137

2-1 band

P(5)

P(6)

P(7)

P(8)

P(9)

3-2

P(4)

P(5)

P(6)

P(7)

P(8)

P(9)

P(10)

P(H)
4-3

P(5)

P(6)

P(7)

P(9)

P(10)

P( l l )
5-4

P(6)

P(7)

P(8)

P(9)

P(5)

P(6)

P(7) .

P(8)

band

P(5)

P(6)

P(7)

P(8)

band

P(6)

P(7)

P(8)

band
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Hydrogen Fluoride (HF)

Dipole Moment, M: 1.91 Debye

lonization Potential, I.P.: 15.77 eV

Dissociation Energy, D(H-F): 5.85 eV

Ground Electronic State Configuration: K(2so)2(2pa)2(2pir)4 lz+

Ground State Vibration Frequency and Anharmonicity Constants: w = 4138.32 (cm" )

Rotational Constants: B a. r (H-F)

20.9557 cm"1 0.798 cm"1 0.9168A

u>exe = 89.88

Ve = °-93

Hydrogen fluoride is an extremely harmonic, corrosive and hydrogen bonded gas. Even
at 20°C and 745 mm pressure, about 80% of the gas is polymerized.in the form (HF)6. The

other hydrogen halides do not exhibit this strange property. It is also highly soluble in
water; the solution is called hydrofluoric acid. Anhydrous hydrogen fluoride is a limpid
liquid which fumes strongly in air.

HF is a polar diatomic molecule, composed of one hydrogen and one fluorine atom,
o

separated by a mean bond distance of about 0.92A in its ground electronic state. The

commonly occurring isotopic forms of hydrogen fluoride are: WF, 2H19F and 2H19F.

Molecular Spectrum

The observed spectral features of gaseous hydrogen fluoride (}H19F) can be described
under the following subheads: (1) Electronic Spectrum, (2) Vibration-Rotation Spectrum,
and (3) Rotational Spectrum.

Electronic Spectrum. - Besides earlier investigations by Woods, 1943; Safary, Romand

and Vodar, 1951; Barrow and Caunt, 1954; Johns and Barrow, 1957; more recent work on the

electronic spectrum of HF molecule is of Johns and Barrow (.1959). The following two

transitions have been reported.
(1) V JZ+ - X lz System (2670-2000A)

This is the principal electronic band system ascribed to HF. The spectrum

consists of a large number of lines, without any apparent regularity and
there are no distinct band heads. The rotational structure is, however,

strongly degraded to the red. The lines have been classified into distinct
P and R branches. However, since the centrifugal distortion is so large in
the lower state, the second differences between different members of the two

branches are not constant. In all, about 1600 lines have been measured of
which more than 1300 have been accounted for. Most of the remaining ones are

too weak to be analysed satisfactorily. In the case of DF as many as 1900
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lines were measured of which about 1150 have been assigned to 34 bands (Johns

and Barrow, 1959). Table (9-XLIV) gives band origins (cm" ) for the various

observed bands in the system. Figure (9-76) presents the potential energy

curves for the two states involved in the transition.

TABLE (9-XLIV). CONSTANTS FOR HF VALUES OF BAND-ORIGINS, v (cm"1)

v ,v" v v ' , v " VQ

1, 9 54619.4* 1, 15 41903.4

1, 10 52110.5* 1, 16 40415.3

1, 11 49741.1* 1, 17 39154.3

1, 12 47525.0 1, 18 38151.6

1, 13 45473.0 1, 19 37452.2

1, 14 43595.2

* Bands with v = 9, 1

respectively. The

some extrapolation

10

T— 1

'§

:=>

2- 5

0

0 and 11 have been observed at K > 27, K > 16, K > 11,

determination of these values of VQ therefore involves

of the rotational constants.

t i l l

" \

~ \ vV ^^~

-

_ _

15 ŝ̂

10 ~7 X1!1r -

1 1 1

H++F~

H+F

1 . 2 3 4 5

r(A)

Figure (9-76). Schematic showing the two important electronic states of HF.

249



(2) Absorption Continuum (xmax~
1612A)

An absorption continuum with Xmax~1612A has been reported by Safary, Romand
and Vodar (1951) in the vacuum ultraviolet. They obtained the profiles of
the absorption at different temperatures. Figure (9-77) depicts these results.
No satisfactory information as regards true nature of the electronic transition
involved in this absorption is yet available.

0.5

1.5

-1

2.5
50

A:16.5°C

B: 53°C

C: 100°C

D: 165°C

55 60

10"3 v (cm"1)

65 70

Figure (9-77). Absorption coefficient profile of HF at different temperatures.

The electronic states of hydrogen fluoride have been extensively discussed by
Pauling, 1932; Mulliken, 1936, 1937; and recently by Bender and Davidson, 1968
and Bondybey, Pearson and Schaefer, 1972. While the ground electronic state
X ll+ correlates at infinite internuclear separation with the ground state

250



atoms H+F, the upper state V 1Z is highly ionic. The state V :Z+ was first
predicted by Pauling (1932) to lie about 36000 cm above X 'Z* and to have a
stable minimum with the same mean internuclear distance as in the ground state.
Mulliken (1936, 1937) postulated a state 130,000 cm with a slightly larger r .
The actual situation does not correspond to either, since the minimum of the V
curve is near 90,000 cm" . Also the minimum lies at a much larger value of r .
Bender and Davidson (1968) established that both the X and V states could be
assigned the ionic character at their respective minima. . Configuration A 'Z
(la2 2a2 3a2 lir2 lir2) is ionic for all values of r. The configuration B ll
(102 2a2 Sa1 Aa1 lir2 lir2) is covalent at larger r; but because of the ortho-
gonality of 3a and 4o, it is more like a piece of the valence bound function
orthogonal to the ionic configuration. At smaller values of r, it represents
a repulsive state rather than a bonding state. The minimum in the V JZ state
at r = 3.75 results from a crossing of the repulsive B configuration with the
strongly bonding ionic configuration. At this minimum, the state V is nearly
an equal mixture of A and B. At smaller r, the ground state X :Z corresponds
to the ionic configuration A and at larger r, the excited V JZ state corre-
sponds to this configuration.

Vibration-Rotation Spectrum. - The earliest reported work on the vibration-rotation
spectrum of HF is, most probably, of Imes (1919). who studied the fundamental band of HF
in the infrared absorption spectrum. These spectral features were later investigated in
greater detail by various workers (Schaeffer and Thomas, 1923; Kirkpatrick and Salant,
1935; Naude1 and Verleger, 1950; Talley-Kayler and Nielsen, 1950; Kuipers, Smith and
Nielsbn, 1956; Fishburne and Rao, 1966; Webb and Rao, 1968).

Kuiper et al. 0956) made extensive studies of the (.]-0\ and (2-0) bands (fundamental
and the first overtone) and examined the rotational structures through J = 11 for the
fundamental and through 0=8 for the first overtone. Later, Fishburne et al., and
Webb et al. studied a number of other bands (.3-0, 4-0, 5-0) in addition to the fundamental
(1-0) and the first overtone (2-0) and presented precise data using a high dispersion IO-
meter focal length Ebert-type grating spectrograph.

Vibration-rotation bands of the isotopic molecules DF and TF were studied by
Spanbauer and Rao, 1965; and Jones and Goldblatt, 1957, respectively.

Benedict, Bullock, Silverman and Gross (1953) observed the vibration-rotation bands
of HF in emission from a hydrogen-fluorine flame. Later, Mann, Thrust, Lide, Ball and
Acquista (.1961) investigated these features using a hydrogen-fluorine diffusion flame.

-T •• °They studied as many as 23 bands from 3200 cm in the infrared through 5500A in the
visible and obtained extensive data on their rotational structure. Table (9-XLV) pre-
sents the band-center data of the various bands.
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TABLE (9-XLV). OBSERVED AND CALCULATED BAND CENTERS (cm"1).

= 0 1 4

3961.60

(3961. 59)a

7750.98

(7751.01)

11372.92

(11373.02)

14831.75

(14831.87)

18131.10

(18.131.20).

3789.42

.(3789.42)

7411.45

(7411.43)

10870.37

(10870.28)

14169.64

(14169.61)

17312.42

(17312.42)

3622.02

(3622.01)

7080.85

(7080.86)

10380.29 67.58.22

(10380.19) (6758.18)

13523.02 6442.10

(13523.00) (9900.99) (6442.14)

16511.60 12889.53

(16511.56) (12889.55)

15725.33 12266.46

(15725.31) (12266.46).

14944.94 11650.72

(14950.01) (11650.68)

Calculated values, in parentheses.

High resolution interferometric spectra of the Venusian atmosphere have shown numerous

weak, narrow absorption lines of the (1-0) and (2-0) vibration-rotation bands of HF. The
strength of the identified HF lines is consistent with about 0.02mm Amagat of gaseous HF in

the optical path at temperatures around 240°K and pressure 0.1 atmosphere (Connes, Connes,

Benedict and Kaplan, 1967). -Table "(9-XLVI) gives a summary of the HF lines identified in
the Venusian spectra.

Molecular laser action has been observed in quite a good number of vibration-rotation

transitions mostly involving the low lying vibrational levels (v = 6). Table (9-XLVII)

presents data on various HF laser transitions, observed in flash photolysis of H2 and F2
(Suchard, 1973). The HF lasing molecules were produced by the reaction of a 50-torr mix-

ture of mole ratio H2/F2/H = 0.5/1/40 initiated by the flash photolysis of the F2.

Strong lasing action was found from all P-branch vibration-rotation bands from v = 6-»-5 to

1-*0. Laser action in HF vibration-rotation transitions has^also been observed in a number

of other chemi luminescent reactions (Deutsch, 1967; and Mayer, Taylor and Kwok, 1973).
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TABLE (9-XLVI) HF LINES IN THE VENUSIAN SPECTRUM

(1 0) Fundamental

R(D R(4) R(5) R(6)
(4038.96) (4142.84) (4173.98) (4203.30)

(2 0)

P(2) P(l) R(0) R(l) R(2)

(7665.59) (7709.71) (7788.87) (7823.83) (7855.65)

Numbers in parenthesis are in crrf units and represent laboratory data according
to Rao and Webb.

Rotational Spectrum. - Czerny (1927) was most probably the first to study pure rota-

tional transitions in HF. Later, many workers studied them both in absorption as well as

in emission (Smith and Nielsen, 1955; Kuiper, Smith and Nielsen, 1956; Mason and Nielsen,

1962, 1963; Rothschild, 1964; Revich and Stankevich, 1966).

The spectra! data in respect to these transitions are now available for quite an

extensive wavelength region, from 22y to 250y, and the rotational constants have been

determined fairly accurately. The data presented here are due to Rothschild for lines

with J = 0 to 8 and Revich et al. for lines with J = 9 to 40 (Tables 9-XLVIII and 9-XLIX).

The following values were obtained for the rotational molecular constants (in cirf )

for HF by Revich et al. according to the following equation:

v = 2Bv(J + 1) - 4DV(J + I)3 + 6Hv(J + I)5 - 8Lv(J + I)7 +

where B , D , H and L are the rotational constant for the vibrational level with quantum

number v.

BQ = 20.559 ± 0.005; DQ = (2.11 ± 0.01) ,10~
3

HQ = (1.5 ± 0.2) .10"7; LQ = (0.7 ± 0.5) .10"
11
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TABLE (9-XLVII). PHOTOLYSIS OF H2 AMD F2.

Measured
Wavelength

(urn)
2.6727

2.7076
2.7439

2.7822

2.8230

2.8657
2.6961

2.7273

2.7605

2.7952

2.8320
2.8703

2.9107

2.9536
2.8538

2.8888

2.9256

2.9642

3.0051

3.0480
3.0933

2.9223

2.9549
3.9897
3.0264

3.0651

3.1060

3.1490

3.2424

Vibrational Transition
Band (J)

1-0 3
6
7

8
9

10

2-1 2

3

4

5

6
7

8

9

3-2 3

4

5

6

7

8

9

4-3 1

2

3

4

5

6

7

9

ua i i_u la LCU

Wavelength
(um)
2.6726

2.7074

2.7440

2.7826

2.8231

2.8656
2.6963

2.7275

2.7604

2.7952

. 2.8319
2.8705

2.9112

2.9539

2.8542

2.8890
2.9257

2.9644

3.0052

3.0482
.3.0935

2.9221

2.9549
2.9896
3.0263

3.0652

.....-.••3...1J362
3.1494

3.2429

Peak Power
(relative units)

1

2190
6910

4390

781

89

872

1405

2985

3850

6100
4340

536

449

622

1195

1650

496

1785

3750
573

2920

3710

5980
3125

2225

684

1024

295
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TABLE (9-XLVIII) OBSERVED AND CALCULATED VACUUM WAVENUMBERS OF PURE

ROTATIONAL TRANSITIONS OF HF BETWEEN J = 0 AND 10

Apparent Spectral

Transition Vacuum Wavenumbers (cm"1) Half-Width Slit-Width

J + J Observed calc. - ;obs. (cm" ) (cm" )

0 + 1 41.30 ± 0.71 - 0.17 1.3 0.8

1 +2 82.35 ± 0.25 - 0.18 2.2 1.6

2+3 122.83 ± 0.28 + 0.30 3.5 2.1

3+4 163.92 ± 0.13 + 0.01 2.9 1.7

4 + 5 204.50 ± 0.12 + 0.03 2.6 1.1

5+6 244.97 ± 0.16 - 0.09 2.1 1.5

6+7 284.98 ± 0.13 - 0.05 1.9 1.5

7+8 324.52 ± 0.22 + 0.10 2.0 1.5

8 + 9 363.89 ± 0.18 -0 .02 1.2 0.7

9 + 1 0 402.77 ± 0.18 -0 .03 1.6 1.4

1 0 + 1 1 441.05 ± 0.29 +0.01 0.8
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TABLE (9-XLIX) WAVE NUMBERS OF THE LINES IN THE ROTATIONAL SPECTRUM OF HF

(v, cm" )

v = 0 v = 1 v = 2 v = 3 v = 4 v = 5

9

10

11

12

13

14

15 -

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

403.1

441.4

479.1

516.0

552.6

588.8

625.0

658.6

692.4

725.5

757.6

, 788.7

819.4

848.8

877.2

904.1

931.2

956.3

980.3

1003.3

1025.6

1047.2

1067.4

1086.0

1103.6

1120.2

1135.8

1149.9

1163.6

1175.8

1186.0

1196.0

424.6

460.8

497.0

532.3

566.2

600.4

634.4

665.8

697.5

723.4

757.6

787.2

815.7

843.3

869.1

894.4

918.3

942.3

963.6

984.5

1003.3

1025,6

1042.1

1058,8

1074.6

408.4

443.4

511.0

544.4

578.8

609.2

641.0

670.2

699.8

728.4

757.6

783.2

809.3
; 835.0

858.7

882.0

924.4

522.7

615.2

698.8

751.5

776.4

801.0

823.5

561.1 538.6

592.3

721.8

767.2
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The values of B and D as reported by Rothschild on the basis of his analysis for rota-

tional lines with J = 0 to 10 are as follows:

BQ = 20.559 ± 0.006 cm"1

DQ = 0.00211 ± 0.0004 cm"1

These values agree nicely with those obtained by Revich et al.

Laser action has been reported in respect of a large number of pure rotational transi-

tions in HF. The wavelengths lying between 10.2 and 21.8y are listed and identifications

given in Table (9-L).

TABLE (9-L). HF LASER PURE ROTATIONAL TRANSITIONS

v = 0
10.1978 980.60 R(27)
10.4578 956.23 R(26)

10.7439 930.76 R(25)

11.0573 904.38 R(24)

11.4033 876.94 .R(23)

11.7854 848.50 R(22)

12.2082 819.12 R(21)

12.6781 788.76 R(20)
13.2009 757.52 R(19)

13.7841 725.47 R(18)

14.4406 692.49 R(17)

16.0215 624.16 R(15)

16.975 589.10 R(14)

18.085 552.94 ' . R(13)

v = 1

12.2619 815.53 R(22)

12.7006 787.37 R(21)

13.1877 758.28 R(20)

13.7277 . 728.45 R(19)

15.0163 665.94 , R(17)
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16.655

17.645

18.8010

20.1337

21.6986

10.5819

10.8117

13.2211

14.2881

16.444

17.327

20.9393

11.5408

17.095

19.1129

20.3513

21.7885

600.42

566.73

531.89

496.68

460.86

•

945.01

924.93

756.37

699.88

608.12

577.13

477.57

866.49

584.97

523.21

491.37

458.96

R(16)

'R(ls)
R(13)
R(12)

R(ll)

v = 2

R(29)

R(28)

R(21)

R(19)
R(16)

R(15)

R(12)

v = 3

R(27)

R(16)

R(14)
R(13)
R(12)
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