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ABSTRACT
 

On the basis of A. T. Young's suggestion that elemental sulfur is respon­
sible for the yellow color of Venus, we compare calculations at 3.4 pm of the
 
reflectivity phase function of two sulfur containing inhomogeneous cloud
 
models with that of the homogeneous model of Hansen and Hovenier. The inhomo­
geneous drop model has a spherical core of solid sulfur within each sulfuric
 
acid drop, while the inhomogeneous cloud model has a bimodal size distribution
 
with irregular sulfur particles comprising the second size mode near 13 Pm.
 
The calculations were made at 3.4 pm because the ability to detect small con­
tributions from non-absorbing species to the sunlight scattered by the Venus
 
clouds is greatly enhanced (-40 times) in the infrared absorption band of
 
sulfuric acid. Assuming reflectivity observations with 25% or less total
 
error, comparison of the model calculations leads to a minimum detectable mass
 
of sulfur equal to 7% of the mass of sulfuric acid for the inhomogeneous drop
 
model. For the inhomogeneous cloud model the comparison leads to a minimum
 
detectable mass of sulfur between 17% and 38% of the mass of the acid drops,
 
depending upon the actual size of the large particles. That amount of sulfur
 
is equivalent to detecting about one large sulfur particle per 104 sulfuric
 
acid drops. We conclude that moderately accurate 3.4 pm reflectivity observa­
tions are capable of detecting quite small amounts of elemental sulfur at the
 
top of the Venus clouds.
 

*Tel-Aviv University, Tel-Aviv, Israel
 



INTRODUCTION
 

It is generally well accepted that sulfuric acid is the principal constit­
uent of the Venus clouds, and that the planet's yellow color is caused by
 
absorption of the-blue end of the reflected solar spectrum. It is also known
 
that sulfuric acid is transparent in the blue and visible, and is thus incapa­

ble of producing the yellow color of the planet. Such reasoning suggests-that
 
an additional cloud constituent be considered.
 

There are three ways in which an.additional blue absorbeY could be added
 

to the Venus cloud aerosol. The first has the additional constituent com­
pletely dissolved in the liquid sulfuric acid cloud drops, and the second
 
places the constituent as a solid core inside each liquid drop. In the third
 

way, particles (or drops) of the blue absorber are mixed inhomogeneously among
 
the acid drops of the clouds. A fourth way, which we shall not treat here,
 
adds the blue absorber to the cloud as an unknown gas.
 

Recently, A. T. Young (ref. 1) amplified an earlier suggestion by Hapke
 
(ref. 2) that elemental sulfur is the additional absorber because it has a
 
temperature sensitive blue absorption edge capable of explaining the visual
 
color of Venus. If sulfur is the new constituent, it is not added to the
 
clouds in the first way described above because sulfur does not dissolve in
 
sulfuric acid (personal communication, 0. B. Toon, Ames Research Center, 1978).
 

However the other two ways, the inhomogeneous drop and the inhomogeneous cloud
 
are distinct possibilities. Young (ref. 1) has already proposed an
 
inhomogeneous cloud model in which 1% of the number density of acid drops are
 
large (-13 pm) sulfur particles buried in a cloud just below that from which
 
most of the sulfuric acid scattering is observed, that is, at Tr > 4 for
 
visual wavelengths. Thus, these sulfur particles are well hidden in the visual
 

and they would affect the spectrum primarily through their strong ultraviolet
 
absorption.
 

For the following reasons we suggest utilizing the infrared reflectivity
 

of Venus to investigate such inhomogeneous models. First, scattering at
 

intermediate backscatter angles by the cloud drops themselves is greatly
 
reduced in the infrared absorption bands of H2S04 . However, backscattering by
 

nonabsorbing species, such as sulfur, is not so reduced and thus can be more
 
easily detected. Second, the absorption is so strong that single scattering
 
is the predominant radiative transfer process within the clouds. Third, the
 
quite large size and irregular shape of the proposed sulfur particles will
 

also assist their detection at 3 pm wavelengths.
 

To evaluate our suggestion, we have calculated the reflectivity of Venus
 
at 3.4 pm for two inhomogeneous models using a Mie scattering doubling routine
 
which we modified to contain either an inhomogeneous drop with a sulfur core, or
 
a bimodal particle-size distribution with large, nonspherical sulfur particles
 
in the second peak. We have also calculated the homogeneous drop-homogeneous
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cloud model of Hansen and Hovenier (ref. 3) for comparison. These models and
 
representative calculations are presented in considerable detail in the next
 
section in order to describe them and a new type of reflectivity function under
 
a variety of conditions. In the third section we discuss the models; show the
 
dependence of their backscattering on the core volume or particle area; evalu­
ate the amount of sulfur that absolute observations at 3.4 pm could detect by
 
comparison with them; and calculate the height to which the observations
 
penetrate.
 

MODELS AND DEMONSTRATION CALCULATIONS
 

The Reflectivity Function
 

We have chosen to define a reflectivity function, R(A,4), for the Venus
 
cloud top that is an average of the directional reflectivity over the illumi­
nated fraction of the planet's disk. This is a convenient choice because when
 
absorption is strong, the shape of the phase angle dependence of the reflec­
tivity function is very similar to that of the single scattering phase func­
tion and so facilitates comparison of telescopic observations with cloud drop
 
models. This definition has already been used by one of us (Pollack, ref. 4)
 
to describe reflection spectra of Venus between 1.2 and 4.0 vm.
 

The reflectivity of a cloud or atmosphere is fundamentally related to the
 
wavelength of the incident light, X, and to the scattering angle, 0. Hence,
 
the reflectivity function is an intrinsic function of wavelength and angle.
 
We write it as R(A,) because the planetary phase angle 4 is the supplement'
 
of 0 and is easily obtained from the Ephemeris. Unfortunately, the observed
 
infrared flux from Venus depends both implicitly and explicitly on several
 
other variables that mask the X, 4 dependence of the reflectivity. To
 
elucidate that dependence, we write the monochromatic flux received at Earth,
 
F(A, ,T, re) , as the sum of two Lambertian surface brightnesses multiplied
 
by the appropriate solid angles. The first term represents reflected light
 
and the second term thermal emission
 

F(X, ,T,r9_ ) = r + + ()W(A,T) r (1) 

In equation (1), R9 is the semidiameter of Venus, rg_ is the Venus-Earth
 
distance, and r,_, is the Sun-Venus distance. The thermal spectral emit­
tance is represented by a Planck function, e(A)W(A,T), in which a uniform
 
effective temperature T is a good approximation for the entire disk of
 
Venus on both the illuminated and dark sides. Equation (1) treats the spec­
tral reflectance R(A,4)Fo_9 (X,r0 o) in the same manner as the thermal spec­
tral emittance after multiplication of the solar spectral irradiance,
 
F& 9 (,r. ), by R(X,O) has converted the irradiance to a reflectance. Divid­
ing both fluxes by R sr converts them into Lambertian radiances for normal
 
incidence. Thus, the reflectivity function R(A,) is an average reflectivity
 
over the illuminated portion of the Venus disk.
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The phase-angle dependence of the atmosphere's reflectivity is now con­
tained solely in R(A,), although also appears as (I + cos p)/2 in the
 

solid-angle factor. That factor describes only the fraction of the area of
 
the disk that is illuminated and has nothing to do with the optical properties
 
of Venus' atmosphere. This point should be emphasized. Most phase functions
 
of Venus are plots of reflected flux versus phase angle; therefore, they are
 
heavily weighted by (1 + cos 4)/2. We have separated out that factor, so the
 
reflectivity function just defined pertains only to an average segment of the
 

illuminated atmosphere and is independent of illuminated area.
 

For ease in comparing R(X, ) to related quantities defined by others,
 
equation (1) may be rewritten as
 

= +) (2) 

where Sr %/r_ . The thermal term is insignificant at X < 3 vim.e
 

In this article we will be concerned with observations at A = 3.4 pm, where
 
the reflected flux still dominates the thermal contribution. However, near
 

inferior conjunction it may become necessary to correct observational data for
 
the thermal component when determining k(A,*).
 

We now compare R(Ap) to the geometric albedo, p(A,). In reference 5
 
the albedo of Venus at unit distance from both the Sun and Earth is calcu­
lated as
 

logl0 p(A,4,l) = 0.
4 [m - m(l,4)] - 2 logl0 (sin oI )  (3)
 

where me is the apparent magnitude of the Sun at wavelength A; m(l,) is
 
the apparent magnitude of the planet at wavelength A if the planet were at a
 
distance of 1 AU (astronomical unit) from both the Sun and the Earth; and a,
 
is the radius of the circle having the same projected area on the sky as the
 
planet's disk at 1 AU from Earth. Converting magnitude to flux and a' to
 
solid angle, the geometric albedo is
 

=F(A,,l AU) 
 (4)
 

SY 2 (1 AU)Fe(A,1 AU) A 

where F®(A,l AU) is the solar spectral irradiation at Earth and F(A,4,l AU)
 
is the flux that would be received from Venus if r2._ = 1 AU. But


Fe_9%,r®9)=Fo(%1 A (1Au2 
=Fr(_,l AU) 1 (5)
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and
 

F(A' 'r 9 -e) = F(A,,',l AU) (6) 

S9 
2 N 0 S992(1 AU) 

so that
 

F(X, ,g
r .=)(7)Fp(A,4,, 


S9 2(r 9 -,e)F- (A,r­ 9 ) 

This definition is valid at wavelengths where thermal emission is negligible.
 
Where that is the case we can omit the thermal term in equation (2), and then
 

-pA4)(8)
 

' + cos 4) 

Thus, our reflectivity function is just the geometric albedo divided by the
 
illuminated fraction of the planetary disk.
 

The Bond (or spherical) albedo of a planet is the probability that a
 
photon will be scattered by the planet. It is defined as the ratio of the
 
flux reflected at all angles to the incident solar flux at $ 0, and
 
expressed in reference 5 as
 

A(X) = p(X,0)q(A) (9) 

where q(A) is the phase integral
 

q(X) = 2 f (X,4)sin()d$ (10) 

0
 

In equation (10), $(A,4) is the flux density seen by the observer normalized 
to unity at full phase; reference 5 expresses this in magnitudes as 

logl0 @(A,$) = 0.4[m(A,l AU,o) - m(A,l AU,)] (11) 

In flux units this is 

EL AU) 
(12)
=F(A,0, AU) 

which, from equations (4) and (8) is simply
 

p (A,0) (,0 + Cos 
p(A,0) 2txo (13) 
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Thus, equation (9) for the Bond albedo can be written in terms of the reflec­
tivity function as
 

~- -. l + Cos 

A(X) = 2R(X) 2,) sin 4 de 

,or
 

A(X) =.f i(AD)(l+ 00s €)sin 4 d (14) 

.0
 

The Bond albedo of Venus is difficult to evaluate from observation alone 
because at very small phase angles the planet passes behind the Sun. Calcula­
tion of R(\,¢) from theoretical models can then be used as 4 approaches 
zero to supplement observations in the evaluation of A(A) through (14). 

In summary, we have defined a reflectivity function that is an .averag
 
directional reflectivity over the, illuminated part of the Venus disk and whose
 
shape is similar to that of the single scattering phase function for strong
 
absorption. It is not the usually defined planetary phase function, and its
 
shape is very different from that of the geometric albedo. It can be easily
 
integrated to produce the Bond (o spherical) albed6.
 

Homogeneous Drop-Homogeneous Cloud Model
 

In recent years our understanding of the Venus clouds has been vastly
 
improved through calculation of the multiple scattering of polarized light in
 
a homogeneous model atmosphere (ref. 3).. To provide a framework in which to
 
place the modifications that produce the inhomogeneous models which follow, we
 
first outline the homogeneous calculation as described by Hansen and Travis
 
(ref. 6). This calculation is usually divided into two parts.: (1) single­
scattering by independent scatterers within a small volume element, and
 
(2) multiple scattering by homogeneous layers of the entire atmosphere.
 
Because our inbomogeneous modifications affect primarily the single scattering
 
part of the calculation, we will describe that part quite fully.
 

At the heart of the single scattering problem lie the Mie electric and
 
magnetic multipole coefficients, an and bn.- They are formed from combinations
 
'of Ricatti-Bessel functions,-and are functions of only the complex index of
 
refraction, m = nr - ini, and the size parameter, x = 2ir/X, where r is the
 
particle radius and A is the wavelength. The scattering and absorption
 
cross sections, as well as the single scattering phase function, can be found
 
from these coefficients following the Mie theory (see refs. 7, 8).
 

Let the single scattering cross section 5s be written as
 

as i r2Qs (15)
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where Qs is the efficiency factor for scattering. Similar expressions can
 
be written for the absorption and extinction (scattering + absorption) cross
 
sections. Van de Hulst (ref. 7) has shown that
 

Qs x (2n + 1)(Ian12 + lbnI2 ) (16)
 

and
 

Qex2 n)-e-a
 l)e(an bn)=-- Z(2n + + (17) 

where Qe is the efficiency factor for extinction. The efficiency factor for
 
absorption Qa can be obtained from Qe - Qs-
 Van de Hulst also writes the
 
single-scattering phase function 
P11 (r,) for the unpolarized intensity as
 

, ) 1 2 (r,Q) - isr(r) [IS1' ( r + [S2(r, )12 (18) 

where
 

SI(r,6) = 2n + 1 [anwn(cos 0) + bnTn(cos 6)] (19)
n=1 n(n + i 

$2 (r,e) = 2n + 1 ,)bnrn(CQS 0) + anTn(cos 6)] (20) 

The superscript 11 indicates that 
 P11 (r,e) is the first element of the 4 x 4 
phase matrix which completely describes the angular distribution and polariza­
tion of the scattered light. Here 7n and Tn are functions of 6, the scat­
tering angle, and can be written in terms of the Legendre polynomials. Note
 
that 8 is the supplement of the planetary phase angle used in the pre­
ceding section.
 

In practice, we used a computer program due to. Dave,1 
which computes the
 
Legendre polynomials and Ricatti-Bessel functions from recurrence relations.
 
The coefficients n and Tn are calculated for specified scattering angles

using straightforward upward recurrence relations based on the well-known
 
properties of the Legendre polynomials and their derivatives.
 

'Dave, J. V.: Subroutines for Computing the Parameters of the Electro­
magnetic Radiation Scattered by a Sphere. IBM Report 320-3237, 1968.
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For specific particle radii, the Mie coefficients are calculated from:
 

[ + en(x) -
6 en x) 

(21)
an(z) = An) 
+
L m ] n(X) - n-j (x )
 

[ x Re; n - e ­n(x) 


bn(z) [mAn(z) +(2 enl(X) )e(x)-

[mAnz) +] n(x) - ni(x) 

where An(z) = ,(z)I/n(Z), z = mx is the complex size parameter, and 

Here An, the logarithmic deriva­n(z), Cn(x) are Ricatti-Bessel functions. 

tive of ln(z), has been used to avoid a computer overflow problem. Unfor­
tunately, calculation of that derivative by means of an upward recurrence
 

relatiow has been found by Kattawer and Plass (ref. 9) to involve a numerical
 

instability (growing errors) for large values of n/z. They suggested a sepa­

rate downward recurrence calculation of the derivative, which we use, to
 
avoid the instability.
 

The single scattering problem is completed by integrating the phase func­
tion and efficiency factors calculated for specific particle radii over the
 

distribution of particle sizes expected in each volume element. Thus
 

P 1 1  - 2 [Is,(r,)j 2 + IS2(r,)1 2]n(r)dr (23)s 

(6) 2wk5 
j i 

mmn
 

and
 

rmax
Srmax 

ks,= r2Qs(r)n(r)dr = as(r)n(r)dr (24) 

e e e 
rmin rmin 

where n(r)dr is the number density of particles with radii between r and
 
r + dr, and ks and ke are the size-integrated scattering and extinction
 

coefficients. In the homogeneous model, we use the "standard" size distribu­
tion employed by Hansen (ref. 10),
 

r (-3b)/b er/ab
 

n(r) = N (1-2b)fb (25)
Cab)(l-b)br(1 - 2b)/b] 

where N = total number of particles per unit volume, F = the gamma function,
 
and
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ma  
jr rur2n(r)dr
 

rmin 

a scattering effective radius - (25)
 
frmax rr2n(r)dr
 

rmin 

(r - a)2 7rr 2 n(r)dr 

b = scattering effective variance - (27) 

2
a fr 2n(r)dr
 

rmin
 

Because the fn(r)dr may have unusual dimensions, depending on the form of
 
n(r), it is useful to normalize the phase function as we have done in equa­
tion (23) by utilizing the size-integrated scattering coefficient. Through
 
this normalization a dimensionless phase function is retained regardless of
 
the exact dimensions of fn(r)dr.
 

The multiple-scattering part of the calculation is based upon the doubling
 
or adding method, the basis of which Hansen and Travis (ref. 6) have traced
 
back as far as Stokes (ref. 11). The basic principle is simply that the
 
reflection and transmission of a combination of two layers can be obtained by
 
calculating successive reflections between layers if the reflection and trans­
mission of each layer are known independently, The initial layers are taken
 
to be plane-parallel and quite thin, with position inside them specified by an
 

optical~depth, T = h ken(h')dh', which must be summed over all species in a
 

unit volume. If the layers are of similar composition, the results for a
 
thick homogeneous layer can be quickly built up in a geometric (doubling)
 
manner. If some, or all, of the layers are dissimilar the results for a thick,
 
inhomogeneous layer are obtained more slowly by adding the contributions from
 
each of the dissimilar layers. A recipe for the doubling routine has been
 
given by Hansen and Travis (ref. 6), and we use a similar version developed by
 
one of us (Pollack, ref. 12).
 

Calculation of the light reflected by a planet's atmosphere is completed
 
by integrating the multiple scattering from locally plane-parallel slabs of
 
thickness T, such as those described above, over the illuminated portion of
 
the spherical surface of the planet. The integration is carried out from the
 
illuminated limb to the visible terminator by double Gaussian quadrature.
 
The reflected flux thus calculated is divided by the product
 

11 + _cos flux incident\
_solar 


( 2 )kon the planet 
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to produce the absolute reflectivity function R(X,4) defined in the previous
 
section.
 

The model calculation can be demonstrated in an interesting way by showing
 
the strong similarity (mentioned earlier) between the shape of the single scat­
tering phase function and that of the reflectivity function when there is
 
strong absorption. In figure 1 we compare calculations of both at 0.55 pm for 
such a case (hypothetical Case No. 4 of Hansen and Travis, ref. 6). We also 
contrast both of them in that figure with the geometric albedo, p(). Here, 
and throughout the rest of this paper, we shall use the term backscattering to 
refer to light scattered at phase angles 4 s 700, and the term forward scat­
tering to refer to light scattered at phase angles 4 1100. The similar 
shape of the two curves is quite reasonable for the situation where absorption
 
limits the interaction of light with the clouds to only one or two scatterings.
 
Both functions have a characteristically steep slope because absorption within
 
the particle strongly attenuates backscattered light while forward scattered
 
light, due principally to diffraction, is not so attenuated. In spite of the
 
absorption, a trace of a primary rainbow is indicated by the small peak at
 
4 = 18*. The different shape of the geometric albedo contrasts sharply with 
these curves indicating that R(A,4) is physically the more meaningful
 
function.
 

The definition of the single scattering phase function, equation (23) for
 
P11 (e), indicates that only five independent parameters other than 4 or 6
 
need to be specified. They are X, nr, ni, a, and b. The optical constants
 
of sulfuric acid at various concentrations have been measured by Palmer and
 
Williams (ref. 13) between 0.36 and 25 pm and by Jones (ref. 14) from 20 to
 
50 pm. An 85% aqueous solution is currently indicated to be the correct con­
centration of the Venus droplets (Pollack et al., ref. 4). The effective
 
radius and variance of the principal droplet-size distribution, a and b, have
 
been well determined by visible polarization measurements (Hansen and Hovenier,
 
ref. 3). As a demonstration of the success of the multiple scattering model,
 
we compare it in figure 2 with the observations of Irvine et al. (ref. 5) at
 
1.0635 pm where there is still a little H2SO4 absorption. The calculated
 
reflectivity function has been multiplied by 0.899 to obtain the best fit to
 
the observations. This factor indicates that a slight reduction of the
 
single scattering albedo calculated from the optical constants of H2SO is
4 

required, most probably the result of our neglect of faint absorption by the
 
very weak 1.065-pm CO2 band (Boese et al., ref. 15). In figures 3 and 4 we
 
demonstrate the high sensitivity of the model to variation of the real and
 
imaginary parts of the index of refraction in the H2 SO4 absorption band at
 
3.65 pm.
 

Both polarized visible light and unpolarized 3-4 pm light reflected from
 
the Venus cloud tops are particularly sensitive to the high level particle
 
size distribution because they both result from primarily single scattering
 
processes. (The degree of polarization is reduced by multiple scattering.)
 
Hansen and Hovenier (ref. 3) have already shown that the visible polarization
 
is very sensitive to the value of the effective radius a and is fairly sen­
sitive to that of the variance b. The value they determined for b (0.07) is
 
small by terrestrial standards and could have interesting implications for the
 
dynamics of the Venus atmosphere.
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In figure 5 we demonstrate the sensitivity of the homogeneous drop­
homogeneous cloud calculation at 3.65 pm to variation of the effective radius.
 
The transition from strong forward scattering by large drops of 2.7 pm effec­
tive radius to the Rayleigh scatter by the 0.3 pm drops is quite apparent.
 
The region of backscattered light 0 S 70' shows high sensitivity to the
 
value of .a. In figure 6 we demonstrate the model's dependence on the effec­
tive variance. Unfortunately, it appears to be so small that Hansen and
 
Hovenier's (ref. 3) determination of b will not be well tested in the 3-4 Pm
 
absorption band. However, their value for the effective radius clearly will
 
be.
 

Finally, we contrast the 3.4 pm reflectivity function with the visual one.
 
In figure 7 we plot them both using a = 1.05 pm, b = 0.07,
 
m(3.4 pm) = 1.338 - 0.176i, and m(0.55 pm) = 1.44 - 0.000024i. The vastly
 
different shape and level of the two curves is striking. In particular, the
 
back scatter by the homogeneous model is more than 40 times smaller at 3.4 pm
 
that at 0.55. Such a large reduction of the signal from the acid drops opens
 
up the possibility of detecting small backscattering contributions by aerosol
 
species which do not absorp in the infrared.
 

Sulfur: Its Solubility and Optical Constants
 

As the remainder of this paper hinges upon the concept that sulfur does
 
not dissolve in sulfuric acid (personal communication, 0. B. Toon, Ames
 
Research Center, 1978), we searched the International Critical Tables (ref. 16)
 
and other sources for a quantitative measure of its solubility in the acid.
 
None was found, but Fike (ref. 17) states that the sulfur coatings of
 
concentrated-acid containers were generally unaffected after several years of
 
service. We are indebted to Dr. T. W. Scattergood of SUNY-Stonybrook, who
 
performed the following experiment and observations for us.
 

An amount of chemically pure, powdered sulfur (sublimed) equal to 2.8 mg
 
was dropped into 250 ml of aqueous solution which was 88% H2 S04 by weight.
 
The sulfur, despite its slightly greater density, stayed on top of the solution
 
until it was dispersed throughout by mechanical stirring. The sulfur did not
 
appear to be readily wetted by the acid. In about 1 day much of it had settled
 
to the bottom of the beaker although some still remained on the surface. After
 
15 days at room temperature the distribution of sulfur powder was about the
 
same, and less than about one fifth of it by visual estimate had disappeared.
 
Thus an upper limit on the mass of the sulfur that dissolved in the 88% acid
 
solution during 15 days was 1.3 parts'per million. This limit may be uncer­
tain by a factor of 2 because of the method of visual estimation employed.
 
This experiment, together with the observation by Fike (ref. 17), provides a
 
factual basis for the calculations of inhomogeneous models of the Venus clouds
 
which follow.
 

The optical constants of sulfur in the infrared are required to evaluate
 
these inhomogeneous models, so we now describe how they were oLtained. As
 
will be shown, the dependence on their exact value is not strong.
 

11
 



Although the constants are well determined at 0.5893 pm (ref. 18,
 
p. E-219) they are relatively unknown at other wavelengths. However, spectra
 
of orthorhombic sulfur, S., have been obtained from 0.1 to 200 pm by several
 
authors. In particular, spectra from Nyquist and Kagel (ref. 19), Khare and
 
Sagan (ref. 20), the Thermophysical Properties of Matter (ref. 21), and
 
MacNeil (ref. 22) are free of all absorption features (other than those of*
 
expected contaminants)-between 2 and 7 pm, and the nearest strong sulfur
 
absorption is at 11.8 pm. Thus, we feel confident that the imaginary index
 
near 3.4 pm is quite small. MacNeil estimated from her transmission spectra
 
that the exponential absorption coefficient a, between 2 and 10 Pm, was about
 
4 cm-1 . Hence, we use
 

ax - 10-4X_
 

with A in pm.
 

For the real part of the refractive index, normal dispersion can be
 
assumed because absorption has been shown to be negligible. As we are also.
 
far removed from strong absorption features, we need employ only the first two
 
terms of Sellmeyer's equation (ref. 23, p. 96) to calculate the real index to
 
the accuracy we require. Thus we use
 

2 BA2
nr + (28)
 
- X02 

with B determined from the known index at 0.5893 pm, and the fundamental
 
wavelength X0 = 0.13 pm from Cook and Spear (ref. 24). This gives nr = 1.96
 
at 3.4 pm. MacNeil (ref. 22) calculated a reflectivity of 0.075 between 2 and
 
10 pm for one surface of a single crystal, which requires nr = 1.75 to
 
satisfy the equation for reflection at normal incidence [(n - l)2 /(n + 1)2].
 
Noting that the dielectric constant of orthorhombic sulfur = 4.0 (ref. 18),
 
we select a value for nr of 1.80 at 3.4 pm. Young (ref. 1) states that the
 
real index of his sulfur particles is 1.9 (presumably at 0.9 pm, the wave­
length of the Venera 9 and 10 nephelometers).
 

Inhomogeneous-Drop Model
 

The Mie theory for single scattering by an inhomogeneous drop was first
 
worked out by Aden and Kerker (ref. 25) and by Guttler (ref. 26). Recently,
 
Wickramasinghe (ref. 27) has reformulated the equations for inhomogeneous Mie
 
coefficients in a more explicit manner, although we note that a printing error
 
has nearly obliterated a minus sign before the first term of the second line
 
of his equation (3.45). As Kerker (ref. 8) noted, the variety of numerical
 
calculations that might be explored with the inhomogeneous drop model is
 
immense because the size parameter and refractive index of both the core and
 
coating are variable parameters. Although he considered many examples, Kerker
 
did not treat the one applicable to the suggestion of sulfur in the Venus
 
clouds.
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Consider an inhomogeneous drop (fig. 8) containing a spherical, homoge­
neous core of radius Ro and complex index ml, surrounded by a concentric
 
coating of outer radius R and index m2 . For the example of sulfur coated
 
by H2 S04 this model describes at 3.4 inm a transparent dielectric core sur­
rounded by a strongly absorbing dielectric coating. In the specific case of
 
Venus, the visible polarization observations set the effective outer radius R
 
at about I pm. -Thus, only the core radius R. remains as a variable
 
parameter.
 

There are at least four different ways, however, in which can vary
Ro 

relative to R as the'integration over the particle size distribution is
 
performed. In most cases, the core-size dependence on R can be written as
 

Ro = CR(P
+ I) -1 S p (29)
 

where C is a constant. In the first case, p = -1 so that R. remains
 
constant throughout the size distribution; particles in the distribution
 
smaller than C are entirely homogeneous core material, with coating applied
 
only to drops larger than C. In the second case, p = 0, so that! Ro scales
 
as a fixed fraction of R throughout the distribution. We call this the
 
scaled-core model. In a third case, p > 0, hence Ro grows faster than R
 
across the size distribution and will eventually equal R, say at some value
 
V. In this case, C = V -P , and particles larger than V are entirely core
 
material; we call this the growing-core model. A fourth case, which we shall
 
call the constant coating model, has a constant thickness t of liquid
 
coating the core in those drops large enough to contain a core, that is,
 
where R > t. For R < t, the drops are entirely liquid material. To describe
 
this model, equation (29) is modified slightly so that Ro = R - t. We note
 
that fot small values of t this model has the same core-size dependence on
 
R as does the scaled-core model, that is p = 0 and C = 1.
 

New Mie coefficients must be employed to describe the inhomogeneous drop.
 
Once they have been obtained, the calculation proceeds as in the homogeneous
 
model. Equations for the required coefficients are given, for instance, by
 
Kerker (ref. 8, pp. 189-195) and Wickramasinghe (ref. 27, pp. 29-31). Rather
 
than reproduce them here, suffice it to say that we have evaluated them for
 
the first three orders.
 

We have not attempted to derive a general recurrence relation for the
 
inhomogeneous Mie coefficients because in most cases they need to be'used only
 
in the' first few terms of the series for the phase function and efficiency
 
factors. The remaining terms can be obtained in the usual manner from
 
homogeneous coefficients. The reason for this follows from the concept of ray
 
localization for x > 1. According to this principle, the nth term in each
 
series corresponds to the contribution from the light ray that passes the drop
 
at 'a distance, mr, of nA/2 from its center (fig. 8). Thus, terms where n
 
is less than 2nm2Ro/A are strongly influenced by the core material and must
 
be calculated from inhomogeneous Mie coefficients., Higher order terms corres­
pond to rays that miss the core; they can be calculated from the homogeneous
 
model. Thus it will be useful to define an inhomogeneous drop parameter, nI,
 
to ihdicate how many inhomogeneous coefficients are required. For the specific
 
case of Venus at 3.4 im,
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nI IZcore X Imll < Im21x = 2.6 (00) 

when using Hansen and Hovenier's effective drop radius of 1.05 pm (ref. 3).
 
We shall shortly show that only the first three terms need to be calculated
 
from inhomogeneous Mie coefficients for the narrow particle size distribution
 
of Venus.
 

In the more general case, the value of nI will depend upon the manner in
 
which R. scales with R, and also on the width of the particle size distri­
bution. However, by defining nI IZcoreI we avoid the difficulty calculating
 
inhomogeneous coefficients described by Kerker (ref. 8, p. 200). In that
 
situation, n was set by the value of R rather than by Ro, which caused
 
n >> Zcore in those Riccati-Bessel functions and derivatives associated with
 
the core as R. - 0. As mentioned earlier, Kattawar and Plass (ref. 9) found 
that calculations employing upward recurrence relations are numerically
 
unstable in such a case. Thus, by using inhomogeneous coefficients obtained
 
through upward recurrence only so far as nI, and then using homogeneous
 
coefficients obtained from downward recurrence for the remaining terms, the
 
numerical instability is avoided for most values of Ro/R. A thin film coat­
ing on particles with a broad size distribution is an extreme example where
 
it would be desirable to have a general recurrence relation for the inhomoge­
neous coefficients because of the large value of nI.
 

The multiple scattering Mie program for planetary reflection (described
 
earlier) was modified to calculate inhomogeneous Mie coefficients through the
 
third order following Wickramasinghe (ref. 27). It was also modified to
 
permit Ro to vary according to equation (29). The inhomogeneous drop pro­
gram thus created was tested by requiring it to produce the same results as
 
the homogeneous drop calculation to five or more significant figures in four
 
equivalent test cases. The first equivalence test had m, = m2 = the index of
 
H2S04 , and Ro had a constant value of one half the modal drop radius (or
 
0.415 pm). The second test case had m, = the index of H2 S04, m2 = 1, and Ro
 
had a constant value of 4 pm (the size distribution peaks at 0.8 pm). The
 
third test case had m i = sulfur, m2 = H2S04 , and a scaled core where
 
Ro = 0.01 R. It was for such very small cores that Kerker (ref. 8, p., 200)
 
experienced difficulty with upward recurrence as mentioned above. We also
 
calculated his specific case (X = 2.5 pm, m, = 2.105-0, m 2 = 1.482-0, x = 10,
 
Ro/R = 0.005, b = 0.07) and found no difference from our corresponding homoge­
neous calculation. In the fourth test, m, = sulfur, m2 = H2S04 , and the con­
stant coating thickness was 2 Pm, a value so large that less than 10- 3 of the
 
drops had cores.
 

In a fifth equivalence test the scaled core size was as large as the drop:
 
Ro = R, m, = H2 S04 , and m2 = 1. This case thoroughly tests the inhomogeneous
 
drop program because three different values of z remain defined throughout
 
the calculation and because IZcorel approaches 5 at the large end of the size
 
distribution, thus fullyutilizing the higher-order inhomogeneous Mie coeffi­
cients. The result of using more inhomogeneous coefficients in this test is
 
clearly shown by the change of the single scattering phase function in fig­
ure 9. Other functions, such as the anisotropy parameter, the single-scattering
 
cross section, and the albedo similarly approach the homogeneous result as more
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inhomogeneous coefficients are used. Inasmuch as this is an extreme test
 

(R = R) and the residual deviation is less than 2% after the third inhomoge­o 

neous term, we consider nl = 3 more than adequate for the Venus calculation.
 

Finally the inhomogeneous drop program was tested by using it to recal­

culate the scattering and extinction efficiency factors of inhomogeneous drops
 
published by two other authors. Since theirs were monodisperse calculations,
 
our program was temporarily modified to bypass the particle size integration.
 
In each test when the core radius became so large that nI > 3, the test com­
parison failed significantly, as it should. Espenscheid et al. (ref. 28)
 
calculated a nonabsorbing case where m2 = 1.481, m, = 2.105, and x = 10.
 
They used upward recursion wherever possible (small values of n/z) which may
 
account for the small, but consistent difference of 2/3% between their values
 
of Qscat and ours as Ro/R approached zero. Fenn and Oser (ref. 29) calcu­
lated the inverse case to ours, that of an absorbing core (mi = 1.59-0.66i)
 
covered by a nonabsorbing coat (M2 = 1.33). At values of Ro/R equal to 0.5
 
and 0.833, with x between 1 and 4, our calculations of Qs and Qe agreed
 
with theirs to within our ability to read their graphs (about 4% or better).
 
They also calculated absorption efficiency factors for an absorbing coating
 
(m2 = 1.473-0.169i) with the same absorbing core. At x = 12.3 our values 

Of Qa (obtained from the difference between our calculated values of Qe and
 
Q.) at Ro/R = 0.0273 and 0.0741 agreed with theirs to 5 significant figures.
 
However, comparison with certain plotted data in Wickramasinghe (ref. 27) and
 
Pilat (ref. 30) produced agreement only on the order of 10%.
 

We now want to demonstrate the dependence of the reflectivity function on
 
the variable parameters of the inhomogeneous drop. Where the homogeneous drop
 
has five independent parameters, the inhomogeneous drop has eight, as well as
 
the manner in which the core radius varies over the size distribution. For
 
cores that do not occupy the entire drop, it is reasonable to assume that the
 
reflectivity function of the inhomogeneous drop model varies with wavelength,
 
effective radius, variance, and coating index in about the same way as it does
 
for the homogeneous drop; thus we will not demonstrate the dependence on those
 
parameters. Variation of the three additional parameters of the inhomogeneous
 
drop - Ro, and the real and imaginary parts of the core index - can produce
 
a dramatic effect on the reflectivity function depending on their value. How­

-
ever, for cores of sulfur the imaginary index is so small (-10 4 ) that varia­
tion of this parameter over a reasonable range has no effect whatever. The
 
real index of sulfur is larger than that of the H2S04 coating, so its varia­
tion could be significant. In figure 10 the real part of the core index is
 
varied over the range of possible values (1.75-1.95). It can be seen there
 
that this range of variation does have a noticeable, but small, effect on the
 
reflectivity. The model's sensitivity to this core parameter is much less
 
than it is to the real index of the coating (fig. 3).
 

We now compare the four previously described ways of varying the core
 
radius during integration over the size distribution. This is done in figure 11
 
for moderately large cores. Principally because of their smaller volume of
 
absorbing material, the scaled-core and constant-coating models have signifi­
cantly greater reflectivity than either of the other two models at most phase
 
angles. We noted earlier that for small coating thicknesses both of these
 
models have the same.core-size dependence on drop radius (p = 0); thus, it is
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not surprising that their reflectivities have a similar dependence on phase
 
angle. It is a bit surprising, however, that the magnitude of the reflectivity
 
calculated for these two models is so similar (see also figs. 12 and 13). The
 
constant in equation (29) is a measure of core size for the scaled core model
 
(= Ro/R). In the constant coating model Ro/R = 1 - t/R _1 - t/a, where we
 

have used R a because of the small width of the size distribution. By
 
comparing figures 12 and 13 it can be seen that as the core increases in size,
 
the two reflectivity functions become nearly equal, and furthermore the two
 
measures of core size also approach equality at C = 1. Thus, for large cores,
 
not only do the two models have the same core-size dependence on drop radius,
 
they effectively have the same core size. The narrowness of the size distri­
bution helps produce this effect. The resulting near-equality of the reflec­
tivity functions of the two models is thus not so surprising.
 

The constant-coating, the scaled-core, and the constant-core models
 
should also be compared (figs. 12, 13, and 14) at the opposite range S cbre­
size variation as Ro/R approaches zero. Both the constant-core and scaled­
core models regularly approach the homogeneous-model reflectivity function as
 
core size diminishes. However, the reflectivity of the constant-coating model
 
at small phase angles dips somewhat below that of the homogeneous and scaled­
core models when Ro/R is <0.33. This small enhanced absorption occurs when
 
the constant coating thickness is approximately one-fourth the wavelength.
 

The growing core in figure 11 is described by Ro = R
2 /(2 pm), so that
 

Ro = R at 2 Pm. For convenience in doing this particular calculation, the
 
s ze distribution was cut off at 2 pm where its value is more than thr~e
 
qrders of magnitude below the peak value. We note that the reflectivity of
 
the growing core model has a steeper slope than the other three models because
 
the larger drops become relatively less absorbing than the smaller ones. The
 
reflectivity of the constant core example has an intermediate slope. Although
 
these differences are noticeable, they are much smaller than those due to
 
changing core size.
 

Regardless of the mode of variation of the core radius, the reflectivity 
function is most sensitive simply to the effective size of the core itself. 
This strong sensitivity is clearly shown in figures 12-14, and is based on the 
greater volume of highly reflecting, nonabsorbing material in the larger cores. 
When Ro/R is greater than 0.5, this sensitivity is particularly strong, and 
the reflectivities of the scaled-core and constant-coating models are nearly 
equal, as noted above. In those models, both the level and the slope of the 
reflectivity function change rapidly for Ro/R > 0.7. Finally, drops with 
cores S 0.1 R are nearly indistinguishable from homogeneous particles, with 
the small variation of the constant-coating model noted before being the only 
exception.
 

Inhomogeneous-Cloud Model
 

If large particles of elemental sulfur are hidden at large visual optical
 
depths as suggested by Young (ref. 1), then they might be detected in the
 
infrared because a small percentage of them could be brought up to the level
 
of the 3.4 pm observations by convective overshoot or other turbulent
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processes. There the particles would be particularly noticeable because
 
absorption in the acid drops has already reduced the amount of scattered
 

light. A small contribution to the scattering by nonabsorbing particles should
 
be easily detected, particularly so in the intermediate backscatter directions
 

where the droplet attenuation is strongest. Because both the large size
 
(&13pm) and the irregular shape of the postulated sulfur particles enhance
 

the infrared backscatter relative to that of acid drops, these characteristics
 
would further assist sulfur particle detection.
 

Since mbst infrared observers do not resolve planetary detail, we must
 
consider the postulated sulfur particles to have a uniform horizontal distri­
bution in spite of the known ultraviolet contrasts. We also assume that they
 
have a uniform vertical distribution within the top few optical depths for
 
reasons of mathematical convenience. Hence, in this first approximation we
 
consider a uniform cloud of proposed sulfur particles that is well mixed with
 
the H2 S04 cloud drops. A bimodal particle size distribution describes this
 
situation quite well because the inhomogeneity in particle size, indices of
 
refraction, and number density have at least as large an effect upon the
 
planet's backscatter as does its spatial inhomogeneity. Thus we modify the
 
homogeneous model described earlier to include sulfur simply by replacing the
 
existing unimodal size distribution with a bimodal one that has H2SO4 drops in
 
the main peak near 1 pm and irregularly shaped sulfur particles in a second,
 
smaller peak near 12 lim. A more general treatment in which the size distribu­
tions overlap is also possible, but is not called for by either the quality
 
of current data or the hypothesis of Young's model.
 

To modify the homogeneous model to incorporate sulfur particles we
 
replace equation (25) by
 

nB(r) = Fln(r,al,bl) + F 2n(r,a2 ,b2 ) (31)
 

where n(r,a,b) is given by equation (25) and F1 + F2 = 1. Here F1 is the
 
fraction of the total number of particles (acid drops plus sulfur) in the
 
sulfuric acid peak at a1, and F2 is the fraction of all particles,in the
 
sulfur peak at a2 . The effective radii and effective variances a,, a2, b1,
 
and b2 are defined by equations (26) and (27) for the two different modes
 
by considering the limits of integration, rmin and rmax, to separate the par­
ticles into two complete and exclusive distributions. In practice, however,
 
a1 , a2, bl, and b2 are variable parameters.
 

Following equations (23) and (24), the size-integrated phase function
 
and cross sections become
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(The numbers 1 and 2 within the brackets of equation (32) do not refer to the
 

bimodal distribution; see eqs. (19) and (20).) Here ro is an intermediate
 
integration limit where we change both the particle shape and the index of
 
refraction to values appropriate to those of solid, irregular sulfur particles.
 
As already mentioned, our treatment of the bimodal distribution as completely
 
separable is a simplification allowed by the state of current theory and data.
 

.It will be shown later that this scattering solution is quite insensitive to
 
values of ro between 3 and 7 pm. A more general treatment would merely
 
require a different integral.
 

At the temperature of the Venus cloud top (-240 K), elemental sulfur can
 
be expected to be frozen and thus have an irregular shape. The scattering
 
behavior of irregular (nonspherical) particles of size somewhat larger than
 
the wavelength differs systematically from that predicted by Mie theory. In
 
particular, a much smaller peak is seen in the directly backward direction
 
(4 = 0) and the scattering over intermediate backscatter angles is more uni­
formly distributed. Cuzzi and Pollack (ref. 31) describe a semi-empirical
 
method for obtaining the single scattering phase function and albedo of
 
irregular particles given the Mie values for a set of equal volume spheres of
 

the same refractive index. Their method uses a combination of physical and
 
geometrical optics, and relies on comparison of parameterized phase functions
 
with laboratory observations of the scattering by irregular particles of var­
ious sizes and shapes. The semi-empirical theory fits these observations
 

quite well with variation of only two parameters. The first is the size
 
parameter, x o = 2iro/%, where the transition from Mie scattering by spheres to
 

irregular particle scattering occurs. The second, FTB, is the slope of a
 
straight line representing the angular dependence of that fraction of the
 
scattered light that has been transmitted through the particle. Cuzzi and
 
Pollack (ref. 31) have shown that values of these parameters characterizing a
 
wide range of particle shapes do not vary so widely that "typical" values may
 
not:be chosen. Thus, we have used their semi-empirical theory with
 
x :'_7(ro = 3.8 pm), a value characteristic of large particles, in our
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calculation of the scattering by the sulfur mode of the bimodal distribution.
 
In demonstrating and testing our calculations we have used FTB = 1.5, charac­
teristic of cubes. However, a value of 3 is physically .more reasonable for
 
large polyhedra, and we use that value later to set observational limits on
 
other parameters.
 

The modifications just described were tested by several reductions to
 
known cases. First, using only a unimodal size distribution (a = 1.05 pm,
 
b = 0.07), the spherical-drop part of the program was shown to reduce to the
 
HZSO4 homogeneous drop, homogeneous cloud model reflectivity function at 1 pm
 
(Case No. 3 of Hansen and Travis, ref. 6) and at 3.65 pm by setting x0 very
 
large (equal to 99). Still.using a unimodal size distribution, the irregular­
particle part of the program was checked by requiring it to reproduce a pre­
viously calculated phase function at X = 3.71 cm when the value of x. fell
 
near the center of the range of integration. This calculation was related to
 
laboratory observations of the scattering of microwaves by particles with size
 
parameters similar to ours (fig. 5 of Cuzzi and Pollack, ref. 31). The
 
bimodal distribution was tested in two separate cases by requiring it to
 
reduce to the 3.65 pm absolute reflectivity function of the homogeneous model
 
calculated earlier. In the first case, the second peak was simply eliminated
 
(F2 = 0). In the second case, the first peak was eliminated (F1 = 0) and the
 
second peak converted to H2 S04 spheres (x = 99) located at 1.05 pm
o 

(a2 = 1.05 um). In tests where previous calculations were reproduced, the
 
agreement was good to five or more significant figures. In reproducing
 
Case No. 3 of Hansen and Travis (ref. 6), the agreement was as good as our
 
ability to read their figure 27 (about 3%).
 

We will now discuss the dependence of the reflectivity function on the
 
variable parameters of this inhomogeneous cloud model and point out those that
 
are the most significant. Since the fraction of all particles in the second
 
(sulfur) mode that we may expect to see at 3.4 pm will probably be less than
 
the 1% suggested by Young (ref. 1), it is reasonable to assume that this model
 
will have a dependence on the parameters of the sulfuric acid droplet mode
 
similar to that of the homogeneous model. In addition to those five param­
eters, the inhomogeneous cloud model presents seven more to consider. As with
 
the inhomogeneous drop model, the dependence on the imaginary index of sulfur
 
is negligible because its value is so small in the first place. The depen­
'dence of the inhomogeneous cloud model on the real index of sulfur (fig. 15)
 
was also found to be negligible. It was mentioned earlier that because the
 
modes of the size distribution were separate, the dependence on was small
xo 

for ro in the range between 3 and 7 pm. Of course outside that range, the
 
sensitivity to x. can be appreciable because inappropriate shape and index
 
changes are being made on the shoulder of one mode or the other. These effects
 
can be seen in figure 16 where is varied from 1.6 to 11.5 Jim. Unless
ro 

stated otherwise, all succeeding calculations were made with ro = 3.8 pm
 
(xo = 7). The inhomogeneous cloud model is not as sensitive to FTB, the slope
 
of the parameterized phase function of the transmitted light, as might have
 
been expected. Figure 17 shows, however, that the dependence does occur where
 
expected, at the largest backscatter angles, because the transmitted component
 
dominates at large scattering angles when FTB is small. The models' dependence
 
on the effective variance of the sulfur peak, shown in figure 18, is also
 
small. Backscattering increases slightly with decreasing variance because the
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"standard" size distribution employed here is asymmetric and narrowing the
 

second mode creates proportionally more particles with larger radii.
 

The backscatter (4 70) of the inhomogeneous cloud model is most sen­

sitive to two parameters: the effective radius of the sulfur particles, a2 ,
 
and the fraction of all particles in the sulfur mode, F2 . As will be shown in
 

the next section this strong sensitivity, depicted in figures 19 and 20,
 

results from a nearly linear dependence of the model's backscattered reflec­

tivity on the total area of large particles. Thus curves with about the same
 
reflectivity at 4 = 20 are nearly identical, regardless of whether the
 

Varied parameter was a2 or F2 . The range of F2 shown in figure 20 is from
 

zero to 1/100, which spans the range from a homogeneous model to an inhomo­
geneous model containing as much sulfur as was proposed by Young (ref. 1), It
 

is clear from this figure that the backscattering of the inhomogeneous cloud
 

model is sensitive to only a few percent of the proposed amount of sulfur.
 

COMPARISON AND DISCUSSION OF MODELS
 

Backscatter Dependence on the Sulfur Volume or Area
 

In the preceding section we found that although there can be many param­
eters associated with the different inhomogeneous models, there are only a-few
 

that really govern the shape and level of the reflectivity function. We shall
 
call these the principal parameters of each model; they are listed below. The
 
first threewin each model refer to sulfuric acid drops.
 

Homogeneous model a, nr' n i
 

Inhomogeneous drop a, nr, ni, Ro
 

Inbomogeneous cloud al, nr' ni, a2, F2
 

The reflectivity function of the homogeneous model has a broad minimum
 
near-a phase angle of 300 (fig. 7); hence that is a region where scattering
 

associated with the additional principal parameters of the inhomogeneous models
 
will be most apparent. Accordingly, we investigate the dependence of the
 

backscattered light on Ro, a2 , and F2 at two backscattering phase angles:
 
= 200 and OB = 40°. 

In figure 21 we have plotted the reflectivity at h of both the
 

scaled-core and constant-core inhomogeneous drop models versus core volume.
 
We used a core volume 4/3r(aR0 /R)

3 employing the effective radius a of the
 

size distribution. Using the mean or modal radii increases the slope of the
 
curves but does not otherwise change the results. It is clear from the figure
 
that the backscattering of the constant-core model has a highly linear depen­
dence on the sulfur core volume which can be expressed as
 

k(3.4, fB = 200, 400) = 0.0436(Ro/R) 3 + 0.00774 (34)
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The difference between the backscatter at 200 and 400 is negligible so aver­
ages have been used in equation (34). It can also be shown that the back­
scatter has a similar, but inverse dependence, on the volume of H2S04 . Thus,
 
we conclude that it is primarily the volume of absorbing coating that depresses
 

the backscatter and causes the reflectivity function to be as steep as it is.
 

It is quite apparent in figure 21 that backscattering by the scaled-core
 
model is not linearly dependent on volume, having a much stronger dependence
 
than that for- Ro 0.4R. The constant-coating model produces a nearly identi­

cal plot of R versus volume because for large cores it has the same depen­
dence of core size on drop radius as does the scaled-core model, as noted
 
earlier. The difference between the constant-core model and these other two
 
models probably arises from the fact that the constant-core model has a con­
stant volume of sulfur at each fractional size level, whereas the other two
 
models have a variable volume of sulfur through the integration over particle
 
size. Since the backscatter is proportional to sulfur volume, the size inte­
gration permits the larger fractional cores to dominate the reflectivity of
 
the scaled-core and constant-coating models.
 

We noted earlier that the sensitivity of the inhomogeneous-cloud reflec­
tivity function to both F2 and a2 was due to its dependence on the total
 
area of sulfur particles. The inhomogeneous cloud reflectivity function versus
 
both parameters is plotted in figure 22 (the upper four curves). The nearly
 
linear dependence on F2 can be expressed by
 

R(3.4, B = 200 to 400) - 20.8 F2 + 0.00774 , with a2 = 12 pm (35) 

and the dependence on a2 (in microns) by
 

- 4

-(a 2 )

2 ,R(3.4, B = 200 to 400) m 4.42xl0 
5 + 0.00774 with F2 = 3.2xl0
 

(36)
 

Again, the difference in backscatter between 200 and 40' is so small that aver­
agei have been used to obtain these equations. To determine these relations,
 
we found that in the computer calculation the integration over particle size
 
had to be carried to very large values (x = 85) to get all the backscattered
 
light. As in previous calculations of this model, we have used FTB = 1.5
 
for demonstration purposes. Because this may be physically unreal (large par­
ticles do not often have square corners), we have also calculated R as a
 
function of F2 with FTB = 4. These are the lowest two curves in figure 22.
 
Increasing FTB reduces the slope of the dependence on F2 , but does not
 
remove the dependence or its linearity. These results are all consistent with
 
the observation that non-absorbing, high-index particles that are considerably
 
larger than the wavelength are good reflectors, and the reflection is propor­
tional to the total area of the reflector.
 

.Comparison of Models
 

Similarities- All three models are similar in that at 3.4 Vm they have no
 
glory or rainbows as 4 approaches zero. The homogeneous model produces only
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a small monotonic increase of -7% in R as decreases from 400 to 0.50.
 
The inhomogeneous models have an even smaller increase. This result is con­
sistent with most of the particles being considerably smaller than the wave­
length. Both inhoiogeneous models are similar in that variation of any of the
 
"inhomogeneous" parameters changes the backscattering more than the forward
 
scattering because the forward scatter is due principally to diffraction by
 
the abundant H2SO 4 drops. Variation of Ro in the inhomogeneous drop (up to
 
values of about 0.6R) produces changes in the scattering that are somewhat
 
similar to those produced by changing either nr or ni of the acid in the
 
homogeneous model. This happens because the sulfur volume determines the
 
volume of acid remaining in the drop. Thus, small sulfur cores could have an
 
effect on 3.4-pm observations similar to a reduced concentration of the acid.
 
Fortunately the wavelength dependence of an H20-H 2SO4 solution is sufficiently
 
different from that of an S-H2 S04 mixture that large errors in the deduced
 
concentration are not possible when observational spectra covering both liquid
 
H20 and H2So 4 bands are analyzed.
 

Differences- Variation of the radius of the acid drops of the homogeneous
 
model affects the 3.4 pm reflectivity function in a manner which is distinctly
 
different from that due to varying other parameters of the same or different
 
models. (Compare fig. 5 with figs. 14 and 20, for example.) Such dhanges are
 
predictable. First, as the particles become small compared to A the R
 
tends toward an isotropic distribution similar to Rayleigh scattering. Second,
 
as the particles approach X in size, diffraction enhances forward scattering
 
while absorption within the particles reduces the backscatter, resulting in a
 
very steep reflectivity function.
 

In figure 23 we contrast the effects of varying the other principal
 
parameters of the three models. Variation of F2 and a2 of the inhomogeneous
 
cloud model changes the shape of the reflectivity function through a purely
 
backscattered enhancement; varying R. of the sulfur core, or nr or n i of
 
the acid, primarily affect the overall level of the curve. In summary the
 
large, non-absorbing, high-index particles in the second mode of the inhomo­
geneous cloud act roughly like an isotropic reflection added to the droplet
 
scattering, while the volume of non-absorbing core inside the inhomogeneous
 
drops affects the overall level of the reflectivity function by excluding the
 
sulfuric acid absorber.
 

The Detectab.ility of Sulfur
 

Minimum detectable amounts of sulfur can be set by comparison of inhomo­
geneous reflectivity functions with that of the homogeneous acid drop. But to
 
do that, the ratio of the mass density of elemental sulfur to that of a speci­
fied concentration of sulfuric acid first must be evaluated. We will use an
 

3
85% concentrated solution with a density of 1.71 gm/cm , and note that the
 
density falls by less than 5% if a 75% concentrated solution were used. The
 
major uncertainty in the mass density ratio arises from the unknown molecular
 
form of elemental sulfur on Venus. However, Meyer (ref. 32) lists in his
 
table 3.1 the density of nine different allotropes of sulfur (ranging from
 
S 'to S.) and shows that they vary from 1.94 to 2.21 gm/cm 3, a range of only
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13%. Thus we pick a middle value of 2.1 gm/cm3 which produces a value for the
 
S/HS04 mass density rati6 of 1.23 with an uncertainty of ±8%.
 

Detectability of sulfur in the Venus clouds, in the sense that we shall
 

use it, refers to, the ability to observe an enhancement of the 3.4 pm back­
scattering relative to that calculated for a homogeneous drop. For example,
 
figure 24 shows'a band 25% higher than the homogeneous drop reflectivity
 
function. Just within that band lie back scattered reflectivities of inhomo­
geneous drop.models with scaled core radii as large as 0.38 R, and
 

- 4
inhomogeneous cloud reflectivities with F2 = O.75xi0 . Thus, 3.4 pm obser­
vations at 4 < 1000 with total (absolute plus internal) errors <25% could
 
distinguish the homogeneous model from those inhomogeneous drop models whose
 
scaled core radii were >0.38 R. Because 25% error bars placed upon those
 
curves with R. < 0.38 R would include the homogeneous curve, such observa­
tions could not distinguish, hence could not detect, inhomogeneous drops with
 
cores smaller than 0.38 1. Similarly, figure 24 indicates that ±25% total­

= 
error observations at h 200 to 400 could distinguish the homogeneous
 
model from inhomogeneous cloud reflectivities where F2 ! 0.75x10- 4 (with
 
a2 = 12 pm, FTB = 1.5).
 

The ratio of the detectable mass of sulfur to that of H2SO4 solution
ms 

mH2S04 can be directly related to the minimum distinguishable values of F2
 
or Ro/R set by the total error of the observations. This is particularly
 
simple for the scaled core inhomogeneous drop model where the ratio of the
 
total volume of sulfur (Vs) in the atmosphere to the total H2SO 4 volume
 
(VHsO4) is the same as it is in each droo because there is a core of fixed
 

fractional size in every drop. Thus,
 

Vs R° 3 1 (7 
V5 1 (37) 

R3 -VH2S04 - Re 3 (R/Re)3 - 1 

and so the minimum detectable mass ratio for inhomogeneous drops is
 

ms PsVs 1.23 (38)
 

Amid mt2S04 drops 2- (4R)
pH2so4VH2 s04 


where we have used a density ratio ps/pH2SO4 = 1.23 as discussed earlier.
 

For the inhomogeneous cloud model, the minimum detectable mass ratio is
 

Psa 2
3Ns ( a2 3
 ms 


A. = 1.23 _i__ F (39) 
m Ic PH2SO4 a NH2S04 ( 5) 2
mH2S04 clouds 


since Ns/NH2S0 4 = F2 and we consider a1 to be specified by the work of 

Hansen and Hovenier (ref. 3)..
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To take the case from figure 24 as an example, inserting R/Ro = (0.38)
-1
 

into equation (38) gives Amid equal to 7.1% for the inhomogeneous drop.
 
That is, 25% or better observations could tell inhomogeneous drops with more
 
than 7.1% sulfur from homogeneous acid drops. More accurate evaluation of
 
R. could be made by referring to plots of R versus volume, such as
 
figure 21, but that is not necessary at this point.
 

The inhomogeneous cloud model has two unspecified parameters; a2 and F2.
 
Young (ref. 1) has proposed that a2 > 10al, so we will evaluate equation (39)
 
at two values of a2 :9 pm and 18 pm. As mentioned earlier, values of
 
FTB = 1.5 may be unreal for large particles, so we use now a value of 3
 
appropriate for large polyhedra. This is consistent with the shape of the
 
double pyramid habit of orthorhombic sulfur shown by Adams and Spear (ref. 33).
 
Because of the high sensitivity of the back scattered reflectivity to F2 , it
 
is both impractical and inaccurate to evaluate the minimum distinguishable
 
(detectable) value of F2 from families of curves such as those in figur'e 20.
 
Since R is directly proportional to F2 , the minimum distinguishable value
 
can be extrapolated from a linear plot as shown in figure 25 for = 18 Jm.
a2 

Again we note that the difference between t = 20 and 400 is small enough to
 
permit averaging, so that if a2 = 18 pm we find from the figure that'the min­

-
imum distinguishable value of F2 is 6.1×x0 5 at the ±25% total-error level.
 
It is of course proportionately smaller at the ±15% error level. 'Similar cal­
culations for a2 = 9 Pm give the minimum distinguishable value of F2 -as
 

-
2.2x10 4 at the ±25% error level. Thus, depending on the size of the postu­
lated sulfur particles we expect that their minimum number density detectable
 
by ±25% total-error observations at B is between 6x10-5 and 22X075 times
 
the number density of acid drops. This is about two orders of magnitude
 
smaller than that proposed by Young and indicates the sensitivity of back­
scattered infrared observations. We note that such observations pertain to
 
the first 3.4 pm optical depth within the cloud, that is, to the upper part of
 
the cloud.
 

The small value for the minimum detectable number density becomes a large
 
value of minimum detectable mass because these particles are so large. Even
 
so, it is still interesting to compare the minimum detectable amounts of
 
sulfur for both inhomogeneous models. Evaluating equation (39) at the i25%
 
level with the values of F2 determined above, we find that the minimum
 
detectable mass of sulfur in the inhomogeneous cloud model ranges from 17% of
 
the mass of acid for 9 pm particles to 38% for 18 pm particles, as compared to
 
7% of the mass of acid if the sulfur is within each drop.
 

Penetration Height of 3.4 pm Observations
 

Finally we estimate the height above the surface of Venus to which these
 
3.4 pm observations'and minimum detectable masses pertain. We define the
 
effective extinction cross section or coefficient as
 

eff.ke(X) = (1 - cos 6)ks(X) + ka(X) (40)
 

where cos 8 is the anisotropy factor (ref. 6). This definition differs from
 
that of Lacis (ref. 34, figure 2) in that we apply the correction for forward
 

24
 



scattering (1 - cos e) only to ks rather than to the sum of ks + ka as did
 
Lacis. Because both the visible polarization and the 3.4 pm observations per­
tain primarily to single scattered light, we can write
 

N(h)sec z 
dh
 

eff.ke(IR)
f[ 
1 eff.IR TR 
 (41)
Teff.VIS
 

f eff.ke(VIS) N(h)sec z dh
 

"VIS
 

Assuming that eff.ke sec z is independent of height gives
 

N()dh effke(S) N(h)dh (42)
h d IR eff.ke(IR) I 

IR VIS
 

Here N(h) is the number density at height h, and hIR and hviS are the
 
deepest heights from which radiation of the wavelength specified has arisen
 
when Teff. is large.
 

The column density integral on the right side of equation (42) was deter­
mined graphically from the density model of Lacis (ref. 34, fig. 8) with
 

=
hVIS 66.5 km. The effective extinction cross sections were calculated at
 
0.55 and 3.4 pm using the homogeneous model of H2S04 drops at 84-1/2%,concen­
tration and 300 K temperature. Equation (42) was then evaluated graphically
 
and produced a value for hIR of 67.5 km. We note that Lacis" density model
 
is sufficiently steep at this height that a factor of two reduction in the
 
3.4 pm effective extinction cross section (which would result from use" of
 
Lacis' definition) would cause only a 2-km increase in depth. Thus we con­
clude that the 3.4 pm observations pertain to about the same height as those
 
in the visual, or to just slightly higher.
 

SUMMARY AND CONCLUSION
 

The ability to detect small contributions to the scattering of sunlight
 
by sulfur or other nonabsorbing species is greatly enhanced in the infrared
 
absorption band of sulfuric acid where absorption reduces backscattering by
 
the numerous homogeneous acid drops to levels more than 46 times below those
 
in the visual.
 

A planetary reflectivity function, whose shape is quite similar to that
 
of the single scattering phase function with strong absorption, has been
 
defined and related to other known functions.
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Two inhomogeneous models containing sulfur have been described and tested.
 
The principal new parameters associated with these inhomogeneous models are
 
the radius Ro of the sulfur core within an inhomogeneous drop, and the
 
effective radius a2 and relative number density F2 of large sulfur par­
ticles in the inhomogeneous cloud model. A core-size parameter, nI, indicat­
ing how many inhomogeneous Mie coefficients are required has been defined for
 
the inhomogeneous drop model. Calculations with these models at 3.4 pm show
 
that backscattering near phase angles of 300 by the constant core, inhomoge­
neous drop model has a linear dependence on core volume (Ro3); backscatter
 
from the inhomogeneous cloud model has a linear dependence on the total area
 
of large sulfur particles through either (a2)2 or F2 . The volume of non­
absorbing core inside the inhomogeneous drop affects the overall level of the
 
3.4 pm reflectivity function by excluding the sulfuric acid absorber; in con­
trast, the area of the large, non-absorbing, high-index sulfur particles
 
affects the shape of the reflectivity function by adding a nearly isotropic
 
reflection to the steep curve of the acid drops.
 

Minimum detectable amounts of sulfur are based on the ability to observe
 
an enhancement of the 3.4 pm backscatter relative to that calculated from the
 
homogeneous model. Observations with ±25% or less total error could distin­
guish the homogeneous drop reflectivity function from that of inhomogeneous
 
drops if Ro 0.4R. Similarly, ±25% observations could distinguish the
 
inhomogeneous cloud reflectivity function of sulfur particles with effective
 

- 5 - 5
radii between 9 and 18 pm if F2 22xi0 or 6xlO , respectively. These
 
minimum distinguishable parameters lead to ratios of the minimum detectable
 
mass of sulfur to that of H2SO4 for the inhomogeneous drop model of 7%, and
 
for the inhomogeneous cloud model of 17% or 38%, depending on particle size.
 

These calculations lead us to conclude that moderately accurate 3.4 Pm
 
observations of the intermediate angle backscatter from Venus are capable of
 
detecting quite small amounts of elemental sulfur at heights above the plane­
tary surface comparable to those of the visual observations.
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Figure I.- Reflectivity with strong absorption at a visual wavelength (Hansen
 
and Travis's hypothetical case no. 4, ref. 6); P"() is the single scatter­
ing phase function plotted on an arbitrary scale; RG() and p(4) are the
 
reflectivity function and geometric albedo plotted on the same scale.
 

30 



--

1.0 0 1.0635gm OBSERVATIONS BY IRVINE 

- 0.899 R (X,0)CALCULATED 

.. X = 1.0635gim 
nr = 128
 

a = 1.05gm
 

b = 0.07
 
6
m = 1.425- 1.52.E - i 

.10 I I I I I I I
 
20' 40 60 80 100 120 140 160
 

0,deg
 

Figure 2.- Observation vs theory at 1.0635 pm. The smooth curve is 0.899
 

times the calculated reflectivity function; observed data from Irvine
 
et al., (ref. 5).
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Figure 3.- Variation of the real index in the homogeneous drop model.
 

32
 



.50 -

X = 3.65,1m 

r = 128 
a = 1.05gim 
b = 0.07 

nREAL = 1.40 

ni 

0.230 
0 0.164 

.10 J 0.100 

to 
LLI 

I­

0 

.01 

.006 
20 40 60 80 100 120 140 160
 

4, deg 

Figure 4.- Variation of the imaginary index in the homogeneous drop model.
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Figure 5.- Variation of the effective radius in the homogeneous drop model.
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Figure 8.- Inhomogeneous drop.
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Figure 13.- Variation of size of constant core of inhomogeneous drop model.
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Figure 14.- Variation of size of scaled core of inhomogeneous drop model.
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Figure 16.- Variation of r. of inhomogeneous cloud model.
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Figure 18.- Variation of- b2 of inhomogeneous cloud model.
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upon total particle area in the inhomogeneous cloud model.
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Figure 23.- Comparison of homogeneous and inhomogeneous models.
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Figure 24.- Sulfur detectability. 
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Figure 25.- Detectability limits of inhomogeneous cloud model for a2 = 18 pm 
and FTB 3; minimum distinguishable values of F2 are indicated by arrows. 
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