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1. Introduction

In several recent studies, asyrﬁptotic methods have been used success~
fully for the derivation of rat.onal approximations which describe the inter-
action of a turbulent boundary layer and a weak, stationary, normal shock
wave, It appears that correct limiting forms of the equations can be deter-
mined, that numerical or analytical solutions to these equations are ob-
tained easily enough to be of practical interest, and that numerical accu-
racy may be adequate for important parametér ranges. In the limiting
case to be considered here, still for an unseparated boundary layer,
the shock wave extends close to the wall, the upstream influence is
small, and analytical solutions can be obtained for most of the flow
field.  Pressare distribations are derived in Part I; the wall ghear
stress and the possibility of predicting separation will be discussed
in Part II,

In many transonic flows of interest, there occurs a shock wave which,
in an inviscid-flow approximation, is normal to a solid boundary, at values
of the Reynolds number large enough that the boundary layer along the wall
is fully turbulent. Since the strength of the shock wave must decrease to
zero in the supersonic part of the boundary layer, there can be no discon-
tinuity in the pressure at the wall. It is observed that the shock wave
becomes slightly curved and is displaced slightly in the upstream direc-
tion. As the Mach number upstream is increased, still below the value
required for saparation, the shock wave extends further into the boun-

dary layer; experimental results [1,2] show an initially rapid rise



in the wall pressure, followed by a gradual decrease in the pressure
gradient over a distance several times larger than the boundary layer
thickness.

Asymptotic descriptions of these flows, in the limit of infinite Reynolds
number, have been discussed in References [3] through {10]; in particular,
Ref. [8] contains the first steps of the present work. In each of these
studies, the representation of the undisturbed boundary layer in terms of a
velocity-defect layer and a wall layer [11, 12, 13)] is regarded as providing an
asymptotic description as the Reynolds number tends to infinity [14-18].

The pressure gradient in the boundary layer is large near the shock wave,
and consequently the forces resulting from changes in the Reynolds stresses
are of higher order than terms retained, in most of the boundary layer.
Thus, as for laminar flow [19, 20, 21] , an asymptotic déscri‘ption of the
changes in the mean flow can be obtained with the use of inviscid-flow equa-
tions for most of the boundary layer.

The form of the velocity profile, however, implies two important
differences from the laminar-flow case. First, for an unseparated turbu-
lent boundary layex the wall layer is extremely thin, and the displacement
efiect resulting from deceleration of fluid close to the wall remains very
small, even in a large pressure gradient. Thus, if the undisturbed velocity
profile is known outside the wall layer, an approximation to the pressure
can be found without knowledge of the flow details near the wall and there-
fore without any further assumption about the nature of the turbulent

stresses, Second, for a slightly supersonic external flow the sonic line is



located at an arbitrary position (outside the wall layer) in the undisturbed
boundary layer, depending on the relative sizes of the nondimensional fric-
tion velocity and the nondimensional difference between the fluid velocity
and the critical sound speed in the external flow., As the Reynolds number
tends to infinity, one can then study three cases, such that the ratio of
these parameters tends to infinity, remains constant, or approaches zero.
Adamson and Feo [3] considered an incident oblique shock wave in a
flow with velocity only slightly greater than the sound speed, such that the
sonic line is located very close to the edge of the boundary layer. The
corresponding asymptotic formulation was shown to lead to a local-inter-
action problem requiring solution of the transonic small.disturbance equa-
tions for the local perturbations in the external flow, expressed in appro-
priately scaled variables. The influence of the boundary layer is repre-
sented on this scale through an effective wall boundary condition specifying
a linear relationship between the streamline slope and the pressure gradi~
ent. Meinik and Grossman [¢] studied 2 normal shock wave having strength,
as measured by the nondimensional pressure jump, of the same order as
the friction velocity, so that in the limit the sonic line is at an arbitrary
location in the boundary layer. Numerical solutions of the transonic small-
disturbance equations were obtained for perturbations in the defect portion
of the boundary layer and in the neighboring external flow. Changes in the
wall layer were also discussed in each of these papers, Melnik and Grossman
later[5, 6] obtained additional numerical solations for axisymmetric pipe

flow. At higher upstream speeds, which might be characterized as "high



transonic speeds,' the shock wave is stronger but the boundary layer can
remain unseparated. For this case, a first approximation for the flow per=~
turbations outside the wall layer was given by Adamson and Messiter 8] .
The shock-wave strength, although still small, was taken to be large in com-~
parison with the nondimensional friction velocity, sothat in the undisturbed
boundary layer the distance from the sonic line to the wall is much smaller
than the boundary-layer thickness. The corresponding problem has also
been discussed for an incident oblique shock wave [7,9] . A brief prelimie
nary description of some of the present results was given in Ref. [10]; a
few details have since been modified.

In the present work, analytical solutions are derived which incorporate
additional physical effects as higher-order terms for the casg first dis-
cussed rather briefly in Ref. [8] , when the sonic line is very close to the
wall. The functional form used for the undisturbed velocity profile is des-
cribed in Section 2, to indicate how various parameters will be calculated
for later comparison with experiment. The basic solutions for the pressure
distribution are derived in Section 3. In Section 4 corrections are added
for flow along a wall having longitudinal curvature and for flow in a circular

pipe, and comparisons with available experimental data are shown.



2. Undisturbed Velocity Profile

Nondimensional rectangular coordinates X and Y are measured along
and normal to the wall, respectively, with Y = 0 at the wall and X = 0 at
some point on the shock wave, e.g., at the intersection of the shock wave
with the; edge of the boundary layer as defined below. The reference length
is a geometric length such as the length of the boundary layer from a lead-
ing edge up to the shiock wave. The nondimensional mean-velocity compo-

nents U and V, referred te the critical sound speed in the external flow,

are in the X and Y directicns respectively, and the term p'V'/p has been

included in V. Here primetr denote fluctuations about the mean, and p' V!
denotes an average value. The nondimensional mean pressuare P, density
p, temperature T, and viscosity coefficient p are referred to the criti-

cal values of préssure, density, and temperature, and the corresponding
viscosity coefficient, in the flow just outside the boundary layer and ahead of
the shock wave. The sum of the nondimensional Reynolds stress and viscous
stress,’ in the boundary-layer approximation, is denoted by T, and has been
made nondimensional with twice the dynamic pressare, in terms of the same
reference quantities. For later convenience the iriction velocity u_ is made

nondimensional using the external-flow density:

. T
2 _ w142 _
u_ = . = 37Uk, U, = l+e (2.1)

where the subscripts e and w indicate values in the external flow and at the
wall, respectively, and Ce is the undisturbed value of the skin friction

coefficient, referred as usual to the dynamic pressure in the external flow,



The nondimensional difference between the fluid velocity and the critical
sound speed in the external flow is ¢, and in the present case u_ << e << 1,
For simplicity, an adiabatic wall is assumed and the total enthalpy is taken

to be uniform. The ratio of specific heats is y and is constant.

As in references cited above, it is assumed that the undisturbed
boundary layer can be rlescribed asymptotically in terms of a velocity-de-
fect layer and a wall Jayer. The defect layer ‘cvcc'lupies most of the boundary
layer, and its thickness is taken equal to a boundary-layer thickness §.

The velocity differs from the external-flow velocity by an amount of order
u_, the shear stress is v = O(ui'), and the layer thickness is 6 = O(u_r).
The much thinner wall layer has thickness denoted by 3‘, and the velocity
there is small, of order . Coordinates measured in terms of these non-

dimensional thicknesses are defined by

Y
Yy = 5’ 6 = o(u'l") (Z.Z)
1
T U
~ _ X > "w, twi _e 1
-y B P R (2. 3)

where b << b , and & has been set equal to the ratio of the nondimensional
. . . . . 1/2 _ 1/2
local kinematic viscosity and a friction velocity u_r(fl‘w/ Te) = ('rw/pw)
based on the density at the wall. The Reynolds number Re is based on the
geometric reference length and the undisturbed external-flow velocity and

kinematic viscosity; all parameters are understood to be evaluated imme-

diately upstream of the shock wave.



The velocity Uu in the undisturbed boundary layer just ahead of the
shock wave is expressed in the defect layer in terms of y and in the wall

layer in terms of ;, as follows:
Uu ~ Ue + u-r“Ol(V)’ y = O(1) (2. 4)

1/2 ~
Uu. ~ l‘-r(']"w/ Te) u0].

(M.,  y=o0( (2. 5)
The form of the profile is shown in Fig. 1 for a. << ¢ << 1. Equations
(2.4) and (2. 5) are [13] , respectively, the "law of the wake' and the "law
of the wall,' written here for a compressible boundary layer, and are
taken to be asymptotic representations valid as a_ -~ 0, with y and "y" held
fixed respectively. Throughout most of the analysis also ¢ ~ 0 such that
uT/e =+ 0. In the wall layer the Reynolds stress and the viscous stress
are both of the same order as the wall shear stress Tw = O(uz). Since

Y = O(8) is extremely small, the momentum equation gives T ~ T As

;' =Y/ 5 - o, the viscous stress becomes extremely small, while T re-
mains equal to Tw in the limit, provided that also y = Y/ 6 — 0. The mix-
ing length approximation sz (;dUu/ d;;)z = T +. . is introduced here for
y << 1 and;» i, where k¥ is the von Ki&rman constant, taken equal to
0.41. For a perfect gas with uniform total enthalpy, pT = prw and

T = }if‘l +1) - ';'(y‘ - 1)U2. Integration gives, for y<< 1 and y > 1,
1

u, =T sin{ r'"‘('rw/rra)z u_(k *l in y +¢)} (2. 6)

where ¢ = constantand I' = {y + l)l/z/w - 1)1/2. This is van Driest's

[22) result, with the added simplifying assumption of uniform total enthalpy.



Expansions of Eqn. (2.6) for U'.1 -+ 1 + ¢ and for Uu ~+ 0 should agree,
respectively, with expansions of the defect-layer velocity (2.4) as y ~ 0 and
of the wall-layer velocity (2. 5) as ;" -+ . For Uu —+1+¢ and u, - 0,

respectively, Eqn. (2.6) gives

U ~1l+te +(u1_/lc)(lny-21'1) (2.7).
1/2, -1, ~ '
U ~u (T /T) 7™ my+a (2.8)
where Il is Coles' [13] profile parameter; ¢ % 5,0 and, for zero

pressure gradient, II = 0.5 or perhaps a little larger. Since ; = (& /E)y,

comparison of Eqns, (2.6) and (2. 7) gives

o k "l1n(s /3) = (Te/Tw)l/ZUi(e) - uT(zmc'l + ¢) (2.9)

where Ui(e) =TI sin-l(I‘-er). The expansions (2.7) and (2. 8) require,
respectively, y = 0 slowly and ; - o slowly as u_ > 0; since

u = O(1/in Re), from Egn. (2.9), one might take, e.g., y= O(ul:")

and ; = O(u_:n) asua, =0, wherem > 0 and.n > 0. A difference from the
incompressible case arises because Egn. (2.8) with ; = (G/E)y does not
agree with Eqn., (2.7), That is, the expansion as ; - o0 of the wall-layer ‘
solution does not agree with the expansion as y —+ 0 of the defect-layer solu-
tion. Thus these solutions have no cornmon domain of validity and cannot
be matched. This type of problem has been discussed in detail by Lager-‘ -
strom and Casten [23] , with a model example related to flow at low Reynolds

number. In the present case, the density has different values for y = O(1)



and for ; = O(1), and the difficulty is resolved by use of the solution (2. 6)
for 3<<. Y << &; this feature was' also noted by Adamson and Feo [3] and
by Melnik and Grossman 4] .

The defect layer, where y = O(1), has nearly constant density and is
described in a first approximation by incompressible -flow equations. The
domain of validity of Eqn, (2.6) can be made to include y = O(1} ;i
K ‘l(l.n y - 2II) j.s replaced by g1 (y),'where uol(y) is the same fu.nrkg i

R

for incompressible flow. Then

u =T sin{sin‘l(r"‘ue) + T /re)lf %a_ug, ()} (2. 10)

Expansion fo:‘: a_ 0 gives Eqn. (2.4) if y is held fixed, Eqgn. (2.7) if

y = 0 sufficiently slowly that also e Iny -0, and Eqn. (2.6) if

y = (6 /g ); - 0 more rapidly, such that u_In ; is held fﬁ;ed. The use of
Eqn. (2. 10j was suggested by Maise and McDonald [24¢] , who showed that
this ae;aumed‘proﬁle permits good correlation with experimental data for
adiabatic flat-plate bgu.ndary layers. Their interpreté.tion of Eqn. (2.10)
notes i;ha.t a tranaformeci velocity I’ si.n-l(I‘-lUu) is predicted to have the
incompressible form Ui (e) + ('I‘w/ Te) 1/2 u_ uol(y) everywhere outside the

wall layer.

A second relation between & and u_ for 8P/8X = 0 can be found with
the help of the von Kirmdn integral o the momentam equation, following a
derivationlsimilar to that for incompressible flow given, e.g., 'by

Cebeci and Smith [25] . The result is, to second order in u‘r/Ue’



2

u u. ‘@ a

T . | T
1, . 1 ,.2._e. wl/2 -4 ... "w - 2 T _
=6 = H{E G ) T HT= B0 [ ugdy) = (2.11)
8 Ue | K Ui Te | ‘ml_ Te ‘0 0l U:
The positive constant m, is defined by
m, = -sj (y)dy (2.12)

and occurs in-another context in the following section. For analytical’

purposes, the function uOI(yi is represented in Coles' [13] form-

ag () = &7 Iny ,-r'm’lu + cos wy) (2.13)

for 0< y< 1, .withu (y) = 0 for y> 1.

In the derzvah.on wh1ch £ollows, the bou.nda.ry-layer thickness is taken
as one of two important characteristic lengths.. The other lergth is the dis-
tance from the wall to the Ison-ic'li.ne in the undisturbed boundary layer, de-
noted in nondiménsiona.l form by 6 Substltutmu Eqn (2.13) in Eqn. {2. 10),

settingy = & «/58, and expandmg for & «/8 —~0 gives

o k" m(s/a ) = (T /'r )1/2[0 € -1, (0)] -2mk e (2.14)

As ¢ - 0, ln(S/B*) ~ K u L€ ['1 - (y - 1)5/4 +...] -2I; thus 6*/6 -0
if e /e -0, An alterna.te. form of the velocity profile (2. 6) in terms of a
coordinate y Y/5 , is -

1/2, -1

“;‘ I"sm{sm g )J-r Yr /7)) o lny") (2. 15)

for y = 0 and y'-"ou.‘
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3. Interaction Along a Plane Wall

Asu_ -~ 0, the orders of magnitude of the mean pressure gradient and
fluid acceleration near the shock wave are larger than in the undisturbed
boundary layer. The Reynolds-stress transport equations can be used to
show that in most of the boundary layer the contributions to the mean forces
resulting from changes in the turbulent stresses are sufficiently small, in
comparison with the pressare and inertia terms, that they may be neglected

asua_ ~ 0, not only in a first agproximation but also in the calculation of

some higher-order terms.  Correct asymptotic representations of the mean
velocity and pressure perturbations can therefore be derived using inviscid-
flow equations. Also, as noted at the end of this section, displacement
effects resulting from flow changes very close to the wall are extremely
small, and so the largest terms in the solution for V should approach

zero as the distance from the wall decreases.

In the equations which follow, all laminar and tarbulent stresses are
neglected, as are the entropy changes across the shock wave; order-of-
magnitude estimates given at the and of this section show that the neglected
terms are in fact of higher order than any of the terms retained. The equa-~

tions describing the fluid motion can then be written in the following form:.

Y. - - 2

a’ divg = q -V éL (3.7)
2 1 2

a” = Sy +1) -'li(v - lq (3. 2)
—tp i -1

pg-Vgqg=-y VP (3. 3)



Here :;., g, and a'= (P/p)r'i/;a are, respectively, the velocity vector, .the
magnitude of the velocity, and the sound speed, all nondimensional ﬁith the
critical sound speed in the external flow jusi ahead of the shock wave, The
gradient and divergence operators imply differgntiation with respect to the
nondimensional variables X and ¥. Crocco's _the:'.;lrem, simplified by the

assumption of uniform total enthalpy, is

§xgq=y Tvs (3.4)

where @ = curl Z;, and the specific entropy s has been made nondinmnsipn- :

al with the gas constant R. Since the upstream value of V contributes terms

of higher order than those to be retained here, the shock-polar equation

becomes
UuU, -1
2 _ 2 a_ d
Vd = (Uu - Ud) {3. 5)

2
20 /(y+) - (U U, -1

d
where the subscripts uand d her_e denote, respectively, values immediately
upstream and downstream of the shock wave. Sincé the jump in tl:;e velocity
vector across a shock wave is in a direction norn';:al to the shock, the shocl;-,

wave slope is

ax_ v, |
ay ~.U.-u (3.6)
a _d

where the shock-wave location is denoted by X = XS(Y).

12



If the nondimensional friction velocity u_ is small in compavison with
the nondimensional shock-wave strength ¢, the sonic line in the undistarbed
boundary layer is very close to the wall, as can be seen from Eqn. (2.14)
and Fig. 1. That is, if u_ - 0 and uT/e =~ 0, then also § /& ~0. A com-
plete description of the local pressure changes would require both an "outer’’
solution, obtained by taking a limit of the cquations with coordinates Y/8& and
X/A held fixed, and an "inner" solation, obtained with Y/b* and X/A*
fixed, for suitable choices of A and A, . The shock wave can extend nearly
to the wall, as shown in Fig. 2, andso the upstream influence described
by the inner sclution is very small; it is shown later that 4, = O(ul_r/zﬁ*),
where 6*/6 = Ofexp(-k c/u_r)) from Eqn, (2.14). For the outer solution,
therefore, Uu can be taken cqual to the undisturbed velocity (2.10) or (2. 4).
The inner solution describes perturbations about the undisturbed boundary-
layer flow, while the outer solution describes perturbations about a different
boundary-layer flow, downstream of the shock wave; the two solutions
should match in a proper asymptotic scensc.

For Y = O(8) the length scale A in the downstream direction is found
from Eqgn. (3.1) and the vorticity equation to be A = O(boﬁ), where
bz(e) =1- M: and Mo iz the Mach number in the external flow behind a

normal shock wave. Coordinates x and y are defined by

X X
x = b 6 y = "g (3-7)
o
. whore
1/2 1/2
bo = (y +1)/ € / {1-;11-(?»; +De +...} (3.8)

13



Since the shock wave is nearly normal, the shock-polar equation (3. 5) gives
Ud =({l+e )-1 + O(u-r)' This result suggests that throughout the flow down-l'_
stream of the shock wave U should be represented as a constant value

l-¢e +... plus small perturbations of order a_. It is convenient to sepa-
rate the rotational part, which can be calculated from Crocco's theorem
(3.4), and the irrotational pait, which is to be found from the solution of
Egn. (3.1) satisfying the appropriate boundary conditions. In the limit as
a_ -~ 0 with x and y held fixed, the velocity components are then expressed

in the form

U= (L+e )'1_+ uTu{ﬂ(x, yie) + ufuér)(x. yie) +...
+ u_ qux(x, y:e) + uftbzx(x, yie) +... (3.9)
V/bo(e ) = ur¢1y(x’ yie) + uicpzy(x, yie) + ..., (3. 10)‘

where the functions of ¢ shown will be expanded below for ¢ — 0.

The entropy s is nearly constant along a streaniline, and the equation

of state gives P = p T, since changes in p'T' are of higher order than

terms to be retained here. It follows that along a streamline P Ty /ty =)

~ PeT;Y/(Y-I, to the order required here. Substitution of T = aZ from Eqn.

(3. 2) then gives the pressure as
2
P/P_ = 1-y(U-U) -y (U, -D(U-U ) +... (3.11)

»

Also, Crocco's theorem gives Q ~ y -IP ds/dyi, where y = Py, q;x = - p'\}
and 2 = V. - U, and so Q/P ~ Szu/Pe along a streamline. Substitution in

the expression for @ allows calculation of terms in the rotational part of U;

14
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1 - (1 ¥ ZYE t.. ')u01(Y) (3- 12)
(r) _ y=-1 2 ® .
ay = =TT ug{y) Y f uly, M, Gryidy +... (3.13)
y

Substitution of the representations (3.9) and (3. 10) into Eqn, (3.1) leads to
differential equations for ¢ 1 and & 2

¢ + ¢ = 0 (3.14)

1xex lyy

-l v ey /o )+ M@ 14 e

¢2xx ¥ ¢2yy - 2 1xx

2 (z)
+ (1+4e )Mod: 1y(uly + 2¢1xy) {(3.15)

Expansion of the shock-wave slope (3.6) gives, after integration, the shocka-
wave location x = xs(y;uT, €) as

a

x, = u_rxsl(y;e) +... = 'EE' (1 +'§”e +...){¢1(0,y;e) -¢1(0,1;e)}

+e.. (3.16)

where the origin of coordinates has been chosen so that *, = Oaty=1,
Thus the shock wave is located at x = 0 in a first approximation, as implied
in Fig. 2, and the flow properties are to be studied in the quarter-plane

x> 0, y> 0. Boundary conditions at x = 0 are found from the shock-polar
equation (3. 5), expanded in Taylor series about x = 0:

¢1x(0,y) = «2{1 + (y -1)¢ +...}u01(Y) (3.17)
6. (0,9) = x_ (9. (0,9 += {1 - -De}oZ (0,y)
2x ! sl Ixx ' 2¢ 2 1y Y

Sxod 2

> uOI(Y (3.18)

It is also required that ¢1y(x, 0) = tbzy(x, 0) = 0 and that all disturbances

2 2
approach zeroasx +y - oo.

15



The limiting form of 4)1 as € -0 was first given in Ref. [8] ; here a
term proportional to ¢ is included. The solution is expressed in terms of a

distribution of sources along the y-axis:

@
2 2 2.1/2
o609 = -2t -De 4o} g (ahnl® + by P
(3.19)
The extended definition 001(-y) = u01(y) gives a potential for - @ < y <
which is symmetric about y = 0 and thus satisfies the boundary condition

there. As xz + yz - 0, the contribution to the complex velocity is
. -1
u_r(cblx-ubly) = - Zu_l_{l +iy -1)e +...}k (lnz «2I) +... (3. 20)

where z = x +iy. The pressure Pw at the wall found from evaluation of Eqgn.

(3.11) as y — 0 is

P -
k3 2y u {1 +(2y-De +...} 2= ® tgpfmdn
P - Y uT Y - € es e ™ z z
e 0 x +n

oo (3.21)

2
where Pf/Pe =1 +y{2 +(2y-1)e +...} is the pressure ratio across a
normal shock wave when the upstream speed is Ue =1+e. Atlarger dis-
2
tances, as xz +ty -+ oo,

my

-icbly) = u.r{l-l-(y-l)e +"'}{_21r—z+"'} (3.22)

urw 1x

where m, is defined by Egn. (2,12); substitution of the approximate analyti-
cal form (é’-. 13) gives m, = 8(1 + MI}/k. Thatis, the integrated effect is
that of a concentrated source having nondimensional volume strength per
unit length equal to {1 +... }mluTﬁ . One-fourth of this fluid appears to be

added to the external flow in the quadrantx> 0, y> 0. Since

16



dipU) ~ (1 - Mi)dU along a streamline downstream of the shock wave, and
1 - Mz ~ (y +1)e, the local increase in the boundary-layer displacement

thickness is i(y +1)e m uTG +..., as can also be found by direct calcula-

1
tion. An equivalent observation was made for ¢ = O(u_r) by Melnik and
Grossman {5, 6] . Perturbations in turbulent stresses contribute only a
higher-order cha.ngellocally; the present result does not include the fur-
ther displacement effect which occurs on a iarger length scale as a new

equilibrium velocity profile is approached. Finally, the shock-wave shape

found from Eqn. (3.16) is, for y —~ 0,

a
xs(y) -xs(O) = e {1+ -%)e_+...}{£‘y+...} (3. 23)
and, for y - oo,
' Yy 1 m1
xB(Y) -xs(O) = 5. {1+ -?e +...}{"£?'1ny
s @
+= _£ ag, (n)iny dn +} (3. 24)

For y = Y/§ -+ oo, the shock-wave displacement continues to increase, and
should be matcized with a suitable perturbed external-flow solution evaluated
as Y —+0.

The solution for q:z can be found in two parts. A particular solution
of the differential equation (3. 15) ca.il be made to satisfy homogeneous
boundary conditions ¢Zx(0, y) = q>zy(x, 0) = 0 if sources aredistributed

“over the entire S:, y plane with the source étrength chosen to be an even
function of both x énd y; The boundary condition (3.%8) at % = 0 is then

satisfied by a distribution of sources along the y-axis, with strength taken

17



to be an even function of y so that ¢2y remains zero at y = 0, as in the -
solution for 4)1. Of special interest is the total source strength found by
carrying out the integrations as xz + yz —~ oo, with the help of integrati‘ons
by parts and Eqns. (3.14) and {3.17). The pressure, correct to order

2.2, 2-1/2 2

2
Ll_r(h +y as x +y = oo, and the second-order source strength m,

are found to be

g/
1
Y

£ 2
B = -y{e [1+@y-De+...lm +ul+..0)m, +...}
1 X
2r 2. 2 (3.25)
%Xty '
® 2 ® 2
my = sy +9) [ ugtndy - 20y +1) fo ¢, 0% Oy (3.26)

For a constant value of y such that y >> 1, P initially decreases as x in-
creases from zero, reaches a minimum at x = y, and then increases again,
However, there is a small error at the shock wave x = xs(y) = Ole¢ -1u_r 1n y),
because the largest term in Egn. (3. 25} is O(e -lu: In y/yz), whereas tl';e
correct first approximation is found from the shock—pdlar equation as

1 -12 2 2 - . ‘
-2Y € uTml/(Z'n'y) . If it is desired, the accuracy of Eqn. (3.25) can
be improved near x = x_ by addition of a term -y uiyzd:zx(o, y)/(:l:z + yz)
with y2¢zx(0, y) approximated by its leading terms O{ln y) and O(1) as
y *+ oo; away fromx = X the added term is smaller thap the second-order
term originally shown,

As xz + yz -+ 0, the perturbation velocity becomes large, and it is

again clear that an inner solution is required. For the choice of origin
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shown in Eqn, (3.16) and in Fig. 2, xs(O) # 0 and so the singularity in Eqn.
(3. 20) is displaced from its correct location through a distance

- xB(O) = O(u_r/e ). The domain of validity near x = 0 can be extended slightly
by addition of a term -Zu_rx -l(l +...0n(1 - xs(O)/z) in Eqgn. (3. 20) for
u_r(cblx - id)ly). This is accomplished formally by taking a limitas x -~ Q
with ¢ x/uT held fixed and then constructing a composite solation, The cor-
rection is local, and introduces only a2 smaller change of order ¢ -lui/lzl
when lz/xs(0)| >> 1, The modification is, however, necessary for matching
with the inner solution. A discussion of the inner solution given in Ref. [8]
is briefly reviewed here, in a slightly n. :fied form. For ¥ = O(5_.), the
undisturbed velocity is Uu =1+ O(u_r), and the differential equations show
that changes in U along a streamline are also O(u_r) in a distance

AX = O(u;l_/zﬁ *). Inner variables x* and y* and disturbance velocities

u¥ and v¥ are defined by

1/2.1/2
(x Te/ )/ [X - b 8x (0] ¥

x¥ = y¥ = (3.27)
1/2 1/2 ' 6
(y +1) u o " *
K 'I‘l/z (x Ti/z):"/zv

u%¥ = (U -1), v¥ = (3.28)

) v+t Zu:/ 2

1/2,1/2 . . .

where factors (k Te ) have been included for convenience. Eguation

(3. 1) and the vorticity equation are then approximated by the transonic small-

distarbance equations with prescribed vorticity:

* # % % .
o Bu*/ax -8v /8y +... =0 (3.29)
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s
A

it % % e
dv /ax -8u fdy = -1l/y +... (3. 30)

Thee shock-wave relations (3, 5) and (3.6) become

2
e 1, % ® 2 % %
ax *
X v
5 d
g % % % (3.32)
y uu_ud

where the subscripts u and d aéain refer to quantities immediately‘ upstream
and downstream of the shock wave énd the shock-wave location is given by
X% = x: (y*). As x¥ - - o, u¥ approaches the andisturbed form
u* ~In y¥; the boundary condition at the wall is v¥(x*,0) = 0; and as
x* -+ o0, y¥ =~ 0 the solution should agree with the outer solution evalu-
ated for x - xs(O) -0, y—+0.

Although complete solutions for u¥ and v¥# can only be obtained namer-
ically, the asymptotic behavior is found relatively easily upstream as
x%¥ ~ - oo and downstream as x% - o, y¥ - m, As x¥ -~ - @, | the solution
has the form

e *

ut ~1n y* + ekx f(y*), v~k -lekx £ (Y*) (3.33)
where ' - (In y*)sz = 0 subject to the conditions that £' (0) = 0 and that
jncoming disturbances be absent as y* - oo; the latter implies
f' ~-~{In y*)I/ZR fas y¥ - oo, Numerica.l integration gives k = 0. 59.
Downstream a suitable class of intermediate limits should be studied. As

y¥* -+ oo, a shock wave is present and must arproach the nearly normal

shock wave described by the outer solution. Thus, for y¥ — m, since
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A * * # *
a = Iny , Eqns. (3.31) and (3.32) giveu (0,y )~-1lny . Ifaninter-

i
‘mediate variable yn = y*/n(u_r,e } is Lﬁtroduced, with 1<< n(u_r,e) << 6/5*,
then In y* ~Inpn +1ln yn, where the first term is large and constant where-
as the second term is O(l) and variable. In each of the differential equa-
tions (3.29) and (3. 30) the two largest terms remain of the same order if
x* = O(n/In n ) and v* = O(fin 17 }; then x* and y* (In y*)l/z are of the
same order. In the limit as x.* - oo and y* - on with x’°= /(y* m) held

, * % ® , & * , % [ %
fixed, Iny ~Inx andsoalsox /ly /Iny })~x /ly finx ). For the

derivation of higher-order terms, not to be shown here, it is convenient to

3 #
make this replacement. In this limit, then, the largestterms inu +1lny

#* . # %, % S
and (Inx ) 1/Z'v can be written as functions of x /(y )’l.n % ). The solu-
tions are easily obtained and the results for U and V finally can be rewritten
as

2 2

- * - % #* . %
U~1+(x'1‘i'/z) 1u.r].l:t;r -(kT:/Z) 1l.x,'_ln'{.w: (In x ) 1 +y } (3.34)

-1

V ~ {(y+1){x T:/Z) a_in w125 'ri:/"‘)‘lu,r tan y" (0 22 /e (3. 35)

- %
Factors (1 - MZ)I/Z ~ {(y+1)(x T:/z) 1u_r.'l.n X }1/2, where M is the local

Mach number, appear in the locations expected for solutions of the Prandtl-
Glauert equation, The flow is represented by superposition of a known rota-

tional flow and an initially unknown irrotational flow, described in terms of

z) -1/2

V which are linear in

2)-1/2

perturbation velocities U - 1 and (1 - M

(x T:./z)-l

u_ and are functions of variables (1-M x - boﬁ xs((;))]/6,k

. 2 2
and Y/ﬁ* . For a limit such that [x - xs(O)] +y ~— 0 sufficiently slowly,
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with {1 - Mz) 1/2 y/[x-xs(O)] held fi:f;ed, the largest terms obtained if Eqns.
(3.34) and (3. 35) are rewritten in the outer variables x and y are identical
to the largest terms foand from Eqns. (3.9) and (3. 10}, with the help of
Eqn. (3.12) and a modified Eqn. (3. 20} in which z is replaced by x - xB(O) '
+ iy, Introduction of the inner solation thus removes the logarithmic singu~
larity which appears in the outer solutions for the velocity and the pressure
asx,y —~ 0.

In the derivation of these results, terms 8 (p W)/a X, 90 W)/a Y,
etc., were omitted from the rnomentum equation, and therefore a correspond-
ing set of terms was omitted in Egn. (3. 1) and in the calculation of the
changes in vorticity. Expressions for these quantities, and therefore also
order-of-magnitude error estimates for the solutions given above, can be

obtained from the Reynolds-stress transport equations [25] . The equation

for 8(pU*'U')/8X contains, in particular, terms proportional to

pU'U' 83U/9X. Ahead of the shock wave p U' U' is expected to be of the

: 2
same order as p U' V', of order u_. Relative changes at the shock wave
have been estimated [26] to be proportional to the shock wave strength and

are therefore small. Thuas, p U'U! = O(ui) downstream of the shock also;

since 8U/DX = )(e "V/?) for x = o(e}/?

u_r), the product is O(uie -1/2). ‘
Other terms involving velocity correlations are likewise at most

O(uf_e -1/2). Neglected terms in the expansion of Eqn. (3.1) and the vorticity
equation are also of this order, and can easily be shown to be small in

comparison with any of the terms retained. Similarly, the derivative of

the entropy along a mean streamline contains terms proportional to
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p U'V' 3U/8 Y, etc., and therefore is small enough to be neglected in the
derivations above. At the shock wave the entropy jump for ¥ = O{6) con~
tains a constant term of order €3 and functions of y which are of order
2

ezu_r. €U, +oe s It can then be shown that these changes are also suf-

. -y/(y-1) L
ficiently small that @/P and PT remain constant along a mean
streamline to the order considered here. Finally, the changes in Reynolds

Y
For

stresses become important in a sublayer where the perturbation in 7, is
no longer negligible in compa‘rison with the perturh‘ation in p UUX'
X = O(c—:l/zu_r), since T = O(ui) and UX = O(E'l/z). the sublayer is de-
fined by Y = O(uie 1/ 2). As will be shown in detail in Part 11, the relative
change in T is O(€), and the new term in U'which contributes to a displace-
ment effect is O(e uT). From the continuity equation it fpllows that the
corresponding term in Vis 0(62 uf). Thus, as y = 0, the largest term
in the outer solution for V which satisfies a nonzero boundary condition

is O(EZ ui), smaller than any of the terms retained above. All of the

neglected terms arising from these effects are smaller than the terms

retained by at least a factor of order €.
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4, Geometric Effects and Comparison with Experiment

The theory of the preceding section leads to a limiting form for the
pressure distribution as a -~ 0 and uT/€ —+ 0, for unseparated flow. In the
flow past an airfoil at supercritical speed, with a shock wave terminating
a region of supersonic flow, the additional effec.t of surface carvature can '
also be important in changing the pressure distribution and delaying sepa-
ration, as discassed below and in Part II. The boundary layer might remain
attacheé for Me ap to about 1.25, depending on the profile ghape; Re may
be about 5 x 107 or perhaps as high as 108; and the flow ahead of the shock
wave. experiences a favorable pressure gradient, with magnitade which de ~
pends. on the airfoil shape, so that the profile parameter II is
smaller than 0.5 (e. g., Ref. [30] ). For a combination of parame;:ers which
is favorable with regard to requirements of the present theory, with Me =
1.26, Re = 108, and II = 0, the relative position of the sonic line is given
by 5, /8 =0.10. This value would increase as ‘Me or Re decreases or as
I increases, as seen from Egn. (2.14). Experimental resulis, however,‘
are not yet available with detailed local pressure meas;ureme.nts for values
of the parameters which correspond to such airfoil flows and whicil meet
the requirements of the theory. For all available data, eithér the flow is
separated or the values of the parameters are such that the sonic line is
not close to the wall, Nonetheless, a comparison with data from Refs. [1]
and [2] has been carried out, and the agreeme:‘lt seems favorable provided

that corrections for geometric effects are included.
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- A wall having convex longitudinal curvature is described locally by

Y ~ - ']2-' KXZ, where K << 1 if the radius of carvature is large in comparisén

' withk the reference length used in the definitions of X and Y. A local'solu-‘
tion for the inviscid external flow near the foot of a normal whock wave shows
a discontinuity in streamline carvature [27, 28] . Ahead of the shock wave

PY > 0 o provide the required acceleration toward the wall; if the flow is

irootational, it follows that UY < 0. The shockawave relations give U, > 0

Y

and PY < 0 downstream; therefore also Vx > 0, whereas the tangency con-

dition at the wall requires VX < 0as Y= 0. The term in the complex

velocity which satisfies the required conditions as X, ¥ —+ 0 has the derivative

b UL -1Vl - (a/mK n 2 +iK + O(K) (4.1)

for 0<argZ < -;"'w, where Z = b;lX +1iY and, as before, bi(é) ~ (y+l)e,
TI;e largest omitted term is of order K and is real; the value depends on
the flow description for Z = O(1), and is known for symmetric two-dimen-
sional or axisymmetric nozzle flows [29] .

Terms U'? ang v{9

, of order Kﬁ-l/zu_r In u_ and Ku.r, respectively
when Z = O(u_r), are now adcied to the expansiéns of U and V given by Eéns.
(3.9} and (3.10). The rotational part of U is unchanged, and reformulation
of the boundary-value problem for the perturbation potential saows that ¢ 1
is unchanged, whereas now 4:2 depends on K, through nonlinear terms in
the potential equation; fhat is, ‘¢2 = ¢2(x, y; €, K). Tixe new terms in 4)2

contribute a change in U which is O(Kui), smaller than terms retained pre-

viously provided that K = 0(1). Thuas, to the order considered here, for
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u_'_/E -+ 0, a carvature correction is simply added to the earlier results.

The new term in the pressure, written in terms of x and y, is’

ple) E.;KB {2x1In & +xln(x2+y2) +'121y-2ytan-1§+Ax} (4.2)

where .the congtant A is determined only if a solution is knowvm for the external
flow at larger distances.

An early careful and comprehensive experimental study was cé.rriéd
out by Ackeret, Feldmann, and Rott{1] . In Figs. 3 and 4, predicted pres-
sures are compared with their experimental results for Me = 1,32, corre-
sponding to € = 0.247, and Re = 9.6 x 105, based on distance to the shock '
wave. Egns. (2.9), (2.11) lénd (2.14) are used for approximate evaluation
of other parameters. ‘One more expeﬁmenté.l value is l;eeded; 6, is chosen
since it is easily read frorn. the measured velocity profile and since only
In 6, enters the equations, so that an error has small eifects on other quan_-
tities, For 6* = 0.0055, the calculations.give u_ =0.051, & = 0.021, and
II = 0.28. This value of I ~seems plausible (e. 8e» Ref. [30] ). bécause of
the observed small favorabic pressure gradient ahead of the shock wave. An
adverse gradient of about thé same magnitude is evident downstream, and is
estimated here by P;la P/aX = 0,12, where Pt is the upsiream stagnation
pressare. A corresponding term is added to Eqn. (4. 2) and the term propor-"
tional to K6 Ax is neglected. The local curva;.ture of the plate can be inferred
from measured pressures immediately behind the shock wave. - It is estima-
teci that P;la P/aY = 0,15; since PY ~ =y Vy, it follows that K= 0.2, .Wi'th

the kind assistance of Prof. Z. Plaskowski of the Institit fiir Aerodynamik,
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ETH Zirich, the author was able to measurc ordinates of the plate actu-
ally used in the experiments; values in an appropriate neighborhood confirm
the estimate K = 0.2. The origin x = 0 is chosen at the estimated position
of the shock wave at the cdge of the boundary layer, found using measured
pressures outside the boundary layer together with Eqn, (3.24).

The comparison in Figs. 3 and 4 shows that the curvature effect is
comparable in importance with the boundary-layer displacement effect;
addition of the curvature term leads to a more pronounced ''shoulder' in
the predicted wall pressure distribution. The longitudinal pressure grad-
ient due to tunnel divergence is also scen to be important. At the plate for
typical values of x, say 4 < x < 14, the prediction gives about 75 percent
of the pressare drop below the value for a one-dimensional flow; outside
the boundary layer, at ¥/6 = 3.6, the agreement is somewhat better. It
is found that the velocity in Eqn. (3.21) is closely approximated by (const.)/x
for x > 2, so that Eqn. (3.25) for the pressure is adequate here, with the
correction (4.2). Modest changes in the assumed values of the parameters
do nui have a major effect on the comparison; for example, at a giver X,
ml/x does not depend strongly on Il because & incrcases if II decreases,
The upstream exponential decay predicted by Eqn. (3. 33) is also shown in Fig. 3,
in the form ;\P/'Pt o exp{k.(x* - x:)}, with x: taken equal to -14 for
approximate agreement with experiment. A major difficulty with this com-
parison is that the upstream sonic line lies at abouty = 6, /6 =0.26, and
the shock wave ends at a still larger distance from the wall, so that the

% ]
inner region for x = O(1}, y = O(l) is not negligibly small. At a higher
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Reynolds number and therefore a lower s the shock wave would extend
closer to the wall, and the size of the region in Fig. 3 where no prediction
is given would be smaller. A second serious difficulty arises because the
flow probably was scparated. The authors of Ref, [1] stated that reversed
flow would not be ascertained at any point; however, the velocity profiles
shown seem inconclusive, since measurements were not possible very
close to the wall. Calculations based on the theory of Part II of the present
paper, for the parameter values given in Ref. [1] , indicate that the flow
was in fact separated, with a very thin separation bubble having length
equal to a few boundary-layer thicknesses. The effect of such a bubble
would give a more gradual pressure rise in the region of greatest disa-
greement in Fig. 3. Finally, a slight unsteadiness in the shock wave posi-
tion would also contribute to a decrease in the measured pressure gradient.
A correction for flow in a circular pipe can be derived in terms of

cylindrical coordinates x+ and r+ defined by

+ X & Y (]
x = m = -P:x’ r =1 ”-ﬁ = l-ﬁ'y (4. 3)
[+

where R is the ratio of the local pipe radius to the reference length, and Y
+
is measured inward from the wall, so that r = 0 at the axis. Solutions
+ 4+
are to be found for € ~ 0, u_/¢ -0 withx ,r fixed. The wall shape is
+ 2
givenby r =1 +¢ £{(X/R) withf = 0 atX/R = 0. Velocity components U+,
+ . + _t . . .
V inthe x , r directions can be written with the local curvature and

boundary-layer effccts shown separately:
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vt - U(O)(X/R, r+; ¢) + RU(l)(x+. r+) + %’ m,a_ % tu % U(Z)(x+' r+)
... (4. 4)
vt = viOx/R, 0 4k bo(f)\’(l)(x+, )+ u_ %bo(f)V(Z)(x+a ) e

(4. 5)
where now K = ezf"(O) is the wall curvature at the foot of the shock wave,
made nondimensional with the reciprocal of the pipe radius, The terms
U(O) and V_(O) are the terms which would be present if the effects of the
shock wave were ignored [29] . Terms proportional to K contain the local
carvature effect, and terms proportional to u_r5 /R contain the local boun-
dary-layer displacement effect. The latter is described in terms of a ring
source of radius r¥ = 1 located at x' = 0 and having volume strength per

unit length equal to m uT6 +...; numerical solutions for u_'_/E = O(1) given

1
by Melnik and Grossman [6] also include this effect. For x+ -+ oo, the fluid
added at the sonrce gives an increase of ';‘mlu_rﬁ /R in U+, shown explicitly
in Eqn. (4.4).

The local solutions for X/R = Ofc 1/2) are found in terms of a stream

LR O O

. + <
function defired by aq;“’/a r /ax = - r+V(l), where i=l, 2.

U
The largest terms in Eqgn. (3.1), combined with the irrotationality condition,

tion, lead finally to

m .
llJ (1) (x"" l‘+) = E a (l)e n r+31(?\nr+) (4. 6)
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where Jl(hn) = 0 for n=1,2,3,..., so that the wall boundary condition
(1)

; +
\p(l)(x+, 1) = 0 is satisfied; also & Y ~0asx - o, and boundary values

+
are to be specified at x = 0. To the order required, the shock-polar equa-

+
‘tion reduces to the Prandtl relation, and so (1) =r (1 - r+2)/4 at
x+ = 0. The condition that the ring source gives no term of order uT6 /R
2
+ .+ 2 + +
in U atx =0 implies \lx( ) 2 -m,T /4 atx =0, Comparison with the

(2)

wall boundary condition shows that

+ + '
shock wavex =0, r = 1; the value obtained as x+ -0, r+ = 1 depends on

(1)

the direction of approach. The coefficients a

is discontinuous at the foot of the

can be found from the solu-

tions of Messiter and Adamson [29] or by direct calculation, and the coef-

(2)

ficients a = are found directly:

(1) 4 (2) ™y
a = N a s T {(4.7)
n )L3J ™) n anJo(hn)

n o n

for n=1,2,3,... .

For calculation of the pressare distribution and the shock-wave shape,

(2)

it is convenient to introduce the corresponding velocity potential ¢, which

satisfies @ ¢‘z)/a x+ = U(Z) and @ ¢(2)/a r+ = V(z), and which has a loga-~
rithmic singularity at x+ =0, r+ = 1. With the help of the asymptotic form

for Jo()\ ﬁr+), one can show the singular part explicitly:
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) m 0 J (A r ) =N x
oBF Yy = 5 T P
n=1 n J (\)
o n
I+
n -7 (n+ <)x
- (-1) e cos[7r(n+l)r+ -E] }
1, +1/2 4 4
1r(n+4)(r )
m, !E_ 1+¢ -1
-m {ml-g +2tan "t -4¢} {4.8)

whereIn § = - (7 /4){x+ +i(1 - r+)}, and /{’ indicates that the real part

+ +
is to be taken. Asx = 0and r -1, the largest term in the complex

2) _ (2

velocity U - is due to a two-dimensional source of strength m

1’
in agreement with Eqgn. (3.22). The change in the boundary-layer displace-
ment effect is then found by subtracting the source term from .U(Z) - iV(Z)

and adding the constant term which remains as x+ -+ 0. I the numerically

small contribution of the infinite series is omitted, the corresponding

correction to the wall pressure is

m, e-5:rx+/4
B = ..'Yu ‘_""_2 1+ + - + (4‘9)

e ~T X Tx
1l -e

4
W o

As x+ = X/(boR) -+ 0, APW/'Pe approaches a constant valuc - %1_“ m u_r6 /R,

1
which implies an additional second-order correction to the boundary-layer

solution found in Section 3 for X = O(boﬁ). The shock-wave shape is found

directly from the potential; in particular, as rJr ~ 1 the displacement of
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the shock from its intersection with the axis is found by adding the pertur-
bation potential from Section 3 to that found here, and subtracting the com-

mon term proportional to In Y. The result is

1/2

AX. = - (are) Ly +1) Y/ 2 2 Y (4.10)

5 a6 In(R/8) + Ofa_b¢

1
In Fig. 5 a comparison is made with pressures measured in a circa-
lar pipe by Gadd [2] , for Me = 1.12 and € = 0.097. The length of an equiv-
aient flat-plate boundary layer is not a given quantity; instead, Gadd's
estimated value for boundary-layer thickne.ss. is used here, along with the
estimate & */6 = 0.45 found from the measured velocity profile. The sonic
line is therefore still further from the wall than in the Ackeret experiment.
Other approximate values are calculated as u_ = 0.04, 6 = 0.02, and
Ii =0.1; the Reynolds number corresponding to these values is Re =
6 x 106. A pressure gradient due to small divergence of the test section
is estimated downstream by Pt-la P/8X = 0.06. The effect of finite pipe
radius is seen to be .a.bou't as large as the boundary-layer displacement
effect. The upstream exponential decay is also shown, with x: again taken
equal to -14. Again there is a relatively large region where no prediction
is made and where numerical solution of the transonic small-disturbance
equations is required. Such a solution was obtained by Melnik and Gross-
man [4] for this case and is also shown in Fig. 5. For large x the analy-
tical and numerical solutions differ by an amount about equal to the correc-

tion for the change in pipe cross-section area,
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5. _Concluding Remarks

The interaction of a turbulent boundary layer with a wegk normal shock
wave has been described here and elsewhere [3, 4, 8] in terms of a rational
approximation based on systematic asymptotic expansion procedures. The
interaction is characterized by two small parameters, a nondimensional
friction velocity u_ and a nondimensional shock-wave strength'€¢, and limit-
ing forms of the local solations can be studied as a_ - 0 and ¢ -~ 0. For the
case uT/ € = oo [3] , analytical solutions indicated that separatioﬁ does not
occur; solutions for uT/G held fixed (4] , with the first approximation de-~
scribed by the transonic small-disturbance equations, gave the same result.
If, finally, uT/E —+ 0, it appecared that analytical solutions would be possible
and that perhaps the onset of separation could be discussed. Solutions for
the pressure have been obtained here and will be used in Part II for the cal-
culation of wall shear stress and a discussion of incipient separation.

The largest terms in the pre ssure, of order u, are derived quite
easily, and a number of higher.order effects have been added. Corrections
of order EuT give, 'e. g., a 35% change if Me = 1.25." A partial solation for
terms of order ui shows that these terms likewise are significant, typically
giving changes of 25% to 50% for Re = 106 or 107. Corrections of order
Ku_ and u_r6 /R, obtained in analytical form for a wall with longitudinal cur-
vature and for a circular pipe respectively, are found to be numerically

important for the tests of Refs. (1] and [2] .
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In the solutions for these higher-order terms', the dependence on the
parameters is of course shown explicitly, and the re;lative importance of
different effects is therefore apparent, It is not, however, possible to ob-
tain analytical solutions in the asymptotically small inner region which
accounts for the upstream infleence. For values of the parameters cor=-
responding to actual transonic flight conditions, it is possible for this re-
gion to be relatively small. Experimental results, however, are nt:;t avail -
able in Fhis parameter range; for existing data, either the flow is separated
or the sonic line is not close to the wall. Nonetheless, some comparisons
with such data were attempted, and the agreement seems fairly good down-
stream from the inner region. The predicted pressures remain somewhat
higher than the experimental values, and the correction terms calculated
thuas far are large enough to suggest that additional higher-order terms would
be likely to give still further improvement.

An essential feature of the asymptotic flow description in térms of a
and € is the two-layer stracture of the undisturbed profile, expressed by the
law of the wake and the law of the wall, It is this property which permits
the calculation of interaction pressuares without knowledge of cha..nges in
shear stresses close to the wall, In other studies [31, 32] which were not
based on use of this profile, derivation of a sublayer solution was necessary
before the calculation of the pressure could be completed; these studies also |
introduced a linearized formulation for the main i)art of the boundary layer.

In the present asymptotic description for uT/e -+ (0, sublayer effects do not
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appear even among the second-order terms in the pressure. Linear equa-
tions appear naturally as a consequence of the limiting case considered,l
and the procedure for adding higher-order terms is clear. In the formuola-
tion for u_/¢ held fixed [4] , again the flow details near the wall do not
influence the pressure., The differential equations obtained in the limit

are, however, nonlinear and numerical solution is réquired. For uT/E -
[3] , the pressure once more is found without knowledge of changes in the
wall shear stress,

A complete asymptotic description for 0< u_r/e < wis lthereforg now
available, with numerical solutions obtained as a. -~ 0 and € ~ 0 if uT/E is
fixed and analytical solutiops if uT/E - O or u_r/ﬁ -+ 0, For accarate
calculations in parameter ranges of practical interest, some further ex-
tensions appear to be needed. In the present case, as u_r/€ - 0, the neces=-

sary condition that the sonic line be close to the wall is met for a rela-

tively narrow range of the parameters: The solations for wall pressure would
be more useful if a simple curve fit were introduced for the inner region, say
by means of a straight line tangent to the source solation downstream and to
the exponential solution upstream. The choice xz = ~14 in the exponential
term was made for agreement ;vith experiment in Fig. 3; the results shown
in Fig. 5 suggest that the magnitude is too large and that perhaps a more
suitable tentative va?.lue would be x: = ~10. The present solutions also suggest
that terms of higher order than those retained in Ref. [4] are likely to be

important for u_r/c = O(1). In this case the curvature correction would no

longer have a simple form, but would have to be incorporated in the numerical
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solution through the use of modified boundary conditions. Moreover, it al-)-
pears that certain terms of c;rder uf, and possibly still other higher-order
cor'rections, will a_lso be essential for numerical accuracy, in the wall
shear (Part II) as well as in the pressure. Finally, the local interaction
influences the potential flow at larger distances; the manner of introducing

corrections in the external flow deserves further study.
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Figure Titles

Undisturbed velocity profile.

Asymptotic representation of "outer! flow,

Pressure at wall with longitudinal curvatare; Me = 1.322, Re =
5 ..

9.6 x 107, K = 0,2.

Pressure outside boundary layer, at Y/6 = 3.6, for curved wall:

Mc = 1,322, Re=9.6 x 105, K= 0.2.

6

Pressure at wall of circular pipe: Me =1.12, Re= 6x 10",

&/ R = 0.055.



— —J| € [+ € = Ug-1
I
- 2 _ 1,2
I
| U << € <<}
I—"}*_O(UT) T
5=0(u) |

T

77777777777 T 777777777777 7777777777

Wall Layer -



}
Us1+e U~(+e)!
M= Me>1 M~ M0<1
Pkl
U~—-1--+u u(r)( €)turg, (x,y;€)
14+€ Uy Y THix "

U-~1 +e+u.ruo1(y)

Shock Wave: x5=0(uTJe)
U << € <<

_Inner Region: y=O(e'K €/ur)

g
|
!

7777777777777 77T 7 TIT7 777777 77777777777777777777 >
2172
X= (1 "'Mo ) - X/S




065

035

— !

Normal
- Shock .

At Mg =1322 /

/ ——=— Uncorrected (1-Dim.) Flow
B —-— Eqn.(3.25), for Plane Wall
Curvature Added by Eqn.(4.2)
! ;  —— Experiment[t]
! ------------ Py/Pt+ ugexp {0.59 (x*+14)}

- T "J | . l i l .

10 O 10 20



065

035

_:U|'U

045}

035

N =
———
Y/8~36 /-/
Y/& O\//
/ —-— Eqn.(3.25), for Plane Wall
i Curvature Added by Eqn.(4.2)
/ —— Experiment 1]
| T 1 . | ! | .
-10 0 10 20



060

045

n
——
Normal
- Shock
At Me=112
_ A ——— Uncorrected (1-Dim.) Flow
/,l —-— Eqn.(3.25),for Plane Wall
./} — Eqn.(4.12) Added for Pipe
i i //  ——— Experiment[2]
oy = ----- Numerical Solution [6]
LT T e Py /Py+ ug exp {059 (x*+14)}
1 I I i | 1 | 1
-10 10 20



