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1. Introduction

When a shocbk \&ave impinges upon a wall, it penetrates the boua-
dary layer along the surface and both the shock wavé andlthe boundary
layer are changed from their undisturbed states. If the bouhdary layer
remains unseparated, these mufually induced changes take place in é.
small interaction region. For a turbulent Boundary iayer, it has been
established [1-8) | that an asymptotic description of the interaction re-
gion requires a three layer sfructure.» In the outermost layer, com-
prisingvmost of the boundary layer, pressure forces are much larger
. than forces resulting from Reynolds or viscous stresses so the govern-
ing equations are those for an inviscid flow.- For the lﬁnit process
to be considered, the solutions for this inviscid flow region are those
given in Part I of this paper [9] , hereafter referred to as (I); Imme -
‘diately adjacent‘to the wall is the .wall layer, in which viscous and
Reynolds stresses dominate to lowest order.b Betwzen these two layervs‘
is the Reynolds stress sublayer [1] (referred to as the blending layer
iﬁ reference [2] ) in which momentum transfer toward the wall is carried
out by turbulent means (Reynolds stresses); the dominant terms in the
equation of motion are the Reynolds stress, pressure gradient, and
inertia terms.

This paper is concerned with the analysis of the flow in the two
inner layers, the Reyﬁolds stress sublayer and the wall layer, the goal.
being the calculation of the shear stress at the wall in the interaction

region. As indicated above, the limit processes considered are those used
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in (I). Thus, if € is equalto the nondimensional difference be-
tween the velocity and .the criticai sound spéed in the flow external to
the boundary layer, and u_ is the nondimensional friction velocity, we
‘consider lirﬁit processes such that a_ << ¢ << 1. In previous analyses
for € << u_ (Reference [1]) and € = O(u_r) (Refergnce [2]) it was found 4
that it was not possible to formulate an asymptotic criterion for.shock
induced separation. Heré, it will be shown that even for ‘e >> a_
there is no apparent aéymptotic separation criterion. However, exam-
ple calculations will be used to show .that the equation derived for
the wall shear stress may be used to predict conditions for incipient
separation with reasonable accuracy. |

It is worthwhile reiterating the fact pointed ouat in (I} that for an
unsepafateci boundary layer the solutions in the inviscid and inner la-
yers are uncoupled. Because the inner layers are'so thin, the change
in pressure across them is negligible to the order rétai.néd and so the
solution for the. pressure found in the inviscid layer in the limit as
the wall is approached is indeed the wall pressur'e. With this pressure
distribution known, then, solutions in the inner layers may be found,
leading to a relation for the wall shear stress. Thus, the unseparated
flow case is a weak interaction problem. This is not the case for a
laminar boundary layer and occurs for the turbulent boundary layer
because the wall layer is so thin that the upstream iﬁﬂuence of the
interaction causes negligible lifting of the fluid from the wall; that is,

to the order retained the V component of the velocity is zero, in the
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inviscid layer, as the wall is approached. This point will bé discussed
again later, |

In order to complete the formulation of the probléﬁ in the inner
layers, it is necessary to specify a closure condition. Here, we use

a mixing length model, including the van Driest damping factor, to

write an eddy viscosity [10] Slv.xch a closure model appeéré to giv.e‘A sat-
- isfactory resclts as long as the flow is unseparated [11] and has the

'virtue of simplicity; when the flow is separated, use of such a model

gives results which have the correct trends but which do not agree well

with experiment.

2. Solutions in the Inner Layers

As in (1), transonic flow over a ‘_ﬂat plate with a turbulent
boundary layer is considered, with a normal s‘hock wave intersecting
the boundary layer; an adiabatic wall is assumed as are conditions
such that the total enthalpy may be taken to be aniform throughout the
flowfield. Nondimensional Cartesian coordinates X and Y are measured
parallel and perpendicular to the wall respectively, with the origin at
the point where the normal shock wave intersects the boundary layer. -
Lengths are made dimensionless with respect to the distance from the
leading edge of the flat plate to }i’ie shock impingement point, L, and

Cartesian velocity components U and V with respect to the critical

sound speed in the flow upstream of the shock wave and external to the

boundary layer (hereafter referred to as the n{dl flow), a . The
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overbars indicate dimensional quantities. The mean temperature, T,
density, p, pressure, P, and viscosity coefficient, p, are referred

: —r = o
to their critical values in the external flow, e.g., 'Te" Pe' etc. We
write the Reynolds number, Re, in the usual fashion and for convenience

*
define a Reynolds number parameter, Re , as follows

Re = (ﬂ-g—li) B (12)

Re* ( P_._f‘_._.li) | - . (1b)

The te'm <p'V'> /p is included in V, where the primes denote fluc-
tuating quantities and the bracket denotes the average value. The

. ' %k :
friction wvelocity, u_, is made dimensionless with respect to ae, and

is defined in terms of the external flow density as follows

T T
2 1 wa _ wa. _ 1.2
Y T %2 3 T op = 2V % ‘ - (2
a, e e

‘where 'qu is the shear stress at the wall in the undisturbed flow at
X = i, and where ¢ fa is the corresponding skin friction coefficient de-
fined as shown. Finally, the external flow velocity and Mach number

are written in terms of a parameter, ¢, as

% : (3a)
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where for transonic flow, € << 1. As in (I), the problem consideredj
here is one for which a_ << ¢ << 1.

In both inner laLyers to be considered here, the characterisﬁc
thickness of the region is small compare.d to its characteristic length.
As a result, normal Reynolds and viscous ’stress ferms may be neglec-
te& qomﬁai‘ed to the corresponding shear stress terms and £he trahs-
verse pfessure gradieni;. is negligible, to the order retained m the a.na1~
ysis. The solutions to which these inner layer solu.tions rﬁust match
in a.direction»normal to the wall aré thdse solutions found in (1),
expax.lded‘in the limit as y = Y/6 — 0, where & = E/E is of the or-
der of the boundary layer thickness. In the limit as x = XA - - o,
where A = Z/E is of the order of the extent of thé interaction region,
‘the solutions must match with the correspondi;ng relationsv in the undis-

_ turbe;d boundary layef. It is seen, then, that thelflo'w problem in the
inner layers of the interaction region is formulated as a boundary la-
yer problem with a known pressure gradient, Thris‘ also helps explain
why an additional layer (Reynolds‘ stress sublé.yér) is necessary in the A
turbulent boundary layer case. That is, .in either the laminar or tur-.
bulent intoraction, there is an outer layer in the interaction region A
where pressure forces dominate over shear forces, and inviscid flow
equat;loﬁs hold to lower orders. Obviously, then, solutions in the outer

layer do not satisfy the no-slip condition at the wall and a new boundary

g

layer must be considered at the wall. In laminar flow, a boundary

layer is described asymptotically by a single layer and so only one
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so called viscous sublayer is needed in the laminar interaction. How-
ever, a turbulent boundary layer has a two i..a.yer asymptotic lstructur-e;'
as a result, two inner layers are needed to describe thisiboundary
layer in the interaction region. The Reynolds stress sublayer is the
equivalent of the velocity defect layer, as will be séen;

With the above remarks in mind, it is possible to write a simpli-

fied set of governing equations in which only those terms needed in

“either of the two layers considered here are retained. They are as

follows:
8(pU) . 3evV) _ . . |
X ey = 0 : , (4a)
au au 1 3P . 9 2 .2lpujau ,. K _au.
— + —— = - — ——— ——— o— emp— —— ' —
PU 3x * PV 5y y ax t py (Px DX laYlaY PR F ey (M
9P _ :
oy - 0 A , (4¢c)
T ¢ Lyt - Y | (4q)
2 2 | ‘
P=,T= P(X) (4e)
%*
Y Re a5
D= {1 —exp(-T)} - (4£)

where Yy is the ratio of specific heats, D is the damping factor, and
. 2
k = 0.41 is the von Karmdn constant., Since terms of orderkuT will

D ' :
be retained in the solutions,” it should be pointed out that terms such

as <p'U'> /p in the continuity equation (4a), and <p'T'> in the




equation of state, (4e), which are of order uz, are not included because
perturbat! ns from the undisturbed flow values of each of these terms
w§u1d be ot higher than second order. Since the undistur'bed flow solu-v
tions are considered known to second order, and we are.interested or':ly“
in the perturbations from the undisturbed flow, i- is not n?ceééayy' to
include the terms in question. As mentioned previously, t is a.s'sum‘g'd
that the wall is ‘adiaba.tic, and turbulent ax;d laminar Prag&ﬂ numbers
are unity, so that the stagnation enthalpy is constant, as in équati.on
(44).

As shown in (D), for the case ~e/u_r >> 1 the distance from
the wall to the sonic line is exponentially small compared to. the thick-
ness of the boundary layer. Sir:e the extent of the ups.tre;am influence
of the interaction region .is ordered by the thickness of the subsoniC'>
region, the upstream influence is confined to a region, hereafter
referred to as the inner region, which is exponentially small in the x
direction compared to the main part of the iptera.ction region, hereafter
referred to as the oui;er region. That is, in the x direction, the inter-
action region actually consists of two regions, omne thin compared to |
the other; in f:he y direction, =ach of these regions is subdivided in'to.
the three layers menticned pr_eviously. Followir;g the proceciure em-
ployed in (I), the solutions in the outer region will bev shown here
in some detail. Because the ﬁpstream influence is confined to the inner
region, the flow entering the shock wave in the outer region is simply

the undisturbed flow at the point if question. Inner region solutions,
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which are found using precisely the same methods employed in the outer re-

gion, are given in reference [12] .

Reynolds Stress Sublayer

In the Reynolds stress sublayer, which is intermediate to the outer

inviscid flow layer and the wall layer, inertia terms.are balancec hy both

the pressure gradient and Reynolds stress terms in the equation of motion

~in the flow direction. The extent of the outer interaction region is X = VO(A),

where, as shown in (I),

A = b b 6 = O(u_r) : ‘ (5a, b)

bo = (y+l)l/2e 1/2(1 - (2y+l)e /4 +...) | ‘ (SC)

If the dimensionless (referred to i) thickness of the layer is taken to be

Y = O(%), say, then since the Reynolds stress = O(uf_') and froﬁx (1),

aP/3X = O(u_r/A), the fact that the pressure gradient and Reynolds stress:
terms in Egn. (4b) must be of the same order indicates that’6\ = O(uTA).

A : )
. . A
Here, for convenience, we define 6, ¥ and x as follows::

5 = uan | (62)
y |

A
Y=25% A | X = Ax | . (6b, c)
The solutions to which those in the Reynolds stress sublayer must
match as 9 - o are those in the outer inviscid flow layer, written in the
limit as Y/§ =y — 0. The équations for the U cbmponent of velocity and
the pressure, (Eqns. (3.9), (3.12), (3.19), (3.21) and (4.2) of () are

summarized here for convenience. Tluas,



U(x,0) = (1+e)-1+u_l_[(1+':.'ye +...)u01‘y)

+(1+(y-e +...)u1(x)] +...

4x

- K& == m(coax} t... . (7a)

P (x) '
Pw - P(:lciO) = 1+y(2¢ +(2y-l)e2+---)
e

- uT\((l +(2y -le +...)

ul(x) +...

+Ké ‘-13“—"- ln(coax) +... - : (7b)

Cax @ Sgulmdn
ul(x) = - >3 (7¢)
0 (x +1n)
where Pe =1-vye + 0(53) is the dimensionless pressure in the external
flow. The function uOI(y) describes the variation of the velocity from its
value in the external flow in the velocity defect layer in the undisturbed

flow. That is, if Uu represents this velocity component, it may be ex-

panded as
Uu = Ue ta uOI(y) (8)
and u01(y) is the variable part of the velocity distribution in the velocity

defect layer in the corresponding incompressible boundary layer [13].

The form given by Coles [l14] is used here

uOl(Y) = Ic-l[lny -II (1 + cos my)] 0< y<l1

(9)
=0 y> 1



where II is Colest . profile " parameter. The lart terms in Egns.
(7a) and (7b) are due to the curvature of the wall, i.e., for a wall with
convex curvature described locally by

Y= - ZKRX4.. o ~(10)

where K << ‘1 and K+0 as u_~0O0ande =0 sut;.hthatK/e -+ 0. The .
value of the constant Co is found from the solution for the ﬂo_w field exter-
nal to the boundary layer.

If Eqn. (7a) is written in terms of the Reynolds stress sublayer _vai'iag

ble, 9, the result is

U(x,0) =(1+e)'1+uT[(1+2ye +‘...)(-‘1;1.n%+601(’9) +_...)
+(1+(§ -1)e +...)u1(x)]+...
-K6 2 10 (C_5x) +... | (11)
where
8, = « ' ¢ -2m | (12)

Thas, equation (11) is the equation to which U(x, 9) must match as 9 - 0.’
As mentioned previously, 8 P/0Y = 0 to the order retained here. This is
easily derived from the equation of mot;ion in the Y direction (e.g., see
reference [123). H:~n§e, the pressure as written in equation (7b) holds
throughout both the Reynold4s s‘tress sublayer and the thinaer wall 1ayer.
In view of the form of equations (11) and (12), the general expansions

for U and V are written as follows

10
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A

Ay - -1 1. 86 A A LA A
U(x,y) = (1+e) +u'r[:< In 5 +u01(y) +ul(x,y)].
1. % -
i S A A A
+eu.1_ " ln(s)ﬁll(x,y) +euT|111(x,y) +...
+ K6 Glc(x,i‘r;a) Fou (13a)
Vi, = Sv ) +... (13b)

11
The corresponding expressinné for the temperature, T(x, 9), and dens ity, -
p (x, 9), are found by substituting equation (13a) in the energy equétion, (44)
and substituting the resulting expression for the temperature and equa.tioﬁ
- (7b) in the equation of state, Eqn. (4e). If the expa;nsioﬁs for U, V, P, and

p and stretched variables x and y are substituted into Equation (4b), the

governing equations for Gl’ Gle’ and Gll are found. Thus,
A A A
u oP ou :
2
e (L B (142)
S BT 09
A A
auu 5 3uu
5 = —(2xky (14b)
* af d
A 8 : 6
0 11+ a1_ 21 aPll_I__Q_(ZF/\all) (14¢)
ax VY ax "y ox ay“’¥ c
Y
A A A
2 oP ou
9
3;19= --1--3—xl—°+—(2g9. lc, (14d)
Y 3y 2%
B, B p ined
where from Egn. (7b), Pl' W and lc 2Fe defined as follows
A .
Pl(x) = -y ul(x) . (15a)
P.(x) = -v(2y-l ’ 15b
n® = - v(2y Do) | (15b)



A .
L) = yx
Plc(x' 5) . 1n (Coﬁx) (15¢)

A
It should be noted that both Glc and Plc really denote two terms, one of order

In § and one of order 1. They are written as one here for convenience. Also,

it is found [12] that $. = O(e ui), thus confirming the resu.t used in Part I

1
that, to the ordér considered here, V(x,0) = 0 in the outer inviscid flow
layer.

Insofar as Gl(x, 9) is concerned, it is seen from Equation (li) that

Gl - ul(x) as § - co. It will be shown later that the same functional dependence

must hold as 9 -+ 0. Jince P

) = Pl(x), the solution which satisfies bota
matching conditions and the governing equation, (14a), is
A
8 -4 e
P =8 = s e (16)

This result has been used in deriving equations (14b) and (14c). It isesily

shown [1,12] that the solutions to equations (14b)-(14d) may be written as

follows
61:1 = -8 --:I 1’;11 toyl g + fox ]Z‘i)) exp{ - E;&-g)}dg ~ (17b)

where the Bi(g) are functions to be found by matching. As 9 -+ oo, the inte-

gral terms in each of equations (17) go to zero exponentially and it is seen



that the remaining terms match with their counterparts in equation (11).
As x -+ 0, for 9 = counstant, the solutions satisfy the shock wava jurﬂp con-
ditiors to the relevant order, as tiley should. As § — 0, one finds [1] the

following asymptotic behavior for the integrals

x B.(£) ) | 4
1
o &) P2k GE) }dE ~ - Bx) In(35) +g(x) +...  (18a)
x-b_ B.(E)

gi(x) = lm [f

AT et df +B.(x) In b] - ?eBi(x) . (13:?)

where Yo = Euler's constant = 0.57721.

The solutions for U may thus be found from equétion (13a), (16), and
(17). Since, as mentioned previous.y, one can find the depsity and temﬁer-
ature in terms of the velocity, using the energy equation and the equations
of state, it is seen that a complete analytical solution may be found for the-
Reynolds s*ress sublayer in the c;uter region, valid to terms of order e a.
It should be noted that the continuity equation could be used to find vthe term
of order vl in V; since it is not used anywhere in this analysis, the solution
for V is not inciuded. Finally, it is of interest to write the éolution for U

in the limit as 9 - 0 for later use in matching with the wall layer solution.

Thus,

13
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A
U = (lte )-l + uT[lc _lln % + 601(9) + ul(X)]

A .
teuk -lln(%)[Zy - Bu(x)ln(z%) + gu(x) +...]

+e u,r[w-l)ul(x) + ZYGOI(Q) - Bn(x)lp(z%) + gu(x) N Y

4x

+K8[- T-1In(C _6x) - (B, (x)ln § + B, (x) m(—%‘) + -glc(x.).l.n §

»:fglc;x) LTS [C P ¢ 1)

Wall Layer

At the wall, Reynolds étresses are zero and the skin friction is, of
course, due entirely to viscous s ss. Immediately adjacent to the wall,
then, is a layer in which, as the wall is approac;héd, momentu_rn transfer is
accomplished less and less by turbulent means and more and more by
molecular mechanisms‘. In this layer, Reynolds and viscous stresses
are of the same order. The flow entering the interactidn region in this
layer has a velocity U = O(u_r) and this order holds in the interaction re-
gion as well. If the thickness of the layer is taken to be Y = O(g), then by
equating the orders of the Reynolds and viscous stre.ss terms in equation
(4b), one can show that g = O[(R: u_r) -1]'. Here, in order to write & in

terms of familiar quantities, we set

~ F _1 .
6§ = A(Re uT) (202a)
B, T * '
. w,_w1/2_ Re _
A = |"'e ( Tc) Ue Re O(1) (20b)

14



With these orders for Y and U, and since in the interaction region X = O( &)
"and 3P/3X = O(u_r/A), it is seen that, even though a pressure gradient
exists, the only terms in equation (4b) are the Reynclds and viscous stress

terms, to the order retained. The resulting equation is easily integrated

to give
~ ~3u2 "% sy _ 2 | | '
p D(ydk vy a;',) + A a5 = u_p T , (21a)
,Tw(x) = -rw/ Twa : _ ‘ (21b)
Y = '5; ' (21c)

- where, as indicated in Egn. (21b), the shear stress at the wall, -rw(x), is
made dimensionless with its value‘ in the undisturbed boundary layer at
X = i, so that as x = X/A - - oo, Tw 1. Equation (2la) is essentially
the same equation used in references [1] and [2]; the only.diﬁerence lies
in the closure conditions used.

With the orders mentioned above for U, P, X, and Y, and for -
p = O(1), it is easy to show [12] that V = O(uTg/A) and to corroborate equa-
tion (4c) to the order retained. Since U= O(uT), then from the energy equa-
tion, (4d), it is seen that T = Tw + O(u:) and from the equation of state,
equation (4e), then, that variations in p in the Y direction are also O(ui).
Hence, to order u, P =P, and as pointed out previously by Melnik and
Grossman [2] and Adamson and Feo [1], the fact that P # Pe leads to the
result that 1imit process expansioas in the wal} lﬁyer do not match with

corresponding expansions from the Reynolds stress sublayer; thus, this
15



difficulty ari;es only in compreésible flow. The difficulty may be bvercome
by taking advantage of f.he range of vé].idity of equation (Zla‘).A That is, in
any intermediate limit 3 << Y<< 8 » equation (Zla)> is still the governing
equation; it is necessary to retain additional 1.:erms only fdr Y= Q(%).
Hence cquation (2la) may be t;sed to derive solutions which wili ma.t;h with
those found using limit process expansions in e_ithe_r hmxt, Y= O(’B\) or
Y = O(g ). Although the methods of solution used by Adamson and Feo and
Melnik and Grossman are equivalént, the latter's method is more straight-
forward and will be used here. | B

It is clear both from physical arguments, and from consideration of
equation (2la) that as Y increases such that ; > 1, ﬂxe viscous terms be-
come negligible compared to the Reynolds stress terms; this is borne out
by using the solution to be derived to .compare the two terms. | Aiso, for
; >> 1, the damping factor D is represented. vy unity plus exponentially
small terms (eqn. 5). Finally, the density may oe written in termé of the
;relocity and pressure,in general, by using equations (4e) and (4d). Since

P = P(x) to the order retained, equation (2la) may be integrated to give,

~ Tw 1/2 1/2 -
Ulx,y) = T sin {r (PW/P )" (— Iny + B} (22a)
N2 o
r= Y% | (22b)

where T_ = (y#1)/2 is the temperature at the wall and Tw/’I'e can be
found in terms of Ue from the energy equation, (4d). B(x) is a function of

integration which should be evaluated by matching equation (22a) with the

16




limit process expansion solution valid in the wall la&er (; = Of1)), thatis,
it should be found as a result of integration from the wall to the ; value in
question, using the boundary conditions at the wall. However, it is only
necessary to evaluate B(x) to lowest order here, and this may be done by
noting that if there were no shock wave, then B(x) = C, the constant from
the undisturbed flow Wall layer solution.(eqn. (2.‘8), Ain (I)).. Here, then,

B(x) is written in terms of an asymptotic expansion
B(x) = C+ w(u_r) Bl(x) +... A (23)

where w{(u ) 0 asa —0.
T T

Since equations (22a) must match with equation (19), iu the limit as

~

y = oo, 9 - 0, it is seen that Tw must have an expansion of the following

form
A

2 1 S
'rw(x) = 1+ ae + a,e +... + u_ Tl(x) + ¢ u_ 1n(5 )le(x)

+e a_ 'ru(x) +... +K& Tlc(x) +... (24)

That is, as ; -+ o0, such that uTn'lln ; = O(1),
A

v = 5 k] A
uTlny—uTln6+uT1ng+uTlny » (25)

where, as shown in (I) (equation (2.9))

T

—e Y2 . -1 e
( ) " T sin {Ue/F} _u-r(x + C)

ro8
K ‘5 T

In (26)

w

and the expansion for T shown in equation (24) follows to insure the indica-
ted matching. Thus, if equation (7b), (23), (24), (25), and (26) are

substituted into equation (22a) and the resulting equation is compared with

17



equation (19) term by term, the unknown parameters and fun ctions in equa-
tions (24) and (19) may be found. The resulting sqlution for.'rw. the shear

stress at the wall in the outer interaction region, and the corresponding

values for the Bi and g (calculated once the Bi are known using equation (18b))

in equation (19) are

-rW(x) = 1+a1e + .—al'(izl—ﬂ e2+.,. —L\Til' (x)
A a
teu k(DY -a)ly 5 -5)
a 3a

teu {ul(X)[—i‘(l - 3y ""5‘1‘) + y(y +';')]

a
-l 14
- 20 k (Zy-al)(y+2- 4)

a a

x',-l(Zy-i-rl -—J?f)(y -—;')(lnx - Y, +.ln _ZK)} +...

Zalx
+K 6~ In(C_ 6x) +... (27a)
a, = -4E (sin™ £1)7" 42y | | (27b)
.Bll = 8y 0 ) : : (27¢)
B, = n-l[?.y +?. -f‘%‘] | | _ (27d)
g1 = Bpflmx-v) (27e)

where ul(x) is given in equation (7c). Equation (27a), then, is the solution for
'rw(x) in the interaction »egion, including the effects of curvature in the ex-
ternal flow field. It has, in most respects, the same form as the equation

18




derived by Melnik and Grossman [2],differi.ng mainly in the order of the various
terms, the inclusion of specific analytical solutions at each.ordér of approxi -
mation,‘ and the inclusion of the curvature. terms.

The order to x;nake numerical calculations for a given Reynolds huxnber,
Re, and external flow Mach number, Me =1+ (yH)e /2 +..., it is necessary
to provide relations for u_ and 6 in terms of Re and ¢ . One of the required
equations is equation (26), with equations (20) for g; the otheris given in (I),
(egn. (2.11), 2.12). This équation, with the ve.xlues of the integrais as given .

by Cebeci and Smith [10] is r :peated here for completeness.

. 2
&5 = .l_ll Y, S +ir_)2f 2 .U_e“__EE)‘l/Z
Ue (14+11) 1 Ue T I,z
(1+II)sin ("1:')
(2 +(U /)% - :
+%( 1 _ e (2 +3.17870 +%n g, (28)

()? [1-u /)]

where Te/Tw =1 - (Ue/F)Z from the énergy equation, (4d). Finally, it is neces-
sary to write an equation for the viscosity, u(T), to be used in equations (20).
Here, p = T" was used, with calculations being performed for n = 3/4.

Finally, it should be noted that although the sold.ti_ons pre sented here are
found to orders of approximation such that preésure gradient and inertia terms
were not retained in the equation of motion‘in the wall layer, higher order
solutions involving these terms have been investigated [12]. It was found that
the first terms to involve the pressure gradient were of order E/A in U and of
order E/u;rA in Tw' Thus, théy give very small corrections to the solutions

presented.
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3. Numerical Calculations and Separation Criterion
rhe variation of Tw with x for various values of external flow Mach num-

ber (and thus ¢ ) and Reynolds nunb ers representative ‘of nmo dern aircraft are
shown in figure I The numerical computations were carriéd out using equa-
tions (27a) for p = T3/4, y=1.4,1I =1/2, C=5and K =0; these values
seem to be suitable for flow over a flat plate. The curves shov& the general
features found expevrimenta'lly in the inte}'action region. That is, fw(x) goes |
through a minimum, say (Tw)min; as Me increaées, hw)min decreases’,

while as Re increases (1) .
wm

ip increases. Thus, the effect of increasing M,

and therefore the strength of the shock wa.veAis-to décrease the 'va’lue of T
everywhere in the interaction region and hence to force the flow toward s.epa-
ration; increasing Re gives the opposite effect. It should be noted that

Tw 1 as x = 0 because the solution shown in Eqgn. (27a) is for the outer
interaction region. A solution for T valid in the inner region can be written
in terms of the solutions for the préssure perturbations in the inner inviscid
flow region [12]); The solution is found in precisely the same manner as

that illustrated here for the outer region and results in a s-§1ution similar to
that given in Eqn. (27a). Fiﬁally; a composite solution for T could be writ-
ten, using the solutions valid in the inner and outer regions. | Because of the
limit processes considgred in this work (¢ >> u_r), this composite solution
would show only a small variation in Tw for x < 0. However, since analytical
solutions cannot be obtained for the pressure in the inner region, no solution
for 7 in the inner region has been included here:

It is not possible to compare the solution for Tw with experimental results
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for a completely two dimensional unseparated flow because none are available.
In those cases whefe. the flow was apparently unseparated (e.g., references
{15, 16)), T, Was not measured, and in more receng wo‘rl':,' where Tw has keen
-meavsured (e.g., references [i7, 18, 19]) the ﬂow is separated. vIn separated
-flow, the shock wave takes on a lambda configuration nea.r the Soundary layer
and a relati&ely strong pressure ‘gradient develops in the Y direction m the flow
external to the boundary layer [18]; the flow picture.is quite differént frpm
the unseparated ﬂow‘case considered here; |

| Although experimental results for truly two_dimerisio;iai flow are> not

available for comparison, there is one set of measurements in a tube in which

the flow is approximately two dimensional [20]. Thus, if R is the dimenémuless»

(with respect to E.) radius of the tdbe, 6/R = 0.04 to 0.08; in addition, the
changes in the core flow (external to the boundary layer) due to the rapid m-
crease in the boundary layer displacement thickness through the interaction
region give corrections which are asymptotically of higher order than those
. retained in Eqgn. (27a). In presenting the tube data, Gadd fitted powef law -
velocity profiles to the measured profiles and inferred values of & (dimen-
sional boundary layer thickness) immediately upstream of the interaéﬁon.
Using eqﬁations de;'ived using power law profiles, he also gave Reynolds num-
bers associated with the tunnel stagnation pressure “a.nd Mach number. for
each test. Skin friction measurements were derived from Stantgn tube
measureme.nts. In determining the flow parameters to be used in calculating
T for comparison With each of Gadd's experiments; it Qas decided to use

Gadd's values of 3, Re, Me’ and stagnation pressure, Ete as being a self-
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consistent set of data to calculate the necessary e, a_s 6, and II for use in

Tw' Thus, it is easy to show that if p = Tn,

2

P M 2 &
-n-1
Re § = —-—Ft S (1 - —-—ez y 2 /2 ——-——;” (29)
at +x£1 MZ]‘Ly-l re w :

Here, SW and ;w are the dimensional spee& of sound and kinematic viscosity
respectively, evaluated at the wall temperature (atxnosphéric tempera.ture,v
taken to be 59°F.) and in the case of ;w’ at atrnos;phez-iu :%ea. level density; a
_lsat refers to atmospheric pressure. Using the given values of Me' Et’ 5, a.nd~ :
;w’ Eqgns. (3), (26), (with Eqn. (20) for 5), (28) gnd_ (2?) ware useci to calcu-
late the equivalent €, a_, 6, andII. From équatioﬂ (Z),v then, the correspond-
ing a could be calculated. The ratio of the calculated Cfu to tbe vaiue in-
ferred from the standard tube measurements ranged from 1.05 to 1.29 in

four cases reported by CGadd (Figures 25 to 28, reference [20]). .For this
reason and because of uncertainties in the calibration of the Stanton tubé, it
was decided to compare values of Cf/ cfu; which is.equal to T 28 given in
equation (27a). The results of this comparison aré shown in figure 2, for the
case Me =1.15,,Re = 7x 106, (Figure 25, reférence [20]).: The remaining
parameters are given under figure (2). The point X'/6 =0, défined b: Gadd
as the position at which P /Pte = 0.528, was found by asing eéuation (7b).

It is seen that the measured upstream influence is nét; small. Thatis,

%/C{a is not :fmall for X < -1 say, as required for thisltheory,so that even

if the solution for T for x < 0 were available, itis not expected that it would

give good agreement. In fact, using the above mentioned parameters,
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v6*/6 = 0, 5, where 6, is the dimensionless distance to the sonic line in'the '
| undisturbed boundary layer; evidenily the values for Re, €, and II do not fo'rm
a good combination for comparisoun with the theory. On the other hand, a
‘slight unsteadiness m the position of the shock wave could havek céntfibubed
~ to the slow variation of the measured cf/cfu upstream of and in the ;_eighpor-
hood of the minimum. Nevertheless, the value and ‘the position of the minimum
‘ | of S/ 4, BT pfediéted qtéite accurately. Downstream of the minimum the
comparison is fairly good; .in this regard, hov:éver, it is intefesti.ng to. no£e
that the negative curvature seen on the calculated curve .but not oi; this partic-
alar experimental curve, is a feature found m cher exPerimenta.l results‘
which coqld hqt be used here because small separation b‘ubbles existed.
It is of interest at this point to cons.ider_ the problem of predicting condi-

tions under which the interaction brings the flow to fhe point of incipient sepz;- A
1;ation.. First, it is seen from equation (27a) ﬂxat there -is_no asymptotic condi-
- tion for incii:ie‘nt separation; ‘that is, unlike the laminar case, in which

€, = O(Re-l/s) is the asymptotic criterion [21],the1fe is no relation between ¢ -
and Re which holds in the limit as Re = o0 as a condition for separa.fion.

This is an important difference between the two flows,and it is of interest to |
investigate the reason for its occurrence. The effect of the interaction,
through the induced adverse pressure gradient, is to slow the fluid. In the
boundary layer, then, the stream tubes must become wider and, due to the
co: straint of the wall, the V vélocity component increase s at points away .

from the wall, causing the outer flow to lift away from the wall also. In the

laminar case, the thickening of streamtubes is greatest in the viscous sublayer.
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The reéulting A% comﬁonent of velocity is large enough tuat the flow external
to the boundary layer is affected to lowest order so that the external and
boundary layer flov 8 must be considered simultaneously, i.e., a strong
interaction results [21, 22]. No matter how large Re becomes, this strong
interaction occurs, with the thickness of the viscous sublaycr and boundary
layer decreasing as Re increases,according to their asymptctic dependence
on Re.' The sublayer momenturln flux and viscous stresses decrease and the
strength of the shock wave- necessary to cause enough displac'ement of ;he ﬁuid
to result in separation decreases as‘ Re increasés. In the turbulent case, even
for € >> a, the inter;ction is a weak interaction to lﬁwest order be-
causé the wall 1ayer is so thin. Thus, until separation occurs, the outward.
displacement of the fluid in the wall layer due to the intel;action is too sma.ll-.
to cause ény effect in the lowest order solutions in the flow externai to the
boundary layer. A strong interaction does not occur until a separation bubbie
exists. Since there is no mechanism through which variationg in the wall
layer and external flows can interact, defore a separation bubh;le is
formed, it appears that no asymptotic criterion exists for inci:pient separation.
However, it may be that such é criterion will result from an asymptotic solu-
tion for the separated flow problem in the limit as the size of the bubble shrinks
to zero.

Although the solution for 'rw(x) does not give an asymptotic
criterion for separation, there remains the possibility that conditions
for incipient separation can be found simply by assuming that equation‘(27a) is

an accurate solution for 'rw(x) at values of Me and Re near separation. It is

24




clear from figures 1 and 2 that the solution shows the correct form
with a minimum value, and it is possible to calculate the correspond-

ing values of Re gnd Me(i.e., ¢ ) for which (Tw) . = 0, the condition

for incipient separation. It must be efnphasized that eqﬁatio.n (27‘a.) is not
béing used in an asymptotic sense in such a calculati.oh: thus in order for-
Tw to go tolzero, one or more terms in the expansion mué?: become as large .
as thz first term. Instead, we consider equation (27a) as being a goéd a.i:proxi- _

3 and ui (the orders of

. mation to -rw(x) in a numerical sense as long as ¢
the first terms neglected) are small compared to one."

To illustrate the use of equation (27a) for TW(x) to predict conditi.t;ns
for separation, we choose the remainder of dadd's tubes flow experi-
ments in which € was measured [20]. That is, Gadd presented four plots

£
of Cf vs. X' /8 (Figures 25-28, reference [20]), the. :'fi1.°stvof whi;h is shownr
in figure 2. . In each case he also perf.ormed oil-flow experiment;s, which
indicated that in one case ‘(used in figure 2) the flow was not separated, but
that in the three other cases, separation did occur. Alﬁhough the plotted values
. of ct did not indicate the occurrence of separation in these three cases, it
should be noted that the values of c; Were inferred from measurements from

a Stanton tube aligned facing the flow; thus, accurate reverse flow measure-

ments could not be made. Calculations of T, vere made for each of
these cases, using the same method for calcuiating the necessary pa.rarh-
eters, as mentioned in the discussion of figure 2. . The resulting values

for (Tw)m.

in = (Cf/cfu) . for each case are as follows:

min
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(1) Me =1,27 Re = 10 (‘rw) .. = ~0,080
- (2) M =1,26 Re = 1.27 x 10'7 () . =-0.,020
e min
7 .
(3) Me =1.34 Re =1.93x 10 (‘rw) .= =C 344

Thus theee calculated results indicate that in all three cases the flow is sepa-
rated, in agreement with the oil-flow experiments. In case (2), the extent

of the region whei-e Tw < 0, i.e., the extent of the separatioﬁ bubble, appears
to be very small; the flow is barely separated.

If we denote by Mes the Mach numbe. of the external flow at incipient
separation, equation (27a) may be used, with the condition that (Tw)r.xﬁn =0,
to find Mes a.§ 2 function of Re. A typical result is shown in figure (3) for
K=0and IO =1/2, i.e., for conditions associatea with flow alc;ng e;. flat
plate. It is seen that according to this prediction, M-es increasesl as Re
increases. This result is in agreement with measurements made by Roshko
and Thomke [23] for supersonic flow at high Reynolds numbers. 'I'he‘ magni-
tude of the increase in'Mes over a large range of Re, however, is small
enough that this result could help explain the conclusion thai‘: there was little
or no variation with Re, reached by Settles, Bogdonoff, and Vas [24] .

The eifects of curvature on Mes' as predicted by equation (27a) can ;180 ‘
be compared with experimental results. Evidently, the only data available
are those presented in figure (37) of reference [20], reproduced here as
figure 4. The value of the coordinate along ihe abscissa, t, is given as
t= 2.6 6 /R where R is the radius of curvature; in view of equation (10),
then, one can write t = 2.66 K, Although there is no dependence on Reynolds

number shown, it is assumed Lere that the range of Reynolds numbers is
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10" to lO7 and calculated results are given for both values. Finally, .on an
airfoil with supercritical flow, the flow is accelerating up to theA shock wave;
since 1T depends on the pressure gradient m the undisturbed flow upstream of
the interaction, the value cf II on an airfoil will be different for diiferent
carvatures. For zero pressure gradientIl £ 0.5, whe1;eas for highly accel-
erating flow II is smaller and can become negative. [25]. Therefore, at t. = 0,
o= 0. 5 (K=0)and att = 0.015, it was decided to use a value of II fér mod -
erately acc~lerated flows, I = 0. The values of Me.; att=0 éah be found
from figure (3). Those att= 0 015, for which K = 0.021 at Re-= 106 an&
K=0.028 at Re = 107, were calculated, again using equatiqn (272). The re-
sults are ‘shown in figuare (4). It is seen that at the conditiox;s associated with
flow over a flat plate (t=0) the calculated Mes compares very well with the
value given by the line drawn through the experimental data. On the other
hand, at higher curvature (t = 0.015) the calculated values are considerably
less than those found experimenta;lly. In reference [20] there was sor. dis-
cussion of the fact that criteria for separatién might have been too stringent
in the ci- ed surface cases so that, for example, the point through which
the drawn line passes at Mes = 1. 31 perhaps should have been at Mes = 1.29.
If this were the case and if negative values of I were called for, the agreement
at t = 0.015, would be much better,

The present results for criteria for shock induced incipient separation
may be compared with theoretical predictions given by Bohning and Zierep [26],
who postulated a two layer model for the interaction regién and were

able to calculate an equation for Cgr Two comparisons were made, both for
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flat plates, at Re values of 106 and 5 x 106; these Re are in the range of re-
sults presented in reference [26]. At.Re = 106, the predicted values of M__
are 1.24 and 1,18 and at Re = 5 x 106 they are 1.26 and 1.30, where the
Mes calculatgd by the present method is the first, in each case. Thus, al-
though the two solutions give the same M65 at some Re between 106 and 5x 106,
Bohning and Zierep's solution shows a much greater variation of Mes with Re
than that shown here. However, the present results appear to be in closex;
>agreeme'nt with experimental measurements [23, 24] for a related problem.
The present theory could not be compared with very recent analytical results
given by Inger [27] , who also used a two layer model, since conditions for
incipient separation were not presented,

Although there appears to be no asymptotic criterion for separation in
the limit as Re + oo (u_r = 0) and ¢ -~ 0, there remains the possibility that
there exists a criterion involving a large Me as Re - ow. Thus, itis neces-
sary to consider thg behavior of Tw for ¢ = O(1). Based on the present anal-
ysis, it is seen that for ¢ = O(1), u_ << 1, the solution for ‘rw(x) would be

of the following form is: iue outer interaction region:

Tw(x) = ‘rwd(e ) + a_ Twl(x;e y + '. .o (30)

where Tw (e ) is the value which Tw(x) anproaches far downstream of the shock
4 A ,
wave. Since the lowest order solutions for the velocities would be of the same

form in each of the layers as for ¢ << 1, it is seen that, from matching

solutions in the limit u_ -+ 0, one would obtain

T

w 8]
r sin{(—I;"S/l—P;—)l/z ...zn'l(-f-e)} = U, "(31)
d’"e
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Here Pd and Ud are the values of P and U immediately downstream of the
shock wave in the inviscid flow external to the boundary layer respectively,
and are thus the values which P and U approaﬁh as x ~ oo in the interaction

region, If the jump conditions across a shock wave are used to write Ud and

Pd /Pe in terms of U_ and these expressions are substitated into equation (31),

one obtains an expression for L in terms of Ue. Thus,

d 2
Yy, .2 sin~? (-1—
1+ 2 )(Ue 1) I'u
T, o= = - - (32)
Ya 1-hwlronl ] e -
2 e sin ('F)

If Ue =1 + ¢ is substituted into equation (32) and the resulting equation ex-
panded for ¢ << 1, it is found that Tw. = 1+ ae + al(al-l)e 2/2 +.ee., in
d

agreement with the first three terms of equation (27a).

It is clear from equation (32) that, since 1< Ue <T forl _<_Me <
{see eqn. (36)), T # O for any M ; instead T_ goes through a minimum

w4 e Y3
value of 0,512 at Me = 2.55, for y = 1.4, and then begins to rise with in-
creasing Me' Hence, there is apparently no limiting value for Mes as
Re - w. Moreover, since U -I" as M -+ o, itis cl:ar that T -~ 0.
e e Y4

Recalling the definition of Tw(x), one can see that this limit means that for
high Mach namber flow the shear stress far downstream of the interaction
must be large compared to that of the undisturbed flow. This apparent
anomaly can be explained by considering equation (21a). The density, in the
first term, can be written as P/T through the equation of state. Now, in the

wall layer, the temperature differs from the constant temperature of the

wall by only higher order terms. On the other hand, since 8P/8Y =0
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through the wall layer and Reynolds stress sublayer, P is the pressure from
the inviscid flow layer and so varies from Poto Py. As Me - oo, Pd/Pe -~
and so from equai:ion (21a), 'rwd = o0 also. In general, since the Reynolds
shear stress, - p < U'V' >, includes the density, this result appéars to be
independent of the specific closure condition as long as < U'V' > does not.

go to zero as Mé -+ o, and is another significant departurg frém the laminar
case. Experimental verification of the large va;.lues of T at high Mach num-

d
bers is given in measurements by Marvin, et al. [28] .

4. Concluding Rema.rks

The use of asymptotic methods of analysisv results in a relatively simple
relation for the shear stress at the wall in the interaction region. This relation
may be used to predict conditions for incipient separation. In order to obtain
the proper variation of T, VS % which includes a minimum in T it is neces-
sary to include terms of higher order than the first abproximé.tion; evidently
this would be the case also if one were to calculate T for the case u_ = O(e)
[2] .

Although the range of parameteré in available experiments does not allow
for exhaustive testing of the theory, compariséns whichicould be made are en-

couraging; more accurate results should be obtained at the high Reynolds
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numbers associated with modern transonic - r_raft.
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Figﬁre 1

Figure 2

Figure 3

Figure 4

Figure Titles

Ty V8 X for various values of Me and Re, for flow over a flat

plate, (Eqgn, (27a) with II = 0,5, K = 0),

Comparison of calculated (eqn. (272)) and experimental (ref.
[20]) valuesA of cflcfu vs X'/6; Experimental conditions;

Me =1.15, Re=7x 106, wall temperature = 15°¢ (59° F),
Py = 237, 9k P, gauge (20 psig), & = 0,305 cm (0. 12 .in).

Corré:sponding calculated parameters; € = 0, 120, u_ = 0.03968,

6§=0,01634, 1=0.312, K=0, X'/6=0 at P /P, = 0.528

from eqn. (7a).

M, (Mach number at incipient separation) vs Re for flow

over a flat plate, calculated using eqn. (27a) with (Tw)min =0,

II=0,5, K=0,

Effect of curvature parameter, t, on Mach number for incipient

separation, M,_, from Reference [20]. Triangles and circles

es’
correspond to different airfoils, Present calculations shown

6, M=0.5K=0;x-Re=10",

as follows: att =0, m- Re = 10
Il=-05 K=0, Att=0.015, @~ Re=10°, =0, K = 0.21;

x-Re=10", I1=0, K =0, 28.
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