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1. Introduction

When a shock wave impinges upon a wall, it penetrates the boon-

!
dary layer along the surface and both the shock wave and the boundary

t	 layer are changed from their undisturbed states. If the boundary layer

k	 remains unseparated, these mutually induced. changes take place in a

small interaction region. For a turbulent boundary layer, it has been
)

established [1-8]	 that an asymptotic description of the interaction re-

F	 gion requires a three layer structure. ' In the outermost layer, com-

prising most of the boundary layer, pressure forces are much larger

than forces resulting from Reynolds or viscous stresses so the govern-

ing equations are those for an inviscid flow. For the limit process

to be considered, the solutions for this inviscid flow region are those

given in Part I of this paper [9] , hereafter referred to as (I). Imme-

diately adjacent to the wall is the wall layer, in which viF coos and

Reynolds stresses dominate to lowest order. Between then:e two layers

is the Reynolds stress sublayer [1] (referred to as the blending layer

in reference [2] ) in which momentum transfer toward the .wall is carried

out by turbulent means (Reynolds stresses); the dominant terms in the

equation of motion are the Reynolds stress, pressure gradient, and

inertia terms.

This paper is concerned with the analysis of the flow in the two

inner layers, the Reynolds stress sublayer and the wall layer, the goal

being the calculation of the shear stress at the wall in the interaction

region. As indicated above,	 the limit processes considered are those used
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in (I). Thus, if a is equal to 	 the nondimensional difference be-

tween the velocity and the critical sound speed in the flow external to

the boundary layer, and u  is the nondimensional friction velocity, we

consider limit processes such that u  << e << 1. In previous analyses

for e << uT (Reference [1]) and e = O(u T) (Reference 12D it was found

that it was not possible to formulate an asymptotic criterion for. shock

induced separation. Here, it will be shown that even for e >> a 

there is no apparent asymptotic separation criterion. However, exam-

ple calculations will be used to ' show that the equation derived for

the wall shear stress may be used to predict conditions for incipient

separation with reasonable accuracy.

It is worthwhile reiterating the fact pointed out in (1) that for an

unseparated boundary layer the solutions in the inviscid and inner la-

yers are uncoupled. Because the inner layers are so thin, the change

in pressure across them is negligible to the order retained and so the

solution for the pressure found in the inviscid layer in the limit as

the wall is approached is indeed the wall pressure. With this pressure

distribution known, then, solutions in the inner layers may be found,

leading to a relation for the wall shear stress. Thus, the unseparated

flow case is a weak interaction problem. This is not the case for a

laminar boundary layer and occurs for the turbulent boundary layer

because the wall layer is so thin that the upstream influence of the

interaction causes negligible lifting of the fluid from the wall; that is,

to the order retained the V component of the velocity is zero, in the
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inviscid layer, as the wall is approached. This point will be discussed

again later.

In order to complete the formulation of the problem hi the inner

layers, it is necessary to specify a closure condition. Here, we use

a mixing length model, including . . the van Driest damping factor, to

write an eddy viscosity [10]. Such a closure model appears to give . sat-

isfactory results as long as the flow is unseparated [11] and has the

virtue of simplicity; when the flow is separated, use of such a model

gives results which have the correct trends but which do not agree well

with experiment.

Z. Solutions in the Inner Layers

As in (I), transonic flow over a flat plate with a turbulent

boundary layer is considered, with a normal shock wave intersecting

the boundary layer; an adiabatic wall is assumed as are conditions

such that the total enthalpy may be taken to be uniform throughout the_

flowfield. Nondimensional Cartesian coordinates X and Y are measured

parallel and perpendicular to the waU respectively, with the origin at

the point '%rhere the normal shock wave intersects the boundary layer.

Lengths are made dimensionless with respect to the distance from the

leading edge of the flat plate to the shock impingement point, L, and

Cartesian velocity components U and V with respect to the critical

sound speed in the flow upstream of the shock wave and external to the

boundary layer (hereafter referred to as the	 n flow), a e . The
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overbars indicate dimensional quan*ities. The mean temperature, T,

density, p, pressure, P, and viscosity coefficient, µ, are referred

to their critical ,slues in the external flow, e.g., T e,. P e, etc. We

write the Reynolds number, Re, in the usual fashion and for convenience

define a Reynolds number parameter, Re as follows

Re = ( p µ L)
e

Re = ( R	L)	 (lb)
la	e

The to °m < p' V' > /p is included in V, where the primes denote fluc-

tuating quantities and the bracket denotes the average value. The

friction velocity, uT, is made dimensionless with respect to a ,
e and

is defined in terms of the external flow density as follows

2 _ 1 T_wu 	 Twu	 1 2

	

uT	 p	 p	 2 U  cfu	 (Z)
a	 e	 e

e

where T
wu is the shear stress at the wall in the undisturbed flow at

X = L, and where c fu is the corresponding skin friction coefficient de-

fined as shown. Finally, the external flow velocity and Mach number

are written in terms of a parameter, e , as

U = 1+e (3a)
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where for transonic flow, e << 1. As in (I), the problem considered

here is one for which u << e << 1.

In both inner layers to be considered here, the characteristic

thickness of the region is small compared to its characteristic length..

As a result, normal Reynolds and viscous stress terms may be neglec-

ted compared to the corresponding shear stress terms and the trans-

verse pressure gradient is negligible, to the order retained in the anal-

ysis, The solutions to which these inner layer solutions must match

in a direction normal to the wall are those solutions found in (I),

expanded in the limit as y = Y/b 	 0, where b = S/L is of the or-

der of the boundary layer thickness. In the limit as x = X/O -► - oo,

where A = A f L is of the order of the extent of the interaction region,

the solutions must match with the corresponding relations in the undis-

turbed boundary layer. It is seen, then, that the flow problem in the

inner layers of the interaction region is formulated as a boundary la-

yer problem with a known pressure gradient.	 This also helps explain

why an additional layer (Reynolds stress sublayer) is necessary in the

turbulent boundary layer case. That is, . in either the laminar or tur-

bulent interaction,	 there is an outer layer in the interaction region

where pressure forces dominate over shear forces, and inviscid flow

equations hold to lower orders. Obviously, then solutions in the outer

layer do not satisfy the no-slip condition at the wall and a new boundary

layer must be considered at the wall. In laminar flow, a boundary

layer is described asymptoticAlly by a single layer and so only one
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so called viscous sublayer is needed in the laminar interaction. How-

ever, a turbulent boundary layer has a two layer asymptotic structure;

as a result, two inner layers are needed to describe this boundary

layer in the interaction region. The Reynolds stress sublayer is the

equivalent of the velocity defect layer, as will be seen.

With the above remarks in mind, it is possible to write a simpli-

fied set of governing equations in which only those terms needed in

either of the two layers considered here are retained. They are as

follows

8 U	 8 V =	
(4a)

8X	 + 8Y

8U	 8U	 1 8P	 8	 2 2 8U 8U	 µ BUP 	 + pV — _	 + -- (pK DY --	 +	 —) (4b)
8X	 8Y	 y 8X 8Y	 8Y 8Y Re 8Y

8P = 0
8Y	 (4c)

T + ( U2 = 2	 (4d)

P = p T = P(X)	 (4e)

x
Y Re u

D = { 1 - exp(-	 26 T) } 
2	

(4f)

where y is the ratio of specific heats, D is the damping factor, and
2

= 0.41 is the von Karm9n constant. Since terms of order u will
T

be retained in the solutions,` it should be pointed out that terms such

as < p' U' > /p in the continuity equation (4a), and < p' T' > in the
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equation of state, (4e), which are of order u2, are not included because

perturbati ns from the undisturbed flow values of each of these terms

would be of higher than second order. Since the undisturbed flow solu-

tions are considered known to second order, and we are interested only

in the perturbations from the undisturbed flow, i,- is not n.cessary to

include the terms in question. As mentioned previously, '.t is assumed

that the wall is adiabatic, and turbulent and laminar Prandtl numbers

are unity, so that the stagnation enthalpy is constant, as in equation

(4d) .

As shown. in (n," for the case E /uT > > 1 the distance from

the wall to the sonic line is exponentially small compared to the thick-

ness of the boundary layer. Sir .:e the extent of the upstream influence

of the interaction region is ordered by the thickness of the subsonic

region, the upstream influence is confined to a region, hereafter

referred to as the inner region, which is exponentially small' in the x

direction compared to the main part of the interaction region, hereafter

referred to as the outer region. That is, in the x direction, the inter-

action region actually consists of two regions, one thin compared to

the other; in the y direction, each of these regions is subdivided into

the three layers mentioned previously.	 Following the procedure em-

ployed in (I),	 the	 solutions	 in the	 Outer	 region will be shown here

in some detail. Because the upstream influence is confined to the inner

region, the flow entering the shock wave in the outer region is simply

the undisturbed flow at the point ifi question. Inner region solutions,



which are found using precisely the same methods employed in the outer re-

gion, are given in reference [12] .

Reynolds Stress Sublayer

In the Reynolds stress sublayer, which is intermediate to the outer

inviscid flow layer and the wall layer, inertia terms.are balances, by both

the pressure gradient and Reynolds stress terms in the equation of motion

in the flow direction. The extent of the outer interaction region is X = O(0),

where, as shown in (I),

A = b  6	 6 = O(uT)	 (5a, b)

bo = (y+l)1/2e 12 (1 _ (2y+1)e /4 + ... )	 (5c)

If the dimensionless (referred to L) thickness of the layer is taken to be

Y = OM, say, then since the Reynolds stress = O(u 2) and from (I),
T

8 P/8 X = O(uT/A), the fact that the pressure gradient and Reynolds stress
A

terms in Eqn. (4b) must be of the same order indicates that 6 = O(u T A).
A

Here, for convenience, we define 6, y and x as follows:

b = u A	 (6a)
T

AY = 6 y	 X = Ax	 (6b, c)

The solutions to which those in the Reynolds stress sublayer must

match as y ~ oo are those in the outer inviscid flow layer, written in the

limit as Y/6 = y -. 0. The equations for the U component of velocity and

the pressure, (Egns. (3.9), (3.12 ), (3.19 ), (3. 21) and (4. 2) of (I) are

summarized here for convenience. TI-as,
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U (x, O) _ (1 + e) -1 +u 
T  [ (1+ 2Y e + ...)u 01. (Y)

+ (1 + (Y -1) e + ...) ul(x) ] + ...

- KS 4m 
ln(Co bx) + ...	 (7a)

P (x)
w = PP	

Y	 Y
O	

2= 1+(2e +(2-1)e
P	

+...)
e	 e

_u T Y  (1 + ( 2Y -1) e + ...) ul(x) + .. .

+ Kb 4-	 In ( Co Sx) + ...	 (7 b)

4x	 _M u01(17)dn

0	 (x + 17 )

where P e = 1 - Y	
3

e + O(e ) is the dimensionless pressure in the external

flow. The function u01(y) describes the variation of the velocity from its

value in the external flow in the velocity defect layer in the undisturbed

flow. That is, if U  represents this velocity component, it may be ex-

panded as

U  = U  + u  u01(y)	 (8)

and u01(y) is the variable part of the velocity distribution in the velocity

defect layer in the corresponding incompressible boundary layer [131 .

The form given by Coles [14] is used here

u01(Y) = K -1 [in y - R (1 + cos Try)]	 0 < y < 1

(9)

= 0
	 Y> t

9
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I.
where II is Coles l	profile	 parameter. The lart terms in Eqns.

(7a) and (7 b) are due to the curvature of the wall, i.e., for a wall with

convex curvature described locally by

Y = - ZKX 2 +...	 (10)

where K << 1 and K i 0 as a  0 and a -+ 0 such that K/e - ► 0. The

value of the constant C is found from the solution for the flow field exter-n
nal to the boundary layer.

If Eqn. (7a) is written in terms of the Reynolds stress sublayer varia-

ble, y, the result is

A

U(x,0) = (1 +e) -1 +uTI(1 +lye +...)( K In b ♦ u 01(Y) +...)

+(1+(y-1)e +...)uI(x))+...

- K6 4Tx In (Co 6x) + .. .	 (11)

where

A

01 	 = K -1 (ln y - 2II)	 (12)

Thas; equation (11) is the equation to which U(x, y) must match as y oo.

As mentioned previously, 8 P/8 Y = 0 to the order retained here. This is

easily derived from the equation of motion in the Y direction (e.g., see

reference [I.. 	 k -, ,nce, the pressure as written in equation (7b) holds

throughout both the Reynolds stress sublayer and the thinner wall layer.

In view of the form of equations (11) and (12), the general expansions

for U and V are written as follows
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A

U (x,Y) _ (1+e) -1 +uT (K In 
b 

+u 01 (y) +uI(x,Y)^

A

+EuT 
K 

lri(a)u lf (x,0 +EuT12 (x, y)+...

ii{b u 
lc 

(X, ^y; b) + ...	 (13a)

V(x, y) = v 1v1 (x, y) + ...	 (13b)

The corresponding expressions for the temperature, T(x, y), and density,

Ap (x, y), are found by substituting equation (13a) in the energy equation, (4d)

and substituting the resulting expression for the temperature and equation

(7 b) in the equation of state, Eqn. (4e). If the expansions for U. V, P, and

p and stretched variables x and y are substituted into Equation (4b), the

governing equations for u l, u le , and 
ull 

are found. Thus,

A	 ^	 n

ax 	
= - 1 axI + 8^ [(1 + K Y 

a uI )

2)	 (14a)

Y	 ay	 ay

a u^ - a (
2 K Y a u

l f)	
(14b)

ax	
ay.
	 a 

Y
A

aQ11 +Y 8,I = - 1 aP1l + a (
2 

Y aull)	
(14c)ax	 ax	 Y ax	 ay	

ay

A	 n
a u lc -- I a Plc + 

a (2r^ y e u lc)	 (14d)
ax	 Y ax	 ay	 a^y

A L^
where from Eqn. (7 b), P I, PII, and 

Ic 
are defined as follows

A
PI(x) _ -Y u 1W 	(15a)

A

P11W	 - Y (2Y -I)u1(x)	 (15b)

U



A
Plc(x; 6) _ ^ In (Co 6x)

A
It should be noted that both aIc and Plc really denote two terms, one of order

In 6 and one of order 1. They are written as one here for convenience. .Also,

it is found [12] that v 1 = O(e uT), thus confirming the result used in Part I

that, to the order considered here, V (x, 0) = 0 in the outer inviscid flow

layer.

Insofar as fl l(x, Q) is concerned, it is seen from Equation (li) that

1 ul(x) as Q co. It will be shown later that the same functiona? da?rPnaPncP

must hold as y 0. Since Pl = PI(x), the solution which satisfies both

matching conditions and the governing equation, (14a), is
A

P (x)
Q 1 = Q 1(x) _	 = ul (x)	 (16)

This result has been used in deriving equations (14b) and (14c). It iseasily

shown [=,12] that the solutions to equations (14b) -(14d) may be written as

follows

x Bit (g)

11	 2Y + f
0 (x-t) ---p { 2KK (x t) } dt

	 (17a)

^	 1 n	 x B
"I 	

l{)	 A

u ll	 - Y^1 y P 11 + 2Y 01 + J 0 (x-) eXP{ 2K^( -)}d
	 (17b)

A

A	 _ _ Plc x (BIc (t )ln 6 + Blc ( ))
u lc	 y +1 

0	
(x-0	 -- exp{ 2K (x-t) } dt	 (17c)

where the Bi() are functions to be found by matching. As 4	 co, the inte-

gral terms in each of equations (17) go to zero exponentially and it is seen

(15c)
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F	 that the remaining terms match with their counterparts in equation (11)...

As x -► 0, for y = constant, th.; solutions satisfy the shock wave jump con-

ditions to the relevant order, as they should. As y 0, one finds (1] the

following asymptotic behavior for the integrals

x Bi( )

0 (x- ) exp{ - 2rc (	 } dt	 - Bi(x) In(	 ) + gi(x) + ...	 (18a)

x-b Bi(t )
gi(x)	 lim	 J	 (x-9) dt + Bi (x) In b] - yeBi(x)	 (18b)

b -► 0	 0

where ye = Euler' s constant = 0.57721.

The solutions for U may thus be found from equation (13a), (16), and

(17). Since, as mentioned previou%y, one can find the density and temper-

ature in terms of the velocity, using the energy equation and the equations

of state, it is seen that a complete analytical solution may be found for the

Reynolds s±ress sublayer in the outer region, valid to terms of order a aT.

-

	

	 It should be noted that the continuity equation could be used to find the term

of order vl in V; since it is not used anywhere in this analysis, the solution

for V is not included. Finally, it is of interest to write the solution for U

in the limit as y 0 for later use in matching with the wall layer solution.

Thus,

13
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A

U = (1+e) -1 + uT (K -'In
	 + Q Ulc4) + U1 W]

11	
n

+ e uT K 11n( )[2y - Bll (x)ln( ,I) + g11 (x) + ... j

+ T 	+ zya 01(4) - Bll(x)ln( K) + gu(x) + ... j + .. .

+ KS[- nX ln(Co bx) - (Bfc(x)ln S + Blc ( ]n( K) + gfc (x) in S

gtl .c) + ... ] + ...	 (l9)

Wall Laver

At the wall, Reynolds stresses are zero and the skin friction is, of

course, due entirely to viscous st . ss. Immediately adjacent to the wall,

then, is a layer in which, as the wall is approached, momentum transfer is

accomplished less and less by turbulent means and more and more by

molecular mechanisms. In this layer, Reynolds and viscous stresses

are of the same order. The flow entering the interaction region in this

layer has a velocity U = O(uT) and this order holds in the interaction re-
N

gion as well. If the thickness of the layer is taken to be Y = O(S), then by

equating the orders of the Reynolds and viscous stress terms in equation
N	 T	 1	 N

(4b), one can show that S = O[(Re u T) ]. Here, in order to write 5 in

terms of familiar quantities, we set

N	 *	 _

b = A(Re uT)

T
A	 µw ( T )1/2 Ue Re	 O(l)

µ e	 c

(20a)

(20b)
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	 With these orders for Y and U, and since in the interaction region X = 0(,-%)

and 3P/8X = O(uT/A), it is seen that, even though a pressure gradient

exists, the only terms in equation (4b) are the Reynolds and viscous stress

terms, to the order retained. The resulting equation is easily integrated

to give

-au 2 µ U  8U	 2
p D(y)(K y ay ) + . A a Y = uT PeTw	 (21a)

Tw(x) - TW ^Twu	 (21b)

N N
Y = 6y	 (21c)

where, as indicated in Eqn. (21 b), the shear stress at the wall, TW(x), is

made dimensionless with its value in the undisturbed boundary layer at

X = L, so that as x = X/0	 - oo, TW — 1. Equation (21a) is essentially

the same equation used in references [1] and [2]; the only difference lies

in the closure conditions used.

With the orders mentioned above for U, P, X, and Y, and for
N

p = 0(1), it is easy to show [12] that V = O(u T b/O) and to corroborate equa-

tion (4c) to the order retained. Since U = O(u T), then from the energy equa-

tion, (4d), it is seen that T = T W + O(uT) and from the equation of state,

equation (4e), then, that variations in p in the Y direction are also O(u 2
T ).

2
Hence, to order u.T, p = p W and as pointed out previously by Melnik and

Grossman [2] and Adamson and Feo [1], the fact that p w / p e leads to the

result that limit process expansions in the wall layer do not match with

corresponding expansions from the Reynolds stress sublayer; thus, this

15



difficulty arises only in compressible flow. The difficulty may be overcome

by taking advantage of the range of validity of equation (21a). That is, in

any intermediate limit 6 << Y << t, equation (21a) is still the governing

equation; it is necessary to retain additional terms only for Y = 06).
Hence equation (21a) may be used to derive solutions which will match with

A
those found using limit process expansions in either limit, Y = 0(6) or

Y = O(6). Although the methods of solution used by Adamson and Feo. and

M(Anik and Grossman are equivalent, the latter' s method is more straight-

forward and will be used here.

It is clear both from physical arguments, and from consideration of

equation (21a) that as Y increases such that y >> 1, the viscous terms be-

come negligible compared to the Reynolds stress terms; this is borne out

by using the solution to be derived to compare the two terms. Also, for

y >> 1, the damping factor D is represented Sy unity plus exponentially

small terms (eqn. 5). Finally, the density may oe written in terms of the

velocity and pressure,in general, by using equations (4e) and (4d). Since

P = P(x) to the order retained, equation (21a) may be integrated to give,

U(x, y) = r sin { l—, (T )l ( P P )1/2uT (K In y + B(x)))	 (22a)r
e	 w/ e

r y-1	 (22b)

where T v = (y+l)/2 is the temperature at the wall and T v/Te can be

found in terms of U  from the energy equation, (4d). B(x) is a function of

integration which should be evaluated by matching equation (22a) with the

16



N
limit process expansion solution valid in the wall layer (y = O(1)); that is,

a

k

	

	 it should .be found as a result of integration from the wall to the y value in

question, using the bounda,, y condition s at the wall. However, it is only

necessary to evaluate B(x) to lowest order here, and this . may be done by

noting that if there were no shock wave, then B (x) = C, the constant from

the undisturbed flow wall layer solution (eqn. (2.8), in (1)). Here, then,

B(x) is written in terms of an asymptotic expansion

	

B(x) = C + w (uT) B1(X) + .. .	 (23)

where w (u) 0 as u — 0.T	 T

Since equations (22a) must match with equation (19), in the limit as

y oo, Q -► 0, it is seen that T  must have an expansion of the following

form
A

2	 1	 5
T`V (X) = 1 + a1  + a2 	 + ... + UT T1 (X) + E uT 

K 
ln(b )Tll(X)

+ E U  T
11(x) +... +K6 TIC (x) + ...	 (24)

That is, as y oo, such that u TK-lln y = O(1),
A

uT In 
y = 

uT 
In 

S 
+ uT In S 

+ uT In y	 (25)
s.	 s

where, as shown in (I) (equation (2.9))

KT In 6	 (Te )l/2 r sin I Ue^I' } - uT ( Kl + C)	 (26
6	 w	 )

and the expansion for T  shown in equation (24) follows to insure the indica-

ted matching. Thus, if equation (7b), (23), (24), (25), and (26) are

substituted into equation (22a) and the resulting equation is compared with

17



equation ( 19) term by term, the unknown parameters and functions in equa-

tions ( 24) and (19) may be found. The resulting solution for .Tw, the shear

stress at the wall in the outer interaction region, and the corresponding

values for the B i and gi ( calculated once the B .  are known using equation (18b))

in equation (19) are

al(al -1) 	 2	 alTw(x) = 1 + a e +	 2	 E + . , . - uT 2 u1(x)

_l InuT Kc l b)(2Y - al )(Y + -	 )Z 
a

+	 4

+ E  a	 3aT I u1 (x)(4(1  - 3Y - 21 ) + Y(Y + 2

a
ZH K -1(2y - a1 )(Y + 1 - 4 )

6
4
F

E

-1	 a.1	 al
+ K . (2Y+1 - -^(Y - ^(ln x- Ye + In 2K)I + .. .

2a1x
+ K b -1, In (Co bx) + .. .

a 1	- 4 2 (sin-1 1: -1 + 2Y

]311 = g11 = 0

B	 K-1 (2-Y  + 1 - ai

911 = B 11(ln x - Ye)

(2ia)

(27b)

(27c)

(27d)

(27e)

where u1 (x) is given in equation (7c). Equation (27a), then, is the solution for

Tw(x) in the interaction region, including the effects of curvature in the ex-

ternal flow field. It has, in most respects, the same form as the equation

18
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derived by Melnik and Grossman [2) , differing mainly in the order of the various

terms, the inclusion of specific analytical solutions at each order of approxi-

mation, and the inclusion of the curvature terms.

The order to make numerical calculations for a given Reynolds number,

Re, and external flow Mach number, Me 1 + (y+l)e /2 + ..., it is necessary

to provide relations for u  and S in terms of Re . and e . One of the required

equations is equation (26), with equations (20) for S ; the other is given in (I),

(eqn. (2. 11), 2. 12)). This equation, with the values of the integrals as given .

by Cebeci and Smith [10] is r.;peated here for completeness.

2
S 

_ u 	 K	 + (uT^2 I	 2	 Ue(1 - U 
U  (1+II) 'Ue	 -1 U 	 r	 I,2

^(1 +11 )sin ( I; )

1	 1	 [2 +(Ue/r)2)	 3 2+ — (	 (2 + 3.178711 + — 11 )	 (28)
2 (1+II )2 [1 - (Ue/r) 2]	 2

2where Te/T = 1 - (Ue/I') from the energy equation, (4d). Finally, it is neces-

sary to write an equation for the viscosity, µ(T), to be used in equations (20).

Here, µ = Tn was used, with calculations being performed for n = 3/4.

Finally, it should be noted that although the solutions presented here are

found to orders of approximation such that pressure gradient and inertia terms

were not retained in the equation of motion in the wall layer, higher order

solutions involving these terms have been investigated [12]. It was found that

the first terms to involve the pressure gradient were of order 6/L1 in U and of

order 6/a T A  in T  - Thus, they give very small corrections to the solutions

presented.
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3. Numerical Calculations and Separation Criterion

The variation of T with x for various values of external flow Mach num-w

1k 	 ber (and thus e ) and Reynolds nurrb ers representative of rm dern aircraft are

shown in figure L The numerical computations were carried out using equa-

tions (27a) for µ = T3/4, y = 1. 4, Il = 1/2, C = 5 and K = 0; these values

seem to be suitable for flow over a flat plate. The curves show the general

features found experimentally in the interaction region. That is, T w(x) goes

through a minimum, say (Tw )min ; as Me increases, 
(-Iw)min 

decreases,

while as Re increases 
(Tw)min 

increases. Thus, the effect of increasing life

and therefore the strength of the shock wave is to decrease the value of 
T 

everywhere in the interaction region and hence to force the flow toward sepa-

ration; increasing Re gives the opposite effect. It should be noted that.

Tw --P.--P.1 as x — 0 because the solution shown in Eqn. (27a) is for the outer

interaction region. A solution for T  valid in the inner region can be written

in terms of the solutions for the pressure perturbations in the inner inviscid

flow region [12]; The solution is found in precisely the same manner as

that illustrated here for the outer region and results in a solution similar to

that given in Eqn. (27a). Finally, a composite solution for w could be writ-

ten, using the solutions valid in the inner and outer regions. Because of the

limit processes considered in this work (e >> u ), this composite solution
T

would show only a small variation in T  for x < 0. However, since analytical

solutions cannot be obtained for the pressure in the inner region, no solution

for T  in the inner region has been included here:

It is not possible to compare the solution for Tw with experimental results



IW :
for a completely two dimensional unseparated flow because none are available.

In those cases where the flow was apparently unseparated (e.g., references

[15, 16]), Tw was not measured, and in more recent work, where T w has been

measured (e.g., references [17, 18, 19]) the flow is separated. In separated

flow, the shock wave takes on a lambda configuration near the boundary layer

and a relatively strong pressure gradient develops in the Y direction in the flow

external to the boundary layer [18]; the flow picture is quite different from

the unseparated flow case considered here.

Although experimental results for truly two dimensional flow are not

available for comparison, there is one set of measurements in a tube in which

the flow is approximately two dimensional [20]. Thus, if R is the dimensiu^less

(with respect to L) radius of the tube, b/R 0.04 to 0.08; in addition, the

changes in the core flow (external to the boundary layer) due to the rapid in

crease in the boundary layer displacement thickness through the interaction

region give corrections which are asymptotically of higher order than those

retained in Eqn. (27a). In presenting the tube data, Gadd fitted power law

velocity profiles to the measured profiles and inferred values of S (dimen-

sional boundary layer thickness) immediately upstream of the interaction.

Using equations derived using power law profiles, he also gave Reynolds num-

bers associated with the tunnel stagnation pressure and Mach number for

each test. Skin friction measurements were derived from Stanton tube

measurements. In determining the flow parameters to be used in calculating

T  for comparison with each of Gadd' s experiments, it was decided to use

Gadd' s values of S, Re, Me, and stagnation pressure, Pe as being a self-

=	 E

21



consistent set of data to calculate the necessary e , u T, S, and II for use in

Tw . Thus, it is easy to show that if µ = Tn,

2	P 	
M	 U -n-1^2 aws

	

Re S = p
t 	 e -^- (1 - 

Z
)	 v

at [1 + y-1 M2]Y-1	
I'	 w .

2	 e

(Z9)

Here, a  and v  are the dimensional speed of sound and kinematic viscosity

respectively, evaluated at the wall temperature (atmospheric temperature,

taken to be 590F.) and in the case of vw , at atmospheri4 sea level density;

Pt refers to atmospheric pressure. Using the given values of M , P,S, and

Tw, Egns. (3),'(26), (with Eqn. (20) for 6), (28) and (29) were used to calcu-

late the equivalent e , 
u.Ts. 

S, and II . From equation (2), then, the correspond-

ing cfu could be calculated. The ratio of the calculated Cfu to the value in-

ferred from the standard tube measurements ranged from 1.05 to 1. Z9 in

four cases reported by Gadd (Figures 25 to 28, reference [20]). For this

f	 reason and because of uncertainties in the calibration of the Stanton tube, it

was decided to compare values ofcf/ cfu, which is equal to T as given in

equation (Va). The results of this comparison are shown in figure 2, for the

case . Me = 1.15 j5 Re= 7 x 10 6, (Figure 25, reference [20]). The remaining

parameters are given under figure (2). The point X 1 /6 = 0, defined b; Gadd

as the position at which Pw Pte = 0. 528, was found by using equation (?b).

It is seen that the measured upstream influence is not small. That is,

c^/c^a is not `malt for X < - 1 say, as required for this theory,so that even

if the solution- for Tw for x < 0 were available, it is not expected that it would

give good agreement. In fact, using the above mentioned parameters,

22
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S * /S = 0. 5. where b * is the dimensionless distance to the sonic line in the

undisturbed boundary layer; eviden^ly the values for Re, e , and 11 do not form

a good combination for comparison with the theory. On the other hand, •a

slight unsteadiness in the position of the shock wave could have contributedg 

to the slow variation of the measured Y  fu upstream of and in the :_eighbor-

hood of the minimum. Nevertheless, the value and the position of the minimum
i

of cf/ cfu are predicted quite accurately Downstream of the minimum the

comparison is fairly good; in this regard, however, it is interesting to note

that the negative curvature seen on the calculated curve but not on this partic-

ular experimental curve, is a feature found in other experimental results

which. could not be used here because small separation bubbles existed.

It is of interest at thisoint to consider the problem of predicting condi-P	 P	 P	 g

tions under which the interaction brings the flow to the point of incipient sepa-
1

ration. First, it is seen from equation (27a) that there is no asymptotic condi-

tion for incipient separation; that is, unlike the laminar case, in which
-1/5e s = O(Re	 ) is the asymptotic criterion [21],there is no relation between e

and Re which. holds in the limit as Re oo as a condition for separation.

This is an important difference between the two flows,and it is of interest to

investigate the reason for its occurrence. The effect of the interaction,

through the induced adverse pressure gradient, is to slow the fluid. In the

boundary layer, then, the stream tubes must become wider and, . due to the

co, Araint of the wall, the V velocity component increases at points away

from the wall, causing the outer flow to lift away from the wall also. In the



The resulting V component of velocity is large enough that the flow external,

to the boundary layer is affected to lowest order so that the external and

boundary layer flog s must be considered simultaneously, i.e., a strong

interaction results [21, 22]. No matter how large Re becomes, this strong

interaction occurs, with the thickness of the viscous sublayur and boundary

layer decreasing as Re increases, according to their asymptotic dependence

on Re. The sublayer momentum flux and viscous stresses decrease and the

strength of the shock wave necessary to cause enough displacement of the fluid

to result in separation decreases as Re increases. In the turbulent case, even

for	 E >> aTs' the interaction is a weak interaction to lowest order be-

cause the wall layer is so thin. Thus, until separation occurs, the outward

displacement of the fluid in the wall layer due to the interaction is too small

to cause any effect in the lowest order solutions in the flow external to the

boundary layer. A strong interaction does not occur until a separaAion bubble

exists. Since there is no mechanism through which variations in the wall

layer and external flows can interact, before a separation bubble is

formed, it appears that no as ymptotic criterion exists for incipient separation.

However, it may be that such a criterion will result from an asymptotic solu-

tion for the separated flow problem in the limit as the size of the bubble shrinks

to zero.

Although the solution for Tw(x) does not give an asymptotic

criterion for separation, there remains the possibility that conditions

for incipient separation can be found simply by assuming that equation (27a) is

an accurate solution for T w(x) at values of Me and Re near separation. It is
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clear from figures 1 and 2 that the solution shows the correct form

with a minimum value, ai-id it is possible to calculate the correspond-

ing values of Re and Me (i. e., e ) for which (Tw)rnin
	 0, the condition

for incipient separation. It must be emphasized that equation (27a) is not

being used in an asymptotic sense in such a calculation; thus in order for

T`V to go to zero, one or more terms in the expansion must become.as  large

as the first term. Instead, we consider equation (27a) as being a good approxi-
2mation to Tw (x) in a numerical sense as long as e 3 and u  (the orders . of

the first terms neglected) are small compared to one.

To illustrate the uae of equation (27a) for TW (x) to predict conditions

for separation, we choose the remainder of Gadd' s tubes flow experi-

ments in which f was measured [20]. That is, Gadd presented four plots

of f vs. X' lS (Figures 25-28, reference [20]), the first of which is shown

in figure 2.. In each case he also performed oil-flow experiments, which

indicated that in one case ( used in figure 2) the flow was not separated, but

that in the three other cases, separation did occur. Although the plotted values

of cf did not indicate the occurrence of separation in these three cases, it

should be noted that the values of cf were inferred from measurements from

a Stanton tube aligned facing the flow; thus, accurate reverse flow measure-

ments could not be made. Calculations of T were made for each ofw

these cases, using the same method for calculating the necessary param-

eters, as mentioned in the discussion of figure 2. The resulting values

for (Tw) min = (cf^cfu)'n. for each case are as follows:
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(1)	 Me = 1. 27	 Re = 107	 (Tw)min  0.080

.	 (2)	 M = 1.26	 Re = 1. 27 x 10 7	 (T 	 0.020

(3)	 Me = 1.34	 Re = 1.93 x 10 7	(Tw)	 _ - C 344min

Thus these calculated results indicate that in all three cases the flow is sepa-

rated, in agreement with the oil-flow experiments. In case (2), the extent

of the region where Tw < 0, i.e., the extent of the separation bubble, appears

to be very small; the flow is barely separated.

If we denote by MeS the Mach number of the external flow at incipient
i

separation, equation (27a) may be used, with the condition that (T	 0,= 0,

to find MeS as a function of Re. A typical result is shown in figure (3) for

K = 0 and 11 = 1/2, i.e., for conditions associated with flow along a flat

plate. It is seen that according to this prediction, M es increases as Re

increases. This result is in agreement with measurements made by Roshko

and Thomke [23] for supersonic flow at high Reynolds numbers. The magni-

tude of the increase in-Mes over a large range of Re, however, is small

enough that this result could help explain the conclusion that there was little

or no variation with Re, reached by Settles, Bogdonoff, and Vas [24] .

The effects of curvature on Me s, as predicted by equation (27a) can also

be compared with experimental results. Evidently, the only data available

are those presented in figure (37) of reference [20], reproduced here as

figure 4. The value of the coordinate along Lhe abscissa, t, is given as

t' 2. 6 6 /R where R is the radius of curvature; in view of equation (10),

then, one can write t = 2.66 K. Although there is no dependence on Reynolds

number shown, it is assumed here that the range of Reynolds numbers is
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10  to 10  and calculated results are given for both values. Finally, on an

airfoil with supercritical flow, the flow is accelerating up to the shock wave;

since II depends on the pressure gradient in the undisturbed flow upstream of

the interaction, the value of II on an airfoil will be different for different

curvatures. For zero pressure gradient II = 0. 5, whereas for highly accel-

erating flow II is smaller and can become negative [25]. Therefore, at t = 0,

IT = 0. 5, (K = 0) and at t = 0.015, it was decided to use a value of II for mod-

erately accelerated flows, II = 0. The values of MeS at t = 0 can be found

from figure (3). Those at t = 0.035, for which K = 0.021 at Re = 10 6 and

K = 0. 028 at Re = 10 7, were calculated, again using equation (27a). The re-

sults are shown in figure (4). It is seen that at the conditions associated with

flow over a flat plate (t=0) the calculated Ales compares very well with the

value given by the line drawn through the. experimental data. On the other

hand, at higher curvature (t = 0.015) the calculated values are considerably

less than those found experimentally. In reference [20] there was son dis-

cussion of the fact that criteria for separation might have been too stringent

in toe co- ed surface cases so that, for example, the point through which

the drawn line passes at Mes	 es= 1. 31 perhaps should have been at M = 1. 29.

If Vai.s were the case and if negative values of R were called for, the agreement

at t = 0.015, would be much better.

The present results for criteria for shock induced incipient separation

may be compared with theoretical predictions given by Bohning and Zierep [26],

who postulated a two layer model for the interaction region and were

able to calculate an equation for c. f.  Two comparisons were made, both for
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flat plates, at Re values of 10 6 and 5 x 10 6; these Re are in the range of re-

salts presented in reference [26]. At.Re = 106, the predicted values of 
Mes

are 1. 24 and 1. 18 and at Re = 5 x 106 they are 1.26 and 1. 30, where the

MeS calculated by the present method is the first, in each case. Thus, al-

though the two solutions give the same Ivie s at some Re between 10 6 and 5 x 106,

Bohning and Zieren' s solution shows a much greater variation of MeS with Re

than that shown here. However, the present results appear to be in closer

agreement with experimental measurements [23, 241 for a related problem.

The present theory could not be compared with very recent analytical results

given by Inger [27] , who also used a two layer model, since conditions for

incipient separation were not presented.

Although there appears to be no asymptotic criterion for separation in

the limit as Re oo (uT 0) and a 0, there remains the possibility that

there exists a criterion involving a large M e as Re co. Thus, it is neces-

sary to consider the behavior of T  for e = 0(1). Based on the present anal-

ysis, it is seen that for e = 0(1), u  << 1, the solution for Tw(x) would be

of the following form ix: "ie outer interaction region:

Tw(X) = T 	 (e ) + U  T  (X;e ) ♦ .. .
d	 1

where Tw (e ) is the value which Tw(x) approaches far downstream of the shock
d

wave. Since the lowest order solutions for the velocities would be of the same

form in each of the layers as for e << 1,	 it is seen that, from matching

solutions in the limit uT	0, one would obtain

t sin {(
T 

w d )
1/2 .: in -1 ( Ue )}	 U	 (31)Pd /P	 t	 d

(30)
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4

6

Here Pd and U  are the values of P and U immediately downstream of the

shock wave in the inviscid flow external to the boundary layer respectively,

and are thus the values which P and U approach as x oo in the interaction

region. If the jump conditions across a shock wave are used to write U d and

Pd /P in 	 terms of Ue and these expressions are substituted into equation (31),

one obtains an expression for T
W 

in terms of U	 Thus,
d	 e

2
-1 1

T	 -	 1 +(Z)We - 1)	 sin (rue)	

( 32i	 )
wd 	 1 - ( 2^)(Ue - 1)	 sin-1(`Je)

r
If Ue = 1 + e is substituted into equation (32) and the resulting equation ex-

2panded for e << 1, it is found that T 	 = 1 +a 
1 
e  +a l (a-1)e /2 + ..., in

d
agreement with the first three terms of equation (27a).

a	 .
It is clear from equation ( 32) that, since 1 < U

e	 e
< r for 1 < M < o0— 

(see eqn. (36)), T  # 0 for any Me ; instead T  goes through a minimum
d	 d

value of 0. 512 at M = 2. 55, for y = 1. 4, and then begins to rise with in-e

creasing M . Hence, there is a^^parently no limiting value for M as
e	 es

Re	 co. Moreover, since U
e
 r as M 

e 
__P.oo, it is clear that T	 Co.

wd

Recalling the definition of Tw(x), one can see that this limit means that for

high Mach number flow the shear stress far downstream of the interaction

must be large compared to that of the undisturbed flow. This apparent

anomaly can be explained by considering equation (21a). The density, in the

first term, can be written as P/T through the equation of state. Now, in the

wall layer, the temperature differs from the constant temperature of the

wall by only higher order terms. On the other hand, since 0 P/8 Y = 0

r	
29



through the wall layer and Reynolds stress sublayer, P is the pressure from

the inviscid flow layer and so varies from Pe to Pd . As Me	co, Pd/Pe Co

and so from equation (21a), 
T 
	 co also. In general, since the Reynolds
d

shear stress, - p < U' V' >, includes the density, this result appears to be

independent of the specific closure condition as long as < U' V' > does not.

go to zero as Me -► co, and is another significant departure from the laminar

case. Experimental verification of the large values of T at high Mach num-w
d

bers is given in measurements by Marvin, et al. [28] .

4. Concluding Remarks

The use of asymptotic methods of analysis results in a relatively simple

relation for the shear stress at the wall in the interaction region. This relation

may be used to predict conditions for incipient separation. In order to obtain

the proper variation of T  vs. x, which includes a minimum in Tw, it is neces-

sary to include terms of higher order than the first approximation; evidently

this would be the case also if one were to calculate Tw for the- case u T = %E)

[2]

Although the range of parameters in available experiments does not allow

for exhaustive testing of the theory, comparisons which could be made are en-

couraging; more accurate results should be obtained at the high Reynolds
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numbers associated with modern transonic -_;.r-raft.
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Figure 1	 T  vs x for various values of Me and Re, for flow over a flat

plate. (Eqn. (27a) with 11 = 0, 5, K = 0).

Figure 2	 Comparison of calculated (eqn. (27a)) and experimental (ref.

[20]) values of c f /c fu vs X'/ 6. Experimental conditions;

-

	

	 Me = 1. 15, Re = 7 x 10 6 , wall temperature = 15 0 C (59° F),

Pte = - 1 37. 9 k Pa gauge (20 psig); 6 = 0.305 cm (0. 12 in).

Corrt!sponding calculated parameters; E = 0. 120, uT 0. 03968,

6=0.01634, 11=0.312,K=0. XI/6=0atPw/Pte=0.528

from eqn. (7a).

Figure 3	 MeS (Mach number at incipient separation) vs Re for flow

over a flat plate, calculated using eqn. (27a) with (Tw)min - 0,

II= . 0.5, K=0.

Figure 4	 Effect of curvature parameter, t, on Mach number for incipient

separation, Me3 , from Reference (201. Triangles and circles

correspond to different airfoils. Present calculations shown

as follows: at t = 0, •- Re = 10 6 , II = 0. 5, K = 0; x - Re = 107,

11 = 0. 5, K = 0. At t = 0.015, • - Re = 106 II 0, K = 0.21;

x-Re=107 , 11=0,K=0.28.
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