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CHAPTER 1

INTRODUCTION, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE RESEARCH

1.1. Intréduction

This report presents the results of a résearch study which deals
with the feasibility of using an advanced adaptive control method, the
lso called Multiple Model Adaptive Control (MMAC) method specifically
applied to the design of a stability augmentation control system for
the longitudinal and lateral dynamics of the NASA F-8C digital-flight-
by-wire aircraft. This study represents only one out of several
studies initiated by NASA Langley Research Center dealing with the de-
velopment and evaluation of different advanced control, identification,
and failure management strategies for the F-8C aircraft. Several of
these contributions appeared in an issue of the IEEE Transactions on
Automatic Control [1].

The paper by Elliott [2] presents an overéiew of the NASA F-8C
program. For the practically minded reader it is important to stress
that the results presented in this report represent a research effort
and a feasibility study, strongly influenced by certain design guidelines,
which will be described in detail later on, whose purpose was to make
the adaptive control problem for the F-8 aircraft intentionally difficult.
As explained in reference [2] the open loop characteristics of the F-8

aircraft are such that complex stability augmentation systems are not



necessary. IQ fact the F-8 aircraft dges not require any sophisticated
control systems for adequate perfo?ma£ce. Rather i£ serves ag avtest
bed for digit§1 fly-by-wire studie;,:gnd as a vehicle by which éevéral
methodologies for adaptive control; as well as failure detecéion.and
redundancy maﬁagement can be evaluated.

For any conventional aircraft,”the need for adaptive control
may occur if the aircraft is to be operated at a variety of operéting
flight conditions as characterized Sy flight at different altitudes
and speeds,and under different condigions of wind turbulence. The dy-
namic characferistics of the aircra££ change over its flight.eﬁvélope
to a significant degree, since chaﬁges in dynamic pressure cause
changes in the aircraft aerodynamic forces and the effectiveness
of the control surfaces. Thus a reél—time adaptive control
system, based uypon measurements obtéiﬁed from the aircraft
sensors, has to determine in an approximate way the dynamic character-
istic of the aircraft at different points in its flight envelope.
Qne predominant parameter causing changes in the dynamic character
istics of any aircraft is, of course, dynamic pressure. If.a
reliable estimate of the dynamic pressure is available, and reasonably
accurate aircraft models are available for each value of the dynamic
pressure, then one could design, in more or less straightforward manner, a
control system for the F-8 based upon the gain-scheduling approach; see

references [3]1,[4]. Gain scheduling has been long recognized as an



effeéti&é method for aircraft control given .information aboutithe dyhamic
pressuré.:

‘Tﬂe design guidelines under which this study was car;ied out were
such thét én estimate of the dynamic pressure could not bélabtained
using the sensors that were allowed. A parallel study, c;iried out by
a research team from Honeywell, Inc., see references ([3],[4], directly
addressed the problem of estimating key aerodynamic parameters related
to dynamic pressure from longitudinal aircraft sensors, and then using
the estimate of dynamic pressure in order to do adaptive gain-scheduling.
The methodology employed in this study is philosophically different
than the one used by Honeywell, although the final implementation of
the adaptivé control system presented in this study is gquite similar,

from a structural and computational point of view.

1.2 Sensors

The performance of any aircraft command stability augmentation
system will be strongly influenced by the specific dynamics of the
aircraft,the available sensor measurements and their accuracy, and the
overall philosophy of designing the control system. The net outcome
should result in closed loop dynamics that have appealing handling

characteristics as far as the pilot is concerned.



/ .

In this study the dynamics of the aircraft were thoée of the F-8
aircraft. Since_the objective of this study was to test the feasibility
of the MMAC algorithﬁ for aircraft control, the guidelines of the study
were such that superior handling qualities were not one of the major
required outputs of this study. Rather, the emphasis was on the adap-
tive identification and control aspects of the problem. This would
then be strongly influenced by the sensors that one was allowed to use
in the study, and the design methodology employed. Table 1.2.1 provides
a list of the sensors that were used in the MMAC study. The general
guidelines agreed upon by the NASA/LaRC and M.I.T./ESL was to utilize

sensors that did not involve air data. Thus, sensors that utilize air

data, such as sideslip vanes and'angle of attack vanes were not used.

Also, airspeed and accurate altitude information were excluded

from the set of sensors that would be utilized. It should be noted that

if accurate velocity and altitude sensors were used, then one could
obtain an estimate of dynamic pressure, and one could construct the
control system using simple gain-scheduling. In the absence of dynamic
pressure estimates the adaptive control problem became particularly
challenging. This dictates the complexity of the resultant MMAé design.
Once the question of available sensors was settled, the decision
was made to fully take into account the stochastic aspects of these
sensors. The design guidelines adopted were such that full use of

Kalman filters was required. 1In the Honeywell study [4] no direct



TABLE 1.2.1., .

.LIST OF AIRCRAFT SENSORS USED. IN THE MMAC STUDY

Pitch Rate Gyro
Normal Accelerometer-
Roll Rate Gyro
- Yaw Rate Gyro

Lateral Accelerometer
Aileron Actuator *
Rudder Actuator *
Pitch Angle Gyro

Bank Angle Gyro

Altitude Sensor

0o

" _
Sensors available for telemetering but not
for control '



Kalman filtering of the sensor measurements was made, except for iden-
tification purposes. In the MMAC design the use of Kalman filters for
processing the sensor measurements from both the longitudinal and lateral
dynamics had a two-fold purpose. First, the Kalman filters generated
state variable estimates which were then utilized by the control system,
and second, the Kalman filters also provided the necessary information
which acted as the input in the adaptive identification algorithm.

In order to minimize real-time computational requirements, the
decision was made to use only constant gain Kalman filters. The use of
time-varying Kalman filters may have improved the accuracy of the state
estimates and the performance of the identification algorithm. Time-
varying Kalman filters were not evaluated in this study, because it was

ocbvious that their real-time computational requirements were extensive.

1.3 Models

In any estimation and control system design, the performance of
both the estimation ahd the control algorithms is strongly influenced
by the accuracy of the dynamic models for the underlying system. In the
case of aircraft the most accurate dynamic models are those described
by nonlinear differential equations which include all the coupling terms

between the longitudinal and lateral dynamics.



The design guidelines agreed by NASA/LaRC and M.I.T./ESL were that
qnly linear models associated with equilibrium flight could be used;
these models did not include the coupling between the longitudinal
and lateral dynamics; and they were described by linear time-invariant
differential equations.

The operating envelope of the F-8 aircraft, defined in terms of
altitude and speed, was approximated by using the linear equilibrium
models of the aircraft at different flight conditions. These flight
conditions, and their location in the flight envelope are summarized
in Table 1.3.1. The numerical values used for the linearized open loop

dynamics were provided by NASA/LaRC.

1.4 Control Philosophy

In this section the control philosophy is discussed, exclusive
of the adaptive identification and control methods associated
with the MMAC design. The key properties of the MMAC design will
be discussed in detail in Chapter 2. This section outlines the metho-
dology used for designing the control system given knowle&ge of the
flight condition of the aircraft.

The design methodology consisted of two parts. First, it
was agreed that one should understand the design of the regulator
and gust alleviation system, i.e. the system that returns the aircraft
to equilibrium flight, following any initial perturbations from it,

and maintaining the aircraft on equilibrium flight in the presence of



TABLE 1.3.1.

FLIGHT CONDITIONS USED IN MMAC STUDY

Dynamic Pressure

ConZitgzz No. 2i§;§2?e Mach No. lb/ft2 (Newt/metz)
#5 Sea level .3 133.2 (6391)
#6 Sea level .53 416.0 (19990)
#7 Sea level .7 726.0 (34886)
#8 Sea level .86 1098.0 (52762)
#10 20,000 (6096) .4 109.0 (5237)
#11 20,000 (6096) .6 245.0 (12205)
#12 20,000 (6096) .8 434.0 (20854)
#13 20,000 (6096) .9 550.0 (26429)
#14 20,000 (6096) 1.2 978.0 (46995)
#15 40,000 (12191) .7 135.0 (6487)
#16 40,000 (12191) .8 176.0 (8457)
#17 40,000 (12191) .9 223.0 (10715)
#18 40,000 (12191) 1.2 397.0 (12077)
#19 40,000 (12191) 1.4 537.0 (25804)
#20 40,000 (12191) 1.6 703.0 (33781)




random turbulence inputs. Second, the regulator design was to be
modified so as to be able to incorporate pilot commands.

For any given flight condition, the design guidelines required the
construction of a complete Linear Quadratic Gaussian (LQG) design; see
references [5], [6]. Both continuous-time and discrete-time designs
were to be investigated.

Since the open loop dynamics change from f£light condition to
flight condition, several constant gain Kalman filters and control
gains had to be obtained, using the standard LQG approach. The nume-
rical values of the control gains were to be determined in order to
provide the aircraft with certain desired closed loop characteristics,
which changed from flight condition tuv flight condition. Therefore, one
had to obtain a systematic way of defining the quadratic index of
performance which changed in a natural way from flight condition to
flight condition. The natural changes in the open loop dynamics as well
as the changes in the performance index, resulted in different numerical
values for the Kalman filter gains and the control gains for each flight
condition.

It should be noted that significant simplifications can be made
by modifying the LQG designs. This was not done, because the main
thrust of the study was to understand the feasibility and performance
of the MMAC method. At this point, it should be stressed that for any

given known flight condition the transformation of the noisy sensor



measurements into commanded signals to the control surface- actuators
reéuires the use of a Kalman filter followed by the operation upon
the estimated state variables by control gains. The next chapter
shows how this design methodology is modified in order to obtain the
overall adaptive identification and control system design, which is

called the Multiple Model Adaptive Control (MMAC) method.

1.5 Brief Historical Perspectives

As explained in [9] there are several algorithms that employ a
parallel structure of compensators to generate adaptive estimation and
control algorithms. To the best of the authors' knowledge the first ef-
fort along these lines was that of Magill whose Ph.D. theéis culminated
in [10]. Along similar veins Lainiotis and his students examined more
general conditions for adaptive estimation (see [11] for a survey and

discussion); Lainiotis calls these partitioned algorithms. Such ideas

are also implicit in Aoki's book [12] and were also considered by Haddad
and Cruz [13].

Multiple model type adaptive algorithms were considered by Stein [14]
in his Ph.D. thesis, by Saridis and Dao [15], and by Lainiotis [16]-[17].
The properfies of all these multiple model algorithms were examined by
Willner [18] in his Ph.D. thesis. The structure of the specific MMAC
algorithm used in this paper is akin to that by Deshpande et al. [19] and
Athans and Willner [20] in which they examined a hypothetical STOL example.
All these multiple model adaptive estimation and control algorithms

represent blends of stochastic estimation and dynamic hypothesis testing



deas. From an adaptive control point of view they are not dual control
approaches (see [9] and [21]). The F-8 specific design by Stein et al.

[4)] can be also classified as a multiple model design.

1.6 Conclusions

This section contains a summary of the main study conclusions.
The conclusions will be divided into two separate categories, namely
conclusions with respect to the performance of the adaptive control
system based upon the MMAC method. Since all identification and control
simulations were based on a control system design that was based upon
linearized models of the aircraft, about equilibrium flight conditions,
the conclusions are only valid for maneuvering flight which does not
deviate extensively from equilibrium flight. Roughly speaking the main
conclusions pertain to flight or the F-8 aircraft throughout its flight
envelope, under the constraints that the pitch attitude of the aircraft
does not exceed 30°, and the bank angle of the aircraft does not exceed
45°, If these limits are exceeded the equilibrium models become grossly
invalid, and the MMAC design may yield poor performance and result in

instability.

1.6.1 Identification

As long as there is sufficient excitation of the aircraft, either
through pilot inputs or through turbulence inputs, the identification
performance of the MMAC algorithm is satisfactory. In general, the
accuracy and speed of the identification is better in the longitudinal
dynamics than the lateral dynamics. It should be noted that no ex~

ternal persistent excitation inputs were used in contradistinction to




the approach used by Honeywell [4]. In the absence of any persistent
excitation, it is often difficult to obtain sufficient information

from the noisy sensors to distinguish between flight conditions which
are similar as far as the dynamic response of the aircraft is concerned.
This does not necessarily imply a degradation in the performance of the

adaptive control system.

1.6.2 Adaptive Control

The overall performance of the adaptive control system based upon
the MMAC method was judged as satisfactory. BAs to be expected, the
performance of the MMAC system was best when the flight conditions
were close to the models used to implement the MMAC algorithm. 1In
particular, the adaptive control system performed best when used as a
regulator and as a wind gust alleviation system. The performance of

the control system, viewed as a command augmentation system in the

presence of pilot inputs, had certain inherent limitations due to

the design methodology employed, which was not the best possible from
the point of view of the aircraft handling qualities.
In general, the performance of the longitudinal control system in
response to pilot inputs was better than the performance of the la-
teral control system. The lateral pilot command augmentétion system,
pérformed very well near its design point. The specific methodology
employed in the design of the lateral control system was explicit
model féllowing of a lateral model which was velocity dependent: since the
aircraft velocity was not to be measured (nor estimated in the MMAC
.approach) under the design ground rules, the lateral control system

‘performed poorly when the actual velocity of the aircraft differed sig-
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hificantly from the velocity employed for the model following base line
case. In this respect, the aircraft could follow commanded changes in

the bank angle quite well, at the expense of excessive sideslip ahgles.

As a general methodology, the MMAC method is more general than the
method used by Honeywell [4], which is much more tailored to the charac-
teristics of the F-8 aircraft. As such it deserves further study, as
a general methodology, in view of the specific way that the method employ§
parallel computation. As the cost and reliability of digital microproces-
sors improve, the hardware implementation required by the MMAC algorithm

becomes more and more viable.

1.7 Recommendations for Future Research

This section contains a list of specific recommendations for future
research which are necessary for both improved understanding of the MMAC
method as an adaptive design methodology, as well as for specific design
changes that should be carried out before the present MMAC design is used

in an actual flight test.

1.7.1 1Identification Performance Using Real Data

Since there exists extensive data from the flight tests of the F-8
aircraft, the identification and estimation part of the MMAC algorithm
can be tested, analyzed, and improved using this real data. The benefit
of this study, will be to examine how the analytical models used in the
development of the Kalman filters associated with the identification algorithm
are compatible with the actual dynamics observed in flight. In this manner,

one can test not only the identification accuracy and convergence speed of the
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MﬁAC algorifhm, but much more importantly one will obtain a much better
idea of how to "tune" the Kalman filters for both the longitudinal and
lateral dynamics. Through the use of real flight test data, one will
be able to conclude how much information is provided by the longitudinal
dynamics and how much information is provided from the lateral dynamics.
At the present time, based on the recently completed Ph.D. thesis
of Baram [7], one has a much better, but by no means complete, theore-
tical understanding of the convergence properties of hypothesis-testing
algorithms when the actual flight condition does not coincide with the
flight conditions which have been used as models in the identification

algorithm. The use of actual flight test data can increase the basic

understanding of hypothesis testing based adaptive methods.

1.7.2 Improvements in Kalman Filter Design

The correct and accurate design of the discrete-time Kalman filters
for both the longitudinal and lateral dynamics is very important. There
are two reasons for having well-designed Kalman filters: first, the
Kalman filters have to generate accurate estimates of the state variables
to generate the commanded controls, and second, the residuals generated
by the Kalman filters are the sole sources of information which drive
the identification algorithm.

Since the longitudinal control system was designed only for the
control of the short-period dynamics, the longitudinal Kalman filters
received noisy information only from the normal accelerometer and the
pitch rate gyro. The available measurement of elevator position was

not used so that one would not have to face the problem of decomposing
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the elevator measurement into a trim value and a pilot input. A great
deal of improvement can be made in the Kalman filter design, if one
augments the states so as to estimate the elevator trim. The design
will be similar to the one used by Honeywell [4] although this would
contribute to an increase in the complexity of each individual longi—l
tudinal Kalman filter and to the overxall real time requirements of the
MMAC algorithm. To increase the estimation accuracy and robustness
of the individual Xalman filters one should change the design of the
discrete Kalman filters using the reéently developed techniques of the
discrete time compensated Kalman filters, as described in the report
by Lee and Athans [8]}, especially given the chosen relatively low sam-
pling rate of 1/8 second. In addition, all the Kalman filters used in
this study were designed for a fixed high level of turbulence. A more sys-
tematic study is needed, especially if the actual flight data is used,
to investigate whether or not the longitudinal Kalman filters are
sensitive to the level of turbulence used for their numerical design.
Similar comments could be made with respect to the design of the
Kalman filters for the lateral dynamics. These Kalman filters will have
to be very carefully tuned if indeed one wants to maximize the amount of
information that could be extracted from lateral maneuvers of the aircraft.
The Kalman filters employed for the lateral dynamics in this study were
based upon equilibrium flight conditions. They do not perform adequately
in the case of tight persistent turns, since these represent a different
equilibrium flight for the aircraft. In the absence of such a study,

one cannot conclude definitely what amount of information can be obtained



from the lateral dynamics as compared to the longitudinal dynamics.

1.7.3 Control System Design

The design of both the longitudinal and lateral control systems
was based on the LQG methodology. There was little difficulty in
designing adequate control systems for the regulator part of the design
which can be used as a gust alleviation system. Improvements in the
handling qualiﬁies are necessary for both the longitudinal and the
lateral control system in the case of pilot inputs.

From the handling gualities point of view, the current longitudi-
nal design is minimally adequate. One recommended change is to incor-
porate an additional integrator in the forward loop, using the results
of Boussard and Safonov [28],which were not available at the time that
the design was fixed. Effectively, such a change coupled with the low
sampling rate employed in the design, will improve the performance of
the longitudinal control system in the presence of sustained constant
pilot inputs. In addition it will improve the performance of the
longitudinal control system in the presence of constant but unknown
wind forces which are not estimated by the Kalman filter.

The lateral control system employed for the gust alleviation case
is good. However, the lateral control system used as a stability aug-
mentation system in the presence of lateral commands by the pilot is
not satisfactory. 1Its basic shorfcoming, from a handling qualities
point of view, is that it cannot produce coordinated turns throughout
the flight envelope. This is not a shortcoming of the methodology

employed, but rather is due to the design constraints of what informa-



tion is available from the sensors. In order to execute a coordinated
turn, and minimize the resultant lateral acceleration, one must have a
good es;imate of the aircraft velocity. In the design empléyed, such

an estimafe of velocity was not available. The lateral cohtrol séétem
was designed oﬁ the basis of a single nominal velocity of the airéraft;
corresponding to a flight condition in the middle of the operating
envelope of the aircraft, and this nominal value of the velocity waé not
changed as the aircraft executed maneuvers throughout its flight envelope.
As a result the lateral control system performs very well as long as the
actual velocity of the aircraft is near the design velocity. When the
actual velocity of the aircraft differs significantly from the nominal
velocity used in the design, the aircraft has to respond in such a way

that excessive lateral accelerations and sideslip angles are generated

in order to follow the commanded bank angles by the pilot. The discus-
sion and simulation results given in Chapter 6 make this point clear.
If a crude estimate of the velocity were available, then it would be
a straightforward matter to change the numerical values of the control
gains used in the lateral control system so that satisfactory performance
can be obtained throughout the flight envelope. |
The principal investigator in this effort was Michael Athans, and
the principal co-investigator was Alan 8. Willsky. The program manager
was initially K. P. Dunn, followed by David Castanon. N. R. Sandell, Jr.,
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CHAPTER 2

AN OVERVIEW OF THE MULTIPLE MODEL ADAPTIVE
CONTROL METHOD

2.1 Introduction

In this chapter an informal presentation of the key ideas associated
with the Multiple Model identification and adaptive control algorithm are
presented, so as to stress the intuitive aspects of this adaptive identi-
fication and control algorithm. A more rigorous treatment of the algorithm
and its performance in fhe context of controlling the F-8C aircraft will
be given in subsequent chapters of this report. Some well known facts about
Kalman filters are included so as to establish notation. Finally, this
chapter concludes with a brief description of the contents of the remaining
chapters of this report.

2.2 Basic Idea of the Multiple Model Identification Algorithm

Consider the situation depicted in Figure 2.2.1 which shows a
dynamic system subject to the influence of a multivariable control, ul(t),

and external disturbances. Assume that the system contains noisy sensors

that generate a set of measurements which form the components of the

measurements vector, denoted by z(t). In the context of this study the

true system represents the F-8C aircraft. The components of the control
vector will be the commanded inputs to the surface actuators as generated

by a combination of the pilot inputs and the signals generated by the

stability augmentation system. The disturbances represent the forces on

the aircraft generated by turbulence. The measurements are those generated

by the aircraft sensors used in the design, as described in Chapter 1,



DISTURBANCES

u(t) | TRUE SYSTEM z(t)
CONTROL ( AIRCRAFT) SENSOR
INPUTS MEASUREMENTS

Figure 2.2.1 The structure of the system to be controlled.
In aircraft applications the control inputs
are the commanded inputs to the surface
actuators. Disturbances are due to wind
turbulence. The vector z(t) denotes noisy
sensor measurements.



Table 1.2.1.

In general the noisy measurements generated by the sensors are not
sufficient to obtain a good estimate of all the state variables of the
true system. In these situations one must cénstruct a Kalman filter
whose objective is to process the noisy measurements and generate an
estimate, gjt), of the true state vector of the system that is generating
the data. Figure 2.2.2 shows in block diagram form the true system
which generates the data and the general structure of the Kalman filter.
The Kalman filter contains a mathematical model of the true system. It
generates a predicted measurement vector, gjt), which is in some sense
the best estimate of the actual measurement vector; z{t), generated by
the true system. By subtracting the actual measurements from the pre-
dicted measurements one obtains the so-called residual (innovations)
vector r(t). The residual vector is multipled'by the Kalman gain matrix
which in turn drives the differential or difference state equations that
represent the model of the true system. In this manner the Kalman filter
generates a vector, g(t), whose components represent the estimates of each
and every state variable associated with the true system.

If the mathematical model employed in the Kalman filter is an
adequate representation of the dynamics of the true system, it is well
known that the residual vector, r(t) has certain special properties. 1In
particular, the components of the residual vector will be white noise.

One can calculate, off-line, the covariance matrix, S, of the residual
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vector r(t) given the mathematical model of the system and the statistical
properties of the random processes which define the disturbances to the true

system and the measurement noises associated with the physical sensors.

For reasons that will become obvious in the sequel one éan then process
the residual vector, r(t), which is available in real time from the
Kalman filter to generate a scalar gquantity, denoted by m(t), which is

called the weighted residual sqguare (WRS) signal. The mathematical

definition of the signal m(t) is as follows:

A

m(t) 2 r' (0)s M e(e) > 0 (2.2.1)

As the mathematical model of the true system used in the Kalman filter
starts to deviate from the actual dynamic behavior of the true system
which is generating the actual data, the residual vector, r(t), loses its
"white" properties. Depending on the degree of modeling error the Kalman
filter residuals become larger, correlated in time, and they may contain
biases. Thus, by observing the time traces of the Kalman filter residuals,
one can obtain a rough idea of whether or not the mathematical model used
in a Kalman filter is a reasonable representation of the actual system
dynamics. If the residuals are large, this is a clue that there is a
nmismatch between the actual system dynamics and the dynamics used to cons-~

truct the Kalman filter.



The reSidgal covariance matrix, S, is always a positive defin;Fg_maFrix;
.hence the weigh#ed residual square signal, m(t), as defined by ﬁqua£ion
(2.2.1) will always be a positive quantity. If the mathematical médel
used in the Kalman filter is a very good approximation to the true system
dynamics, the Kalman filter residuals will be small, and as a consequence
the scalar m(t) will also be small. On the other hand, if the mathema-
tical modgl used to construct the Kalman filter becomes a worse approxi-
mation to the true system dynamics, the residual vector will become larger,
and as a consequence the WRS signal m(t) will become larger. Thus,
the relative magnitude and stochastic behavior of the weighted residual
square signal, m(t), as generated by any particular Kalman filter, pro-
vides a clue to the degree of "modeling error" between the true system
dynamics and the mathematical model used to construct.the Kalman filter.
Next, suppose that the designer does not have a good idea of the
true dynamics of the physical system which is generating the actﬁal data,
z(t). In this case, from prior considerations, he may hypothesize that
the true system dynamics will be close enough to one out of N possible
models. In aircraft applications, the fact that the aircraft, as it flies

throughout its flight envelope, changes its dynamic characteristics causes
the true system that is generating the data to be unknown to the designer.

The designer may postulate the existence of several possible dynamic models

of the aircraft, where each model represents the aircraft dynamics at different
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flighf ébnﬁitions. Suppose that somehow the designer has selected N
differént.models for the pogsible description of the dynamics of the’
aircréét. in.this case, as;illustrated in Figure 2.2.3,'£hé deSigﬁer
can construct a bank of Kalman filters where each Kalman filter is
driven simultaneocusly from the actual control vector, u(t), and the'
actual measurement vector, z(t). Each Kalman filter, indexed by.
i= 1,2,...{N; utilizes a different.dynamic model for its impleméntation.
Thus each Kalman filter will generate a different estimate 3i(t) of the
state of the system, and a differenf residual vectér,'gi(t). Furtherﬁore,
the covariance matrix §i of the residual vector Ei(t) associated with each
Kalman filter will be different, because different dynamics are used to
implement each.Kalman filter in Figure 2.2.3. The residual vector of
each Kalman filter can be further processed to generate a different scalar
WRS signal, mi(t), for each Kalman filter.

It should be intuitively obvious, that the differences between
the WRS signals, mi(t), will be strongly influenced not only by the dif-
ference between the actual system dynamics and the mathematical models
used in the bank of Kalman fiiters, but also by the control input, u(t),
which excites both the true system and eVeryIKalman filter. If:the;control
input were sufficiently strong and excited all the significant dynamics
of the true system, then the WRS signals mi(t) would be larger and hence
the identification accuracy would improve. On the other hand, if the

control input did not sufficiently excite the dynamics of the true system
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Figure 2.2.3

— gN(f)

1 KALMAN
FILTER
FOR MODEL | £n(t) WRS

# N E— N = my (1)

Structure of a bank of N Kalman filters (see Fig. 2.2.2)
that simultaneously generate state estimates, Si(t), and

the WRS scalar signals mi(t) that can be used for
identification.
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then the existence of the wind disturbances and sensor noises, would make
it relatively hard to tell which model best matched the dynamics of'the
true aircraft. Thus, in an ideal identification experiment one would
like to apply.relativeiy large signaié to the true system so as to aid
the iéentifiéation accuracy. ,However,.this may be completely égainst

the requireﬁents of the control system design, in which such lérge inputs
are undesirable.

From the above discussion, it follows that the time evolution and
relative size of the different WRS signals mi(t), contain information which
can be used to determine the approximate dynamics of the true system. On
the other hand, this information is not in the most appropriate form for
either a precise definition of identiﬁication, or purposes of adaptive .
control. Under certain assumptions, discussed in Chapter 4, the informa-
tion contained in the WRS signals mi(t) can be transformed into a condi-
tional probability that the dynamics of the true system are close to

the dynamics used in each Kalman filter.

2.3 Adaptive Control System Design by the MMAC Method

This section contains an informal description of the adaptive control
system design associated with the MMAC concept. First, the design of the
control system in the case of perfect identification is presented; then
the design of the adaptive control system is illustrated. Suppose that
the dynamics of the aircraft at a particular flight condition are known.

Figure 2.3.1 illustrates the block diagram of the overall stability
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augmentation system. The noisy sensor measurements, z(t), are used to

drive a Kalman filter whose dynamics are matched to those of the aircraft.

B

(+
A

an estimate ) whi
n estimate ), Wh1

'he Kalman filtery cenerateg
Ihe Kalman rllter generates an ’

set of control gains, selected to provide appropriate handling qualities

for that particular flight condition. These control signals are then

combined with the pilot input signals in order to generate the control
vector, u(t), that is the command signal to the aircraft control actuators.

Figure 2.3.2 illustrates the structure of the overall multiple

model adaptive control (MMAC) system. Using different models of the

aircraft at different flight conditions, one designs the best stability

augmentation system (SAS) for that particular flight condition. Each

stability augmentation system would generate the optimal command control

vector, Ei(t) to the aircraft under the assumption that the aircraft dy-

namics were identical to that of the i-th model. Since each stability

augmentation system (see Figure 2.3.1) contains a Kalman filter, the WRS sig-
nals mi(t) are available and introduced to the probability evaluator, which

in turn generates the probability, Pi(t)' that the aircraft is in the i-th

flight condition. To generate the actual commanded control signals, u(t),

to the aircraft actuators one multiplies the optimal control signal for
each flight condition, E;(t) by the probability, Pi(t),that the aircraft

is indeed in that flight condition and one adds the resultant signals to

actually drive the aircraft actuators. Mathematically this defines the

control vector u(t) as

N
ult) = ] P (6)u](£) (2.3.1)

i=1
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ﬁhen the aircraft coincides with one of the models used in the
constfuction of a particular stability augmentation system, the proba-
bility associated with that model will eventually approach unity, so
that the actual control applied to the aircraft will indeed be the op-
timal.control as calculated by the specific stability augmentation
system.

The overall performance of the MMAC scheme shown in Figure 2.3.2
will be influenced by a number of factors. Obviously the number, N, of
the models available will influence the response of the overall system.
The identification accuracy will be influenced by the amount of excitation
available either through natural turbulence, or pilot inputs, or arti-
ficial persistent excitation (this was not used in this study). Ideally
one would like to have as many models in the bank of the stability aug-
mentation systems as possible. Since each model contains an internal
Kalman filter, the real-time computational requirements of the MMAC algo-
rithm will grow with the number of models. Thus tradeoffs between the
effectiveness of the control system and the real-time computational
requirements are necessary.

This completes the overview of the adaptive control system design.
The remainder of this report discusses how each and every block in the
entire control system was designed, and presents typical characteristics
of this adaptive control algorithm using nonlinear simulations of the

aircraft.



2.4 Overview of Remaining Chapters

The purpose of Chapter 3 is to define the variables and the struc-
ture of the differential equations associated with the longitudinal
and lateral dynamics of the F-8 aircraft. In the approach used, the
nonlinear differential equations describing the motion of the aircraft
were replaced by a set of linear differential equations, one set for
the longitudinal dynamics and another set for the lateral dynamics.
The different operating conditions were defined by the altitude of the
aircraft,its normal acceleration and its speed. This chapter also con-
tains the dynamics of the actuators, the modeling of the wind disturbances
as well as a description of the sensors used. The numerical values of
the coefficients that appear in the linear differential equations of
motion, for both the longitudinal and the lateral systems, are summarized
in Appendix A.

The purpose of Chapter 4 is to summarize the theory behind the MMAC
-algorithm which was the basic adaptive design methodology used in this
study. Both the identification aspects as well as the control aspects of
this adaptive algorithm are presented in this chapter. Additional
theoretical backup is provided in Appendix C.

The purpose of Chapter 5 is to suﬁmarize the LOG based design used for
controlling the longitudinal system. In particular the philosophy and numerical
values associated with the gquadratic index of performance used to design

the control system are indicated. The final quadratic performance index
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penalizes a weighted combination of normal acceleration, pitch rate, and
the time derivative of the commanded elevator signal. Further, the
Kalman filter design for the longitudinal system, using only the noisy
measurements of pitch rate and normal acceleration, is presented.

To incorporate pilot commands, the philosophy that the pilot only
wishes to control the short-period dynamics was adopted. This chapter
includes some simulations illustrating the operation of the pilot command
system. The simulation results presented in this chapter represent the
performance of the aircraft under perfect identification conditions;
they serve as a bench mark for the subsequent adaptive control system
simulations.

The purpose of Chapter 6 is to discuss the development of the
control system for the lateral dynamics. The methodology employed was
that of explicit model following., The chapter contains a discussion of
the different types of quadratic performance criteria tried out. The
final criterion included tradeoff terms involving the lateral acceleration,
roll rate, sideslip angle, bank angle, as well as the time derivatives
of the commanded aileron and rudder signals. The chapter concludes with
the presentation of several simulations carried out at different flight
conditions, different initial conditions, with and without turbulence, by
comparing the open loop response of the aircraft versus the closed loop
response of the aircraft in the lateral system. These simulations for -
the lateral system serve as a bench mark for further comparison with the

adaptive lateral system.



The purpose of Chapter 7 is to present the performance of the MMAC
algorithm for several simulations at different flight conditions. Simu-
lations were carried out both in the absence and in the presence of turbu-
lence. Several combinations of models were included in these simulation
results. This chapter also contains an extensive set of experiments whose
purpose is to demonstrate the amount of information available for identifi—
cation, the performance of the identification algorithm, and the performance
of the adaptive.control system as a whole under stick commands.

The purpose of Chapter 8 is to describe a potential real time scheduling
algorithm which is necessary in order to be able to carry out all the adaptive
estimation, identification, and control algorithms in real time when the
‘aircraft is flying throughout its entire envelope. This chapter describes
a simple ad-hoc procedure that utilizes very gross altitude information, but
na speed information whatsoever, in order to make a real-time decision about
which subset of models are going to be used at each instant of time in the
MMAC algorithm. This chapter includes selected simulation results of the
MMAC algorithm as the aircraft undergoes piloted flight over large segments
of its flight envelope.

The purpose of Chapter 9 is to summarize the main conclusions reached

under this study.



CHAPTER 3

LINEARIZED AIRCRAFT EQUAT IONS

3.1 ZIntroduction

This chapter discusses the variables and egquations which describe
the aircraft behavior. As usual, lateral and longitudinal dynamics will
be discussed separately. Based on these equations, decoupled longitudinal
and lateral linear dynamic models of the aircraft are obtained at various

flight conditions.

3.2 Reference Flight Conditions

Linearized models of the aircraft can be obtained about a number of
equilibrium conditions. In this study, fifteen conditions were used,
chosen throughout the aircraft flight envelope. Table 1.3.1 and Figure
3.2.1 describe the fifteen flight conditions for which NASA /LARC provided
linearized data.

The flight conditions were characterized by altitude and Mach number,
with dynamic pressure, trim, angle of attack and elevator position being
specified as part of the flight condition. The true airspeed V. can be

¢

computed from

VO = Mach no. X speed of sound (3.2.1)

3.3 Longitudinal Systems Egquations

Table 3.3.1 contains a description of the variables which will be

used in the linearized equations. The general form of these linearized
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Figure 3.2.1 Location of selected Flight Conditions of F-8C.



TABLE 3.3.1

LONGITUDINAL VARIABLES

State Variable Symbol Units

Pitch rate qa(t) radians/second
Velocity error from - v(t) ft/sec (met/sec)
trim '

Angle of attack measured a(t) radians

from trim condition
Pitch attitude 8(t) radians

Elevator deflection § (v) radians
, . e
from trim condition

Commanded elevator Ge (t) radians
deflection ¢
Wind disturbance w(t) radians

(normalized)




commanded actual N
elevator deflection a elevot’or position
)
s+a
Sec e

Figure 3.3.1 Actuator Model
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equations is given by

- b P> - . - -
e 41 212 a3 o[« T by
q v 0 a22 a23 -g v b2
a = + S
dt o 1 ag, ay, 0] a b3 e (3.3.1)
5] 1 0 0 0 3] 0
L - L -l L - e -

Equation (3.3.1) describes the general form of the linearized air-
craft, ignoring actuator dynamics and disturbances. The elevator deflec-
tion 5e is the output of an actuator driven by a commanded elevator angle

6ec' as illustrated in Figure 3.3.1, so that

Ge(t) = -a Gec(t) (3.3.2)

where a = 12 is the time constant of the hydraulic actuator.

3.4 Wind Disturbances in the Longitudinal System

In modelling wind disturbances, the following power spectral density

was used [2]

- = (3.4.1)
04 +(L—— w)2
where Ow is the root mean square vertical gust velocity, L is the scale

length in feet or meters, V

o is the airstream velocity in ft/sec or

m/second. Typical values of L and Ow are shown in Tables 3.4.1 and 3.4.2.
The wind disturbance with power spectrum described by Eq. (3.4.1)

can be considered as the output of a first-order linear system driven



TABLE 3.4.1

DEPENDENCE OF SCALE LENGTH I, UPON ALTITUDE

Height L
0 ft (0 met) 200 ft (61 met)
1000 £t (305met) 1000 ft (305met)
2500 ft (762met) 2500 £t (762met)
>2500 ft (762 met) 2500 ft (762 met)

TABLE 3.4.2

NUMERICAL VALUES OF Gw FOR

DIFFERENT WEATHER CONDITIONS

—
Condition (o]
w

normal 6 ft/sec (1.83met/sec)

cumulus 15 ft/sec 4.57 met/sec)

thunderstorm 30 ft/sec (©.15 met/sec)




e
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by a zero mean white noise input, £(t), as shown in Figure 3.4.1. The

equation corresponding to this system is

(3.4.2)

where
E{€(t)E(s)} = S(t-s) (3.4.3)
and 8{.) is the Dirac delta

Given the power spectrum of w(t) given by Eq. (3.4.1),by choosing

v
0
=, 0 .4.4
a=2 I (3.4.4)
20V
K =20 (3.4.5)
TTLVO

one obtains Eq. (3.4.2).

This normalized wind disturbance w(t) in the longitudinal dynamics has

the same influence on the remaining state variables as an angle of attack

perturbation. Hence, w(t) can be modeled as a state variable, and its

effect on other state variables can be obtained from the previous linearized

models. The linearized equations for the longitudinal system including wind

effects and actuator dynamics are:



White noise
&)

m/sec

{ radians

s+a

y(t)

Figure 3.4.1 Normalized Wind Disturbance Generated by

White Noise Input £(t)

Vo w(t)
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0 0
12 0
0 K_
\ J L
Vo
which is of the form
o
x(t) = A x(t) + B 6ec(t) + LE(t)

Appendix A contains a complete list of the coefficients of the A, B, and

L matrices for each flight condition.

3.5 Sensor Measurements in the Longitudinal Dynamics

The F-8C aircraft has noisy sensors which provide the measurements
described in Table 3.5.1, which includes the variances of the measurement

noise.



NOTATION FOR NOISY LONGITUDINAL SENSORS

3~-10

TABLE 3.5.1

Sensor Measurement equation IMS error
pitch rate zq =q + nq .489 deg/sec
velocity error z,=v+ nv .6096 m/sec
pitch attitude zy = 6 + Ng .2 deg

y = + " . d
elevator angle zg Ge nse 1 deg
normal acceleration 2, = a, + Ny .06 g's




R, SR

The quantities nq' nv, ne, n6 and na represent additive white
e z

measurement noises associated with the sensors. The dynamics of the sensors
are modeled as unity gain transfer functions with no phase dynamics. The

linearized measurement equations c¢an be modeled as

x
z=C + &' (3.5.1)
’ 1w - . - : . .
where
- .
] S
q q
- v
2y Ny
'x o
z = Ze P = [ él = ne
w 3]
2s s
e s e
z @ -
a Ma
z z
— — w L —
L. -

where C is a matrix, and z(t) is the measurement wvector.
Since q,v, 9 and 6e are already state variables, there is no problem
obtaining the linearized matrix C for the first four measurement equations.

The fifth measurement, normal acceleration, is defined as:

VO .
a = = (q - o - pB) - cosBcosd (3.5.2)

n
Z

where V0 is velocity, g is the gravitational constant, p, B, and ¢ are

variables in the lateral system, respectively roll rate, sideslip angle



and bank angle, and the remaining variables are lohgitudinél variables.
Equation (3.5.2) is a nonlinear equation which couples lateral and longi-
tudinal variables. A way of linearizing and decoupling this observatioﬁ
equation is discussed in Appendix D. The resulting linearized equation

for normal acceleration is

v
a = - 9 (-a,.,v - a
n, g 32 33

o - b35e) ‘ (3.5.3)

3.6 Reduced Dynamics for the Longitudinal System

The longitudinal models discussed in the previous sections contain
state variables which have intrinsically different time constants. Vari-
ables such as velocity and flight path angle change slower (phugoid mode)
than variables such as angle of attack, pitch rate, wind disturbance and elevator
deflection. The latter variables represent the variables used in describing

the short period dynamics of the aircraft. Models of the short-period

longitudinal aircraft dynamics can be expressed as:
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a 257 #13 b, 33 a
a_ o _ 1 ajq §3 ajq o
at & 0 0 12 0 8
e e
Lw 0 0 0] -a w
- - J ) wl
0] [0 ]
0 0
+ é + E(t)
12 ec )
L 0 .IS_
- Vo
b -

e

s + gr Gec(t) + -I—‘red E(t) (3.6.1)

éred ed

where the elements of A . have been indexed to identify them with elements

ed
of A in Eg. (3.4.6).

The measurement equations remain essentially the same as were dis-
cussed in Section 3.5. Available measurements in terms of the short-period
variables are pitch rate, normal acceleration and elevator position. Since
velocity is assumed to be constant in the short-period dynamics, the equa-

tion for normal acceleration (Eq. (3.5.3)), now becomes

a = - XQ (~a
n g 3

. o - b3.6e)

3 (3.6.2)



Appendix B contains a complete list of the reduced order longitudinal

models for the fifteen flight conditions.

3.7 Linear Models of the Lateral Dynamics

Table 3.7.1 contains.a description of the variables used in the
lateral dynamics of the aircraft. - Using these variables, the linearized

equations are of the form

- - F —
p P
r r 8
d oA a
at = Bt * Blat ' (3.7.1)
B B s,
) ®

where the matrices A are coefficient matrices obtained for each

lat and Biat
flight condition. The numerical values of these matrices were supplied by
NASA/LARC .

The actuator dynamics for the aileron and rudder actuators are modeled
as first-order lags. 1In this study, the time constant for aileron actuators

was equal to 30, and for rudder deflection, equal to 25, so that the

differential equations which govern aileron and rudder deflections are:

d

ac 6a = —306a + 306a (3.7.2)
c

8§ = -256_+ 258 (3.7.3)

dt «r r rC

Wind disturbances in the lateral system are modeled by the same gust

spectrum discussed in Section 3.4. For the lateral system, one (normalized)
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TABLE 3.7.1

LATERAL DYNAMICS VARIABLES

Variable Description Symbol Units
roll rate P(t) rad/sec
yaw rate r(t) rad/sec.
sideslip angle B (t) rad
bank angle o (t) rad
aileron angle (asymmetric) Ga(t) rad
rudder angle 6r (t) rad
commanded aileron angle Sa cft) rad
commanded rudder angle Grét) rad
normalized wind turbulence w(t) rad




unit of turbulence w(t) has the same effect as a change in sideslip angle B.
The equation for wind disturbances can then be written as

° K

w(t) = —aw(t) + =— E(t) . (3.7.4)

\
0 .

where £(t) is a white noise process of unity variance and a, K, héve the
values given in- equations (3.4.4) and (3.4.5). Incorporating the effects
of wind disturbances and actuator dynamics, the complete models of the

lateral system of the aircraft are of the form:

) ~ - ~ T
o) . - 2y, P
r 3 at Biat 253 r
B ) S . 333 B
d _ _
T ¢ I|= TR PN ¢
8 * =30 O . * 0 §
a a
8 0 0] -25 0 8
r - . . X
w . 0 0 . —a w
— o N — — —d
0 O© 0
0 o0 0
0 o0 5 0
ac L.
+ 0 O + 0 E(t) (3.7.5)
61‘
30 0 c 0
0 25 0
0 OJ _IS_
L VO
L_ -
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Appendix A contains a complete list of the coefficients for the matrices
in Eq. (3.7.5) for each flight condition.

3.8 Sensor Measurements in the Lateral System

The set of lateral sensors used in the study is shown in Table 3.8.1.

All but the first variable in Table 3.8.1 are state variables in the lateral

system model, hence linear observation equations can be defined trivially

for almost all measurements. For the first measurement, lateral accelera-

tion is defined as

v
a (t) = 2 (B + r - pa) - sin¢cos® (3.8.1)
y 9
where Vo is the airplane velocity, g is the gravity constant, and the

other quantities are longitudinal and lateral state variables. Equation

(3.8.1) is a nonlinear equation, using coupled dynamics for the longitu-

dinal and lateral systems. How this equation is linearized is discussed

in Appendix D. The resultant linear equation is

VO
ay = e B +r - pao) - ¢ (3.8.2)

3.9 Concluding Remarks

In this chapter we presented the general structure of the linear
differential equations that describe esquilibrium flight for the F8-C
aircraft for both longitudinal and lateral motion. In addition, the

sensors and their accuracies were described.
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TABLE 3.8.1

NOTATION FOR LATERAL SENSORS

Sensor Symbol Equation rms errors
Lateral acceleration z, Zg =a_ + N, .15 deg/sec
. % g Y Y
Roll rate z zZ = + N .15 deg/sec
P p P77 9/
Yaw rate zZ, zr =r + nr .15 deg/sec
Aileron angle z ze =68 +n .1 de
8, 8, = %a M6, 9
Rudder angle Z§y zg = S+ ng .1 deg
r r r
Bank angle z Z, = + .2 de
g ® 6 ¢ Ny g




CHAPTER 4

THE MULTIPLE MODEL ADAPTIVE CONTROL (MMAC) ALGORITHM: THEORY

4.1 Introduction

This chapter discusses the theory behind the MMAC algorithm, as a

sampled-data control system for the F-8C aircraft. The two main parts

of the algorithm are identification and control. The basic assumptions

which lead to the development of a control system are reviewed, emphasizing

potential areas of difficulty. Since the MMAC algorithm is a sampled

data control system, all dynamic equations will be written as discrete-time

difference equations.

4.2 Problem Formulation

Consider a linear discrete-~time stochastic dynamic system whose

dynamics depend on a constant parameter vector Y by the following difference

equation

x(t+1) = A(Y)x(t) + B(Y)ult) + L{Y)E(t) (4.2.1)

where x(t) represents the state vector, u(t) the control or input vector,
and £(t) is a zero-mean, stationary discrete white gaussian noise sequence

with known covariance matrix E.. The vectors x(t), u(t) and £(t) are as-

sumed to be elements of finite dimensional Euclidean spaces, with the ma-

trices A, B, L appropriately dimensioned. The assumptions on the noise

vector £(t) can be expressed as

E{lg(t)} =0 for all t (4.2.2)



E{E()E' (s)} = E§(t-s) | (4.2.3)

~

where §(.) is the Kronecker delta function defined as :

~

S (t-s)

[
=

when t = s

(4.2.4)
0 if t # s.

§(t-s)

Additionally, there are stochastic measurement equations defined on the

system, which may depend on the parameter y as follows :
z(t) = C(y)x(t) + 6(t) (4.2.5)

In Eq. (4.2.5), z(t) is the actual measurement vector at time t, an element
of a finite-dimensional Euclidean space, and C is an appropriately dimen-
sioned matrix; the vector 6(t) represents measurement noise, and it is
assumed to be a stationary, zero mean, discrete Gaussian white noise

sequence, independent of g(t). That is,

E{6(t)} = 0 (4.2.6)
E{0(£)8'(s)} = Qg(t-s) (4.2.7)
E{6(t)E'(s)} = 0 (4.2.8)
90>0 for all t - (4.2.9)

The last assumption (4.2.9) implies a positive definite noise covariance
for all time.
Consider now the parameter vector y. It is assumed to be an element

of a finite-~dimensional space. The degree of accuracy by which the elements
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of y are known depend upon the accuracy of the modeling process. The

MMAC algorithm considers y as a random Qector, about which certain a priori
information exists. All prior information about y can be captured in its
prior probability density function, denoted by p(y).

It is clear that the numérical values of the parameter vector y would
alter the system dynamics, and influence both the control gains and Kalman
filter gains. Thus, the problem of obtaining estimates of y from the
actual noisy sensor measurements is important.

In aircraft applications in general the parameter vector y would cap-
ture all underlying variables, such as dynamic pressure and configuration
changes, which would crucially affect the linearized aircraft dynamics
under equilibrium flight. The MMAC method then assumes that these crucial
parameter values cannot be measured directly, but rather they have to be

inferred from noisy sensors.

4.3 Identification and Estimation

Under the assumption that both y and x(t) are random variables
belonging to finite dimensional Euclidean spaces, successful control of
the system described by Eq. (4.2.1) depends on accurate identification of
the value of Y and accurate estimation of the state x(t), on the basis of
the noisy measurements. Several algorithms, notably the extended Kalman
filter [22], [23] exist which can be used to approach the joint problem
of estimation and identification. However, in the presence of large para-
meter uncertainties, even these sophisticated algorithms break down. A

different approach, based on additional assumptions is needed; the MMAC



approach was used exelusively in this study. In order to handle the un-
certainty in the parémeter vector Y assume that its parameter space can be
quantized (divided) into a finite number of regions, each region represented
by a specific parameter value Y- That is, suppose that there are N
vectors 11, 12, ceey xN chosen throughout the parameter space. Additionally,
assume that the true value of y is one -of these N values for all time.
Effectively, by the above assumptions, the parameter space is being reduced
to a finite set. Needless to say, the above assumption is not true in
real situations. This point will be discussed later on.

Under the assumptions stated above, equations (4.2.1) and (4.2.5)

can be rewritten

x(t+l) = A x(t) + B.u(t) + gig(t) (4.3.1)
z(t) = Eii(t) + g (t) (4.3.2)
where i = 1, 2, ..., N, using the obvious notational abbreviation

A 4 -
éi A(li)' _B_i - E(li)' Ei = g(li)' _Tii - I"_(Ii)

The a priori probability density of Y can now be stated as p(y) =
{P(Ii)' 2112), ceor PQXN)}. The problem of parameter identification can
be viewed as a hypothesis testing problem, in which there are N hypotheses

Hi' where the random variable H is such that

H =H, it y=Y; (4.3.3)

Initially, all the information which is known about the system is



2

L P

given in p(y). Define the initial probabilities P, (0) by

>

P, (0) E"(yi) P(H = H,). - "(4.3.4)

Suppose one applies a sequence of-detgrministic inputs,gjo),zgj}),...,
u(t-1) to the system, and obtains measurements z(1l), z(2), ..., gjt);

The problem at hand consists of using these measurements tolérov%de both
a good estimate of the state x(t) and the parameter Y. Define ;hg infor-

mation (data) set of time t, Z(t), as follows:
z(t) = {z(1), z(2), ..., z(t), u(0), u(d), ..., u(t-1)} (4.3.5)
Additionally, define the conditional probabilities
P, (t) =.Prob. {o =n |z(0)]. : . (4.3.6)

Thus, the posterior probability density of the hypothesis variable H aiven

the measurements Z(t) is given

N

pH[z(t)) = i};l P, (£)§(H ~ H,) _ (4.3.7)
where 8(.) is the Dirac delta function. The joint estimation and identifi-
cation problem consists of determining the probability-deﬁéities Ahd condi-
tional expectation p(H|Z(t)) and'E(E(t)lz(t)).

Figure 4.3.1 contains a summary of the svstem and identification
problem. Appendix C contains a_derivation of the expressions for the
conditional probabilitv densities of H and x(t). As sho%n in Appendix C

these conditional probabilities can be calculated in real time in a recur-



DYNAMIC SYSTEM

x(t+l) = A.x(t) + B u(t) + L.E(t)

u(t) =i i =i 2(¢)
st —_——
CONTROL z(t) = g ;x(t) + B(¢) NOISY SENSOR
INPUT MEASUREMENT
VECTOR VECTOR

z(t) = {z(), ..., z(t), u(@), ..., ult-1)}
Estimation problem: find E(x(t) [z (£))

Identification problem: find P (H|Z(t))

Figure 4.3.1 The Nature of the Joint Estimation and
Identification Problem
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% sive manner, using Bayes' rule ([6], [23]
p(x(t) [H,,2(t-1), u(t-1))
N — P, -
P, (t) N 5 (£-1) (4.3.8)
D opx(t) |H,, 2(t-1), u(t-1))P, (t-1)
Cwr == j = ]
j=1
A N I o,
2(v) S E{x(0)[z(0)} = 37 P (0)E{x(t)|z(t), H}. © L (4.3.9)

i=1

As explained in Appendix C, the probability densities involved in the
right-hand sides of equations (4.3.8) and $.3.9) are Gaussian, because
when hypothesis Hi is assumed true, the system in Figure 4.3.1 becomes a

linear, time invariant, Gaussian-driven system. Furthermore, the conditional

expected value gi(t) = E{x(t) |z(t), Hi} can be constructed by a linear

time-varying Kalman-Bucy filter [5], [6].

The basic formulae of Kalman filters are well known. From each

Kalman filter, indexed by i = 1,2,..., N, one obtains the value of the

corresponding residual vector Ei(t), defined as

r, (t) ég(t) - giE{gc_(t)lZ(t—l), u(t), Hl}. (4.3.10)

Additionally, the covariance matrix of the residual vector Ei(t)’ defined

as §i(t). can be computed off-line. With this nomenclature, Equation (4.3.8)is

shown in Appendix C to give

p(z(t+1) |E, ,ult) ,Z2(£)) P, (¥)
- (4.3.11)

P, (t+l) =
> plz(t+l)|H,,ult),z2(t)) P, (t)
=T ) ’

Ay 2



-% (£ (£+1) 87T (t+1)x, (£+1))
B.(t+l) e * - —t '
= 1 B(t) (4.3.12)
1, -1 1
X > (Ei(tﬂ)—s—i (t+l)x. (t+l1))
> B_(t+l) e B P, (t)
=1 j
where the scalars Bi(t) are defined by
_m L
B (£) = (2m) 2 lget 8, ()] 2 i=1,2, ..., N - (4.3.13)

and m is the dimension of the vector Ei(t), (m is equal to the number of
measurements). The matrices §i(t) and the scalars Bi(t) can bé computed
a priori in an off-line fashion as described in Appendix C. Using equa-
tions (4.3.12) and(4.3.13) in conjunction with N Kalman filters, as:des-
cribed in Figure 4.3.2, one is able to compute the -evolution ?f the:hypo-
thesis probabilities and the conditional expected value of the 5ystéh
state.

Because of the stationary properties of the time system, one can
consider the operation of the system in steady state. 1In this case, the
residual covariance matrix is stationary, so.that the matrices Si and the
scalars B; are constants, as described in Appéndix C. The system probabi-
lities in steady state operation are given by

BY exp(-3r](t)s; x, (£))

= 1 -
P, (t) S P, (£-1) (4.3.14)

1 v -1 _
J__Z:L[B; exp(-igj (t)§J £J (t)i’P_‘ (t-1)
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Equation (4.3.14) can be written in a somewhat simpler form by defining

the weighted residual signals (WRS) mi(t) as follows (see Fig. 4.3.3)

A

A 1
mi(t) =

£} (0)S;r (t), i=1,2,...,N (4.3.15)

It should be stressed that each WRS mi(t) is a scalar guantitv. and each
is agenerated bv a Kalman filter (later chabters show several time his-
tories of the WRS mi(t)).

Using this notation, the formula for the probability update (4.3.14)
can be written as

BY exp {- %mi(t)}
P, (£) = P, (t-1) (4.3.16)

N 1
jZ=l Bt exp{- 5m, )} P, (t-1)

4.4 Discussion of Identification

The MMAC identification algorithm has some interesting asymptotic
properties. Hawkes and Moore [24] have established that, under general
conditions and the assumptions of the previous section, the model probabi-

lities are such that

Pi(t) >0 if H # Hi

(4.4.1)
Pi(t) > 1 if H = Hi (true model)

as t > o, This is true only if the true model is in the set of hypotheses.
Consider the equation describing the evolution of the probabilities

Pi(t), equations (4.3.1). With some algebraic manipulation, one obtains



N
P (£) - P, (t~1) = iEin(t-l)Q; e

l 1 -1 - - *« - £ ' -1
zgm%g@)zPﬂuwfm(ryu%%&n

P, (t-1) | (1P, (t~1))B*, e Z
J (4.4.27

Heuristically, one expects that, as the system is subject to persis-
tent excitation, the residuals of the true model Kalman filter} nominally
the %th one, will be small, while the residuals of the mismatched Kalman
filters (i#2 , i =1,2,...,N) will be large. Thus, if 2 indexes the

correct model, one has
rI(e)s e (£) << £'(t)STTr.(£) all i # & (R:true model)  (4.4.3)
== =L e R . |

If this condition persists, it implies that

1, -1
"3 5 (9)8; Tz (e)
(4.4.4)

R
o

1, -1
e-; r (8)s, ££(t)

Hence, the correct probability will grow as

1 -1
Pg(t-l)(l—Pz(t—l))Bgexp(—i_5i(t)§£ gﬂ(t))

p,(t) - P, (t-1) = >0 (4.4.5)
2 2 N L T

. (t-1)B* -5t Cri(t
;il Pj(t 1)6j exp (-3 Ej(t)gj gj( ))



For the incorrect models, the same assumptions yield

1, -1
~P (t-1)P, (t-1) Bf exp(~5 xg(t)S,"r (t))

_?i(t) T Pi(t—;) =N < 0 (4.4.6)

. 1 ~1
P. (t-1) R* -= r! S. .
2, 5 (e=1)BY exp( 3 (DS E (8)

Hence, assuming that the Kalman filter residuals will behave as expected,
the identification scheme will converge to the true model. However, when
the Kalman filters do not poséess these regularity assumptions, the identi-
fication scheme does not work well. For instance, consider the case that,

in a prolonged sequence of measurements, the residuals Eﬁ(t) turn out such

that

' -1 ~ 4t -1 — ' -1
£1(t)§1 El(t)’” 1'2(1:)_5__2 EQ(t) cee X EN(t)gN En(t) (4.4.7)

Under these conditions, equation (4.4.2) becomes

P, (t-1) §:1 (B3-B3)P, (t-1)
P (t) - P, (t-1) = J

%
B*p. (t~1)
j=l 13

(4.4.8)

Consider the largest Bg, indexed as k. Then equation (4.4.9) indicates that
Pk(t) - Pk(t—l) is always positive unless Pk(t) = 1. Thus, the identifi-
cation converges to the system whose B; value is the largest, not neces-
sarily the true system. Since the B; values are determined a priori from
design parameters (as indicated in Appendix C), this behavior must be con-
sidered in the design of the Kalman filter.

A typical situation when equation (4.4.7) holds true is when the true
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system is at rest (i.e., x(t) = 9) and the excitation of the system, £(t),
is actually much smaller in covariance than the modeled covariances. In
this case, all of the residuals Ei(t) will be essentially zero, satisfying

equation (4.4.7) and give rise to the B* dominance identification

effect. The implications are that this effect can occur in the absence
of significa;t.éxcitation of the system, or when the Kalman filters are
designed for.é.mﬁch larger process noise f(t) than is actually encountered
iﬁ:the tfue sfstem.

Whén tﬁé vélue of the true parameter Yy is not included in the finite

parameter set {11. ceos XN}' Hawkes and Moore [24] showed that the proba-

bilities converge to the "nearest" element of the set. That is,'

‘ q.?i(t) -+ 1 if and only if d(y, xi) < dady. xj) _ (4.4.9)

for all j =1,...,N.

The distance between two parameters is defined in terms of the Rullback
[25]>informati$ﬁ measure, as discussed in [24].

t ﬁowever, tﬁé theoretical proofs of convergence for the MMAC algorithm
héQé neglecged ﬁﬁo fundamental aspects of the physical problems connected
with édaptive control: the convergence proofs have all dealt with undriven,
open loop systéms. In reality, the identification algorithm must operate
within a closed-loop system, where inputs based on m@asurements are applied
to the system. The question of convergence under closed-loop conditions has
not been addressed in the literature.

The éecénd aspect which has been neglected in the literature is the

assumption that y is constant. In many adaptive systems, x_is a tine~varying



= = -

TSR

A

., ST

hypothesis. Some preliminary studies by Athans and Chang [26] indicute

that performance of the identification algorithm is closely related to

thé time-scale of th amete

4.5 The MMAC Algorithm: Control Approach

In Section 4.3, the MMAC identification algorithﬁ was used to ob-
tain the probabilities Pi(t) for any string of inputs applied to the srstem.
However, the objective of the contreol system is finding the control inputs

to the system. The basic approach follows the outline of hypothesis

testing described in Section 4.3.

Under the assumption that hypothesis Hi was true, the system equa-~

tions become

x, (£+1) = Ax. (£) + Bu(e) + LE(¢) (4.5.1)

z(t) = C . x(t) + B(t) (4.5.2)

Assuming perfect knowledge of the state dynamics and measurement

equations, the optimal control Ei(t) can be computed for each model
indexed by i. This is accomplished through the solution of a Linear-
Quadratic~Gaussian optimization problem [5], as described in Appendix F.

The optimal control Ei(t) is obtained by linear feedback of the conditional

expected value of x(t) for each model

n, (t) = -gigi(t) (4.5.3)

where G, is a constant control gain matrix and gi(t) is obtained from the

Kalman filter matched to the i'h model.
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The optimal control gi(t) can be computed in parallel for each hypo-
thesis (model) indexed by i = 1,...,N. The MMAC control approach is then
very simple: the indi;idugl contfol inputs are combined in a weighted
average using the identification probabilities. That is, the actual

control applied to the system is given

N N
ult) = PP, (B)u, (£) =~ 3 P, (£)G.R, (v) (4.5.4)
i1

i=1
The complete control and identification scheme is shown in block diagram
form in Figure 4.5.1.

Willner [18] established using dynaﬁic programming that the control
law obtained using equation (4.5.4) was optimal in minimizing a quadratic
cost criterion only over a single time step. fhat.is, when the system
dynamics and the horizon of the cost criterion is larger than one time
period, the MMAC controller is a suboptimal control, even when_éll other
assumptions discussed in Section 4.3 still hold. Hence the MMAC control
algorithm represents a computationally simple suboptimal adaptive approach
towards control of the F-8C aircraft. It must be emphasized that there
is no theory guaranteeing the success or performance of this approach;
this is a major motivation for extensive research into the feasibility

of this approach.

4.6 Modification of the MMAC Algorithm

The theory behind the MMAC design deals with identifying and con-

trolling a system represented by a linear time-invariant finite dimensional
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mathematical model. The F-8C aircraft is a non-linear, time-varying

plant which is subjected to a variety of pilot commands. Several modifi-
cations of the MMAC design were introduced to compensate for the differences
between the theoretical assumptions behind the MMAC and the true properties
of the P-8C aircraft. One of the crucial questions dealing with the
convergence of the identification algorithm is the availability of infor-
mation [24], [7] to separate the various hypotheses. Sources of information
include pilot commands, turbulence, gusts or other types of excitation.

Some studies in adaptive control of aircraft [27] include a low intensity
test signal designed to provide information to the identification system.

The basic MMAC algorithm inc¢ludes no such signal; thus, when the MMAC

lacks information, the identification system will have difficulties identify-
ing the right hypothesis. This occurs when the aircraft is trimmed,

flying at equilibrium level flight under no turbulence. Under such circum-
stances, the B* dominant identification effect mentioned in Section 4.4 occurs.

It should be noted that the B* dominant effect was not known when this
study commenced. It was observed in simulations and in the absence of any
theory, led to ad - hoc modification of the MMAC System.

In order to compensate for the B* dominant effect, one can modify the
evolution of the identification probabilities P, (t) described in equation (4.3.16)
According to equation (4.4.7), the B* dominant effect occurs when all the WRS
signals mi(t) are near zero. The modification consistsof stopping the
identification algorithm when there is not enough information. The MMAC
algorithm monitors all of the mi(t), and updates its identification probabil-
ities as

Pi(t+l) = Pi(t) if mi(t) <T i=1,...,N (4.6.1)

H'
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-mi(t)
B*i Pi(t)e
N -m, (t)
* P.(t
L B 3 J( e

Pi(t+l) =

otherwise. (4.6.2)

i=1

The values of the thresholds TH were determined by trial and error. The

values used in the designs were:

Longitudinal System Threshold = 1
(4.6.3)
Lateral System Threshold = 5

Notice that there are two separate thresholds for the longitudinal

‘and lateral systems. The MMAC algorithm contains separate identification

and control systems for the longitudinal and lateral systems. In principle
the information provided by the two systems could be combined to improve
identification. Under the assumption that the longitudinal and lateral
systems are completely decoupled and uncorrelated, the identification
probabilities can be combined, according to the following equations.

Let S. on'Ss LAT denote the residual covariance matrices of the

Kalman filters, for the i-th flight condition, associated with the longi-

tudinal and lateral dynamics respectively. Define

-Th. —1/2
=L.ON
% =
Bi 1.0N (2m 2 (det §i LON) (4.6.4)
-m -1/2
=LAT
* = 2 e
Bi*rar = (27 (det Sy rar! (4.6-3)
wheremLON and!nLAT are the number of longitudinal and lateral sensors.

Let Ei LON(t) and Ei T(t) denote the Kalman filter residual vectors

LA
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at time t, for flight condition i, associated with the longitudinal and

lateral dynamics respectively. Define the WRS signals:

-1
i LoN o ron'®8 ow Eiozon® : (4.6.6)

ne>

ioa - I orar'®S pap Iy opar® (4.6.7)

Then the overall probability that the aircraft is in flight condition i

at time t, is generated by the recursive formula

P, (t) = P (t-1)B% B exp{—miLON(t)/z}exp{—mi LAT(t)/z} /

*
iLON iLAT

exp{—mSLAT(t)/Z} eXP{-mj LON(t)/z}

N
! Py (E=1)B* s onP (4.6.8)

*
551 JLON" jLAT

The B* dominance effect discussed above now refers to the relative magnitude

of

gr & gx g

= B* *
i iLON iLAT (4.6.9)

obviously the method should be expected to work well when both longitudinal
and lateral Kalman filters are correctly designed so that the residuals

of the "matched" Kalman filters are smaller than those of the "mismatched"
ones.

The reason the MMAC algorithm does not combine the lateral and
longitudinal identification probabilities lies in the differences between
the mathematical assumptions and the actual problem posed by the F~8C
aircraft. Throughout most of the flight envelope the linearized equations
of the F-8C aircraft will differ from all of the hypotheses in the MMAC

algorithm. 1In this situation, it is not clear that combining the information
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will improve the overall identification. In many cases, one can observe the
information obtained in one system dominating the overall identification.’
Section 7.3 contains the mismatched stability tables showing the effects

of erroneous identification on the stability of the aircraft. A close
examination of these tables will show several combinations which are stable
in one system, say longitudinal, and unstable in the other system.

Should the information from the longitudinal system dominate the identifi-
ation schemes are used, each sys
plane is unstable and alter its identification. Figure 4.6.1, shows
typical aircraft responses with identification. Note the instabilities

in the lateral system variables.

One final modification was made in the MMAC identification algorithm:
the identification probabilities Pi(t) were bounded away from zero. In
principle the identification algorithm is trying to identify a fixed,
time-invariant hypothesis; in actual practice, this hypothesis changes with
time as the F-8C aircraft travels through its envelope. Thus, the MMAC
algorithm must be able to react to a time-varying true hypothesis. Bound-
ing the probabilities away from zero corresponds to limiting the impoftanée
of past information, enabling the identification system to react quickly to
new information. Trial and error established these lower bound to be 10_4.
Hence, the updated identification probabilities were modified as follows:

P, (t) if P, (t) 3_10'4 | (4.6.10)

P, (t)

10_4 otherwise

The modified identification probabilities, denoted by P?(t), were

obtained by
M B )
Pi(t) = . (4.6.11)

P.(t)
=t
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One of the undesirable properties of the MMAC identification algorithm
is its sensitivity and quick response to inférmation.* When the airplane
is subjected to high levels of turbulence, the randomness of this turbulence
is reflected in the identification probabilities. Figﬁrés 4.6.2 and 4.6.3
represent typical airplane responses under various levels of turbulence.
Notice the fast transitions in the identification probabilities Pi(t). Each
transition, however, changes the feedback gains in the control system, thereby
changing the aircraft response to pilot inputs. These transitions occur
under turbulence, or when two or more hypothesis are equally "close" in a
probabilistic sense to the true aircraft. The net result is a control system
which feels very uneven to the pilot. In order to smooth out the changes
in the control system and to eliminate some of the random effects in the
identification, the identification probabilities were low-pass filteréd to
produce control probabilities; trial-and-error experiments set the filter
time constant at 2 seconds. Figure 4.6.5 describes the low-pass filter

introduced. The control probabilities are given by

Pg(t) = .94041 P(i:(t-l) + .05959 Ph.f(t) (4.6.12)

Figure 4.6.5 shows the control probability evolutions using the low-pass

filtering scheme to smooth out the control action.

*
These important sensitivity properties were not known when this study

was initiated. 1In point of fact, the overall nonlinear nature of the MMAC
System (Figure 4.3.2) precludes any analytical insight. Thus, extensive
stochastic simulations are necessary to evaluate any MMAC design.
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CHAPTER 5

LONGITUDINAL AXIS CONTROL AUGMENTATION SYSTEM

5.1 Introduction

This chapter describes the specific development of the control
designs for the longitudinal dynamics for the fifteen flight conditions.
In addition to discussing the development stages, sample simulations of
the final design are included at various operating conditions, to illus-

trate the operation of the control system.

5.2 TIongitudinal Axis Linearized Model

The states used in the longitudinal system were discussed previously

in Section 3.4. BAs a design choice, the control variable was chosen to

be the commanded elevator rate, Ge , the opposed to the commanded elevator
c
position Ge . This choice of control variable has some advantages:
c

one can then incorporate a saturation constraint of 25 degrees per second
on the commanded elevator rate. The control penalty
on Ge can be adjusted@ to keep the system operating without saturation.

c

Combining this choice of control with equations (3.4.6), the longitudinal

system model has the form:



( q 1 [ . ) ( q )
v - v ,
o = . . o 0
(6x6) : (6x6)
6 6 (1 x 6)
d — . .
'd—t s = e o a @ SRR A S + e o @ Ge
e e C
0 . 0 1
w - - w
(6x1) : (1x1) L J
§ : §
e . e
C C
\ J \ - J J
( 3
L
(1x6)
+ - e . E(t) (5.2.1)

The control system was designed using linear quadratic control
theory [6], described in Appendix F. A quadratic performance index was

selected with general structure

o0
J,éf (x'(£)0.x(t) + u'(t)R.u(t))dt (5.2.2)
i -~ =i= - —i=
0
where the weighting matrices Qi’ 31 are indexed as to possibly vary for each
flight condition.
In the initial design it was decided that one should relate the

maximum deviations of several variables in a cost functional of the form




given in equation (5.2.2). These variables were pitch attitude 0,

pitch rate g, normal acceleration a . and commanded elevator rate Ge .

c
This yields a performance index of the form
2 2 2 5. () 2
© fa _(t) e
J = L + (2R » (28 + [ —=— ae
lon 0 a i i ol 31
nz max Tnax max e _max
(5.2.3)

All of the variables included in the cost function J10n are either

state or control variables, except a .- The linearized relationship for

anz derived in Appendix D is

Q|6<

anz(t) = (klv(t) + kza(t) + k3Ge(t)) (5.2.4)

Effectively the structure of the criterion implies that, if the maximum
values of normal acceleration, pitch rate or pitch attitude occurred,
one would be willing to saturate the elevator rate to remove them. For

the preliminary design the following numerical values were used, as

suggested by the NASA Langley Research Center technical staff.

i — [ ]
nz max 6g's
i _ 10g
1 max - v, (5.2.5)
ot - _ 69
max v ai
i 33



éi = .435 rad =25 deg. .
ecmax sec sec, (5.2.6)

where Vi is the aircraft speed (Mac no. X speed of sound) and a33 is
an element of the linearized A matrices discussed in Chapter 3. The

resulting Qi and Bi matrices can then be computed for each flight condition

using the values of the linearized models given in Appendices A and D.

5.3 Reduced Model Longitudinal Design

Using the Linear Quadratic design methodology, control gains were
designed for the seven state model of equation (5.2.1) at each flight condi~
tion. The closed-loop responses of the linearized models were studied to
evaluate performance; it was decided that the design should be modified
to exclude feedback gain on the vitch angle O and the velocity deviation v.
The primary reasons for this modification were: first, the gains on the
velocity deviation were very small for all flight conditions. Second,
as part of the ground rules it was desirable to avoid using the pitch and
velocity sensors. The pitch angle 0(t) is weakly observable from the system
dynamics, so that in the absence of pitch measurements, large estimation
errors would be obtained which could adversely affect the performance of
the control system since the optimal gains include a significant gain on
the estimated pitch attitude. Finally, it was decided that variations in
6 and v occurred in a slow mode so that the pilot would be able to control
variations in pitch and velocity.

In order to eliminate feedback from undesirable states such as § and

v, reduced-order "short-period" approximation models were used. These
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models were discussed in Chapter 3 and Appendix B. Since pitch angle is
no longer a variable in the reduced model, the performance index (5.2.3)

was modified to

= 8
o a__(t) 2 2 e (t) 2
= nz _afe) c
Ii ton = I ) T + | + |3 at  (5.3.1)
0 a qm e max
nz max ax c
where
Vi .
22" "3 (kjo(t) + k36e(t)) (5.3.2)
§ given by eqgs. (5.2.5) and

. i i
Using the same values of a ’ qm and ¢
nz max ax e _max

(5.2.6), the reduced order linear gquadratic optimization problem was

solved, obtaining gains which depended only on q, 0O, Ge' Ge and w.
c

The reduced-order gain desions were simulated using the full state
linearized models, to evaluate the change in performance using the
reduced-order model design. From the viewpoint of transient responses
to the variables of interest (normal acceleration, pitch rate, angle of
attack), the transient responses to initial conditions were almost iden~-
tical for both the full-state design and the reduced-order design. Thus,

the short-period motion of the aircraft was dominated by the relative

tradeoff between maximum normal acceleration anz max and maximum pitch

rate qmax' The reduced-order gains tended to be smaller than their
full-state counterparts. The major difference in the performances of

the two designs were that, in the simulations of the reduced-order desian,

velocity error v and pitch attitude deviation O were not reduced to zero.



This performance was deemed acceptable, since the drift was slow enough
for a human pilot to correct.

Using the reduced-order design procedure, feedback gains were obtained
for different values of the cost matrices Qi' In particular, the parameter

changed was q;ax’ with values defined as

63 49

v, "V, (5-3.3)
i i

Figure 5.3.1 contains ; plot of the closed-loop complex eigenvalues of

the reduced system. These correspond to the "optimal" short-period
dynamics. Notice that, for each choice of q;ax' the poles for supersonic
and subsonic flight conditions lie along lines of constant damping ratios.
This result is of particular interest, since it reflects that the implicit
cost adjustment in the matrix gi produced a constant damping ratio.

Table 5.3.1 summarizes the damping ratios for different weightings. /

5.4 C*-Design Using Reduced Order Dynamics \

The problem of obtaining desirable handling qualities in the control

system was approached from a C*-criterion point of view. The C* criterion

"is one of several measures which may be used to evaluate handling qualities

of aircraft. Appendix J explains in detail the C* criterion.
Essentially, the C* quantity represents a tradeoff between normal

acceleration and pitch rate. This balance between norm;l acceleration

and pitch rate can be used in defining a new performance index of the

form:
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TABLE 5.3.1

DAMPING RATIO FOR CLOSED-LOOP SHORT PERIOD
POLES AS A FUNCTION OF MAXIMUM PITCH RATE

1
PENALTY, q <’ IN (5.3.1).

Dpax Damping ratio Damping ratio
for all subsonic for all supersonic
conditions conditions
lOg/V° 0.488 0.361 .
8g/Vo 0.530 0.402
Gg/Vo 0.552 0.449

4g/v, 0.587 0.498




(5.4.1)

i [ 2 i .2
I -fo (e + 1 (6, 1D

RS R e

where

(5.4.2)

T i i
* =
C*(t) _ kzanz(t) + k3Q(t)
Note the ith superscript on the performance index and the weighings,
indicating the dependence of the performance index on flight condition.
The performance index Jl* has an implicit balance between normal
acceleration and pitch rate, determined by the constants k; and k;. These

constants were chosen to be

(5.4.3)

independent of flight condition. Various choices for ki were tried, ob-

taining optimal gains for the reduced models for each choice; upon evalua-

tion of the various responses under closed-loop conditions, the optimal

i
was chosen to be

weight kl
2
Wil = 5.252467 (5.4.4)
1 \.435

This criteria was chosen for the final design of the fixed point

controller. Appendix I contains a table of the optimal continuous-time

gains for each flight condition. The optimal closed-loop poles are

shown in figure 5.4.1.
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5.5 Discrete-time LQG Design

Using the Linear Quadratic Gaussian approach discussed in Appendix F,
the continuous~time gains obtained in the previous section were converted
to discrete-time gains. The final discrete-~time gains are £abu1ated in
Appendix H. Following the methodology of Appendix C, Kalman filters were
designed using measurements of pitch rate and normal accele#afion, based
on the equivalent linear discrete-~time models described in Appendix E.
Although an elevator position measurement was available, it was not used
because of its trim dependence.

The steady-state Kalman filter gains were determined
using the sensor covariances quoted in Table 3.5.1, using a 15 ft/sec

rms value in the wind disturbance model of Section 3.4. They are

" "listed ianppendix K. Closed-loop eigenvalues for the complete dis-

crete time system are listed in Appendix L.

5.6 Longitudinal Pilot Command System

The basic regulator scheme used in the MMAC control system was
described in Sections 5.1 - 5.5. 1In this section the regulator design
is modified to incorporate pilot commands. The basic operation of the
pilot command system is structured as follows: the stick position is
translated into a# elevator deflect%on-input by multiplying it by a
gear ratio. This commanded elevatof deflection is translated into reference
values of pitch rate and angle of attack using gains computed in the next
'section. These three reference values are subtracted from the estimate

of the corresponding state variables to produce error signals, which in



turn gef muitiplied by the optimal regulator gains_;o_generate'a control
signal. Figure 5.6.1 illust;ates this deterministic écheﬁe.-

Pitch rate and angle of.attaCk were chosen to be the con£rolled
variables, as they are the dynamic variables mostly controlled and responded
to by the pilot. This choice also simplifies the on-line computation of
commanded variables, as only short-period dynamics need be considered.

The regulator drives the aircraft to obtain the commanded state values;
handling gualities are not explicitly considered, as the ;ésponses are
based on the regulator design, which partly addreé;ed this

question.

The complete controller structure for a given flight condition
is shown in Figure 5.6.2. Notice that, in the absence of pilot inputs,
the individual controller design is essentially the LQG_coﬁtfolierldis—
cussed in previous sections. Thus, this design preserves the regulator
properties, extending the structure to incorporate pilot commands.

The gains between pitch rate and elevator deflection input, and between
angle of attack and the input are obtained from a steady-state analysis
of the short-period dynamics. The short-period dynamics of thé gircraft,

ignoring the actuator dynamics, can be modeled as in Chapter 3 by:

q a a q b
-L 11 13 + | s (5.6.1)

11 13 - 1 5 , (5.6.2)
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i

The steady-state gains are now readily obtained by

=-b.a + b.a
q ~ %—'= a la33 - a3 iB (5.6.3)
4 % 11%33 13%31
-b_.a + b.a
Ga - (g._= < 3a11 — al Zl (5.6.4)
e 11733 13731

Table 5.6.1 contains the values of the steady-state gains Gq and Ga for
all flight conditions.

The steady-state gains depend on the relationships between elevator
deflection and the resulting short-period steady state, which depends only
on the aerodynamic properties of the aircraft. These gains are independent
of the regulator design or the control scheme, and remain unchanged if a
discrete-time controller is used.

The selection of the gains does not involve handling qualities, nor
does it guarantee satisfactory aircraft performance. The control gain
design used in the regulator controller in Section 5.1 - 5.5 was achieved
using handling qualities considerations. Simulation results indicate that
the proposed steady state gain scheme coupled with the regulator design
vield satisfactory responses to pilot commands. Notice that the gearing
ratio between the pilot stick and elevator deflection is left as a design
parameter to be adjusted, which will change the sensitivity of the system

to pilot actions. Nominally, this value has been set to
Gearing Ratio = 4.75 deg/in (1.87 deg/cm) (5.6.5)

which was suggested by Langley staff.



TABLE 5.6.1
TARLE FOR GAINS THAT APPEAR IN LONGITUDINAL COMMAND SYSTEMS -

(see Figure 5.6.2)

GAIN GAIN

Flight Condition Gq Ga
5 -.987 -1.2817
6 -1.9024 -1.3882
7 -2.4096 ~1.2265
8 -3.0430 ~-1,1218
10 ~-.6239 -1.2079
11 -1,1072 ~1.3454
12 -1.7531 -1.4520
13 -1.9191 -1.3159
14 -.5826 ~.3525
15 -.8412 -1.9356
16 -.9429 -1.8695
17 -.5958 -1.0260
18 ~-.3253 ~.4627
19 -.2973 -.4272

20 -.2399 -.4121



5.7 Modifications of Controller Design

The longitudinal system models were all linearized about different
trim conditions, namely the nominal values of angle of attack, pitch angle
and elevatof deflection. Table 5.7.1 contains the trim,cqnditions for
the fifteen flight conditions in the MMAC. The linearized equations in
Appendix A .describe the evolution of d&eviations of the variables from
their equilibrium values. Thus, in order to output a command to the
aircraft, it is necessary to know the reference trim values of elevator
position.

There are various ways of handling the trim problem in the longitudinal
system. One way is to treat the trim values of elevator as a state
variable to be estimated, together with the other variables. This method
represented additional complexity, and did not seem accurate enough, thus
it was rejected.

Another possible way of handling trim is to use a self—trimming con-
troller design such as P-I controller [28], [29]. Preliminary studies
by Lee, Athans et al, [29] provided the foundation for a sampled-data
P-I-D controller which would result in neutral speed stability. Figure
5.7.1 contains a tvpoical controller desian. However. this controller
desian was not fullv available and implemented in a stochastic framework
during the course of this studv.

Since it attempts to control only the short-period response of the
aircraft, the MMAC system was coupled with filtering schemes which attenua-
ted low frequendes (hence reducing trim effects). Additionally, the control

variable was chosen to be 6ec' to introduce some integral control and

reduce steady-state errors. These are the modifications to the MMAC control
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" TABLE 5.7.1
TRIM VALUES FOR FLIGHT CONDITIONS

(see Table 1.3.1)

Flight Trim Angle of Attack . Trim Elevatorj Trim Forward

Condition and Pitch Angle - : (Degrees) Velocity

(Degrees) -'_ (m./sec)
5 7.991 -3.960 101.36
6 2.989 -2.495 180.18
7 1021 | -2.455 238.16
8 1.536 ~2.537 292.66
10 f 9.270 'f-5.549 124.81
1 4.429 . 1-3.663 189.13
12 2.626 _ ~2.615 252.66
13 2.250 ~2.650 281.58
14 1.490 | ~2.131 379.26
15 7.035 _  -4.791 205.08
16 5,371 -3.891 235.17
17 4.257 -3.521 264.94
18 2.822 -4.463 353.80
19 2.736 -4.416 412.79

20 2.063 -3.465 472.00
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algorithm which enable it to account for the trim effects in the filtering

scheme.

Figure 5.7.2 contains a diagrém;ofithe.lonéitudiﬁal control scheme
of the MMAC with the filtering inciuded. The combined commands of the
pilot stick and trim integrator are se?arated into a high-frequency and
a low-frequency component by a second~-order high pass-filter. Experimen-
tation established the break frequency to be 0.4 radians/second. The
discretized equations for the filter are given in Appendig M.

Additionally, the pitch rate and normal acceleration measurements are
high~pass filtered as described in Appgndix M. The high—frequency measurements
and commandg are then processed by the MMAC control system described in
Sections 5.1 - 5.6. This produces a desired elevator coﬁmand Eec' This
command is then added to the low-passéd components of the stick and trim
integrator to produce the complete command to the aircraft.

This control scheme does not proQide neutral speed stabiiity. How-
ever, it reduces the effects of trim differences throﬁghout the flight
envelope on identification, and it allows the pitot tc *rim the aircraft
using the trim integrator. Isolating the high-frequency components of

commands and measurements is consistent with the philosophy of controlling

only the short-period response of the aircraft.

5.8 Performance of the Longitudinal Control System

Figures 5.8.1 to 5.8.12 illustrate the performance of the longitudinal
regulator system over the flight envelope of the F-8 aircraft. The air-

craft is subjected to a six degree alpha gust initially; the transient
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response of the aircraft is shown under no turbulence and 4.57 m/sec

rms turbulence. The figures corntrast the uncontrolled

(open-loop) response of the aircraft with the controlled regulator response..
The simulations were obtained at NASA Langley Research Center using a full
state non-linear model of the F-8C aircraft.

The simulations conducted with no turbulence highlight the gust~
alleviation damping of the MMAC system at various flight conditions. When
the turbulence level is 4.57 m/sec rms,the simulations highlight the MMAC
system's ability to reduce the rms level of continuous turbulence. All
closed loop simulations were done using the full sampled data stochastic
design using a sampling period of 1/8 second.

Figures 5.8.13 to 5.8.15 contain the airplane responses to a doublet
command in the longitudinal system at six selected flight conditions.

The steady-state gain design for the MMAC system was used in conjunction
with the high-pass filtering scheme which separated stick commands into
long-term and short-term commands. The short-term commands are used in
driving the MMAC command system; the MMAC commands are subsequently added
to the long-term commands to form the total command to the aircraft.
The longitudinal stick response shown is the short-term command mentioned.
The simulations describe the desighed responses of the MMAC control sysﬁem
under perfect identification.

It should be noted thatall closed loop simulations used the complete
sampled data stochastic design, with Kalman filters and instrument noise,

at a sampling period of 1/8 seconds.
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CHAPTER 6
LATERAL AXIS CONTROL AUGMENTATION SYSTEM

6.1 Introduction

This chapter discusses the fixed-point controller designs for the

lateral system. The regulators for the individual lateral models were

designed using the procedures outlined in Appendix F. The overall design

philosophy closely paralleled that used for the longitudinal system but

the two controllers were designed independently. After choosing control

variables, the development of the cost function is discussed. To incor-

porate pilot commands, an explicit model-following method was used.

6.2 Choice of Control Variables

As presented in Chapter 3, the model for the lateral states of the
aircraft has its input variables the commanded aileron and rudder positions.

One decision which was made early in the design process was to actually

control rates of these variables. The reasons for making this decision

have been discussed in [20], [21]; namely, the presence of integrators

in the control loops could be used to compensate for steady-state errors.
Thus, the first step in the regulator design was to augment the model given
in Chapter 3 to provide for the two integrators necessary to generate
position from rate.

The model following pioblem has been discussed in many papers [32],

so only the briefest development is presented here. Model following is

essentially a straight-forward extension of regulator theory in which

the error between the actual state and the model (i.e., desired) state

is penalized.



Assume (6.2.1) represents a given model which describes the behavior

to be emulated.
= Az + B.u (6.2.1)

The control problem can be posed using the model of (6.2.1) directly, but
as is well known, this leads to a control scheme which anticipates the
values of Oy (i.e., the pilot inputs). This is clearly unreasonable so
some assumption must be made as to the character of these inputs. We
therefore assume that the signals u, are themselves ocutputs of a model

M

driven by white Gaussian noise as in

4 = + el
By = Au, BN (6.2.2)

where V is zero mean white gaussian noise.

One can now combine the aircraft model of Chapter 3 with equations

(6.2.1) and (6.2.2) to get

X Bat : 9 . 9 X ) Biat ac
alzw| T |2 : B By =V I I R O e
dat . N
Yy o . 0 . ép 4y Ep 0
(6.2.3)
A cost function of the form
[= o]
g = [(x - Hz) 0(x - H.2) + uRrdldt (6.2.4)
I £ - Byzy) 2z - By - = ter

with_g? =18 . Src] can now be posed so that a control law



. . T . T . T.T
u = [gx - & - gu][§ s Zy - EM] can be found.
A

few comments on the solution of this problem are in order. First
of all, as posed above, this is a straightforward variant of the regulator
problem discussed in Appendix F and so is easily solved in theory.
Secondly, the Separation Theorem implies that the optimal gains gx'
Ez and Eu do not depend in any way on the statistics of the white driving
noise nor on the value of gp. Thus, these are of no furthexr concern.
Last, upon writing the Riccati equation for the model following problem
some one-way separations become evident. Thus, the control gain gx

depends only upon the values of éia ’ Eiat' Q and R and is therefore

t
independent of the model to be followed. 1Ir fact, the matrix gx is
exactly the one resulting from solving the conventional regulator
problem (i.e., with Zy Z 0). Furthermore, 92 is independent of all assump-
tions on the pilot input model (i.e., ép, EP' etc.). Therefore, the choice
of models for the input (i.e., ép, §P) has a minimal effect on the overall
solution. Figures 6.2.1 shows the resultant lateral systems
designs.

The model used in the model-following scheme has been provided by
the Langley staff as a linear model of an aircraft which would be well rated

by a pilot. The dynamic equations are
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Xy

6-5
-4 .865 -10. . O 20 3.3—‘
.04 -.507 5.87 0 o -3.1
5 6.2.5)
x, (t) = Xt Oy (
M 0o -1.0 -7.43 g/, 0 0
|1 0 0 0_ K 0 _

where

= [PMI er BMI q)M]

&

| J—
LY e [Gail' GYud]'
It should be noted that the lateral model of Eg. (6.2.5) is flight

condition dependent through the térm g/vo. Hence, the desired lateral
response of the aircrafﬁ, as dictéted.by the lateral model (6.2.5), will
change from flight condition to fliéht condition. Essentially, the term
g/V_ allows the aircraft to execute coordinated turns without excessive

sideslip and lateral accelerations at different speeds.
On the other hand, under the design ground rules the measurement

of the aircraft velocity V. could not be included in the implementation

0

of the control system. Since the model (6.2.5) is &n integral part of

control system, see Fig. 6.2.1, a constant value for V0 had to be.selected.

The one selected was that corresponding to flight condition #11 (VO
189.13 m/sec or 620.5 ft/sec) for all subsequent simulations.

The choice of a constant V0 for the model represents a serious

shortcoming as far as the handling lateral quantities of the aircraft

1



for large bank angles are concerned. If the actual velocity of the
aircraft is near the selected value VO' then the aircraft lateral
response should be satisfactory. On the other hand, when the
aircraft velocity is drastically different from V0 one may need

to have excessive sideslip and lateral acceleration in order to hold
bank angle at its commanded value. This will be illustrated in
Section 6.4.

It should be remarked that the shortcoming, of the possible poor
lateral responses are not due to the MMAC philsophy, but rather due to
the fact that the aircraft velocity was not measured nor estimated
in the design.

As discussed earlier, a stochastic model of the form of equation
(6.2.2) is needed to model the actual pilot inputs. It should be pointed
out that all of the control gains (gx, gz’ and gu) are independent of
Ep and the statistics of v. Thus, they are ignored in the following.

Many models of the form of (6.2.2) are possible. In the design
presented here, ép = 0 was used to obtained the gu feedback gain. This
was chosen principally to help the controller anticipate the model re-

sponse and thereby keep the model-following errors small.

6.3 Cost Function Development

Designing a quadratic cost function which would provide good aircraft
response at all flight conditions proved to be a difficult task. This is

in contrast to the longitudinal system where a minimum number of iterations
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were needed. This complication is partly due to a tight coupling between
the various modes in the lateral dynamics, and the use of a specific
model following concept.

The basic philosophy for determining the control and state penalties
for the first iteration in the design was to determine those gualities
considered important in aircraft performance,and then to weigh thesé
quantities in the cost function by the inverse of the maximum allowable
deviations in the quantities of interest. After discussions with NASA
staff, it seemed that the most important guantity to penalize was the
lateral acceleration. For the control penalty the rate saturation value
was used. The aileron rate saturation value 6émax was modified by a factor
of two-thirds to reflect a greater willingness on the part of the pilot to
saturate the rudder rate érmax compared to the aileron rate.

For the requlator, this leads to a cost function of the form,

2 ° 2 . 2
o fa (t) 5ac(t) arc(t)
g = [ (X 2 ) el =) at (6.3.1)
L 0 a ax 23 Srmax
ym amax
$ and § were given by hardware limitations while for a
amax rmax

a value of .25 g's was decided upon. A summary of the progression of
cost functions is shown in Table 6.3.1. These cost functions have been
discussed in [30].

In order to overcome the poor convergence of the sideslip angle and

the fast convergence of the bank angle, penalties on sideslip angle and



koll rate were added. The weights of the penalties on these variables

were determined largely by limited trial-and-error. It was desirable to
make this added penalty not affect the good qualities of response already
achieved with respect to lateral acceleration and also to make any variations
due to differences between flight conditions "automatic". Therefore, it was
decided to add a fraction of the roll rate and sideslip angle penalties

to the penalty function. After some experimentation, values of 10%

of the penalty due to lateral acceleration alone were chosen. Thus, the

cost function became:

[oo]

_ 2 2

Jy() =3 (u) + oI [k, P (£) + KB () ]at (6.3.2)
with

K = .1 Zg ( - Q.) 2

1 "\g P31 o (6.3.3)
and

A 2
K2 = .1 E— a33 (6.3.4)

A relatively mild penalty on bank angle was added to the cost function

to prevent the aircraft from banking excessively; thus the cost

function became:



SUMMARY OF COST FUNCTION PROGRESSION

TABIE 6.3.1

FOR THE LATERAL DYNAMICS

Variable
penalized 1 2% 3 4
5 2(140°/sec) | 2(140°/sec) | 2(140°/sec) | 2(140°/sec)
amax 3 3 3 : 3
-] (-] (-] (-]
J—— 70°/sec 70°/sec 70°/sec 70°/sec
1 L} L] 1
aymax .25 g's .25 g's .25 g's .25 g's
%* % *
pmax 0 Kl Kl Kl
*% *
Bax © K5 %2 %2
¢ o] 0 45° 15°
max
*K.L and K2 were derived largely by trial and error' resulting in many

variations between iteration 1 and 2.

**Kl and K2

are given in the text, Eqgs.

(6.2.3) and (6.2.4)




o 2
= o(r)
Ty(u) = T, () + 0[ [¢- ] at ~ (6.3.5)

max

It was found that in order to design the model-following scheme used to
implement pilot commands, the bank angle penalty had to be included;
the value of ¢max was chosen to be 15°. The resulting cost function for

the model~-following problem can then be interpreted as:

2 2 2
2 la - a _ 8 -8
J() = Jr Y Ymodel + P~ Progel + |- model
a P
0 Y max max
2 . 2 . 2

-0 8 8 ]

+ -———-—¢m°del- e = at  (6.3.6)
max =6 8rmaxJ

3 amax

In converting equation (6.3.6) into the form of (6.2.4) it is necessary

to use a linear approximation to the a_and a terms. This approximation
Y ymodel

is discussed further in Appendix E. Controller gains were then calcu-
lated for all flight conditions using this cost function.

Using the equivalent discrete-time models of Appendix E, Kalman filters
were designed to operate at a sampling interval of 1/8 sec., using measure-—

ments of roll rate, yvaw rate, bank angle, lateral acceleration, aileron



S 6~-12-

an§ rudder angles, assuming the sénsor.noise rms valﬁes éuéted in
Téble 3.8.1, ana“é 4;75 m/sec.rmsvvaiue in.the wiﬁéldisturbané; o
model of Section 3.4. |

The feedback gain from the‘wind state was sét to zero}lbecaugéh
of the slow convergence'of the Kalman filter estimaté for thelwind
state. The feedforward and feedback gains were converted to equi-~
Q;lent discfete—time gains with a sampling interal of 1/8 sec. és
described in Appendix F. The discrete time control gains ére shown

I

in Appendix H. Kalman filter gains and discrete-time control and
filter eigenvalues are listed in Appendices X and I, respectiﬁely. '

Figure 6.3.1 contains a plot of the continuous-time complex

eigenvalues.

.6.4 Simulation Results

In this section some simulation results are shownufor.s%x selected flight
conditions. The first simulations give the response to beta gust (sideslip)
disturbances for both the unaugmented airplane and the regulated one. The
simulations were conducted at both no turbulence_and'4-57 m/sec
¥ms wind turbulence. They highlight the improvements introduced by
the MMAC system in gust-alleviation, and in reducing the rms level of
continuous turbulence effects. Figures 6.4.1 to 6.4.6 contain the
lateral system responses to a 2° beta gust under no turbulence

at various flight conditions. These simulations highlight the damping




of th 7 to 6.4.1

lateral system responses to a two-degree beta gust under a 4.57 m/sec.

rms turbulence level. These simulations highlight the reduction of

the rms level of continuous disturbance. The simulations were conducted

R R e e

using NASA Langley's nonlinear simulation of the F-8C aircraft.

Figures 6.4.13 to 6.4.18 illustrate the response of the aircraft
; to a 2° doublet command in the lateral stick at various flight condi-

tions. Both the model states and the aircraft states are shown; no

turbulence is used in these runs. These results indicate that both

the roll rate and bank angle follow the model well. Further, when the

aircraft is near flight condition 11 (the flight condition around which

the model is based in terms of the numerical value of VO) the latekal

acceleration remains small. However, for other flight conditions (i.c..,

see Figure 6.4.17) lateral acceleration becomes large. Also, sideslip

angle does not follow the model.

As mentioned in Section 6.2 these problems are primarily due ta:

(a) Using a fixed model based on FC 11l.
in
ymodel
being nonzero.
model

(b) The use of an approximation in computing a

equation (6.3.8) resulting in a

A change in the model to be followed is clearly indicated, possibly

resulting in a simpler model which would not involve sideslip




angle or lateral acceleration. The essential idea would be to remove

the a term from equation (6.3.6) and thereby always require ay
model

to near zero.

It should be noted that no rudder pedal response characteristics
have been presented. The philosophy followed was to design a feet-on-
the-floor controller in which the rudder surface would be automatically

controlled. Thus, the rudder pedal response was not of concern.

Additionally, the simulations were conducted using a complete sampled-

data LQG controller, with Kalman filters and instrument noises included.
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CHAPTER 7

MMAC EXPERIMENTS

7.1 Introduction

This chapter discusses simulation results obtained using Langley
Research Center's nonlinear simulation of the F-8C aircraft. To test
the gust alleviatioh properties of the MMAC, the aircraft was initially
trimmed at various altitudes and speeds, then subjected to a 6°
angle of attack (o) gust and a 2° sideslip angle (B) gust.

To test the response of the MMAC system under pilot commands, the
aircraft was subjected to doublet commands in the longitudinal and
lateral axes. The models in the MMAC were all initialized with equal
probability. The simulations show both the aircraft responses and the
identification responses of the MMAC system. Various levels of tur-
bulence were used in these experiments. Three test flight conditions,
at various altitudes and speeds, have been chosen to illustrate the

performance of the MMAC across the F-8C flight envelope.

7.2 MMAC Control Systems

The fixed-point controllerdesigns of Chapters 5 and & were combined
with the MMAC identification algorithm, to yield MMAC control systems
for the longitudinal and lateral axes. Figures 7.2.1 and 7.2.2 illustrate

the operation of these MMAC control systems.
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.For testing the response of the MMAC controlled aircraft to
stick inputs, a doublet command of twenty seconds duration, as
depicted in Figure 7.2. 3, was applied to either the lateral or
longitudinal systems. For the longitudinal system, the pilot stick
command is separated into ;low and fast commands using a high-pass
filter. The fast command is processed by the MMAC control system;
this control system computes an optimal command for each possible
flight condition, using the design of Sections 5.1 to 5.8. These
individual commands are combined into a weighted average using the
control probabilities discussed in Section 4.6. This processed
"fast" control is combined with the "slow"” control to produce the
complete command applied to the aircraft.

The lateral system controller works on a different principle.
The lateral stick command drives the lateral system model described
in Chapter 6. The states of the lateral model are used in computing
optimal commands for each possible flight condition using the model-
following scheme described in Chapter 6. The individual commands are
combined into a weighted average using the control probabilities of
Section 4.6 to produce the command applied to the aircraft.

In both the longitudinal and lateral systems, sensors measure
the aircraft responses. These responses are used to drive Kalman
filters for each possible flight condition. The residual signals of
these filters are used in evaluating the identification and control

probabilities, as described in Chapter 4.
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Figure 7.2.3 Doublet command used in aircraft simulations



" The main feature of the MMAC controller is that all N hypothesis
flight conditions have an individual controller designed on LQG
principles. The outputs of these controllers are combined probébi-

listically to obtain the complete command applied to the aircraft.

7.3 Stability Tables for Mismatched Controllers

The MMAC algorithm frequently identifies a flight condition
which is different from the true condition of the aircyaft. Uging
only the linearized discrete time representations of the aircraft
as discussed in Chapter 3, one can examine the effect of this
mismatching in terms of the stability of the system. Denote the
true aircraft linearized matrices by superscript t. Assume the MMAC
algorithm is using flight condition i. 1In the absence of pilot com-

mands, the deterministic system equations are

x(t+1) = A x(t) + B, u(t) (7.3.1)
u(t) = -G X(t) (7.3.2)
~ - i i~

x(t) = x(t) + H (2(t) - C x(t)) (7.3.3)
X - at X(t-1) + gt (t-1) (7.3.4)
i(t) - =4 X =a u «3.

€
z(t) = C x(t) (7.3.5)

Combining these equations yields the following system equations
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. ) t t aAa
+1) = + - :
x (t+1) _éﬂ x(t) Ed G x(t) (7.3.6)
R(t+1) = At Z(t) + -BiGh R(t) + HCTAtx(t)
= - - =a = —a— - = =a—
(7.3.7)
ii, i idi A it t i~
-HC (L\d —-Edg)x(t) H'CB G x(t)
This can be represented as
t t i

The eigenvalues of the matrix in equation (7.3.8) indicate
whether the mismatched combination of identified and true system is
an unstable combination. Two tables are presented for each system.
Thé first table declares a combination unstable if any eigenvalues
are greater than one. The second table, to allow for numerical er-
rors, declares a combination unstable if any eigenvalues are greater
than 1.005. As seen in Appendix L, many of the filter and control
eigenvalues are 1.0, so the second table yields a truer measure of
the instabilities present. These tables will be useful in inter-

preting the simulation results that follow in this Chapter.



TABLE 7.3.1

LONGITUDINAL SYSTEM

STABILITY SUMMARY TABLE

U=Unstable (1.0), * =stable

CONTROLLER

20

19

18

17

13 14 15

12

11

10

5

TRUE

FC

10
11
12
13

i

14
15

16
17

18
19

20

Unstable (1.005) » =stable

U=

11 12 13 14 15 16 17 18 19 20

10

5

TRUE

FC

10
11

12

u

13
14
15
16
17

18
19
20
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TABLE 7.3.2

LATERAL SYSTEM

STABILITY SUMMARY TABLE

U=Unstable (1.0) #* =stable

CONTROLLER

11 12 13 14 15 16 17 8 19 20

10

5

TRUE

FC

U

10
11
12

13

14
15

16
17

18

19

20

stable

16

U=Unstable (1.005) =*

18 19 20

17

11 12 13 14 15

10

TRUE

FC

10
11

12

13

14
15

16

18
19
20
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7.4 Simulations at Sea Level

The test fligﬁt condition used in tﬁese siﬁulatiéﬁs w&s flight
condition 7; the aircraft was initially- trimmad at level flight
near flight conditions 7 and 8 at an altitude of 1000 ft. (304.8 m.)
and a speed of .7 Mach. The aircraft was then subjected to a com-
bined 6°a, 2°B gusts,

Figure 7.4.1 contains the longitudinal system transient responses
corresponding to a MMAC system with perfect identification (that is,
one which always identifies flight condition 7 with probability i),
a MMAC system with models 6, 7, 8 and 10 as hypothe#is; and a MMAC
system with models 6, 8, 18 and 19 as hypothesis. Figure 7.4.2 con-
tains the lateral system responses of those experimehts. Figure
7.4.3 contains both the lateral and longitudinal system responses
for an MMAC system with models 7, 8, 18 and 19. The major differences
in the initial transient response of the four simulations are due
to the different models involved in the various MMAC systems. Since
the initial model probabilities are set equal, the initial control
gains consist of an average of the four sets of control gains in the
MMAC system. This difference is clearly seen in the lateral system
responses.

The low-pass filter which smooths out the identification proba-
bilities for control purposes prevents an initial rapid change of

the control gains, so the initial transient response is controlled
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by the initial combination of models. After one second, the MMAC'
identificétién has:é sizablé effect in changing the control gains.
Figure 7.4.4 contains the fime history of the control probabilities
for £Qo MMAC systémé. The difference in the lateral.responses in
Figures 7.4.2 aﬁd 7.4.3 is due to the different control gains:
Flight condition 6 for MMAC with models 7-8-6-10, and Flight conditions
18 and 19 for MMAC-with models 7-8-18-19.
Figures 7.4.5 and 7.4.6 contrast the perfect identification

response with the MMAC responses when the aircraft is operating
under heavy turbulence (4.57 m/sec rms). Figures 7.4.7 and 7.4.8
display MMAC responses of the aircraft over a 35-second simulation
while the aircraft is subject to moderate turbulence (1.22 m/sec rms).
Figures 7.4.9, 7.4.10 and 7.4.11 show the time histories of the contrél
probabilities and the weighted sum of residuals (WRS) denoted by m(t)
for these simulations. The histories of m(t), i.e., the weighted sum
of residuals, give an indication of the information used by the MMAC
algorithm for identification purposes. They also offer an indication
of the separation between the various hypotheses used in the MMAC system.
In these simulations, the low turbulence level provides a consistent
excitation. ~However, after the initial transient dies out, it is dif-
ficult to distinguish between the various hypotheses; this is reflected
in the chgnging control probabilities.

The impoftant element t§ notice in Fiéure 7.4.7 is the sldw
rise in pitch angle. This corregponds to the phugoid mode of the

aircraft, which is excited in the control of the initial transient.



Since the MMAC attempts to control only the short-period response of
the aircraft, it does not affect the slow phugoid oscillations.

Overall, the aircraft responses obtained using MMAC controllers
closely matched the responses obtained using the gains with perfect
identification. The major exception occurred when gains from super-
sonic flight conditions were used to control the aircraft at subsonic
flight conditions.

The performance of the MMAC identification algorithms is
illustrated in Figures 7.4.4, 7.4.9, 7.4.10 and 7.4.11. The lon-
gitudinal identification system has difficulty distinguishing between
flight conditions 6 and 7 in the absence of turbulence. The open-loop
models for these conditions are different; however, when a controller
is added, the closed-loop systems are very difficult to distinguish.
This is reflected in the similar aircraft responses in Figure
7.4.1 (a) and (b). This difficulty is also present when moderate

~ turbulence is introduced, although in a lesser degree, as illustrated
by Figure 7.4.9. The identification system for the lateral axis
performed poorly throughout these experiments, identifying supersonic,
40,000 feet altitude flight conditions when the aircraft was flying
at sea level.

Figure 7.4.12 shows the longitudinal system responses of four
MMAC systems to elevator doublet commands. The decay observed in the longi-

tudinal stick position is the effect of the high-pass filtering scheme
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discussed in Chapter 5, used to eliminate trim effects and to

separate short-period responses from long-period responses. The
simulations in Figure 7.4.12 were conducted under no turbulence.

Simulation (a) used an MMAC system with hypotheses models 7, 8, 6,

10. Simulation (b) used an MMAC system with hypotheses 7, 8, 6, 20,
all close in dynamic pressure. Simulation (c) used an MMAC system
with hypotheses 7, 8, 18, and 19, and simulation (d) used an MMAC
system with hypotheses 6, 8, 18, 19. Note the close performance of
these four MMAC systems; the aircraft responses in simulations (c)
and (d) indicate a slight drift in pitch angle, due to the presence
of two supersonic hypothesis models in the MMAC system. This close-
ness indicates a degree of robustness in the MMAC algorithm with
respect to the model hypotheses used.

Figures 7.4.13 and 7,4.14 show the control probability responses
for these four experiments, together with the weighted sum of square
residuals (m(t) time histories) for each hypothesis model. Figure 7.4.13
and Figure 7.4.14a illustrate that the identification scheme chooses the
correct hypothesis while the aircraft is maneuvering. In all three cases
flight condition 7 was identified correctly. Once the maneuver stops, the
residuals become close to zero, and as such the identification scheme
lacks information. 1In the absence of information the identification
scheme falls into the B* behavior mentioned in Chapter 4, but with no
ill effects on the aircraft responses, as flight condition 6 is a close
neighbor of the true flight condition. Table 7.4.l1 contains a list of

the B* values for each flight condition. Note in Figure 7.4.13a that

ﬁ



the B*—dominant model is flight condition 10; however, the mismatch
stability tables in Section 7.3 indicate that model 10 is an unstable
choice. This is quickly indicated by an increase in m(t) correspon-
ding to model 10, thereby changing identification to model 6. This

B* behavior can be eliminated through proper tuning of the threshold

mentioned in Chapter 4, recognizing when there is a lack of information.

The key point to notice is that flight condition 7 was identified
correctly while the aircraft was maneuvering, even in the absence of
elevator measurements. The m(t) traces for models 6,7, and 8 are
remarkably similar, yet the identification scheme is able to choose
correctly. When the correct hypothesis is not included in the systen,
Figure 7.4.14 b indicates that identification is uncertain during
the maneuver, affecting performance.

Figure 7.4.15 shows the responses of a repeat of three of the
experiments in Figure 7.4.13, conducted under 1.22 m/sec. rms tur-
bulence. The presence of turbulence should provide enough information
to avoid the B* behavior. Figure 7.4.16 contains the longitudinal
control probability and m(t) responses. The B* behavior encountered
in the previous experiments is not present in these simulations. This
figure suggests that the presence of mild turbulence actually hinders
the identification of the true system during maneuvers. During the
five second quiet period before the doublet command starts, the tur-

bulence level drives the identification towards the correct model. At
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the start of the command, there is some confusion between models 7
and 8, which is eventually resolved correctly. The responses in
Figure 7.4.15 are quite good; the supersonic hypotheses have a re-
duced effect because of the identification changes in the preliminary
quiet periods.

Figure 7.4.17 describes the lateral system responses to a doublet
ommand in the lateral system, under no turbi
response is very good, holding lateral acceleration to a minimum. The
MMAC system did not include the true hypothesis, model 7, in this ex-
periment. The important aspect of this experiment is the difference
in the m(t) responses when there is a command, and when there is no
command. When there is a doublet command, only the close neighbors of
the true hypothesis, models 6 and 8, are identified. When the doublet
command stops, Model 18 is suddenly identified. The resulting combi-
nation produces a stable system in spite of inaccurate identification.
These results substantiate the theory that the MMAC algorithm tends to
identify only "stable" combinations of time system and hypothesis
controller. This experiment also indicates a basic inaccuracy in the

lateral identification system in the absence of commands, corroborating

the results of the gust-alleviation experiments.

7.5 Simulations at 20,000 Feet (6096 meters)

The test flight condition chosen at this altitude was flight condi-

tion 11, with a speed of .6 Mach.. The first set of experiments corres-

pond to a combined 6° argle of attack (a-gust) and 2°
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TABLE 7.4.1

8* VALUES OF FLIGHT CONDITIOQNS

Flight Condition Longitudinal B* Lateral B*
8 54 29,044
7 86 38,100
14 86 54,601

6 127 47,069
13 132 62,612
20 135 69,951
19 139 66,707
12 146 65,498
18 153 68,941
11 194 73,415

5 195 57,670
17 203 75,185
16 210 77,470
15 224 80,508
10 236 82,577
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sideslip angle (f-gust) perturbation. The Kalman filter states are ini-
tially set to zero so that the initial perturbations are not readily
estimated. The aircraft is not subject to turbulence.

Figures 7.5.1, 7.5.2 and 7.5.3 show three sets of responses, corres-
ponding to pitch rate, normal acceleration and lateral acceleration
responses respectively. The experiments show the open-loop behavior of
the aircraft, the perfect identification response, and two MMAC responses.
Note the close correspondence of the MMAC responses to the perfect iden-
tification response. The initial perturbations are eliminated quickly,
so that, in the absence of turbulence, the aircraft reaches equilibrium
flight.

Figure 7.5.4 contains the trajectories of the longitudinal identi-
fication probabilities of an MMAC simulation. Note the gquick identifi-
cation of the true model in less than one second, even though the Kalman
filters are not correctly initialized and all measurements are noise-
corrupted. The lag in proper identification corresponds to the lag in
the Kalman filters correctly updating its state estimates.

The second set of experiments corresponds to a repetition of the
first experiments, now at cumulus level turbulence (4.57 m/sec rms).
Figures 7.5.5, 7.5.6 and 7.5.7 contain the pitch rate, normal accelera-
tion, and lateral acceleration responses of the aircraft. Again, note
the similarity between MMAC controllers and the perfect identification

controller. Figures 7.5.8 and 7.5.9 show the control probabilities for
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the longitudinal and lateral system respectively, using a MMAC controller
with hypotheses 10, 11, 12, 17. The lateral system erroneously identi-
fies flight condition 10, a close neighbor of flight condition 11. The
performance is hardly affected by this misidentification.

Figures 7.5.10 and 7.5.11 show the control probabilities used
in the MMAC controller with hypotheses 10, 19; 12, 17. The continuous
transitions in the probabilities reflect the amount of excitation caused

by the cumulus disturbances. No clear identification is obtained in
the transient period. However, the aircraft responses are still satis-~
factory.

The third set of simulations were conducted at zero turbulence. The
Kalman filters were correctly initialized in these experiments. Fig-
ure 7.5.12 shows the longitudinal responses of three MMAC systems. Fig-
ure 7.5.13 shows the lateral responses of these systems; and Figure
7.5.14 shows the control probabilities associated with these systems.
Note the similarity in the responses, even though.the third MMAC system
hypotheses are 6, 13, 16, 17, and the true aircraft is at flight con-
dition 11. Checking the mismatched stability tables of Section 7.3, one
sees that there are several unstable combinations possible with flight
condition 11. Flight conditions 12 and 13 are unstable in the lateral
system, as is flight condition 10 in the longitudinal system. .The
differences in lateral system responses in the last simulation are due

to a partial initial identification of model 13. The MMAC system corrects



this identification error in short order, never completely using model
13 for control purposes. In the longitudinal system, no troubles were
encountered when the unstable model 10 was included, since the identi-
fication did not choose that hypothesis.

Figure 7.5.15 contains three simulation responses to doublet stick
commands: column (a) represents the longitudinal aircraft responses
with perfect identification, column (b) represents the longitudinal air-
craft responses with an MMAC controller using hypothesis models 10, 11,
12 and 17, and column (c) represents the longitudinal aircraft responses
with an MMAC controller using hypothesis models 10, 12, 17 and 18. No
turbulence was included in these experiments. The simulations illustrate
the close responses of the MMAC-controlled aircraft to the responses of
the aircraft with perfect identification. The responses were similar
even when the "true" hypothesis was not included in the MMAC system.
Figure 7.5.16 also compares the performance of an MMAC-controlled system
with a system using perfect identification. These two experiments were
conducted with no turbulence, and the break frequency for the high-pass
filters described in Chapter 5 was set at one radian per second. The
performance of the perxrfect identification system and the MMAC system with
hypotheses 6, 13, 17 and 19 are seen to be quite close, even though none

of the MMAC hypotheses are similar to the true flight condition. This

suggests that, in the absence of accurate hypotheses, the identification
system chooses controllers which approximate the desired closed-loop
responses.

Figure 7.5.17 shows the evolution of the control probabilities in

the MMAC experiments in Figures 7.5.15 and 7.5.16. Initially, there is a



! quiet period with no information available so the MMAC identification does

not choose any models. After five seconds, the pilot commands starts. Fig.
i ure 7.5.17(a) shows that the true model is correctly identified once the
command starts. PFigure 7.5.17 indicates that, in the absence of the true

hypothesis, a close neighbor (flight condition 10) is identified with

little effect on the aircraft responses, as evidenced by Figure 7.5.15(c).

The identification is slower in this case, reflecting the fact that

flight condition 10 is not the true flight condition.

: Figure 7.5.17(c) describes the evolution of the identification pro-
abilities for an MMAC system with hypotheses 6, 13, 16, 17. The identi-
cation converges to flight condition 13. Interestingly, the aircraft
responses were very similar
tion, even though the hypothesis models were different from the true
hypothesis.

Figure 7.5.18 is a repetition of the experiments in Figure 7.5.15,
using a break frequency in the high-pass filter of .1 radians per sec-

ond. The three sets of responses can be virtually superimposed, even

when the true hypothesis is not included. Figure 7.5.19 describes the

longitudinal control probability and m{t) responses for the experiments
in Figures 7.5.18 (b) and (c¢). When the true hypothesis (model 11) is
included in the MMAC system, the identification scheme selects it

during the doublet command. Once the command dies, $* behavior is ob-
served, wheremodel 10, corresponding to the largest B*, is identified.
Figure 7.5.19 (b) shows uncertain identification between two close neigh-

bors of the true hypothesis (models 10 and 12) during the command period,



.followed by B*~identification behavior.

Figure 7.5.20 describes the longitudinal MMAC response of the air-
craft with hypotheses 10, 11, 12 and 17, and with hypotheses 10, 12, 17,
18, when the aircraft is subjected to 1.22 m/sec rms turbulence. Again
the responses of the aircraft when the true flight condition was a hypo-
thesis are almost identical to the responses when the true flight condi-
tion was not included as a hypothesis. Figure 7.5.21 shows the evolution
of the control probabilities and the weighted sums of residuals (m(t)) for
the longitudinal system. The presence of moderate turbulence provides in-
formation to the identification system, as evidenced by the plots of the
weighted sum of residuals. However, one should notice how close the
traces of mi(t) are for each hypothesis, indicating the limited amount
of information available. When the MMAC hypothesis are models 10, 11,

12 and 17, the MMAC correctly identifies model 11, but only when the
pilot command starts. When model 11 is excluded, the MMAC identification
converges on model 12, a close neighbor of model 11, again when the
command starts. These experiments indicate that the presence of turbu-
lence does not provide sufficient information to correctly identify the
true hypothesis. Examining the traces of the mi(t), this means that in
the absence of pilot commands, turbulence alone does not create suffi-
cient difference in the weighted sum or residuals to use for identifi-
cation.

Figures 7.5.23 and 7.5.22 show aircraft responses to doublet com-

mands in the lateral system. The lateral pilot command system is based
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on a model-following scheme. This scheme, described in Chapter 6, proved

to be somewhat incompatible'with the MMAC algorithm. When identification

aileron and rudder commanded rates change also, as indicated in Chapter 6
and Appendices G and H. Hence, although the reference values provided by
the model remain unchanged with identification, the commanded aileron and
rudder rates are affected.

Figure 7.5.24 contains the control probability responses for these
experiments. When the true model is included in the MMAC system, it is
identified promptly during maneuvers, resulting in a good response, as
seen in Figure 7.5.22Db. In the absence of the true model, the identi-
fication scheme chooses a close neighbor, model 12, which is mismatched
unstable according to Section 7.3. The ensuing identification switches
can do little to improve performance, as models 17 and 18 are also mis-
matched unstable. The identification scheme eventually chooses model 10,
the only stable choice, although the presence of the three unstable models
disrupted performance considerably. This is an important example of how
sensitive MMAC performance is with regards to the hypotheses used for
identification.

The experiments in this section support the conclusion that the MMAC
identification system performs best under stick commands, rather than to
turbulence excitation or gusts. The performance of the lateral control
system was best at this altitude, since the model used in the model-

following system corresponds closely to the test flight condition. Still,
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the longitudinal identification system was more accurate than the lateral

system.

7.6 Simulations at 40,000 Feet (12192 meters)

The experimental flight condition was flight condition
18, corresponding to a speed of Mach 1.2, a supersonic flight
condition. The aircraft was subjected to a 6° angle of attack

and a 2° sideslip angle initial perturbation. Figure 7.6.1 show the longi-

tudinal system responses for a perfect identification simulation, and

two MMAC simulations. Figure 7.6.2 contains the corresponding lateral
system responses. Figure 7.6.3 contains the control probability his-

tories for the two MMAC simulations.

The identification responses indicated in Figure 7.6.3 show good
identification. The longitudinal identification erroneously prefers
flight condition 19, a close neighbor of the true flight condition. The
lateral identification system initially chooses flight condition 17,
then it alters between flight condition 19 and 18 when 18 is a hypothe-
sis. This accounts for the slight differences in performance between
the two MMAC systems. Figure 7.6.4 contains the longitudinal responses
of two MMAC systems, to longitudinal doublet stick commands; there is no
turbulence in the experiments. Figure 7.6.4(a) used an MMAC system with
hypothesis models 13, 17, 18, 19, while Figure 7.6.4(b) used models 12,
13, 17, 19. ©Note the similarity in the responses for both experiments,

even when the true flight condition is not a hypothesis. Figure 7.6.5
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contains the evolution of the control probabilities and weighted sums of

regiduals m(t) for the longitudinal system. There is a substantial difference

in the magnitudes of the weighted residuals m(t) for subsonic and supersonic

flight conditions, although there is very little difference between the

two supersonic conditions. The MMAC system correctly identifies flight

condition 18 when it is a hypothesis. In its absence, it chooses flight
condition 19, the other supersonic flight condition.

Figure 7.6.6 is a repeat of the experiments described in Figure
7.6.4 when a moderate level of turbulence (1.22 m/sec rms) is intro-
duced. The responses are again nearly identical. Figure 7.6.7 contains
the evolution of the control probabilities and the weighted sum of re-~
siduals. The presence of turbulence in these simulations seem to con-
fuse the identification algorithm, making it harder to differentiate be-
tween the two supersonic hypotheses. However, the turbulence information
is sufficient to differentiate between supersonic and subsonic hypotheses,
as illustrated by the initial identification in Figure 7.6.7 b during
the quiet pericd.

Figures 7.6.8 and 7.6.9 describe the lateral system responses to a
doublet command in the lateral system under no turbulence. The true hy-
pothesis (model 18) is correctly identified, resulting in good perfor-~
mance. The substantial sideslip angle and lateral acceleration responses
in Figure 7.6.8 a are also present in the supersonic experiments with
perfect identification, shown in Chapter 6; they are a consequence of the

model-following design employed, rather than a shortcoming of the MMAC,
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In the absence of the correct hypothesis, Figure 7.6.9 b indicates
difficulty in identification. This difficulty is reflected in the bank
angle response of Figure 7.6.8b. The m(t) responses show that the
only supersonic hypothesis (model 19) differs widely from the true hypo-
thesis. This indicates a certain degree of inaccuracy present in the
lateral identification system.

Figures 7.6.10 and 7.6.11 describe a repeat of the previous lateral
system simulations using 1.22 m/sec rms turbulence level.
The system responses are qualitatively similar to the previous responses.
The true hypothesis is correctly identified, although the presence of
turbulence seems to confuse the identification near the end of the doublet
command. When the true hypothesis is not present, two subsonic models

(12 and 13) are identified.

7.7 Discussion
The performance of the MMAC control system is closely related to the

accuracy of its identification algorithm. The experiments in these sec-
tions lend support to several .conclusions. These experiments were con-
ducted with three different sources of information: turbulence excita-
tion, gust perturbations and stick commands. The identification system
performance was best in response to stick commands. The presence of
turbulence helped avoid the B* behavior mentioned in Chapter 4, but did

not prove helpful in identifying the correct hypotheses.
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The lateral system identification responses were poor overall,
particularly when contrasted with the longitudinal identification re-
sponses. The identification system seemed incapable of differentiating
between supersonic and subsonic flight conditions, as well as stable or
unstable controller combinations. Furthermore, the fixed-point design
philosophy adopted in Chapter 5 proved to be ill-suited for implementa-
tion in a multiple-model controller; the shifting identification resulted
in uneven control as the feedforward gains switched, and the mismatched
controllers were often unstable, indicating high sensitivity to the set
of hypothesis models used. On the positive side, the true model was
identified correctly when it was included as a hypothesis.

The longitudinal control system was very tolerant of identification
errors, unlike the lateral system. This is due partly to the controller
designs of Chapter 5; one can see that, when the close neighbors of the
actual flight condition are identified, the closed-loop responses of the
aircraft is very similar to those obtained with perfect identification.
This feature seems essential in the design of any future MMAC-type con-
trol systems, since one can seldom assume that the true model is in-

cluded among the set of hypothesis models.



CHAPTER 8

PILOT SIMULATION EXPERIMENTS

8.1 Introduction

The MMAC simulations described in the previous chapters illustrate the
sensitivity of the algorithm's performance to the particular set of
hypothesis models used. Due to limitations in available storage and
computation time, only a limited number of hypotheses is possible; this
number was chosen to be four. It is unreasonable to expect that this
number of hypotheses will be adequate for adaptive control of the F-8
aircraft over its entire flight envelope. In order to test the performance
of the MMAC system over the entire flight envelope, a scheduling algorithm
was designed, based on rough altitude measurements. Using this algorithm,
a engineer "pilot" was able to conduct tests of simulated flight using
NASA Langley Research Center's nonlinear hybrid simulation of the F~8C
aircraft. The experiments shown in this chapter are excerpts from the

records of those simulation flights.

8.2 The MMAC Model-Scheduling Algorithm

The basic scheduling algorithm works at five-second intervals, using
four hypothesis models; this number of models was chosen to reduce the
time required for the MMAC real-time computations. The period was chosen
to allow transientsin identification to die ocut. Every five seconds, the
algorithm tries to find a model hypothesis older than 10 seconds whose Jlateral

and longitudinal control probabilities are both less than .001. If it



succeeds in finding such a hypothesis, then it tries to replace it by

a "better" one. Using a rough estimate of the current altitude together
with the altitudes of the hypothesis models, the algorithm uses Table
8.2.1 to determine the desired altitude of the new hypothesis. The
dynamic pressures of the models with maximal longitudinal and lateral
control probabilities are averaged to obtain a desirable dynamic pressure.
The algorithm then replaces the undesirable hypothesis model by the model
at the desired altitude whose dynamic pressure is closest to the desired
dynamic pressure. Figure 8.2.1 represents a flow chart of the scheduling
algorithm.

The relevant data used for the MMAC algorithm is stored on-line for
all possible hypotheses. The scheduling algorithm picks out four of
these hypotheses to be the active hypotheses for periods of time. Every
five seconds, it reviews the hypothesis identification to see if there are
candidates which would make "better" hypotheses in the MMAC algorithm.
Once a model is introduced as a hypothesis, it remains one for a least
ten seconds; this provides ample time for the algorithm to identify it
with positive probability if it is a likely hypothesis. Table 8.2.1
represents a schedule of models which attempts to anticipate possible
climbing or driving maneuvers by the pilot.

In sum, this scheduling algorithm represents one feasible solution
to the problem of extending the MMAC algorithm, using only four hypo-
theses, so that it operates over the complete flight envelope. This

algorithm is far from optimal; it represents a way of studying the MMAC's



S a1

i

Actual Altitude
(feet)
(.3048 m)

0-5,000

5,000-15,000

15,000-25,000

25,000-35,000

greater than 35,000

TABLE 8.2.1

ALTITUDE SCHEDULING TABLE

Number of Current Hypotheses
of Altitude

Desired Altitude

sea level 20,000 £t 40,000 ft . ggigt:n)
(6,096 m) (12,192 m)
* * * o
* 2 or more * 0
0 * * 0
otherwise 20,000
* * * 20,000
* 2 or more * 40,000
* * 0 40,000
otherwise 20,000
* * * 40,000

* indicates number is not relevant.
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performance over the entire flight envelope, and it indicates guidelines

on which to base better algorithms.

8.3 Identification Experiments

This section discusses the performance of the MMAC identification
algorithm during pilot maneuvers. The probability of the various hypo-
theses are initially equal in each experiment. Figure 8.3.1 shows the
aircraft responses and the control probability evolution for the aircraft
flying level at 6096 met. at a speed of Mach .83. The small longitu-
dinal maneuvers provide information which identifies model 12, a "close
neighbor" of the true flight condition. The absence of any lateral in-
formation prevents the probabilities from changing.

Figure 8.3.2 shows the aircraft responses and control probability
evolution for the continuation of the experiments shown in Figure 8.3.1.
The aircraft is flying level at 6096 met. at a speed of Mach .83.

In this figure, small lateral maneuvers provide information to the iden~
tification system to correctly identify model 12. The absence of longi-
tudinal information maintains the longitudinal identification constant.

Figure 8.3.3 shows the responses during a repetition of the experi-
ment in Figures 8.3.1 and 8.3.2 using different hypotheses in the MMAC
control system. The hypotheses in this experiment are models 11, 12,

13 and 17. The aircraft is flying at level flight at an altitude of
6096 met. and a speed of Mach .82. The pilot first executes a series

of small longitudinal maneuvers, then a series of lateral maneuvers.
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Note the responses of the control probabilities to the information
provided by the aircraft responses. The longitudiﬁal identificétion
system identifies model.12, as the true hypothesis, and the latéral
identification'system jdentifies model 13. The true flight conditions
are "close" to both of these hypothesis models, lying somewhefe in be-
tween.

Figure 8.3.4 shows the aircraft responses at an altitude of 13,106
met. and a speed of Mach .87. Thé MMAC hypotheses are models li, 12,

13 and 17. The MMAC system identifies flight condiﬁion 17, which is
very close to the actual flight condition, after the aircraft ﬁndergoes
some maneuvers in both systems.

Figure 8.3.5 shows the aircraft responses while the aircfaff-is at
level flight, at an altitude of 6096 met. and a speed of Mach’.G. This
corresponds exac£ly to flight condition 11. The MMAC identification con-
verges to the correct hypothesis in both the lateral and lonéitudinal
systems, once information is available.

Figures 8.3.6 and 8.3.7 illustrate the operation of the model sched-
uling algorithm as the airplane moves through its flight envelope. The
center axis marks simultaneous instants of time in the four sets of
responses. The aircraft is situated near 9144 met. altitude, at a
speed near 1.1 Mach. The initial hypothesis models are 10, 11, 12 and
15, which are subsonic models. Lateral maneuvers provide information
to the identification system, leading to lowering model 10's probability

near zero. The scheduling algorithm recognizes this, and replaces this



hypothesis by model 18, a supersonic flight condition at an altitude of

012192 met. The longitudinal system quickly identifies this new hypo-

Al o Al emma 2T h S mT s S mmdaao T e~ Mh$ o e T e mema o
LIIED1LS, SdLllLT 1L 1D CLLUSE 1l atiuual ospecu,. 111lS resulil ayrees

observed behavior in Chapter 7, where the longitudinal identification

system distinguished well between subsonic and supersonic hypotheses.

The lateral identification system does not respond to this new hypothe-
sis. Figuré 8.3.6(a) shows a sﬁbsequent change in hypothesis models,
replaciﬁg.model 15 by a higher dynamic pressure model, model 17. This
change does nﬁt affect current identification.
Figure 8.3.8 shows the longitudinal and lateral control probability
gnd m(t) responses while the aircraft decelerates from a speed of Mach .6
tq Mach .44 éﬁ an altitude of 6096 fnet. The initial MMAC hypotheses
are models 18, il, 12 and 17. As the aircraft decelerates, models 18 and
17 are changed to models 13 and 10 respectively. Note the transition of
the various control probabilities, from models 12 to model 11 to model
10 as the aircraft decelerates. The longitudinal identification system
does not identify model 10, seen by the magnitude of the m{t) response.
Figures 8.3.9 to 8.3.12 show the airplane responses while the air-
plane is diving from 6096 met to 2438 met. at speeds between .5 Mach
and .65 Mach. No turbulence is present in this simulation. The initial
MMAC hypotheses are models 13, 11, 12 and 10. The scheduling algorithm
replaces model 13 by modei 5 and model 10 by model 6. As the airplane
descends; the longitudinal system identifies models 10, 12 and 11 in

that order, while the lateral system chooses models 11, 12 and 6 in that




order. The actual dynamic pressure of the aircraft is between 300 and
400 pounds per square foot, making models 6 and 11 the closest hypofhe—
ses. One should notice that these are the two flight conditions which
the identification system selects.

Figures 8.3.13 to 8.3.16 represent maneuvers at an altitude between
2440 and 3050 met, at a speed of Mach .6,under no turbulence. This
simulation is a continuation of the simulation in Figures 8.3.17 to
8.3.12. This flight condition seems to be near models 6, 11 and 12 in
the longitudinal system, as the identification switches between these
three hypotheses. In the lateral system, models 6 and 11 are identified.
The dynamic pressure of the actual aircraft ranges between 300 and 450
lb/ftz, in the neighborhood of flight conditions 6, 11 and 12, which
account for the shifting identification.

Figures 8.3.17 to 8.3.20 represent the aircraf£ responses in a climb
from 1525 met to 9150 met. under no turbulence at subsonic speeds.
Figure 8.3.17 highlights the operation of the model-scheduling algorithm.
Figures 8.3.18 and 8.3.19 show some pitching and banking maneuvers exe-
cuted in the climb. Figure 8.3.20 shows the evolution of the control
probabilities. As the aircraft picks up speed, the longitudinal identi-
fication system follows the transitions from models 5 to 6 and 10 to 11
to 12. The lateral scheme also transitions from 11 to 12. Note the
scheduling of model 12 results in its identification by both systems.
As the aircraft speeds up, model 17 replaces model 10 and model 19 re-

places model 6, to provide for better hypotheses.
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8.4 Tracking Experiments

The experiments in this section show only the evolution of the con~
trol probabilities and the global aircraft variables as the F-8C aircraft
is flown throughout its flight envelope. The experiments shown are ex-
cerpts from long simulations using an engineer "pilot" to fly the nonlinear
simulation at NASA Langley. No turbulence was present in the simulation.
The purpose of these experiments is to illustrate the way the identifi-
cation algorithm tracks the aircraft across the flight envelope.

Figures 8.4.1 and 8.4.2 describe aircraft responses during an accel-
eration maneuver at 6096 met. altitude. The vertical line indicates
a simultaneous time reference for both figures. The longitudinal iden-
tification system seems to track the velocity changes accurately,
evolving from models 10 to models 11 and 12 as the speed builds up. The
lateral identification system does not track well at all, identifying.
only model 10.

Figures 8.4.3 and 8.4.4 show the aircraft responses during a decel-
eration maneuver using the speed brake. The aircraft altitude is 6096
met, and it decelerates from Mach .6 to Mach .38. Figure 8.4.4 shows
the longitudinal identification system tracks the speed.changes, shifting
from models 12 to 11 to 10. The lateral identification system does not
respond to these variations in speed.

Figures 8.4.5 and 8.4.6 show aircraft responses during a dive from
1829 met to 305 met altitude, reducing speed from Mach .% to Mach .6.

The longitudinal identification system wavers between models 7 and 13,



as does the lateral identification system, while the aircraft speed ié
near .75 Mach. When the aircraft reduces speed, flight condition 7 (very
close to the actual condition, with speed .7 Mach at sea level) is iden-
tified in both systems.

Figures 8.4.7 and 8.4.8 show the aircraft responses duringla climb
and acceleration maneuver, from 4572 to 7925 met altitude, and .36
to 1.02 Mach in speed. The hypothesis models in the MMAC system are
models 10, 11, 12 and 13. The longitudinal identification system tracks
the changing speeds very well, progressing from models 10 to 11 to 12 énd
13. The lateral identification system tracks hardly at all, consistently

identifying model 10 throughout the simulation.

8.5 Discussion

The performance of the MMAC identification system in experiments
using a engineer "pilot" is illustrated in the chapter. The pilot was cau-
tioned against performing severe pitching or rolling maneuvers, recog-
nizing an inherent deficiency in the MMAC identification system which
arises from using strictly equilibrium level flight hypotheses. Overall,
the longitudinal identification system performed well, tracking properly
with minimal error the changes in the operating conditions of the air-
craft. The lateral identification system did not track as well, per-
forming best in equilibrium flight experiments. These results are sig-
nificant. when one considers the availability of only two sensors in the
longitudinal system (pitch rate and normal acceleration) versus six

sensors in the lateral system (yaw rate, roll rate, lateral acceleration,

bank angle, aileron and rudder angle).
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Global aircraft and model scheduling responses
during descent and deceleration maneuvers, altitude
1829 to 304.8 meters,speed .8 to .6 Mach
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CHAPTER 9

CONCLUSIONS

9.1 Introduction

in this chapter the main conclusions of this study will be sum-
marized from different points of view. Some of the comments will
refer to the MMAC algorithm as a general methodology for stochastic
adaptive control, while other comments will refer to the performance
of the MMAC algorithm in the context of controlling the F-8 aircraft
under the general guidelines adopted with respect to available

sensors and real time computational constraints.

In the reading of this conclusion section the reader should keep
in mind the time frame during which this study was conducted
(April 1974 to September 1976), while this conclusions section is
being written in final form in May 1978. New theoretical results
are currently available; some were obtained as a direct consequence
of this study. If these results had been available at the initiation of
this study, and if incorporated in the MMAC design, the simulation
results and the specific conclusions could have probably been

vastly different.

Finally, the reader shouyld keep in mind the basic objective
of this study: evaluate the concept of the MMAC algorithm as a pos-

sible candidate for adaptive control for aircraft using the F-8 as



the test example. This represents the first exhaustive study -of

the MMAC methodology for a realistic problem.

9.2 The MMAC Algorithm and the F-8

Given the fact that an F-8 aircraft is currently being used as
a test bed for digital-fly-by-wire demonstrations, including tests
of failure management systems and advanced control laws, one may

pose the question:

Should the MMAC algorithm, as described in

this report, be implemented for flight tests?

The answer to this question is a clear NO. The algorithm as cur-
rently constituted has severe deficiencies that must be corrected

before any flight tests are undertaken.

Specific Deficiencies

The specific deficiencies of the described MMAC algorithm are:

1) Pure handling qualities. These are more serious
in the lateral axis than in the longitudinal

axis.

2) Unpredictable performance. In the case of
typical maneuvers for a fighter aircraft, in
both the longitudinal and lateral axes, the
equilibrium flight models used in the MMAC
algorithm are inadeqguate, and the response of

the control system cannot be predicted.



3) There is no guarantee that the MMAC algorithm,
as described in this report, will not result
in aircraft instabilities for severe aircraft

maneuvers over its flight envelope.

9.3 Reésons for MMAC Deficiencies

The MMAC algorithm yields a very complex and nonlinear closed-
loop feedback control system. As such it defies global analysis and

it must be tested exhaustively by simulation. Throughout this study

and subsequent analysis ([34], little insight has been obtained into the
the global stability and performance characteristics of the MMAC al-
gorithm. 1In general, the overall robustness of the algorithm, with
respecf to the following list of important design variables, is not

well understood:

1) Model selection

2) Number of models in MMAC algorithm

3)° Nature and accuracy of sensors

4) Changes in levels of wind turbulence

5) Effects of changing sampling times

6) Robustness of Kalman filters for state
estimation and identification

7) Level of persistent excitation

8) Design, sensitivity, and robustness of the

controlisystem.
Based upon the theoretical and simulation studies carried out during
this research, all of the above issues have to be considered in the

design of the MMAC system.




9.4 How should the MMAC algorithm be evaluated?

Even in the absence_of global results this study has greatly
contributed to the basic understanding of the MMAC algorithm. Its
relative performance can only be judged in situations for which the
degree of modelling error is not sufficiently severe ag to invalidate

the methodology employed.

Since only equilibrium flight models were employed in the MMAC
design, the robustness and performance of the MMAC algorithm can be
evaluated for aircraft motions that are close to equilibrium flight.
These are the results presented in Chapters 7 and 8 of this report.
For the sake of exposition, the general region for evaluation is

defined as maneuvering flight in which motion is as follows:

(a) Longitudinal motion is restricted to about

20° change in pitch about equilibrium flight.

(b) Lateral motion is restricted to about 30°
change in bank angle about the equilibrium
flight

There are two ways of evaluating the performance of the entire

MMAC system

1) Identification: If the aircraft is close to a

particular f£light condition, and this flight
condition is included in the set of model hypo-
theses, do the model probabilities converge to

the "correct" flight condition?



2) Clbsed—Loop Response: If the aircraft is close

to a particular flight condition, how does the
MMAC response compare (under both deterministic
and stochastic conditions) to that obtained if

the flight condition were known exactly.

Identification performance is easier to check than comparisons of
closed-loop responses. On the other hand, evaluation through
identification performance is not necessarily the most appropriate
way of judging the performance of the closed-loop MMAC algorithm.
The reason is that the actual aircraft dynamics, including the ef-
fects of wind disturbances, are never identical to one of the models
of the MMAC algorithm. Furthermore, the performance of the iden-

tification algorithm is strongly dependent upon the existence of

*
persistent excitation so as to overcome the B -dominance effect.

Closed loop aircraft performance is more difficult to

evaluate, but it is the closed loop performance of any adaptive

control system that matters. In the MMAC context one has to evaluate
the overall response of the aircraft in any particular flight

condition independent of the equilibrium flight models that are

employed by the MMAC algorithm.

With respect to the above two broad ways of evaluating perfor-

mance, and subject to the restrictions on pitch and bank angles noted,

it was concluded that



(a)

(b)

The MMAC algorithm is in general an adequate
adaptive control algorithm and deserves

further study.

The longitudinal MMAC system performed much
better than the lateral one, both with res-
pect to identification and closed loop

performance. .

9.5 The Lateral MMAC System

The inferior identification and control performance of the

lateral MMAC System can be attributed to several factors

(a)

{b)

It is difficult to obtain an estimate of key
aerodynamic parameters, as influenced by
changes in dynamic pressure, from the lateral
dynamics. This has been demonstrated by the
simulation studies in this report. In several
instances the lateral MMAC system could not
identify the most probable aircraft flight
condition. The fact that one cannot obtain

a great deal of information from the lateral
dynamics is in agreement with the conclusions

reported by Stein et al. [ 27].

The complexity of the Kalman.filters as-
sociated with the lateral dynamics, and the
fact that fixed levels of wind turbulence
were used to design the Kalman filters pre-
cluded the careful tuning necessary to

have state estimation errors that are con-

sistent with theoretical predictions. It is
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conjectured that the Kalman filters used for
the lateral dynamics for several flight con-
ditions are considerably in error. Poorly
designed Kalman filters contribute to both
state estimation errors and poor identifi-
cation through convergence of probabilities

to wrong postulated models.

(c¢) The poor handling characteristics of the
lateral MMAC system can be directly at-
tributed to the fact that in the model
following approach employed, a single
lconstant velocity (that of f£light condi-
tion 11) was used. This resulted in
uncoordinated turns in other flight con-
ditions, when a particular bank angle
had to be followed. It is suspected that
this shortcoming of the lateral flight
control system introduced bias errors in
the lateral Kalman filters during turning
maneuevers, thus causing additional state
estimation errors and impaired identifi-
cation performance in the later MMAC

system.

The inclusion of the actual inertial wvelocity V0 in the model
following control system for the lateral dynamics, and a subsequent
redesign of the Kalman filters for the lateral dynamics should

greatly improve the performance of the lateral identification and

control system. This is due to the fact that the lateral MMAC



system performed well in the vicinity of flight condition 11, as

demonstrated in the simulations presented in Chapters 7 and 8.

9.6 The Longitudinal MMAC System

The longitudinal MMAC system performed very well in both its
identification accuracy and closed-loop performance throughéut the
flight envelope, subject to the pitch angle constraints stated. In
almost all simulations presented the longitudinal control system
correctly identified the correct flight condition when appropriate.
Even more important whenever the actual flight condition was not

included in the set of hypotheses a close neighbor (in a probabilistic

sense) was identified, thus resulting in good closed loop performance.

It is important to stress that in a great variety of simulations
with the longitudinal MMAC system, the model hypotheses included
several combination that were mismatched unstable. In other words,
if the actual flight condition was i and a model j was included in
the MMAC algorithm, then if model 3j was identified the resultant

closed-loop system would become unstable.

In all simulations the longitudinal MMAC system never consistently
identified a mismatched unstable combination. In the absence of
*
persistent excitations, the B dominance effect sometimes could-

increase the probability of a mismatch unstable combination; however,
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this would immediately cause an excitation and in the next measurement
the mismatch unstable combination would be rejected. This extremely
valuable property of the MMAC system can be evidenced by all piloted

simulations, a subset of which has been presented in Chapter 9.

Although the longitudinal MMAC system performed quite well

under all simulations performed, its performance could be improved

further. These improvements would substantially increase the operating
conditions in terms of increased allowable pitch angle longitudinal
maneuvers. The main shortcomings of the current longitudinal MMAC

design are as follows:

(a) Bias errors are introduced in the longitudinal
Kalman filters. These bias errors are intro-
duced through the phugoid mode which was not
included in the short period dynamics models.
Further bias errors are introduced through
inadequate treatment of the elevator trim in
the Kalman filter design. The longitudinal
Kalman filters should be redesigned so that
they estimate the elevator trim through the
use of the elevator position measurements. This
would enhance the overall accuracy of the
longitudinal state estimates, improve the ro-
bustness of the individual Kalman f£ilters,
further improve the identification accuracy

and improve the closed-loop performance.



(b)

(c)

Persistent (subliminal) excitation through
elevator motion, through signals known to
the Kalman filters, should further improve
the identification accuracy of the longi-
tudinal MMAC system. Such a persistent
excitation would overcome the issue of lack
of information available for identification,
and will alleviate the B* -dominance

phenomenon.

All longitudinal Kalman filters were designed
using a fixed level of turbulence correspon-
ding to flight through cumulus clouds. This
corresponded to increased bandwidth in all
Kalman filters. When the aircraft was flying
either in the absence of turbulence or
moderate turbulence, the accuracy of the
longitudinal variable estimates, and of the
identification, degraded because more sensor
noise passed through the high bandwidth Kalman
filters than necessary. Future attention
should be given to enlarging the set of
hypotheses (and models) in the overall MMAC
algorithm by having more than one turbulence
level. This would not necessarily require an
increase in the number of models operating

in real thme, but could be accomplished through
modification of the model scheduling algorithm,
described in Chapter 8, to include a gross
decision on the level of turbulence actually

present.
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(d) The handling gqualities of the longitudinal
MMAC system can be improved through changes
in the control gains, and by providing neutral

aircraft stability.

9.7 General Conclusions

In this section a summary of general conclusions related to the

MMAC algorit
knowledge gained from theoretical and simulation investigations from

the specific F-8 study and additional theoretical and simulation

investigations carried out subsequent to the F-8 study.

a) Structural Advantages: The implementation of the MMAC

algorithm by parallel banks of Kalman filters is appealing because
of the advances made in microprocessor technology. One can vi-
sualize a single chip for implementing each Kalman filter, and
another for the subsequent calculations of the identification pro-~
babilities and calculation of the adaptive control. The lack of

any iteration -based calculations makes the concept appealing,

since the total memory and real-time calculations can be precomputed.
It should also be noted that the parallel maximum likelihood
noninterative structure used by Stein et al. [27 ] has the same
advantages.

b) Identification Properties: As demonstrated in Chapter 4

the identification probabilities can oscillate rapidly between

alternate models in the presence of stochastic disturbances. Such
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rapid transitions of the identification probabilities were not
suspected before the initiation of this study. These tran-
sitions are not necessarily bad, since the actuators will smooth the
commanded controls. In the present study, the identification proba-
bilities were low-passed, in an ad-hoc manner, so as to smooth them
out.

The rapid probability transitions can be often the result of
erroneous initializafion of the constant gain Kalman filters, and
incorrect design of the digital Kalman filters. Accurate design of

the digital Kalman filters is essential for the MMAC algorithm.

The general issue of correct convergence of the MMAC algorithm

under closed-loop operation remain an open theoretical question.

The on-going doctoral thesis of Greene [34 ] sheds some understanding
on the qualitative properties of the closed-loop MMAC algorithm, but
theoretical results that guarantee the asymmptotic convergence of

the correct model are not currently available.

Recent results by Baram and Sandell [ 7],[ 35], have provided
valuable information on the open-loop identification properties of
the MMAC algorithm. These results indicate that the MMAC algorithm
will converge to the nearest probabilistic neighbor in the presence
of persistent excitations. This research provides a well defined
metric (distance) that could be used to measure a “"stochastic
distance" between models, and it may be useful in selecting the model

hypotheses that should be implemented in the MMAC algorithm. It
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should be stressed, however, that these results do not trivially
extend to convergence properties of the closed-loop MMAC algorithm.

c)} Closed-Loop Control Properties: It should be stressed

that the implementation of the MMAC algorithm is not limited to
control designs obtained using the Linear-Quadratic methodology.
Any method for designing the control system can be used in conjuction

with the MMAC identification algorith.

The specific MMAC algorithm presented in this report has a

very special structure. In a regulator context the control u(t)

is generated by

N
ut) = } P.(6)G, X, (t]®) (9.1)
i=1

where Pi(t) are the model probabilities generated from the residuals
of the kalman filters, G, are the control gains, and %i(t]t)

are the state estimates generated by the Kalman filters. It should
be stressed that the control u(t) is very sensitive to Kalman filter
errors, because of its double dependence on both the model proba-
bilities Pi(t) and the state estimates gi(t|t). Since the system
operates in a stochastic environment the MMAC algorithm may identify
a wrong model for a few measurement; however, the state estimates

of the wrong model may be grossly in error and this will also

influence the generation of erroneous controls.



In aircraft applications the key state variables are méasured
accurately by gyros and accelerometers. For such problems simple
low passing of sensor signals and perhaps the use of low-order
Luenberger observers and complementary Kalman filters can be used to
generate an overall state estimate gjt). In this case, it appears

that the control should be generated by

N
u(t) = } P, (£)G, (£)x(t) (9.2)
=1

where the probabilities Pi(t) are still generated from the bank of
detailed Kalman filters as described ip this report. It is conjec-
tured that the control law (9.2) will be more robust to errors in
Kalman filter design than that given by (9.1), for the reason mentioned
above. In this method, the Kalman filters would be used primarily

for identification rather than for simultaneous identification and

control.

In summary, the MMAC algorithm deserves more study from both a

theoretical and applied points of view.
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APPENDIX A

Linearized Dynamic Equations for the F-8C Aircraft
at Various Flight Conditions

The form of the system equation is

L .’.£=_A"+EE+LE (A.1)

For the longitudinal system,

[«

v

o
X = ;u=26 (A.2)
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The A and B matrices are flight-condition dependent, and are listed



in the following pages. The L matrices depend on the turbulence level,
as discussed in Chapter 3, Section 4; see Section 3.4 for relevant

equations defining L.
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B-1

APPENDIX B
Reduced Short-Period Models for Longitudinal Dynamics

of the F-8C Aircraft

The reduced equations are of the form
Xx=Ax+Bu+LE (B.1)
where
4 3
q
o
x= i u= Gec (B.2)
)
e
Vv )

Matrices A and B are flight-condition dependent, and are listed
on the following pages. The L-matrix depends also on the turbulence

level; see Section 3.4 for relevant equations.
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APPENDIX C

o =rbs
2

The MMAC Identification Algorithm

C.1 Problem Statement
Consider a linear, time invariant system with a parameter vector Y

belonging to a finite set {Ii' 12, cees XN}' Characterize the possible

systems by the parameter subscript, by the vector difference equations
(c.1)

x(t+l) = A, x(t) + Boult) + L, E(¢)

The measurement equations, as discussed in Chapter 4, are given by
z(t) = C,x(t) + 8(¢) (C.2)

The state, control, and observation variables x(t), u(t) and z(t) are all
elements of finite-dimensional Euclidean spaces. The vectors £(t), 6(t),
are mutually independent, white-noise gaussian random processes taking

values in a finite dimensional space, with zero mean, and known covari-

ances, expressed as
(c.3)

8(t) = N(0; O(v))
(c.q)

E(t) = N(Q; E(t))

The elements éi’ Ei' Ei and Ei are appropriately dimensioned linear

matrices. Let Z(t) represent the sequence:

zt) & {w), u@, ..., w-1; 2, 2(2), ..., 2(0)}  (C.5)

The first question posed is, given a sequence Z(t), what is the condi-

tional probability density of x(t), (p(x(t)|z(t))?
Denote by Hi the event that the uﬁknown parameters y are equal



to I&. Let.H denote a random_hypbthegis variable, taking discrete values
as Hi' i=1, ..., N. Assume there is a probability distribution at
time t, such that

P(H = H, at t|zZ(£)) =P, (¢). (C.6)
1 i

The probability density of H can be written as

N
p(E|Z(t)) = 2 8 - H)P, (t).
im1

Consider now p(g}t+1)lz(t+l)). From the definition of marginal densities,
one obtains

m§@ﬂﬂzwﬂjh f p@&ﬂJ,MZ&HJMH ; . (C.8)
H

From Bayes' Rule, it follows that
- p(x(e+l), H|Z(£+1)) = p(x(e+1) |H, z(t+1))p(H|z (1) (C.9)

Substituting equations (C.7) and (C.9) into (C.8) and integrating yields

N
plx(e+l)| Z(e41)) = 3 P (e#lip(x(e+D)| B, 2(e+1)). | (C.10)
i=1

Consider p(§ft)|Hi, Z(t)). Under the hypothesis that H = ﬁi; théfsystem
and observations described by equationé (C.1) and (C.2) represent a

linear, time-invariant system driven by Gaussian white noise with Gaussian-
corrupted linear observations. Hence, the conditional distributions are
also Gaussian, and can be obtained using a Kalman filter [5]. Hence,

for each i, p(§ﬁt)|Hi,Z(t)) can be constructed with a Kalman filter.

Additionally, using Bayes' rule, the following-relationshipsnfollow:



pz(t) B, x(e))px(t) |1y, Z(t-1))

p_(g:ji:) lHi' Z(t)) = {C.11)

p(g(t)h{i, z(t-1)
pe)|E, z(e-1) = fpx(o)|n;, x(e-1))plx(e-1) |B , 2(t-1))dx(e-1)
(C.12)

Since the conditional densities p(x(t) H,, Z(t)) are Gaussian, they

can be characterized by their means and covariances. Denote these as

v & elx(t) |8, 2(0)} (C.13)

J_N)

L ele) = E((x(e) -, () (x(0) &, (£))' [H,, 2Z(0)} (C.14)

It is well known from the theory of Kalman filtering (32] that the Ei(t) are

precomputable, according to the relations

- -5
g_i(tult) = _Z}_ig_i(ﬂt)éi + E(t) (C.15)

L} 1 -1.
(e+1]te1) = Z, (ev2|t) - §1(1:+1|1:)g_i[gi§i(t+1lt:)g:.L + 0(t)]

Z

S (t+1]t) (c.16)

With this notation, using equation (C.10), the conditional mean of x(t)

given 2Z{t) is
N

£(t) = Elx(v) |z2(6)} = jg:_(t)p(gc_(t)lztt))ggc_(t) = PPi(t)fc_i(t)
=1

(c.17)
Hence, using the output of N Kalman filters, each working with a different
set of dynamics, Hi' the conditional mean can be determined. The Kalman

filter equations are:

2 (er1]t) = AR (£) + B ult) (c.18)



A

R, (£+1) ff{_i(t+l|t) + Ei(tlt)gig—l(t+l) (z(t+1) -C, &, (t+1])) -
' (C.19)
The remaining question consists of determiging the probabilities
Pi(ﬁ). Conéider the conditional density p(H|Z(t)) defined by equa-
tion (C.7). Use of Bayes' rule yields

p(H,z(t+l) [u(t), z(t))

p(E|Z(t+1) = pa|z(t+1), u(v), 2(v)) =

p(z(t+l)) |u(t), (L))"

p(z(t+1)[H, 2(t), u(t))pH|Z(t), u(t))

= (C.20)
p(z(t+1) | 2(t), u(t)) P
Since u(t) is a constant in this derivation, then
pH|Z(t), u(t)) = p(H|Z(£)). (c.21)

Using equations (C.7) and (C.20), one obtains

plz(e+l) B, u(e), z(£)
P, (t+l) = P, (t) - . (C.22)
* p(z(t+1) |u(t), z(£))  *

The density p(z(t+l) lHi' u(t), z(t)) is Gaussian and can be cal-

culated from the ith Kalman filter, as

plz(e+l) |H,, ult), z(t)) ~ N(gigi(tﬂlt), S, (t+1)) (C.23)
where
8, (t+1) = gz_i_z_i(ullt)gi + O(t+1) (C.24)

The quantity gigi(t+1|t) is the predicted measurement at t+l and
§-i is the residual covariance associated with the ith Kalman filter.

The density p(z(t+l) [Z(t)', u(t)) can be computed ﬁsing':marginal



Q
]
(84}

densities as:

p(z(t+1) |Z2(t) ,ult) fp(_z_(t+1) » H|Z(t), ult))aH

_Jiﬂgft+l)|H,Z(t))p(HlZ(t))dH from Bayes' rule

N
YoP.(t)p(z(t+D) [H,, u(t), Z(t)) - (C.25)
=1 ’

using equation (C.7) and integrating.

Thus, combining equations (C.23), (C.24), and (C.25) with (C.22),

one obtains
p(gjt+l)|Hi,gjt),z(t)) .
Pi(t) (C.26)

Pi(t+1) =
> P.(t)p(z_(t+l)IHjni(t),Z(t))
j=1

Let m be the dimension of the space of z(t) (i.e., the number of measure-

ments).

Let the residual vectors r, (t) be defined as

x; (€) 8 Z(een) - c %, (e41]8); i=1,2, ..., N (C.27)

Then
. -n -1
P(z(e+1) |1, w(t), Z(6)) = (21) “(det 5 (e+1)) % -

-% r' (1:+1)_s_;l (t+1) x, (t+1)

e 2™ (C.28)
Define B, as
1
-m -1
2 (c.29)

B, (t+1) = (2m) 2 det(s, (t+1))

It was mentioned previously that B{(t) is precomputable for all



i=1,...N; and all t. With this notation; equation (C.26) becomes
1, -1
3 xp (e+1) S, " (e+l) . (t+1)
B. (t+l)e
Pi(t+l) = 1 ) P, (t)
N —5 ri(e+l) S, (e+l) . (£41)
> By (t+1)P, (t)e 3 J —J (C.30)

§=1

In the special case of statistically stationary noises, that is,
E(t) = E, O(t) = © constant for all t, time invariant Kalman filters
can be designed which are the steady state limits of the Kalman filters

discussed previously. These limits exist under appropriate observability

assumptions. Define

L, =unE(ele) = ot + ¢ ) (C.31)
1o
M, = lim Z, (¢+1]t) = A, Z.A' + E (C.32)
=i - —~—i— =
t—)m
"
Then, §i can be defined accordingly as in equation (C.24), by
S, = C.MC! +0 (C.33)
=i =i =
=) L
: 2
= ™
Bi (2m) {det §i) . (C.34)

For this special case, the evolution of the probabilities is given by

_L 1 ~1
Sl (e+1)S, "z, (t41)

P, (t+l) = P, (t) (C.35)
* (53(t+1)s'1r.(t+1)) *

2 =} =
Bj e Pj(t)
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APPENDIX D

Linearized Acceleration Equations

The equations for normal and lateral acceleration in terms of the

; state variables used in the models of Chapter 3, are given in Etkin [36};

the acceleration at the center of gravity of the airplane are given by

- (g - o - pB) - cosbcosd (D.1)

NY = g-(é + r - ptt) - cosBsind (D.2)

For the purposes of designing the Kalman filters the pseudomeasurements

and Ey were defined, where

a
nz
a, = Nz + cosfOcosd (D.3)
a = Ny + cosOsind-¢ (D.4)
For the purposes of developing a linear equation for a, and ay,

the longitudinal and lateral systems are assumed to be independent;

thus lateral variables in (D.3) and longitudinal variables in (D.4) are

set to theit trim values. Hence,
a =_Y2(_&) (D.5)
nz 4 -
Vo.
a =— (B+r-pa)-9 (D.6)
v - g B Pay

where ¢ and 8 are the linearized expressions given in Appendix A, and Qg

is the value of the trim angle of attack. The coefficients of equations

(D.5) and (D.6) are tabulated in this appendix for each flight condition.
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APPENDIX E

Linearized Discrete-Time Models for the F-8C Aircraft

The basic equations for converting the continuous-time models of

Appendix A to discrete~time sampled-data models are described in

Appendix F. For the longitudinal system, the complete deterministic

continuous-time model is of the form

q g
v v
o o
x =2 |0 =a |® +B, § (E.1)
- dt -4 —i “ec
8 é
e e
8 S
ec ec
LW J L‘q J

where the matrices éii Ei were described in. Chapter 3 and Appendix A,

To convert to a sampled-data system, 6ec was assumed to be piecewise

constant at 1/8 of a second. The resulting sampled-data system is

described as

( ) ( *
q q
v v
o o
: _ ] M 1 8 i e
x(t+l) = (b+1) = & (¢) +B4 6 () (E.2)
6 - 6 - ec
e e B
I 1)
ec ec \
w w .
L ) \ )




ki
)

THé déterministic continuoys-time.linearized equations for the

lateral system are of. the form::.,... -.

{ )
p 1
: x |
B,
s
oo d :
: ’ ija ‘.: a Mo e T
H r 3 !
i ac - :
) v ’
rc H
w
\ J

‘where éi' Ei are described in Chapter 3 and Appendix A. The continuous
time lateral system can be divided into two subsystems as explained in

Chapter 7, of the fokrm!¢ wii. aw: o= o o+ e e

r 3\
i
1 4 - 1 1 |%a '
X =3 | B 4% *E s (E"”._\
) r
Wb :
v ol E .
[ ) ( \
s 0 o
a
8 0o o 5
-2 4 2
X = d_t- o = A /X, + .ac (E.5)
S - 1 0 8
ac rc
0 1 '




Discretizing each of these systems at 1/8 of a second ;with the procedure

described in Chapter 5 yields an overall system of the form:

( 3
P
r H
ail il
B 'A'd ' 'B"d
]
o, (sx5) ! 2x5
£3(t+1) - Ga (t+l) = - - - J'- - -
)
b 0 §
1
Gac 1
!
)
{ rc

;o e

) 5X2

- W e |
al? B
44 | )
(E.6)

A simple permutation of the states results in the system

r 3

P
X
B
¢ 5
(t+l) = | & = al x@) + 8t ac | (v (E.7)
x a -4 = 3 :
6 rc
b o
s
ac
8
rc

One

ac

One

rec

(t)
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APPENDIX F

OUTLINE OF COMPENSATOR DESIGN PROCEDURE

F.l Problem Statement

Consider a linear, time invariant stochastic system whose state equation

is modeled as

x(£) = A x(t) + B ult) + L £(t) (F.1)

where x, u, and § are elements of finite dimentional spaces, and £(t) is a

white noise, zero-mean, Gaussian random process with covariance defined by

E1E(t) E'(s)} = E §(t-s) (F.2)

where I is the intensity matrix and §(t-s) is the Dirac delta function.

Additionally, A, B and L are appropriately dimensioned time-invariant matrices.
Observations on the state vector x(t) are defined by linear equations,

corrupted by white noise Gaussian processes according to the model

z(t) = C x(t) + 6(t) (F.3)

where
e{f6(t)} =0 (F.4)
E{0(t)0'(s)} = O &(t-s) (F.5)
(F.6)

0 for all t, s

E{6(£)E" (s)}

where O is the noise intensity matrix.
The initial state x(0) is assumed to be a Gaussian random variable,

with mean X, and covariance §0. Associated with this problem is a guadratic

cost functional of the form

T
J_ = 1lim % E{x(T)'S x(T) + f (x' (£)Qx(t) + u'(t)Ru(t))dt}
0

T
Tee F.7)



where S, 0 > 0, R > 0 for all t.

The cost functional JT represents the objectives of thé'design, and
must be chosen in the design process. Thus, the matrices S, Q and R must
be chosen to specify the design. Additional parameter choices are values
of the covariance matrices E and O, reflecting the confidence one has in

the system observations (F.3) and the mathematical model (F.l).

F.2 The Separation Theorem and Control Gain Design

The optimal solution of the stochastic control problem described in
F.l can be obtained as the combined solution of two problems: one of esti-

mation and one of control. This is known as the separation theorem [5]. The

control problem solution is given by

u(t) = -G &(t) (F.8)

| 54>

where gjt) is the minimum variance estimate of the state, given measurements
{z(t)}, and G is obtained from

G=-E'BK (F.9)

where K is the unigue positive definite symmetric solution matrix of the
algebraic Riccati equation
-1
0=-KA-AK-Q+KBR BK (F.10)

F.3 Discrete-time Formulation and Estimation

Control algorithms for the F-8C aircraft will be implemented using a
digital computer. Hence, the control action u(t) will change only at dis-
crete intervals. Assume these intervals are equispaced T seconds apart.

Then, an equivalent system description can be obtained, as in [33], of the form



I i s T

[ ZEITINI TR

x((ntl)T) = édi(n'l.') + By u(nT) + N(nT) (F.11)
where

a = (F.12)

B, = OT % at (F.13)

and N(nT) is a stationary discrete-time, zero-mean white noise sequence with

covariance N, where

T
Al
§=f St rsn &t (F.14)
0

[{84]

Assuming that the observations z(t) are available only at the sampling

intervals T, the minimum variance estimate of the state x is obtained by a

discrete Kalman filter [23], described by:

R(t+1l]t) = Ay g(tlt) + By u(t) (F.15)
R(E+1]t+1l) = R(t+1l|t) + H(z(t+l) - C x(t+l|t)) (F.16)
where the Kalman filter gain matrix H is obtained by
- ' + F.1l
L=A LA +N (F.17)
= - ) ]
=3¢ 9" (F.19)

F.4 Discrete-Time Control Gain Design

The gains obtained in Section C.2 used instantaneous feedback of the

state vector x(t) to obtain a decision vector u(t). Since the estimate of

the state is available only at discrete intervals ni, and the control action

is constant during each interval, these gains should be discretized so that



u(nt) = G, X(nT|nT) _ (F.20).

Sa
The gains gd are chosen to approximate closest the deterministic closed-
loop response of the continuous—time system. The closed-loop continuous-time

system is

(

I

|w

G)T

x((n+1)T) = e = "x(nT) . (F.21)

The closed-loop response of the discrete-time system is

x((ntl)1) = (A, - B4G )x(nT) (F.22)
. N A-BGT . . .
The G4 which minimizes HAi -BG, -e= =2"|| is obtained using general-
ized inverses,
A 1 (A-B@T
= ' v - = _ =
G=(8.'B.) "B '(A e ) (F.23)



APPENDIX G .

Continuous Time Control Gains i

s

Although the MMAC algorithm is a sampled-data algorithm, the control

"gains were initially designed as continuous time gains using the LQG
methodology described in App_endix F. Using the matrices of Appendix A,

the deterministic longitudinal system is represented by

. +A B 0 o
X = \"’ —x + u o © (6D
0 0 1
. ( \
where u = § x=1|qg (G.2)
ec’ = :
v
o
]
8
e
w
| ec
7

Transposing the states ‘Sec and w yields the state vector

f \
(G.3)

(%>
i

o, @ R <4 KQ

(o]

ec

|- -
t
|



The longitudinal control variable Gec is given by

O e

=~ Gon X (G.4)

=1 =

ec

The matrices are tabulated in this appendix.

Eion

The deterministic equations for the lateral system are given by

o

. A B
x= 11 Jx+ |1 O0lu (G.5)

where A,B are the lateral system matrices of Appendix A, and

(G.6)

1= Gac a =P
a r
rc 8
)
8

a
§

r
w

ac

| %xe |

Switching the order of the states yields the state vector

W (G.7)

o]

E:

© W R
o

[
Q

O Or O O
R

~
9]

<



1%>
"

O O O O O K W
g 1 [

(2]
Q

£

The control value u is derived in Chapter 9 to be of the form

- a
a'::(1:) =G X (t) -

4
LR

where x_(t)
-ﬂ

X, represents the model states. Similarly

e r
6rc(t) =G x (t) - QF X(t)

. a a
The matrices gm’ EF' S

(GsTY

(G.8)

(G.9)

(G.10)

G- and g; are tabulated for each flight condition.
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SRE RS

Flight
Condition

' Feedforward Control Géins, Aileron Rate

-1.9070
-1.6830
-1.5570
-1.4940
-1.9410
-1.7710
-1.6500
-1.6150
~1.7270
-1.8740
-1.8160
-1.7700
~-1.8280
-1.8700
-1.8830

Contipuous Time

-.94700
-1.6820
-3.7940
-6.5150
-1.1120
-1.4300
-2.5930
-3.3530
-5.0800
-1.2740
-1.4710
-1.6670
~2.5790
-.78300

1.3280

2.88900
4.26600
16.3100
39.3300
3.05400
2.18800
6.51100
11.4100
17.3000
2.19600
1.96100
2.36300
2.90100
.719800
-2.37600

-9.2850
-9.1810
-8.8650
-8.4400
-9.2760
-9.2080
-9.0340
-8.9130
-8.8380
-9.2200
-9.1820
-9.1520
-9.0670
-9.2760
-92.3710

-12,.650
-7.5740
-6.3890
-6.6620
-13.710
-9.1440
~7.2720
-7.0410
~-9.0530
-11.660
-10.220
-9.2310
-10.740
-11.380
-11.800

-.62190
-.19190
-.98210
-1.7190
-.50490
.20380
.06132
~.17550
'2.5650
.14930
.39940
.46860
2.0440
1.1460
.04392
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.

L~ R T

Flight
Condition

o~

11
12
13
14
15
16
17
18
19
20

Feedforward Control Gains, Rudder Rate

. 062090
~-.156800
-.352400
-.510600

.014270
-.115600
-.257500
~.327600
-.324100
-.107900
-.147200
-.176700
-.220500
-.028890

.117200

Continuous Time

2.56500
10.7800
17.8000
24.8400
2.01100
6.51200
11.9400
14.6000
24.3000
3.10300
4.59200
6.10600
1.07500
13.4900
16.4300

4.21500
-6.74100
-26.8000
-51.6100

4.26000

1.04700
-9.25500
-17.4600
-40.3000

4.38700

3.58200

2.15200
-2.36100
-7.67700
-14.2600

-.074120
-1.39400
-2.64200
-3.73800
-.268300
-1.05800
~-1.94500
—-2.38600
-2.83600
-.867900
-1.11800
-1.31200
-1.72700
~-.982700
-.441400

3.12000
-.344000
-1.08200
-1.25800
2.91200
.262900
-.856300
-1.14000
-1.06900
1.01600
.316900
-.188600
-.535000
1.03700
2.09200

rm

-5.11400
-5.25500
-4.99300
-6.67800
-5.14900
-5.55600
-5.75000
-6.00700
-14.3300
-5.61500

- =5.92100

-6.40900
-11.3500
-12.6800
-14.0400
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APPENDIX H

,Diécrete Time Control Gains

This appendix contains the discrete time control gains used in the

pilot command designs of Chapters 5 and 6. For the longitudinal system,

the commanded elevator rate is obtained from

5§ (t) =G (G s(t) - &(t)) (H.1)
ec = -p =
where gjt) is the minimum variance estimate of the state, x(t)
[ q 1
v
o
x(t) = 6 (t) (H.2)
8
e
ec
(v
The

and s is the pilot stick deflection, as discussed in Chapter S.

gains gp are tabulated in Chapter 5. The elements of the matrix G are

listed in this appendix for each flight condition.

In the lateral system, there are two control variables. As dis-

cussed in Chapter 6, the commanded aileron rate can be computed as

(t) (H.3)

3>

o a a
8 .(t) = G x (&) - G



g
E

where g; are feedforward gains from the pilot model and g;'are feedback

gains from the estimated states X(t), where

r 3
p
r
(o ]
B8
rm
¢
Bm
x(t) = | 6, (€£y; x (t) = (H.4)
¢m
61:
Ga.m
8
ac Gm
Sy e L )
w
\ J

R(t) : (H.5)

are tabulated for each flight condition.
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APPENDIX I

o CIESIEY

Continuous Time Closed-Loop Eigenvalues of Control System

R Ea s R

The control gains were designed initially in continuous time using
! .
s the matrices of Appendix A, yielding a closed-loop system of the form

=(A-BG) x (T.1)

L

The eigenvalues of (A - B G) are tabulated below. Conjugate pairs are

listed together.

Longitudinal System

Flight Condition Eigenvalues
Real Part Imaginary Part

5 -3.349 0
-12.125 0]
-3.041 ' +3.6702
-1.506 0
-.000499 0
-.00137 o

6 =-5.917
~12.76
-4.668 +6.557
-3.48
-.0l6l1
-.000045




10

1

i
0
»

'-7.815

-13.484

u."'-'. 59

~ e s

~5.49
~.0000233
~.02157

-9.601
-14.01

" =6.303

-8.0

"-.02386

-.0000145

-.332
-.00327
-.00025
-12.08
-2.732

-=1.137

=.4977
-.000173
-.00647
-3.806
-2,133
-12.34

- e D

o O o o

+3.28

+5.019



12

[
w

14

15

&

. -.6636

-12.88

~)

78
64
~.0000867
-.00941

-4,
-3-

[+)]

-.0000106

-.00251
-.996
-.00000377
~5.177
-13.36
-5.027

-.5421
-12.14
-3.083
-1.2484
-.00982
-.0000616

o O

+7.897



16

17

18

19

20

-.6196
-12.25
-3.524
-1.635
-.000872
-.6196

-.697
~.0000534
-12.38
-3.85
-2.113
~-.0055

-.929
-12.61
-4.04

-2.536
-.0189
-.0185

-1.084
-12.65
-4.097
~-2.747
-.0000288
-.00203

-1.239
-12.743
-4.252
-2.986
-.0000062
-.00684

t4.538

35,212
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APPENDIX J

C* Criterion for Handling Qualities [3]

There are numerous desirable specifications on handling gualities.

The handling quality of an aircraft is often expressed by means of a

"pilot rating" from one to ten (Cooper-Harper scale) with a rating

However, in practical aircraft

of one for the best handling aircraft.
design no single handling quality criterion is the ultimate. The

C*-criterion is a particular criterion expressed in terms of the short-

period response of the aircraft. It is a general concept which includes

the traditional short period damping requirements, and incorporates the

notion of response to pilot inputs.

The usual definition of the C* quantity is
(J.1)

where Vco is the "crossover" velocity, the velocity at which the con-

tribution of pitch rate g equals the contribution of normal accelera-

tion a, to the C* response.
The C* response of the aircraft can be determined in terms of

the system response to a step input. Figure J.1 contains the regions

of the C* envelope. Responses typical of the various regions can be

identified as:

Region 1: optimum response

Region Z: non-critical operation of wehicle
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Region 3: conditions .not covered by 1, 2, and 4

Region 4: power approach response

For the purposes of obtaining desirable C* handling éualiﬁies
duripg normal operation, the step response of the system must lié in
Region I. |

Various s

at various flight conditions. With respect to the F-8C aircraft

dynamics, Vco can be approximate for all flight conditions as

~t 1 -
V.o ¥ 10 g's-seconds (7.2)

where the units of q are radians per second and the units of a, are

.

g's.
Thus, the C* quantity defined as

C* = a, + 10q - (3.3)

represents a desirable handling qualities balance between g and a,
for the F-8C aircraft. This quantity represents a useful criterion

for the evaluation of the short-period performance of the aircraft.
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Kalman Filter Gains

The update equation of the Kalman filter is given in Appendix F

and Appendix C as

(K.1)

£(6) = &ele-1) + H(z(0) - ¢ A(t]e-)

The matrix C is obtained from Appendix D and Chapter 3. The predicted

value of the state is obtained using the discrete matrices of Appendix E.

For the longitudinal system, z consists of the vector

q
(K.2)

The transpose of the matrix H is tabulated in this appendix for each

flight condition.

For the lateral system,
3
(K.3)

The transpose of the matrix H is tabulated in this appendix.



Longitudinal Kalman Filter Gains

Flight

Condition q v o 8 § - § . w
_ ‘ . : ) e ec .
5 0.401 17.500 0.163 0.023 -0.025 0.0 -0.767
0.030 -1.580 0.030 0.011 0.003 0.0 -0.060
6 0.u52 24.110 0.077 0.008 ~-0.060 0.0 -0.314
: : 0.041 - -2.,094 0.020 0.008 0.006 0.0 -0.042
7 0.459 30.250 0.045 0.002 -0.085 0.0 -0.149
0.038 -1.979 0.014 0,006 0.006 0.0 -0.029
8 0.4869 40,940 0.027 -0.000 - -0.,102 0.0 -0.075
P 0.031 -2,063 0.010 0.004 0.0086 0.0 ~-0.017
10 0.274 6.296 0.125 0.0u44 -0.000 0.0 - =-0.417
0.019 -0.415 0.021 0.014 0.000 0.0 -0.031
11 0.367 14,400 0.083 0.025 -0,043 0.0 -0.252
0.028 -1,792 0.018 0.011 0.004 0.0 -0.029
12 0.408 19.380 0.056 0.011 -0.068 0.0 -0.1483
0.033 -1.794 0.015 0,008 0.005 0.0 -0.026
13 0.420 -308.200  0.063  0.190 =-0.077 0.0  =-0.111
0.036 27.770 0.012 -0.009 0.006 0.0 -0.022
14 0.591 27.850 0.035 0.012 -0.061 0.0 -0.110
C 0.037 -3.417 0,010 0,008 0.006 0.0 -0.009
15. 0.320 11. 300 0.089 0.0u40 -0.028 0.0 -0.285
f6 0.358 11.060 0.080 0.034 -0.036 0.0 -0.,245
0.021 -1.215 0.017 0.013 0.003 0.0 -0,021
17 0.336 =312.600 0.110 0.197 -0.000 0.0 -0.237
18 0.565 2.293 C.052 0.031 -0.000 0.0 -0.174
0.031 -0.279 0.013 0.012 0,000 0.0 0,011
19 0.563 1.032 0.046 0.028 -0.000 0.0 -0. 154
0.032 -0.06U4 0.013 0.011 0,000 0.0 -0.010
20 0.552 0,957 0.082 0.027 -0,000 0.0 -0, 138
0,033 -0.025 0.012 0.011 -0.000 0.0 -0.009
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APPENDIX L

Discrete Time Eiéénvalﬁes

In the absence of pilbt commands, the complete filtering and control

system can be described by the equations:

x(t+l) = A, x(t) + By u(t) + L E(¢) (L.1)
X(t+l) = A, R(t) + By u(t) (L. 2)
R(t) = x(t) + H(z(t) - C x(t)) (L.3)
ult) = -G X(t) (L.4)
z(t) = C x(t) + 8(t) (L.5)

The eigenvalues of the system are the eigenvalues of the closed-
loop control system matrix (éd - l_B_d_Ci) and the eigenvalues of the Kalman
filter (I - H (_'J_)Z_\d.

The eigenvalues of the closed loop control system matrix (éd - gdg)
and the Kalman filter matrix (I - H g_)éd are tabulated below for each
flight condition in the longitudinal and lateral system. Three numbers
are given for each eigenvalue, its real part, its imaginary part, and

its magnitude.

B
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APPENDIX M

Sampled-Data Second Order High~Pass Filters

The desired transfer function of a second-order high-pass filter is

given by
2
H(s) = - (M.1)
(s+a)?

where a is the desired break-frequency. A simple two-state-variable model

is given by

()20 ()

2 27
y = xl + x2 + u (M.3)
The transfer function H(s) is given by
2
H(s) = S8 - S (1.4)
s +a

Using the discretizing methods described in Appendix F, one obtains
. 1
the following discrete~-time realization for a sampling period of g of a

second:

x a o] x., (t) a.~1
( l)(t+l) =< d )( 1 ) + < d )u(t) (M.5)
x -b ay x2(t) —bd

Y(t+l) = xl(t+1) + u(t+l) + x2(t+l) (M.6)



where a, = e : ' - :(M.7)
(M.8)

a
b = 8 e

and a is the break fregquency in radians.
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