%
GEOMETRIC MODELING AND ANALYSIS OF ROD-LIKE LARGE SPACE STRUCTURES

by

A. H. Nayfeh
M. S. Hefzy

Department of Aerospace Engineering and Applied Mechanics
University of Cincinnati, Cincinnati, Chio” 45221
ABSTRACT

The application of geometrical schemes similar to those of Buckminster
Fuller's geodesic dome to large sphere antenna reflectors has been investi-
gated. The purpose of these studies is to determine the shape and size of
flat segmented surfaces which approximate general shells of revolution and
in partigular spherical and paraboloidal reflective surfaces. The extensive
mathematical and computzational geometry analyses of the reflector have re~ -
sulted in the development of a general purpose computer program, This pro-
gram is capable of generating éhe complate design parameters of the dish and
can meet stringent accuracy requirements. The computer program alsc includes
a graphical "self contained" subroutine which enables one to graphically

display the required design.
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I. INTRODUCTION
The last decade has witnessed a dramatic increase in the research activities
dealing with the possibilitj of utilizing space for wvarious commercial and
scientific needs. In several recen; issues cof Astronautics and Aeronautics
(see, for example, Il—4]), many articles have appeared which deal with diverse
aspects of large space structures. These articles have identified wvarious
applications and also proposed novel designs of structures to meet such
applications. A review of the research activities on space structures prior
to 1966 has been &ocﬁmented in volume [5] that resulted from an International
Conference on space structures.

It has.thus become necessary to find and analyze small lightweight
-gtructures that will be used easily to construct much larger space structures.
It would be desirable for these structures to be isotropic in nature. Howevér,
construction requirements may méke this infeasible, therefore requiring ortho-
tropic oxr possibly completely énisotropic structures. The latter is also unde-~
sirable because of the added complexity to the problem. Truss-type periodic
(repetitive) structures have recently been adnalyzed ds candidates for
space structures [5-8]. Here simplicity in comstruction coupled with laxge
stiffness to density ratios will be most desirable. However, up to now, most
of the extensive modeling and design of rod-like space structures havé been
concerned with flat structures in the form of either plates or three-dimensional
Cartesian structures [7-91.

Rod-like structures in the form of spherical domes have previously been
modaled and analyzed as candidates for many on-ground structural applications.
These are known as the geodesic domes and constitute variations on the original

spherical dome invented by Buckminster Fuller [10,117].



The flat rod-like models studied so far in [7-9] are restricted in
their possible applications to such structures as floors, ceilings and
straight walls. However, the results reported in [7-9], although presented
an initial stage in the understanding of the behavior of large space structures,
gave insight and confidence into the possible extension to the study-of more
geometrically complicated structures. Shallow shell structures have frequently
been mentioned, for example, as candidates for building compornents in commun-—
ication systems, orbiting antenna, and solar energy satellites. -

In this report we describe methods of designing and estimating the geo-
metric acecuracy of rod-like shells of revolutions. These will consist of single
surface shells in the form of either spherical or paraboloidal shells. Although
our analysis will be kept general we do this with an important application in
mind; namely the design and geometric analysis of large space antennas.

OQur ambitious aim of modeling general rod-like shallow shells of revolutions
cannot be achieved in one shot and thus has to wait until we develop further
basic understanding of some simplified special cases. Here we conceive of the
general shell to also include the cases of concentric shells with rod-iike in-
ternal and external surfaces and cores. Having analyzed the flatr rod-like
structures the immediate difficulty in the study of the corresponding curved
structures lies in the modeling (specification) of their geometry. In the
case of the flat structures the geometric arrangement is practically trivial
since most of them can be constructed by using only a few number of different
length columns. As an example, we recall that the tetrahedral model of [7]

and the octetruss model of [9] use single rod length elements.



II. LITERATURE REVIEW OF SPHERICAL GEODESIC DOMES

General Description:

The transition from a flat rod-like surface to its corresponding curved
surface introduces tremendous amounts of geometric difficulties and constrain;s.
Consider for example, the case of a (0, j;60°) flat plate arrvangement sh&wn in
figure 1. Here all rods have the same length. Xow, in trying to deform figure
1 to fit on a spherical surface for example, one finds it impossible to do so,
especially if he insists on maintaining the lengths of the members to stay the
same. In so trying one soom realizes that he does not have enocugh mathematical
tools to construct such a discrete spherical shell. The geometric constraints
encountered in counstructing rod-like shells can only be understood and utilized
if one familiarizes himself with the appropriate mathematical tools such as
geodesics, Here geodesics is defined as the technique for constructing shell-
like structures that hold themselves up without supporting columns. They could
be very light and very strong. They can alsoc be very large and hence attractive
for space as well as earth structures. The geodesic spherical bubble erscted
to house the United States exhibits at EXPO '67 in Montreal is an example which
exhibits all of the above attractive properties, Sméller geodesic domes have
also been used as cabins, offices, playgrounds, and pavillians, ete. Yet,
considering their apparent potential,_in the quarter-century since Buckminster
Fuller introduced them they have not been used very widely. This is perhaps due
to the fact that they are mathematically derived structures and their mathematics
has not been easily available. Parts for the self-supporting frame must be
fabricated to close specification. The fabrication, with today's technology,

is no problem, the problem is learning what the specifications should be.
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In developing the ggodesic dome, Fuller recognized that the equilateral
triangle was the most basic geometric structure which is also inherently very
stable and strong. By translating, rotating and piecing these triangles to-
gether one can form regular polyhedra., One specificpolyhedroen, the icosahedron,
was found to best approximate the sphere of all other polyhedronal forms.

To see how this works, consider the tweﬁty identical equilateral triangles
of figure 2a. By cuttingAalong the outer sides of this figure, wrapping it
around and comnecting the edges one gets the icosahedron of figure 2b. This
icosahedron will have twenty identical trianéular faces, twelve vertices and
thirty equal lengthed edges. MWoreover, there exists a unique sphere which
circumscribes this icosahedron and passes through its twelve vertices. If one
imagines blowing up the icosahedron to completely £ill the sphere one recognizes
that the twelve vertices maintain their original positions but the triangular
gides become spherical and lie on the sphere. ¥From the above discussions we
can conclude that the icosazhedron comstitutes a rather rough approximation of
a sphere. lBetter approximations can be obtained, however, by subdividing the
individual icosahedron trianglas into smaller ones and blowing them up to
locate their vertices on the sphere. These subdivisions are known as the
frequencies of the structure. The higher the frequency, the closer one gets
to the sphere. Upon further subdivisions, one soon realizes, however, that the
geometric constraﬁnts become endrmous (as will be shown latef, for example, the
number of different lengths is roughly in the order of the square of the
frequency). Various methods of subdividing the icosa triangles have been reported
in the literature (see, for examples [10,11]).

Simple geometric consideration will reveal that the side length L of the
icosahedron is equal to 1.051462R where R is the Qadius of the sphere circum-

sceribing it. For further discussion of the spherical geodesic dome descriptions



FIG. 2a. ICOSA TRIANGLES

FIG. 2b. ICOSAHEDRON



werrefer the reader to [10,11]. 1In what follows however, we shall treat
the geodesic spherical dome as a very special case of our intended general
modeling of rod-like spherical and paraboloidal caps.

Having identified large space shallow antennas as Important application
of our rod-like shells we here point out the insufficiency and the inflex-
ibility of the Fuller type geodesic spherical dome to meet their general

geometric requirement.. For one thing in trying to extract a complete cap of

the Fuller sphere it will be found out that such a cap will have a unique focus

to aperture diameter ratio (referred to as FOD). Thus arbitrary degrees of
cap shallowness will not be possible to model. Secondly, the number of rods
emanating from the various vertices of the subdivision triangles (once on the
sphere) will not be uniform. Specifically from each of the original twelve
icosahedron vertices there emamate five rods whéie as from-all the remaining
division vertices there emanate 5ix rodé; This nomuniformity will influence
.degree of smoothness required., Thirdly, in constructing the Fuller sphere
only the center of the sphere is used as the projection center of the sub-

divisions., Fourthly, further development and analysis will be required to

construct a Fuller type parabeloidal shell. The above unattractive properties

sub—

the

of the Fuller ‘shell will be more obvious later on in our modeling analysis once

we introduce the many nonrestrictive geometric degrees of freedom.



ITI. ANTENNAS IN THE FORM OF ROD-LIKE SHELLS OF REVOLUTION

In order to use rod-like structures as good ecandidates for building
large space antennas we must’first understand the global geometric description
of the required structure. Specifically we must know if the antenna will be a
part of a sphere, parabolid, ellipsoid or any other form of shells of revolutions.
Once this is specified, two extra parameters* such as the height, H and
the aperture radius, Rl’ of the shell cup will be enough to completely specify
the required geometry.

A typical shallow shell of revolution cap is shown in figure3a. By chang-
ing the ratio of H to Rl‘various degrees of shallowness will be realized. As
for the rod-like approximation of the cap we proceed as follows: We subdivide
the circumference of the aperture cirele into n identical segments where n is
an arbitrary integer. The points connecting these segments are numbered 2 -~
(ntl) and are then commected with thevertix point 1 (as shown for example in
figure 3b for n=8) to form an n identical sided pyramid. In terms of H and Rys the
side lengths of the individual triangular face ofrthe pyramid are given by

1/2
- &f + 8% &

[
[

L

[

, = 2R sin T )
This pyramid will then form the roughest discrete approximation of the cap.
Better approximations can be obtained, however, by subdividing the individual
original pyramid triangular faces into smaller triangles and blowing them up

to locate their vertices on the desired solid surface (ses Figures 4-6 for

procedure illustration). These subdivisions are

* If Rl and FOD are the given two parameters then H can be calculated as
1 }1

H=2F0D x Rl[l - {1 - 16(F0D}2

2
/ } for a sphere and H = R1/(16 ¥CD) for

a paraboloid,



FIG. 3a. REPRESENTATIVE DISH

FIG. 3b. PYRAMID APPROXTIMATION (n=8)
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known as the frequencies of the structure. The higher the frequency is, the
closer one gets to the required surface. TUpon further subdivisions one soon
realizes, however, that the geometric constaints become enormous. Such
complexity of thése constaints will be discussed later om in the analysis.

III. 1 Pyramid:Face Breakdown

As we mentioned earlier the pyramid represents a rather rough approxi-
mation of the required surface and that better approximations can be obtained
by subdividing the individual face triangles into smaller ones and blowing them
up so that their vertices will lie on the circumseribing surface,

There are many types of breakdown for the original face triangle. We here
mention two of them. The first is called the "alternate breakdown" in which one
draws lines parallel to the sides of the triangle. The second breakdown is
known as the "triacon" and it is obtained by drawing lines perpendicular to the

triangle's sides. Both breakdowns are illustrated in figure 7 for frequency 2,

—_——— -

ALTERNATE TRIACON

FIG. 7. TRIANGULAR BREAKDOWN (N=2)
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There are many differences between these two kinds of breakdowns; the most
obvious two are: in the alternate breakdown the original triangle edges re-
main part of the structure where, as in the triacon they do not and the second
is that the altermate breakdown is possible in all frequencies whereas only
even frequencies are possible in the case of the triacon breakdowm.

In the remaining of this report we shall concentrate on describing the
alternate breakdown; the triacon breakdown will be discussed in a later report.
Before we further discuss the form of subdivisions we shall first adept the
following appropriate coordinate system.

The n-sided pyramid is oriented in the three dimensional rectangular co-
ordinate system as shown in figure 8. The origin of this system is ¢hosen to
be the center of the sphere that circumscribes the pyramid, namely the sphere

that passes through the points l-n. In terms of H and R,, the radius R of

l’

this unique sphere is given by
R = (R;Z_ + u%)/28 . (3)

Accordingly, we choose the Z axis to pass through the vertex 1 with the X-Y
coordinates being parallel to the aperture circle, Due to the symmetry of the
pyramid faces we shall only treat a single one, namely the triangle 1,2,3 of
figure 8. The projection of this triangle (1,2,3) on the horizontal plane
circle is given by 1,2,3 and is shown together with the X-Y coordinate system
in figure 9. With this choice of coordinate system the coordinates of the

points 1,2,3 are given by

14



FIG. 8. APPROPRIATE COORDINATE SYSTEM
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(X,,Y,,2,) = (0,0,8)

T T
(XZ’YZ’ZZ) = (R._L cos(;), -’ sin(E), R-H)

(%4,75,%4) = (By cos(@), B sin(), R-E) )

3
Notice that the coordinates C_’f the point 1' are (0,0,R-H).

Accordingly, by subdividing the triangle 1,2,3 into fraquency N as shown
below in figure 10 t;e can determine_. the coordipates of the subtriangle vertices

XJJ, YI I ZI.I by the alternate subdivision rule (this rule has also been emploved

by CIintoh [10] and others).

[0

(X,-%,) (X,-X,)
. 2NX1 1 575

A I

N >
- (Y -Y,) (T,-Y,)
e . e U ey
YJJ Yl-rI N +'J N 3
(Z,-2,) (Z,~-Z,)
_ 27%) (2572,
g vl I 5 , (5)

where I and J are integers such that

0<I<I=<N

Notice from figure 10 that the distance between each two neighboring vertices
along the 1,2 and 1,3 sides is constant and is equal to ;;l and that the distance
between each two neighboring '\-rertices along the 2-3 side is a constant equal
to -;—2- . Now, since the coordinates of each vertex are kmown, its distance D

from the origin (0,0,0),-for example, is given by

IJ

el 2 2
DIJ (xm + Ym + zm) (63

17
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FIG.10. BREAKDOWN NUMBERING
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IIT.2 Projections on Spherical “and Iﬁgéboloidal'Surfapgg

In what follows we shall concentrate our efforts on developing discrete
surfaces of spherical and paraboloidal cap surfaces. Simple geometric con-
sideration will rewveal that the equation of the sphere that passas through

the vertices l-n of the pyramid is given by,

2 2 2 2

T +%Y +72 =R (N
As for theparaboloid that passes through the points l1-n, the appropriate
equation is

2
2 2 ;}-(R—Z) (8)

(see sketch of figure 11 as an illustration of the paraboloid surface) . A
schematic comparison of both the spherical and paraboloidal surfaces is shown
in figure 12,

IIT.3 Projection Centers

=~ If the projection of the point (XIJ, YIJ’
s s s '

I7° YIJ’ ZIJ)’ then the location of the points on the surface

will depend upon their origin of projection. TIn what follows we shall leave

ZIJ} on the required surface

is designated as (¥

the location of such a center arbitrary, namely (XP, Y., ZP).

s s
1J° YIJ’

(XP’ pY ZP) and (XIJ’ Yo ZIJ) by a straight line and extending it to

The points (X Z;J) can be obtained by connecting the points
intersect the required solid surface. Accordingly, the equation of this

straight line is

8 s s A_ for a sphere
% Y _Zgt ]S (9)
XIJ_XP YIJ"YP ZIJ—ZP Ap for' a paraboloid

19
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FIG. 12. COMPARISON OF PARABOLIDAL AND SPHERICAL SURFACES
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Once the specific surface (sphere or paraboloid) is specified. equation (9)

can be solved for X?J’ Y;J’ ZiJ individually in terms of the remaining

quantities. TFor example, we obtain

S —1 —
L1y = %) + 5 - (10)
for a paraholoidal surface. - Similar expressions for YiJ and Zi can be as

J

S ¥ and Zs into

s
IJ* TI1J iJ
the appropriate equation of required solid (equation (7) for the sphere and (8)

easily obtained. Tinally, substituting the resulting X

for the paraboloid) one obtains the following equatioms for AS and AP, respectively.

2 2 2 2
ls[(XIJ_XP) Ty Yp)T o+ (Egy-Zp) ]

+ l:s;[zx?(XIJ—XP) A (T T,) + 2ZP(ZIJ“ZP)}

J—[X% + Yg + zg - R2]= 0 (ONY)
2 2 2
AP[(XIJ_XP) + (YY) ]
2
* J‘P[ZXP(XIJ'XP) T2y Yp) g (ZIJ_ZP)]
2
2 + 2 - gaez]- 0 ‘ a2)

Each of equations (11) and (12) admits two solution. Recognizing that the

cap is totally located above the loecztion Z=0 we choose that A which gives

s

Zr3 >

0.
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ITI. 4 Geometric Description of Fregquency N Caps

We are now in a stage where we can qualitatively describe the geometric
make-up of a cap of any alternate frequency N. Here every pyramid face tri-
angle has the number of subdivision faces Sy given by (see, for example

figure 13 withN=6 for illustration)
N-1
= 7 () = N (13)

m=0

¢

Hence the total number of faces in the whole cap, st is

5p = ¥ (14)
Now since from (13) each of the 1’*12 subtriangles has three sides and since
each side is shared by two neighboring triangles, one has the total number,
L, of columns to build an isolated single pyramid triangle

g = %‘3 (1) (15)

Accordingly, the total number, L, of elements required for the total cap is
L= -gﬂ (1-+3N) (16)

Hence, an effective mumber of elements per each of the original pyramid tri-
angles will be L/n, TFinally, the total number, v, of vertices im the whole
cap is
nil
v=11+ 5 (N+1) 17)

ITT. 5- Chord Factors

Having derived expressions for the total number of members required to
build the cap we now indicate that not all of these members are either equal
or different in lengths. Knowing the minimum number, m, of different lengths
(also known as the chord factors)is of most importance. Accordingly we now

proceed to develop formulas f8rsuch a number. Generally speaking, once on
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the required surface the distances between neighboring vertices will not

retain their criginal lengths. This is because of the "stretching" required

to project them on the surface. In fact, these lengths will be dependent upon
their original locations on the pyramid face triangle. Various symmetry relations
will lead tO'deriviﬁg exact relations for the number of chord factors, m, re~
duired to build a given antenna., These relations are functions of the frequency
N and the projection center (XP’ Y, ZP) but interestingly are independent,

except for a spherical surface with n=5 (see formulas below), of m (the number

of the sides of the origimal pyramid). These relations are listed as:

(a) TFor aparaboloidal surface with projection center (O,O,ZP) where Z_ is an

P

arbitrary variable

m =-§-N2 + N +-%-, (N odd, see Fig. 14 for illustrative symmetry) (18)
. 3.2 ) . . .
™ =-Z-N + N, (N even, see Fig, 15 for illustrative symmetry) . (19

{(b) TFor a spherical surface we have the following formulas depending upon the
projection center and n

(i) center of projection (0,0,0) and n#5

i =-% Nz +-§ +'% , (N odd, see Fig. 16 for illustrative symmetry) (20)
3.2 W s . : .
n =7 N +5 (N even, see Fig. 17 for illustrative symmetry) (21)

(ii) center of projection (0,0,0), n=5 and L =1L, (Fuller's case)

m = {(N+l)2 - 1] , (N even and notmultiple of 3), (see Fig, 18 for

£

illustrative gymmetry) (22)
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% (N+1)2 , (N odd and not multiple of 3), (see Fig. 19 for illustrative

)
il

symmetry) _ (23)
m =-1§ (%I. + 1) , (N multiple of 3), (see Fig. 20 for illustrative Symmetry)
(24)
(iii) center of projection (0,0,Z.), with Zp #0

m = % NZ + N +% » (N odd, see Fig. 14 for illustrative symmetry) (25)

m = % N2 + N, (N even, see Fig. 15 for illustrative symmetry) (26)
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FIG. 20. NUMBER OF CHORD FACTORS AS PREDICTED BY EQUATION (24)
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III. 6 Normal Projections from the Intersections of 0, j:600 Array

An interesting special case of our modeling subdivision and blowing can
be obtained by choosing the vertexl' whose coordinates are (0,0,R-H) rather
than the vertex 1 whose cooxrdinatesare (0,0,R)for our reference "pyramid".
If subsequently we project, for any frequency N, from the center (O,O,ZP)
with ZP - o we obtain the results for the case where normal projections are
carried out from each of the intersection of 0, + 60° flat array to meet the
surface 6f the solié (see figure 21 for complete.procedure illustration).

Exact results for this special case can also be obtained as follows:
by setting Xl =0, ¥, =0 and Z, = R-ﬁ in 'equation (4) we adapt it to the 0,

1 1

j;60° flat array subdivision of the aperture circle, For every point (X

1J°
YIJ’ZIJ) we raise a2 normal to the flat array which meets the required surface
at the point (XEJ,Y;J,ZiJ) which is uniquely determined once the surface is

specified as follows: For the sphere one has

VrZ(x2 472 ) (23)

s 8 5 , _
Crpo iy Zp = Gl ISR RRSN
and for the paraboloid ome has
S S .5y _ il 2,2 .
Erp¥rplyy = Gppip R -5 Gt ) (24)

?

Once the points on the s;rface are specified the calculations follows exactly
the steps of the altermate breakdown outlined above.

As will be shown numerically later on both the results of the exact procedure
of equations (23).and (24) will be-indistinguishable, as far as member lengths
and smoothness are concerned from the limiting case.of the alternate breakdown
with the projection center {O,O,ZP) Wi£h ZP - ©, 1t will alsoc be shown that the

number of chord factors will dramatically decrease for the "normal projection"
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FIG. 21. PROCEDURE ILLUSTRATION OF SUBDIVISION AND -
NORMATL, PROJECTION BLOWING (n=6, N=7, FOD = 0.25)
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modeling especially for the case of the paraboloid surface.

IIT,-7- Measure of Smoothness

As we mentioned earlier the higher the frequency N is,the better the
discrete system will approximate the required solid surface. An important
measure of such approximation {(smoothness) ies the magnitude of the maximum
distance between the subdivision triangles and solid surface. We refer to this
measure as §. It is obvious that for a given cap geometry the value of § will
decrease with increasing frequency. It is also obvious that § will decrease
with increasing n, In order to determine §, we proceed as follows.

Generally speaking the equation of a flat plane P passing through the

three arbitrary points (Xl,Yl,Zl), (XZ’YZ’ZZ) and (X,,Y ZB) is given by

3*73?
X Y Z 1
X Y Z 1
1 1 1 - R
=0 (25)
X2 Y2 Z2 1
X3 YB 23 1
or equivalently by
AX+BY+CZ+D=20 (26a)
where
Yl Zl 1 Xl Zl 1
A= Y2 Z2 11, B = - X2 22 1 {26b,c)
Y3 23 1 X3 23 1
Xl Yl 1 Xl Yl Zl
c=|x, Y, 1], D=-[X%, Y, Z, (26d,e)
XB Y3 1 X3 Y3 23
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Let us suppose that another curved surface S (such as a paraboloid for
example) Passes through these three points. The maximum distance between the
plane P and the surface S (see figure 22) is the normal distance between the
plane P. and the tangent plane T to S which is parallel to P; this distance

iz shown as Nl, N2 in figure 22 ., The directions ratio of Nl N2 are given by

A:B:C (27)
since Nl NZ ig perpendicular to the plames P and T. TUsing the above analvsis,
we can determine the maximum derivation for any surface, particularly those of

the spherical and paraboleidal as follows

Spherical Surfaca:

The equation of spherical surface is given by (see equation 7).

%%+ Y2 + 72 = »2 (28)

Accordingly the direction cosines of any perpendicular to this surface are

given by:

9F . 8F . OF

3 S S Y7 (29)
where the function F is given by
F = (X2 + Y2 + 22 - Rz) (30)

At the particular point Nz (the parallel tangent point), these direction ratios

must be the same as thoseof (27); this implies

9F | 9F . 9F _

"% ' 3y 3z - A : B : C (31)
which from (30) vields
A B :+ C=X : Y : Z (32

== e === ) (33)
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where A is to be determined. Substituting from (33) into (28) we determine

the coordinates of the point Nz = (XB3 YB, ZBI as

XB = A/x , YB = B/x , zB = C/A (34)

and hence A is given by

2 2 1/2

A=(A2+B +¢7) /R (35)

Now, the maximum distance & between the plane P and the surface

of the sphere is given by the distance between the point N, and the plane P

2

which is known as

B B __B

32 4+ 8%+ 2

‘Patraboloidal "Surface: -

For the parabolidal surface the function F is given by

F=(X2+Y2+Eiz-§x-§)- S (37>
H H ’

Using the same analysis used for the sphere one gets

5T oF 3F _ . .
= 3¢ T gz A ¢ B : C (38)

or equivalently

A B C
SA_E2 £  _ (39)
22y Ri/H
Accordingly the coordinates of the point NZ are given by
2 2
B B
2eyen, Peneny, Pox LE)IE) ] (40)
R
where A is given 'by 1
A= HC'/fRi (41)

The maximum derivation can again be calculated using the formula 36,
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IV, COMPUTER CODE CALCULATIONS

A general purpose computer code has been written in order to model discrete
rod—iike shells of revolutions as outlined above. This code contains many possible
combinations of design parameters which we have mentioned in our analysis. The
code also contains a general and Sélf sufficient graphical subroutine. To see how
both the computational (modeling) and graphical codes work we have first to defime
their parameters and then proceed to study their flow chart. The graphical subroutine

is described in Appendix A.
Input Parameters:

F¢D = focus to aperture dismeter ratio.
AP=D = aperture diameter,
NS=n = Aumber of equal subdivisions of aperture circle.

1  Sphere
LT = Shell type:
2 Paraboloid

(XP, YP, ZP) = Coozrdinates of the center of projection.

1 B8ingle center of projection method
LN = Design control card:
2 Normal projection method

N = frequency of subdivision

AAY . AAZ, AA3 = Gys Uy, Oy = Fuler's angles

EPSL = constant used in the parametric study of chord factors.

Calculated Parameters:

Rl = AP/2 = radius of the aperture circle
H = Hheight of the cap
(x1, ¥1, z1) , (X2, Y2, Z2) , (X3, Y3, Z3) are the coordindates of the represent-

ative triangle face (1,2,3) (see Sketch 1).
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1 (xi, i, 21)

EL1 EL1

(X2, Y2, 22) 2 EL2 3 (X3, ¥3, 23)
Triangular Face
SKETCH I
ELl, EL2, o properties of the triangular face.
XS(E,J), YS(I,Jj, ZS(I,J) coordinates of the projected point on the
surface of the cap.
D1(I,J), D2(I,J), D3(I,J) the side lengths of the subtriangles.
G(I)=m = different chord lengths.

GG(I) = different normalized chord factors.

GGMX = length of the longest chord.
GGMN = lenth of the minimum chord.
IE=m = numerical number of the chord factors.

NFFZm = analyticdal mumber of the chord factors.
IMN = numerical number of the parameterized chord factors for.a given EPSL,
GN(LMN) = parameterized chord Ffactors.

XMAX=S8 = maximum deviation.
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GIVEN: TFOD, AP, WS, LT, LV, ¥,
X®, YP, 2P, Al, A2, a3,
EPSL

FOD, AP : RL, H, R

%, ¥, Z1
2, 12, 22
%3, Y3, 23

IN=1 ‘LN='2;

@, P, zP o
¥
¥
—
, 1 ) 1
ILT==1‘ ILT=~2| |L1‘=1] ILT=2I
L4
(I,D
Tozer,n
v
MEASURE OF
SMOOTHNESS LI, 3, D2(I,N, B3(L,T PLOTTING
T v
e(1), 66(D), IX
GOMK, GOMN
-
PARAMETAIC -STUDY
EPSL
h .4

LMY, GN(LMN)

COMPUTER PROGRAM FLGW CHART

42



WE INTEND TO SUBMIT THE COMPUTER PROGRAM TO
COSMIC. IN THE MEANWHILE THE PROGRAM WILIL:

BE AVAILABLE ¥FROM THE AUTHORS.



V. TJTLLUSTRATIVE RESULIS

The utility of our general computer program will be demonstrated by
generating necessary design ﬁarameters of discrete large space antenna re—
flectors. Specifically we determine the shape and size of flat segmented sur-
faces which approximate spherical and paraboloidal reflector surfaces. Our
results will also be displayed in the form of compressions between the spherical
and paraboloidal designs. Results will be presented for a wide range of pro-
portions; focus-to-~diameter (F/D) radius from .25 to 1 which go all the way
from a hemisphere to a very shallow dish. Other important parameters which
may vary are the number of pyramid faces, n, the frequency of subdivision, N
and the aperture diameter D.

We have carried our numerical calculation on an antenna with the common
fixed properties D = 100m, n = 6 and ¥ = 10 and the variable properties FOD
and the cenfer of projection. In Figure 23, a plot %f Lmax and Lmin for both
spherical and paraboloidal dishes showm éé fﬁnctibns of FOD for two differ- .
ent projection centers namely the center of the sphere (0,0,0) and (0,0, —106R)

(this second projection center is equivalent to the normal projection method of

Section ITI.6).Tn Figure 24 various plots of imln

max
for the three projection centers (0,0,R-H), (0,0,0) and (0,0, —lOsR). In Figure

are shown as functions of FOD

. . min
25 a wvariation of T
max

for the paraboloidal surface. As may be seen, the best projection center is that

h

as a function of projection center is depicted for FOD = 1

min

which is around (0,0, -R) where = .985. The corresponding results for
max

FOD = 0.25 and for a spherical surface is shown in Figure 26. The variation of
§ as a function of frequency N is shown in Figure 30 for varicus FOD values
for both spherical and paraboloidal surfaces.

The variation of § with FOD is shown in Figure 29 for various projection

centers. ¥inally a variation of Lmln

max
paraboloidal dish) is shown in Figure 28 for two different projection centers.

as a function of n (for an FOD = 1
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min
L
max

with the projection center being (0,0,0). The variation of this max value

As may be easily seen from this figure the can be obtained for n = 6

of =) with the frequency is shown in Figure 27. Varying the frequency
max

will alter very slightly this wvalue.
From the above figures one can eagily draw the conclusion that the

max

increases with increasing FOD where both the spherical and the paraboloidal
min

dishes are practically indistinguishable. On the other hand for lower FOD it
Lmax
L,
min
Finally, for the plotting illustrations wedepict in figures 31 and 32 plots

appears that is much higher for the paraboloid as compared with the sphere.

of a variety of dishes., On each plot we list the necessary parameters used.
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0.96 NORMAL PROJECTION

Loin 0.94 |
Lmax
0.92
0.90 |
| | \ | { 1 i
2R 0 ~-2R -4R -6R -8R -10R -12R
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FIG., 25. VARIATION OF Lm FOR A PARABOLOIDAIL DISH AS A
max
FUNCTION OF PROJECTION CENTER (FOD = 1.0, n=6, N=10,
D=100m)
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I
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FIG. 26. VARTIATION OF Lgln FOR A SPHERICAL DISH AS A FUNCTION
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OF PROJECTION CENTER (FOD=0.25, n=6, N=10, D=100m)
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FIG. 27. VARIATION OF —2 WITH FREQUENCY FOR
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FOR A VARIETY OF PROJECTION CENTERS (n=6, N=10,
D=100m)
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APPENDIX A
A computer program is written so that we can graphically illustrate
the cap's discrete surfaces for any three-dimensional orientation., Due to
the rotational symmetry about the gz~axis we draw all of the cap once we know

how to draw ome of the pyramid's face triangles.

1y L@

Let (X s T, Z(l)) be the coordinates of a point in the first tri-

angle face of figure Al, The coordinates of the corresponding points on

the adjacent faces (counterclockwise) will be Qx(z), Y(2)’ 2(2)),

CK(3), Y(B), Z(3)), —_— Cx(n),'r(n), z(n))’ respectively, (see fig. Al}.
® _,@ ., ® ()

Notice also that Z = Z =7 = . 7277, Let us use polar coordinates;
the the point CX(m},'T(m), Z(m)) can be written in polar form (while suppressing

. the z~coordinate) as

X(m) + ffgm) = reieei(mfl)é (AL)
where m = 1,2,3, ...n
§ =20 (a2)

Now suppose that we introduce a new system of axes‘i, Y and Z (see fig. A2) which

is fixed in the body of the cap but moves with it.- Also suppose we give to the

cap any orientation with respect to the fixed system of axes X, Y and Z,

We: must choose the origin, o, of the system X, Y and Z to be the same as the
origin, .o of the system ¥, v and gz By projecting the cap in the (X-7)

plane or the (¥-Z) plane, we obtain a view of the cap in a required orientation.
The question is knowing the values of Ei’ §i and Ei for a specific point what
would be the corresponding values of Xi’ Yi and Zi' This can be done by referring

to the Eulers angles. First let us fix our system of axes in space ¥,Y and Z.

Then we start our orientation process by letting (X, Y and z) which are fixed
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FIG., Al. LOCATIONS OF POINTS ON THE SOLID SURFACE
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in the body of the cap coincide with the fixed system X, Y and Z., At
this stage, we start to rotate the body around the Z axes with an angle Uy
{see figure (A3)). To make it easier to jllustrate let us use the notation
n, which represent unit vectors along the direction of.the fixed axes in the
body before rotation and let Eil) represent unit vectors along the direction

of the axes after this first rotation. The relation between these unit vectors

are given by

i 1 1 rr.'.osom —-sino (? ’—_ (1)-
™ 1 1 ™
52 = sinal cosay 0 Eél) {A3)
= ¥ =L
n, 0 0 ﬂ _n3 |

-(1) .

Now, let us rotate the body at the new position cf X, i.e. around 0y, with

an' angle o, to obtain a new set of axes Eiz) related to the preceding

2
by
r— - — o p— —
] [t - (2)
ny 0 0 oy
-4 = . =(2)
o, — 10 cose, =-sina,iin, (AL)
.E(l) 0 sina cosa ﬁ(z)
3 2 2 23
To end our process of orientation, let us rotate the body about the
new position of Z, i.e. around Eéz), with an angle Gy to obtain the final set

-(3 . P =B =B =B .
of axes né ). One notices that this is the set of axes X', ¥ and Z which
is fiwxed in the cap and one also notices that the coordinates of any point
on the caplssurface with respect to .that set of axes are known and related

to the preceding by
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hﬁéz; cosa, —sino;3 0 553)
552) = sin&3 cosa, 0 523) (A5)
_5§2)_. o o 1|35
So, accordingly we finally obtain the relation
R - r ar ar .
Xi cosay —sinul 011 0 0 cost, -sina3 0 Xy
Yi == sinml cosa, Ofjto cosa., --sina2 sina3 coscy 0 fi
Zi 0 0 i{]o s:'mm2 cosa, B 0 . 0 {_El_
(46)
or equivalently is
Xi = (cosalcosa3 - sinmlcoshgzsino_tzsﬁi )
+ (- cosalsina3 - sinafosqfoaﬁ)fi
+ (sinalsinaz)zi (A7)
X, = Csinalcasa3 + cosalcosazsinu3)§i
+ (- sinul s;na3 + cosalcosazcosu3)§i
. + (—cosalsinuz)fi _ (A8)
Zi = (sinuzsina3)§i + (sinazcosa3)§i + cosazfi. {A9)

. 80, for different values for the angles Cys O and uq, OTNe can obtain different
view from different angles to the cap. Some results of our plottings are

illustrated in figures 3L.and 32, for both spherical and paraboloidal caps.
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