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ABSTRACT'
 

The application of geometrical schemes similar to those of Buckminster
 

Fuller's geodesic dome to large sphere antenna reflectors has been investi­

gated. The purpose of these studies is to determine the shape and size of
 

flat segmented surfaces which approximate general shells of revolution and
 

in particular spherical and paraboloidal reflective surfaces. The extensive
 

mathematical and computational geometry analyses of the reflector have re­

sulted in the development of a general purpose computer program. This pro­

gram is capable of generating the complete design parameters of the dish and
 

can meet stringent accuracy requirements. The computer program also includes
 

a graphical "self contained" subroutine which enables one to graphically
 

display the required design. 
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I. INTRODUCTION
 

The last decade has witnessed a dramatic increase in the research activities
 

dealing with the possibility of utilizing space for various commercial and
 

scientific needs. In several recent issues of Astronautics and Aeronautics
 

(see, for example, [1-4]), many articles have appeared which deal with diverse
 

aspects of large space structures. These articles have identified various
 

applications and also proposed novel designs of structures to meet such
 

applications. A review of the research activities on space structures prior
 

to 1966 has been documented in volume [5] that resulted from an International
 

Conference on space structures.
 

It has thus become necessary to find and analyze small lightweight 

-structures that will be used easily to construct much larger space structures. 

It would be desirable for these structures to be isotropic in nature. However, 

construction requirements may make this infeasible, therefore requiring ortho­

tropic or possibly completely anisotropic structures. The latter is also unde­

sirable because of the added complexity to the problem. Truss-type periodic
 

(repetitive) structures have recently been inalyzed'as candidates for
 

space structures [5-8]. Here simplicity in construction coupled with large
 

stiffness to density ratios will be most desirable. However, up to now, most
 

of the extensive modeling and design of rod-like space structures have been
 

concerned with flat structures in the form of either plates or three-dimensional
 

Cartesian structures [7-9].
 

Rod-like structures in the form of spherical domes have previously been
 

modeled and analyzed as candidates for many on-ground structural applications.
 

These are known as the geodesic domes and constitute variations on the original
 

spherical dome invented by Buckminster Fuller [10,11]. 

1 



The flat rod-like models studied so far in [7-9] are restricted in
 

their possible applications to such structures as floors, ceilings and
 

straight walls. However, the results reported in [7-9], although presented
 

an initial stage in the understanding of the behavior of large space structures,
 

gave insight and confidence into the possible extension to the study-of more
 

geometrically complicated structures. Shallow shell structures have frequently
 

been mentioned, for example, as candidates for building components in commun­

ication systems, orbiting antenna, and solar energy satellites.
 

In this report we describe methods of designing and estimating the geo­

metric accuracy of rod-like shells of revolutions. These will consist of single
 

surface shells in the form of either spherical or paraboloidal shells. Although
 

our analysis will be kept general we do this with an important application in
 

mind; namely the design and geometric analysis of large space antennas.
 

Our ambitious aim of modeling general rod-like shallow shells of revolutions
 

cannot be achieved in one shot and thus has to wait until we develop further
 

basic understanding of some simplified special cases. Here we conceive of the
 

general shell to also include the cases of concentric shells with rod-like in­

ternal and external surfaces and cores. Having analyzed the flat rod-like
 

structures the immediate difficulty in the study of the corresponding curved
 

structures lies-in the modeling (specification) of their geometry. In the
 

case of the flat structures the geometric arrangement is practically trivial
 

since most of them can be constructed by using only a few number of different
 

length columns. As an example, we recall that the tetrahedral model of [7]
 

and the-octetruss model of [9] use single rod length elements.
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II. LITERATURE REVIEW OF SPHERICAL GEODESIC DOMES
 

General Description:
 

The transition from a flat rod-like surface to its corresponding curved 

surface introduces tremendous amounts of geometric difficulties and constraints. 

Consider for example, the case of a (0, + 600) flat plate arrangement shown in 

figure 1. Here all rods have the same length. Now, in trying to deform figure 

1 to fit on a spherical surface for example, one finds it impossible to do so, 

especially if he insists on maintaining the lengths of the members to stay the 

same. In so trying one soon realizes that he does not have enough mathematical 

tools to construct such a discrete spherical shell. The geometric constraints 

encountered in constructing rod-like shells can only be understood and utilized
 

if one familiarizes himself with the appropriate mathematical tools such as 

geodesics. Here geodesics is defined as the technique for constructing shell­

like structures that hold themselves up without supporting columns. They could 

be very light and very strong. They can also be very large and hence attractive 

for space as well as earth structures. The geodesic spherical bubble erected 

to house the United States exhibits at EXPO '67 in Montreal is an example which 

exhibits all of the above attractive properties. Smaller geodesic domes have 

also been used as cabins, offices, playgrounds, and pavillians, etc. Yet, 

considering their apparent potential, in the quarter-century since Buckminster 

Fuller introduced them they have not been used very widely. This is perhaps due 

to the fact that they are mathematically derived structures and their mathematics 

has not been easily available. Parts for the self-supporting frame must be 

fabricated to close specificationr. The fabrication, with today's technology, 

is no problem, the problem is learning what the specifications should be. 
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In developing the geodesic dome, Fuller recognized that the equilateral
 

triangle was the most basic geometric structure which is also inherently very
 

stable and strong. By translating, rotating and piecing these triangles to­

gether one can form regular polyhedra. One specific polyhedron, the icosahedron,
 

was found to best approximate the sphere of all other yolyhedronal forms.
 

To see how this works, consider the twenty identical equilateral triangles
 

of figure 2a. By cutting along the outer sides of this figure, wrapping it
 

around and connecting the edges one gets the icosahedron of figure 2b. This
 

icosahedron will have twenty identical triangular faces, twelve vertices and
 

thirty equal lengthed edges. Moreover, there exists a unique sphere which
 

circumscribes this icosahedron and passes through its twelve vertices. If one
 

imagines blowing up the icosahedron to completely fill the sphere one recognizes
 

that the twelve vertices maintain their original positions but the triangular 

sides become spherical and lie on the sphere. From the above discussions we 

can conclude that the icosahedron constitutes a rather rough approximation of 

a sphere. Better approximations can be obtained, however, by subdividing the 

individual icosahedron triangles into smaller ones and blowing them up to 

locate their vertices on the sphere. These subdivisions are known as the 

frequencies of the structure. The higher the frequency, the closer one gets
 

to the sphere. Upon further subdivisions, one soon realizes, however, that the
 

geometric constraints become endrmous (as will be shown later, for example, the
 

number of different lengths is-roughly in the order of the square of the
 

frequency). Various methods of subdividing the icosa triangles have been reported
 

in the literature (see, for examples [10,11]).
 

Simple geometric consideration will reveal that the side length L of the
 

icosahedron is equal to 1.051462R where R is the radius of the sphere circum­

scribing it. For further-discussion of the spherical geodesic dome descriptions
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FIG. 2a. ICOSA TRIANGLES
 

FIG. 2b. ICOSAHEDRON
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we-refer the reader to [10,11]. In what follows however, we shall treat
 

the geodesic spherical dome as a very special case of our intended general
 

modeling of rod-like spherical and paraboloidal caps.
 

Having identified large space shallow antennas as important application
 

of our rod-like shells we here point out the insufficiency and the inflex­

ibility of the Fuller type geodesic spherical dome to meet their general
 

geometric requirement.. For one thing in trying to extract a complete cap of
 

the Fuller sphere it will be found out that such a cap will have a unique focus 

to aperture diameter ratio (referred to as FOD). Thus arbitrary degrees of
 

cap shallowness will not be possible to model. Secondly, the number of rods
 

emanating from the various vertices of the subdivision triangles (once on the
 

sphere) will not be uniform. Specifically from each of the original twelve
 

icosahedron vertices thereemanate five rods where as from all the remaining sub­

division vertices there emanate ix rod's. This nonuniformity will influence the 

,.degree of smoothness required. Thirdly, in constructing the Fuller sphere
 

only the center of the sphere is used as the projection center of the sub­

divisions. Fourthly, further development and analysis will be required to 

construct a Fuller type paraboloidal shell. The above unattractive properties 

of the Fuller shell will be more obvious later on in our modeling analysis once 

we introduce the many nonrestrictive geometric degrees of freedom, 
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III. ANTENNAS IN THE FORM OF ROD-LIKE SHELLS OF REVOLUTION 

In order to use rod-like structures as good candidates for building
 

large space antennas we must first understand the global geometric description
 

of the required structure. Specifically we must know if the antenna will be a
 

part of a sphere, parabolid, ellipsoid or any other -form of shells of revolutions.
 

Once this is specified, two extra parameters such as the height, H and
 

the aperture radius, Rl, of the shell cup will be enough to completely specify
 

the required geometry.
 

A typical shallow shell of revolution cap is shown in figure 3a. By chang­

ing the ratio of H to R various degrees of shallowness will be realized. As 

for the rod-like approximation of the cap we proceed as follows: We subdivide 

the circumference of the aperture circle into n identical segments where n is 

an arbitrary integer. The points connecting these segments are numbered 2 ­

(n+l) and are then connected with thevertix point 1 (as shown for example in 

figure3b for n=8) to form an n identical sided pyramid. In terms of H and k, the 

side lengths of the individual triangular face oftthe pyramid are given by
 

1/2
 

L= (R2 + H2) (1)
 

L2 2, sin- (2)
 
L 2 
 n 

This pyramid will then form the roughest discrete approximation of the cap. 

Better approximations can be obtained, however, by subdividing the individual
 

original pyramid triangular faces into smaller triangles and blowing them up
 

to locate their vertices on the desired solid surface (see Figures 4-6 for 

procedure illustration). These subdivisions are
 

If R, and FOD are the given two parameters then H can be calculated as 

H = 2 FOD x Rl - { - 1 1/2 for a sphere and H = 1 /(16 FOD) for

16(FOD) 2
 

a paraboloid.
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FIG. 3a. REPRESENTATIVE DISH 

Ri
 

a La 3 

FIG. 3b. PYRAMID APPROXIMATION (n=8) 
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PYRAMID
 

PYRAMID
 

SUBDIVISION
 

FINAL SPHERICAL
 
SHAPE
 

FIG. 4. PROCEDURE ILLUSTRATION OF SUBDIVISION AND
 
BLOWING (n=6, N=7, FOD = 0.25)
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PYRAMID
 

PYRAMID
 
SUBDIVISION
 

FINAL PARABOLOIDAL
 
SHAPE
 

FIG. 5. PROCEDURE ILLUSTRATION OF SUBDIVISION AND BLOWING 
(n=6, N=7, FOD = 0.25) 
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PYRAMID
 

FINAL PARABOLOIDAL SHAPE
 

FIG. 6. PROCEDURE ILLUSTRATION OF SUBDIVISION AND BLOWING
 
(n=8, N=7, FOD = 0.25)
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known as the frequencies of the structure. The higher the frequency is, the
 

closer one gets to the required surface. Upon further subdivisions one soon
 

realizes, however, that the geometric constaints become enormous. Such
 

complexity of these constaints will be discussed later on in the analysis.
 

III. 	 1 Pyramiid Face Breakdown 

As we mentioned earlier the pyramid represents a rather rough approxi­

mation of the required surface and that better approximations can be obtained 

by subdividing the individual face triangles into smaller ones and blowing them
 

up so that their vertices will lie on the circumscribing sutface.
 

There are many types of breakdown for the original face triangle. We here 

mention two of them. The first is called the "alternate breakdown" in which one 

draws lines parallel to the sides of the triangle. The second breakdown is
 

known as the "triacon" and it is obtained by drawing lines perpendicular to the
 

triangle's sides. Both breakdowns are illustrated in figure 7 for frequency 2.
 

/' 

ALTERNATE 	 TRIACON
 

FIG. 7. TRIANGULAR BREAKDOWN (N=2)
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There are many differences between these two kinds of breakdowns; the most
 

obvious two are: in the alternate breakdown the original triangle edges re­

main part of the structure where, as in the triacon they do not and the second
 

is that the alternate breakdown is possible in all frequencies whereas only
 

even frequencies are possible in the case of the triacon breakdown.
 

In the remaining of this report we shall concentrate on describing the
 

alternate breakdown; the triacon breakdown will be discussed in a later report.
 

Before we further discuss the form of subdivisions we shall first adopt the
 

following appropriate coordinate system.
 

The n-sided pyramid is oriented in the three dimensional rectangular co­

ordinate system as shown in figure 8. The origin of this system is dhosen to
 

be the center of the sphere that circumscribes the pyramid, namely the sphere
 

that passes through the points 1-n. In terms of H and R1 , the radius R of
 

this unique sphere is given by
 

R = (R2 + H2 )/2H (3)
 

Accordingly, we choose the Z axis to pass through the vertex 1 with the X-Y
 

coordinates being parallel to the aperture circle. Due to the symmetry of the
 

pyramid faces we shall only treat a single one, namely the triangle 1,2,3 of
 

figure 8. The projection of this triangle (1,2,3) on the horizontal plane
 

circle is given by 1,2,3 and is shown together with the X-Y coordinate system
 

in figure 9. With this choice of coordinate system the coordinates of the
 

points 1,2,3 are given by
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fof2 3. 

FIG. 8. APPROPRIATE COORDINATE SYSTEM
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> y
 

Vx 
FIG. 9. 	PROJECTION OF TRIANGLE 1,2,3 of FIG. 8
 

ON THE HORIZONTAL PLANE
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(X1 ,Yl,Z 1 ) = (0,0,R) 

(X2,Y2 Z) Co(!,-R sin(-), S-H) 

(X3,Y3,Z) = ~cos(.), R, stn&Z), a-H) (4) 

Notice that the coordinates of the point V2 are (0,0,5-H).
 

Accordingly, by subdividing the triangle 1,2,3 into frequency N as 
shown 

below in figure 10we can determine the coordinates of the subtriangle vertices 

2jj, YIJ ZI by the alternate subdivision rule (this rule has also been employed 

by Ointoh [10J and others). 

(X2-Y (X3-x 2)

N N
 

(Y -YI) ( 3 -Y2 ) 
Y1 + I N
YJJ 


z ~ (Z2-ZI -(Z 3-Z2) 

ZiJ z + I N + X (5) 

where I and J are integers such that 

0<I<I<N 

Notice from figure 10 that the distance between each to neighboring vertices 
LI.
 

along the 1,2' and 1,3 sides is constant and is equal to L--and that the distance
 

between each two neighboring vertices along the 2-3 side is a constant equal 

to L2 . Now, since the coordinates of each vertex are known, its distance D
 

from the origin (0,0,0),-far example, is given-by
 

22 1/2 
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FIG.10. BREAKDOWN NUMBERING 
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111.2 	Projectibns on Sphetical'and Paiboloidal'Surfaces
 

In what follows we shall concentrate our efforts on developing discrete
 

surfaces of spherical and paraboloidal cap surfaces. Simple geometric con­

sideration will reveal that the equation of the sphere that passes through
 

the vertices 1-n of the pyramid is given by. 

2 2 2 2(7 
X + 7 + z = R (7) 

As for theparaboloid that passes through the points 1-n, the appropriate
 

equation is
 

2 2
 
x + = (R-Z)
 

(see sketch of figure llas an illustration of the paraboloid surface), A
 

schematic comparison of both the spherical and paraboloidal surfaces is shown
 

in figure 12,
 

111.3 	Projection Centers
 

- If the projection of the point (XIV YIJ, ZIJ) on the required surface
 , 


i d 	s s
is designated as (X i, YIJ" ZIJ), then the location of the points on the surface 

will 	depend upon their origin of projection. In what follows we shall leave
 

the location of such a center arbitrary, namely (%, Yp, Zp). 

The points (X j YIJ, Z J) can be obtained by connecting the points
, 


(X2 , 	Yp, Zp) and (XIV YIV ZIJ) by a straight line and extending it to
 

intersect the required solid surface. Accordingly, the equation of this
 

straight line is
 

X__ - YJXP = zs~ for a sphereY sIJ-YP IJ-ZP=(9fX 
XIJ- YIj-Yp Z j-Z 2 X for'a paraboloid (9) 
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4-(0,o0,R)
 

FIG. 11. EXAMPLE OF THE PARABOLOIDAL SURFACE THAT 
CIRCUMSCRIBES THE PYRAMID
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SPHERICAL PARABOLOIDAL
 
SURFACE SURFACE
 

0 H
 

FIG. 12. COMPARISON OF PARABOLIDAL AND SPHERICAL SURFACES
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Once the specific surface (sphere or paraboloid) is specified- equation (9)
 

can be solved forXs , sJ Zs individually in terms of the remaining
 

quantities. For example, we obtain
 

XTJ = A2 (x1 -x) + X2 s an (10) 

for a paraboloidal surface.' Similar expressions for Ys and can be as
 

easily obtained. Finally, substituting the resulting XsJ, YS and Zs into
 

the appropriate equation of required solid (equation (7) for the sphere and (8)
 

for the paraboloid) one obtains the following equations for Xs and p, respectively.
 

2[(xIJX )2 + (YjY ) 2 + (Z1 -z )2] 

+ X l2PXJX)+ 2YP(Y1 J-Yp) + 2ZP (Zj-Zp)~ 

+ + 4 - R2 j= 0 (11) 

X[X 2+ (YYP) 2 ] 

(X,-Xp) 2YP(YI.-YP) 

2 

+ + 2 (12) 

+ x2 [2%x 1 + + (,-

Each of equations (11) and (12) admits two solution. Recognizing that the
 

cap is totally located above the location Z=0 we choose that A which gives
 

zs > 0. 
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III. 4 Geometric Description of Frequency N Caps
 

We are now in a stage where we can qualitatively describe the geometric
 

make-up of a cap of any alternate frequency N. Here every pyramid face tri­

angle has the number of subdivision faces s. givenby (see, for example
 

figure 13 with N=6 for illustration)
 

N-i
 

sf = I (2m+l) = N2 (13)
 

m=0
 

Hence the total number of faces in the whole cap, Sf, is
 

= Sf nN2 (14)
 

Now since from (13) each of the N 2 subtriangles has three sides and since
 

each side is shared by two neighboring triangles, one has the total number,
 

£, of columns to build an isolated single pyramid triangle
 

t = 2N (N+1) (15)
2 

Accordingly, the total number, t, of elements required for the total cap is
 

L 1E (1I+3N) (16) 

2 

Hence, an effective number of elements per each of the original pyramid tri­

angles will be L/n. Finally, the total number, v, of vertices in the whole
 

cap is
 

v= 1 + a- (N+)] (17)
 

I1. 5- Chord Factors
 

Having derived expressions for, the total number of members required to
 

build the cap we now indicate that not all of these members are either equal
 

or different in lengths. Knowing the minimum number, m, of different lengths
 

(also known as the chord factors)is of most importance. Accordingly we now
 

proceed to develop formulas far such a number. Generally speaking, once on
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10 	 '1 

FIG. 13. 	 NUMBER OF TRIANGULAR SUBDIVISIONS OF 
A PYRAMID FACE (N=6, sf = 36) 
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the 	required surface the distances between neighboring vertices will not
 

retain their original lengths. This is because of the "stretching" required 

to project them on the surface. In fact, these lengths will be dependent upon 

their original locations on the pyramid face triangle. Various symmetry relations 

will lead totderivihg exact relations for the number of chord factors, m, re­

quired to build a given antenna. These relations are functions of the frequency 

N and the projection center (X, YP, ZP) but interestingly are independent, 

except for a spherical surface with n=5 (see formulas below), of n (the number 

of the sides of the original pyramid). These relations are listed as; 

(a) 	For aparaboloidal surface with projection center (0,0,Zp) where Z is an
 

arbitrary variable 

3N2 1 
M = N + N +!, (N odd, see Fig. 14 for illustrative symmetry) (18) 

4 N2 

= 2 N, (N even, see Fig. 15 for illustrative symmetry) (19)

4
 

(b) 	For a spherical surface we have the following formulas depending upon the
 

projection center and n
 

(i) 	center of projection (0,0,0) and n#5
 

3N2 N 3 
M = N 2 +N2 + , (N odd, see Fig. 16 for illustrative symmetry) (20)

4 2 4 

m = 	N + , (N even, see Fig. 17 for illustrative symmetry) (21) 

(ii) 	center of projection (0,0,0) , n5 and L1 = L2 (Fuller's case) 

M =-! [(N+l) 2 . 1] , (N even and notmultileof 3), (see Fig, 18 for 

illustrative symmetry) (22) 
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M -1 (N+l ) 2 , (N odd and not multiple of 3), (see Fig. 19 for illustrative 

symmetry) (23) 

Nm N-+ 1) , (N multiple of 3), (see Fig. 20 for illustrative symmetry) 

(24) 

(iii) center of projection (O,O,Zp), with z # 0 
=3N2 1 

m + N + 4 , N(N dd,, see Fig. 14 for illustrative symmetry) (25) 

4 N2 

4 + N, (N even, see Fig. 15 for illustrative symmetry) (26) 

"C 
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FIG. 14. 	 NUMBER OP CHORD FACTORS AS PREDICTED
 

BY EQUATION (18)
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55 54 5< A / Z 

FIG. 15. 
NUMBER OF CHORD FACTORS AS PREDICTED
 
BY EQUATION (19)
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FIG. 16. 	 NUMBER OF CHORD FACTORS AS PREDICTED
 
BY EQUATION (20)
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Li-5 0 51V 

FIG. 17. 	 NUMBER OF CHORD FACTORS AS PREDICTED
 
BY EQUATION (21)
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FIG. 18. NUMBER OF CHORD FACTORS AS PREDICTED BY EQUATION (22)
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A.
 

FIG. 19. NUMBER OF CHORD FACTORS AS PREDICTED BY EQUATION (23)
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U± 

FIG. 20. NUMBER OF CHORD FACTORS AS PREDICTED BY EQUATION (24)
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III. 6 Normal Projections from the Intersections of 6 +600 Array 

An interesting special case of our modeling subdivision and blowing can 

be obtained by choosing the vertexl' whose coordinates are (0,0,R-H) rather 

than the vertex 1 whose coordinates are (0,0,R)for our reference "pyramid". 

If subsequently we project, for any frequency N, from the center (O,0,Zp) 

with Z + we obtain the results for the case where normal projections are 

carried out from each of the intersection of 0, + 600 flat array to meet the
 

surface of the solid (see figure 21 for complete-procedure illustration).
 

Exact results for this special case can also be obtained as follows:
 

=
by setting X = 0, YI 0 and Z, = R-H iniequation (4) we adapt it to the 0, 

+ 600 flat array subdivision of the aperture circle. For every point (XIV
,
 

YIJ ,Z1 j) we raise a normal to the flat array which meets the required surface
 

at the point ( IJ' IJZIJ) which is uniquely determined once the surface is
 

specified as follows: For the sphere one has
 

(XY= (XY , 
2 )
j(X (23)
 

and for the paraboloid one has
 

,[R - H 2 2 

Ss s = E- (xij+Yij]) - (24) 
Rl 

Once the points on the surface are specified the calculations follows exactly
 

the steps of the alternate breakdown outlined above.
 

As will be shown numerically later on both the results of the exact procedure 

of equations (2-3)-and (24) will be-indistinguishable, as far as member lengths 

and smoothness are concerned from the limiting case -of the alternate breakdown 

with the projection center (0,0,Zp) with Z . It will also be shown that the 

number of chord factors will dramatically decrease for the "normal projection"
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FIG. 21. 	 PROCEDURE ILLUSTRATION OF SUBDIVISION AND
 

NORMAL PROJECTION BLOWING (n=6, N=7, FOD 
 0.25)
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modeling especially for the case of the paraboloid surface.
 

ITlw7 Measure of Smoothness
 

As we mentioned earlier the higher the frequency N is,the better the
 

discrete system will approximate the required solid surface. An important
 

measure of such approximation (smoothness) is the magnitude of the maximum
 

distance between the subdivision triangles and solid surface. We refer to this
 

measure as 6. It is obvious that for a given cap geometry the value of 6 will
 

decrease with increasing frequency. It is also obvious that & will decrease
 

with increasing n. In order to determine 6, we proceed as follows'
 

Generally speaking the equation of a flat plane P passing through the
 

three arbitrary points (X.,Y 1,Z1), (X2,Y2, Z2) and (X3,Y3,Z3) is given by
 

X Y Z 1
 

X1 Y1 	 1Z1 
=0 (25)
 

X2 Y2 Z2 1
 

X 3 Y 3 Z 3 1
 

or equivalently by 

AX + BY + CZ + D = 0 (26a) 

where 

Y I 1 Z1 1 

A = Y2 Z2 1 , B = - X2 Z2 1 (26b,c) 

Y3 Z3 1 X3 Z3 1 

Xl Y1 1 	 X1 Y1 Z1
 

C = 	X2 Y2 1 ,D = - X2 Y2 Z2 (26d,e)
 

X3 Y3 1 X3 Y3 Z3
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Let us suppose that another curved surface S (such as a paraboloid for
 

example) passes through these three points. The maximum distance between the
 

plane P and the surface S (see figure 22) is the normal distance between the
 

plane P and the tangent plane T to S which is parallel to P; this distance
 

is shown as N1 , N2 in figure 22 . The directions ratio of N1 N2 are given by
 

A : B : C (27)
 

since N1 N2 is perpendicular to the planes P and T. Using the above analysis,
 

we can determine the maximum derivation for any surface, particularly those of
 

the spherical and paraboloidal as follows
 

Spherical Surface:
 

The equationof spherical surface is given by (see equation 7).
 

2 2 2 2
X + Y + Z = R (28)
 

Accordingly the direction cosines of any perpendicular to this surface are
 

given by:
 

F F F(29)
 

X Y 5Z
 

where the function F is given by
 

F = (X2 + y2 + Z2 R2) (30)
 

At the particular point N2 (the parallel tangent point), these direction ratios
 

must be the same as those of (27); this implies
 

aF DF .F
 
A : B : C (31)TX : A = 

which from (30) yields
 

A : B: C X : Y : Z (32)
 

Equation (32) can thus be rewritten as
 

A B C (33)
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CONSTRUCTED
 

ORIGINAL
SURFACE X-Z Y, 

FIG. 22. DISPLAY OF ACTUAL SOLID SURFACE AND ITS TANGENT
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where X is to be determined. Substituting from (33) into (28) we determine
 

B
the coordinates of the point N2 = ( yB zBY as 

XB ZB
= A/X , YB = B/X , =C/ (34)
 

and hence X is given by
 

X = (A2 + B2 + C2I/2/R (35) 

Now, the maximum distance 6 between the plane P and the surface 

of the sphere is given by the distance between the point N2 and the plane P
 

which is known as
 

=- AXB+ByB+cZBD (36)
 
/2 + B2 + C2 

fltaboloidal -Surface: --

For the parabolidal surface the function F is given by 

22 2 

F = (X2 + Y2 +-- Z - _ (37)U H 

Using the same analysis used for the sphere one gets
 

3' 9F + -F = A : B C (38) 
aX - Y Z 

or equivalently
 

A B C
 
-X = -Y = 2 A (39) 

Ri/H 

Accordingly the coordinates of the point N2 are given by
 
2 B2
 

ZB= A/(2X) , yB = B/(2A) , = R -Hf(xB) +(Y } (40)2 
R 

where A is given by 


= Hd/R (41)
 

The maximum derivation can again be calculated using the formula 36,
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IV. COMPUTER CODE CALCULATIONS 

A general purpose computer code has been written in order to model discrete
 

rod-like shells of revolutions as outlined above. This code contains many possible
 

combinations of design parameters which we have mentioned in our analysis. The
 

code also contains a general and self sufficient graphical subroutine. To see how
 

both the computational (modeling) and graphical codes work we have first to define
 

their parameters and then proceed to study their flow chart. The graphical subroutine
 
is described in Appendix A. 
Input Parameters: 

F D = focus to aperture diameter ratio. 

APED = aperture diameter. 

NS-n = number of equal subdivisions of aperture circle. 

LT = Shell type: Sphere
 
2 Paraboloid 

(XP, YP, ZP) = Coordinates of the center of projection. 

{ 

LN = Design control card: 1 Single center of projection method 

(2 Normal projection method 

N - frequency of subdivision 

AAI, AA2, AA3 = all 2a a3 = Euler's angles 

EPSL = constant used in the parametric study of chord factors. 

Calculated Parameters: 

RI AP/2 = radius of the aperture circle 

H = height of the cap 

(Xl, YI, ZI) , (X2, Y2, Z2) , (X3, Y3, Z3) are the coordindates of the represent­

ative triangle face (1,2,3) (see Sketch 1).
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1 (xl, Yl, Zi) 

ELI EULI
 

(X2, Y2, Z2) 2 EL2 3 (X3, Y3, 3)
 

Triangular Face
 

SKETCH I
 

ELI, EL2, a properties of the triangular face. 

xS (T,J), Ys (I,J), Zs(I,J) coordinates of the projected point on the
 

surface of the cap.
 

Dl(I,J), D2(I,J), D3(I,J) the side lengths of the subtriangles.
 

G(I)-m different chord lengths.
 

GG(I) different normalized chord factors.
 

GGMX = length of the longest chord.
 

GGMN = lenth of the minimum chord.
 

IK~m = numerical number of the chord factors.
 

NFF-m = analytidal number of the chord factors. 

LMN = numerical number of the parameterized chord factors for a given EPSL. 

GN(LMN) = parameterized chord factors.
 

XMAX-6 = maximum deviation. 
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GIVEN: 	 70D, A2, NS, LT, LN, N,
 

Xl, YP, ZP, Al, A2, A3,
 

FXSL
 

IJ) , D1 EJ
D(, 


xz, Y2, zz
 

X3, Y3, Z3
 

GXl, GG(I), .t-


COMPUTER PROGRA24 FLOW CHART 
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WE INTEND TO SUBMIT THE COMPUTER PROGRAM TO
 

COSMIC. IN THE MEANWHILE THE PROGRAM WILL
 

BE AVAILABLE FROM THE AUTHORS.
 



V. ILLUSTRATIVE RESULTS
 

The utility of our general computer program will be demonstrated by
 

generating necessary design parameters of discrete large space antenna re­

flectors. Specifically we determine the shape and size of flat segmented sur­

faces which approximate spherical and paraboloidal reflector surfaces. Our
 

results will also be displayed in the form of compressions between the spherical
 

and paraboloidal designs. Results will be presented for a wide range of pro­

portions; focus-to-diameter (F/D) radius from .25 to 1 which go all the way
 

from a hemisphere to a very shallow dish. Other important parameters which
 

may vary are the number of pyramid faces, n, the frequency of subdivision, N
 

and the aperture diameter D.
 

We have carried our numerical calculation on an antenna with the common 

fixed properties D = 100m, n = 6 and N = 10 and the variable properties FOD 

and the center of projection. In Figure 23, a plot of L and L . for both 
max min 

spherical and paraboloidal dishes shown as functibns of FOD foi t-Jo differ- ­

ent projection centers namely the center of the sphere (0,0,0) and (0,0, -106R) 

(this second projection center is equivalent to the normal projection method of 
L . 

Section III.6).jn Figure 24 various plots of L are shown as functions of FOD 
max 6 

for the three projection centers (0,O,R-H), (0,0,0) and (0,0, -10 R). In Figure 
L . 

25 a variation of Lmias a function of projection center is depicted for FOD = I
 
max
 

for the paraboloidal surface. As may be seen, the best projection center is that
 
L.
 

which is around (0,0, -R) where Lmin .985. The corresponding results for
 
max
 

FOD = 0.25 and for a spherical surface is shown in Figure 26. The variation of
 

6 as a function of frequency N is shown in Figure 30 for various FOD values
 

for both spherical and paraboloidal surfaces.
 

The variation of 6 with FOD is shown in Figure 29 for various projection 
L .
mmn 

centers. Finally a variation of L-- as a function of n (for an FOD = I 
max 

paraboloidal dish) is shown in Figure 28 for two different projection centers. 
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L.
m2.n 

As may be easily seen from this figure the L-can be obtained for n = 6
 
max
 

with the projection center being (0,0,0). The variation of this max value
 
L . 

of (LL) with the frequency is shown in Figure 27. Varying the frequency
 
max
will alter very slightly this value.
 

From the above figures one can easily draw the conclusion that the
 
L 
max increases with increasing FOD where both the spherical and the paraboloidal
 
L .
 
mzn
 
dishes are practically indistinguishable. On the other hand for lower FOD it
 

L max 
appears thatmax is much higher for the paraboloid as compared with the sphere.
 

min
 
Fipally, for the plotting illustrations wedepict in figures 31 and 32 plots
 

of a variety of dishes. On each plot we list the necessary parameters used.
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L max 
L .min
 

SPHERICAL 
- PARABOLOIDAL 

(A) NORMAL PROJECTION
 

20 	 (B) PROJECTION CENTER
 
(0,0,0) (n=6, N=10, D=100m)
 

15
 

Lma x (A) 

min()
 m
max 


Ljmi (B)
 

54	 f-- POD
 
0 
 0.25 0.5 	 0.75 1.00
 

FIG. 23. VARIATION L AND L WITH POD FOR A TWO 
max mnn
 

PROJECTION CENTER
 

45
 



0.9_ 

~(n=G, N=10, D=100m)
 

0.8 (A) 

0.7
 

0.6
 

SPHERICAL 
---- PARABOLOIDAL 

0.3 


0.2 -(A) NORMAL PROJE9CTION 
(3) PROJECTION CENTER (0,0,0) 

0.1 (C) PROJECTION CENTER (0,0, li-H) 

0 1-1 - 1 FOD 
0 0..25 0X5Q 0.75 1.00 

FIG. 24. VARIATION OF ~ WITH FOD FOR A VARIETY OF PROJECTION 
Max 

CEN'TERS
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1..00 

0.98 

NORMAL PROJECTION
0.96 


',Lmi n 0.94
 
L
 
max 0.92
 

0.90 

S I I t I f 
2R 0 -2R -4R -6R -SR -10R -12R 

Ln 
FIG. 25. VARIATION OF man FOR A PARABOLOIDAL DISH AS A
L 

max 
FUNCTION OF PROJECTION CENTER (FOD = 1.0, n=6, N=10, 
D=I00m) 

0.5
 

0.4 

L
mi­

max
 

0.3
 

NORMAL PROJECTION
 

0.2 

0 -2R -4R -6R -8R -10R -12R
 
L .FIG. 26. VARIATION OF L-n FOR A SPHERICAL DISH AS A FUNCTION
 
Lmax 

OF PROJECTION CENTER (FOD=0.25, n=6, N=10, D=100m)
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0.995 

0.985 

Lmin' 
Lra 

Max 

0. 975 

0 10 20 30 40 50 N 
L. 

FIG. 27. VARIATION OF Min WITH FREQUENCY FOR
 

A PARABOLOIDALmMSH (FOD=I., n-=6,
 
D=100m, CENTER OF PROJECTION (0,0,0))
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0.7
 

0.6
 

0.5
L .
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max 0.4
 
CENTER OF PROJECTION
 

(0,0,0)
 

0.3 CENTER OF PROJECTION
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0.1 I
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0 6i0 25 50 75 lo0
 
L 

pta, 28. VARIATION OF m OP A PARABOLOIDAL
 
Lmax


DISH WITH n (FOD=I., D=100m, N=10)
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I(A)
 

o3
 

6 	 (A) N. " 

(B) 

10- 4 	 SPHERICAL
 

PARABOLOIDAL
 

(A) NORMAL 	PROJECTION
 

(B) CENTER 	OF PROJECTION (0,0,0)
 

(C) CENTER OF PROJECTION (6,0, R-H)
 

5
10­

0,25 0,50 0,75 I,00 FOD
0 


FIG. 29. 	 VARIATION OF NORMALIZED DEVIATION, 6, WITH FOD
 
FOR A VARIETY OF PROJECTION CENTERS (n=6, N=10,
 
D=100m)
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SPHERICAL
 

r-el PARABOLOIDAL
 

2
-
10
 

0.25"­

10-4
 

I 5
I 


10 20 30 40 50 N
 

FIG. 30. 	 VARIATION OF 6 WITH N FOR A VARIETY OF FOD 
VALUES (n=6, D=100m, AND CENTER OF PROJECTION 
(0,0,0)) 
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(a) FOD = 0.1 

(b) FOD = 0.25 

(C) FOD = 0.5 
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(d) FOD = 0.75
 

(e) FOD = 1.0 

(M FOD = 2.0 

FIG. (31a-f) PLOTS OF PARABOLOIDAL DISHES FOR A VARIETY OF FOD
 
(n=6, N=10, D=100m, CENTER OF PROJECTION (0,0,0),
 
(alfalf 3) (600, 300, 300)
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FIG. 32b. SAME AS THAT OF 
 IG. 32a WITH CENTER
 
OF PROJECTION (0,0, R-H)
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LA 
La 

FIG. 32c. SAME AS FIG. 32a WITH VIEW GIVEN BY
 
,


(air a2 ' a) (450' 450 450)
 



.E 

FIG. 32d, SAME AS FIG. 32b WITH VIEW GIVEN BY (all al, a) = (450, 450, 0) 
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APPENDIX A
 

A computer program is written so that we can graphically illustrate
 

the cap's discrete surfaces for any three-dimensional orientation. Due to
 

the rotational symmetry about the z-axis we draw all of the cap once we know
 

how to draw one of the pyramid's face triangles.
 

Let (X(l), y(, Z() be the coordinates of a point in the first tri­

angle face of figure Al. The coordinates of the corresponding points on 

the adjacent faces (counterclockwise) will be (-X(2), y (2), Z( 2 ) 

(X 3), Z . n), T(n) , z(n)), respectively, (see fig. Al). 

3 )  (.n ) Notice also'that Z(l) = Z(2) Z . Let us use polar coordinates; 

(X( m) the the point , y(m), 2 m) can be written in polar form (while suppressing 

the z-coordinate) as 

X ( m im) i = reiei( m-l)4 (Al) 

where m 1,2,3, ...n 

= 2 (A2) 
n 

Now suppose that we introduce a new system of axes-X, Y and Z (see fig. A2) which 

is fixed in the body of the cap but moves with it.- Also suppose we give to the 

cap any orientation with respect to the fixed system of axes X, Y and Z. 

We. must choose the origin, o, of the system X, Y and Z to be the same as the 

origin, o of the system X, y andcZ By projecting the cap in the (x-y) 

plane or the (Y-Z) plane, we obtain a view of the cap in a required orientation.
 

The question is knowing the values of Xi, Yi and zi for a specific point what 

would be the correspQnding values of X., Y, and Z. . This can be done by referring 

to the Eulers angles. First let us fix our system of axes in space X,y and Z. 

Then we start our orientation process by letting (i, y and Z) which are fixed 

58
 



>Y
 

xr 2(Xell

FIG. Al. LOCATIONS OF POINTS ON THE SOLID SURFACE
 

59
 



FIG. A2. COORDINATE TRANSFORMATION
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1 

in the body of the cap coincide with the fixed system X, Y and Z.. At
 

this stage, we start to rotate the body around the Z axes with an angle a," 

(see figure (A3)). To make it easier to illustrate let us use the notation 

n. which represent unit vectors along the direction of the fixed axes in the
 
-(1 

body before rotation and let ;l) represent unit vectors along the direction
 
2 

of the axes after this first rotation. The relation between these unit vectors 

are given by
 

ni cosac1 -sin 1 0 r-()
 

n 2 = sina1 CosaI n2
( I (A3)
 

o -(1) 

Now, let us rotate the body at the new position of I, i.e. around (1) with 

- (2) rltdt h redn 
ant: angle a2 to obtain a new set of axes n. relaed to the preceding 

by 

nM 0 0 ­
-(1 -s ;a 

-(1), cosct-2 (A4)n0 oa in - (2)
n2 2 2 n2 (4
 

-1. 0 2 -(2)
 
n~l sinz Cosa n(2
 

32 2 3
 

To end our process of orientation, let us rotate the body about the
 

new position of Z, i.e. around n(2) , with an angle a3 to obtain the final set
 

(3 )
of axes n. . One notices that this is the set of axes 2B, YB and ZB which
 

is fixed in the cap and one also notices that the coordinates of any point
 

on the cap ls surface with respect to that set of axes are known and related 

to the preceding by
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FIG. A.' EULER'S ANGLES
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-(2) Cosa 3 -sinq 3 0 n(),
 

-(2) (j3) 

n2S3fla3 Cos5~3 0 n2 (A5) 

-(2) s a 1 ;(3) 

So, accordingly we finally obtain the relation
 

X. cosa -sinaI 0 1 0 0 cosa -sin 3 0 x.1 1 1 3 3 3 

Y. = sina csa 0 0 Cosa2 -sin 2 in3 cos3 0
 

Zi 0 0 1 0 sint2 cosa 2 0 0 1 z 

(A6) 

or equivalently is
 

Xi = (Cosa cosa 3 -3 sina coscsina3 )
 i 

+ (- cosa sin 3 - sinafosco i 

+ (sina1sina2)i (A7)
 

Yi = (sina1cQsa 3 + cosca1cosa 2sina3)Xi 

+ (- sina 1 ina 3 + Cosac Cosa2cos3) i 

+ (-cosa1sina 2) i (AS)
 

Zi = (sina2sina3 )Ri + (sina2cosa 3)Yi + cosa2Z... (A9)
 

.So, for different values for the angles al, a2 and a3' one can obtain different
 

view from different angles to the cap. Some results of our plottings are
 

illustrated in figures 3land 32' for both spherical and paraboloidal caps.
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