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INTRODUCTION

The ultimate objective of this investigation is the measurement of the

tidal displacements of the solid earth by laser ranging to the GEOS-3

satellite. Confirmation of ea r th tide theory through surface measurements of

gravity, tilt and strain has been difficult because of the perturbing

influences of surface discontinuities, the poor distribution of stations and

the lack of ocean tide information. A measurement of surface displacement by

laser ranging, although not entirely immune from such effects, constitutes a

more direct measurement of the tidal deformations and of the related Love

numbers h  and 1 n . The accuracy of laser ranging to satellites has now

reached a level of between S and 10 cm (Vonbun, 1977) and continuing

improvements in the dynamic models for satellites and/or the distribution of

laser stations should ultimately lead to the detection and measurement of the

30 to 40 cm geometric earth tide.

The present investigation is restricted to the analysis of NASA laser

ranging data from three stations at Goddard Space Flight Center, Greenbelt,

Maryland, Grand Trunk Island and Bermuda in the GEOS -3 "calibration area".

Therefore, the necessary conditions for a purely geometric solution for

relative Station positions are not fulfilled ( Escobal et al., 1973) and the

determinations of station positions will depend to some extent on the accuracy

of the model for the path of the satellite. Results by Smith et al. (1973)

for the Beacon -C satellite and a single laser station have shown that the fit

of an orbit to a series of satellite passes rarely equals the quality of the

laser data. Trends could be seen in the residuals showing departures of 2 or

3 meters from the predicted orbit. Errors in the gravity field, station

position or other aspects of the dynamic model were suspected. Our approach

has been to determine the effect of errors in the predicted orbit on the

,4	 t
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measurement of station movements and to investigate a method designed to

minimize the effect of those errors.

Expected Tidal Displacements

In general, the measured laser station-to-satellite distances are affected

both by the tidal displacements of the earth's surface and by the direct

effect of the tidal potential on the motion of the satellite. The influence

on the orbit of the Beacon-C Satellite, for instance, by the solid-earth and

ocean tides (characterized by the Love number k 2 and a phase lag 0 ) were

found by Smith, et al. (1973) from an analysis of the perturbations in the

inclination of the orbit. A subsequent fit to the laser range data with this

tidal effect included (using k 2 - 0.245 and 0 = 3.2 derived in the previous

study) showed that the inferred mean heights of the laser Qtation from 12-hour

arcs were not significantly affected. We are assuming in the present study,

which employed the orbit prediction and parameter estimation program GEODYNE

(Martin and Serelis, 1975), that any small errors in k2 and 0 will be a

second-order effect on the relative laser station-to-satellite distances for

24-hour arcs.

The theoretical vertical and horizontal displacements of the laser

stations in the calibration area due to the solid-earth tide were computed

using subroutines NOMAN 1 and, with a small modification, NOMAN 2 (Hart;.son,

1971). The geometric earth tide in the vicinity of Goddard has a theoretical

peak to peak amplitude of about 40 cm in the radial direction and less than 5

cm in the tangential directions (Figure 1), whereas the theoretical

peak-to-peak amplitude of differential displacements between Goddard and Grand

Turk, for example, is lU to 15 cm in the radial direction and less than 4 cm

in the tangential directions (Figure 2). To a first approximation the earth

tide at a laser tracking station can be considered constant over the few

Lay-
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minutes of a satellite pass. Ideally, the time sequence of satellite passes

depends only on the orbital period of the satellite, the rate of rotation of

the earth and the latitude of the tracking station. In practice, problems

with laser ranging equipment and the weather reduce the number of usable

passes. Vertical displacement of the laser stations due to surface loading by

the M2 constituent of the ocean tide has been estimated by Bower (1976), on

the basis of Hansen's (1969) ocean tide model for the Atlantic, to be 0.5 cm,

1.0 cm and 1.2 cm for Goddard, Grand Turk end Bermuda respectively. This

small displacement was not considered to be significant relative to other

error sources and therefore was not used to correct the station coordinates.

EXPERIMENTAL RESULTS

Two different approaches to the problem of measuring tidal movements of

laser tracking stations were investigated. One approach, termed "the dynamic

method", employs 24-hour arcs as references for determining pass-to-pass

changes in apparent station position. By this method the apparent station

movements due to errors in the predicted satellite track as well as the tides

have been investigated by an analysis of single-station ranging to GEOS-3. A

second approach, termed the quasi-geometric method, attempts to minimize the

effects of unmodelled satellite dynamics on the determination of tidal

displacements by considering two-station simultaneous ranging to GEOS-3 at the

precise time that the satellite passes through the plane defined by the two

stations and the center of mass of the earth. This approact takes advantage

of the geometrical constraints imposed by two-station ranging and reduces the

dependence on satellite dynamics to the prediction of only R0 , the distance

from the earth's center of mass to the satellite.

E

-	 z	 -



Description - This method employs 24-hour arcs fitted to laser ranging

data using the dynamic model incorporated in GEODYNE. 24-hour arcs were

chosen for the investigation because they were not inordinately expensive

to compute, yet they are long enough to allow the tracking station to

sample one complete tidal cycle. Each 24-hour arc comprises 14 or 15

revolutions of the satellite but only four or five passed of ranging data.

Calculations were carried out using force-model parameters and

station co-ordinates supplied by NASA. Table 1 lists the two sets of

parameters corresponding to the two geopotential models, GEMS (Wagner et

al., 1976) and PGS558 (D. Smith, personal communication, 1977 and Lerch et

al., 1977) used during this investigation. In our implementation of

GEODYNE, fitting an arc to data from four or five satellite passes

corresponds to solving for a set of six orbital parameters at a particular

epoch and for a particular drag coefficient. Only the direct tidal

perturbation at the GEOS-3 orbit is modelled in GEODYNE and not the tidal

displacement of the tracking station.

A least-squares iterative procedure was employed to compute the

apparent position of the station with respect to the fitted arc from the

laser ranging data taken over each single satellite pass. Two different

methods were adopted: -

(1) The station was allowed to move in all three co-ordinates by solving

for incremental adjustments A x, 0 y, 0 z from an approximate

position x, y, z by the system of linear equations:

2(x-x i ) O x + 2(y-y i ) Ay $ 2(z-z.) 4 z - Si- 	 P2



- 7 -

TABLE 1

SUMMARY OF FORCE MODEL PARAMETERS AND STATION CO-ORDINATES USED IN GEODYNE

A. Earth Gravitational Potential Coefficients 	 GEM 8	 PGS558
(Coefficents through degree 30 and
order 28)

B. Gravitational constant, G (meter **3/ 	 3.98501400D+14	 3.98600800D+14
seconds **1)

C. Other perturbations:

I.	 Lunar gravitation applied - ratio 1.229997D-02 1.21999713-02
of lunar mass to Earth mass.

2.	 Solar gravitation applied - ratio 3.329456D+05 3.329456D+05
of solar mass to Earth mass

3.	 Gravitation applied for other NONE NONE
planets

4.	 Earth tides applied - lunar and
solar effects included

k2 amplitude 0.29 0.29
k2 phase angle 2.500 2.500
k3 amplitude 0.0 0.0

5.	 Drag applied (D65 JACCNIA 1965
static atmosphere density model
used)

Drag coefficient 2.3 Adjusted

6.	 Solar radiation pressure applied
- 1 AU solar radiation pressure 4.500D-06 4.500-06

(Newtons/meter **1)
- Reflectivity 1.500 1.500
- Satellite Cross Sectional Area 1.437 1.437

(Meters **2)
- Satellite Mass (kilograms) 3.459D+02 3.459D+02

D.	 Goddard station position data (station
7063)
Co-ordinates-Spheroid height (meters) 9.29200 17.241

North latitude 3901'13.8800 3901'13.3507
East	 longitude 283010118.5000 283010'19.7500

E.	 Bermuda station position data
(station 7067)

- Spheroid height (meters) -24.091
North latitude 32	 21'13.7636
East	 longitude 295 20'37.8585

F.	 Grand Turk station position data
(station 7068)

- Spheroid height 	 (meters) -19.730
North	 latitude 21	 21'37.1162
East	 longitude 288	 52'4,9584

Earth ellipsoid	 - semi major axis
(meters) 6318155.00 ni'81:5.00

-	 flattening 1./298..155 1.1298.255
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where S i is the i th observed range to the satellite, 
P  

is the ith

predicted range and xi , y i , z  are the predicted earth-fixed

satellite co-ordinates,

(2) The station was constrained to move in only the radial (height)

direction by solving for incremental adjustments 6x, 6z by the system

of linear equations:

2(x-x. ) 4x + 2(z-z. ) Az	 ;
2 - P2

i	 I	 i	 i

and constraint (z/r)Ax-(x/r)Az - 0 where r is the radius to the station.

After two iterations these methods produce station coordinates stable to

Within 1 mm when the initial position is less than 50 m in error.

Results - During the first year of laser ranging to GEOS-3 there were a

number of 24-hour periods during which several passes of the satellite

were observed by the Goddard laser. Four 24-hour arcs and one 36-hour arc

fitted to Goddard ranging data only were used as references for computing

apparent station positions for single passes of the satellite. GEODYNE

calculations using the GEM8 geopotential model, appropriate force model

parameters and coordinates (Table 1) gave, during a pass, laser ranging

residuals, having a small random component of amplitude about 5 cm, plus a

systematic component departing 2 to 5 m from the arc. We believe that the

random component indicates the precision of the laser ranging and the

systematic component represents the inability of the computed satellite

track to fit the laser data. The net R.M.S. residuals for the five arcs

ranged from 0.45 m to 1.46 m.

Apparent station movements for Goddard were computed for all

satellite passes of the five predicted arcs according to the methods
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described in the previous section. Method 1, where three-dimensional

station position adjustments are allowed for each pass, gave R.M.S.

variations in Goddard station position from pass to pass of about 8 m in

height and about 11 m in latitude and longitude (Figure 3). In this

method the systematic components of the laser range residuals were

completely absorbed into apparent station movements, leaving only a random

component. The amplitude of the apparent movements depends on the

amplitude of the systematic component of range residuals for the pass, on

the geometry of the satellite path with respect to the laser station, and

on the duration of tracking for each pass. In general, th9 single-pass

station position is poorly determined in a direction normal to the surface

containing the satellite path and the station. The resulting large

apparent movements in that direction make three-dimensional station

position determinations unreliable for the purposes of the present

experiment. Method 2, where only changes in station height are allowed,

gave significantly smaller apparent movements (Figure 4). Except for one

short pass at a low elevation in arc b216/217, the four 24-hour arcs gave

R.M.S., variations around 1 to 2 m. in height. An offset in station

height of about 15 m. is seen, however, for part of the 36-hour arc. This

method does not absorb the systematic components of the range residuals

into station movements, yet the estimated standard errors on the apparent

movements are in general less than 1 m.

A further decrease in apparent station height movement was achieved

in Method 2 by an improvement in the force model. Using geopotential

model PGS588 and appropriate station co-ordinates (Table 1), the random

component remained the same but the overall R.M.S. residuals were reduced

to between 0.14 m. and 0.65 m. for the five arcs (the 36-hcur arc D207/208
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was reduced to a 24-hour arc). Figure 5 shows the resulting apparent

station movements for the five arcs, plotted on an expanded vertical

scale. The R.M.S. variation in station height for the results of Figure 5

is 0.80 m. and the corresponding value for the theoretical tidal movements

is 0.11 m. The detection of vertical tidal movements by this method,

clearly, requires further improvements in the dynamic model for the

satellite. However, the stability in station height is now good enough to

allow the suitability of 24-hour length arcs to be tested. In order to

investigate the tendency of 24-hour arcs to absorb the real tidal

movements of the laser station, tenfold-amplified theoretical tidal

movements in height were introduced into the laser ranging data before

computation of the reference (predicted) arcs. Figure 6 compares the

induced height variations with those recovered by the method. Although

movements up to 1 m are seen, they do not appear to be correlated with the

input tides. It must be concluded that 24-hour arcs are able to absorb

the geometrical tidal movements of a single tracking station and that they

are therefore not suitable as reference arcs for measurement of the

geometric tides by the present method. The R.M.S. amplitude of

adjustments in the orbital elements and the drag coefficient necessary to

absorb the theoretical tides were found to be as follows: semi-major

axis, 0.09 cm; eccentricity, 0.019 x 10 -6 ; inclination, 4.7 x 10-3

sec; right ascension of the node, 4.9 x 10 -3 arc-seconds; argument of

perigee, 0.98 arc-seconds; mean anomaly, 0.87 arc-seconds; and drag

coefficient, 0.28. These adjustments are equivalent to a movement of the

satellite orbit in space of the order of 20 m in both the radial and

tangential directions. The changes in orbital elements are smaller by two

to three orders of magnitude than the variations in orbital elements of
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6-hour, four pass, arcs for the Beacon-C satellite due to direct tidal

perturbations on the satellite orbit (Smith et al., 1973). Future

attempts to measure the geometric tide by the method outlined will require

both the selection of longer reference arcs and a more accurate force

model.

2. Quasi-Geometric Method

Description - This method is based on a solution found by Paul (1976) for

the difference in elevation between two laser stations which are

simultaneously ranging on a satellite. Since the details of this solution

have not yet been published its derivation as well as its significance are

discussed in the Appendix. 	 It can be found there that the solution is a

complex non-linear relation involving the range measurements, the mean

geocentric distance of the two stations, the angular distance between the

stations and the geocentric distance to the satellite. We use the term

quasi-geometric in describing the present application of the solution

because only the satellite radial distance must be known independently and

this only for a few seconds around the time when the satellite crosses the

vertical plane through the two laser stations. The radial distance is

normally the best predicted satellite coordinate and has the smallest rate

of change; typical rates for CEOS-3 are 5 - 10 meters per second.

It can be shown (see Appendix) that at the instant the satellite

crosses the vertical plane through the stations (g =0) there is a

non-linear relation involving only the parameters R  (mean of the

geocentric distances of the two stations), 2w (angular separation of the

stations), 2h (difference in the geocentric station distances), R0

(radial distance to the satellite), and S 1 , S 2 (the range distances
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from the stations to the satellite) and not involving the parameters of

the satellite position x and g. The relation is:

2	 2	 2	 2	 2	 2	 2	 2 2	 2 2	 2 2
sin w[Rm{2(RO + R  - h) - S 1 - S 2 } + h {S 1 - S 2 }] + 16%(Rm - h )

sin2w Cos 2w + Cos 2w[h{2( RO'Rm+h2) - S1 - S2} + RmcS1-S2)]2 = 0	 (1)

The instant that the satellite crosses the station-plane, where relation

(1) holds, can be found either from a single pass fit to the range data by

the program GEODYNE or by an extremum method employing the range data

directly and the parameter h. By the extremum method, relation (1),

although it only holds true at g - 0, can be used to generate values of

the parameter h for satellite positions where g 0 0. It can then be shown

(see Appendix) that the instant of station plane crossing (g = 0) is

identified by the point when the computed h values reach an extremum.

Before proceeding further we write the nonlinear equation (1)

in terms of the non-time varying parts of the station radii, N 1 and

N2 and the tidal Love number h 2 . Thus:

R
li 

=N 1	 2 li+h T	 (2)

R 2 N2 + h 2 T 2i	 ( 3)

where T li and 
T 2 are the equilibrium tidal displacements of the

stations in the radial directions, during the i-th pass.

and:

R
mi	 li	 2i	 1	 2	 2

(R	 + R )/2	 (N + N )/2 + h (T li
	 2i
+ T )/2	 (4)

h i = (R li- R 21 V2 = (N ii - N21) /2 + h 2 
(T li

T 21
V2	 (5)
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Substituting expressions (4) and ( 5) into ( 1), and neglecting tidal

variations

in w, we obtain for the i th plane crossing a non-linear equation in

ROi' Sli' S2i' N
l , N2 , h 2 and w which we can represent by:

Fi ( ROi , Sli , S2i ,Nl ,N2 • W ,h 2 ) = 0
	

(6)

Here R0' is the radial distance to the satellite and S li and S2i are

the laser ranges from stations 1 and 2 to the satellite, all at the

instant the satellite crosses the plane. Given four or more such plane

crossings, separated sufficiently in time so that the coefficients of h2

are not simply a linear combination of the coefficients of N1 and N2,

we solve for N1 , N2 , w , and h2 by the Newton Raphson method. We
0

make a first estimate of the parameters N0 , N2, W 2 , and

h2, then improved values N 1 , N2 , W , h 2 are found by correcting

the initial values by the amounts AN1, AN 21 AW ,dh2 obtained by

solving the following system of linear equations:

3Fi o	 3Fi o	 aFi o	 ^Fi	 Fo	 0 0 0 0
--{N )ON +- -(N )AN 1	 (w )Aw+--(h )Ah = (	 ,S ,S ,N ,N ,w ,h ) (7)

3h3N1 1	 1 3N 2 2	 2 3w	 2 2	 2 i P)i li 2i 1 2	 2

i - 1, 2 ....k where k :^ 4

Using the improved values of the unknown parameters a new set of

differentials are calculated and the procedure is repeated until

convergence is achieved.

ii`R.
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Results - Laser ranging data from stations at Goddard, Grand Turk and

Bermuda were examined for the presence of quasi-simultaneous measurements

to GEOS-3 during plane crossings in the months of July and August in 1975

and February in 1976. Only five usable crossings were found throughout

July and August and none at all in February.

There were many other instances of plane crossings but, for these, laser

data was not available from both stations.

Details regarding these five passes are listed in Table 2. The time

shown is approximately that of the plane crossing and the columns of

partial derivatives are with respect to the function F described earlier.

The plane is identified by numbers referring to the stations which define

the plane, where 1, 2 and 3 refer to Goddard, Grand Turk and Bermuda

respectively. The columns headed d l , d 2 and d 3 are the calculated

equilibrium radial displacements in meters at the three stations due to

the earth tide (i.e. h 2 = 1.0). The derivatives are dimensionless.

About the times of each pass, values of R0(t) were found from

24-hour arcs calculated on the basis of Goddard range measurements only

(See Section 1, Dynamic Method). A linear equation of the form of

equation (7) but involving the unknowns: AN 
2P
 AN3,

Aw
13' Aw23 

and Ah 2 , was obtained for each of the five plane

crossings. The nominal values assumed for the station coordinates were

those given in Table 1 for the PGS558 model. The result of solving the

five simultaneous equations is given in Table 3 for four cases, where

AR 
2  

and 6R 3  are the calculated differences between the true radial

distances to the laser stations determined here and the nominal distances

assumed. Similarly, Aw l , and Aw 23 are the differences between

calculated and nominal station separations expressed in terms of great
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circle distance. AR 
0  
represents the mean error in the predicted radial

distance to the satellite for the five plane crossings. The result shown

as A h2 is that value of the Love number h 2 which satisfies the five

equations (i.e. h2 = 0).

For Solution 1 the function R 0(t) was assumed correct and AR 
0  
was

set equal to zero. It is known from seismological and other evidence

however that h2 = 0.615 and thus the result found here for h 2 is

clearly faulty. This suggests errors in R 0 (t) and although it is

impossible to know AR 
0 
(t)  without further information, the presence of

a systematic error in R0 (t) throughout all passes was tested for by

finding that constant value of AR 
0  
which produced the smallest sum of

the squares of AR 
20  

A R3 , Aw 23 and Aw 13. This required AR 0  •

2.162 m and substitution of this value yielded the results listed as

Solution 1A. NVLe that A h2 , which was not included in the minimization

constraint, is now very close to the theoretical value. A further change

of only b cm in AR 0  would in fact make h 2 = 0.615.

A second source of error in R0 (t) considered was that due to the

geometric effect of the earth tide on the height of the Goddard laser.

Since this geometric effect was not taken into accoont in fitting the five

orbits at least part and probably nearly all of tt re geometric tide would

be reflected in R0(t). The geometric tide for Goddard is given by

h 
2 
d 
1 
where d l is listed in Table 3. To determine the effect of this

on our results the five simultaneous equations were adjusted on the

assumption that all of the geometric tide was reflected in R 0 (t) and the

system of equations then solved as before. The results presented in

solutions 2 and 2A are the counterparts of solutions 1 and lA after this

adjustment is made. Note that the sum of the squares of the errors shown
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for solution 2A is slightly larger than for lA but h 2 is closer to the

theoretical value.

Estimates of the effect of random errors in R 0(t) on the volutions

are presented in column 6 in terms of the standard deviation of R0(t)

about true values. If we suppose either that the nominal station

coordinates adopted for this analysis are correct within 1 - 2 m or that

the Love number is known to be 0.6 then the results require R 0(t) to be

systematically less than the given values by about 2.0 m with a much

smaller random error.

CONCLUSIONS•

The 5 cm precision of laser ranging measurement is certainly adequate for

the observation of the 4U cm geometric earth tide, or even the 14 cm

differential tide between two stations which can observe a satellite

simultaneously. However, we cannot yet predict an orbit based on one tracking

station and 24 hours of data which is stable enough to be used as a platform

to observe the total tidal displacements.

The present dynamic model, employing gravitational field model PGS 558,

fits 24-hours of laser data from a single station leaving systematic residuals

during a pass of up to 1 meter, and resulting in apparent station movements in

height of comparable amplitude, thus hiding the tidal variation. Even in the

absence of imperfections in the dynamic model, however, 24-hour arcs would

tend to absorb the tidal movements of a single tracking station leaving the

pass-to-pass apparent station heights unchanged. Longer arcs or arcs using

data from more than one laser should be less likely to absorb the geometric

tides, but they would be expected to fit the laser data less well because of

errors in the force model assumed.
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The quasi-geometric method is influenced significantly less than the

dynamic method by errors in the predicted satellite position because this

method only requires a knowledge of the radius to the satellite and it is

sensitive principally to the differential tidal displacements between laser

stations. Due to the stringent conditions that must be met for a usable

plane-crossing to occur, however, there has been difficulty in finding a

sufficient number of plane crossings for a rigorous statistical test of this

method as it is presently implemented. But, for five passes over the

calibration area that satisfy the criteria, a good approximation to the

theoretical Love number h 2 is obtained when a systematic bias of 2.16 meters

is allowed in the radial distance to the satellite. This bias is justified

independently by the assumption that the nominal station coordinates are

correct within 1 - 2 m. The value of h 2 appears to be reasonably

insensitive to changes in the predicted radial distance to the satellite due

to absorption of the tidal movements of Goddard by the predicted arcs.
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APPENDIX: PROOF OF THE EXTREMUM METHOD OF STATION-PLANE IDENTIFICATION

Let us consider a reference system of spherical coordinates with origin at

the centre of the earth U and axis OZ perpendicular to the plane

Q 1A1 OA2Q2 passing through the centre of the earth. The radial

directions to the ground stations AI and A2 are extended to points Q1

and Q2 such that OQ 1 • OQ2 - R0 , the radial distance of the satellite

at any instant from the centre of the earth. The axis of meridional reference

OX in this plane bisects the angle Q l OQ2 . Then, with g as the

perpendicular arc from the position a, of the satellite to this plane and x as

the arc from the foot of this perpendicular to the bisector OX, the

coordinates of the satellite can be denoted as (R O , g,x). Also AI and

A2 can be represented in the same system of reference by the coordinates

(RM+h,O,-w) and (%-h,0,w) respectively, where RM is the mean radius to

the ground stations, 2h is their elevation difference and 2W is the angle they

subtend at the centre of the earth. Then laser ranges S  and S 2 which are

linear distances from the satellite 	 to ground stations A l and A2

respectively will be given by the equations

S2 s Rp + (R +h) 2 - 2R0(RM+h) cos g cos (w +x)

(Al)

S2 = R2 + (%+h) 2 - 2R0 (RM-h) cos g cos (w -x)

These are the basic equations which are used to evaluate h from the

observations S 1 and S 2 . In developing our method of solution for h, we

assume that w and RM are constants which are known before-hand. Range

observations S 1 and S 2 as well as the radial distance to the satellite
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t'

Figure 7. Co-ordinate system for proof of extremum method of station-plane
identification. Ranging is done from stations Al and A2 in the
station-plane to the satellite at position o. The origin is taken
at the earth's center of mass.
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R0 which vary with time are assumed to be available at discrete instants of

time .

The problem is not solvable in its present form since, corresponding to n

given sets of (S l ,S 2 ,R0) values, we hPve n pairs of equations of the

type (A1) involving 2n+1 unknowns viz., n different g's, n different x's (as g

and x vary with time) and a constant h. Thus, the number of unknowns being

more than the number of equations by one, no unique solution for h will be

possible unless an additional condition for the problem is made available.

To obtain this, we consider a second pair of equations

S 1 = R2 + (RM+H) 2 - 2R0 (RM+H) cos(w +X)

(A2)

S 2 = R2 + (RM-H) 2 - 2RO (RM-H) cos(w -X)

where H, unl'	 h, and X, different from x, vary with time.

Eliminating X between the two equations in (A2), we can write

16% (Rm - H 2 ) ZSin2w Cos 2w = Sin 2w[Rm f2(RO + Rm - H 2)-Si - SZ }+H(Si-SZ)]2

+ Cos 2w[Iif2(O - Rm+ 	 H 2 ) -Si - S 2 }+ 	 Rm(S2 - S2))2	 (A 3)

from which h can be obtained when other quantities are known. We have

developed a subroutine which computes H iteratively, starting from the initial

value of H=O.
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If we assume the x-eliminant between the equations in (Al) can be formally

written as

h - F(S 1 ,S 2 ,lO,cos g)	 (A4)

then, the similar equation for H will be

H = F(S l ,S2 ,R0 ,1)	 (A5)

which is another form of (A3).

Differentiating (A4) with respect to time t and remembering that h is

independent of t, we have

0 = aF (Sits 2 ,	 Cos g)S1 + aF (Sit s 2' % ' cos 8)S2
as 	 as  

(A6)

+ 3F (S1 ,S 2 ,R0 cos g) R0 + aF	 (S1,S2, 0 cos g)g
as 	 acos g

Substituting in (A6) t =t0 corresponding to g=0, we have

0 =aF (Si ts 	 ,1)S + 3F (S i ts  , ,1)S + ar (Sits  ,R ,1)R	 (A7)

1
as	2	 1 as 

2	
2 0	 2 aR 

0	
2'%	 0

which, when compared with the equation obtainable from differentiation of (A5)

with respect to t, yields:

H - 0 when g = 0.

Consequently, from comparison of (Al) and (A2), we find that when H - 0

corresponding to g - 0, H = h.

Thus, the equation (A8) is the additional relation that is needed to

obtain h uniquely.

In practical computation, values of H are computed iteratively from each

set of (S lI s22 R0 ) values, using the subroutine based on (A3). The plot

of these values of H against time would show a smooth curve with an extremum

(i.e. K - 0) occurring at the instant when the satellite crosses the vertical
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plane through the ground stations (i.e. g-0). For precise computation of this

instant, four consecutive values of H are selected such that H(t k+l ) and

H(tk+2) are either both greater than or both less than H(t k) and

H(t k+3 ). A third-degree polynomial in time is then fitted to these values

of H to obtain the extremum value for H and this is the value of h we

require. This part of the computation is implemented by a second subroutine.

I

i
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