
ERDA/JPL - 954605 - 78/5
 
Distribution Category UC-63
 

DEVELOPMENT OF LOW-COST, -HIGHENERGY-PER-UNIT-AREA
 

SOLAR CELL MODULES
 

FINAL REPORT
 

Gregory T. Jones, Sanjeev Chitre
 

Sang S. Rhee
 

April 1978
 

JPL CONTRACT NO. 954605
 

Sensor Technology, Incorporated 
21012 Lassen Street 

Chatsworth, California 91311 
INASA-CR-158556) DEVELOPmENT OF IOW-COST, N79-23515 
HIGHINEEGY-PER-UNIT-AREA SOLAPh CELL tODULES 
Final Report -Sensor Technology, Inc.),
150 p HCA07/l A01 CSCL 103
150 G3/44 

Unclas
25174 

This work was performed for the Jet Propulsion Laboratory
 
California Institute of Technology, under NASA Contract
 
NAS7-100 for the U.S. Department of Energy (DOE).
 

The JPL Low-Cost Silicon Solar Array Project is funded
 
by DOE and forms part of the DOE Photovoltaic Conversion
 
Program to initiate a major effort toward the development
 
of low-cost solar arrays.
 



This report contains information prepared by
 
Sensor Technology, Incorporated under a JPL
 
subcontract. Its content is not necessarily
 
endorsed by the Jet Propulsion Laboratory,
 
California Institute of Technology, the National
 
Aeronautics and Space Administration or the
 
U.S. Department of Energy.
 



PREFACE
 

The information presented in this final
 

report represents the work performed from January
 

12, 1977 through April 30th, 1978 by Sensor Technology,
 

Inc., in Chatsworth, California. The technical pro­

gram manager is Gregory T. Jones. The principle
 

investigator is Sanjeev Chitre. Contributors include
 

Sang S. Rhee, Paul A. Dennis, Charles Snyder and
 

Priscilla Marlowe.
 

The JPL Technical Program Manager is
 

Brian Gallagher.
 

i
 



ABSTRACT
 

Development of low-cost, high energy-per­

unit-area solar cell modules was conducted in this
 

program. This final report covers the development of
 

two hexagonal solar cell process sequences, a laser­

scribing process technique for scribing hexagonal
 

and modified hexagonal solar cells, a large through­

put diffusion process, and two surface macrostructure
 

processes suitable for large scale production. Experi­

mental analysis was made on automated spin-on anti­

reflective coating equipment and high pressure wafer
 

cleaning equipment. Six hexagonal solar cell modules
 

were fabricated; they demonstrated that module
 

efficiency can be significantly improved by the
 

utilization of hexagonal or modified hexagonal solar
 

cells replacing round solar cells due to increased
 

solar cell packing ratio and increased solar cell
 

photovoltaic energy conversion efficiency.
 

Also covered in this report-is a detailed
 

theoretical analysis on the optimum silicon utilization
 

by modified hexagonal solar cells for low-cost, high
 

energy-per-unit-area solar cell modules. It was
 

shown that an optimum modified hexagonal solar cell
 

module will produce a cost savings compared to a
 

round cell module.
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A cost analysis was performed using SAMICS
 

on all process steps in this program. Two model
 

companies were studied: CELLCO, a company that produces
 

solar cells from silicon wafers, and MODULCO, a company
 

that assembles solar cell modules from solar cells and
 

encapsulant materials. The SAMICS method was applied
 

to the hexagonal solar cell module using Sensor
 

Technology's current proprietary process steps and
 

three new process procedures: surface macrostructure,
 

diffusion, and laserscribe. The conclusions show that
 

the 1978 LSSA cost goal of $7/Wpk for-solar cell
 

modules is achievable. It is recommended, however,
 

that significant development efforts be directed
 

toward low-cost silicon wafer materials, low-cost
 

encapsulant materials, and process automation.
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INTRODUCTION
 

Solar cell module costs are high at the
 

present time and photovoltaic energy conversion
 

efficiencies are low. Major contributing factors
 

to high costs are solar cell materials, module
 

encapsulation materials, and production processing
 

techniques. Contributing factors to low module
 

efficiencies are low solar cell efficiencies and
 

low solar cell packing ratios.
 

Development of low-cost, high energy-per­

unit-area solar cell modules is the overall goal
 

of this program. This goal was approached in two
 

phases. The primary objective of Phase I was
 

improvement in solar cell module efficiency by
 

increasing the solar cell packing ratio which is
 

the ratio of solar cell surface area to module
 

surface area. Hexagonal solar cells scribed by
 

laser from 90 millimeter Czochralski silicon wafers
 

were utilized in the fabrication of three densely
 

packed hexagonal solar cell modules. The primary
 

objective of Phase II was the improvement in solar
 

cell module efficiency through utilization of low­

cost production process techniques. Investigations
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were performed on a high throughput diffusion
 

process, two low-cost surface macrostructure
 

processes, low cost spin-on anti-reflective
 

coatings, high pressure wafer cleaning and
 

hexagonal solar cell grid patterns. Three
 

densely packed modified hexagonal solar cell
 

modules were fabricated. A modified hexagonal
 

solar cell is the figure resulting when a
 

hexagon is cut from a round silicon wafer with
 

a smaller diameter than the point to point
 

diameter of the hexagon. It allows One to"
 

optimize the utilization of silicon wafer material
 

which will lead to minimum module costs. A
 

detailed theoretical analysis and discussion
 

of optimum silicon utilization by modified hexagonal
 

solar cells for low-cost, high energy-per-unit-area
 

solar cell modules is presented in this report. A
 

technical and economic cost analysis of the solar
 

cell module production process sequence is
 

included.
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HEXAGONAL SOLAR CELL PROCESS SEQUENCE
 

FOR PHASE I
 

The hexagonal solar cell process sequence for,
 

Phase I is outlined in Figure 1. The process begins
 

.with a single crystal silicon 90 millimeter round
 

wafer of 0.5 -2.0 ohm - centimeter resistivity. The
 

wafer is then surface etched and cleaned to remove
 

any undesirable surface damage and impurities. The
 

wafer is diffused in POCI 3. The wafer is silk screen
 

printed on the front. It is then back etched in a
 

hydrofluoric and nitric acid solution and then the
 

front surface resist material is stripped off the
 

wafer. Aluininum is evaporated onto the back surface
 

and then fired-in. A pattern -is silk screen-printed
 

on the front surface. The wafer is then plated in
 

an electroless nickel plating solution and then
 

cleaned. The solar cell is cut into a hexagon by
 

laserscribe. The solar cell is solder dipped and
 

cleaned. It has the silicon glass, SiO 2, removed
 

in hydrofluoric acid solution and then an anti­

reflective coating of SiO is evaporated onto the
 

solar cell or an anti-reflective coating is spun
 

on the solar cell. Final electrical performance
 

testing of the hexagonal solar cell is made under
 

a tungsten solar simulator at 280C and at 100 mW/cm 2 .
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SINGLE CRYSTAL SILICON 
90 mm Round Wafer 
0.5-2.0 ohm-cm. 

SURFACE ETCH AND CLEAN PREDIFFUSION CLEANING 

PRINT FRONT SURFACE PHOSPHORUS DIFFUSION 

ETCH AND CLEAN THE 
BACK SURFACE 

METAL DEPOSITION F PRINT'FRONT PATTERN 

SCRIBE AND BREAK 
HEXAGON WITH LASERSCRIBE PLATE NICKEL AND CLEAN 

SOLDER DIP & CLEAN 

SILICON GLASS REMOVAL 

ANTIREFLECTION COATING 

Figure 1. Block diagram of 

hexagonal solar cell process 
sequence with surface macro­
structure for Phase I. 

ELECTRICAL PERFORMANCE TEST 
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HEXAGONAL SOLAR CELL PROCESS SEQUENCE
 

WITH SURFACE MACROSTRUCTURE FOR
 

PHASE II
 

The hexagonal solar cell process sequence
 

with surface macrostructure for Phase II is outlined
 

in Figure 2. The process begins with a single
 

crystal silicon 90 millimeter round Czochralski wafer.
 

It has a thickness of 15 mil and a resistivity of
 

0.5 - 2.0 ohm-centimeter. The wafers received
 

from the manufacturer are cleaned in hot trichlor­

ethylene, xylene and alcohol. Wax and organic
 

contaminants are removed. The silicon wafers are
 

next etched in a solution of NaOH and water to produce
 

a surface macrostructure.- A prediffusion cleaning
 

process is added to remove any acid and undesirable
 

material. The wafer is diffused in POCi3. The wafer
 

is silk screen printed on the front. It is then
 

back etched in a hydrofluoric and nitric acid
 

solution and then the front surface resist material
 

is serippea off the wafer. Aluminum is evaporated
 

onto the back surface and then firedin. A pattern
 

is silk screen printed on the front surface. The
 

wafer is then plated in an electroless nickel
 

plating solution and then cleaned. The solar cell
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SINGLE CRYSTAL SILICON
 
90 mm Round Wafer
 
0.5-2.0 ohm-cm.
 

PRINT FRONT SURFACE PHOSPHORUS DIFFUSION 

ETCH AND CLEAN THE 
BACK SURFACE 

METAL DEPOSITION PRIN~T FRONT PATTERN 

SCRIBE AND BREAK 
HEXAGON WITH 

LASERSCRIBE 
PLATE NICKEL AND CLEAN 

E 

E SOLDERDIP & CLEAN 

SIICON GLASS REMOVAL 

ANTIREFLECTION COATING 

1 
i 

Figure 2. Block diagram of 
hexagonal solar cell process 
sequence With surface macro­

structure for Phase II. 

ELECTRICAL PERFORMANCE TEST 
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is cut into a hexagon by laserscribe. The solar
 

cell is solder dipped and cleanedo It has the
 

silicon glass., Si0 2 removed in hydrofluoric acid
 

solution and then an anti-reflective coating of
 

SiO is evaporated onto the solar cell or an anti­

reflective coating is spun on the solar cell
 

Final electrical performance testing of the
 

hexagonal solar cell is made under tungsten solar
 

simulator at 280C and at 100 mW/cm 2,
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LASERSCRIBE HEXAGONAL SOLAR CELL PROCESS
 

A. Laserscribe Hexagon Computer Program
 

Modified hexagonally shaped wafers can be
 

scribed from 90 millimeter or 3.54 inch diameter round
 

silicon wafers using Quantronix Corporation's Laser­

scribe 603-2. The laserscribe shown in Figure 3, is
 

controlled by a computer program which allows for
 

optional subroutines specified by an option switch.
 

Four options can be utilized and are listed as follows:
 

OPTION 1. Standard X-Y laserscribe program
 
as specified by Quantronix
 
Corporation. (Ref. 1)
 

OPTION 2. Scribe modified hexagon, as illus­
trated in Figure 4, with the
 
following inputs.
 

a) Wafer diameter specified by
 
two digits, i.e. X.X inches
 

b) Radius of circumscribed circle
 
from one inch to two inches
 
specified by three digits,
 
i.e. I.XX inches.
 

c) Corner cut specified by three
 
digits, i.e. .XXX where 0, if
 
given, means no cut.
 

OPTION 3. Scribe modified hexagon in half
 
from point to point.
 

OPTION 4. Scribe modified hexagon in half
 
perpendicular to Option 3 or from
 
the center of one side of the
 
hexagon to the center of the
 
opposite side.
 

GENERAL Cuts made by the laserscribe
 
should be within plus or minus two
 
mils.
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Modified hexagon scribed
 
from 90 mm round silicon
 
wafer
 we 


90 
mm round 

silicon
 

wafer
 

// ScribeS line to producefhalf modified hexagon
 
(option 3)
 

Scribe line to produce half
 
modified hexagon (option 4)
 

Figure 4. Modified hexagon scribed from 90 mm
 
round silicon wafer.
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B. Solar Cell Junction Current Leakage Prior to
 

and After Laserscribing
 

The junction current leakage for silicon
 

solar cells prior to and after laserscribing was
 

compared. A 2.15 inch diameter circular solar cell
 

with etch ring and the same cell cut into a hexagon
 

by laserscribe is shown in Figure 5.
 

The p-n junction current leakage or dark
 

reverse current (IDR) for ten circular solar cells
 

with etch rings and for the same solar cells cut
 

from the front surface into hexagons by laserscribe
 

are shown for comparison in Table 1. The ten circu­

lar solar cells with etch rings were specifically
 

chosen to show a large variation in current leakage.
 

The current leakage is significantly reduced when
 

the solar cells are cut into hexagons with the
 

laserscribe; the current leakage is reduced for
 

some cells by more than an order of magnitude. The
 

junction current leakage for the ten scribed hexagons
 

is uniform and consistent, i.e. at 0.5 volts the
 

current leakage averages .925 ma and at 4.0 volts
 

'
 the current leakage averages 6.4 ma for the ten
 

solar cells.
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_Etch ring
 

2.15"
 

Scribe line
 

Figure 5. A 2.15 inch diameter circular solar cell
 
with etch ring and the sane cell cut into a hexagon
 
by laserscribe. Also shown is the scribe line for
 
cutting the hexagon into two paired halves.
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2,15" DIAMETER CIRCULAR SILICON HEXAGON CUT BY LASERSCRIBE
 

SOLAR CELL WITH ETCH RING FROM FRONT SURFACE OF CELL
 

Cell IDR (ma) IDR (ma) IDR (ma) DR (ma) 
Number @ 015V @ 4.OV @ 0.5 V @ 4.0 V 

1 1.0 9.0 0.6 7.0 

2 1.5 100 ill 8.0 

3 - 2,0 11.0 0,8 5.0 

4 2.5 18.0 1.3 5.8 

5 4.0 17,5 0,7 

6 6,0 60.0 0,6 4.0 

7 8.0 60,0 1.0 7.2 

8 10.6 80.0 l.2 7.0 

9 13.0 120 0,6 12.0 

10 14.0 125 1.4 8.0 

AVE. -- -- .925 6.4 

Table 1.Junction current leakage (iDR) for ten 

circular solar cells with etch rings and the same 
solar cells cut from the front surface into hexagons 
by laserscribe, 
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The p-n junction current leakage for ten
 

circular solar cells with etch rings and for the sam&
 

solar cells cut from the back surface into hexagons
 

by laserscribe are shown in Table 2. The ten circu lar
 

solar cells with etch rings were specifically chosen
 

to show a large variation in current leakage. The
 

current leakage is significantly reduced when the
 

solar cells are cut into hexagons with the laser­

scribe; the current leakage is reduced for some cells
 

by more than an order of magnitude. The junction
 

current leakage for the ten scribed hexagons is uni­

form and consistent, i.e. at 0.5 volts the current
 

leakage averages 0.80 ma and at 4.0 volts the current
 

leakage averages 4.8 ma for the ten solar cells.
 

The junction current leakage is small and
 

very nearly the same for the hexagonal solar cells
 

whether they were cut by laserscribe from the front
 

of the cell, thus cut through the p-n junction, or
 

whether they were cut by laserscribe from the back
 

of the cell thus the cell is broken or cleaved
 

through the p-n junction. Therefore, it can be con­

cluded that the laserscribe can cut through the
 

p-n junction without damaging the junction.
 

14
 



2.15" DIAMETER CIRCULAR SILICON HEXAGON CUT BY LASERSCRIBE
 

SOLAR CELL WITH ETCH RING FROM BACK SURFACE OF CELL
 

Cell I- (ma) IDR (ma) IDR (ma) IDR (ma)

DR
Number 
 @ 0.5-V @ 4.0 V @ 0.5 V @ 4.0 V
 

11 0.6 3.8 0.5 3.2
 

12 0.8 5.0 0.75 2.4
 

13 1.2 8.0 0.3 2.8
 

14 1.4 11.0 1.0 6.2
 

15 1.6 11.0 1.25 4.0
 

i6 1.8 10.0 0.8 6.0
 

17 2.2 17.5 1.0 9.0
 

18 3.5 40.0 0.6 3.5
 

19 5.0 32.0 -±--75 

20 6.5 65.0 1.0 6.0
 

AVE. -- -- 0.8 4.8 

Table 2. Junction current leakage (IDR for ten
 
circular'solar cells with etch rings and for the
 
same solar cells cut from the back surface into
 
hexagons by laserscribe.
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The p-n junction current leakage for six
 

circular solar cells with etch rings and for the same
 

sol&r cells cut from the front surface into two "half"
 

hexagons by laserscribe are shown in Table 3. It is
 

observed that the sum of the current leakage of the
 

two paired half hexagons is considerably less than
 

the current leakage of the circular solar cells with
 

etch rings.
 

The p-n junction current leakage for six
 

circular solar cells with etch rings and for the same
 

solar cells cut from the back surface into two "half"
 

hexagons are shown in Table 4. It is observed that
 

the sum of the current leakage of the two paired
 

half hexagons is considerably less than the current
 

leakage of the circular solar cells with etch rings.
 

Whether the paired half hexagons are cut
 

by laserscribe from the front surface or back surface,
 

the current leakage are not always paired identically,
 

but are averaged nearly the same for the twelve solar
 

cells. This would suggest that the differences in
 

junction current leakage is due to non-uniform current
 

leakage within the solar cell.
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2.15" DIAMETER CIRCULAR SILICON HALF HEXAGONS CUT FROM
 

SOLAR CELL WITH ETCH RING FRONT SURFACE OF CELL
 

Cell IDR (ma) IDR (ma) IDR (ma) IDR 9ma)

Number @05VDI (m) I 9ab 0.5 V @ 4.0 V 
 @ 0.5 V @ 4.0 V
 

21 0.6 3.8 0.2/0.2 10/1.0
 

22 0.75 10.0 0.7/0.1 5,0/0.6
 

23 0.8 8s0 0.3/0.3 3.5/1.8
 

24 1.2 79:0 0.4/0.5 3.0/1.8
 

25 1.5 17.0 0.7/0.2 4.0/1.5
 

26 2.0 16.0 0.8/1.2 5.5/8.8
 

AVE 0.5/0.4 3.7/2.6
 

Table 3. Junction current leakage CIDI for six
 
circular solar cells with etch xings and for the
 
same solar cells cuf from the front surface into
 
paired hialf hexagons by laserscribet
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2.15" DIAMETER CIRCULAR SILICON HALF HEXAGONS CUT FROM
 

SOLAR CELL WITH ETCH RING 
 BACK SURFACE OF CELL
 

Cell IDDR (ma) I DR (ma) IDR (ma)
 

Number @ 0.5 V @ 4.0 V @ 0.5 V @ 4.0 V
 

27 2,2 85.0 0.5/0.2 3.8/1.8
 

28 3.0 100.0 0,5/0.8 3.0/4.2
 

29 5.0 40.0 0.4/0.4 2.2/2.2
 

30 6.0 60.0 0.8/1.8 5.6/8.8
 

31 8.0 110.0 0.3/0.5 1.8/3.0
 

32 12.0 100.0 0.4/0.2 2.8/1.8
 

AVE. -- -- 0-.5/0.6 3.2/3.6
 

Table 4. Junction current leakage (IDR) for
 
six circular solar cells with etch rings and
 
for the same solar cells cut from the back
 
surface into paired half hexagons by laser­
scribe.
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The average sum of the junction current leak­

age of the half solar cells cut by laserscribe from
 

the front surface or from the back surface is approx­

imately equal to the junction current leakage for the
 

full hexagons cut by laserscribe from the front surface
 

and from the back surface.
 

C. Silicon Wafer Laserscribing Technique
 

Laserscribing is accomplished by moving
 

the silicon wafer through the appropriate pattern,
 

which in this program is a hexagon, under a focused
 

beam of laser light. The high intensity pulses are
 

absorbed by the material, rapidly heating it to the
 

boiling point, generating a kerf by evaporation of
 

material. SEM photographs in Figure 6A and 6B show
 

the effect of laserscribing silicon material. The
 

duration of the pulses is sufficiently short (less
 

than 0.5 nanoseconds) that negligible heat flows
 

from the irradiated region via conduction; as a
 

result, the temperature rise at a distance about
 

one mil from the irradiated spot is only a few
 

degrees and no performance degredation occurs.
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Figure Ca. SEM photograph of lasersoribed silicon material
 

at 410 X magnification.I
 

Figure 6 b. 	SEM photograph of laserscribed silicon material
 

at 1650 X magnification.
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The depth of the kerf need only be a few mils on
 

typical silicon wafers so that the stress enhancement
 

when bent assures breaking along the scribe line.
 

It was shown in the previous section that
 

the laserscribe can cut through the p-n junction
 

without damaging the junction. The technique, however,
 

for scribing a silicon wafer is very important.
 

First the silicon wafer should be aligned
 

properly. Alignment is done manually in the laser­

scribe used in this program. The wafers are usually
 

scanned prior to laserscribing to check the align­

ment for initial experiments. A bl6ck or stop can
 

be made which is used to assist the operator in
 

wafer alignment and thus eliminate the necessity
 

of scanning each wafer prior to laser scribing.
 

Second, the silicon wafer can be cut by
 

laser from the front of the cell, thus cut through
 

the p-n junction or it can be cut by laser from the
 

back of the cell, thus the cell is broken or cleaved
 

through the p-n junction. There is a slightly
 

smaller current leakage produced when the cell is
 

cut from the back and therefore this is the pre­

ferred method. It should be noted that there is
 

no etch ring, edge grinding, or edge etching
 

required when the solar cells are cut by the
 

las~rscribe.
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Third, silicon wafers should be scribed
 

prior to solder coating. Experience has shown that
 

scribing solder coated solar cells by laser-produces
 

severly shorted p-n junctions. This technique is
 

not recommended. Scribing solder coated solar cells
 

by laser through the back surface and then breaking
 

or cleaving the p-n junction can be performed without
 

major current leaking problems but the operator must
 

be very careful when breaking the cell so that no
 

solder pieces are left which might cross the p-n
 

junction and short out the cell. This technique
 

is not preferred for large scale production.
 

Fourth, the wafer breaking technique is
 

performed manually. After a-hexagon is scribed
 

the six sides are broken by hand. This is done in the
 

following manner. The solar cell is placed between
 

the thumb and fingers of one hand; the scribe line
 

is face up. The thumb and index finger of the second
 

hand closes on the edge of the wafer just outside
 

the midpoint of the scribed line and exerts a down­

ward force on the segments and snaps the wafer.
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HIGH THROUGHPUT DIFFUSION PROCESS
 

Experiments were performed to determine
 

the feasibility of diffusing 400 ninety millimeter
 

(3.54 inches) diameter silicon wafers in one hour.
 

The sequence of events included the use of a
 

commercial diffusion furnace with an extended
 

temperature flat zone, the design and fabrication
 

of quartz boats to hold 200 wafers per cycle and
 

the introduction of a buffer.
 

Experiments were set up around the
 

commercial limitations of the length of the flat
 

zone ofthe commercial furnace "Brute Ranger XL"
 

type 373 manufactured by Thermco. The commercial
 

flat zone available for a- 5 3/4 inch diameter quartz
 

tube was 30 inches for temperatures above 7000C
 

+ 0C. An extended flat zone of 38 inches was 

required. A temperature profile was measured 

and silicon wafers were diffused with time and 

flow rate held constant. The variation in wafer 

sheet resistivity for the initial experiments 

in the extended flat zone was found to be within 

+ 24%. A variation in solar cell efficiency was
 

found to be within + 1%. It was concluded that
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the flatness of the extended diffusion zone if
 

maintained to within + 50C could be tolerated
 

in solar cell processing.
 

Quartz boats were designed and fabrica­

ted to-hold one hundred 90 millimeter silicon
 

wafers. Mechanical considerations were given to
 

the weight of silicon, thermal stresses and ease
 

in loading and unloading.
 

Two hundred 90 millimeter silicon wafers
 

were diffused with POCl3 in a 38 inch flat zone
 

furnace with a center set temperature of 9000 C +
 

0 C. The gas flow was adjusted for uniformity,
 

The sheet resistivity was measured on a left;
 

right and center wafer in each of ten rows. Each
 

silicon wafer was measured at five surface points.
 

A plot of the average sheet resistivity over the
 

silicon wafer surface was made for the left, right
 

and center wafers in each row which is shown in
 

Figure 7. Spots of POCl3 were visible on the
 

silicon wafers due to the spitting effect.
 

The spitting effect was considerably
 

reduced by the design and fabrication of a buffer.
 

This buffer is positioned between the diffuser
 

and the automatic gas flow meter panel. This
 

buffer helps to thoroughly mix the gases prior to
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Figure -7 Variation in sheet resistivity along the length of the diffusion tube after
 
200 ninety millimeter diameter silicon wafers per half hour run diffusion.
 



entering the diffuser and to remove traces of POCl 3
 

liquid drops which are carried by the gases. The
 

variations in resistivity obtained with such a
 

buffer with an extended usable temperature zone of
 

9000 C + 5oC is shown in Figure 7.
 

It can be concluded that 400 ninety millimeter
 

silicon wafers per hour can be diffused in a 38 inch
 

flat zone furnace at 9000C + 50C with the use of a
 

buffer to obtain a uniform sheet resistivity within
 

20%. This diffusion process allows one to process
 

solar cells in large quantities with less than 1%
 

variation in photovoltaic energy conversion
 

efficiency.
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SURFACE MACROSTRUCTURE PROCESS
 

Two surface macrostructure processes suitable
 

for large scale production of silicon solar cells have
 

been developed. Silicon wafer surface preparatio? and
 

etching time, temperature and concentration was
 

optimized relative to surface macrostructures that trap
 

light efficiently. The process procedure was defined
 

for manual large scale production. The process equip­

ment is capable of texturizing 200 ninety millimeter
 

diameter silicon wafers in five minutes. The silicon
 

wafers have black antireflective surfaces which are
 

uniformly etched and are batch to batch reproducible.
 

A. Preliminary Studies
 

1. Surface Preparation
 

Surface preparation prior to surface macro­

structuring plays an important role on the solar cell
 

power output. The'electrical performance curves in
 

Figure 8 shows the effect on surface preparation time
 

on solar cell power output. The surface preparation
 

etchant used was a mixture of hydrofluoric acid,
 

nitric acid, and acetic acid. The solar cells have
 

* 	 The surface preparation etchant was replaced 
by a 10% NaOH by weight to water solution in 
the two step surface macrostructure process
 
number two which is discussed in section C.
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Figurea. Electrical performance curves showing the effect of surface
 
preparation etching time on solar cell power output.. Surface preparation
 
etchant used is a mixture of hydrofluoric acid, nitric acid and acetic 
acid. The solar cells have a surface macrostructure etched 30 minutes 
with NaOH and have a SiO antireflection coating. The cells 
are measured at 281C and at 100 mW/cm2 . 
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a surface macrostructure etched thirty minutes with
 

NaOH and water solution and has a SiO antireflective
 

coating. A very short 10 second surface preparation
 

etch significantly improves the solar cell power,
 

output above a longer 3 minute surface preparation
 

etch. The surface preparation etch removes saw
 

damage and roughs up the silicon wafer surface which
 

reduces the surface macrostructure etching time and
 

makes surface macrostructure more effective in
 

collecting light.
 

2. Surface Macrostructure Studies and
 

Experiments
 

A significant innovation to silicon solar
 

cell technology has been the use of orientation
 

dependent etches to reduce reflection from the front
 

surface of the solar cell. Various compounds like
 

sodium hydroxide, hydrazine, ethylene diamine, and
 

potassium hydroxide have been successfully used for
 

anisotropic etches (Ref. 3-9). Some experiments
 

were performed by Sensor Technology using the surface
 

macrostructure etching apparatus in Figure 9 for
 

three types of solutions which are as follows:
 

(1) KOH, isopropyl alcohol and water; (2) ethylene
 

diamine, pyrocatehol and water; and (3) NaOH and
 

water. Observations indicated that surface macro­

structures produced by the three mixtures signifi­

cantly improved the photovoltaic energy conversion
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Figure 9. Surface Macrostructure Etching Apparatus
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efficiency in silicon solar cells. The NaOH and water
 

mixture was chosen for an indepth study in this program
 

based on cost, safety, and ability to be used in large
 

scale production.
 

Experimentation was performed on 2.15 inch
 

diameter and 90 mm diameter silicon wafers utilizing
 

the surface macrostructure process. A 30% NaOH/water
 

solution at 800C was used to etch the surface of the
 

silicon wafers. A nitrogen-bubbler was used to
 

agitate the solution. The texturized surface was
 

black after two minutes in the solution. However,
 

uniformity across the silicon wafer surface was
 

difficult to achieve and reproducibility from batch
 

to batch was hard to obtain.
 

Similar experiments produced the same
 

results with 10% NaOH/water solution at 8000. The
 

surface macrostructure obtained was compared to our
 

commercial solar cell process which has a phosphor
 

glass surface. The studies were done before and
 

after the application of General Electric RTV-615
 

encapsuiant. Figures 10 and 11 show the spectral
 

response of-a 1 cm. x 1 cm. surface macrostructure
 

solar cell with RTV-615 encapsulant and our commercial
 

process solar cell with RTV-615 encapsulant.
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Figure 10. Spectral response curves comparing Sensor Technology's
 
commercial solar cell'with RTV-615 encapsulant and surface
 
macrostructure solar cellwith RTV-615 encapsulant. The curves
 
show that solar cel-s with surface macrostructure absorb more
 
light than commercial process solar cells.
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Figure 1; Spectral response curves, normalized comparing
 
Sensor Technology's commercial solar cell with RTV 615, encapsulant

and surface macrostructure solar cel.l with RTV 615 encapsulant.

The curves show that the junction depth is the same for both
 
solar cells.
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The following observations were made:
 

(a) The absolute power output is higher for
 
a solar cell with surface macrostructure
 
than for our commercial solar cell because
 
the former absorbs more incident radiation
 
as shown in Figure 10.
 

(b) The spectral response is similar with and
 
without RTV-615 encapsulant for solar cells
 
with a surface macrostructure and for our
 
commercial process solar cells. This is
 
shown by the normalized spectral response
 
curves in Figure 11.
 

(c) For solar cells with the same p-n junction
 
depth, the solar cells with surface macro­
structure absorb more light in the shorter
 
wavelength and match the solar spectrum
 
better than the commercial process solar
 
cell as shown in Figure 10.
 

Experiments were performed utilizing
 

an etching solution with 1% NaOH/water/isopropyl
 

alcohol at 800C for 25 minutes. The nitrogen
 

bubbler was used to agitate the solution. While
 

uniformity across the silicon wafer surface was
 

improved, reproducibility from batch to batch
 

was still hard to obtain.
 

Further experimentation was performed
 

with a 1% NaOH boiling water solution at 1000C
 

for 25 minutes. The nitrogen bubbler was not
 

utilized. Results were very good for these
 

experiments. The solution produced black uniform
 

wafer surfaces, and batch to batch reproducibility
 

was good. Experimental analysis led to the
 

following observations:
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(a) Clean silicon wafers, which are free of all
 
organic contaminants, are required to etch
 
uniform surface macrostructures.
 

(b) The wafer jig configuration was important,
 
it affects the flow rate and thus affects'
 
the surface uniformity and batch to batch
 
reproducibility.
 

(c) High concentration of NaOH/water solution
 
etches very fast. However, batch to batch
 
reproducibility is hard to obtain.
 

(d) Nitrogen agitation at a high flow rate
 
greatly affects surface uniformity and
 
batch to batch reproducibility.
 

The results of the preliminary experimenta­

tion led to two basic surface macrostructure etching
 

solutions to be used as sample volume testing for
 

production. The first solution consisted of 10%
 

NaOH by weight to water. The second solution
 

consisted of 1% NaOH by weight to water.
 

Two surface macrostructure process proce­

dures were developed. Both process procedures
 

consisted of five steps. They are (1) wafer surface
 

cleaning, (2) surface macrostructure etching,
 

(3) four stage cascade rinse, (4) surface macro­

structure final cleaning, and (5) finalsrinse/spin
 

dry. Surface macrostructure process humber one
 

utilized in step (2) 10% NaOH by weight to water.
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Surface macrostructure process.number two utilized,
 

in step (2), a sequential operation with three
 

separate solutions; 10% NaOH by weight to water
 

followed by a hot D.I. water rinse and then 1%
 

NaOH by weight to water. The two surface macro­

structure process prbcedures are discussed in
 

sections B-and C.
 

3. Surface Macrostructure Production
 

Process Equipment
 

Surface macrostructure production process
 

equipment was designed and constructed in this
 

program. It has large.scale production capability
 

for texturizing 20.0 ninety millimeter wafers -in
 

five minutes._ The equipment shown -inFigure 12
 

consists of a surface macrostructure etching tank
 

equipped for ultrasonic agitation and nitrogen­

agitation. It also has a cascaded rinse system
 

which consists of a.hot ultrasonic deionized water
 

cleaning tank with three cascaded deionized water
 

rinse stages, a sulphuric acid hydrogen peroxide
 

cleaning station and a final rinse/spin dry system.
 

B. Surface Macrostructure Process Number One
 

Ninety millimeter diameter, Czochralski
 

(100), as cut, flash etched, 20 mil thick, round
 

silicon wafers were procured and sample inspected
 

for experimentation. They were manually placed
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Figure 12. Sketch of surface macrostructure process equipment
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into jigs which hold twenty-five wafers. Four jigs
 

or one hundred silicon wafers were processed
 

together.
 

The first step in the wafer surface macro­

structure process consists of a two stage wafer
 

surface cleaning procedure. The silicon wafers
 

are placed into a hot trichlorethylene for five
 

minutes (preferably in an ultrasonic tank) followed
 

by a 5 minute methanol dip. This process step cleans
 

any organic contaminants off the wafer surfaces
 

which might otherwise impede surface macro-structure
 

etching steps.
 

The second step in the surface macro­

structure process is surface macrostructure etching.
 

The four jigs containing the silicon wafers are
 

introduced into an ultrasonic stainless steel tank
 

which has been filled with a 10% solution by weight
 

of NaOH to deionized water at 850C + 20 C. Suspended
 

in the tank is a nitrogen bubbler system which is
 

designed to agitate the solution in addition to the
 

ultrasonics. 10 liters per minute of nitrogen gas
 

is required for the bubbler designed by Sensor
 

Technology, Inc. It is to be noted that the
 

design and the placement of the bubbler with
 

respect to the silicon wafers determines the
 

consistency of the surface macrostructure etching
 

process. A large amount of nitrogen bubbles which
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are. small in diameter contribute to uniform surface
 

macrostructures. The process time for this step is
 

five minutes.
 

The jigs are manually removed from the
 

surface macrostructure etching tank and placed into
 

the first ultrasonic stage of a four stage cascade
 

rinse system which make up the third step in the
 

process. The jigs remain for five minutes in each
 

of the four stages. Hot deionized water flows at
 

a rate of 3.8 liters per minute from the fourth
 

stage where the D.I. water input temperature is
 

800C + 50C to the first ultrasonic stage where the
 

D.I. water output temperature is 720 C + 5OC. The
 

silicon wafers get progressively cleaner as they
 

move from the first stage to the fourth stage of
 

the cascade rinse system.
 

The fourth step in the surface :macro­

structure process is final -cleaning. The wafer
 

jigsare manually removed from the cascade rinse
 

and introduced into a sulphuric acid/hydrogen
 

peroxide mixture at 700 C + 50C for five minutes.
 

This solution removes any remaining deposits of
 

sodium hydroxide that may be trapped in the wafer
 

surface macrostructure. The wafers are rinsed
 

off in running D.I. water for five minutes and
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are now ready for the final step in this.process
 

sequence.
 

The fifth step in the surface macrostructure
 

process is the final rinse/spin dry. The last
 

remaining wafer surface contaminants in this
 

five minute cycle are removed. The wafers are
 

now ready for the junction formation process.
 

The surface macrostructure process demonstration
 

equipment was used to process 100 ninety millimeter
 

diameter silicon wafers for each carrier basket or
 

four cassettes carrying 25 wafers each. The system
 

capability is 200 wafers per process step assuming
 

two layers of 100 wafers each. The surface macro­

structure process therefore, can produce, after the
 

initial startup time, 2400 wafers per hour.
 

C. Surface Macrostructure Process Number Two
 

Ninety millimeter diameter, Czochralski (100)
 

as cut, flash etched, 20 mil thick round silicon
 

wafers were procurred and sample inspected for
 

experimentation. They were manually placed
 

into jigs which hold twenty-five wafers. Four
 

jigs or one hundred silicon wafers were processed
 

together.
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The first, third, fourth, and fifth steps
 

-in the process are identical to the surface macro­

structure process number one. Process step (2),
 

surface macrostructure etching has been modified as
 

follows: Four jigs carrying the silicon wafers are
 

introduced into an ultrasonic stainless steel tank
 

which has been filled with a 10% solution by weight
 

of NaOH to deionized water at 800C + 20C. Suspended
 

in the tank is a nitrogen bubbler system which is
 

designed to agitate the solution in addition to
 

the ultrasonics. Approximately 10 liters per minute
 

of nitrogen gas is required for the bubbler
 

designed for this step by Sensor Technology, Inc.'
 

The process time is approximately five minutes
 

which will vary according to the amount of silicon
 

particles and contaminants in the NaOH solution.
 

The jigs are manually removed from the tank and placed
 

into a hot D.I. water rinse tank. The jigs are
 

then removed and placed into a second ultrasonic
 

stainless steel tank which has been filled with a
 

1% solution by weight of NaOH to deionized water
 

at 1000C + 20C. Suspended in the tank is a
 

nitrogen bubbler. Approximately 10 liters per
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minute of nitrogen gas is required. The process
 

time is approximately five minutes which will vary
 

according to the amount of silicon particles and
 

contaminants in the NaOH solution.
 

D. Technical Discussion and Results
 

A comparison was made between the two
 

surface macrostructure processes. Figure 13 and
 

14 shows two SEM photographs of the surface
 

macrostructures produced by the 10% NaOH by weight
 

to water solution and also the same solution
 

followed by a D.I. water rinse and then 1% NaOH
 

by weight to water solution. Figure 13 is under
 

4000X and Figure i4 is under 2000X magnification.
 

A comparison of the two photographs clearly shows
 

that the surface macrostructure process number
 

two consisting of the sequential etching solutions
 

produces pyramidal structures that are more sharply
 

defined than the first process. There is far less
 

rounding of the pyramidal peaks utilizing a sequen­

tial 10% NaOH to water etch followed by a water
 

rinse and 1% NaOH the water etching solution
 

than through a one step process that utilizes
 

only a 10% NaOH water solution. The surface
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Figure 13. Surface macrostructure SEM photograph at 4000 X
 

magnification for a silicon wafer processed in a
 

10% NaOH by weight to deionized water etching
 

solution.
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Figure 14. 	 Surface macrostructure SEM photograph at 2000 X
 

magnification for a silicon wafer processed in a
 

10% NaOH by weight to deionized water followed
 

by a water rinse and then a 1% NaOH by weight to
 

water solution.
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macrostructure process number two produces consis­

tent and uniform texturized surfaces and the process
 

is batch to batch reproducible.
 

A more indepth study was made on the 

surface macrostructure process number two procedure. 

Various parameters like temperature of the 10% 

NaOH by weight to water solution, nitrogen agitation, 

and ultrasonic agitation were varied. The wafers 

thus processed were measured for short circuit 

current, ISC, open circuit voltage, VOC, and 

efficiency, 71 . A summary of the experiments 

performed and their results is shown in Table 5. 

Comparing batch Sentex-Oll and 012
 

one can conclude that ultrasonics is needed for
 

silicon wafer definition and uniformity. This
 

result is probably due to an increased etching
 

rate since the ultrasonic agitation helps to
 

remove the hydrogen bubbles which would otherwise
 

cling to the surface and inhibit further etching.
 

The addition of nitrogen agitation was
 

incorporated into the process to help remove the
 

hydrogen bubbles. The agitation flow pattern was
 

found to be very important for silicon wafer
 

etching uniformity. Sentex-012 in Table 5 shows
 

the results without the use of nitrogen agitation.
 

Sentx 013 shows the results with the use of
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Table 5. Summary of surface macrostructure experiments and results for the sequential etching process

consisting of 10% NaOH by weight to water followed by a deionized water rinse and then a
 
1% NaOH by weight to water solution. 

Batch No. 

Sentex 011 

No. of 
Wafers 

15 

Starting 
Material 
Thickness 

20.0 mil 

10% NaOH Bath 
Temp. Nitrogen 
(OC) (1/min) 

80 0 

Conditions 
Ultra- Thickness Temp. 
sonic Removed(mil) (OC) 

Off 1.2 10040KHZ 

1% NaOH Bath 
Nitrogen 
(1/min) 

--

Ultra- Thickness 
sonic Removed (mil) 

Off 0.3 

Sentex-012 

Sentex-013 

Sentex 014 

Sentex-015 

Sentex-016 

Sentex-017 

Sentex-018 

Sentex-019 

Sentex-027 

25 

25 

25 

25 

25 

25 

25 

25 

25 

20.0 mil 

20.0 mil 

20.0 mil 

20.0 mil 

20.0 mil 

20.0 mil 

20.0 mil 

20.0 mil 

20.0 mil 

80 

80 

80 

80 

80 

70 

60 

80 

80 

0 

7 

7 

10 

10 

10 

10 

10 

10 

On 
40KHZ 

On
40KHZ 

On 
40KHZ 

On
40KHZ 

On 
40KHZ 

On
40KHZ 

On
40KHZ 

On
40KHZ 

On
40KHZ 

1.5 

1.4 

1.5 

1.4 

1.4 

1.1 

0.8 

1.4 

1.4 

100 

100 

100 

100 

100 

100 

100 

100 

100 

--

7 

--

Off 

Off 

On 

On 

On 

On 

On 

On 

On 

0.3 

0.5 

0.55 

0.55 

0.4 

0.55 

0.55 

0.55 

0.55 

Sentex-029 25 20.0 mil 80 10 On 
40KHZ 

1.4 100 On 0.55 

Sentex-032 25 17.4 mil 80 10 On40KHZ 1.25 100 On 0.55 

--a.m i i I inI|1H tDnIIII Ildii i n iI 



Table 5. continued
 

No. Batch No. 


1. Sentex-Oll 


2. Sentex-012 


3. Sentex-013 


4. Sentex-014 


5. Sentex-015 


6. Sentex 016 


7. Sentex-017 


8. Sentex-018 


9. Sentex-019 


10. Sentex-027 


11. Sentex-029 


12. Sentex-032 


No. of 

Wafers 


15 


25 


25 


25 


25 


25 


25 


25 


25 


25 


25 


25 


Starting 

Material 

Thickness 


20.0 mil 


20.0 mil 


20.0 mil 


20.0 mil 


20.0 mil 


20.0 mil 


20.0 mil 


20.0 mil 


20.0 mil 


20.0 mil 


20.0 mil 


17.4 mil 


Total 

Etched 


Thickness
 

1.5 mil 


1.8 mil 


1.7 mil 


2.05 mil 


1.95 mil 


1.8 mil 


1.65 mil 


1.35 mil 


1.95 mil 


1.95 mil 


1.95 mil 


1.8 mil 


-c 

(Amp) 


1.455 


1.501 


1.457 


1.432 


1.630 


1.51 


1.414 


1.381 


1.104 


1.560 


1.687 


1.612 


Vo-

(Volts) 


0.580 


0.580 


0.577 


0.585 


0.575 


0.580 


0.580 


0.580 


0.580 


0.580 


0.580 


0.580 


- 1Peak 
(%) (%) 

11.12 12.21 

11.5 12.45 

11.41 12.52 

11.20 12.3 

12.75 13.75 

11.65 12.90 

11.06 12.40 

10.8 12.0 

12.55 13.3 

12.2 13.4 

13.2 13.55 

12.61 13.31 



nitrogen agitation. Increasing the nitrogen flow
 

rate from 7 to 10 liters per minute increases the
 

unformity as shown by Sentex-015.
 

Sentex-016 indicates that the introduction
 

of nitrogen agitation into the 1% NaOH to water
 

solution allows one to remove the steric hindrance
 

of sodium silicate, thus improving the pyramid
 

definition on the silicon surface. Also the
 

ultrasonic agitation was retained in this process
 

batch which helped to reduce the hydrogen bubbles
 

and enhance the etching process.
 

Temperature variation results are shown
 

in Sentex-015, 017, and 018 at 800C, 700 C, and 600C
 

respectively for the 10% NaOH to water solution.
 

Low short circuit current, ISC, is found for
 

batches 017 and 018 processed at low temperatures
 

which is due to degraded pyramidal structures.
 

The best temperature for the 10% NaOH to water
 

solution is 800 C as shown in Sentex-015. The
 

surface macrostructure obtained with the
 

Sentex 015 sequential process is shown in
 

the SEM photograph in Figure 14 at 2000X magni­

fication and in Figure 15 at 20,OOOX magnification.
 

The surface appears with slightly rounded peaks
 

but with very good pyramidal definition.
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Figure 15 	 Surface macrostructure SEM photograph at 20,000 X
 

magnification for a silicon wafer processed in a
 

10% NaOH by weight to deionized water followed by
 

a water rinse and then a 1% NaOH by weight to
 

water solution.
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The effect of ultrasonic frequency variation
 

is shown in batches 018 and 019. Low frequencies
 

produce undeveloped texturized regions which are
 

probably due to the clinging of hydrogen bubbles to
 

the surface structure. This problem is reduced at
 

higher ultrasonic frequencies.
 

Sentex 032 shows the results incurred
 

from producing surface macrostructures on surface
 

etched wafers. Improved energy conversion efficiencies
 

can be obtained with the addition of the surface
 

etching process step.
 

Experiments which are not part of this
 

program were performed with the results reported
 

in Sentex 027 and 029. Higher efficiencies can be
 

obtained with the addition of intermediate process
 

steps. It is recommended that future work be
 

performed on the surface macrostructure process
 

for producing high light collection and energy
 

conversion efficiencies.
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SPIN-ON ANTI-REFLECTIVE COATING STUDY 

The primary function of'antiteflective 

coatings is to increase'the photovoltaic energy 

conversion efficiency of solar cells. There are 

presently several diverse varieties of afiti­

refle)ctive coatings in common usage ranging from 

single to milti-layer. The standard method for 

depositing single layer A.R.coatings such as 

silicon monoxide, silicon nitride and titanium 

oxide to an approximate thickness of 800 R is by 

means of vacuum deposition. The technological 

level of the equipment currently available in 

today's market precludes the method of vacuum 

deposition from being cost-effective and is 

thus a significant deterrent towards the attain­

ment of a high volume low-cost throughput. With 

this drawback in mind, Sensor Technology has 

proposed the alternative procedure of spin-on 

anti-reflective coatings. 

The solutions used in this study are 

titaniumsilicafilm A, B and C from Emulsitone 

Company, Whippany, New Jersey. Titaniumsilica­

film is a spin-on formulation which yields 

glassy films containing TiO 2 and SiO 2 . The 
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indices of refraction for titaniumsilicafilm
 

A, B and C are respectively 1.80, 1.90 and 1.96.
 

The Titaniumsilicafilms A, B and C
 

were spun on textured and chemically etched
 

wafers which were subsequently encapsulated
 

with RTV encapsulants. Studies of spin speed
 

vs. thickness for a giyen viscosity, uniformity
 

of wafer coatings, and batch to batch repro­

ducibility have been conducted. Spin-on equip­

ment currently available in today's market
 

were investigated. Automatic-handling equipment
 

made by Headway Research Inc, Macronetics and
 

Solitec Inc., were studied for cost versus
 

performance. The Model C-1000 wafer coating
 

system with single track, load/unload facilities
 

was purchased from Macronetics in Sunnyvale,
 

California.
 

The Model C-1000 coater utilizes
 

a single plane transport mechanism to convey
 

silicon wafers through an electronically controlled
 

process station. Push button switches control
 

the application of power, select an operating
 

mode (manual, semi-automatic or automatic) and
 

control the start, stop and emergency stop,
 

reset and carousel functions. A three digit
 

L.E.D. indicator provides an accurate
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indication of spin motor speed. Two tanks of
 

5 gallon capacity feed the dispense nozzles;
 

one contains isopropyl alcohol and the other
 

contains the A.R.film.
 

Each wafer is individually processed
 

during the fully automated process sequence. In
 

a typical coating operation a wafer is removed
 

from the input carrier and placed on a vacuum
 

chuck for processing. Nitrogen is initially
 

blown against the wafer surface to remove dust
 

and foreign material. An A.R. film is dispensed
 

onto the wafer which is then spun at low speed
 

to disperse the solution. The wafer is next
 

spun at high speed to remove any-excess coating
 

solution which results in a completely uniform
 

A.R.coating film. At the completion of the
 

process cycle, the wafer is removed from the
 

vacuum chuck and loaded into the output carrier.
 

The Model C-000 coater used for this
 

contract has been specifically designed to process
 

90mm or 3.54 inch diameter silicon wafers. The
 

system also has the capability of processing 1.5
 

to 5.0 inch diameter wafers. The maximum-rated
 

throughput from this equipment is 300 wafers per
 

hour. The mechanical yield was found to be 98%.
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The experimental studies which have been
 

formulated to investigate the viability of the spin­

on-anti-reflective coating technique utilized by
 

the Model C-1000 coater were performed on batches
 

consisting of approximately twenty-five 90 mm
 

diameter wafers. The experimental results obtained
 

for any batch signify the average experimental
 

value of its constituents.
 

The initial experiments were designed
 

to study the effect of isopropyl alcohol as a
 

solvent to reduce the A.R.solution viscosity.
 

Various percentages of isopropyl alcohol, typically
 

10%, 25% or 50% by volume were mixed with the A.R.
 

solution. The spinning speed of the Model C-1000
 

coater was maintained at 2000 RPM for 30 seconds
 

and 5 .cc of A.R.solution was dispensed on each
 

wafer. It was found that by increasing the per­

centage of isopropyl alcohol in titaniumsilicafilm
 

A (viscosity 30 cp), the film developed drying
 

cracks and circles. It was therefore concluded
 

that the addition of isopropyl alcohol to titanium­

silicafilm A did not lead to acceptable results.
 

It was found experimentally however, that the adher­

ence quality of the film was greatly enhanced by
 

spinning the isopropyl alcohol prior to dispensing
 

the A.R. film and consequently, all subsequent
 

experiments were performed with an alcohol wetted surface.
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Experiments were performed to establish
 

the electrical characteristics and adherence
 

quality of titaniumsilicafilm A. Titaniumsilicafilm
 

A was spun on a surface etched batch and a texturized
 

batch. The-thickness of the A.R.coating was mathe­

matically estimated to be 7.5 um. This choice was
 

based upon the height of the pyramidal surface
 

structure engendered during the texturizing process.
 

Under high magnification it was observed that the
 

pyramidal surface structure was not uniformly coated
 

with the A.R. film. In order to correct this
 

situation, the spin speed was reduced from 2000 RPM
 

to 1000 RPM, whereas the total spin time was
 

maintained at 30 seconds. The representative I-V
 

curves which portraythe electrical characteristics
 

of a cell with and without the titaniumsilicafilm
 

A A.R.coating is shown in Figure 16 in order to
 

accentuate the effect of the silica film. The I-V
 

curves indicate that the solar cell which has a
 

titaniumsilicafilm A anti-reflective coating
 

maintains a higher energy conversion efficiency
 

relative to the cell without an A.R. coating.
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The photovoltaic energy conversion
 

efficiencies resulting from the application of
 

spin-on titaniumsilica films A, B, and C with
 

respective indices of refraction of 1.80, 1.90
 

an& 1.96 were comparatively evaluated with
 

respect to vacuum deposited silicon monoxide
 

and silicon nitride A.R. coatings on the basis
 

of experimental evidence. Both the spin-on, and
 

vacuum deposited A.R. coatings had been applied
 

to various texturized wafers with and without
 

encapsulation. The I-V curves of cells containing
 

titaniumsilicafilm A, B and C and SiO are
 

respectively presented in Figures 16, 17, 18 and
 

19.
 

Table 6 summarizes the important
 

electrical characteristics which have been directly
 

derived from the experimental data.
 

Despite the fact that titaniumsilica­

film C had yielded the highest efficiency relative
 

to the spin-on coatings, SiO and SixNy resulted in
 

much more favorable efficiencies and thus comply,
 

with the stipulation set forth in this contract to
 

develop densely packed solar cell modules with
 

high efficiencies. Since the maximum module
 

efficiency exhibited by the titaniumsilicafilms
 

was in the 9% range, the SiO process was chosen
 

for this contract.
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Figure 16. Titaniumsilicafilm A, TiO + Si02, antireflective 
coating for three groups of solar ceils. TAe first group is 
surface etched with no encapsulaht.. The second group is 
texturized andencapsula-ted with RTV-615. The third group is 
texturized with no encapsulant. The solar cells are heiagonal 
with 50.8 cm active area. They are tested at 280C, 100 mW/cm

2 

under tungsten light. 

57 



1.400
 

1.200 

1.000 

Titaniumsilicafilm-B 

Texturized, not encapsulated 

Texturized, encapsulated RTV-615 

800 

.600 

.400 

.200 

.100 .200 .300 .400 .500 .600 

VOLTAGE (volts) 

Figure 17. Titaniumsilicafilm B, TiO 2 + Si0 2, antireflective 
coating for cell groups without encapsulation and with RTV-615 
encapsulation. The solar cells are hexagonal with 50.8 cm2 

active area and are texturized. They-are tested at 280C, 
100 mW/cm 2 under tungsten light. 
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Figure 18. Titaniumsilicafilm'C, TiO2 + Si9 2, antireflective 
coating for cell groups without encapsulation and with RTV-615 
encapsulation. The solar cells are hexagonal with 50.8 cm2 

active area and are texturized. They are tested at 280C, 
100 mW/cm2 under tungsten light. 
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Figure 19. Electrical performance-curves for four cell groups. 
The cells are (1) surface etched, (2) texturized, (3) textur­
ized with SiO anti-reflective coating and (4) texturized with 
SiO and RTV-615 encapsulant. The solar cells are hexagonal 
with 50.8 cm2 active area and are texturized. They are tested 
at 280C, 100 mW/cm2 under tungsten light. 
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Table 6. Comparison of the electrical performance of 
spin-on anti-reflective coatings with SiO and 
SixNy and with surfaced etched and texturized 
silicon wafers. 

Batch No. No. of 
wafers 

Type of ilm Spin speed 
rpm 

Type of 
surface 

Condition V T Eff. 
of cell 00lso 

(voltaXamps)% 

Expected
thickness 
thcns 

1A 10 Tit. sil. A 2,000 surface 
etched 

Un-encp. .55 1.35 9.3 7.5' 

1B 10 Tit. Sil. A 2,000 texturized Un-encp. .55 1.40 10.4 7.5L 

2A 25 Tit. Sil. A 1,000 .55, 1.40 10.4 15'. 

2B 24 Tit. Sil. A 1,000 Encp. .55 1.37 10'.1 151 

2C 22 Tit. Sil. B 1,000 Un-encp. .560 1.42 10.54 15L 

2D 22 Tit. Sil. B 1,000 Encp. .555 1.39 10.2 15' 

H 2E 22 Tit. Sil. C 1,000 Un-encp. .555 1.42 10.75 15' 

2F 

3A 

3B 

3C 

3D 

25 

10: 

10 

10 

9 

Tit. Sil. C 

Si 

SiO 

Si N 

SixN 

x 

1,000 

Vacuum 

Deposited 

Vacuum" 

Deposited 

Encp. .555 1.4 10.5 

Un-encp. .555 1.42 11.15 

Encp. .555 .1.38 10.8 

Un-encp. .555 1.42 i1.3 

Encp. .555 l0 11.1 

151 
o 

800A 
0 

800A 
0 

785AO 
0 

785A 

4A 

4B 

5 

5 

surface 
etched 

texturized 

Un-encp. .550 

Un-encp. .550 

1.20 

1.25 

8.7 

9.9 



HIGH PRESSURE WAFER CLEANING EQUIPMENT
 

The-Ultratech Plate Cleaner Model 600
 

manufactured by Ultratech Corporation in Santa Clara,
 

California has been specifically designed to perform
 

the task of cleaning masks both before and after
 

Contact printing. The two-stage cleaning cycle
 

employed by the Ultratech Plata Cleaner Model 600
 

consists of (1) a high pressure stream-of D.I. water
 

which serves to extract any protruding particles
 

which might be lodged on the plate and (2) a drying
 

cycle which utilizes a heat lamp and the air pumped
 

by the spinning chuck to dry the plate.
 

In-house experimentation pertaining to
 

the cleaning technique utilized by the Model 600
 

Plate Cleaner was conducted for the purpose of
 

establishing its throughput capability, overall
 

cleaning performance, and adaptability to production
 

line applications. Two potential production line
 

applications were considered during the experimental
 

procedure; one was the removal of printing ink residue
 

lodged on silicon wafers, and the other was the
 

removal of flux residue from silicon wafers. The
 

complete removal of all printing ink residue
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protruding from silicon wafers is an essential
 

prerequesite for the establishment of good adherence
 

characteristics from both the silicon monoxide and
 

spin-on anti-reflective coatings. Since the Model
 

600 Plate Cleaner emanates a high pressure stream
 

of D.I. water, a test was conducted to determine
 

its cleaning capability and effect on the pyramidal
 

surface structure engendered during the surface
 

texturizing process. The results appeared to
 

indicate that even though the wafers were thoroughly
 

cleaned, the cleaning process had a much more
 

beneficial effect on the adherence characteristics
 

of the spin-on anti-reflective coating than with
 

the silicon monoxide anti-reflective coating.
 

Evidently, the adherence quality of the spin-on
 

anti-reflective coating depends heavily on the
 

initial cleanliness of the wafer surface. The
 

overall process yield was 90% for 15 mil thick
 

wafers, since the remaining 10% had been broken
 

or cracked during the process sequence. The two­

stage cleaning cycle requires ninety seconds for
 

completion since the spray cleaning cycle required
 

sixty seconds and the drying cycle required thirty
 

seconds. Since the Model 600 Plate Cleaner is
 

manually operated, the ninety-second figure
 

advanced above will in actuality be significantly
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enhanced due to the fact that only one wafer at a
 

time can be processed, and an excessive amount of
 

time is expended during the loading and unloading
 

operations. The time limitations imposed by the
 

loading and unloading operations along with the
 

slow processing rate of this laboratory wafer
 

cleaning equipment thus severely limits its through­

put capability. The equipment, however, was
 

adequate to demonstrate that silicon wafers can
 

be cleaned by a high pressure stream of D.I. water.
 

Automated wafer cleaning equipment is currently
 

available which can process 300 wafers per hour
 

which is acceptable for moderately large scale
 

production.
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HEXAGONAL SOLAR CELL GRID PATTERNS
 

Hexagonal solar cells with the four distinct
 

grid patterns are shown in Figure 20, 21, 22 and 23; a
 

comparison was made between their electrical performan­

ces, shown in Figures 24, 25, 26 and 27. The solar
 

cells have the same surface area, 50.8 cm2 , were
 

processed from the same batch of silicon wafers, and
 

were tested under the same conditions, 100 mw/cm
2
 

tungsten light at 280 C. The grid line coverage or
 

cell shadowing loss is the same for all four patterns.
 

All four patterns were processed the same using
 

Sensor Technology's standard commercial process that
 

utilizes electroless nickel plating and no special
 

"high efficiency" process techniques. Three grid
 

patterns were silk screen printed and one grid
 

pattern utilized photolithography. The results are
 

summarized in Table 7 and are discussed below:
 

(1) Solar cells processed under the same condi­
tions that have the same grid line coverage
 
are relatively insensitive to the grid line
 
pattern used.
 

(2) The photolithographic process was able to
 
produce thin grid lines and produce more
 
grid lines per unit area than the silk
 
screen printing process but only a slight,
 
one-half percent, increase in efficiency
 
was achieved which was also matched by the
 
redundant parallel track pattern that was
 
processed with the silk screen printing
 
method.
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(3) 	A single contact point or a redundant
 
contact point produces very neaily the
 
same electrical performance. While a
 
half percent increase in efficiency
 
was observed in the parallel track
 
pattern over the 6 grid and 10 grid
 
hexagon patterns, it was matched by
 
the pine tree pattern that utilized
 
a single contact point.
 

The electrical performance analysis of the
 

hexagonal solar cell grid patterns was made to check
 

the sensitivity to the grid pattern designs. An
 

exhaustive study was not made. No large advantage was
 

found for utilizing one pattern over another. Therefore,
 

modules were fabricated utilizing each of the four
 

grid 	pattern designs.
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Figure 20 "Sensagon" six grid hexagonal solar cell. Figure 21 "Sensagon" ten grid hexagonal solar cell. 

a3.500 NO3.500 
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Figure, 22 "Sensagon' parallel track hexagonal solar cell. 
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hexagonal solar cell, 50.8 
2 , 

th and without SiO
cell,550.0 c 

anti-reflective coating under tungsten light at 28C 
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Table 7. Comparison of four hexagonal solar cell grid patterns. The solar cells have the
 
same surface area, 50.8 cm2 , were processed from the same batch of wafers, and were
 
tested under the same conditions, 100 mw/cm2 tungsten light at 280C.
 

PATTERN SURFACE PROCESS A. R. COATING I (amp) V (volts) 77(%) n (%) 

SC oc (average) (max)
 

1.47 .56 10.7 10.9
 

Pine Tree Texturized Photoresist
 
SiO 1.57 .56 11.3 11.6
 

--- 1.38 .56 10.5 10.8
 

Parallel Track Texturized Resist SiO
 

--- 1.47 .56 11.2 11.7
 

.56 10.1 10.8
1.44
Silkscreen

10 Grid Hex Texturized Resist SiO 1.50 .56 10.8 11.5
 

10.9
Sikcen--- 1.43 .55 10.0 


10.7 11.4
Resist SiO 1.52, .56 10.0 10.9
6 Grid Hex Texturized Silkscreen 1.43 .56 




HEXAGONAL SOLAR CELL MODULE
 

A. Hexagonal Solar Cells
 

Two types of hexagonal solar cells were
 

developed in this program. A hexagonal solar cell
 

with a point to point diameter of 3.500 inches and
 

a side to side diameter of 3.031 inches was used in
 

Phase 	I. The surface area of the hexagonal solar
 

2
cell is 7.'956 in.2 or 51.33 cm . The hexagonal
 

solar cell production process sequence for Phase I,
 

which was described in an earlier section, utilized
 

Sensor Technology's commercial process with the
 

addition of a hexagonal solar cell laserscribing
 

step. The "Sensagon" hexagonal solar cell is
 

shown in Figure 20 and 21. The solar cell is
 

adaptable to being cut into halves and arranged in
 

a unique solar cell interconnection pattern. The
 

average electrical performance of a hexagonal solar
 

cell is shown in Figure 28. The average maximum
 

power is .45 watts with a photovoltaic energy
 

conversion efficiency of 8.8% under tungsten light
 

at 280C and at 100 mw/cm2 . Sensor Technology's
 

commercial process is used on 2.15 inch diameter
 

solar cells with a resulting average photovoltaic
 

energy conversion efficiency in excess of 11% at
 

280C and at 100 mw/cm2 . Results from Phase I of
 

this program show that 3.54 inch diameter silicon
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Electrical Performance curve of a "Sensagon" 
hexagonal solar cell under tungsten light at 
280C and at 100 mw/cm2 developed in Phase I 
of this program. 
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solar cells have approximately 2.2% lower efficiencies
 

than the smaller 2.15 inch diameter solar cells. Since
 

the solar cells were made from identical processes and
 

the percent grid line coverage to active area were kept
 

the same, the larger solar cells had lower efficiencies
 

primarily due to series ohmic losses. Improvement in
 

photovoltaic energy conversion-efficiency was reserved
 

for Phase II.
 

A modified hexagonal solar cell with a
 

point to point diameter of 3.500 inches and a side to
 

side diameter of 3.031 inches was used in Phase II.
 

The surface area of the modified hexagonal solar cell
 

2
is 7.874 in2 or 50.8 cm . The hexagonal solar cell
 

production process for Phase II which was described
 

in an earlier section, utilized Sensor Technology's
 

commercial process with a surface macro-structure
 

process replacing the surface etching sequence and
 

with the addition of a hexagonal solar cell laser­

scribing step. The "Sensagon" hexagonal solar cell
 

-is shown in Figures 20, 21, 22 and 23. The electrical
 

performance of the modified hexagonal solar cells is
 

shown in Figure 29. The average minimum power is
 

.590 watts with aphotovoltaic energy conversion
 

efficiency of 11.6% under tungsten light at 280 C
 

.
and at m00
mw/cm2
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Figure 29. Electrical Performance curve of a "Sensagon" 
modified hexagonal solar cell under tungsten 
light at 280 C and at 100 mw/cm 2 developed 
in Phase II of this program. 
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B. Hexagonal Solar Cell Nesting Efficiency
 

The hexagonal solar cell nesting efficiency
 

is defined as the ratio of the total hexagonal solar
 

cell surface area to the nesting surface area that
 

contains the solar cells which includes the total
 

solar cell surface area plus the solar cell spacing
 

area. The nesting area contains 28 hexagonal solar
 

cells which are spaced 0.050 inches apart. Refer to
 

Figure. 30 top view for the following listed dimen­

sions and calculations:
 

Solar cell nesting length = 21.67 inches
 

Solar cell nesting width = 10.77 inches
 

Nesting surface area = 233.39 in2
 

Total solar cell = 222.77 in2
 

surface area
 

Solar cell spacing area = 10.62 in2
 

Solar cell nesting = 95.5%
 
efficiency
 

C. Hexagonal Solar Cell Module Packing Ratio
 

The hexagonal solar cell module packing
 

ratio (or efficiency) is defined as the ratio of the
 

total hexagonal solar cell-surface area to the total
 

solar cell module surface area. The module contains
 

28 hexagonal solar cells as shown in Figure 30, top
 

view.
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Module length = 22.90 inches 

Module width = 11.179 inches 

Module surface 
area 

= 256.00 in2 

Total solar cell 
surface area 

= 222.77 in2 

Module packing 87%
 
ratio
 

D. Hexagonal Solar Cell Module Fabrication
 

1) Module Substrate
 

Sensor Technology utilized a JPL approved
 

module substrate that was available in stock for the
 

three modules produced in Phase I. The module sub­

strate is a stamped aluminum pan. Minor additions
 

to the stamped aluminum pan to meet our specific
 

requirements are shown in Figure 30, bottom view,
 

and are listed as follows:
 

a) Additional aluminum sheet to cover the top
 
of the aluminum pan. It covers the terminal
 
holes and mounting spacer holes that are
 
presently on the pan. The aluminum sheet
 
and pan are spot welded together.
 

b) Aluminum mounting brackets are spot
 
welded to the aluminum substrate pan.
 

c) Two single wire terminals are utilized.
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Shown are the front view,
Figure 30. Hexagonal solar cell module. 


back view and side view of the module including the aluminum substrate
 
pan, terminals, terminal connections, mounting brackets, and
 
arrangement of the solar cells.
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2) Hexagonal Solar Cells and Interconnections
 

Twenty eight solar cells are utilized in
 

the module. They consist of 19 hexagons and 18, half
 

hexagons. Of the eighteen half hexagons, fourteen
 

are cut side to side and four are cut point to point.
 

Nine series connected half hexagons are paired in
 

parallel with nine other half hex&gons which are
 

connected in series with eighteen hexagonal solar
 

cells. The interconnection pattern is schematically
 

shown in Figure 31.
 

3) Encapsulation Material
 

The encapsulation material used is
 

General Electric RTV-615.
 

E. Module Electrical Performance
 

Two types of hexagonal solar cell modules
 

were developed in this program. Phase I utilized
 

full hexagonal solar cells as described in Part A
 

of this section. Three modules were produced. The
 

electrical performance of the three hexagonal solar
 

cell modules is shown in Figure 32 A, B and C. The
 

average maximum power is 11.77 watts with a photo­

voltaic energy conversion efficiency of 7.13% under
 

the Jet Propulsion Laboratory Xenon solar simulator
 

at 280C and at 100 mw/cm2 . These Phase I modules
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Figure 31. Schematic diagram of the interconnection
 
pattern for the hexagonal solar cell module.
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demonstrate that modules can be made from hexagonal
 

solar cells cut by laserscribe. They also show
 

that module efficiency can be significantly improved
 

by use of hexagonal solar cells replacing round
 

solar cells due to the increased solar cell packing
 

efficiency.
 

Phase II utilized modified hexagonal
 

solar cells as described in Part A of this section.
 

Three modules were produced. The electrical
 

performance of the three modified hexagonal solar
 

cell modules is shown in Figure 33 A, B, C. The
 

average maximum power is 15.68 watts with a photo­

voltaic energy conversion efficiency of 9.5% under
 

the Jet Propulsion Laboratory's Xenon solar simu­

lator at 280 C and at 100 mw/cm 2 . These Phase II
 

modules demonstrate that module efficiencies can
 

be significantly improved by use of hexagonal
 

solar cells processed with surface macrostructures.
 

The Phase II modules are suitable for commercial
 

production. The results of the work performed
 

in Phase II of this program have been utilized
 

for moderately large scale commercial production
 

of hexagonal solar cell modules.
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OPTIMUM SILICON UTILIZATION BY MODIFIED
 

HEXAGONAL SOLAR CELLS.FOR LOW-COST, HIGH
 

ENERGY-PER-UNIT-AREA, SOLAR CELL MODULES
 

A. Optimum.Silicon Utilization
 

Solar cell module design goals that combine
 

low-costs with high energy-per-unit-area require trade­

offs between silicon utilization and solar cell nesting
 

or module packing efficiency. Hexagonal solar cells
 

can be packed together to maximize the solar cell
 

nesting efficiency which in turn reduces the module
 

packing material and surface area for a given designed
 

power output. Unfortunately, hexagonal solar cells
 

are cut from round silicon wafers causing a loss of
 

17.3% of the costly silicon wafer material. This
 

hexagonal solar cell design, therefore, will maximize
 

the nesting space utilization but will also minimize
 

the silicon wafer material utilization. Conversely
 

for module designs that include round silicon solar
 

cells, maximum silicon wafer material utilization is
 

achieved, but minimum space utilization occurs
 

sacrificing module energy-per-unit-area causing
 

at least 9.3% extra module packing material to be used.
 

A compromise can be made through use of a modified
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hexagonal solar cell as shown in Figure 34; it will
 

optimize silicon utilization.
 

An analysis will be made to determine
 

optimum silicon utilization or the best modified
 

hexagonal solar cell which will lead to minimum
 

module costs under various combinations of material
 

costs.
 

B. Definition of Modified Hexagonal Solar Cell
 

A modified hexagonal solar cell is
 

the figure resulting when a hexagon-is cut from a
 

round silicon wafer with a smaller diameter than
 

the point to point diameter of the hexagon as shown
 

in Figure 34. The cell consists of six straight
 

edges and ix original wafer edges. The degree of
 

scribed area can be defined by a half secant angle
 

e for a given side of a modified hexagon as shown
 

in the figure. If the e value equals 30 degrees
 

( 7/6 radian) or e equals en the cell will be a
 

full hexagonal solar cell. If e is zero then no
 

silicon material is lost and one has a circular
 

solar cell. The e value for all modified hexagonal
 

solar cells will be between 0 and 30 degrees.
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E BSilicon material cut away 

n 30 c 
R 

0 

R = radius of silicon wafer 

9 = half secant angle of a 
modified hexagon 

En= 300, half angle of a 
full hexagon 

Figure 34. Definition of a modified hexagon 
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C. Silicon Wafer Material Utilization Factor
 

It is convenient to define a silicon
 

wafer material utilization factor, 's, as a ratio
 

between the area of the modified hexagonal solar'
 

cell to the area of the original round silicon wafer.
 

By using geometrical symmetry and Figure 34, this
 

can be expressed as follows:
 

Is 	 Area (OABC) (1)
 
Area (OABD)
 

where
 

Area (OABD) = R2en, en = Y/6 radius
 

Area (OABC) = Area (OABD) - Area (BCD) (2)
 

Area (BCD) = R2 (e - sin 8cos 9)
 

Substituting equation (2) into (1), we have
 

R2 
s = Re - (e - cos e sin e)
 

R2 e
 

S = 1 - (E - sin e cos e) / en 	 (3) 

where en = /6 radians
 

For example, if e for a full hexagon equals
 

en = 7/6, then T s = 0.827 or the silicon material
 

utilization is 82.7%. For the other extreme case,
 

if 8 is zero as for a round wafer then ' = 1.000
 

or the silicon material utilization is 100%. For e
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between zero and 7/, one has a modified hexagonal
 

solar cell where the silicon material utilization
 

is represented in Figure 35.
 

D. Nesting Space Utilization Factor
 

The other useful term is the nesting
 

space utilization factor, Isp' which is defined as
 

a ratio between the area of the modified hexagonal
 

solar cell and the cell nesting area or area of a
 

full hexagon. For simplification it was assumed
 

that the module is packed with the straight edges
 

of adjacent cells touching each other so that a
 

full hexagonal solar cell could cover the module
 

nesting area. With this assumption and the defi­

niton of a modified hexagon shown in Figure 34 the
 

-space utilization factor can be expressed as
 

follows:
 

sp = Area (OABC: (4)
 

Area (OEG)
 

where
 

R2
Area (OABC) = [en - (G - sin 8 cos 9)] (2) 

R2Area (OEC) = cos29 tan On (5)
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Substituting equations (2) and (5) into (4), we
 

have
 

nsp- [1 - (e-sin e cose)/onI 

tan 8n cos? 

71 e (6) 

sp tan en - cos 2e 

where en = 76 radius 

For example, if 8 is zero as for a round silicon
 

wafer, 's = 1.000 and 1sp = 0.907 or the nesting
 

space utilization equals 90.7%. For the other
 

extreme case, if e = en = '/6 as for a full hexagon 

then. 1 = 0.827 and 1sp = 1.000 or the nesting 

space utilization equals 100%. For 9 between zero
 

and r/6 one has a modified hexagonal solar cell
 

where the nesting space utilization is represented
 

in Figure 35.
 

E. Incremental Cost Analysis
 

The total cost of a solar cell module
 

can be subdivided into three cost elements. The
 

first one is the cost related to silicon wafer material
 

utilization. The second element depends on nesting
 

space utilization, such as encapsulant material. The
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100 
7,1..........
 

'Is, silicon waf
 
materialutilization
 

95
 

0H 

H 'nsp, nesting 
P 90 space utilization 
H 

PA 85 
P4
 

Full hexagonal

Round silicon wafer 	 solar cell
 

80 r I I I I 
0 5 10 15 20 25 30 

HALF SECANT ANGLE 6 OF A MODIFIED HEXAGON
 

Figure 35. 	Percent utilization of silicon wafer material
 
and nesting space versus half secant angle e
 
of a modified hexagon.
 



third element are the costs which are not affected
 

directly by either silicon utilization or space
 

utilization, such as direct labor on cell processing.
 

All of these cost elements will depend on the cell
 

and module design.
 

In order to make a generalized cost
 

analysis, simple cost structures are assumed based
 

on the following:
 

(1) The total solar cell module cost can be
 

subdivided into two cost elements. The
 

first cost element depends only on silicon
 

wafer material utilization. And second,
 

the remaining costs depend only on nesting
 

space utilization. This assumption is
 

good for the case that the labor cost is
 

very small and only the predominant cost
 

factors are silicon cost and encapsulant
 

material cost.
 

(2) The two cost elements, i.e. silicon
 

utilization costs and space utilization
 

costs, are inversely proportioned to
 

their respective utilization factors.
 

This means that the module costs can be
 

reduced if more silicon material and more­

nesting space is utilized.
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The comparative cost analysis will
 

utilize the circular solar cell module'as a reference
 

module and the cost of modified hexagonal solar cell
 

modules will 	be presented in terms of the fractional
 

cost increment with respect to this reference module.
 

The first assumption will give the
 

following results for the circular solar bell
 

module:
 

PO = Pso + PSPO 	 (7)
 

where P0 is the cost of the circular solar cell
 

module (reference module)', P is the silicon wafer
 

.material cost element and PSPO is the remaining
 

cost element 	including all costs other than for
 

silicon wafer material.
 

From the second assumption, the total
 

cost of any modified hexagonal solar cell module
 

can be expressed as follows:
 

(8)PSO) 	 + .PSPO= 	 os (0) +sp (e ) (8) 

's (e) (e)Csp 

where is (8) is the silicon utilizationfactor for
 

a modified hexagonal solar cell defined by the half
 

secant angle 	e and 1sp (e) is the nesting space
 

utilization factor. Notice that. 'S (0) = 1.000
 

and 'nsp (0) = 0.9069. 
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The fractional cost increment for a
 

modified hexagonal solar cell module is defined by
 

AP* = 0 (9) 

p0 

Substituting equation (7) and (8) into equation
 

(9) one has
 

* = S[ (Q 1] - [ 1 -- rsp (0)(9)
(S I s (0) .	 Lsp 

where
 

7S 	 PSO the fractional cost of
 
PO silicon material
 

7P pSP the fractional cost for
 
= all elements other than
 

PO silicon material
 

From equation 	(7)
 

7SP 
 1 -
 S
 

Substituting this relation into equation (10) one
 

obtains the fractional cost increment for a hexagonal
 

solar cell module:
 

1 1 (- ) 1 1 (* 
P (e) = 	 Ws((-)-[S( G)e 

5sp
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where 7s is the fractional cost of silicon material,
 

Ysp (0) = 0.9069 is the nesting space utilization 

factor for a circular solar cell module, and s (e) 

and 7sp (e) is respectively the utilization factors 

for silicon wafer material and nesting space for the 

modified hexagon given respectively by equations (3) 

and (6). 

The fractional cost increment for a
 

modified hexagonal solar cell module for various
 

fractional silicon costs, 7s, are computed using
 

equation 11 and then plotted in Figure 36. The
 

negative values in the figure indicate a cost savings
 

with respect to the circular solar cell module. For
 

example, if T s = 0.5, then the full hexagonal
 

solar cell module will increase the cost by 5.8%
 

but a modified hexagonal solar cell mdoule (e = 170)
 

will reduce the costs by 2%. Figure 36 shows a
 

minimum cost point for each given fractional silicon
 

cost curve, 7s.; this represents the optimum
 

solar cell design geometry or the optimum silicon
 

utilization.
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Figure 36. 	 Fractional cost increment of silicon with
 
minimum cost line and cost savings of an
 
optimized modified hexagonal solar cell
 
module.
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From Figure 36 the following conclusions
 

can be made:
 

(1) An optimum modified hexagonal solar cell
 

module exists for a given fractional cost
 

of silicon ( YS ).
 

(2) Utilization of an optimum modified hexagonal
 

solar cell module will produce a cost savings
 

compared with a circular solar cell module.
 

(3)' The smaller the fractional cost of silicon
 

('s) is then the higher the cost savings
 

will become which will be governed primarily
 

by the nesting space utilization factor.
 

Also the smaller s is,'the larger the half
 

secant angle, e, of a- modified hexagon is
 

which represents that the optimum solar
 

cell module design geometry approaches
 

a full hexagonal solar cell module.
 

(4) The maximum possible savings will be 9.3%
 

when the full hexagonal solar cell module
 

-is-utilized and the-fractional cost of
 

silicon is negligibly small.
 

98
 



(5) When the fractional cost of silicon
 

is greater than 0.5 or the silicon
 

wafer cost is 50% of the module cost,
 

the cost savings is less than 1% even
 

though an optimized modified hexagonal
 

solar cell is used. It is, therefore,
 

better to use a circular solar cell
 

module than to use the optimized hex­

agonal solar cell module to avoid the
 

scribing process.
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SAMICS - A COST ANALYSIS OF THE HEXAGONAL SOLAR CELL
 

MODULE PROCESS SEQUENCE
 

All Low-Cost Silicon Solar Array (LSSA) pro­

jects require a thorough cost analysis to meet certain
 

specific price goals. Since the process cost esti­

mation methods differ from one company to the next,
 

Solar Array Manufacturing Industry Costing Standards
 

(SAMICS) are recommended. SAMICS allows one to make
 

a relative comparison between potential prices attri­

butable to competing processes and to obtain the best
 

possible process price estimate.
 

All process steps under this program for
 

the development of low-cost, high energy-per-unit­

area solar cell modules have had a cost analysis
 

performed using SAMICS. Since only a few of the
 

process steps required detailed development, and
 

since SAMICS requires a complete process sequence
 

to obtain the final cost of the product, a number
 

of Sensor Technology's current proprietary process
 

steps were used to complete the process sequence.
 

The current process steps utilize manual process
 

methods; which can easily be adjusted to accomodate
 

production load variations and product demand.
 

However, these production process steps are not
 

necessarily the best for use in the IPEG lO.
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standard industry which requires minimum module cost
 

under the assumption of mass production.
 

The hypothetical industry used in this SAMICS
 

is a 1978 standard industry defined in Reference 11.
 

The input data preparations and process cost compu­

tations are performed according to the methods des­

cribed in Reference 10, 11 and 13. All the expense
 

items in the process are evaluated with the cost
 

account catalog in Reference 12. If the cost of
 

expense items are not given in Reference 12, the
 

current purchased price was used.
 

A. Description of Industry
 

The structure of the industry is assumed to be
 

the 1978 standard industry defined in Reference 11.
 

This model industry is composed of a sequence of
 

companies, each of which is an independant financial
 

entity. Five sequential companies are considered in
 

the industry. Among these five companies, only the
 

cell and module manufacturing companies are considered
 

in this study. The remaining companies are assumed
 

to perform according to the current price goals defined
 

in Reference 10. The names of these two companies
 

are defined as CELLCO and MODULCO which are manufac­

turing photovoltaic cells and solar cell modules
 

respectively. It was assumed that both companies are
 

sharing 40 percent of their corresponding market. The
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CELLCO will purchase the wafers from WAFERCO with
 

the price of the 1978 LSSA goal. The MODULCO will
 

buy photovoltaic cells from the CELLCO at the
 

current price goal instead of the cell price computed
 

from the CELLCO; in this manner the module price due
 

to the MODULCO alone is determined.
 

The product of the industry is a packed
 

hexagonal solar cell module, which was developed in
 

this program. A description of the module is presented
 

below:
 

(1) The module has 19 full hexagonal solar
 
cells and 18 half hexagonal solar cells.
 
The interconnection pattern is equiva­
lent to 28 full hexagonal solar cells
 
connected in series.
 

(2) Each hexagonal solar cell is cut by
 
laserscribe from a 90 mm round silicon
 
wafer. The silicon wafer material yield
 
is 81 percent.
 

(.3) The solar cell efficiency after encapsu­
lation is assumed to be 12.7 percent.
 
Each module will produce 18.3 watts
 
peak power at 280C and a 100 mW/cm2
 

solar insolation.
 

(4) The solar cell nesting efficiency is
 
95.5 percent. The module packing
 
efficiency is 87 percent.
 

(5) The solar cell area is 7.956 square
 
inches. The total solar cell active
 
area is 222.8 square inches. The
 
module area is 256 square inches.
 

102
 



The annual production quantities of the
 

industry and each of the two companies are obtained
 

from the above data and Reference-11. The results
 

are as follows:
 

INDUSTRY = 1860 KWpk/Yr = 2.8 x 106 cells/yr
 

MODULCO = 732 KWpk/Yr = 4.0 x 104 modules/yr
 

CELLCO = 732 KWpk/Yr = 1.12 x 106 cells/yr
 

The production quantities per unit area
 

depend upon company yield and hardward performance.
 

Since the modules used in this study have different
 

performances, as assumed in Reference 11, the annual
 

production quantities per unit area have to change
 

accordingly. After the SAMICS study, the production
 

yield of CELLCO was 83.6 percent, and the yield of
 

MODULCO was 98.8 percent. From the company yields,
 

the production quantities per unit area for each
 

company can be computed and are shown in Table 8.
 

The LSSA Interim Price Estimation Guidelines (IPEG)
 

goals are presented for the purpose of comparison.
 

The key efficiencies are also presented which
 

clearly illustrate the difference between the
 

current model and the IPEG model.
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Table 8. 


DESCRIPTIONS 


Photovoltaic Module
 

Market (MW pk) 


2
1000's of m	 of modules 


MODULCO (40% of market)
 
in MW pk
 

2
1000's of m	 of modules 


Photovoltaic Cell
 

Market
 

2
1000's of m of modules 


CELLCO (40% of market)
 
in MW pk
 

2
1000's of m	 of cells 


Silicon Wafer Market
 

(Solar Cell Grade)
 

2
1000's of m	 of wafers 


WAFERCO (30% of market)
 
in MW pk 


1000's of M2 of wafers 


1pk = packing ratio 


7c = cell efficiency 


Annual Production Quantities of the
 

1978 Standard Industry
 

IPEG MODEL CURRENT MODEL
 
ANNUAL EFFIdIENCIES ANNUAL EFFICIENC
 
QUANTITY ASSUMED QUANTITY ASSUMED
 

1.83 	 1.83
 

18.8 	 qpk = 0.75 16.76 qpk = 0. 

0.73 	 0 73
 

7.50 	 6.61
 

14.1 f = 0.13 14.58 T = 0.127
 

0.73 Ym = 1.0 0.73 Ym = 0.988
 

5.60 	 5.83
 

17.6 	 Yc = 0.80 21.53 Yc = 0.83' 

Ycut = 1.0 Ycut = 0.: 

0.55 	 0.55
 

5.30 	 6.46
 

Y = yield of MODULCO
 

Yc = yield of CELLCO
 

Ycut = yield of silicon area
 
cutting
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B. CELLCO Firm
 

1. Company Description, Format B
 

The CELLCO firm is a model company for the
 

1978 standard industry which produces photovoltaic
 

cells from silicon wafers. The annual production
 

quantity of this company is 1.12 million cells per
 

year, which is equivalent to a peak power of 730 KWpk"
 

The detailed definition of CELLCO within the industry
 

is given in the previous section. The products are
 

described in detail in other sections of this report.
 

The silicon wafers are purchased from WAFERCO
 

with the price defined by IPEG in Reference 10. The
 

price per wafer is $2.878 after converting to a
 

wafer diameter of 90 mm. It is assumed that the
 

company will operate 24 hours per day, seven days
 

a week, and 345 days per year as defined by IPEG
 

Standard Industry. It is further assumed that four
 

shifts will be required so that three shifts will
 

be used during each weekday and one shift is used
 

to fill in on weekends and vacations.
 

The process steps used by CELLCO consist of
 

current process steps utilized by Sensor Technology
 

and three new process steps developed in this
 

program; they are as follows:
 

(1) Surface macrostructure process
 

(2) 400 wafer per hour diffusion process
 

(3) Hexagonal solar cell laserscribing process
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A block diagram showing the process sequence is given
 

in Figure 2. The seventeen process steps are given
 

in Table 9 where the process referents and inter­

mediate product referents are also defined.
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Table 9. Definitions of Process Steps, Process
 
Referents and Intermediate Product
 
Referents
 

Process Process Descriptions Product Descriptions

No. Referents 
 Referents
 

1. 	 SMTEX Surface Macrostrub- TSW Texturized Silicon
 
ture Texturizing Wafer
 

2. 	 PDCL Prediffusion PDSW Prediffused Silicon
 
Cleaning Wafer
 

3. 	 POCLD Phosphorus Diffusion DSW Diffused Silicon
 
Wafer
 

4. 	 FSP Front Surface Printing FSPW Front Surface
 
Printed Wafer
 

5. BSE 
 Back Surface Etching BSEW 	 Back Surface Etched
 
Wafer
 

6. 	 ALEV Aluminum Evaporation ALEVW Aluminum Evaporated
 
Wafer
 

7. 	 ALFI Aluminum Fire-In ALFIW Aluminum Fire-in
 
Wafer
 

8. SCLI 	 Surface Cleaning SCLW Surface Cleaned Wafer
 

9. FSPP 
 Front Surface Pattern FSPPW Front Surface Pattern
 
Printing- Printed Wafer
 

10. 	 ENPL Electroless Nickel PLC Plated Cell
 
Plating
 

11. SCL2 	 Surface Cleaning SCLC Surface Cleaned Cell
 

12. HEXLS 	 Hexagon Laser Scribing HEXC Hexagonal Cell
 

13. 	 SD Solder Dipping SDSC Solder Dipped Solar
 
Cell
 

14. FLCL 	 Flux Cleaning FLCLC Flux Cleaned Cell
 

15. 	 SGE Silicon Glass Etching SGEC Silcion Glass Etched
 
Cell
 

16. ARC 	 A.R.Coating AHCC A.R.Coated Cell
 

17. 	 EPT 
 Electrical Performance PVCELL Photovoltaic Cell
 
Test
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2. Process Description, Format A
 

A process description was written for each step
 

in the form of a Format A form, Reference 13 for use
 

in the cost computations and the results are discussed
 

in the next two sections. Each process step has a
 

production rate and process yield and has quantita­

tive values for all expense items such as equipment,
 

direct labor, floor space, commodities and materials.
 

The data is taken from average values determined from
 

the actual performance data, and none of the processes
 

are assumed to be optimized or automated to meet the
 

current price goal.
 

Direct labor consists of four quality control
 

inspectors, four maintenance men and one production
 

planner. These direct laborers are assumed to be
 

divided equally into seventeen process steps. For
 

a process step which utilizes more than one machine,
 

the direct labor required is formed by dividing the
 

total number of man years by the number of process
 

steps (seventeen) and by the number of machines
 

required for the process step.
 

The equipment cost is just the purchased
 

price. However, for equipment that is constructed
 

internally, the cost of this equipment is estimated
 

by using in-house direct labor costs and material
 

costs. Other input data are prepared according
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to the information presented in Reference 13.
 

3. Price Computation
 

The price of the photovoltaic cell is deter­

mined after all data in Format ,A is complete. It is
 

computed by following the procedures outlined in the
 

process work sheets and company work sheets described
 

in Reference 11. The only additional information
 

needed is the price of expense items which are not
 

covered in the cost accounting catalog in Reference
 

12. For these items, the currently available
 

purchase prices are used.
 

The results in 1975 dollars closely compare
 

to the LSSA price goals of S5.53/Wpk as shown by the
 

following:
 

Inflated price (1978 dollars)
 

$6.97 / cell
 

$1o.665 / Wpk 

$1357.9 / m2 cell
 

Deflated price (1975 dollars) 

$5.795 / cell 

$8.865 / pk 

$1128.8 / m2 cell
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4. Discussion of Results
 

The cell price results were computed and
 

compared in Table 10 with the LSSA current price goals
 

in terms of cell price per peak watt and cell price
 

per unit area. The total cell price is also shown;
 

it is subdivided into wafer cost and added value
 

by CELLCO. A direct comparison between cell price
 

per unit area was not compared due to the fact that
 

the cell performances are different between those
 

used in the computation and those used in the LSSA
 

IPEG assumptions. Therefore, in comparing results,
 

only the prices per peak watt are compared.
 

Table 10 shows that the cell price per peak
 

watt by CELLCO is 60% higher than the 1978 IPEG
 

price goal. The added value price by CELLCO is
 

70% higher than the 1978 IPEG goal. An interesting
 

note can also be made about the purchased wafer
 

price. It is 56% higher than the 1978 IPEG price
 

goal which is due to the discovery that the IPEG
 

price goal does not consider the company overhead
 

and production yield. In the standard SAMICS
 

industry the company overhead was assumed to be 30%
 

and the CELLCO production yield was assumed to be
 

83.6% - thus, the operation of the independent
 

company becomes 56% over the 1978 IPEG price goal.
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Table 10. 	 Summary of SAMICS results for CELLCO
 
in 1978 based on 1975 dollars
 

IPEG 1978 GOAL CELLCO PRICE PRICE RATIO
 
$/m2 cell $/Wk $/m2 cell $/W BASED ON PEAK
 

pk WATT
 

TOTAL CELL 	PRICE 719 5.53 1128.8 8.865 1.603
 

COST OF WAFER 	 476 3.66 1109.10 5.695 * 1.555 

(added value) price 243 1.87 617.97 3.172 1.696
 

Cost for the silicon wafer is high in CELLCO due to
 

30% company overhead and 83.6% of company yield.
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In order to meet the 1978 price goals, the added
 

value by CELLCO has to be reduced by $l.30/Wpk. It is
 

very informative to analyze the cost factors of each
 

process step that contribute to the cell price. A summary
 

of the process cost breakdown in 1975 dollars per peak
 

watt is shown in Table 11. The process steps are listed
 

in order from the highest cost to the lowest cost for
 

nine of the most costly steps. The equipment and floor
 

space costs are not given because they are small and
 

the process costs for all other process steps, each
 

having only a small cost contribution are compiled to­

gether.
 

The summary of the cell process cost breakdown
 

in Table 11 shows that the labor cost is the highest
 

factor -for each process step. This is due to a manual
 

production type system. The material is the second
 

highest cost factor and the remaining costs are small.
 

The low pressure metal vapor deposition method
 

is the most expensive process step. This is due to the
 

slow production rate and high material and utility costs.
 

It is recommended that other methods be utilized such
 

as spin-on or spray-on dopants.
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TABLE 11. Summary of the process step cost
 
breakdown in 1975 dollars per
 
peak watt.
 

PROCESS PROCESS TOTAL TLAB. TMAT UTIL
 
REFERENTS NO.
 

1. ALEV 	 6 0.6189 0.2128 0.1436 0.2079
 

2. ARC 	 16 0.5625 0.2318 0.0975 0.1738
 

3. HEXLS 	 12 0.2800 0.1938 0.0405 0.0114
 

4. BSE 	 5 0.2648 0.038 0.2225 0
 

5. FLCL 	 14 0.2347 0.0646 0.1664 0
 

6. FSP 	 4 0.1755 0.1384 0.0253 0
 

7. FSPP 	 9 0.1687 0.1373 0.0253 0
 

8. SD 	 13 0.1398 0.0988 0.0215 0.0215
 

9. 	 PDCL 2 0.1339 0.008 0.0973 0
 

ALL OTHERS 8 0.58214 0.423 0.31002 0.0137
 

PROCESSES
 

TOTAL 	 3.172 1.551 1.0556 0.4286
 

Contributions by floor space and equipment is 0.263
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A similar process procedure to the metal
 

vapor deposition process is the anti-reflective coating
 

process. This process step is second highest in cost.
 

It too can reduce costs through use of spin-on or spray­

on A.R.coating techniques.
 

The next most expensive process step is the 

hexagonal solar cell laserscribing method. The major 

cause for higher costs in this process step is a slow ­

production rate and high labor cost. An automatic 

load and unloading system with a multiple head laser­

scribing system can reduce costs significantly.
 

The material costs are the predominant factors
 

for high process costs in the back surface etching and
 

flux cleaning processes. Both process steps use a
 

manual nitrogen blow drying method whibh is expensive.
 

This procedure can be eliminated through the utilization
 

of a spih dryer or a clean oven-dryer method.
 

The solar cell production methods outlined in
 

this report using the improved production recommendations
 

above could meet the 1978 IPEG price goal without any
 

problem.
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C. MODULCO Firm
 

1. Company Description, Format B
 

The MODULCO firm is a model company for the
 

1978 standard industry which produces solar cell
 

modules. The company is assumed to share 40% of the
 

solar cell module market. Its annual production is
 

730 KWpk.
 

The products of the company are densely
 

packed hexagonal solar cell modules which have 28
 

equivalent full hexagonal solar cells. Each module
 

produces 18.3 Wpk at 280C and at 100 mW/cm2 insolation
 

The module area is 256 in2 .
 

The photovoltaic solar cells are purchased
 

from CELLCO with the price set at the 1978 LSSA ptice
 

goal (instead of the value obtained in CELLCO IPEG).
 

Therefore, the purchased cell price, as given in
 

Reference 10, is $4.38 per cell.
 

The module assembly methods used by MODULCO
 

are presently used in production by Sensor Technology,
 

Inc., without any modification. The module assembly
 

flow chart is shown in Table 12 with the process
 

Referents defined in Table 13. Two parallel flows
 

are used in the company. The first line is the
 

main module assembly line and the second line is for
 

the substrate pan preparation. The first two pre­
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assembly steps are performed outside the company.
 

Therefore, the preassembled pans are assumed to
 

be part of the purchased items and the prices of
 

the preassembled pans are obtained by summing up
 

all the expenses for labor and material outside
 

the company.
 

It is assumed that the company will operate
 

24 hours per day, seven.days a week, and 345 days per
 

year as defined by IPEG Standard Industry. It is
 

further assumed that four shifts will be required so
 

that three shifts will be used during each weekday
 

and one shift is used to fill in on weekends and
 

vacations.
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MAIN FLOW 	 SUB FLOW 

(PVCELL) 	 (AN) 

1. -TABSD 	 SUB ASSEM I (PRASPAN) 

(TABSDC) 	 IANODIZING 

2. INTCON
 
TERMMTNGAl
 

NI T NO3. 	 B T A2 

(PANWCELL) 

4. 	 ENCAP 

(ENCAPM) 
*Purchased Product Are PVCELL
 

and PRASPAN (preassembled pan)
 
(FINADL) 

6. PKGMDL 

(PS ) 

TABLE12. Solar Cell Module Assembly Flow Chart
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Table 13. Definitions of referents for module
 
assembly
 

A. MAIN FLOW
 

1. TABSD 


2. INTCON 


3. CELLONPAN 


4. ENCAP 


5. EPTM 


6. PKGMDL 


B. SUB-FLOW
 

AO PRASPAN 


Al TERMMTNG 


A2 BSCT 


. Tab soldering on cells. 

. Solar cell interconnection-.
 

Place the interconnected cells
 
on the based coated pan.
 

. Module encapsulation. 

: Electrical performance of modules.
 

: Pack modules for shipping.
 

: Pan pre-assembly.
 

: Terminal mounting ow pans.
 

: Base coating the pan.
 

* Sub flow will be joined with main flow 
at process step 3 (CELLON PAN). 
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2. Process Description, Format A
 

An assembly process description was written
 

for each step in the form of a Format A from Reference
 

13 for use in the cost computations and the results
 

are discussed in the next two sections. Each module
 

assembly process step has a production rate and process
 

yield and has quantitative values for all expense
 

items, subh as equipment, direbt labor, floor spade,
 

commodities and materials. The data'is taken from
 

average values determined from the actual performance
 

data. No automation steps or process improvements
 

are assumed.
 

The cost estimation for direct labor,
 

quality assurance inspectors, maintenance personnel,
 

and for a production planner are considered in the
 

same manner as for the CELLCO company. The direct
 

labor is assumed to be equally divided into each of
 

the process steps.
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3. Price Computation
 

The price of the hexagonal solar cell module
 

is determined after all the data in Format A is complete.
 

It is computed by following the procedures outlined in
 

the process work sheets aid company work sheets
 

described in Reference 11. The only additional information
 

needed is the price of the expense items which are not
 

covered in the cost accounting catalog in Reference 12.
 

For these items, the current purchase prices are used.
 

The results of the computations are presented
 

as follows:
 

Inflated price in 1978 dollars
 

$238.82 per module
 

$13.05 per peak watt
 

$821.05 per m2 modules
 

Deflated prices in 1975 dollars
 

$198.35 per module
 

$10.85 per peak watt
 

$682.50 per m2 module
 

The production yield of the MODULCO
 
was 98.8%
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4. Discussion of Results
 

The module price results were computed and
 

compared in Table 14 with the LSSA current price goals
 

in terms of module price per peak watt and module price
 

per unit area. The total module price is also shown;
 

it is subdivided into cell price, encapsulated material
 

and added value by MODULCO. The encapsulation cost
 

used in the overall module process cost estimation was
 

taken out and added to the purchased aluminum substrate
 

pan to obtain a total cost for encapsulation. It should
 

be noted, however, that the encapsulation cost in
 

the IPEG price goals does not include costs for sub­

strate materials.
 

Based on the information presented in Table 14
 

for MODULCO in 1978 one obtains the following results:
 

(1) The computed hexagonal solar cell
 
module price is 53% over the LSSA
 
price goal.
 

(2) The added value by MODULCO is 35% over
 
the current LSSA price goal which is
 
not significantly high when one considers
 
all the manual assembly process steps.
 

(3) The encapsulant material, which includes
 
the aluminum substrate, is eight times
 
larger than the LSSA price goal. The
 
encapsulant material not including the
 
aluminum substrate is about twice the
 
LSSA price goal for 1978.
 

(4) The purchased cell price is 32% higher
 
than the current LSSA price goal. This
 
is due to the IPEG industry structure
 
assumption that the company receives a
 
30% price increase to cover overhead.
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TABLE 14. Summary of SAMICS results for
 
MODULCO in 1978 based on 1975
 
dollars
 

IPEG GOAL MODULCO PRICE PRICE RATIO
 
$/m2MDL $/Wpk $/m 2MDL $/Wpk BASED ON PEAK
 

WATT
 

TOTAL MODULE PRICE 682.50 7.00 1202.18 10.85 1.55
 

COST OF CELL 	 539.00 5.53 805.52 7.27 **1.315
 

COST OF ENCAP.MTL. 21.00 0.22 209.41 *1.89 8.59
 

(ADDED VALUE) PRICE 122.00 1.25 187.25 1.69 1.352
 

le 	 13% 12.7%
 

qpk 	 75% 87%
 

* 	 Price of encapsulant consists of a pan and 

RTV 615 which is $1.,09 and $0.802 respectively. 

** 	 Cell price is taken from IPEG goal but due to
 
company overhead and production yield factor
 
according to SAMICS gives 31.5% increase in
 
MODULCO price.
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If CELLCO and MODULCO were divisions
 
of the same company then this 30%
 
cost for overhead would not be
 
necessary.
 

(5) 	The largest contribution to the
 
module price is the cell cost
 
which is' 70% of the-total module
 
price.
 

The results above show that the major factors that
 

cause the module price to be high is the cell cost
 

followed by the encapsulant cost and added value
 

by MODULCO.
 

'Automation of the assembly process,
 

therfore, will not significantly lower the module
 

cost; the maximum reduction in price is estimated
 

to be'thirteen percent. The encapsulation and sub­

strate material costs are primary factors in the
 

high module cost; a new module design is needed to
 

reduce these costs.
 

The solar cell costs can be reduced -by
 

merging the CELLCO and MODULCO. This will-develop
 

a continuous process from silicon wafer to finished
 

module and will save the company overhead and reduce
 

the selling price.
 

The final module selling price is largely
 

dependent on the industrial structure assumed. By
 

simply varying two parameters, purchased cell price
 

and CELLCO/MODULCO merger/nonmerger, four different
 

module prices can be obtained. The corresponding
 

four cases are defined in Table 15. The module
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TABLE 15. 	Module price per peak watt for
 
various industrial structures
 
in 1975 dollars.
 

Case (A) Cells are purchased from CELLCO ( Sensor
 
Technology, Inc.)
 

Case (B) 	Purchase price of cells is taken from
 
IPEG price.
 

Case (C) Assumed CELLCO and MODULCO are the same
 
company, Sensor Technology, Inc., so
 
that the process continues from wafer
 
to module.
 

Case (D) Assumed IPEG CELLCO and MODULCO
 
(Sensor Technology, Inc.) are combined
 
to process continuously from wafer to
 
module.
 

Case (A) Case (B) Case (C) 


Module Price $15.24 $10.85 $12.55 

Per Peak Watt *($18.41) *($13.11) *($15.16) 


Ratio w.r.t. ** 2.177 1.55 1.793 
Goal price
 

* ( ) :Conversion to 1978 dollars 

** 	 IPEG goal of module price is $7.00/w k 
in 1975 dollars 

Case (D)
 

$9.11
 
*($li.00)
 

1.301
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prices outlined in the table show a variation from
 

$9/Wpk to $15/Wpk depending on the industrial
 

structure. Case (A) is the worst case. It is the
 

current process method applied to the IPEG standard
 

industry and gives a final module price of $15.24/Wpk
 

in 1975 dollars. Case (B) is the purchase price
 

of the cells taken from the IPEG price. The price
 

is $10.85/Wpk in 1975 dollars. Case (C) is presented
 

by Sensor Technology,Inc., based on SAMICS analysis
 

and includes the final module price for a merger of
 

CELLCO and MODULCO. It gives $12.55/Wpk in 1975
 

dollars. The best case is Case (D) where the cell
 

price is assumed to be the IPEG goal and CELLCO-and
 

MODULCO are assumed to be one company like Sensor
 

Technology. It gives a selling price of $9.ll/Wpk
 

in 1975 dollars.
 

Table 16 summarizes the module cost break­

down in 1975 dollars. The results show, upon excluding
 

material costs for the aluminum substrate pan, the
 

RTV-615 encapsulant, and the solar cell, the labor
 

cost is the predominant cost factor at each step and
 

the costs are uniformly distributed throughout the
 

assembly process. The costs for module fabrication
 

are more for manual assembly. Total automation will
 

reduce the labor cost to a negligibly small value.
 

However, automation by itself will only reduce the
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Table 16. Summary of module process cost
 
breakdown in 1975 dollars per 
peak watt. 

PROCESS PROCESS TOTAL TLAB TMAT 
FLOOR
SPACE UTIL 

REFERENT NO. COST 

1. INTCON 2 0.310 0.275 0.017 0.009 0 

2. TABSD 1 0.283 0.257 0.017 0.001 0 

4. ENCAP 4 0.2686 0.217 0.0 0.0506 0.0013 

3. BSCT A2 0.2771 0.217 0.008 0.0506 0.0015 

5. PKGMDL 6 0.2403 0.148 0.089 0.010 0 

6. TERMMNG Al 0.1482 0.1222 0.0231 0.0024 0 

7. CELLONPAN 3 0.1155 0.1037 0.0003 0.0064 0.002 

8. EPTM 5 0.0381 0.0329 -- 0.00244 0.0011 

SUBTOTAL 1.681 1.372 1.1506 0.1405 0.0061 

PAN 1.092 

RTV-615 0.802 TOTAL $10.85 

CELL 7.273 

TOTAL 10.85 
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total-module cost by approximately thirteen percent.
 

Achieving-the LSSA goals will require reduction of
 

labor costs through automation technology and reduction
 

of material costs through development of low-cost
 

silicon solar cell, encapsulation, and substrate
 

materials.
 

D. SAMICS Conclusions and Recommendations
 

Ali process steps under this program for the
 

development of low-cost, high energy-per-unit-area
 

solar cell m6dules have had a cdst analysis performed.
 

The SAMICS method was applied~to the new hexagonal
 

solar ceil module using Sensor.Technology's current
 

proprietary process-steps and three new-process pro­

cedures described in this report. The-results of the
 

computations give the following conclusions:
 

(1) The final price for the module in 1975 dollars 
for the year 1978 was approximately $15/Wpk, 
while the LSSA current price goal is 
$7/Wpk. 

(2) Silicon wafer material is the single most
 
cost intensive parameter for high module
 
cost. While silicon wafers are purchased
 
by CELLCO (Analysis of wafer cost is beyond
 
the scope of this report), it is a major
 
parameter through which efforts should be
 
directed for cost reduction.
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(3) Encapsulat materials cost is a major
 
parameter for high module cost. This
 
is because the current materials for
 
cell encapsulation, i.e. RTV-615 and
 
aluminum substrate material, are
 
expensive. Encapsulant development
 
for cost reduction is needed.
 

(4) Labor is a major parameter for high
 
module cost. This is because the
 
current labor intensive process
 
methods are best suited for changes
 
in module design, changes and
 
improvements in production procedures
 
and variations in production load.
 
It is not the best method for
 
achieving a minimum module price.
 

(5) The labor cost in CELLCO is the
 
major factor for a high module price.
 
It is also an important factor for
 
high costs in MODULCO. Changes in
 
process procedures and automation
 
of process steps can easily reduce
 
the module price to meet the current
 
LSSA 1978 price goal. Achieving
 
the 1978 price goal can best be
 
expedited by merging the CELLCO
 
and MODULCO.
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CONCLUSIONS AND RECOMMENDATIONS
 

This program.for the development of low-cost,
 

high energyper-unit-area solar cell modules has led
 

to a number of conclusions and recommendations.
 

Modified hexagonally shaped solar cells can
 

be scribed by laser from 90 mm diameter round silicon
 

solar cells. It was demonstrated that a laser can
 

cut through a p-n junction without damaging the
 

junction. The junction current leakage for Sensor
 

Technology's commercial process round solar cells
 

with edge rings are primarily due to edge losses.
 

Junction current leakage for round solar cells can
 

be significantly reduced by cutting around the edge
 

of the solar -cell with a laserscribe. The junction
 

current leakage caused by edge effects from the
 

laserscribe is uniform, consistent, and very small.
 

The technique-for scribing a silicon wafer, however,
 

is very important. The laserscribing technique
 

includes wafer alignment, laserscribing methodology,
 

and wafer breaking. The present technique requires
 

manual wafer loading and aligning, automated laser­

scribing, and manual wafer unloading and breaking.
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Development of a fully automated laserscribing
 

system is recommended to increase wafer through­

put and reduce costs.
 

Four hundred 90 mm diameter silicon
 

wafers can be diffused in a 38 inch flat zone
 

furnace at 9000 C + 50 C with the use of a buffered
 

mixture to obtain a uniform sheet resistivity
 

within 20%. This diffusion process allows
 

one to process solar cells in large quantities
 

with less than 1% variation in photovoltaic
 

energy conversion efficiency.
 

Two surface macrostructure processes
 

suitable for large scale production of silicon
 

solar cells have been developed. Silicon wafer
 

surface preparation and etching time, temperature,
 

and concentration was optimized relative to
 

surface macrostructure that trap light efficiently.
 

The process procedures were defined for manual
 

large scale production. The process equipment is
 

capable of processing two hundred 90 mm diameter
 

silicon wafers in five minutes or up to 2400 wafers
 

in one hour. The silicon wafers have black anti­

reflective surfaces which are uniformly etched
 

and are batch to batch reproducible. Intermediate
 

130
 



steps in the surface macrostructure process have
 

indicated that higher photovoltaic efficiencies
 

can be obtained. It is recommended that future
 

investigative work be performed on the surface
 

macrostructure process for producing higher photo­

voltaic energy conversion efficiencies and for
 

reducing costs.
 

A spin-on anti-reflective coating study
 

demonstrated that low-cost methods can be utilized
 

effectively to increase the photovoltaic energy
 

conversion efficiency of solar cells. The spin-on
 

A.R. coated solar cells showed significant electrical
 

performance improvement over solar cells without
 

A.R.coatings, but it was also shown that the spin­

on A.R.coated solar cells were not as efficient
 

as vacuum deposited SiO and silicon nitride solar
 

cells. It is recommended that a rigorous study
 

be made on low-cost anti-reflective coating
 

methods, such as, spin-on, spray-on (see Reference
 

14), and low pressure vapor deposition.
 

Solar cell electrical performance curves
 

were analyzed for four different grid pattern
 

designs which led to the following results: Solar
 

cells processed under the same conditions that have
 

the same grid line coverage are-relatively insensitive
 

to the grid pattern used. No significant electrical
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performance advantage was found for using a photo­

lithographic process over a silk screen printing
 

process for solar cells. A single contact point
 

and dual redundant points produce very nearly the
 

same solar cell electrical performance.
 

The six hexagonal solar cell modules
 

fabricated in this program demonstrated that module
 

efficiency can be significantly improved by the
 

utilization of hexagonal or modified hexagonal
 

solar cells replacing round solar cells due to
 

increased solar cell packing ratio and increased solar
 

cell photovoltaic energy conversion efficiency.
 

A detailed theoretical analysis on the
 

optimum silicon utilization-by modified hexagonal
 

solar cells for low-cost, high energy-per-unit-area
 

solar cell modules arrived at the following conclusions:
 

An optimum modified hexagonal solar cell module
 

exists for a given fractional cost of silicon. The
 

utilization of an optimum modified hexagonal solar
 

cell module will produce a cost savings compared
 

with a circular solar cell module. The smaller the
 

fractional cost of silicon is then the higher the
 

cost savings becomes which is governed primarily
 

by the nesting space utilization factor. The
 

maximum possible savings will be 9.3% when the full
 

hexagonal solar cell module is utilized and the
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fractional cost of silicon is negligibly small.
 

The SAMICS method was applied to the
 

hexagonal solar cell module using Sensor Technology's
 

current proprietary process steps and three new
 

process procedures: surface macrostructure, diffusion,
 

anddlaserscribe. The conclusions show that the 1978
 

LSSA cost goal of $7/wpk for solar cell modules
 

is achievable. It is recommended, however, that_
 

significant development efforts be directed toward
 

low-cost silicon wafer materials, low-cost encapsu­

lant materials and process automation.
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