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A ROCKET OZONESONDE 
FOR GEOPHYSICAL RESEARCH 

AND SATELLITE INTERCOMPARISONS 

Ernest Hilsenrath, Robert L. Coley, Peter T. Kirschner, and Bill Gammill 

ABSTRACT 

The in-situ rocketsonde for ozone profile measurements developed and flown for geophysical 

research and satellite comparison is reviewed. The measurement principle involves the chemiluml-

nescence caused by ambient ozone striking a detector and passive pumping as a means of samphng 

the atmosphere as the sonde descends through the atmosphere on a parachute. The sonde is flown 

on a meteorological soundmg rocket, and flIght data are telemetered via the stanljard meteorolog-

Ical GMD ground receiving system The payload operation, sensor performance, and calIbration 

procedures simulating flight conditions are descnbed. An error analysis indicates an absolute ac-

curacy of about 12 percent and a precision of about 8 percent. These are combined to give a meas-

urement error of 14 percent. 

ApprOXImately 20 flIghts have been conducted for geophysical experiments, such as, during 

the polar night, day and mght to determme diurnal variabilIty, and during geomagnetlc events. Some 

flights were conducted for comparison with other rocket and satellite soundings for ozone. In 

general, these comparisons showed good agreement Two nearly simultaneous soundmgs of the 

system described here showed a repeatablhty 0(6 percent Ozone profIles measured under varymg 

geophYSical conditIOns, such as, durmg the polar and equatorial night, and at mldlatitudes over a 

period of several years as dIscussed, and can be compared with ozone profiles calculated by photo-

chemical models. "The polar mght soundIngs show large variations which are mdlcatIve of the van-

abIlIty of the tcmperatlllc and wmds observed at h'gh latitudes in winter. Ozone profiles obtamed 

at low and mldlatitudcs are systematIcally higher abO\e 40 km than those predicted by photo-

chemIcal models WIth complet\! photochemIstry 
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INTROl)U(TION 

l:..lrly II1l1:n:st in !'>trJto'pht'rlc 070ne WJS to lItlltlC thl' 070nc d.lt.1 .I!'> " trJeer for tIll: l!CIl-

er.t1l'Jn.lIlatlon of the lower "trdto~pherc It wa!> soon c\ldent thJt %ne wa" .Ibo important to 

the chellll<.:JI and rddlJtlve properties of the upper stratosphere and lower mesosphl!re. Con-

temporary photodlenllc.ll-rddlatJve-dyndmlc models now dcmol1stratl: the complex interaction 

of ozone with other gcophYSICdl parameter~, such .IS, tropo!'>phenc dynamics. 10c.11 tcmpctdturl', 

other atmospheric constituents, direct and indirect effects caused by solar variabihty, and possible 

anthropogenic sources 

Measurements of the vertical distribution of ozone to 30 km began around 1955. Around 

1960, a loose network of balloon ozonesonde stations began performing regular soundings. 
.. .. 

These data provide a basIs for the ozone climatology as we know it today, though the network suf-

fers from a lack of spatial and temporal consistency, and contains calibration and intercalibration 

uncertainties. Rocket soundIngs of ozone began in the late 1960's, and to date there are about 200 

measurements in the lower mesosphere and upper stratosphere, Most of these have occurred in the 

Umted States (l, 2,3,4), while other soundings have been conducted from Japan (5). Sweden (6), 

AustralIa (7), and IndIa (8) These measurements prmlde observational eVidence of the inadequacy 

of Chapman photochemIstry and the need for addItIOnal odd oxygen smks predicted by contem-

porary photochemIcal models Accurate measurements of the ozone vertical distribution ha\e 

taken on new importance because the predicted losses by the chlorofluoromethanes (CFM's) cala-

lytiC cycle IS greatest at 40 km (q) NASA has recently estabhshed monthly rocket soundings from 

three sites USIng an optical ozonesonde (! 0) to bUIld a data base of upper stratospheric ozone pro-

files 

The vertical dlsrnbutlon of ozone (as well as the total columndr amount) IS also beIng nlcas-

ured from ~atelhtes (11) These observatIOns are proVidIng a new perspective on the ozone fields 



because of their near-global coverage. They do have limitations, however, because of uncertainties 

of the inversIOn techmques, satelhte instnlment degradation while in orbit, altitude and spatial 

re:to\ution, and time/~PJtial resolution because of the fixed satellite orbit. 

The rocket sonde descnbed here measures ozone directly and has high accuracy and fine alti

tude resolution. The measurements can be implemented quickly to investigate short-teno changes 

and can be coordinated with other direct measurements of atmospheric properties to give a com

plete picture of the atmospheric process being investigated. The rocket sonde complements the 

satellite sounders in providmg comparison data and for conductmg geophysical experiments which 

cannot be perfonoed from orbit. 

This pdp.:r re~iew') the overall status of the chemilummescent rocket ozonesonde. The princi

ple of operation is discussed m light of rel.ent laboratory experiments. A description of the hard

ware mcludes sensor and payload operation on a meteorological rocket. The calibration proce

dure. Its applicability to flight, and an error analysl:t IS dIscllssed Examples of ozone profiles 

are shown to demonstrate precIsion and comparability with other measurements from 1968 to 

1975 Fmally ozone profile datJ from Dll!d,>urements at nlldlatltudes and dUring the polar and tIOP

Il'JIll1ghttlm~ are pre~ented as compdn .... on dat.\ for photochcnllcal models 



II. MEASUREMENT PRINCIPLE 

The measurement techmque employs the chemlluminescent reaction of rhodamine-B dye and 

ozone. The ambient air IS sampled by the ozone detector as the sonde descends through the atmos

phere on a parachute. The chemiluminescent reaction is detected by a photometer. and the flow 

rate is determined by an on-board pressure gauge. The baSIC elements of the ozone sensor are 

shown in block diagram form in Figure I and is referred to again later. The ozonesonde con-

sists of the ozone sensor. telemetry system, and a parachute decelerator. The ozone paylQad con

sists of the ozonesonde. nose cone, and separation system. This section covers a discussion of 

the chemiluminescent reaction and the air sampling principle. The succeeding section gIves more 

details on the hardware and engineering aspects of the payload. The initial experiments utilizing 

this technique were described by Hllsenrath, et. al (4) and the following discussion summarizes new 

results since that time. 

A. Chemiluminescent ReactIOn 

The chemiluminescent technique for ozone detection was described by Beronose and Rene in 

1959 (12). They demonstrated a quantltative ozone measurement capability using the oxyJumines

cence of certam orgamc compounds impregnated on paper dISCS. Regener (13) in 1964. using rho

damine-B dye absorbed on silIca gel, developed a balloon ozonesonde compatible with the meteoro

logIcal radIO sonde. Subsequently, both Randhawa (2) and HIlsenrath, et. al (4) developed rocket 

sondes utillZlng thIS technIque However, Hernng, et. al (14) and Komhyr, et. al. (15) have noted 

instabIlItIes and nonlmeantJes 10 balloon flIght data where the Regener sonde was used. As \"ill be 

shown, the uncertaintIes assocIated with the Regener balloon sonde arc virtually elIminated in the 

plesent mstmment ThIS has been accomphshed by a newly developed extensive calIbration proce

dure employed for each fhght and by the added stablhty of the chemllummescent detector used 

3 
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1. Mechanism 

The chemiluminescent mechanism has been explored in the laboratory, however, it has never 

been fully explained. Laboratory measurements indicate that the reaction of ozone with the chemi

lumInescent material and the production of light has several steps. 1) adsorption of ozone, 2) cata

lytic decomposition, 3) liberation of energy, 4) energy transport to the disc material and to the 

rhodamine-B dye, 5) excitation of rhodamine-B dye, and 6) luminescence. The adsorption of 

ozone, the first step, depends on several factors including flow rate, pressure (diffusion rates), and 

detector volume geometry. These factors will be discussed in more detail in Section B. Regarding 

steps 2,3, and 4, laboratory experiments show that the chemiluminescent efficiency is the same for 

several ozone concentrations at any flow rate-and at fixed pressures_ This would suggest a first 

order reaction_ The reality of steps 5 and 6 can be verified from the chemiluminescent spectrum. 

USIng a series of yellow and red sharp-cut off filters, a spectrum was obtained (16) and is shown in 

FIgure 2. The emission spectrum in arbitrary units peaks near 580 nm, and is similiar to that for 

rhodamine-B fluorescence in solution 

The left ordinate of Figure 2 gives the absolute spectrallrradlance of a radioactive sc1f

lummous hght source which is spectrally similar to the chemiluminescence, and yields a signal com

parable to the chemiluminescence measured by the ozone sensor photometer. The wavelength in

tegrated irradlance is 235 X 10-12 watts/cm2 , which IS representative of expected light levels 

dunng flight, and provIdes a basis for the photometer design. A photon yield of I X 10-5 per mole

cule of ozone computed from the measured lfradiance resultIng from a known ozone flux is a meas

ure of the chemIluminescent effiCIency. 

2 SpecifiCIty 

Accurate measurements rcqlllfe that the chemllummscencc IS spedflC to ozone Reac,tion to 

other atmosphenc constItuents would make the flight results dIfficult to interpret. This difficulty is 

5 
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overcome by removing the contaminating constituent. Laboratory studies have shown a chemilu

minescent response to atomic oxygen (the concentration of ozone and atomic oxygen is equal with

in an order of magnitude at 60 krn). Fortunately, oxygen atoms are highly reactive and, hence, 

easily removed. The sensor inlet pipe as shown in Figure ) is designed (material and length) to re

move all traces of atomic oxygen. This has been demonstrated in the laboratory under extreme 

conditions of flow and atomic oxygen concentration. Interference of other constituents have been 

summarized by Hodgeson, eta al. (17). They indicate that N02, S02' peroxyacetal nitrate, H20 2 

peracetic acid, H2 S, propane, H2 0, NH3.' NO, and e12 yielded no chemiluminescence, nor dId they 

decrease the sensitivity of the reactive surface to ozone. It is known, however, that water vapor and 

possibly ammonia give a temporary enhanced sensitIvity to the chemiluminescent material. For this 

reason, the chemiluminescent material and ozone detector volume are kept in a dry and controlled 

environment during storage, cam ."ation, and payload preparation. 

The effect of temperature has been determined by Seiden (18), who found a temperature 

coefficient to be about a two percent change in sensItivity per rlrgree increase in temperatUlt", near 

room temperature. The detector cell temperature is monito} ed during calibrations and flight to 

account for temperature sensitivity. 

3. Chemituminescent Disc Preparation 

The detailed procedure for the preparatIon of the chemiluminescent disc is given in Appendix 

A and is summarized below" Porous Vycor, a form of borosilicate glass, is etched in heated NaOH 

after beIng cut into 25 mm diameter and 5 mm truck dics. Once the discs are etched and dried, 

they are dIpped in an acetone solution of rhodamine-B dye and gallic acid. The addition of gallic 

acid (C
7

H
8

0
6

) is after a suggestion of Bersls and Vassihou (19) who found increased stabilIty 

of the chemiluminescence WJth this reagent. They found that ganJc acid in a solution of 

rhodamll1e-B In ethanol IS an efficient reducing agent for ozone and that the energy IJberated IS 

7 



transferred to the rhodamine-B, resulting in the luminescence. The gallic acid oxidation is more 

efficient and faster than rhodamine-B alone, resulting in greater quantum yield, but still protect

ing the rhodamine-B, thus yielding greater stability. The impregnated discs are cooled, neutral

ized, and dried. In order to stabilize a disc, it is exposed to high amounts of ozone for several 

minutes. After this exposure, the disc is exposed to ozone only in amounts produced during 

the calibration procedures. This will be discussed in more detail in the section on calibration. 

4. Response Time 

Measurements of chemiluminescent response time at flight conditions are diffIctdt to 

perform since they would require a means of stepping ozone concentration at low flow rates 

and reduced pressure. Experiments using the calibration apparatus, discussed in Section IV, . 

indIcate that response time is limited by the ratt> that ozone concentrations can be altered in the 

laboratory. 

The response of the chemiluminescence depends on several factors: 1) The reaction 

mechanism described in section 1,2) flow rate, 3) pressure and 4) condItion of the- chemi

luminescent surface with regard to contaminants, moisture, prior exposure to ozone, and age. 

From the discussion in section I, it would seem that the reaction mechanism is quite rapid. 

Flow rate and pressure dependence will be dlscusc;ed in the section on air sampling. Laboratory 

experiments of response time performed by Hodgeson, et. al. (17), at atmospheric pressures 

using 0.2 ppm OZOJle indIcate high response with some overshoot, and a decay period when the 

ozone source is removed. They explained the overshoot as activation of the chemiluminescent 

matenal whIch is dependent on the age and condition of the material. However, this charac

tenstlc IS virtually ehmInated by proper dISC preparation, low exposure to ozone during calibra

tIon, and careful storage The observed decay charactenstIcs are most hkely due to diffusion of 

K51dtlal ozone molecules to the reactive matenal. ThIS is confirmed by recent experiments which 

8 



demonstrate that decay signals are pressure dependent and therefore diffusion controlled Resid-

ual signals due to diffusion are only significant. however, when mean flow past the detector is very 

small. Since flow is always mamtained during the flight, these signals are not significant. 

B. AIr Sampling Technique 

During flight, ambient air is sampled by self pumping which can be described in the fo]-

lowing manner using FIgure 1. After the payload is separated from the rocket near flight apogee 

(75 km), the sonde descends through the atmosphere on a specially designed high altitude 

parachute. The ballast chamber empties on the upleg portion of the flight and lefills through 

the inlet pipe to maintam pressure equilibrium with the outside atmosphere as the sonde descends. 

The flow rate past the detector is proportional to the pressure change in the chamber as will be shown 

below. The chemIlumInescence IS then proportIOnal to the ozone flux. This relationship has been 

demonstrated over several years of laboratory experiments, and more than 30 actual flights. 

]. Sampling Principle 

A general expreSSIOn for the hght emItted by the chemilumInescent reaction can be 

wntten as 

[ 1 ) 

where L = lumInescent lIght level 

K = photon production effiCiency and ms.trument calIbration constants 

Co = ozone concentration 

F = flow rate 

q = detector cell effiCiency related to geometry and inversely proportional to 
pressure 

At Illgh flow rates, equatIon [I] becomes 

[2] 

9 



which says that at high flow rates the luminescence becomes independent of flow rate and is 

inversely proportional to the pressure. Luminescence at high flow rates was studIed by Stein-

berger, et al (20), and could be a basis for an alternate approach to the measurement. However, 

q would be fairly complex to characterize since high flow rates at low pressures would have to be 

achieved in flight and simulated in the laboratory to establish the instrument sensitivity. 

At low flow rates, equation [I J reduces to 

L= KCo F. (3) 

Under this condition, the luminescence is proportional to the ozone concentration and flow rate. 

It is in this condition that the ozonesonde de~cribed here was designed to operate. A direct 

measure of the air flow through the inlet tube Is not feasible -at the low pressures and flow 

rates anticipated in flight. The flow rate can be derived indirectly, however, by a pressure 

and temperatt.-;e measurement in the ballast chamber (FIgure I) in the following manner. 

Time differentiation of the ideal gas law, pv = m
t 

RT, results in an expression for the mass 
~ 

flow rate, dm 
dt 

where mb = mass of alr 

P
b 

= aIr pressure 

T b = temperature 

Vb = ballast chdmber \ olume 

R = unlvcr::.al gdS constant 

)0 

dInT" ) 
d t 

[4] 



and the subscnpt. b, refers to conditions inside the ballast chamber. The air temperature inside 

the ~hamber change<; very slowly. therefore. equation r 4] reduces to 

which expresses the mass flow rate as a pressure change. Usmg the flow rate in equation [5] in 

equation (3], the lummescence becomes 

K'r 
L - .l - -r. 

b 

where r3 is the ozone mass mixing ratio. Equation [6] mdlcates that the ambient ozone mass 
. 

(5) 

[6) 

mixing ratio can be determined by establishing the constant K' (as will be discussed in the section 

on calIbration), and measunng the luminescence and the pressure and temperature inside 

the ballast volume Convertmg to ozone density reqUIres independent knowledge of the air 

density 

Flow Rates In Fhght 

Pressure changes and flow rates expected in the ozone sensor during the parachute descent 

~ . .m be calculated by as!)umlllg prt:ssure eqUlhbnum between the ballast chamber and the ambient 

air DlfTerentiatlOn of the hydrostatic equation. p = Po e-z/H Yields 

dp = P dz --H (7] 

and 

dp P dz 
= (8] 

dt H dt 

where H is the atmosphcnc scale heIght, z the altitude, and dz/dt the parachute descent rate 

(upward III pOSItive) 

11 



EquatIon [S} can be substituted into (5) to give expected mass flow rate~ 

dmb MVb p dz 
= (91 

dt RTb H dt 

whIle volume flow can be calculated from 

dV RT. 
=- dm - [ IOJ 

dt Mp dt 

where T. is the external temperature. 

Table I lists the expected pressure change, mass, and volume flow rates in a standard atmos-

phere,as a function of altitude,using expected descent rates, The last two columns summarize 

the flow rates determined from a sample of II flIghts. The next to the last column is the average 

ratIO of the measured flow rates (or pressure change) to the calculated flow rate from equation 

(8). The table shows that this vdluc approaches UnIty as the sonde descends. This is expected, 

since the ballast chamber is not In equilibrium with the ambient pressure at apogee (at 75 km 

thl.! pressure is 0 O~ mb). Therefore. the flow rate must be measured. and not calculated. to 

remove a possible bIaS due to reSIdual .m in the ballast chamber The last column Ie; the percellt 

deVIatIOn of the ratIos, WhICh demonstrates the need for a flow rate measurement on each flight. 

Altitude resolutlOn~. shown 10 Table I. will be (h<;cuc;sed In the error analysis sectIOn 

One fmal conSIderatIOn regardmg the aIr samplIng technIque IS that the chemllummescence 

defected ,n a gIven altltlll.le IS not representatIve 01 the ozone concentr.ltion .It that Jltitmk 

becuu<;l' the s.lI11pled amblclH all rcqulrl', a fllllte tlllll' to fI.-.ldl tIll' lldl'dor vi,1 thl' mIl'! tuhl' 

Th .. · resultant ,lltHude I.lg Oz ldll l',I ... t1y be c,lh:ul.ltcd lrom 

~ = V 
I C dY lit 1111 

<It 
\\ 'lei': \' l' .... the Inkl tube vOIUIll .. • Jild the rellldllllllg lallJ" .Ill· ~l\ l'll III [.Ibk' -, hl' volume 

1"11)\\ 1.lk ,Illd tilL' dL· ... lel't 1.l1l' holh dl·lre,I ... L· \\1111 .lIllludL'. thl'lcfore. ~, rl'llI,IlIl" IlL',lrly l.on<;t,l11t 

,I I .1 h 0 1I t 0 :\ J..1lJ 
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Mass now rJtc 

Volume now rate 

Pressure change 

Altitude Descent Rate 
z (krn) dz/dt (m/sec) 

w 70 225 
65 190 
60 130 
55 90 
50 65 
45 45 
40 30 
35 25 
30 20 
25 10 

'ComrJleIl from I I S(lundm~~ 

Table I. Flow Rates for ChemIlummescent Ozonesonde 

dm MV I dp 
dt = If T d! 

dV R T dOl 
- ---

dt - M P dt 

dp 
dt 

= 
dp dz P dz 
dl dt = H di 

Pressure Change Mass Flow Rate 
dp/dt (torr/sec) dm/dt (gm/sec) 

I 3 -3 24 -6 
22 38 
29 4.7 
36 5.6 
48 7 I 
64 97 
94 1.5 -5 
1.5 -2 25 
2.2 3.9 
35 63 

AltItude Resolution Vol. Flow Rate 
Az(km) , dv/dt (cmJ /sec) 

4.20 29 
2.10 :!3 
1.10 IS 
0.61 98 
0.34 6.9 
018 4.9 
0.08 37 
0.04 2.9 
002 2.1 
001 1 6 

.. 

Press. Change RatIo· Percent· 
(meas /calc ) DevlJtJOn 

.54 70 
49 43 
.66 19 
.81 15 
.88 12 
93 13 
.95 10 
.97 7 



III INSTRUMENTATION 

The ozonesonde has a cylIndrical shape, 10.5 cm in diameter and 51 cm long and it is shown 

m Figure 3. It weighs approximately 2.4 kg including flight batteries and telemetry package. The 

batteries contain sufficient power to operate the sensor for 50 minutes, which is an adequate time to 

complete a mission. 

To minimize the weight of the sensor, much of the structure also defmes the flow path 

that the sampled atmosphere must travel All surfaces, which are in contact with the air sample, 

have either been anodized usmg a special procedure, or they are fabricated from stainless steel 

Laboratory investigations have shown that the anodlzation provides a superior, ozone-inert 

coating which can be cleaned effectively and'which does not destroy ozone. The aAodizatiol\ 

procedure is detailed m Appendix B 

The air inlet tube (Figure 1) is 30 cm long and IS suffiCIent to eliminate atomic oxygen present 

m the ambient air as described earlier. The sampleu air then traverses a light trap which consists of 

several right-angle turns totalmg 360 degrees, to prevent sunlight from reaching the photomultiplier 

tube. The air then enters a chamber where the ozone detector is located. The ozone detector IS 

removable through an access port, should thIS become nece!.sarY. From this chamber the air mix

ture passes through a transfer tube to the ballast tank 

The chemiluminescence IS measured by the photomultlplrer tube through a glass window. 

A sh.ltter. edge-dnven by a miniature 0 C motor. lIlterrupts the ~lgnJI obtained from the 

detector yieldmg a pseudo-alternatmg SIgnal ThiS Signal is then runphfied by the photometer 

amphfer YIeldmg a "hIgh" and "low" senSItivIty outpu t, both of whIch are telemetered. TIle 

"hlgh" output IS ten tlmt'S greater than the "low" 

The 070ne detector 1<; ,I glds~ dl~c. :::!5 mm 111 dl,tl11~tcr ,1I1d apprm.II11,ltcl} .2 5 mm thkk, 

onto whIch rhoddllllllc-B h,l" becn ,ld~Olb\?d The glJSS I.., dlcllllc:tlly C)() pcrlcnt ~llll:,1 (51 O2 ) 
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and 4 percent bone oXide and is manufactured by Coming Glass as Vycor® 7930. It is porous 

and, therefore, an excellent adsorbing matenal. The pore size is typically 40 angstroms, and 

the avaIlable surface area is 200 m2 per gram of glass The current recipe for the preparation of 

the chemiluminescent material is described in Appendix A. 

The photometer consists of an RCA 8644 photomultiplier tube and is powered by a 

Venus Q-15 high voltage power supply. The photomultipher tube which has an S-20 response 

is especially selected for low dark current noise and high sensitivity. Both are installed in a 

pressure-tight housing in a dry nitrogen environment to prevent high voltage discharges (corona) 

from occurring when the ozone sensor is subjected to low atmospheric pressure during flight. 

A cahbration lamp, consisting of a lIght emitting diode (LED), IS activated every lOS seconds _ 

for 5 seconds. The LED IS detected by the photomultiplIer and therefore monitors the per

formance of the photometer In addition, the power source to the high voltage power supply 

IS also monitored to measure the stabilIty of the photometer. 

The pressure Inside the ballast tank is measured by a diaphragm type, variable reluctance, 

absolute pressure gauge. The gauge, a ValIdyne AP-78, has a range of 0 - 5 torr. The output of 

thiS gauge is processed electronically to yield the pressure derivative with respect to time, dp/dt, 

dunng the descent of the sensor Both the pressure and dp/dt measurements are telemetered to 

the ground receiVing statIon A thermIstor IS mounted on the ballast tank bulkhead to indicate 

the temperature of the aIr 111 the ballast chamber ThIS output IS also telemetered to the ground 

rCCCl\ mg statton 

The ozonc payload shown 111 FIgure 4 IS carncd aloft on d Super Areas rocket motor. The 

Super Areas, manufactured by Atlantic Research COlporatlOn, IS ] 1.5 em in diameter and 192.5 

em long dnd IS capJbk of CaIT} mg a 6 kg payload to an altItude of 75 km. when IJunched at an 

®~..It1le rcgl~teled hy Cllllllllg C.IJ\S CUrJIIIlg New YllIl-
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Figure 4. The ozone payload consisting of the sonde, parachute housing, and nose cone 
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ek .. atlon angle of 84 degrees The motor weights 38 kg which makes it possible for two persons 

to handle It during pre-launch activities without the aid of mechanical handling equipment. This 

feature is particularly attractive when launches are conducted at temporary launch sites at remote 

locatIOns. 

During ascent, the ozonesonde, including the descent parachute, is packaged inside an aluminur 

cylindrical housmg topped by an asbestos phenolic nose cone (Figure 4). The cylindrical housing 

. 
abo contains a piston whlch, dunng the ejechon sequence, separatec; the nose cone and pushes 

the ozone sensor with attached parachute out of the housing The piston travel is limited to the 

length of the payload housing by restraint cable~ and all the gaseous products of th; expUlsion 

~hdrgt! are trapped thereby preventmg contammation of the lmmedlate atmosphere. The expul-

sion charge, a part of the rocket motor, is a pyrotechnic device initiated at burnout of the rocket 

motor It is pyrotechmcalI}' delayed to 146 seconds after launch and causes the ozonesonde to be 

ejected near apogee After ejection. the parachute. now free of its deployment bag, opens and 

ue(.elerate the o.lOnesonde all the way to the surface 

The ozonesonde Signals are tt:lemetered via an 8-channd pulse code modulated telemetry 

sy~tem operatmg on 1680 MHz carner frequency The ozone sen~or and telemetry system are 

powered by SIX Yardney HR I 5 Silver cell battenes ThiS supply powels a DC/DC com'erter 

\\hlch power~ the sonde subsystems The sonde can be powered either externally or mternally 

(by the battenes) from d pJyloJd contlOl box The sonde telemetr} Signal is recorded by a 

~tanddrd G~tD metcorolC'gl("al gl ollnd stdtlOn pnor to Idunl:h dUring the upleg portIon of the 

I1lght dnd dunng the de~cent to about ~O km AddItIonal detaIls of the tdemetty ~y~tem • .Il1d 



IV CALIBRATION 

The chemilummescent ozone measurement IS not absolute, therefore, the ozone sensor re-

qUires preflIght calibratIOn to detennme Its senSitIVIty to ozone. From equatIon [6J the ozone 

mixmg ratIo, r 3' is derived from 

Tm Lm 
r3 = ~ (dp/dt)m [ 12] 

where the subscript, m, refers to the flight measurements and K', the calIbration constant. K'is 

detennined from laboratory measurements of luminescence as .. fUIlLtion of the ozone concentrd- -

tions, pressures, and flow rates expected in flIght The simulatlon-calibrdtion apparatus is depicted 

schematically in Figure 5 and photographically in Figure 6. The cahbration is perfof!Tled by evacuat-

ing the entire apparatus wIth the ozone sensor attached and allowmg It to refill wIth a known 

ozone and air mixture at the rates expected m flight These rates are derived from equation (8) 

and are listed in Table I 

The ozone sensor calIbrator IS largely a glass apparatus consistmg of a 22 hter sphere, a 

number of high vacuum stopcocks and a variable Teflon leak valve. Glass has been found to be 

eaSily cleanable and nonreJctmg with ozone An absolute pressure gauge measures the pressure 

inside the glass sphere and the ozone sensor and serves a" a check for the performance of the 

sensor's pressure gauge 070ne for passlvatton is generated by the 11Igh concentration generator, 

whereas for calIbratIOns, the low concentratIOn g:~ncrdtor IS used Both operate by exposing air 

or oxygen flow to the 254 nanometer emISSIOn line from a low pressure mercury lamp. Dunng 

calibratIOns, the flo\'; IS continuously measured by a DaSlbl Ozone MOllltor The ozone monitor 

IS hIghly stable and IS calIbrated agamst a UV photometer at the NatIOnal Bureau of Standards 

The flowmeter IS used to' enfy t;ldt suffICIent gas flow IS present 1Il the system, b~cause the 

ozone momtor requires a flow of 3 liters per mlllute to operate accurately. Only a small 

percentage of the total available flow actually enters the glass sphere and the sensor during 
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calibrations through the variable le~k valve. A vacuum pump capable of evacuating the sphere 

and the sensor to a pressure of less than 0.1 torr is part of the calibrator. 

Prior to calibration, the ozone sensor must first be passivated. Passivation is a precondi

tIOnIng procedure, whereby the calibrator and ozone sensor are exposed to flow of oxygen con

taining a high concentration of Olone (concentration> 100 PPM of °3 ). Any potential ozone

destroying substance present is eliminated by this procedure and is extremely important if low 

ozone concentration measurements are to be successfully performed. A typica1 calibration pro

cedure follows a repeating pattern. A sensor may be passivated only every few days ; however, 

the calIbrator is passivated every day. The ozone detector is always removed from the sensor 

~unng passiVAtion, because the de~ctor would be tot~ly-destroy~d if exposed to the ~i~_~z.~n~._ 

concentrations for a lengthy period of time After passivation, which lasts from 12 to 24 hours, the 

sensor and calibrator are pumped out a few times and flushed with pure nitrogen gas to remove 

all ozone. The ozone detector IS then installed, and the sensor and calIbrator are evacuated to less 

than 100 millitorr. Ozone at a known concentration is introduced into the sensor at leak rates 

from 4 to 16 millitorr per second in steps of 2 or 4 milhtorr per second at approxImately one 

mmute Intervals. During these intervals the pressure rises from 100 mdhtorr to about 5 torr. The 

leak rates (or flow rates), obtained from the sensor's dp/dt channel, and the lumInescence, yielded 

by th~ "hIgh" or "low" sensitiVIty channels, are recorded on a paper strip chart recorder. Plots of 

the lumlJlescense versus dp/dt at several ozone mixmg ratIos YIelds the cahbration constant, K', 

from equatIon [6] For a new, never-used ozone detector, a hnear relatIon IS seldom obtained 

nght :Jway, nor is a stable value of K' determmed StabilIty and hneanty are achieved by the time 

20 clllbratlOns have been performed. 

Oll'..e thiS stabilIty has been reached, the sensor IS stored \\llh the chemllumme~cent dete~

tor and filled with dry mtrogen SensItivity IS checked once or tWice a day in preparation for 

flIght to assure that no change in cahbratton has occurred. OccaSIOnally the sensor might require 
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additional passivatJon and will then require addJtlOnal calIbration These procedures are most 

critical In the performance of thJS experiment. Careful sensor preparatIOn and calibration will 

result in a highly hnear response and cahbration stabIlity to about 5 percent. The uncertainty of 

the calibration to the overall accuracy of the experiment is dJscussed further in the Error Analysis 

SectIon below. 
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v. ERROR ANALYSIS 

In order to perform meaningful satellite comparisons, the accuracies of the rocket measure

ment should be comparable to or better than the satellite measurement. The stated accuracies of 

the satellite sounders are in the range of 5 - 20 percent. In addition, rocket experiments for geo

physical research should have high precision. Diurnal changes below 50 km are expected to be 

small, whereas in the region of 70 km, they could be a factor of two. Short term changes in the 

upper stratosphere are probably of the order of 10 - 20 percent. These changes, then, provide 

some perspective to the required accuracy and precision for satellIte comparisons and geophysical 

experiments. 

For the purpose of this discussion, the experimental errors are classified into three categories. 

1) Independent random errors within a given flight; 2) Systematic errors that bias the measured 

ozone profiles from one flight to the next; and 3) Experiment bias errors which involve the absolute 

accuracy of the measurement technique These are discussed separately below and are· then com

bined to give the estimated precision and absolute accuracy of the measurement. 

A. Random Flight Errors 

Above 60 km, random errors unique to a particular flIght are in large part associated with 

instrumentation low signal-to-noise ratio and short mtegratlOn tImes. In this altitude range, chem

duminescent lIght levels and pressure gauge response are low, and signal-to-noise ratios range from 

one to ten Moreover, the flIght data are noisy, because of rapid OSCIllations of the sonde just after 

the p3yload separates from the vehIcle. Pressure gauge nOlse, due to high inertial forces on the pres

sllr~ gau~e dIaphragm, results m unintellIgIble changes in flow rate data The payload oscillations 

continue untIl suffiCIent drag stabilIzes the parachute 

The ~onc!e desccrds appro'C!mate!y 5 to 10 km (from 75 km) dunng the stabIlizatIOn period 

T} plcally. the RMS errors from the pressure gauge and photometer are 20 - 30 percent between 
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70 ,lIld 60 km These errors decrease rapidly and approach about 2 percent below 60 km where 

th~ sensor slgnrlls become large and the descendtng sonde is highly stable. Telemetry 

resolutIOn and altitude at-curacy IS of the order of one-half percent 

The above errors are combtned in the followtng manner to yield an estimated random 

flight error, ER 

[131 

where the subscripts A, t, and f refer to errors in altitude, due to telemetry noise and, as a result 

of the flight environment, respectively. E(P).and E(F) are errors 10 the photometer and the flow 

rate measurement, respectively. Using equatIOn [ 13 ] and the values given above the random 

flight errors, ER starts out typically at 35% from apogee (75 km) to about 60 km, then 

very rapidly decreases to about .,% below 60 km. ER vanes from flight to flight but can be com

puted. 

B Systematic Errors for a Given Soundtng 

Systematic errors combtned with random errors influence the precision of the expenment 

and could result tn bIases between flights. These errors can be instrumental in origin or due to 

uncertatntIes in the calIbratIon Large instmment errors are unlIkely, once the calIbration pro

cedures are completed. Photometnc stabilIty IS assured by the hlgh voltage monitor and the 

onboard light source. However, for thiS analys1s, it is assumed that a 2 percent change in 

photometer sensItIvity could go undetected Absolute accuracy of the pressure gauge is not re-

qlllred, since the sensitlVlty of the gauge 1S tncluded in calIbration constants. Errors could 

amc, however from Sh1fts In the gauge lineanty or sens1tivlty, but would be lImited to 2 percent 
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The largest source of systematic error is the uncertainty in the calibration constant, K', 

m equdhons [6] or [ 12]. Each ozone sensor IS cahbrated prior to the flight, therefore, an 

error m K' can be associated with each soundmg. The error in K' mcludes uncertainty in re-

peatability and linearity in the chemiluminescent reaction as well as the laboratory flow rate and 

ozone concentration settings and readings. The K' error can then be evaluated by repeated calibra-

tions using varying flow rates and ozone concentrations. Numerous laboratory experiments and 

simulations indicate a typical standard error of about 5 percent in K', though lower valu~ are 

achievable. This value depends in part on the particular ozone sensor and the number of calibra-

tions performed since the chemiluminescent sensitivity tends to stabilize with time. 

Smce the above errors are independent. the combmed systemdtJc error, Es' ca~ be 

estimated by 

E = 'E2 (K') + 1:. 2 (P) + E2 (F) = 7.6 percent. s ~ c c [ 14) 

where the subscnpt, c, refers to the calibration measurements. 

Now, equations [ 13] and [ 14] are combmed to give an estimated precision of the 

measurement, P 

[ 151 

The precision is poorer above 60 km, but IS highly dependent on the sonde descent conditions dls-

cllssed earher. The precISIon also vanes from flight to flight, dependmg on instrument noise, 

trdekmg data qualIty, and the uncertamty in the cahbratlOn constant. 

Companson of two soundmgs wnducted nearly simultaneously provide a great deal of cn~d-

IbJltty to this analysi., In a repeatabilIty te"t, the fIrst soundmg was conducted on 24 July 1977 

at 04 02 Z (23.02 LOCdl Time) and the second, 13 mmutes Idter The measured ozone profiles are 

shown In FIgure 7 as 070ne mixmg ratio as a funchon of altitude where the sOllndll1gs are numbered 
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31 and 32. No data were obtained from flight 31 below 32 km because of an abrupt instrument 

failure. The difference from the mean profile between 65 and 32 km is 6.1 percent. This 

average error was calculated by 
65 

1 "" (2 I r (3l) -r (32) I) 
33 L..J I (3l) I (32 = (6.1 ± 3.6) percent 

1=32 rj + rj ) 

where r1 is the measured ozone amounts from the two flights at I kilometer intervals. 

116] 

This compares very well with the estimated precision of 8 1 percent computed from equation 15. 

C. Absolute Errors 

Absolute experimental errors are systematic errors that appear uniformly in all the meas-

urements and result in a bias on the average from the real amounts. These errors are 

most difficult to assess. Examples are: departur\"! from Imearity of the chemiluminescence 

stillllndccol1Oted for 10 the calibration, contamination of the sonde; errors in the absorption 

coeffiCIcnt used In the ozone calIbration source, and altitude re'lolutIon Altitude resolutIOn 

can be satisfactonly calcul.tted from the medsurem~nt prlllciple and is discussed at the end of 

this section. 

The ozone monitor used 111 the rocket sond~ calibratIOn system i ... well mallltained and 

regubrJy calibrated at the National Burcdll of Stand.trds agamst an ultraviolet absorption cell 

wlllch lI1eJsure~ ozone by means of absorption at ~53 7 nanomder .... The error in the true ozone 

,111l0unts I" 3 pl.!rcent where Ul1certamtlcs in the absorption co~ffillent 'It 253.7 n,ll1ometcrs IS 

the Il1JJor contnhutor (:\ Bass. 1978, Pnvate CommunIcatIOn,,) The preciSion in transferring 

the NBS cJ.hbrJ.tiol1 to th~ o/one mOl1ltor used 111 the sonde cahbrJtlon IS about I perc~nt or less. 

;\n 11l1detl:ckcl bl.l!> Jll,I~ <11"0 r,.:<,lllt froll! loss,'~ of olone III tilt' sonde (Jllbr.ltlon sy ... tclll as 

t It..: air ozone IIllxture p.I'\ses through the glas~ and Tetlon val\ es. Transfer of rl.!llctive g.l~CS in 

tlll<' m.lI1ner I ... common prJ.ctlcc and It IS Icason.lhk to a<;suillc that the olone m;",ing ratIo 
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rel11<lIns constant when the system IS well passivated. No ozone losses through the calIbration 

~y~tem are detected at atmospheric pressure. If there were losses, the calIbrations would 

result In measured ozone concentrations which are too high. Unaccountable nonhnearities 

at high ozone concentratIOns would also result In a high measurement. This error has been 

detected in balloon comparisons (if balloon sondes are assumed to give true ozone values) 

below 20 km. ContaminatIOn of the ozonesonde prior to flight would be undetected and 

would result in a measurement that was too low. This error is expected to be small because 

of careful handling procedures and the payload design which mmimizes contamination during 

flight. 

The net absolute error, considering a worst-case condItIOn, can be denved by the fol-

10wIIlg assume that errors due to losses durmg calibratIOn and unaccounted nonlInearity 

errors are each 5 percent and additive, while the contammation error IS 5 percent, but with the 

opposite ~lgJ1 The amount by which these errors cancel each other i<; unknown and, therefoTl'. 

they arc ad(lt:d 111 the followmg manner to yield the absolute error, EA 

[ 17) 

where the IdSt term IS the error a~soclated with the ozone ~tandard and appears under the squdrc 

root bC(.<iuse It is IIldepenJent of the other three errors 

As mentioned above, absolutc experimcntal errors are difficult to estabhsh and are only 

estimated for \,;orst case conditions Companson With other measurements of ozone can provide 

sOlne 1Ilc;lght as to pOSSible errors, however, espeCially If the other measurement utilizes a dIf

ferent experimental tech111qlle. Compansons h<iVC bcen performed With balloon sondes using e1cc-

trodH:'!lJ1Cdl tcchlllqllCS, hmH:\ cr, the .tltltllck regIOn \\ here thc mCdsuremCl'ts overbp I" SnldJl ,lI1d a 

sy~tcl11atlc error has b~~n detcctcd Generally. the ozone vclluc'i measured by the rocket sOl1d~ 
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On two occasions, the chemiluminescent sonde was compared with the Krueger rocket 

optical sonde (2). On one of these occasions, there was a nearly coincident satellite sounding. 

The first rocket intercomparison took place in September 1968 and was reported by Hilsenrath, 

et. a1. (4). The comparison illustrated in Figure 8, shows two ozone mixing ratio profIles 

measured 12 minutes apart, one from the chemiluminescent sonde and the other from the 

optical sonde. Both experiments measure the mixing ratio peak at 35 km. Above this peak, the 

differences are about 10 percent with the chemiluminescent sonde showing lower values. Below 

70 
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FIgure 8. Comparison of ozone profiles measured from chemiluminescent and 
optIcal ozonesondes performed at Wallops Island, VA on September 16, 1968 
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the peak, the dIfferences are about the same however opposite 10 sign. The comparison was 

repeated over Wallops Island, Vlrgmia m July 1975, at the tune ofa Nimbus-6 satelhte Limb 

RadIance Infrared RadIOmeter (LRIR) overpass which also measured ozone. The rocket and 

satellite data are shown in Figure 9, which is reproduced from Hudson (21). The agreement 

between the rocket sondes is good again, however, the differences should be noted. The chemi-

luminescent measurement IS again lower and higher, above and below the mixing ratio peak 

respectively, than the optical sonde This may represent a real systematic difference between the 

two techniques. The nearly 20 percent difference at the mixing ratio peak IS unexpectedly large 

but could be due to a time variabIlity, since the rocket sound1Ogs were nearly two hours apart. 

With regard to altItude accuracy, the position of the payload is known to better than one 

percent (± 250 meters at 50 km) from a good radar track. Altitude error was considered in 

equation [ 13] in estimat10g random flIght errors Altitude resolution, however, involves an ex-

perimentallimitation and hence affects the absolute accuracy of the measurement. The mimmum 

altItude resolution is defmed as the altitude range WIthin which a pressure change (or flow) can be 

detected. From the earher dlScllsslon of expected flow, differentiation of the hydrostatic 

equatIOn yielded 
dp = P dz 

H 

The altitude resolutIOn, 6z, IS then defined as 

Ap 
Az = H 

p 

(7) 

[ 181 
• 

where ~p IS the mInImllm detectable pressure change from the ozone sensor pressure gauge 

which IS about 0.5% full scale or 25 X 10-3 torr Usmg thIS value, the solution to equation [18] 

m 5 km mcrements IS gIven III the fIfth column of Table 1. Above 60 km, altitude resolutIon is 

grcdter than 1 kin, \"hlle belo\\ th1:> le\ellt becomes IncreaSIngly finer At 30 km, the altitude 

resoiutlon IS about 20 meters. 
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SummanZIng the error analysIs, It was found that random experimental errors are small 

below 60 km. The preCISIon of a gI\en sounding IS hIghly dependent on the calibration, and 

can be predIcted A sample calculatIOn showed a preCISIon of about 8 percent, and a repeat

abIhty test showed a dIfference of 6 percent between two soundings conducted nearly simul

taneously. Absolute errors are dIfficult to detennme, since some error sources tend to cancel 

each other out, while others are unmeasurable. A worst case calculation showed an absolute 

error of about] 2 percent. Comparison with another rocket measurement using a different 

measurement principle on two occations showed differences no greater than 20 percent where 

the average diffelence was less than 10 percent. FInally, by combining the precision, P and the 

absolute error, E A' an estimate of how far a single measurement might be from the true_ o~~ne 

amount may be calculated by 

';p2 + EA2 = measurement error 

SInce P and EA are independent. Usmg a typical value of P equal to 8% from equation []5) 

and the nominal value of 12% for E A from equatIOn [ 17] , the combined measurement error 

IS then ]4% 
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VI DIScllssion of FlIght Data 

Ozone in the stratosphere and mesosphere has been measured under varying geophysical 

conditions usmg chemilummescent sondes. Some of these experiments are reviewed here and 

m'ay be used to test vanOllS photochemical models. DIUrnal variations measured at mid and low 

latitudes reported by Hdsenrath (22) and by Heath, et. aI. (23) show some latitude dependence. 

In addition, rnesosphenc and stratospheric ozone were measured during the polar night under a 

wIde range of wmd fields and temperatures. The ozone proflle variations can, for the most part, 

be explained by the measured temperature profile variations, however, transport must also be 

conSIdered even at mesospheric levels. Some of these results were reported by Hllsenrath (22), 

and new data will be dIscussed below. In a re~ent effort to detennine the role of tHe strat~sphere 

in sun/weather relationships, ozone profiles were measured before and aft~r geomagnetic dis-

turbances. The first of these experiments was infonnally reported by Goldberg and Hdsenrath 

. - . 
(24). A·second experiment perfonned 10 March 1978 showed a similar result; namely, that 

ozone was sigmficantly depleted above 50 km after a strong auroral event at night Since night-

time or mght-to-night changes In the vertical dlstnbutlOn of mesospheric ozone are unknown, 

these results do not prove the geomagnetic dIsturbance were responsible for the observed 

changes. 

Th~ measured 070ne changes \\-ere of the order of 10% to a factor of two in the expenments 

descnbed above, and m most mstances these changes become larger with increasing altitude 

These changes have been evaluated m tenns of the error analySls dl~cussed earher whIch docs 

sho\\ lI1crcasmg errors at higher altItude) However, the errors arc random and can be evaluated 

from the flIght data Most Important IS, that the systematic errors or flight to flight biases are 

not ,titltude dl.!pendcnt Therefore, ozone profile ch,mges reported here and carher, ehcept for 

one to be dIscussed below are thcrl'forl' lIkely real. 
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A. Daytime Stratospheric and Mesospheric Ozone at Mldlatitudes 

The first ozone profiles measured over Wallops Island, VA, in September 1968 were re-

ported by Hdsenrath (4) (shown in FIgure 8 with data deleted above 55 km) and mdIcated an 

increasing mixing ratio above 57 km and a small peak at 62 km. The reported error then was 50% 

at this level. Reevaluation of the flight data using the error analysis described above resulted in 

an error of 200% above 57 krn, decreasing very rapidly below this level to the values of 20% 

prevIOusly reported. Therefore, the secondary peak (around 60 krn) measured in the day-

time lower mesosphere is most likely not real. Figure 10 depicts daytime ozone distribution 

over a single station, Wallops Is., VA, over a seven-year period, and includes the· 
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Sepkmber 1978 mea ... urcment The combmed accuraq. absolute ,lIld precision. is about 151ft 

In the altitude range 25 to 60 km for the measurements of Mdrch 1970 and July 1975. The 

differences shown, then, Indude real seasonal and mtcrannual variabIlity. To some degree, the 

data show stablhty In the ozone distribution above 50 km. 

The ozone values shown in FlgllTe 10 agree fairly well with the model by Kmeger and 

Mmzner (25), a~ they ~hould since these data are part of the model. However, there are sig

nificant discrepancies with the measurements of Watanabe and Tohmatsu (26), who report 

summer mean values about 40% lower than those shown in Figure 10, and nearly doublmg for 

a winter mean, in the altitude range of 50 to 60 km at a comparable latit,udc over Japan It 

should be pointed out, however, that none of the sOllndmgs shown m Figure 10 are in winter 

and that the mean values reported by Watanabe and Tohmatsu consist of three flights for sum

mers ranging from 1966 to 1975, and seven flights in the winters ranging from 1965 to 1975. 

ThIS discrepancy has important implIcations to the valIdation of photochemical models 

used in ozone depletion studIes, since the altitude range where the rocket measurements dis

agree has relatively simple chemistry and is least influenced by dynamics. Butler (27) has 

pomted out an apparent conflIct between one dimensional photochemical models used for 

stratospherIc depletion studies and the observations, namely the Krueger and Minzner empiri

cal model (25), Butler's photochemical model calculations for 30° latitude shown in Figure 10 

result In values whIch are about 40% lower than the rocket observattons (as well as the Kmeger 

and I\hnzner model) but comes close to the summer values of Watanabe and Tohmatsu (26) at 

50 km Unfortunately the data shown in Figure 10 do not help resolve this dIlemma. Uncer

tamttes in HOx chemIstry and unexpectedly large vanations in mesospheric water vapor are 

often used to explalll the model dIscrepancies and the variatIOn ill the observations. 
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B NIghttime Stratospheric and Mesospheric Ozone at Low Latitudes 

NIghttIme ozone profilc!s were measured at low latitudes on four occaSTons. Two flights 

were conducted In May 1915 at 9S, and two at 5N In March 1971 and March 1975. Three of 

these flIghts had larger than the usual random errors and uncertainties in the calIbration con-

stants. A composite- ozone profIle formed by a weighted average of the four profIles is shown 

in FIgure II. The horizontal bars represent a one sigma estimate for the composite profile. 
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Th~se data are compared to mghttlme equatonal profiles derived by Ri~gler, et al. (28) from 

ultra\ IOlet stellar occultatIOn satelhte measurements on three occasions in 1976 (mixing ratios 

were computed USing the 1962 U.S Standard atmosphere for low latitudes). The figure illus-

trates not only that the average value differ by a factor of two, but also that the ranges from 

the two measurements do not even overlap. 

Radiative eqUilibrium temperatures were computed by Kuhn et a1. (29) for the Krueger 

and MInzner model (25) and Riegler's (28) stellar occultation ozone profiles and then com-

p~red to the temperature profile from the U S. Standard Atmosphere Supplements, 1966 

Though Kuhn, et a1. (29) confuse the Krueger and Minzner ozone profile with ozone data from 

the Backscattered Ultraviolet experiment (BOY) in the Nlmbus-4 satellIte, they show that the 

~ - . 
calculated temperature profile from the Krueger and Mmzner model (25) comes closer to-the -

u.s Standard temperatures abo"e the stratopause than does the profile from the stellar oc-

cultatlOn observations (28) at low latItudes. They still conclude, however, because of a num-

ber of uncertainties, that the occultation measurements cannot be discounted on energy 

balance arguments alone 

C. Stratosphenc and Mesosphenc Ozone In the Polar NIght 

A measurement senes was conducted at Pt Barrow, Alaska, and Thule, Greenland, to de-

termIne the behaVIor of the-vertical ozone distnbutions dunng the polar night. SpecIfically, 

th<: pian WdS to measure ozone dunng a stratosphenc warming, or before and after the break-

down of the wmter polar vortex The earher flIghts In Alaska were coordinated WIth rocket 

grenade soundJn~ which measured temperature and WInd~ welllllto the mesosphere A total 

of 7 soundings of OLOne wa<; obtained In the WInter and early spnng Two of the Greenland 

fll,;hb Ii1 December 1975, "ere also coorJlI1ated WIth LRIR ozone soundIngs from the 

l'ilmblls-6 satellIte. Two flights from Alaska 111 January 1969 were reported by HIlsenrath 

C~2) Th~se soundmgs showed SIgnIficant changes in ozone above 50 km, where the ozone 
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mixIng ratIo decreased by a factor of two for a 50°C temperdture change. Another measure

ment was perfonned in Alaska In December 1971 as a baselme measurement prior to a strato

sphenc wanning. No major WIntertIme disturbance developed after several weeks, and the ex

pedItion was abandoned. In May 1972, one flIght was made at Pt. Barrow to compare with the 

Nimbus-4 BUV at hIgh solar zenith angles. 

FIgure 12 illustrates the ensemble of ozone profiles measured during the arctic winter. 

Comparison with Figures 10 and 11 shows SIgnificant variabilIty at nearly all levels. Ozone 

mixing ratios vary by 50% from 20 to 45 km and even more above 60 km. Figure 13 illus

trates the temperature profiles measured at the same time as the ozone measurements. The 

large temperature variations seen here in winter hIgh latitudes were shown by Heath, et. al. 

(23) and are well known. They reflect the large ,anabIhty of the winter at high latitude upper 

atmosphere. The expected temperature related changes in ozone of a few percent per degree 

can only account for some of the observed ozone variations, and a statistical analysis of the 

ozone and temperature values at all levels revealed only a weak correlation. A most unusual 

profile was obtained on December 6, 1971, where the ozone mixing ratios above 60 km ex

ceeded that at 40 km. An ozone buildup in this altitude range can be explained by a source of 

atomic oxygen from much hIgher altitudes or from lower latitudes. Atomic oxygen from sun

lIght regIons can combIne WIth molecular oxygen enhancmg the ozone concentratIOn in the 

absence of sunlIght. The absence of hydroxyl radIcals In dark regions of the atmosphere would 

allow a further ozone butldup above 50 km. However, during extended periods of darkness, 

photochemical equi11bnurn should not be expected, since photochemIcal lIfetimes are long 

and dynamIc processes arc most mtense dunng the winter months at high latitudes. Horizon-

tal and \ ertlcal If dmpoct", then must play an Important role In eAplammg the ozone observatIOns. 
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For the January 1969 flIghts in Alaska the wmds were generally westerly from 30 to 80 

km However. above 55 km, on January II tho the wtnds were from the northwest. and on the 

31 st they were from the southwest, because of the dlsplal.ement of the polar vortex. toward 

Siberia resulttng m anticyclonIc flow near Alaska above 50 km Therefore, on the former 

flight, air above 55 km ongmated from polar regions and on the latter flIght, from sunlit 

regions. To some degree the changes are explained by the temperature changes alone. as 

menttoned above, however, changes in temperature could also result from vertical motions as 

well as from advection. At the tIme of the December 1971 flight, which showed unusual I} I,lrge 

ozone amounts above 60 km, the polar vortex at 10 mb caused westerly winds over northern Alaska 

The westerly wtnd persisted to about 60 km and then became northerly above thi~ level. This - . 
would IIldlcate an eastward displacement of the polar vortex and antIcyclonic flow in the 

upper mesosphere. bnngtng aIr from higher latitudes or altitudes o"er northern Alaska. 

Upper level meteorological data from the 1975-1976 wtnter are more complete than for 

1969 and 1971. Un fortunately the ozone soundmgs conducted from Thule, Greenland, on 

December 18 and 22,1975, and March 4,1976 were not near the time of the sIgnificant 

wannmg that occurred over the Northwest AtlantIC durmg the second week of January 1976 

revealed by the NatlOnal Weather ServIce (NWS) (0) Howe\ er. in the .... eek con taming the 

December 18 and 22 soui1lltngs, there were minor temperature anomolles over Greenland as 

tile polar \ortex oscllI..!ted over, and abollt, the pole (30) Below 50 kill the wlI1ch b~came 

mon: northerly betwe~n the 18th and 22nd and the temperature IIlCredseJ by about lO°e. 

wlllk the ozone decreased about 507c ThIs IS d large change 111 a <;hort period. but IS con-

sl~tent With the earher obs~r\'atloll~ ~bo\(' 50 kill the ozone profiles clle about the same 

whclC both show ~lightly Incrl'a<;lIlg mixing ratios \\ ItL altitude The proflk ob .... ~rwd 011 Dt'll'm-

bel 18th sho\\s ,Ill 11l1u,>ually sharp decrca:,(' III %nl' between 35 and 38 "111 neH'r previollsl} 
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ob"crvcd This feature can be correlated wIth a mmor (hSLOntilllllty in the correspondmg tt'mpera

ture profile (temper.lturc and wmd data are measured IIldependent of the ozone profile), however. 

a mea~lIrement error cannot be dIscounted. The signifIcant warm anomaly that appeared in the 

second week of January In the North AtlantIC can be first detected in late December, when the 

temperatures at 50 km rose nearly lOoe (29). Perhaps the unusu,ll feature in the ozone profile 

was caused by a local disturbance that ",as a precursor to the January e'Vent. The next ozone 

soundmg at Thule was conducted in early March 1976 Dunng the winter months the vortex did 

not break down and the hIgh latitude antIcyclone did not develop until late March. The meteoro

logical sounding accompanying the ozone soundmg showed north~rly- winds from-3o-to 50 km 

and WInds southwesterly above thiS level A well-defined stratopause appeared and tHe ozone 

profile had a tYPical mId latItude spnng characteristic, WIth a dIstInct mixing ratIo peak near 38 km 

of about 121l gm/gm. The ozone measurement was performed at night which accounts for the 

mixing ratio increase from 5 to 91l gm/gm from 55 to 65 km. 

The ozone soundIngs descnbed here gIve only snapshots of the complex dynamic and chemical 

behaVIOr of the upper atmosphere dunng the polar mght An adequate description of the ozone be

haVIOr IS not pOSSIble \'v ithout detaIled informatIOn on the transports and the dlstnbution of other 

atmosphenc species important In OlOne chemIstry No synoptic upper air data above 10 mb are avail

able for the Alaska ozone soundmgs The weekly upper aIr anal}ses from the NWS (30) for the winter 

of 1975-1976 help a great deal, but dunng the WInter months there are observed day-to-day changes in 

the tem p~rature and prcssure heIgh t fIelds that most I1kely affect the ozone dlstnbu tlOn. Finally, there 

IS no lIlformatlOn all the chstnbutlOn of other chenw.:ally actIve gases dunng the polar night. These 

da L! have shown, how('\;;:r, that the ozone (ltstnbutlOl1S arc highly \ ariable, but, within a factor of two, 

\\ PL'n comp:m:u to dlstnhutlOns at lower latitudes, and to some (kgr~e can be explained by the 

te/llp~·r.ttllre and the Wll1U fIelds 

43 



VII. Conclusions and Summary 

The chemilummcscent principle for m-sltu ozone observations in the strato~pht..'rc dnd meso-

sphere was reviewed. The measurement pnnciple employs chemiluminescence in a parachute 

drop sonde, where the air is sampled by a passive pumping system. Laboratory measurements 

h.lVe shown a linear relationshlp between the chemllummescence and ozone flux at the low 

flow rates and pressure'i encountered dunng a parachute descent. The chemiluminescence is 

sensitive and specific to ozone and has suitable stabllity for routine rocket measurements. .. 

The sonde has been engmeered for flight on a Super Areas meteorological rocket The , 

sonde is ejected ncar apogee (75 km) and descends on a speclal parachute: which provides 

sufflcient drag. .md stabillty for hIgh altltude perfonnance. The chcnuluminl.!scent detector ~()I1-

sist-. of Rht':iaminc-B dye adsorbed on a porous glass substrate. Th~ chel11ilum~sccIH.:e lS moni-

tored by a stable photometer, whIle the flo'W IS denvt'd from pressure and temperature measure-

ments insIde a ballast chamber at the end of an an mlet pipe. The ozonesonde employes a pulse 

cod~ lliodulatcd (peM) telemetry system U~\l1g thl' 1680 MHI l11l'tcorologlcJI CJrrtcr fn.'l]lh.'ncy. 

1 Jch O.lone sensor lS cJlibrated several times pnor to tllght to determine Its !>t'Il<;ltlvity to 

ozone Th..;! calibratIOn deVIce conSI~[S of a vacuum apparatus and fills wlth an air ozone mixture 

with the ozone sensor attached CJlIbratlon IS accomplIshed by exposmg the sen~or to kr.own 

ozone amounts, flow rat~s, and pre~ ... ure~ expl!cted In flight The ozone content IS deter-

milled by J IJbor.ltOlY 0/011l' monitor callbr.ltl'd ,lg.llll<;t .In NBS standard utlhzmg.tll absorbtlon 

u:1I ,It ~53 7 111 .. 

enols. 2) tllght-to-fllght sY5.tcmatlc crror~. Jlld 3) t'Xlk'flmcnt errors whIch involve thc c.lbsolulc 
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.l\.llll.llY The tir'>l ~rror. dUI! to nOise, and the second, due to undetected biases in the sensor 

subsy!>tcms, were combmed to yield a measurement preCISion of 8%. Two flights conducted 

ncarly simultaneously resulted 111 a repeatabilIty of about 6%, which very well supports the 

l.JlluLlted precisIon The third error l'i mo ... t difficult to as'iCss. however. compJnsons with rocket 

Optll." ~ondes and a smgle comcldcnt LRIR soundmg from Nunbus-6 resulted m differences 

between 5 and 20% in the ozone profiles. This results "\upports the overall measurement accurdCY 

of 14% computed from the combmed precisIOn and absolute error. 

Beginning in 1968 070ne profiles were measured under varying geophyslc~1 cond!t inJlS with 

emphasIs on measurements dunng the I11ght. The early soundmgs were used for the initial 

vrntkatlon of photoLhcnllcJI models which nredicted 070ne depletion. DIUrnal variatIOns 

measured at low and midlatttudes showed some latitude dependencr. Daytime measurements 

were used 111 thp Krueger-Minzner empincal model. They also result in ozone concentrations in the 

upper stratosphere and mesosphere considerably higher than those ccllculated from one-dmlen

slonal models with falfly complde chemIstry However, equ,ltonal nighttime ozone distributions 

measured by the chemllumlllescent sonde are slglllficantly lower than nighttime equatorial 0lOne 

dl<;trlbutlOns obtamed from satdhte ultraviolet stellar occultatIon measUlcments Ozonr distri

butIons were also obtJlI1cd elunng the po1.lr llIght under varymg wllld and tempaJture 

conditIOns These profiles had conSiderably morc vanatlOns when compared to stratosphenc and 

meso!>phenc ozone profll';!s at lo\\cr IJtltudes To some degree, the ozone variablhty was ex

pbmecl by thl! large variatIOns III the temperature and w\l1ds th.1t occur dunng winter 

at lllrh altitudes However. the ozone beh.n lOr IS dIffIcult to c'plall1 without ddmled mforma

tlOn 011 the transports .mel the dlstnbutlon of other atmosphcrlc spedes that arc Important ill 

Olone ("hcnll~try 
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APPI:~DIX A 

OlON!. m TlCTOR PRLPARATION 

Dissolve Vycor@ 7930 disc in a hot 10 percent sodIUm hydroxide solution to deSIred thickness, 

or until glass becomes clear The Vycor@ material wdl turn milky upon immersion in the solution. 

W.ish the glass thoroughly In hot water until disc Yields u nelltlc.ll reaction to Ph indicator 

3 Dry dIscs under ambIent condItIons until transparent. Heat in an oven at I 10°(' 

4 DIp the dIsc into a solutIon of ~ mg gallIc alld and 04 mg rhodamine-B per I nill of acetone for 

10 mltilltes 

5 Dry In aIr and store dl!>CS In a dark deskcator until used. 
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APPENDIX B 

BLACK ANODIZE PROCEDURE 

Clcanmg 

a Vapor degrcase parh u,mg a degreasmg compound thdt contams no silicones. 

b Light etch parts with Cit her IlItnc aCId or nitric hydroflouride acid . 

.., 
Anodlzmg .. 

a One ( I ) hour III .I 15 pen,:clIt !>OllitlOIl of sulfllnc ,1Cld at 70° to 75° F .It 15 volts. 

3 D} emg 

.1 MI\ 'Jndol. fJ!>t bl.\(.:k t} pc 0 A (or c<]lllvalcl1t) 10 ,grJm'i per liter. 

h D}t.' tor 20 IllIllUtl:, Jt 'iolutloll temper,lture of 140° to ] 50°..=. 

4 SeJIIIlg 

.1 Nll..keJ .I~:ct"tl' with buffel" (~Jndotl\ or eqlll\.!1ent) 

h Sc.t1 for 20 Illll1ute~.It ItJOol' 

.1 IJlJllh ... dl.Jtcly .lltel 'c.dlllg pl.JLl· P.lrt, III pJ" ... tIL h"g to Pll'\Cllt lOlltJIllIl1.ltIOIl. 
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APPI i\;lJIX ( 

"L" BAND PULSE CODE MODULATION (PCM) 

TELEMETRY UNIT AND POWER SUPPLY 

Physlc.!1 Charactenstics 

The batteI) pack consists of 6 Yardney HR 1.5 silver t.ell bdtteries housed in the sensor por

tIon of the sonde. The telemetry system weighs 408 grams, is 10 centimeters m diameter and 15 

centimeters long. 

The RCA cavity tube .!nd plates arc potted with RTV 106 wIllIe the convcrter tran'iformcr i., 

potted with Wakefield ~ ngmeenng Ddta I 53-:! with 153-2 type RTA-2 hardener. 'fhc_ovcr.tllumt 

mcluding antenna. except batterIes, I~ potted with b.:ofoam FPH with cdtalyst 12-24. 

Pnnted circuit boards are used throughout. The PCM system is depicted, attached to ozone 

sensor, in FIgure 3 of thIS report. 

2 Power 

The telemetry and 'icnsor UllltS require several supply "oltagcs, mcludmg ± 15 VDC, +6 VDC. 

and + lIS VDC, all denved from the onboard DC-to-DC converter which is powered by the 9 volt 

battery supply Converter convemon effiCiency IS about 76%. Thc DC to DC converter wIll fUnt,

tIon effiCIently down to 7.6 ,;olts at the mput 

3 PCM Encoder 

J-Iat Pack Cmo~ mtegrated em.lIlts are used to mmlmJ7e both power and sIze Ramp or count

down type AID converters are used The analog-to-digital converter is eight bit and the encoder is 

adJlI~ted for 125 counb, whIch equals 2.50 volts from the sensor. DigItal resolution is 20 nulllyolts. 

There dre nmc words per frame or eight data words and one sync word Bi-phase modulation is 

lIs~d The encoder analog Impedance IS IO mcgohms and analog lIlputs should not exceed -3 and 
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+ 10 VDC The IllJIIl Lry,>t.lll.:ontrolled oscillator IS 2.045 M Hz with a clock rate of 512 kHz for 

,\ 'I> 1OI1H!NOI1 1 he bit rJtt: I'> RUV (512/64) Thb glvcs a word rate of 100 per second or framt! 

r.lll' of I I per 5>econu 

4 I- I1Vlronment 

The tdemetry and power .,upp]y Unit are testcd and mOnitored through a temperature range of 

-40 to 70 degrees centigrade. Voltage breakdowns in vacuum are checked The units survive a 

r.lOge of ~ibration IOdds and shock of WOg's for 2 milliseconds. 

5 Interface connectors 

. 
The umbilIcal connector provides battery check, extcrnal power. and internaJ.lextern_al power 

trJnsfer functions. There IS an interstclge connector bctween the ozone sensor and telemetry power 

lImt. RF po\\er turn-off IS accomplished with a specially designed shorting connector while the 

rt:rn.unUl'r of the tclcllldry tOntinues to function This allows the encoder outputs to be brought out 

for sensor checks Without R F radiation 

An interface block. dldgram of the sensor and telemetry-power unit is shown in Figure C-J. 
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FIgure C-l. Block diagram of telt!metry system components and interface with ozone sensor 

52 



End of Document 


