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OCEAN TIDAL EXCITATION OF POLAR MOTION

BrauGo V. Sanchez

ABSTRACT

An investigation has been conducted to ascertain the response of the rotational motion of the

Earth to forcing functions produced by tit water mass redistribution due to the ocean tides. In

particular, the components of displacement of the rotation axis at the surface of the Earth were

obtained. The investigation also addressed the larger question concerning the possibility of excita-

tion of the Chandler wobble of the Earth.

In general, the results show the existence of a polar wobble as a response to each of the com-

ponents of the ocean tides. The magnitude of the polar displacement depends on two factors: the

amplitude of the tidal component and its period (in relation to the Chandler period).

The maximum periodic contributions are: the Doodson's component number 055.565 with a

period of 18.613 years and 50 cm of polar displacement, the annual component 056.544 with 37 cm

of polar displacement and the semi-annual 057.555 with 32 em. The tidal components with daily

and semi-daily periods yield very small polar displacements of the order of 0.01 cm. The combined

effect of all the periodic components can yield as much as 90 cm of pole displacements.

The changes produced by the ocean tides in the products of inertia are periodic and regular,

therefore, they cannot be the source of excitation of the Chandler wobble.
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OCEAN TIDAL EXCITATION OF POLAR MOTION

INTRODUCTION
	 kA

The objective of this investigation is to ascertain the response of the rotational motion of

the Earth to forcing functions produced by the water mass redistribution due to the lunisolar

ocean tides. In particular, it is desired to obtain the components of displacement of the rotation

axis at the surface of the Earth. The investigation also addresses the larger question concerning

the possibility of excitation of the Chandler wobble of the Earth. The problem concerning the

interaction between the angular velocity of rotation of the Earth avid the induced oceanic tidal

response has been treated by others, i.e.: Haubrich and Munk (1959), Dahlen (1976), and it will

not be dealt with here.

One of the areas of interest in present day geophysics deals with the excitation of the polar

motion of the Earth, that is, how do the different physical phenomena taking place inside and on

the surface of the Earth affect the position of the rotation axis and the rate of rotation.

Among the many physical phenomena one must consider the redistribution of the mass of

the ocean produced by the gravitational tides due to the Sun and the Moon. Such a redistribu-

tion of mass yields changes in the inertia tensor of the Earth which themselves are the causes of

changes in the position of the rotation axis and the rate of rotation. All the changes involved

are functions of time with various periodicities.

In order to ascertain the ocean tidal effects the Liouville equations of motion for a nonrigid

body have been simplified by neglecting higher order terms and an analytic solution has been

found for the wX and wy components of angular velocity. Such a solution involves the magni-

tude of the changes in the products of inertia Ixz and Iyz due to the various ocean tidal compo-

nents as well as the frequencies of the tides and the natural frequency of rotation of the Chand-

ler wobble.



The evaluation of the changes in IxZ and IyZ can be divided in two categories. Changes pro-

duced by ocean tides with periods of the order of a day and changes produced by long period

ocean tides. The method of evaluation depends on the category and the effects produced by

each are considerably different in order of magnitude.

The products of inertia due to the short period ocean tides have been obtained by making

use of spherical harmonics representations of the tide heights. These representations are fits to

numerical solutions of the Laplace tidal equations and as such represent non-equilibrium solu-

tions. In particular, the harmonic coefficients used were those provided by C. Goad 1978), the

LTE solution used is due to R. Estes (1977).

The long period ocean tides were treated differently since no harmonic expansions were

available. The equilibrium response of an ocean covering the entire surface of the Earth was

formulated, the tidal height for the real Earth is then obtained by means of the ocean function

which is equal to one over the oceans and zero over the continents. In particular the (8 x 8)

ocean function harmonic expansion due to Munk and MacDonald (1975) was adopted. In order

to solve for the products of inertia it is then necessary to solve the integrals over the sphere of

the product of three surface harmonics. Such a solution can be expressed in terms of the "3 - j"

symbols often found in quantum mechanics.

In order to represent the lunisolar tidal potential the expansion by A. T. Doodson (1954)

was adopted with the extensions and corrections due to Cartwright and Taylor (1971) and Cart-

wright and Edden (1973).

Finally, the solutions for the wx and w  components of angular velocity were mapped into

components of displacement of the rotation axis at the surface of the Earth.

1. SOLUTION TO THE LIOUVILLE EQUATIONS

The Liouville equations of motion were first given by Liouville (1858). For purposes of

this investigation the following assumptions can be made:
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(1) the external moments are zero,

(2) the relative angular momentum terms vanish,

(3) the moments of inertia are constant and considerably larger than the products of inertia,

(4) the equatorial moments of inertia are equal,

(5) the wz component of angular velocity is a constant and much larger than w x and wy.

Then, neglecting products of small quantities the foliowing equations result.

Awx - (A - C) wz wy = ixz wz - lyz wi
(1.1)

Awy + (A - C) wz wx = lyz w^+ 1XZ wz

Equat ions (1.1) can be written as follows

(;3 X + n2 wx = A'1 { IXz wz - nwi IXZ - lyz ( W Ii + nwz))
(1.2)

(BY + n2 wy = A-' Oy z wZ -nwi IyZ + IyZ (w? + nwA

where

n = (C - A)wz/A	 (1.3)

lxz = MXZ cos (j t - Ox z )
(1.4)

lyz = Myz cos (t t - Oyz)

wX = K, cos (fit - Oxz) + K2 sin (3 t - Oyz)

wy = K3 cos (tt - Oyz ) + K4 sin (tt - Oxz)

iC l = -MXz wz(^ 2 + nwz)/[ A( n2

(1.5)
K2 = Myz wz t( wz + n)/[A(n 2 - ^2)1

K3 = (Myz/MXz)KI

K4 = - (MXZ/Myz)K2

Let

Then

Equations (1.5) can be written as follows,
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WX = Wx cos (rt - OWx)

Wy = WY cos (tt - Owy)

Wx = (K' + K2 + 2K 1 K2 sin (Oxz - Oyz)1 
112

WY = (K3+ K2 + 2K3 K4 sin (Oyz - OXZ)) to
	

(1.6)

Owx = arc tan ((K, sin oxz + Kz cos oy z )/(KI cos 0xZ - K Z sin ¢yz))

ow y = arc tan ((K3 sin 4yz + 1.4 cos oxz )/(1( 3 cos 0yz - K4 sin oxz))

2. TIDAL POTENTIAL

The tidal potential can be written in different ways. In particular, the second degree zonal

component in spherical coordinates is given by

VZ(R) = (R) Z PZ(coso) qz	 0.1)

R: radius of the Earth,

P2 : second degree legendre polynomial,

qZ : a function which depends on the disturbing body.

Doodson's expansion for the long period lunisolar potential is given by (Bretreger, 1978),

V2 (R) = -GD Pz( coso)	 Ai cos(ai )	 (2.2)

i

Comparing Equations (2.1) and (2.2) it follows that

q° = -(GD /RZ )	 Ai cos(ai)	 (2.3)

i

where GD is Doodson's constant and A i , ai are the amplitudes and arguments for the various

waves (s-.e Appendix 2).

The principal terms of the low frequency tides are given by Cartwright and Edden (1973).

For the purposes of this investigation the following terms will be considered: The 17 waves of

4



group (0,5) with periods ranging from 91 days to infinity. The 2 terms with largest amplitude in

group (0,6) with periods of 27 and 31 days. The term with largest amplitude in group (0,7) with

period of 13 days. The group terminology is that of Doodson.

Table (2.1) below gives the tidal components with their amplitudes and periods.

Table (2.1)
Tidal Components

Doodson's No. Period (days) Amplitude (A;)

055.555 00 0.73806

055.565 6798.2530 -0.06556

055.575 3399.1265 0.00064

055.765 1305.4098 -0.00009

056.544 385.99876 0.00009

056.554 365.25964 0.01156

056.556 365.22476 -0.00062

056.564 346.63545 -0.00011

057.345 212.32434 -0.00005

057.355 205.89383 0.00074

057.555 182.62110 0.07281

057.553 182.62982 0.00029

057.565 177.84369 -0.00180

057.575 173.30987 -0.00040

058.554 121.74934 0.00426

058.564 119.60730 -0.00007

059.553 91.312730 0.00017

063.655 31.811921 0.01579

065.455 27.554564 0.08254

075.555 13.660791 0.15647

I <	 I
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3. EQUILIBRIUM TIDES

The surface of an ocean covering the entire surface of the Earth is raised with respect to the

ocean bottom by the following amount:

to = (1 + k - h) V2'	
(3.1)

B

k, h: love numbers,

g: gravitational acceleration,

where V2 denotes the disturbing potential evaluated at the surface of the Earth.

Let S1 denote the surface area covered by the oceans and define t t as follows:

t t St = ( I + k - h) 
VT ds,

g	 Z	 (3.2)ffc
where the surface integral is taken over the area of the continents. t t represents the quantity

which must be added to to in order to satisfy conservation of mass. Note that,

f

(1 +k-h) 
VT .a= ffsh (1 +k -h) VT ds

f	
22	 2

C 	 g	 pere	 g

(3.3)

ffoceans

(1 + k - h)VT ds

 g	 Z

The first term on the right hand side of Equation (3.3) goes to zero, therefore, Equation (3.2)

yields:

ff + 	 T (1 k - h) 
VT ds.	 (3.4)

ceans	 t'

The resulting height of the ocean surface is then given by:

t= to +fit•	 (3.5)

Inserting Equations (3.1) and (3.4) into Equation (3.5) yields:

t _^

6



(1 +k - h) 
IVr - 1

g	 2	 SZ

Let the "ocean function" be defined by:

[^ n
f(o'J) 	

F Pm
n (cos

n=U m=0

and the dis:;; -bing potential by:

'
 q 

m cos m y
VT = R2 	

E 
V2 (cos0)	 m	 (3.8)

u2 sin m
m=U

Furthermore, consider only the terms up to n = 9 in Equationi ( 3.7) and in 0 in Equation (3.8).

Then,

S2 = ffsp h ere

f(0,1V) ds = 41r ao,	 (3.9)

f^	
V;d s =	 f(0,^) VT ds =

57r R
2 a2 q2f1 .	 (3.10)

Oceans	 Sphere

Equation ( 3.6) can then be written as follows:

0

	

- (1 + k - h) 
R2 Pz(cos0) -	 q°.	 (3.111

	

g	 5ao

The contribution to the products of inertia I x , and ly , are given by:

Ix  = ff f(0,0) xz dm,	 (3.12)
phere

	

Iyz =
	

W oP) yz dm,	 (3.13)
ffSphere

where
x = R sin0 cos>
y = R sin0 sin
z = R cos0	

(3.14)

dm = pw t(0,^) [R dO • R sin  dty).

pw : density of sea water

7
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MW

Making use of Equations (3.14), (3.11) and ( 3.7) allows Equations (3.12) and (3.13) to be written

as follows:

I	
R (1 + k - h) r Z'^ f'^
	 Pm(coso) a

n' cos M
xzPw 

6	
J 	 L.,	 no 	 n	 bm sin m V/

n = 0 m a 0	 n

0

	

• P2(coso) - Sao q2 •3	 PZ(coso) sin© cos y dB dt ,
0

(3.15)
(1 +k - h)	 2a	 a

	

6	 _^ / E 1:	
f 
an ^A 'n 

llyz - pw R	
g	

J	 L Pmn (coso) \

	 I
m

	

0	 o n=0 m=u	 bn sin m

U

•

	

IP02 (c,)So) - a2
	

q2 • ^ P;(coso) sino sin ^y do d^,.

	

5ao	 3

Integratiun of Equations (3.15) yields the following (see Appendix 1):

Ixz = K TXz q2

0
(3.16)

(yz = K Tyz q2

K = (4 /g) R6 pw (1 + k - h)

TXz = (1/35)a2 + (2/21)a4 - (1/25)(a2 a,/ao)

Tyz = (1/35)b2 + (21/21)b4 - 0 /L5)( a2 b2/ao)

Making use of Equation (2.3) yields

1Xz = -K TX z C,p R'2 	A; cos(ai)

i
(3.17)

ly z = -K Tyz Gp R-2	 Ai cos(ai)

i

4. NON-EQUILIBRIUM TIDES

The method of solution employed for the equilibrium tides becomes les-, and less applicable

as the period of the forcing function becomes shorter. Specifically, the equilibrium theory is

t_
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apprc riate to the extent that (Pn /Pt )2 << 1, where Pn is a natural period of the system and Pt

is the period of the forcing function.

f A

X 

The products of inertia due to the short period ocean tides have been obtained by means of

existing spherical harmonics representations of the tide heights. These expansions are fits to nu-

merical solutions of the Laplace tidal equations.

The spherical harmonic coefficients for the tide heights were obtained from C. Goad (1978),

the LTE solution used is due to R. Estes (1977).

Table (4.1) gives the values of the coefficients used in this investigation.

The expression for the tide height is given by

	

n	 An cos ^j t

	

W1010_	 E	 Pn 
(cos 

0) 1 C
m sin ^j 

t) cos m^G

	

n m-0	 \ n

(4.1)

(

Bnm cos ^' t
+sin m

Dn sin ^j t

The products of inertia are given by

lXz = ff xz dm

S	
(4.2)

lyz = A 

yz dm

Therefore, making use of Equation (4.1),

lXz = (47r/5)R4 pw(AZ cosh, t + CZ sint; t)
(4.3)

lyz = (4ir/5)R4 pw (B2 cos^ j t + DZ sink'; t)

or

9



c•	 .

^J

IXz = MXz cos Git - Oxz)

	

Iyz = My Z cos (('it - Oyz)	 > i

.,	 r

MXz = a[(A2)z + (CZ)z]ilz 

	

MY  = a[(BZ)z + (DZ) z l llz 	(4.4)

Oxz = are tan (CZ/AZ)

Oyz = arc tan (DZ/BZ)

a = (41r/5) R4 p 

Table (4.1)
Coefficients for Short Period Tides

Doodson No. (102)Darwin	 Period (hr)	 A'(102)	 CZ(10z) A'2 DZ(10z)

273.555 Sz	 12.00	 -0.5642	 -0.2811 -0.06755 -0.3763

255.555 Mz	 12.42	 -1.274	 -0.8321 -0.4521 -0.9790

245.655 N 	 12.66	 -0.2296	 -0.1622 0.1923 -0.04628

!	 145.555 Ol	 25.82	 0.3666	 3.070 1.974 2.322

165.555 Kl	 23.93	 -0.7530	 2.110 3.676 3.961

5.	 NUMERICAL RESULTS

The results obtained by means of Equations (3.17) and (4.4) are given in Table (5.1) on the

following page.. The magnitudes MXz, Myz are given In units of 10 33 gn2-cm2 . The values used

for the constants are the following:

GD = 2.627723 (104 ) cmz/sect

R = 6.378388 (10 8 ) cm

pw = 1.030 gm/Pm3

i
A = 8.016604490270 (10 44 ) gm-cm2

g = 980 em/sect

1 + k - h = 0.7

10
9



Table (5.1)
Tidal Contributions to the Products of Inertia, Epoch:

1899, Dec. 31, 12 h

Doodson No. MXZ (10-33) Oxz (deg) my  (10-33) Oyz (deg)

055.555 -1500.00 0 -735.00 0

055.565 133.00 259 65.30 259

055.575 -1.30 158 -0.63 158

055.765 0.18 207 0.08 207

056.544 -0.18 -260 -0.08 -260

056.554 -23.40 -1 -11.50 -1

056.556 1.26 200 0.61 200

056.564 0.22 257 0.10 257

057.345 0.10 -368 0.04 -368

057.355 -1.50 -109 -0.73 -109

057.555 -147.00 199 -72.50 199

057.553 -0.58 -3 -0.28 -3

057.565 3.65 98 1.79 98

057.575 0.81 -3 0.39 -3

058.554 -8.65 197 -4.24 197

058.564 0.14 97 0.06 97

059.553 -0.34 196 -0.16 196

063.655 -32.00 45 -15.70 45

065.455 -167.00 -63 -82.20 -63

075.555 -318.00 180 -155.00 180

165.555 9.59 109 23.10 47

145.555 13.20 83 13.00 49

245.655 1.20 -144 0.84 -13

255.555 6.51 -146 4.62 -114

273.555 2.70 -153 1.63 -100

11



The values for the coefficients of the ocean function are those given by Munk and MacDon-

aid (1975). The normalization factors were taken into consideration.

The values for the amplitudes Al are given in Table (2.1) for the equilibrium tides, for the

short period tides Table (4.1) gives the values for the coefficients.

The phases Oxz and Oyz correspond to 1899 December 31 at 12h Om Osec ephemeris time

(see Appendix 2).

Table (5.2) presents the tidal heights for the equilibrium tides as obtained from Equat?on

(3.11) with 0 = 0° and cos (a i) = 1. These values therefore represent an upper bound.

Table (5.2)
Maximum Equilibrium Tide Heights

Doodson No. Tide Height (cm)

055.555 -14.30

05.565 1.27

055.575 -0.12 (10 -1)

055.765 0.17(10-2)

056.544 -0.17 (10-2)

056.554 -0.22

056.556 0.12(10-1)

056.564 0.21 (10-2)

057.345 0.97 (10 -3)

057.355 -0.14 (10-1)

057.555 -1.41

057.553 -0.56 (10-2)

057.565 0.35(10-1)

057.575 0.77(10-2)

058.554 -0.82 (10-1)

058.564 0.13 (10-2)

059.553 -0.33 (10-2)

063.655 -0.30

065.455 -1.60

075.555 -3.04

12
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The maximum x and y components of displacement for the position of the pole are given in

Table (5.3). These values are obtained by means of the following relations, 	
k

X = (Wx/wz)R

y = (Wy/wz)R

where Wx , Wy are given by Equations (1.6) and

wZ = (2v/86400) rad/sec.

The value of "n" (Eq. 1.3) has been chosen so as to obtain a Chandler period of 428 days.

These values represent maximum values since it has been assumed that cos (oy) = 1. Table (5.4)

shows the variation in d =	 x2 + y2 as a function of "n" for the epoch Dec. 31, 1899, 12h

ephemeris time. The value of "n" has been chosen so as to obtain Chandler periods of 400, 428,

444 and 460 days.

The last row of Table (5.4) gives the total pole displacement for the sum of all the periodic

components, that is the component 055.555 is not taken into account since its effect can be nul-

lified by a proper choice of coordinates.

Figures 5.1, 5.2 and 5.3 show the pole displacement due to the components 055.565,

056.554 and 057.555 respectively, the epoch is Dec. 31, 1899, 12h. In each case the time span

corresponds to the period of the tidal component: 6798 days, 365 days and 182 days

respectively.

Figures.5.4 and 5.5 show the x and y components of pole displacement generated by the

sum of all the periodic components (055.555 excluded), the epoch is the same as above, time

steps of 67.98 days were used.

Figure 5.6 is a plot of Vfx2 + y2 with x and y obtained as explained above. A Chandler

period of 428 days has been assumed to generate the results shown in Figures 5.1 to 5.6.

13



Table (5.3)
Maximum Components of Pole Displacement

Chandler Period = 428 Days

Doodson No.	 x (cm)	 y (cm)	 -X2+ y2 (cm)

055.555 510.000 250.000 568.0000

055.565 45.500 22.500 50.7000

055.575 0.450 0.220 0.5000

055.765 0.070 0.040 0.0800

056.544 0.300 0.320 0.4300

056.554 24.800 27.300 36.8000

056.556 1.320 1.460 1.9600

056.564 0.170 0.190 0.2500

057.345 0.010 0.020 0.0220

057.355 0.220 0.330 0.3900

057.555 17.200 26.900 31.9000

057.553 0.060 0.100 0.1100

057.565 0.440 0.690 0.8100

057.575 0.100 0.160 0.1800

058.554 0.520 0.920 1.0500

05 8.5 64 0.008 0.910 0.0120

059.553 0.010 0.020 0.0220

063.655 0.410 0.810 0.9000

065.455 1.850 3.700 4.1300

075.555 1.730 3.470 3.8700

165.555 0.010 0.010 0.0140

145.555 0.010 0.010 0.0140

245.655 0.001 0.001 0.0014

255.555 0.006 0.005 0.0078

273.555 0.002 0.002 0.0028

14



611.0000

10.8000

0.5000

0.0760

0.2100

16.4000

0.9100

0.1500

0.0110

0.3200

14.3000

0.0450

0.6500

0.1230

0.4000

0.0160

0.0100

0.6515

3.7030

0.4000

16.6000

Doodson No.

055.555

055.565

055.575

055.765

056.544

056.554

056.556

056.564

057.345

057.355

057.555

057.553

057.565

057.575

058.554

058.564

059.553

063.655

065.455

075.555

Total - Permanent

Table (5.4)
Pole Displacement vs. Chandler Period,

Epoch: 1899, Dec. 31, 12h

x2 + y2 (cm)

400 Days 428 Days 444 Days

531.0000 568.0000 590.0000

9.3000 10.0000 10.4000

0.4300 0.4600 0.4800

0.0640 0.0690 0.0730

0.9100 0.3300 0.2500

41.9000 23.9000 19.4000

2-2 7700 1.3100 1.0700

0.2"700 0.1900 0.1700

0.0140 0.0130 0.0120

0.3500 0.3400 0.3300

16.5000 15.4000 14.8000

0.0550 0.0500 0.0480

0.7000 0.6700 0.6600

0.? 360 0.1290 0.1260

0.4400 0.4200 0.4100

0.0164 0.0162 0.0161

0.0107 0.0103 0.0102

0.6530 0.6520 0.6519

3.7100 3.7060 3.7050

0.4100 0.4090 0.4040

26.3000 16.2000 16.0000
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6. CONCLUSIONS

The validity of most of the results is predicated upon the reality of the equilibrium response

of the oceans to the long penod components of the lunisolar potential. Within the context of

this assumption and the simplifications made, the results indicate the following.

There exists a pclar wobble as a response to each of the components of the tidal potential.

The magnitude of the polar displacement depends on twc, factors: the amplitude of the tidal

component and its period (in relation to the Chandler period). The maximum periodic contribu-

tions are: the component number U55.565 with a period of 6798 days (18.613 years) and 50cm

of pole displacement, this is the component produced by the motion of the lunar ascend ing node;

the annual component 056.554 with 37cm of pole displacement and the semiannual 057.555

with 32 cm. The tidal -omponents with daily and semidaily periods yield very small pole displace-

ments, of the order of 0.01 cm. The combined effect of all the periodic components can yield

as much as 90cm of pole displacement.

The tidal components with periods longer than the Chandler period yield larger pole dis-

placements as the Chandler period is increased, the opposite is true for those components with

periods shorter than the Chandler period. The changes produced by the ocean tides in the pro-

ducts of inertia are periodic and regular therefore they can not be the source of excitation of the

Chandler wobble.

A possible future line of developm: nt is to consider the changes in all the components of

the inertia tensor (not just I X z and ly z ) and to solve the fully nonlinear Liouville equations by

means of numerical methods.
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APPENDIX 1

INTEGRAL OF THE PRODUCT OF 3 SURFACE HARMONICS

The surface integral appearing in Equation (3.15) involves the product of three surface spher-

ical harmonics. In general,

f a	 2a

1 sin B d8f
o
 SQ'm' SLM SQm dO = I

0 

SQm = PR (cos8) e'm0

I = (-1)M+m (47r) 	 + m )! (L + M)! (1? + m)! 1/2

(Q^ - m )! (L - M)! (Q - m)!

Q'	 L QQ'• L Q

-m M m ( 0 0 0

The symboli1 J2 j3 denotes the 3 -j symbol of Wigner, for their evaluation and properties
(k, k2 k3

see Rotenberg et al., (1959).
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APPENDIX 2

ANGULAR VARIABLES IN DOODSON'S TIDAL EXPANSION

The tidal expansion is given in terms of six parameters which constitute the frequencies

appearing in the arguments on the right hand side of Equation (2.3). In terms of their periods

they are the following:

v i : Lunar day, period of 24h 50.47 m,

V2: Moon's mean longitude, period of 27.321582 days,

V3: Sun's mean longitude, period of 365.242199 days,

V4: Mean longitude of the lunar perigee, period of 8.847 years,

V5: Mean longitude of the lunar ascending node, period of 18.613 years,

V6: Mean longitude of perihelion, period of 20,940 years.

Melchior (1966) gives the following expressions:

V2 = 270°.43659 + 481267 0 .89057T + 00 .00198T2 + 00.000002T3,

V3 = 279°.69668 + 36000°.76892T + 0°.00030T2,

V4 = 334°.32956 + 4069°.03403T — 0°.01032T 2 — 0 1 .00001 T3,

V5 = 259 0 .18328 + 19340 .14201 T + 00 .00208 T2 + 00 .000002 T3;

V6 = 281 0 .22083 + 1 0 .71902T  + 00.00045T 2 + 00 .000003 T 3 ,

v i = t - V2 + V3,

t:	 mean solar time,

T: time expressed in Julian centuries,

T = 0 at 1899 December 31, 12h, Om, Os ephemeris time.
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