FINAL REPORT: BIOMEDICAL APPLICATIONS IN SPACE PILOT PROGRAM IN THE SOUTHERN CALIFORNIA REGION

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY
TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 RESULTS 1
 2.1 Preparation of Educational Materials 1
 2.2 Identification of Principal Investigators 2
 2.3 Initial Contact and Visit 15
 2.4 Development of Promising Applications 16

3.0 DISCUSSION AND RECOMMENDATIONS 18

APPENDIX I 21

APPENDIX II 46

LIST OF TABLES AND FIGURE

Table I - Information Resources on Biomedical Research in Space 3
Table II - Information Resources on Shuttle/Spacelab .5
Table III - Information Resources on Submitting Biomedical Research Proposals to NASA 6
Table IV - List of Research Centers Contacted 7
Table V - List of Proposed Experiments, Ideas or Goals and Chief Contact 10
Table VI - Which Experiments are the Most Promising? 12
Figure 1 - Science Network for Regulation of Metabolic Systems for Skeletal and Heart Muscle 14
1.0 INTRODUCTION

The objective of this pilot program was to promote utilization of the Shuttle/Spacelab for medical and biological research applied to terrestrial needs. The program was limited to the Southern California region and consisted of the following five tasks:

1) Preparation of Educational Materials;
2) Identification of Principal Investigators;
3) Initial Contact and Visit;
4) Development of Promising Applications; and
5) Evaluation of Regional Program Methodology.

In tasks 2 and 3, alternative approaches were explored so that different methodologies could be evaluated in Task 5. The remainder of this report presents the results for each of the five major tasks and discusses the major findings of the study.

2.0 RESULTS

2.1 Preparation of Educational Materials

Materials were prepared for presentation to potential principal investigators. The materials covered the following three areas:

1) Review of past biomedical findings for spaceflight with emphasis on potential applications of the space environment for ongoing biomedical research;
2) Overview of Shuttle/Spacelab with emphasis on description of potential research environment, scenario, facilities and limitations;
3) Process for submitting research proposals to NASA with emphasis on responding to the Announcement of Opportunity with a Letter of Intent and a proposal.
The materials that were prepared are shown in Appendix I. The materials were prepared in a format that was used in viewgraphs for a large audience or in flipcharts for presentation to 1-3 persons. In addition, the NASA film, "Biomedical Applications in Space" was presented to all large audiences.

The presentation materials were derived from several publications and sources which are shown in Tables I-III. Sources on past and potential applications of the space environment are given in Table I. The overview of Shuttle/Spacelab was summarized from the sources listed in Table II. The objective of the overview was to introduce the potential P.I. to the Space Shuttle system and its mission profile, and illustrate the flow of a typical life science experiment through integration, flight, data handling, recovery of specimens, etc. Table III shows the sources used to summarize the process for submitting research proposals to NASA. The materials were modeled after the presentation "Announcement of Flight Opportunity Process" given by Dr. John Rummel at the first "Biomedical Applications in Space" meeting.

2.2 Identification of Principal Investigators

Three approaches were used to identify PI's in the Southern California region:

1) points of contact;
2) science network method; and
3) areas of research (literature search)

The use of these approaches permitted comparison of different methodologies.

Points of contact, such as department chairman and research directors, were established at major research centers for assistance in locating PI's or research projects that might benefit from the space environment. Institutions were emphasized that had programs in medical or applied biological sciences. A number of private firms were also contacted. A list of the research centers which were contacted and the results of the contact are shown in Table IV. Table V lists some of the proposed ideas for research in 0-g, while Table VI gives the author's opinion regarding which of the proposed ideas may be the most promising.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Life Sciences in the Shuttle Era, February 1975, preliminary, prepared by the NASA Life Sciences Directorate.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Life Sciences Guideline Data for Long-Duration Missions, April 1977, preliminary, W. E. Hull, Ph.D., Chairman.</td>
<td></td>
</tr>
<tr>
<td>Table I (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION RESOURCES ON BIOMEDICAL RESEARCH IN SPACE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II

INFORMATION RESOURCES ON SHUTTLE/SPACELAB

2. Life Sciences Guide to the Space Shuttle and Spacelab (sent to proposers who submit a notice of Intent to Propose and potential investigators who formally request a copy)

TABLE III

INFORMATION RESOURCES ON SUBMITTING BIOMEDICAL RESEARCH PROPOSALS TO NASA

<table>
<thead>
<tr>
<th>ORGANIZATIONS/COMPANIES CONTACTED</th>
<th>INDIVIDUAL CONTACTED</th>
<th>INITIAL RESPONSE/MEEITNG RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCLA DEPT. OF BACTERIOLOGY</td>
<td>DR. RITTENBURG</td>
<td>NO APPLICATIONS</td>
</tr>
<tr>
<td>UCLA DEPT. OF BIOLOGICAL CHEMISTRY</td>
<td>DR. EMIL SMITH</td>
<td>NO APPLICATIONS</td>
</tr>
<tr>
<td>UCLA DEPT. OF BIOLOGY</td>
<td>DR. MUSCATINE</td>
<td>UNDER CONSIDERATION</td>
</tr>
<tr>
<td>UCLA DEPT. OF MICROBIOLOGY AND IMMUNOLOGY</td>
<td>DR. JOHN FAHEY DEFERRED TO DR. BONIVIDA</td>
<td>3-9-78. NINE SCIENTISTS IN ATTENDANCE. VERY INTERESTED, EXPERIMENT UNDER CONSIDERATION. EXPERIMENT LIKELY FROM DR. CELSA SPINA. CONFERENCE WITH DR. FAHEY.</td>
</tr>
<tr>
<td>UCLA DEPT. OF NEUROSCIENCE</td>
<td>DR. SAMUEL EIDUSON</td>
<td>UNDER CONSIDERATION</td>
</tr>
<tr>
<td>UCLA DEPT. OF PHYSIOLOGY</td>
<td>DR. WILFRIED MOMMAERTS</td>
<td>2-21-78. THREE SCIENTISTS IN DISCUSSION GROUP. VERY INTERESTED, EXPERIMENT UNDER CONSIDERATION.</td>
</tr>
<tr>
<td>UCLA DEPT. OF RADIOLOGY</td>
<td>DR. AMOS NORMAN</td>
<td>3-14-78. TWENTY-FIVE SCIENTISTS IN ATTENDANCE. SIX WERE VERY INTERESTED. TWO EXPERIMENTS UNDER CONSIDERATION.</td>
</tr>
<tr>
<td>UCI DEPT. OF DEVELOPMENTAL AND CELL BIOLOGY</td>
<td>DR. MICHAEL BURNS</td>
<td>3-6-78. FIVE SCIENTISTS IN ATTENDANCE. GROUP EXPERIMENT UNDER CONSIDERATION. EXPERIMENT ANTICIPATED FROM DR. DONALDSON.</td>
</tr>
<tr>
<td>UCI DEPTS. OF MOLECULAR BIOLOGY AND BIOCHEMISTRY</td>
<td>DR. ROLAND DAVIS</td>
<td>NO APPLICATIONS. NOTE: DR. DONALDSON ATTENDED MEETING WITH DR. BURNS.</td>
</tr>
<tr>
<td>UCI DEPT. OF MEDICAL MICROBIOLOGY</td>
<td>DR. PAUL SYPFERD</td>
<td>3-1-78. FIVE SCIENTISTS IN ATTENDANCE. DR. GEORGE GUTMAN HAS EXPERIMENT UNDER CONSIDERATION.</td>
</tr>
<tr>
<td>UCI DEPT. OF PHYSIOLOGY</td>
<td>DR. KENNETH BALDWIN</td>
<td>2-28-78. THREE SCIENTISTS IN DISCUSSION GROUP. VERY INTERESTED, EXPERIMENT ANTICIPATED.</td>
</tr>
<tr>
<td>UCI DEPT. OF PSYCHOBIOLOGY</td>
<td>DR. RICHARD THOMPSON</td>
<td>NO APPLICATIONS.</td>
</tr>
<tr>
<td>ORGANIZATIONS/COMPANIES CONTACTED</td>
<td>INDIVIDUAL CONTACTED</td>
<td>INITIAL RESPONSE/MEETING RESULT</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>UCI DEPT. OF ENVIRONMENTAL HEALTH AND PUBLIC MEDICINE</td>
<td>DR. TIMOTHY CROCKER</td>
<td>NO APPLICATIONS</td>
</tr>
<tr>
<td>UCI DEPT. OF RADIOLOGY</td>
<td>DR. ERIC MILNE</td>
<td>3-1-78. VERY INTERESTED, EXPERIMENT LIKELY.</td>
</tr>
<tr>
<td>UCI DEPT. OF HEMATOLOGY AND ONCOLOGY</td>
<td>DR. STEPHEN ARMENOUT</td>
<td>3-13-78. THREE SCIENTISTS IN DISCUSSION GROUP, UP TO FOUR EXPERIMENTS ANTICIPATED.</td>
</tr>
<tr>
<td>USC DEPT. OF PHYSIOLOGY</td>
<td>DR. JAMES HENRY</td>
<td>1-11-78. DR. DENIS MITCHELL, VERY INTERESTED, EXPERIMENT ANTICIPATED.</td>
</tr>
<tr>
<td>USC DEPT. OF BIOLOGY</td>
<td>DR. BERNARD ABBOTT</td>
<td>ALREADY INVOLVED IN NASA RESEARCH, NO APPLICATIONS</td>
</tr>
<tr>
<td>DR. BERNARD STRELER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR. KARMEN</td>
<td></td>
<td>NO APPLICATIONS</td>
</tr>
<tr>
<td>USC DEPT. OF CELLULAR AND MOLECULAR BIOLOGY</td>
<td>DR. DAVID BERMAN</td>
<td>NO APPLICATIONS</td>
</tr>
<tr>
<td>USC DEPT. OF PHARMACOLOGY</td>
<td>DR. FRED GRODINS</td>
<td>UNDER CONSIDERATION</td>
</tr>
<tr>
<td>USC DEPT. OF BIOMEDICAL ENGINEERING</td>
<td>DR. IRVING GORDON</td>
<td>UNDER CONSIDERATION</td>
</tr>
<tr>
<td>USC DEPT. OF MICROBIOLOGY</td>
<td>DR. NANCY WARNER</td>
<td>NO APPLICATIONS</td>
</tr>
<tr>
<td>LOMA LINDA MEDICAL SCHOOL DEPT. OF MICROBIOLOGY</td>
<td>DR. CHARLES WINTER</td>
<td>3-2-78. TWENTY-SEVEN SCIENTISTS IN ATTENDANCE, FOUR INDICATIONS OF INTEREST. MAY REQUIRE ADDITIONAL MEETINGS.</td>
</tr>
<tr>
<td>DR. ROBERT NUTTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITY OF HOPE, DEPT. OF CYTOGENETICS AND CYTOLOGY</td>
<td>DR. RAYMOND TEPLITZ</td>
<td>2-23-78. ELEVEN SCIENTISTS IN ATTENDANCE, TWO INDICATIONS OF INTEREST.</td>
</tr>
<tr>
<td>CITY OF HOPE, DEPT. OF BIOLOGY</td>
<td>DR. ROBERT SEECOF</td>
<td>3-2-78. THREE SCIENTISTS IN ATTENDANCE, EXPERIMENT ANTICIPATED.</td>
</tr>
<tr>
<td>CALIFORNIA INSTITUTE OF TECHNOLOGY</td>
<td>DR. LEE HOOD</td>
<td>ALREADY KNOWLEDGEABLE THROUGH JPL.</td>
</tr>
<tr>
<td>DR. NORMAL HUROWITZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORGANIZATIONS/COMPANIES CONTACTED</td>
<td>INDIVIDUAL CONTACTED</td>
<td>INITIAL RESPONSE/MEETING RESULT</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>HANCOCK RESEARCH</td>
<td>DAVID MYERS</td>
<td>3-7-78. TEN SCIENTISTS IN ATTENDANCE. VERY INTERESTED, EXPERIMENT UNDER CONSIDERATION.</td>
</tr>
<tr>
<td>ABBOTT SCIENTIFIC PRODUCTS DIV.</td>
<td>DR. CHARLES ALLAIN DR. ROSS ROBINSON</td>
<td>NO INTEREST</td>
</tr>
<tr>
<td>BENTLY LABORATORIES</td>
<td>DR. FRED THIEDE</td>
<td>NO APPLICATIONS.</td>
</tr>
<tr>
<td>INTERNATIONAL CHEMICAL & NUCLEAR FLOW LABORATORIES</td>
<td>DR. RON COOK</td>
<td>BIOMEDICAL RESEARCH DISCONTINUED.</td>
</tr>
<tr>
<td>BIONETICS</td>
<td>MR. PAIK</td>
<td>3-6-78. VERY INTERESTED. UP TO FOUR EXPERIMENTS ANTICIPATED, THREE EXPERIMENTS ON SPACE PRODUCTIVITY.</td>
</tr>
<tr>
<td>HYLAND LABORATORIES</td>
<td>DR. KAMERON MAXWELL</td>
<td>ALREADY KNOWLEDGEABLE, SUPPORT CONTRACTOR FOR NASA-AMES.</td>
</tr>
<tr>
<td>JOHN DREW MEDICAL SCHOOL AND MARTIN LUTHER KING HOSPITAL</td>
<td>DR. N. VENKATESAN, DR. LAWRENCE W. ALFRED, & DR. ANTHONY GIORGIO</td>
<td>4-13-78. APPROXIMATELY 60-80 SCIENTISTS IN ATTENDANCE. THREE INDICATIONS FOR LETTER OF INTENT, ONE SCIENTIST STATED INTENTION TO SUBMIT PROPOSAL.</td>
</tr>
</tbody>
</table>
TABLE V - LIST OF PROPOSED EXPERIMENTS, IDEAS OR GOALS, AND CHIEF CONTACT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| A | DR. KENNETH BALDWIN, UCI DEPARTMENT OF PHYSIOLOGY
 | ROLE OF GRAVITY IN DEVELOPMENT OF FINE STRUCTURE AND SUBCELLULAR STRUCTURE OF MUSCLE. |
| B | DR. ERIC MILNE, UCI DEPARTMENT OF RADIOLOGY
 | QUANTITATION OF LUNG CAPILLARY RESPONSE AND LUNG FLUID DISTRIBUTION IN ZERO-GRAVITY. |
| C | DR. DENIS MITCHELL, USC DEPARTMENT OF PHYSIOLOGY
 | ISOLATION OF OTILITH, SEMICIRCULAR CANAL, AND NEUROLOGICAL RESPONSES OF RATS TO MOTION SICKNESS AND DRUG SENSITIVITY MEASURED BY INDUCTION OF PICA IN ZERO-GRAVITY. |
| D | DR. ROBERT SEE COF, CITY OF HOPE, DEPARTMENT OF BIOLOGY
 | THE EFFECT OF GRAVITY ON THE IN VITRO, RAPID ASSOCIATION, DIFFERENTIATION AND DEVELOPMENT OF NEUROLOGICAL AND MUSCULAR TISSUE OF DROSOPHILA. |
| E | DR. GEORGE GUTMAN, UCI DEPARTMENT OF MEDICAL MICROBIOLOGY
 | THE EFFECT OF ZERO-GRAVITY ON THE REGULATION OF LYMPHOID COMPARTMENTS |
| F | DR. WILFRIED MOMMAERTS, UCLA DEPARTMENT OF PHYSIOLOGY
<p>| THE EFFECT OF ZERO-GRAVITY ON THE NEUROLOGIC REGULATION OF MUSCLE TONE IN RELATION TO MUSCULAR DYSTROPHY. |</p>
<table>
<thead>
<tr>
<th>G)</th>
<th>DR. RON C. COOKE, FLOW LABORATORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>ENHANCEMENT OF PROTOPLAST FUSION FOR PRODUCTION OF NEW TYPES OF SUPERPLANTS.</td>
</tr>
<tr>
<td>2)</td>
<td>MASS SUSPENSION CULTURE OF PLANT CELLS FOR PRODUCTION OF SECONDARY PRODUCTS, E.G., ALKALOIDS, FOR CANCER RESEARCH.</td>
</tr>
<tr>
<td>3)</td>
<td>MASS SUSPENSION CULTURE OF SUPERPLANT CLONES.</td>
</tr>
<tr>
<td>4)</td>
<td>GRAVITY DEPENDENCE OF POLARITY INDUCTION OF PLANT EMBRYOGENESIS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H)</th>
<th>DR. LYNN DONALDSON, UCI DEPARTMENT OF PSYCHOBIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THE EFFECT OF ZERO-GRAVITY ON NEUROMUSCULAR COORDINATION (MUSCLE ACTIVITY) IN ADAPTATION USING AN ARTHROPOD MODEL SYSTEM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I)</th>
<th>DR. STEPHEN ARMENTROUT, UCI DEPARTMENT OF HEMATOLOGY AND ONCOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>WHOLE BLOOD VISCOSITY AT NORMAL AND NORMAL VARIATIONS OF pH.</td>
</tr>
<tr>
<td>2)</td>
<td>HEMORHEOLOGY OF RED BLOOD CELLS IN ZERO-GRAVITY.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J)</th>
<th>DR. HERMAN BRANSON, UCI DEPARTMENT OF HEMATOLOGY AND ONCOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PERIPHERAL MECHANISMS FOR PLATLET FUNCTION DURING CEPHALAD FLUID SHIFT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K)</th>
<th>DR. LEWIS SLATER, UCI DEPARTMENT OF HEMATOLOGY AND ONCOLOGY AND DEPARTMENT OF MEDICINE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QUANTITATION OF T- AND B-CELL SUBPOPULATIONS DURING ADJUSTMENT TO ZERO-GRAVITY.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L)</th>
<th>DR. GARTH NICOLSON, UCI DEPARTMENT OF MOLECULAR AND CELL BIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIFFERENTIAL HOMING ABILITY OF CLONED MALIGNANT CELLS IN MOUSE MELANOMA.</td>
</tr>
</tbody>
</table>
TABLE VI - WHICH EXPERIMENTS ARE THE MOST PROMISING?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLANT CELLS AND PLANT EMBRYOGENESIS (DR. RON COOKE).</td>
</tr>
<tr>
<td>2</td>
<td>ALTERNATE PATHWAYS OF MUSCLE DEVELOPMENT (DR. KENNETH BALDWIN).</td>
</tr>
<tr>
<td>3</td>
<td>PERIPHERAL MECHANISMS IN THE CONTROL OF PLATELET FUNCTION (DR. HERMAN BRANSON).</td>
</tr>
<tr>
<td>4</td>
<td>BLOOD VISCOSITY AND RBC HEMORHEOLOGY (DR. STEPHÉN ARMÉNTROUT).</td>
</tr>
<tr>
<td>5</td>
<td>QUANTITATION OF LUNG VESSEL RESPONSE AND LUNG FLUID DISTRIBUTION (DR. ERIC MILNE)</td>
</tr>
<tr>
<td>6</td>
<td>NEUROMUSCULAR COORDINATION STUDIES (DR. LYNN DONALDSON).</td>
</tr>
<tr>
<td>7</td>
<td>ISOLATION OF OTILITH, SEMICIRCULAR CANAL AND NEUROLOGICAL COMPONENTS IN MOTION</td>
</tr>
<tr>
<td></td>
<td>SICKNESS AND DRUG SENSITIVITY (DR. DENIS MITCHELL).</td>
</tr>
<tr>
<td>8</td>
<td>EFFECT OF ZERO-G ON NEUROLOGIC REGULATION OF MUSCLE TONE IN RELATION TO MD</td>
</tr>
<tr>
<td></td>
<td>(DR. WILFRIED MOMMAERTS).</td>
</tr>
<tr>
<td>9</td>
<td>DIFFERENTIAL HOMING ABILITY OF CLONED MALIGNANT CELLS (DR. GARTH NICOLSON).</td>
</tr>
<tr>
<td>10</td>
<td>EFFECT OF ZERO-G ON REGULATION OF LYMPHOID COMPARTMENTS (DR. GEORGE GUTMAN).</td>
</tr>
<tr>
<td>11</td>
<td>QUANTITATION OF T- AND B-CELL SUBPOPULATIONS DURING ADJUSTMENT TO ZERO-G</td>
</tr>
<tr>
<td></td>
<td>(DR. LEWIS SLATER).</td>
</tr>
</tbody>
</table>
According to the Science Network Method developed by John Mason, scientists associated with a particular area of research that might benefit from applications of the space environment were asked to identify peer investigators and promising, young, less prominent researchers in their laboratories or institutions. Prominent investigators were contacted by telephone and given a day or so to consider such a list of peer investigators. Individuals from the initial list were then contacted and asked for a similar list. This list was not limited to individuals in the Southern California region. The process continued until a network of investigators was established in a particular area of research. This method was particularly efficient, but limited to research areas of known potential.

Science networks were established in the following areas of research:

1) regulation of metabolic systems for skeletal and heart muscle
2) blood rheology;
3) cardiopulmonary mechanics and extravascular lung water;
4) enhancement of protoplast fusion.

A science network is illustrated in Figure 1. The names, addresses and phone numbers of the scientists in each of the above science networks are tabulated in Appendix II.

Techniques of literature searching were also used to attempt to identify potential PI's. Index Medicus and Biological Abstracts were surveyed for areas of research that are especially promising for application of O-g, e.g., bone demineralization, fluid shifts and water balance, orthostatic tolerance, vestibular function, muscle atrophy, cardiovascular dynamics, renal hemodynamics, etc. The search sought to identify ongoing research on disease processes that might be better understood by utilization of the space environment. By use of the American Men and Women of Science, attempts were made to identify active PI's in the Southern California area. However, after 40 hours of searching, almost no useful information was obtained. It was very evident that the point of contact and science network methods were much more productive, efficient, and meaningful than the literature search method. Therefore, literature searching was discontinued.
FIGURE 1 - SCIENCE NETWORK FOR REGULATION OF METABOLIC SYSTEMS
FOR SKELETAL AND HEART MUSCLE
2.3 Initial Contact and Visit

Following the initial identification of potential PI's and preliminary contacts of institutions, individuals were telephoned and visits were arranged for presentation of the educational materials. Arrangements were made for one of three types of presentation:

1) formal seminar groups;
2) informal discussion group; or
3) a particular scientist and his research staff

As arranged, presentation to formal seminar groups took place during regularly scheduled departmental seminars. No special arrangements other than scheduling were required. Altogether, five presentations were made at regularly scheduled seminars. Total attendance was about 102 scientists. Following presentation, the attendees were polled to identify those investigators who had a strong interest in space research. Of the total, twelve scientists expressed an interest in space research and three stated an intent to propose an experiment.

The informal discussion group was scheduled with smaller groups who had a known interest in space research. Although the presentations were occasionally part of regular seminars in a department, the meetings were more often especially scheduled. The chairman of the meeting contacted department members and invited those who expressed an interest in opportunities for research in space. These scientists were asked to consider potential applications of the space environment to their ongoing research. Usually, the presentation was shortened and tailored to the interests of the group. During the meeting, the attendees were asked to discuss their research programs and ideas for space research. Potential PI's were identified for possible follow-up discussions. Presentations were made to seven discussion groups for a total of 33 scientists. There were 13 indications of intent to propose. Four were involved in follow-up discussions and meetings leading to 4 known proposals.
Presentations were made to individual investigators on three occasions. The presentation was informal and tailored to the interests and needs of the individual. These individuals had no previous experience with the space program, but were known to do research in areas that could benefit from the space environment. All submitted letters of intent to propose. Dr. Ron Cook submitted four letters. This and our past experience indicates that the one-to-one discussion is more productive of research concepts than group presentations.

2.4 Development of Promising Applications

Interested investigators were followed-up and visited, as necessary, to coordinate and encourage the development of research concepts and the translation of those concepts into proposals to NASA.

Follow-up contacts to encourage development of research concepts and to monitor progress were mostly by telephone. Three follow-up visits were made to potential PI's, but these were found to be no more productive than telephone discussions. During each of the follow-up contacts, problems and solutions encountered in the development of concepts and their translation into proposals were identified. These problems tended to be within the following four major categories which are discussed in subsequent paragraphs:

1) lack of knowledge about results of past biomedical research in space;
2) organizing the proposed research in line with the NASA experiment development program;
3) establishing a clear relationship between experiment objectives and the unique characteristics of the space environment; and
4) lack of provisions for young investigators.

Probably the most frequent and serious problem was that scientists were not familiar with the research accomplishments of previous spaceflights in their special area of research. As a result, many did not consider submitting proposals because:
1) they did not wish to expend the time to propose an idea already accomplished or already proposed by other investigators, and

2) they believed that new research should be a logical extension of past research.

In many cases, we were able to provide the required information from our personal libraries. In particular, the NASA publications "Biomedical Results from Skylab," "Biomedical Results of Apollo," and "The Apollo-Soyuz Test Project - Medical Report," were extremely useful. The document "BIOSPEX, A summary of Life Science Experiments Carried on U. S. Spacecraft" was found to be an outstanding resource, but, unfortunately, was too late in publication for use in responding to the current AO (February 7, 1978). The NASA newsletter "Life Science Status Report" could also provide up-to-date information and reviews of past accomplishments and future plans in each area of research in the life sciences. However, the information must reach the segment of the scientific community that is interested in utilizing the space environment. Identification of this group may be the most important product of these pilot programs.

The second problem encountered was in organization of the research proposal. Frequently, the scientists did not specify or separately price the work to be done in the experiment development phase. Whenever this problem was identified, we suggested corrective measures. However, in three of six follow-ups during June the proposal had already been sent to NASA.

In three of five proposals that we have had an opportunity to read, a relationship between experiment objectives and the unique characteristics of the space environment had not been clearly established. We also noted this problem during presentations to investigators. Although the requirement for utilization of the space environment was clearly stated in the AO and during our presentations, many investigators did not derive a hypothesis from fundamentals. More frequently, it was suggested that a "try-and-find-out" experiment might be done. In such cases, an education on the fundamental effects of the space flight environment, e.g., zero-gravity and an in-depth understanding of previous biomedical research in space is required.
Although we encountered considerable enthusiasm among young investigators as well as a desire to be part of the NASA program, they were reluctant to submit proposals. First, they held postdoctoral or temporary positions and could not depend upon their current institution for support during the entire term of the experiment. Second, they did not have experience in implementing a program of the magnitude and complexity required for research in space. The AO was specific in requiring commitment and support from the investigator's institution and demonstrated competence of the investigator. Despite our suggestions that the research contract could be transferred to a different institution at a later time, the young investigators, in general, did not respond beyond the letter of intent.

3.0 DISCUSSION AND RECOMMENDATIONS

The pilot program met its objectives. Information was provided to the scientific community at meetings and seminars throughout the southern California region. Discussions with scientists revealed promising applications of the space environment which led to letters of intent to NASA and subsequent proposals. Different methods for identification of principal investigators and for presentation of materials were evaluated.

Of the different approaches used to identify principal investigators, the "points of contact" method and the "science network" method were found to be the most useful and were complimentary. The "points of contact" method utilized the contacts and knowledge of research directors at private research centers and appropriate department chairmen at universities. This method was found to be useful in determining general interest in the Shuttle/Spacelab program in the southern California region. However, once a particular research area had been identified as promising, the "science network" method was found to be the most efficient for identification of interested scientists. Scientists who were pursuing a particular area of research were found to be very knowledgeable about names and institutions of other scientists doing research in the same or closely related area. Seldom were these scientists within the same department or institution, so that the science network was nationwide and even international in scope.
Of the three types of presentations, the most productive meetings were with smaller groups. Indeed, the one-to-one discussion was more productive of research concepts than any of the group presentations. Interested scientists in the large groups were not easily identified. Also, the discussions were more superficial and the ideas put forth were more general in large groups than in small groups.

A few general observations were also made during the pilot program. Most important, scientists were not familiar with the past life sciences research accomplishments of NASA. This lack of background not only affects the quality of scientific proposals, but also influences whether a scientist will consider submitting a proposal. During discussions following the presentation, several scientists openly expressed enthusiastic support for the space program. Obviously, there is a need for lines of communication between NASA and the life sciences community. That segment of the scientific community that enthusiastically supports the NASA programs should be heard by appropriate government officials. Further, NASA should continue to identify interested scientists and inform them on details of past accomplishments, future plans, and opportunities for participation. Usually, such activities are conducted through a formal scientific association.

As a result of this pilot study, the following recommendations are put forth:

1) NASA should continue to identify interested scientists and inform them of opportunities for research in space.

2) NASA should greatly expand efforts to inform the scientific community with a detailed account of past accomplishments in life sciences research and opportunities for future research. As an example, the newsletter "Life Sciences Status Report" might include review articles on each major area of research with information on how to obtain copies of original articles and reports.

3) Efforts should continue to gather together groups of interested scientists to develop concepts for biomedical application of space research. Formation of a formal scientific association should be considered. An association would sustain scientific interest beyond the initial NASA investment.
4) A "science network" should be established for each promising application of biomedical research in space.

5) Provisions should be made in the "Announcement of Opportunity" for participation of young investigators. For example, review and selection of proposals from young investigators might be the basis of postdoctoral, etc., awards at NASA centers where the experiments could be developed for spaceflight.

The enthusiasm and momentum generated by this and other pilot programs must be maintained and converted into viable programs for biomedical applications in space and into an identifiable and involved scientific community.
APPENDIX I - SOME OF THE MATERIALS USED
IN A PRESENTATION ENTITLED
"BIOMEDICAL APPLICATIONS IN SPACE"

The following materials were used in a viewgraph presentation at seminars. In addition, the NASA film "Biological Applications in Space" was shown. For presentations to individual scientists, appropriate materials were selected and presented in a handout and flipchart format.
UNIQUE CHARACTERISTICS OF THE SPACELAB ENVIRONMENT

- SUSTAINED WEIGHTLESSNESS
- ISOLATION FROM EARTH/LUNAR PERIODICITIES
- COSMIC RADIATION
- NEAR VACUUM
- DIRECT SOLAR ILLUMINATION
EXPERIMENT PLANNING

- They should address basic life sciences research.
- There should be well substantiated reasons to expect space flight to produce effects different from those found on earth.
- Results of the experiment should relate directly to recognized problems or issues in the life sciences.
- Research designs must include a suitable control group.
- Experiments should address themselves to the development of space research technology, especially for those laboratory techniques which are compromised on earth by gravitational effects (e.g., sedimentation and thermal convection).
ROLE OF NASA IN EXPERIMENT PLANNING AND DEVELOPMENT

- Engineering assistance in experiment planning
- Guidance in equipment development (core)
- Experiment integration
- Simulation programs and tests
- Detailed mission planning
- Experimenter/payload specialist/mission specialists orientation and training
- Inflight support for experiments through the payload operations control center (POCC)

* Experimenter will be relieved insofar as possible from non-science aspects of experiment planning and development
STS-Life Sciences Laboratory Operational Flow

EXPERIMENT CONCEPTION

POSTFLIGHT TESTS AND SPECIMENS/CORE RETURNED

MISSION PERFORMANCE (TO 30 DAYS)

INSTALL CORE/LABORATORIES INTO SPACELAB (LEVEL II AND III INTEGRATION)

PREFLIGHT TESTS

LAUNCH

INTEGRATE SPACELAB INTO ORBITER (LEVEL I INTEGRATION)

EXPERIMENT APPROVAL

SPECIMEN SELECTION AND TRAINING

CORE/LABORATORY DEVELOPMENT (LEVEL IV INTEGRATION)

EXPERIMENT APPROVAL
<table>
<thead>
<tr>
<th>Program Phase</th>
<th>Experimenter Activity</th>
<th>Major Life Sciences Project Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment solicitation****</td>
<td>Prepare and submit proposal</td>
<td>Program Office Issuing AO (NASA-HDQ)</td>
</tr>
<tr>
<td>Experiment evaluation and selection</td>
<td>Supply additional data if required</td>
<td>Peer review group/evaluation team leader (NASA-HDQ and JSC support)</td>
</tr>
<tr>
<td>Experiment Contract Award</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload designing and mission definition</td>
<td>Provide detailed experiment resource requirements</td>
<td>Project Scientist** and Engineer*** (JSC)</td>
</tr>
<tr>
<td>Experiment development and equipment procurement</td>
<td>Design experiment apparatus utilizing CORE and formulate protocols - define GSE requirements</td>
<td>Project scientist and engineer and JSC safety, R&QA personnel and intercentre review board</td>
</tr>
<tr>
<td>Flight planning and training</td>
<td>Provide operational requirements, procedures and data requirements, train crew and define facility requirements</td>
<td>Engineer and JSC flight operations personnel</td>
</tr>
<tr>
<td>Experiment checkout and integration</td>
<td>Provide software, checkout requirements, procedures, and criteria</td>
<td>Engineer and JSC data systems personnel</td>
</tr>
<tr>
<td>Integrated tests/simulations</td>
<td>Verify proper data acquisition, coordinate experiment activities</td>
<td>Project scientist, engineer, onboard science crew, personnel all JSC supporting divisions</td>
</tr>
<tr>
<td>Launch site integration and pad operations</td>
<td>Verify end-to-end data acquisition, coordinate specific operations, launch site training</td>
<td>Project scientists, engineer and KSC personnel</td>
</tr>
<tr>
<td>Flight monitoring</td>
<td>Verify proper data acquisition, coordinate experiment activities</td>
<td>Project scientist, engineer, onboard crew, JSC flight operations personnel</td>
</tr>
<tr>
<td>Postflight operations</td>
<td>Postflight data evaluation and reporting</td>
<td>Project scientist and engineer</td>
</tr>
</tbody>
</table>
Typical Life Sciences Laboratories and Example Research Areas

1 EXPERIMENT — SELF-CONTAINED

- BLOOD AND URINE
- HEMATOLOGY
- CARDIOVASCULAR
- FLUID AND ELECTROLYTE BALANCE

MASS*: <90 KG

CARRY-ON LABORATORY

4-5 EXPERIMENTS

- PLANT AND INVERTEBRATE RESEARCH
- PRIMATE RESEARCH
- SMALL VERTEBRATE RESEARCH
- CELLS AND TISSUES RESEARCH
- MAN-SYSTEMS INTEGRATION

MASS*: 250 TO 900 KG (TYPICAL)

KITS
FLUID MEASUREMENT
GENERAL DISCIPLINE
SUPPORT
OTHERS

CHEMICALS
STAINING SYSTEM
AND MISCELLANEOUS

MICROSCOPE
STORAGE

CREW WORK STATION

PLANT CAGE

COLONY COUNTER

CRYOGENIC
FRIEZER

LOW-TEMPERATURE
FRIEZER

MASS MEASUREMENT
DEVICE (MICRO) AND
MISCELLANEOUS

MINILABORATORY

15-20 EXPERIMENTS

- MEDICAL EMPHASIS
- BIOLOGY EMPHASIS
- ALL LIFE SCIENCES DISCIPLINES

MASS*: 2400 TO 3400 KG (TYPICAL)

*INCLUDES RACKS AND ALL EXPERIMENT RELATED EQUIPMENT

DEDICATED LABORATORY
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
</table>
| **General: For all laboratories** | Initially up to 7 days
Planned up to 30 days.
Living and working space for up to 4 payload specialists; NASA will provide training for payload specialists, (experiment training will be provided by experimenter.)
Two gas; 1-atmosphere pressure,
21°C (70°F) nominal temperature
Over 100 general-purpose laboratory equipment items are available for life sciences research. Includes: biological specimen holding facilities for wide variety of test specimens; e.g., small primates and vertebrate cells and tissues, and plants.
All payload resources as defined by Spacelab Payload Accommodation Handbook (ESA SLP/2104) are available for approximately 15 to 20 experiments.
Total mass available to payload and mission dependent equipment: up to 6,320 kg (14,060 lb).
An allocated portion of that shown above for dedicated: on the order of 20 to 25% for 4 or 5 experiments as a shared flight.
Basically they must be self-contained with no resources required: under 91 kg (200 lb) - Note: Certain resources may be available at additional cost. |
| Mission Durations | Initially up to 7 days
Planned up to 30 days.
Living and working space for up to 4 payload specialists; NASA will provide training for payload specialists, (experiment training will be provided by experimenter.)
Two gas; 1-atmosphere pressure,
21°C (70°F) nominal temperature
Over 100 general-purpose laboratory equipment items are available for life sciences research. Includes: biological specimen holding facilities for wide variety of test specimens; e.g., small primates and vertebrate cells and tissues, and plants.
All payload resources as defined by Spacelab Payload Accommodation Handbook (ESA SLP/2104) are available for approximately 15 to 20 experiments.
Total mass available to payload and mission dependent equipment: up to 6,320 kg (14,060 lb).
An allocated portion of that shown above for dedicated: on the order of 20 to 25% for 4 or 5 experiments as a shared flight.
Basically they must be self-contained with no resources required: under 91 kg (200 lb) - Note: Certain resources may be available at additional cost. |
| Crew Accommodations (in Orbiter) | Initially up to 7 days
Planned up to 30 days.
Living and working space for up to 4 payload specialists; NASA will provide training for payload specialists, (experiment training will be provided by experimenter.)
Two gas; 1-atmosphere pressure,
21°C (70°F) nominal temperature
Over 100 general-purpose laboratory equipment items are available for life sciences research. Includes: biological specimen holding facilities for wide variety of test specimens; e.g., small primates and vertebrate cells and tissues, and plants.
All payload resources as defined by Spacelab Payload Accommodation Handbook (ESA SLP/2104) are available for approximately 15 to 20 experiments.
Total mass available to payload and mission dependent equipment: up to 6,320 kg (14,060 lb).
An allocated portion of that shown above for dedicated: on the order of 20 to 25% for 4 or 5 experiments as a shared flight.
Basically they must be self-contained with no resources required: under 91 kg (200 lb) - Note: Certain resources may be available at additional cost. |
| Habitable Environment | Initially up to 7 days
Planned up to 30 days.
Living and working space for up to 4 payload specialists; NASA will provide training for payload specialists, (experiment training will be provided by experimenter.)
Two gas; 1-atmosphere pressure,
21°C (70°F) nominal temperature
Over 100 general-purpose laboratory equipment items are available for life sciences research. Includes: biological specimen holding facilities for wide variety of test specimens; e.g., small primates and vertebrate cells and tissues, and plants.
All payload resources as defined by Spacelab Payload Accommodation Handbook (ESA SLP/2104) are available for approximately 15 to 20 experiments.
Total mass available to payload and mission dependent equipment: up to 6,320 kg (14,060 lb).
An allocated portion of that shown above for dedicated: on the order of 20 to 25% for 4 or 5 experiments as a shared flight.
Basically they must be self-contained with no resources required: under 91 kg (200 lb) - Note: Certain resources may be available at additional cost. |
| Common Operations Research Equipment (CORE) | Initially up to 7 days
Planned up to 30 days.
Living and working space for up to 4 payload specialists; NASA will provide training for payload specialists, (experiment training will be provided by experimenter.)
Two gas; 1-atmosphere pressure,
21°C (70°F) nominal temperature
Over 100 general-purpose laboratory equipment items are available for life sciences research. Includes: biological specimen holding facilities for wide variety of test specimens; e.g., small primates and vertebrate cells and tissues, and plants.
All payload resources as defined by Spacelab Payload Accommodation Handbook (ESA SLP/2104) are available for approximately 15 to 20 experiments.
Total mass available to payload and mission dependent equipment: up to 6,320 kg (14,060 lb).
An allocated portion of that shown above for dedicated: on the order of 20 to 25% for 4 or 5 experiments as a shared flight.
Basically they must be self-contained with no resources required: under 91 kg (200 lb) - Note: Certain resources may be available at additional cost. |
Crew Activity Summary for Typical Life Sciences Dedicated Laboratory

- 32.7% EXPERIMENT RESEARCH AND OPERATIONS
- 4.1% SPACECRAFT OPERATIONS
- 7.7% REST AND RECREATION
- 6.0% EXPERIMENT SPECIFIC: SAMPLE MASS MEASUREMENT, DRYING, STOWAGE
- MEALS 8.3%
- PERSONAL HYGIENE 11.6%
- SLEEP 33%
- UNSCHEDULED
LIFE SCIENCES SPACELAB MISSION CONFIGURATION

- Surgical Workbench
- Environmental Control
- Specimen Nutrition
- Waste Management
- Data Management
- Experimental Function
- Rodent Holding Unit
- Primate Holding Unit
- Plant Holding Unit
Biological Specimen Examination and Experimentation

- Specimen gross and microscopic examination
- Detailed photography of specimen characteristics
- Specimen weight and dimensional measurements
- General specimen manipulators
- Specimen dissection and preparation for postflight analysis.

LAB CHARACTERISTICS
WEIGHT 312 KG (685 LB)
* NOMINAL POWER
WORK CYCLE 230 W
REST CYCLE 30 W
SIZE 1-DOUBLE RACK

* WHEN OPERATED WITH ML 2G
Life Sciences Discipline Areas
VIRTUALLY NOTHING IS KNOWN OF THE RESPONSE TO EXTENDED FLIGHT OF THE PERIODICITY OF THE MANY BASIC BIOLOGICAL RHYTHMS.
STUDIES PROPOSED ON THE INFLUENCE OF GRAVITY ON THE GEOTROPIC RESPONSE.

FINDINGS OF CHROMOSOME ABERRATIONS AND MITOTIC ABNORMALITIES DURING SPACEFLIGHT RAISE QUESTIONS AS TO WHETHER PLANTS CAN GROW AND DEVELOP NORMALLY FOR SEVERAL GENERATIONS IN SPACE.
CARDIOVASCULAR SYSTEM

- A DISPLACEMENT OF BLOOD VOLUME AND OTHER FLUID FROM THE LOWER TO THE UPPER BODY OCCURS IN RESPONSE TO WEIGHTLESSNESS
- DECONDITIONING OF THE CARDIOVASCULAR SYSTEM ENSUES
- INFLIGHT EXERCISE MAY TEMPORARILY ALLEVIATE THE SITUATION
- UPON RETURN TO EARTH, A DECREASED ORTHOSTATIC TOLERANCE OF THE CARDIOVASCULAR SYSTEM TO ONE-GRAVITY BURDEN HAS BEEN NOTED
- CARDIAC PERFORMANCE
 - NO DECREMENT NOTED DURING IN-FLIGHT EXERCISE
 - DEGRADED RESPONSE NOTED DURING LBNP
 - MANIFESTED AS ELEVATED HEART RATE COMPARED TO PREFLIGHT
 - SEVERAL INDIVIDUALS CLOSE TO FAINTING BECAUSE OF TEMPORARY SUSPENSION OF BLOOD CIRCULATION TO BRAIN
 - ABNORMALITIES PERSISTED BUT DID NOT APPEAR TO PROGRESS WITH DURATION OF FLIGHT
- POSTFLIGHT
 - DECREASED HEART SIZE
 - LOWER TOLERANCE TO EXERCISE
 - LONG RECOVERY INTERVALS TO NORMAL HEART FUNCTION (30 DAYS)
U.S. AND SOVIET STUDIES HAVE INDICATED A SLIGHT INCREASE IN CHROMOSOME ABERRATIONS AND MITOTIC ABNORMALITIES IN RESPONSE TO SPACEFLIGHT.

IF SUBSTANTIATED, FINDINGS MAY BE IMPORTANT IN UNDERSTANDING THE MECHANISM OF CELL PROLIFERATION.
HEMATOLOGY

- Decrease in circulating red blood cells (approximately 15% after 4 weeks' exposure to weightlessness).

- Normal rates of reticulocytosis are suppressed for varying durations postflight.

- Changes in red cell shapes have been noted.

- Significant changes in plasma volume (Skylab).
• LITTLE IS KNOWN OF POTENTIAL EFFECTS OF SPACEFLIGHT ON IMMUNITY

• MANY ASTRONAUTS ACQUIRED SOME KIND OF SKIN RASH AND SEVERAL HAVE HAD FURUNCULOSIS (MAY CONSTITUTE SEPARATE EFFECT ON THE IMMUNE SYSTEM)

• INFORMATION INDICATES A DECREASE IN T-LYMPHOCYTE NUMBERS IN PERIPHERAL CIRCULATION
MUSCULO-SKELETAL

- LOSSES IN MUSCLE MASS AND BONE MINERALS

- DECREASED CALF SIZE AND NEGATIVE NITROGEN BALANCE SUGGEST MUSCULAR DECONDITIONING

- PHOSPHORUS AND CALCIUM LOSS, AS WELL AS DIRECTLY MEASURED MINERAL LOSS IN SELECTED BONES SUGGEST DECONDITIONING

- SLIGHT, BUT SIGNIFICANT LOSS OF CALCIUM CONTINUED THROUGHOUT DURATION OF ALL MISSIONS

- BONE MATRIX LOSS INDICATED BY ELEVATED
 - URINARY HYDROXYPROLINE
 - SERUM PARATHYROID HORMONE
 - BLOOD CALCIUM AND PHOSPHORUS
SPACE NAUSEA PERSISTS UP TO ONE WEEK IN 0-G.

SENSITIVITY TO ANGULAR ACCELERATION WITH HEAD MOVEMENTS DISAPPEARS.
QUALITY OF SLEEP NOT SIGNIFICANTLY ALTERED BY SPACEFLIGHT.

PSYCHOLOGICAL CONSEQUENCES OF SPACEFLIGHT HAVE NOT BEEN MEASURED -- NOT SUFFICIENT TO SIGNIFICANTLY AFFECT THE FUNCTIONING OF CREWS DURING MISSIONS UP TO 84 DAYS.
RADIOBIOLOGY

- LITTLE INFORMATION GATHERED ON EFFECTS OF SPACE PECULIAR RADIATIONS ON ORGANISMS

- INTENSITIES OF HIGH-ENERGY PARTICLES IN THE SPACE ENVIRONMENT ARE OF SUFFICIENT MAGNITUDE TO POSE A POSSIBLY SERIOUS HAZARD ON LONG-TERM SPACE MISSIONS
RESPIRATION

- NO APPARENT REASONS TO EXPECT ANY SIGNIFICANT ALTERATIONS IN
 - CELLULAR RESPIRATION
 - GAS DIFFUSION EXCHANGE
 - CONTROL OF RESPIRATION

- ABSENCE OF GRAVITY WILL
 - ALTER MECHANICAL FUNCTION OF THE LUNGS
 - DISTRIBUTION OF PULMONARY BLOOD FLOW
ZOOLOGY

- FEW FLIGHT EXPERIMENTS HAVE BEEN PERFORMED ON ANIMALS.

- SPACELAB PROVIDES AN OPPORTUNITY TO PERFORM LIFE-CYCLE STUDIES WHICH MAY PROVIDE IMPORTANT INFORMATION ON THE EFFECTS OF WEIGHTLESSNESS.
APPENDIX II SCIENTISTS IDENTIFIED BY SCIENCE NETWORK METHOD

A. REGULATION OF METABOLIC SYSTEMS FOR SKELETAL AND HEART MUSCLE

1. John Holloszy (8)*
 Department of Preventative Medicine
 Washington University School of Medicine
 St. Louis, MO
 (314) 454-2467

2. Phillip Gollnick (6)
 Department of Physical Education
 Washington State University
 Pullman, Washington
 (509) 335-3309

3. Charles Tipton (6)
 Department of Physiology and Physical Education
 University of Iowa
 Iowa City, Iowa
 (319) 353-5708
 Connective tissues, alteration of bone with stress.

4. Frank Booth (4)
 University of Texas
 Houston, Texas
 (713) 792-5430
 Rate of protein turnover; immobilization, NASA contract.

5. Kenneth Baldwin (4)
 Department of Physiology
 University of California, Irvine
 Irvine, California
 (714) 833-7192

6. Howard Morgan & James R. Neely (2)
 Hershey Medical Center
 University of Pennsylvania
 Hershey, Pennsylvania
 (717) 534-8521

7. V. Reggie Edgerton (2)
 Department of Kinesiology
 UCLA
 Los Angeles, California
 (213) 825-1910

* Number of recommendations from interview of 12 scientists.
APPENDIX II SCIENTISTS IDENTIFIED BY SCIENCE NETWORK METHOD

(continued)

8. R. James Barnard (2)
 Department of Surgery
 UCLA
 Los Angeles, California
 (213) 825-3794

9. Marty Kushmerick
 Department of Physiology
 Harvard Medical School
 (617) 732-1896
 Regulation of metabolism

10. David Costill
 Falls State University
 Indianapolis, Indiana
 (317) 285-1156
 Only group using biopsy procedure.

11. George Cahill
 Harvard Medical School
 Boston, Massachusetts
 (617) 732-5960

12. Alfred L. Goldberg
 Dept. of Physiology
 Harvard Medical School
 Boston, Massachusetts
 (617) 732-1854
 Amino acid and protein turnover.

13. Russel Tom Dowell
 Dept. of Physiology, Health Science Center
 University of Oklahoma
 Oklahoma City, Oklahoma
 (405) 325-4115

14. Robert Fitts
 Department of Biology
 Marquette University
 Milwaukee, Wisconsin
 (414) 224-7250

15. Philip Felig
 Medicine
 Yale
 New Haven, Connecticut
 (203) 436-0139
16. Lenord Jefferson
Department of Physiology
Penn State University
Hershey Medical Center
Hershey, Pennsylvania
(814) 534-8569
Senior investigator, protein turnover

17. Earl Homsher
Department of Physiology
UCLA
Los Angeles, California
(213) 825-6976
Energetics, work-tension, ATP cost

18. Wilfried Mommaerts
Department of Physiology
UCLA
Los Angeles, California
(213) 825-6866
Senior investigator.

19. John R. Williamson
Biochemistry and Biophysics
University of Pennsylvania
Philadelphia, Pennsylvania
(215) 243-8785
Control of metabolic pathways in heart and liver

20. William Gonyea
Department of Cell Biology
Southwest Medical School
University of Texas Medical Center
Dallas, Texas
(214) 688-2226

21. Neil B. Ruderman
Diabetes and Metabolism
University Hospital
Boston, Massachusetts
(617) 247-6649
Skeletal muscle

22. Ronald L. Terjung
Department of Physiology
State University of New York
Upstate Medical Center
Syracuse, New York
(315) 473-4413
APPENDIX II SCIENTISTS IDENTIFIED BY SCIENCE NETWORK METHOD
(CONTINUED)

23. Robert Armstrong
 Department of Physiology
 Oral Roberts University
 Tulsa, Oklahoma
 (918) 492-6161, ext. 2321
 Research not at regulatory level
B. BLOOD RHEOLOGY

B-1 BLOOD SHEAR - PLATELETS & WB CELLS

1. Dr. David Hellums (1)*
 School of Engineering
 Rice University
 Houston, Texas (713) 527-8101

2. Dr. Peter D. Richardson (2)
 Center for Biomedical Engineering
 Brown University
 Providence, R.I.
 (401) 863-2685

RED BLOOD CELLS

3. Dr. R. G. Mason (2)
 Dept. of Pathology
 College of Medicine
 University of So. Florida
 12901 N. 30th Street
 Tampa, Florida 33612
 (813) 974-2745

4. Dr. Terry Blackshear (3)
 School of Engineering
 University of Minnesota
 Minneapolis, Minnesota
 (612) 373-3014

5. Dr. Sutera (1)
 Washington University
 St. Louis, Mo

6. Dr. Evans, Dr. Hochmuth (1)
 Duke University
 Durham, NC

7. Dr. Alfred Copely (3) (not very active, now)
 Lab. of Biorheology
 Polytech. Institute of New York
 Brooklyn, NY

8. Steven Armentrout
 Dept. of Hematology and Oncology
 University of California
 Irvine, CA
 (714) 558-5152

* Number of recommendations.
B. BLOOD RHEOLOGY (CONTINUED)

B-2 MICRO-CIRCULATION AND CIRCULATION

1. Dr. Richard Mostardi and Howard Greene (1) (Chemical Engineering)
 Biology Department
 University of Akron
 Akron, Ohio
 (216) 375-7125

2. Dr. W. M. Phillips (2)
 Aerospace Engineering
 Penn. State University
 State College, PA
 (814) 863-0043

3. Mary Wiedeman, David Mills (2)
 Temple University
 Philadelphia, PA

4. Larry Tolbert, Stanley Berger (1)
 Dept. of Mechanical Engineering
 UC Berkley

5. Y. C. Fung, D. Zwiefach (2)
 U. C. San Diego
 La Jolla, CA
 Fung arranged '78 World Congress in Biorheology
 Zwiefach to arrange '79 World Congress in Biorheology

6. John R. Murphy (original reference)
 University Hospital
 Case Western Reserve
 Cleveland, Ohio
 (216) 444-3137
C. CARDIOPULMONARY MECHANICS AND EXTRAVASCULAR LUNG WATER*

1. John B. West
 Department of Medicine
 University of California, San Diego
 La Jolla, CA 92037
 (714) 452-4190

2. Jere Mead
 School of Public Health
 Harvard Medical School
 Boston, Massachusetts
 (617) 732-1193

3. John W. Severinghaus
 Anesthesia Research Center
 1386 HSE
 University of California, San Francisco
 San Francisco, California 94122
 (415) 666-1143

4. Norman C. Staub
 Department of Physiology and Cardiovascular Research Institute
 University of California
 San Francisco, California 94122
 (415) 666-1071

5. Richard W. Hyde
 Department of Radiation Biology and Biophysics
 University of Rochester
 Rochester, NY 14642
 (716) 275-2121

6. Marvin A. Sackner
 Mt. Sinai Medical Center
 4300 Alton Road
 Miami Beach, Florida 33140

7. Aubrey E. Taylor, (205) 460-7004
 Department of Physiology
 University of South Alabama
 Mobile, Alabama 36688

8. Kenneth Brigham
 Pulmonary Circulation Center
 Room A5102
 Vanderbilt University
 Medical Center
 Nashville, Tennessee 37232
 (615) 322-3412

* Science network limited to research believed to be aided by 0-gravity.
C. CARDIOPULMONARY MECHANICS AND EXTRAVASCULAR LUNG WATER*

9. William C. Woolverton
 Department of Surgery
 Medical Center Clinic
 8333 No. Davis Hy.
 Pensacola, Florida 32504
 (904) 478-4129; ext. 330

10. Eric N. C. Milne
 Department of Radiology
 University of California
 Irvine, California
 (714) 833-5904

* Science network limited to research believed to be aided by O-gravity.
D. PROTOPLAST FUSION

Indra Vasil (3)*
Department of Botany
University of Florida
Gainesville, Florida 32611
(904) 392-1175

2. K. N. Kao and Oluf Gamborg (7)
National Research Council of Canada
Prairie Regional Laboratory
Saskatoon, Saskatchewan
Canada S79-049
(306) 343-9541

3. Jack Widholm and Ben Mathews (3)
Department of Agronomy
University of Illinois
Urbana, Illinois 61801
(217) 333-1279

4. David Evans
Department of Biological Sciences
State University of New York
Binghamton, N.Y.
(607) 798-2445

5. James F. Shepard
Chairman, Department of Plant Pathology
Kansas State University
Manhattan, Kansas 66506
(913) 532-6011

Also: Larry Williams
Division of Biology

6. Robert Lawrence
Corporate Research Lab.
Union Carbide
Tarrytown, N.Y. 10591
(914) 345-2438

7. Ken Giles Note: Just arriving from Australia.
Iowa State University
Cedar-Falls, Iowa
(515) 294-4618

* Number of recommendations from interview of 8 scientists.
D. PROTOPLAST FUSION (continued)

8. Peter Carlson (2) NOTE: Inactive, thought contributor, popular scientist.
Department of Crops and Soils
State University
East Lansing, Michigan

9. Ron Cook
Flow Laboratories
Los Angeles, California
(213) 674-2700