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Abstract. Let T denote the transition matrix of an ergodic chain, C, and let

A = I - T. Let E be a perturbation_ matrix such that T = T - E is also the

transition matrix of an ergodic chain. C. Let w and w denote the limiting

probability (row) vectors for C and C. The purpose of this paper is to exhibit

inequalities bounding the relative error 	 ; w w
	

by a very simple function

of F and A. Furthermore, the inequality will be shown to be the best one which

is possible. This bound can be significant in the numerical determination of

the limiting probabilities for an ergodic chain.

In addition to presenting a sharp bound for 	
w w
	

an explicit
11

expression for Co will be derived in which ^j is given as a function of E, A, w

and some other related terms.



THE CONDITION OF A FINITE MARKOV CHAIN AND

PERTURBATION BOUNDS FOR THE LIMITING PROBABILITIES

1. Introduction. Let T denote the transition matrix of an ergodic chain, C,

and let A - I - T. (The terminology and notation will be that used in [5] and

[61.) Let E be a perturbation matrix such that T - T - E is also the transition

matrix of an ergodic chain, C. Let w and w denote the limiting probability

(row) vectors for C and C. The purpose of this paper is to exhibit inequalities

bounding the relative error	
w w 

501 by a very simple function of E and A.

Furthermore, the inequality will be shown to be the best one which is possible.

This bound can be significant in the numerical determination of the limiting

probabilities for an ergodic chain.

In addition to presenting a sharp bound for I w - w	 an explicit
W

expression for Co will be derived in which w is given as a function of E, A, w

and some other related terms.

The approach taken in this paper differs from the traditional methods of

past authors in that group properties of the matrix A are used to produce the

desired resul n where as previous results have relyed upon the so called

"fundamental matrix" given in [5]. (See [91) Examples will be given which

show that the use of the group properties produce superior results to those

which can be produced using the traditional theories.



2. Group Properties. The fundamental fact on which the analysis of this paper

is based is the following.

THEOREM. If A - I - T where T is any row stochastic matrix, then A belongs

to a multiplicative matrix group.

A proof of this is given in [2] and [6]. It also follows from well known

results found in [4] and [$].

Since A belongs to some	 multip?ice.tive group, G, A must possess an

inverse in G. This matrix is called ther̂ oup inverse of A and is denoted by

A. The identity in G is P - AA's , the projector whose range is R(A) and whose

nullspace is N(A).

As isshown in [6] and [2], almost all of the important information

concerning an ergodic chain is available in terms of the entries of A. In

particular, the limiting matrix, W, for a chain with transition matrix T is

given by

I + T + T2+,..+ Tn-1
	

#
(2.1)	 W - lm

n	
- I - AA	 (See [6] or [21)

As pointed out in [6], the computation of A# is not unduly complicated.

Indeed, computing A# is less of a chore than calculating the "fundamental

matrix." Further properties of A# are available in [2].
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3. A Perturbation Formula for (A + E), Suppose T and T are transition matrices

for ergodic chains C and C, respectively, where T - T - E so that A - A + E.

In order to analyze C, it suffices to analyze A. The purpose of this section

is to provide an expression for (A + E) # which will hold for all possible values

of E. Notice that E cannot be arbitrary. Since T must be a stochastic matrix,

the elements, e ij , of E are constrained so that 1eij 1 < 1. There are, of course,

other additional restrictions.

If j	 T, then Aj - 0 and (A + E)j - O . so that Ej - 0. If

w and w denote the limiting probability (row) vectors for C and C, respectively,

then (2.1) implies that

E(I - AA# ) - E(Jw) - 0

so that

(3.1)	 EAA - E.	 (i.e., Row Sp(E) C Row Sp(A))

Since Anxn belongs to a matrix group, there exist nonsingular matrices P and

C(n-1)X(n-1) such that

-1

(3.2)	 A-PC 4. P-1 , A^^-P C - jo P'1 , andl-AA^^=P olo P- 1
0 1 0	 0	 ^0	 0^1

(These statements are evident, but the reader may wish to consult [2].;. Write E

in the form

E1 , E3

(3.3)	 E - P - -^- - P-1

E2 E4



rte_ -

4

where E1 is (n - 1) X (n - 1). The fact that EAA # = E implies that E 3 = 0 and

E4 - 0 so that

C + E 1 0

(3.4)	 A-A+E=P----^-- P-1.
E2	 i 0

Since C is again an ergodic chain, it must be the case that the limiting matrix,

at
W, must be a rank 1 matrix. By virtue of (2.1), it follows that rank(I

By using the formula

i

X 1 0 #	 X#	 ► 0

(3.5)	 -1-	 = - - a -

 
Y 10	

YX2 ^0

(found in (2] or (71)

it is easy to see from (3.4) that

	

I - (C + E 1 ) (C + E1)^^
	

0	
-1

I - AA = P - - - - - - - - - - - -

i	

P

-E2 (C + E1)#
	

i 1

The fact that rank(I - AA # - 1 now implies that I - (C + E 1 )(C + E1)# = 0.

That is, C + E 1 is a nonsingular matrix. Since C + E 1	 (I + E 1 C-1 )C, it follows

that (I + E 1 C-1 ) is nonsingular so that

I + E C-1 i 01
I+EA^^=P----- 4- P- 1

E2 C-1	 : 1

is also nonsingular and

-1 i
(I + E 1 C-1 )	 1 0

(3.5)	 (I+ ^!i )
-i = P - - - - - - - - - - -	 P-1.

	

-E2C-1 (I + E 1C-1)	 1



Now write the expression for (A + E)^. Using (3.4), (3.5), together with the

fact that (I + E 1C-1 ) is nonsingular, yields

C1 (I+EC1 )	 0
1	 i	 -1

(3.7)	 (A+E);i= - - - - - - - - - - - - - - - - - - - Pi
EZC 1 (I + E1 C 1 ) -1 C 1 (I + E I C 1 ) -1	 0

From (3.2) and (3.0) it is easy to see that

C-1
(I + E 1C- 1 )	 0

A#(I+EA#)-1=P--------- -
0	

p-1
0

i

i

0	 ' 0
(I - AAI^)(I +)-1 

= P - - - - - - - - - -
^

	_ P-1
_1	 ^-

EZ C-I ( I + EIC-I)	 i I iL
and

(I - AA (I + EA)-lA(I + EA ` ) -1	
P - - - - - - - - - - - - - - - - - - 1 	 P-1

-1	 _1

-E,) C -I (I + E I C -i ) C -I (I + EIC-1)

so that ( 3.7) becomes

##	 # -1	 .0	 # -1 #	 # -1
(3.$)	 (A+E) =A (I+EA )	 - (I - AA )(I+EA) A ( I +EA)



By using the identity (I + EA# ) -1 , I - EA# (I + EA# ) -1 , together with (2.1),

one arrives at the following result.

THEOREM 3.1. Let C be an ergodic chain with transition matrix T and

limiting matrix W and let C be an ergodic chain with transition matrix

T - T - E. If A  I - T, then

(A + E) # ' A# - A#EA# (I + EA# )
-1
 - W(I + EA# ) -1A# (I + EA#)-1.

It is clear that this theorem guarantees that for the situation under

question,

lim (A + E) # . A#
E-+0

so that the following corollary is obtained

COROLLARY 3.1. For the situation of Theorem 3.1, the elements of A depend

continuously on the elements of A.

This result car also be proven using the information in [2] or [3].

Now that an explicit representation for (A + E)
# 

is known, one can obtain

almost all of the important information regarding C through the results of [6].

However, the purpose here is to now concentrate on the problem of obtaining a

perturbation formula and bounds for the limiting probabilities because it is

these quantities which lie at the heart of any analysis of the chain.

6
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4. A Perturbation Formula and Perturbation Bounds for the Limiting Probabilities.
•^	 rr..rr r. ft-..... .... •....rw..wr ft- ------ --.. •-w r..r... rft r-ft..........

r ^~
If W and W are the limiting matrices for ergodic chains C and C, respectively,

then using Theorem 3.1 together with (2.1) yields an explicit expression for W

One has the following result.

THEOREM 4.1. If C and C are ergodic chains with transition matrices T

and T - T - E and limiting matrices W and W, respectively, then

W-W(I+EAR ) -1 -W-WEA#(I+EA#)-1

where A - I - T.

In passing, it is pointed out that as a corollary one obtains lim W - 71,
E-►0

which is of course the well known result stating that the limiting probabilities

are continuous functions of the elements of T. By making use of (3.1) and (2.1)

another important corollary of Theorem 4.1 is obtained. It is the one which

reveals the structure necessary in order for the limiting probabilities to

remain invariant under a perturbation.

COROLLARY 4.1. For ergodic chains C and C, it is the case that W - W if and

only if R(E) C R(A). (i.e., the limiting probabilities are unaltered if and

only if the columns of E are linear combinations of columns of A.)

Consider now the problem of bounding the relative error termw

where w and a are the limiting probability vectors for C and C, respectively.

Since every row of W is equal to w and every row of W is equal to w, Theorem

4.1 yields



and

(4.2)	 w - & - WEA'(I + EAR)-l.

For the vector 1-norm ({1 x 
1l 1
 - I Ixj {) the induced matrix norm is

j

A	 max	 xA(11 - max I I a i j 4 because one is dealing with row vectors
44 x 11 1 -1	 1 j

and left hand multiplication. A trivial observation is that the relative error

in w for the 1-norm is always bounded by 2. That is,

w' 

ww	 l -^I w - w ^^ 1 <2

1

and 11 w - Ol l can be made to be arbitrarily close to 2 with particular choices

of w and a. However, this does not take into account the relative size of

11 Ell,. The expression in (4.1) can provide a more useful bound in the case of

the 1-norm. Using (4.1) to bound the relative error in w provides an additional

desirable feature. Namely, that the bound is obtainable without having to

impose any additional hypothesis on the magnitude of the elements of E.

The above remarks are summarized in the following.

THEOREK 4.2. For ergodic chains C and C with transition matrices T and

T - T - E and limiting probability vectors w and Q, the relative error in

w for the 1-norm is

w

w
a1 1 1- y{ w - a ^) 1 <_11 EA# 1I l <_	 1 K1 (C)

where A - I - T and K l (C) - 11 A 11 1 11 A, Ill.

E



The 1-norm may not be the most desirable choice of norms. It seems that

the a-norm is a more natural choice of norm when investigating the sensitivity

of the limiting probabilities to perturbations in the transition probabilities.

It is worth completing the statement on norms by noting that for any two

probability vectors, w and w, the following relations always hold for an n-state chain.

^ 1 w 11 2 _1 and 11 w -
1111 2 < 32

1 -̀ 11w % 1. 1 and 11w-

n

11 w 11 1 - 1 and 11 w - C1 11 1 < 2.

(1w-w 11 2 < ^.
so that	

11"w 112
	 _

2

so that 11 w	
w 

ll a < n.

—1 W

Consider now an arbitrrry vector norm and a compatible matrix norm such

that 11 111 - 1. Take the norm of both sides of (4.2) to obtain

W w

	 < 11 EA# 11 i) (I + EA# ) -1 11

If 11 EA# 11 < 1, then

i! (I + EA# ) -1 11 
< 1 - 111 EA1̂  {1

and the inequality takes a familiar form which is given below.

THEOREM 4.3. Let C and C be ergodic chains with transition matrices T and

T. respectively, where T - T - E. Let d - w - w where w and 0 are the

limiting probability vectors for C and C, respectively, and let A - I - T.

If 11 EA4 11 < 1, then

d
g

c EA

W — 1 - 11 U#	 .



If 11 E 11 i1 A# 11 1 1, then

E 
K(C)

1 
_ A K 

(C)

where K tC) - 11 A 11 11 A# 11. Moroovor, there are nontrivial cases where

equality is actually attained in each of the above.

Note that (3.1) guarantees that 
A	

11 EA# 11, which is less than 1, by

hypothesis.

The term	 is the relative error in w while 
A 

is the relative
11 W 11	 11

error in A. This inequality - is exactly of the same form as the familiar

inequality obtained when analyzing a perturbed nonsingular linear system of

equations. The only difference is the term K(C). The fact that the analysis

of any ergodic chain revolves about the limiting probabilities, together with

the appearance of K(C) in Theorems 4.2 and 4.3, motivates one to make the

following definition.

DEFINITION. Let C be an ergodic chain whose transition matrix is T, and

let A - I - T. The condition of the chain C is defined to be the number

K(C) - 11A11 11 A, 11-

Clearly, if the condition of the chain is relatively small, then the

limiting probabilities will be relatively insensitive to small changes in the

transition probabilities. If the condition of the chain is relatively large,

10



then the limiting probabilities may or may not be sensitive. Although *he

bound in (4.3) can sometimes be pessimistic, it is important to point out

that there are nontrivial cases where equality is actually attained. Examples

are given in following sections.

As a final observation, note that since AA# I - W where Wnxn is the

limiting matrix, one has (( AA# 11 1 - 2 - 2min w,, AA# (^ ^ > 1, and

{) AA#
 

11 . - 1 + (n - 2 ) max w i so chat

K 1 (C) > 2 - 2min w :, > 2 - n,

K 2 (C) > 1,

K (C) > 1 + (n - 2)max w l > ? _- 2
n

A special case which is of frequent interest is that in which the

perturbation affects only a single state. That is, only the probabilities

for leaving (or entering) the i-th state are perturbed. The question is

"how does this effect w  and perhaps the rest of w?"

In this case, the i-th row of T, denoted by t i , is perturbed so as to

produce t i , the i-th row of T. If u i OR [0,0,...,0,1,0,...,01 T is the i-th unit

vector, then E is the rank 1 matrix E - u(t i - t i ). Equation (4.1) degenerates

to

d - w - w - wie iA# (I + EA#)-1

where e  - t i - t i . Since E - u ie i , one can write

u e Ali
(I + EA 

#)-1	
(I + u e A {̂ )

-1	
I - —

i i----i i	 1+eAu
i	 i

so that (4.2) reduces to the following.

11



iF COROLLARY 4.2. If C is an ergodic chain and the transition probabilities

for leaving the i-th state are perturbed so as to form an ergodic chain C,

then

e 
i 

A#
(4.4)	 w - w	 wi	

#
1+e,Aui

where w, w, e 4 , A
#
, and u  are as described earlier.

In particular,

W  w 	 a

W 	 1+a

where a = e 
i 
A # U 

i 
and

wk - wk 
W 	

e 
i 
A uk

wk	 wk 1 + eiA#ui

If II 
eiA# 

I ► < 1, then

wi - w i 	 ^I elA# (I
	 wk _ ^k	

W 
	 ^I e 

i 
A # II

W 
	 1 _ (I
 e 

i 
A # 

II and
	

wk	 < wk 1 - II 
eiA# II

If 11 e
i 

11 II A# 11 < 1, then

II ei II	 11 e i it
wi - ^i
	

- A	 K(C)	 wk - wk 	wi	 -- A	 K(C)

	

<	 I	 and	 <
wi	

1 - - .[f-.A - K (C)	 wk	 _ wk	 1 -
	 ei 

I K (C)

12
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S. Examples. Below, a general example is constructed to show equality in 4.3

can be attained for the —norm as well as the 2-norm. Note that the fact that

row vectors, rather than column vectors, are involved means that the --matrix

norm is given by 11 All . 	 ,m	 w`	 11 xA ll. - max I la i j i .
X 11	 i

Consider the regular chain whose transition matrix is the symmetric

c.irculant

	

3	 1	 3	 i	 3	 1

	

1	 3	 1	 3 ••• 1	 3

T 1	 3 1 3 1	 3 1
4n

	

1	 3	 1	 3 ••• 1	 3
2nx2n

Since T is symmetric, the limiting probability vector is

w ^ n (1,1,...,1.

It is easy to check that A# is given by the symmetric circulant

	

n	 -1	 0	 -1	 0	 -1	 0	 -1

-1	 n	 -1	 0	 -1 • • • 0	 -1	 0

Aft 1 0	 -1	 n	 -1	 0	 -1	 0	 -1
n

-1	 0	 -1	 0	 -1	 -1	 0	 n

by verifying that AAA - A, AAA 	 A and AA A AAA. (These three conditions

suffice to define A	 See [2] or (61.) Note that	 A^^
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n 2k-1
1 = n - I v	 , i = 1,2,3,...,2n
i	 k- I i

where (vi ii = 1,2,...,2n} is the set of the 2n-th roots of unity. (See (Il)

Since nA# is symmetric, II nA# 11 2 = max a i l and one can see that maxi y

x
n+l ' 2n so that

II AIDII' =n 
i1 nA'112=

From (5. 1), 11 d 112	 n(1 - 2E) . Now 11 w 112 = 2n and 11 11 2 = e 2n so that

11 E 112
11d112	 2E	 11 EA^^ 112 	 11E112 I I

A/ 112	 I A 
12 

K 2 (C)

T-772 ' T-- 2E	 1 - 1 1 EA# 1 12 	 1 - 11 E112IIA'112
	 1 -	

E1 2 K

TA	 2 

(C)
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6. Why Not Treat This Strictly as an Eigenvector Problem?
___ „_., ..... _,.._ ........ _,. __ .......... .. .......

In principle, the problem is an eigenvector problem. That is, one is

analyzing the normalized left hand eigenvector associated with the eigenvalue

X  = 1 for a row stochastic matrix T, or equivalently, the normalized left

hand eigenvector associated with the eigenvalue X  - 0 for A - I - T. The

known facts concerning the eigenvectors of a perturbed matrix are therefore,

to some extent, relevant. However, there are some peculiar aspects which the

general eigenvector theory does not capitalize upon. For example, the stochastic

nature of the problem sets it apart. The fact that the relevant eigenvalue,

X  = 0, (as well as its multiplicity) is unaltered by the perturbation is

certainly special. The perturbation E is constrained to be one of a special

kind, namely one which preserves the ergodic nature of the chain.

Moreover, the problem at hand is not concerned with the sensitivity of the

entire eigensystem of a stochastic matrix. Only a very special eigenvalue and

eigenvector with peculiar properties are involved. One should therefore

not be too surprised to find some sort of special behavior exhibited which is

not present in the general theory.

In general, if x is an eigenvector for B such that (B - X I)x - 0 and

there exists another eigenvalL'A a.) , of B which is close to a l , then one expects

x to be sensitive to perturbations in B. (See (101)	 However, this can

produce some wrong impressions when applied to the special case at hand. The

following example illustrates how applying this general theory can be somewhat

misleading. Let C 1 and CZ be two ergodic chains whose transition matrices are

given by

r-
r



(6.1)

17

and

.99995	 .00005
T2 =

.00005	 .99995

The eigenvalues for A l	I - T1 are a l = 0, a2 . .000100002 and X3 ti .99994999811,

while the limiting probability vector is w l '%, (.4999875, .4999875, .000025).

The eigenvalues for A2 = I - T2 are u  = 0 and u 2 = .000? and the limiting

probability vector is w 2 = (.5, .5). In each case the matrices have another

eigenvalue very close to the eigenvalue 0. The general perturbed eigenvector

theory therefore suggests that the eigenvectors associated with the eigenvalue

0 should be "sensitive" to perturbations in the elements of each of the

matrices A l and A2.

However, if one allows the term sensitive to mean that small relative

errors in the A matrix can produce large relative errors in the limiting vector

w, then the sensitivity of the limiting probabilities may or may not be greatly

influenced by the distance between the eigenvalue 0 and the other eigenvalues

of A.

For the two chains, C 1 and C2 , of the above example, one finds that

5000	 -4999.75	 -.25

Al M4 	 5000	 .25

4999.5	 -5000.25	 .75

and

t
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A # -	 5000	 -5000

2	 -5000	 5000

so thatic.(C1) ti 15,000 while ,c (C2 ) - 1. Theorem 4.3 guarantees that the chain

C2 is well conditioned while C 1 is more badly conditioned. Indeed, if C 1 is

perturbed so as to produce C 1 with T 1 - T,- E where

.001	 -.001	 0

E s	0	 0	 0

0	 0	 0

one .finds that

wl ti (.045452376, .954499897, .000047727)

so that a relative error of 10 -3 in Al (using the —norm) produces a relative

error of about .91 in w 	 In contrast, Theorem 4.3 guarantees that a relative

error of 10-3 in A2 can produce a relative error of at most 1/999 ti 10-3 in w2.

The conclusion is that one cannot always use the distance between a - 0

and the nearest nonzero eigenvalue of A as a measure of how sensitive the

limiting probabilities are to perturbations.



7. Why Not Treat This Strictly as a System of Linear Equations?
.	 ... ... ..... —,, ........ .. . ...... .. --ft ........ .

If Tnxn is the transition matrix of an ergodic chain, it follows that

A - I - T has rank n - 1 and any subset of n - 1 columns of A is linearly

independent. The problem of finding the limiting probability vector is simply

that of solving the system

wA s 0,	 Ewi - 1.

Clearly, this is equivalent to one n x n nonsingular system of the form wM - b

where M is obtained from A by replacing one column (say the k-th one) by the

column j - [1,1,...,1]T and b is the k-th unit vector.

Since M is nonsingular and b is not subject to perturbation, the standard

result (which is the analogue of Theorem 4.3) holds. That is, if a perturbation

of the transition probabilities causes M to go to M - M + F where

F (^ ^^ M 1 (^ < 1, then

	

F	 Cond (2Q)
(7.1)	 w - w ^^ <	 M	 where Cond (M)	 M	 M-

1

W	 1 -	 Cond(M)

and 11 I11- 1. (See [ 101.) This suggests that Cond(M) might also be used as a

measure of the condition of the chain.

However, converting the singular matrix A into the nonsingular matrix M

can drastically alter the condition of the problem. That is, although A is

singular, it can be well conditioned in the sense that 11 All 11 A # 11 is small

whereas the modified matrix M is nonsingular but 11 M1 1 11 M-1 11 can be very large.

19
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For example, consider the chain C whose transition matrix is

1- E
E E  E

n- 1	 n- 1 n - 1

E	
1- E

E E
n- 1 n- 1 n- 1

T	 = 0 < E	 < 1,
nxn

E E E.	 . .

--1 	 n- 1	 n- 1 1- E

so that

n

-1 n
A =	 E
nxn	 n - 1

n - 1

Clearly, A is positive semidefinite so that

#
max ^ i

K2 (C) _ 11 A 1' 
2+1 

A 
112 

a 
min a where X  denotes eigenvalue.

X  #0 i

It is easy to verify that the eigenvalues of A are given by

En	 En	 En	 En
{0 'n - 1'n - 1'n - 1' " ' n - 1 } so that K 2 

(01, regardless of what value is

assigned to E and what the size of n is. Now replace any column (say the k-th one)

of A by j = (1,1,...,1]T so as to form the matrix M. The matrix MTM then has

the form



n-1

-1

0

-1

-1

-1

n-1

0

-1

-1

	

-1	 0

	

-1	 •	 0

n - 1 2

	

0	 (	 )e

	

-1	 0

	

-1	 0

2
MTM - n( n  a 1)

21

-1 • -1

-1 -1

0 0 i

n

-1 n-1

It is not difficult to see that the eigenvalues of MTM are given by

2	 2	 2
{n,n(n 

a 1 ) ,(n
ne 

1 } ,...,(nn£ 1 ) } so that for large n or small e,

Cond (M) - max singular value - n - 1
2	 min singular value	 e

Thus Cond2 (M) can be made arbitrarily large by either taking a small or n large.

Note also that Cond 2 (M) is independent of which column is selected to contain

the 1's.

It clearly would be a mistake to use Cond(M) as any sort of 3vide to the

sensitivity the limiting probabilities might exhibit to perturbations in the

transition probabilities. Aside from the theoretical hazards which the matrix M

can produce, it is obvious that M could also present numerical difficulties if

it were used in any sort of computational scheme.

The bound produced by using M and (7.1) is almost always inferior to the

bound obtained from Theorem 4.3. As an example, consider again the three state

chain C, whose transition matrix is given by (6.1). Suppose this chain is

perturbed so that the transition matrix becomes T - T - E where

-



-2.5 x 10-5 	2.5 x 10-5 	0

E=	 0	 0	 0

0	 0	 0

Then A - A + E. M is obtained from A by replacing some column of A by J.

Assume that in M as well as in M, the column which is j is taken to be the

second column. Then

-2.5 x 10-5 	0	 0

F= M- M = 	0	 0	 0

0	 0	 0

is the perturbation in M in (7.1). Using the —norm, one finds that

Cond.(M) ti 60,000 whereas K.(C) v 15,000. The bound for the relative error in

w which (7.1) provides is approximately 1 whereas the bound produced by (4.3) is

about .6. In this case, the actual relative error (with the —norm) is about

.33334.

This example exhibits only a single case where (4.3) is superior to (7.1).

However, experience has shown this to be typical. For each value of n = 3, 5,

10, 20, and 30, twenty n-state ergodic chains were randomly generated. A

random perturbation (which satisfied the hypothesis of Theorem 4.3 and (7.1))

was introduced and the bounds given by (4.3) and (7.1) were computed using the

-norm. For n - 3, (4.3) gave a better bound than (7.1) in 13 out of the 20

trials. For n - 5, (4.3) gave a better bound in 18 out of 20 trials. For each

of the cases n - 10, n - 20, and n - 30, (4.3) was found to be superior in 20

out of 20 trials. Moreover, for each of the 100 chains generated, K . (C) was

never significantly greater than 5 whereas Condm(Mnxn) was always in the

neighborhood of n2.

22
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Since the goal was not to use M in any sort of computational scheme, but

rather to determine the degree to which characteristics of M (e.g., Cond(M))

relfect the relative sensitivity of the limiting probabilities, no attempt was

made to scale M. This, of course, could be done and should be done if M is

specifically given and is to be used in computations. However, when M is not

specifically given, no theoretical advantage as far as producing a general

analytical bound on the relative error can be realized.
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