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ABSTRACT

We consider systems or items which are placed on test at time zero, func-
tion for a period, and die at some random time. Failure may be due to one of
several causes or modes. A model for this situation is that at birth nature
chooses a life time Yi from a population of times until death from mode i. The
time at which the item fails is min(Yi) and is the only life actually observed. The
parameters of the life distributions may depend upon the levels of various stress
variables the item is subject to. Maximum likelthood estimation methods are
discussed in general. Specific methods are discussed for the smallest extreme-
value distributions of life. Monte-Carlo results indicate the methods to be
promising. Under appropriate conditions, the location parameters are nearly
unbiased, the scale parameter is slightly biased, and the asymptotic covariances
are rapidly approached.

1.0 INTRODUCTION

Suppose an item or system (a person, battery, computers, etc.) is brought
to life at time zero, functions for a period of time, and then fails. We also
suppose there are a finite number of possible causes (or modes) of failure
labeled 1, 2,. . ., M. For example, people die of cancer, accident, heart
attack, etc. A simplified conceptual model for actual item lifetime is that at
birth nature chooses a failure time Ym from a population of failure times due
to mode m. (The Ym may or may not be independent.) The observed life of
the item is then mln(Ym) and it is known only that all the other lifetimes exceeded
this value. Such a process is a form of progressive censoring. Cox [1] appears

to have been the fir:t *v formulate this competing risk failure time model and



applied it specifically in the instance of independent exponentially distributed
failure times for two possible modes of failure.

Herman and Patell [4] extended the model to several independent competing
risks, developed the maximum likelihood estimators for exponential and Weibull
distributions of failure, and derived expressions for the asymptotic covariance
matrices of the estiiaators. McCool |9; considers certain confidence interval
techniques in this situation when life has a Weibull distribution. Moeschberger [10]
extended the model to the case of dependent or correlated failure times. Other
closely related developments are by Sampford [13] , Moeschberger and David [11]
and Hoel [5].

For any of the failure modes it may very well be that the population of failure
times from which the item life is drawn may depend upon the level of various
stress variables the item is subjected to during its life. For example, if we were
to assume human life untfl death by cancer to follow an extreme value distribution
with location parameter u and scale parameter o, then u= 71 ST X,) may
be a function of exposure to pollution (xl), amount smoked per day (xz), etc.
McCool [8] considers estimation, confidence interval, and multiple comparison
methods when the life distribution is Weibull, failure modes act independently,
and n observations are obtained from each population. (He essentially provides
an ANOVA generalization.) Nelson[12] sketched a general approach to ma%imum
likelihood estimation in the extension of the multiple regression situation. He
applies the method in the case of a single stress variable (temperature), indepen-
dent and lognormally distributed lifetimes and a number of failures by each mode
for each level of the stress variable.

In this report we first present the general model for the competing failure
modes assuming the location parameters for each mode are expressible as linear
functions of the stress variables and the failure modes act independently. We
then present the general form of the likelihood function and the likelihood egquations
are derived for the extreme value distributions. Solving these equations using

nonlinear least squares techniques provides an estimate of the asymptotic co-



variance matrix of the estimators. Several Monte- Carlo experiments were per-
formed. The results of these indicate that, under appropriate conditions, the
estimators approach unbiasedness and their asymptotic covariances at reasonably
small sample sizes.
2.0 THE GENERAL MODEL
Assume that an experiment is performed in which I items are life tested
at varying combinations of J stress variables and that the design is specified

by the design matrix

Zyy - - - 2y
Z=| - . @-1)
ZII . . ZIJ

The response observed for each item is a lifetime Yi (1 =1, and the mode by
which the item failed, m,. The number of modes by which the item might fail
is denoted M.

We assume that for observation i and mode m the cumulative distribution

function of time until failure is defined by

Ffm) ¥s u?n). o(mil

and the density function by

f,(m) [y; #fm), c(mﬂ

is a location parameter and o(m) is a scale parameter. We thus
(m)

where pgm)

assume that o is constant for all observations. We also assume that the

location parameter is a function of the stress variables, in particular

W =™z . ep gy 2-2)

In general we will not necessarily have

U(m) =om)  for m#m' (2-3)



nor
™ =p{™  for m# m' (2-4)

That s, we do not a priori assume any of the faflure modes to have parameter
values in common,

We further assume that lifetimes Yfm) are drawn at random and indepen-
dently from F{m) and that the observed lifetime is the smallest of these, min
(yi)' This latter assumption implies an item can fail by at most one mode.
Nelson [12] indicates a situation in which items may fail by one mode, be repaired,
and then fail again by another mode. It is also possible that testing of an item
may be terminated before it fafls. These situations may be easily included in
the model but will not be considered in this report.

Clearly, the profusion of arguments, subscripts and superscripts will be
quite unwieldly. We will thus delete them whenever context clearly indicates
the appropriate values.

3.0 THE LIKELIHOOD FUNCTION
We first consider the likelihood function corresponding to the lth observa-

tion. If that observation i{s a failure by mode m, then the likelihood is

11=[1- Fflﬂ . E- Ff“"ﬂ l;i(mﬂ ﬁ- Ffm"“] .. .[1- F(MEI (3-1)

where

g = 4™ E'; ™, o(mi’ (3-2)

and

1-F® =1 @[y 0 0
i i i
- prE{f‘) > y] (3-3)
That is, we multiply the density function corresponding to the mode of failure

by the probability the item did not fail by any of the other modes. The likelihood

is a simple product due to the independence assumption. If testing is terminated



without an observed failure, the likelthood is given by

M
TTE- 1) s
1

The overall likelihood i8 then the product of the likelihood for each observation
and given by

L =TTnl (3-5)

Taking natural logs of eq. (3-5)

1
(my)
=Eln i H [ F(m] (3+6)

i=1
is obtained where
InL=1In L[ﬁ(l) R L N L

ﬁ(M)o L (M)v 0(1)9 voe vy U(M); yll v e vy YI]

(3-7)
To obtain maximum likelihood estimators, the standard method (assuming it
works) is to solve the systerh of JM (nonlinear) equations

\
8hnL._, (m=1, M)

olnL_,

(m)

(m=1, M > (3-8)
98;

9lnL

=0 (m=1, M
o(m)

7/

If the different failure modes have no parameters in common, as will generally
be true by eqs. (2-3) and (2-4), this system of JM equations splits into M separate

systems of J equations which may be independently solved. In particular, the



mt'h system reduces to ™\
A\
0= g™ 4 1 F(m)]
ﬁ(m) (m)
mode m other mode
failures failures
N > ©-9
0= ) —2— ™. F(m]
f , 9 B(m) (m)
mode tn other mode
failures faflures
0= -2 __ In f{m) + 8 In [1 - Fim)]
c(m) a(m)
mode other mode
fallures failures _/

4.0 WEIBULL AND EXTREME-VALUE (SMALLEST) DISTRIBUTIONS
Two commonly assumed life distributions are the Weibull and the smallest-

extreme value distributions.

The cumulative distribution function for the Weibull distribution is given by
F(t;@,8) = 1 - exp[- (t/@)P) (d-1)
where

o "scale' parameter
B  ''shape' parameter

It is easily verified that if T follows this Weibull distribution, then the
application of the transformation Y= 1n T yields the smallest extreme value

distribution with cumulative distribution function

Fiy; u,0) = 1 - exp(-explly - w)/c)

with



oc=1/8

k= ln (@) 4-2)

It {8 thus sufficient to consider this extreme value distribution. In particular, if

we apply this dictribution to the model previously developed we assume that for

mode m failure and the lth observation the density function for life is
(m) (m)
y-u y-u
(m) [: “l ),a(mil L exp L . exp|—1— (4-3)
a(m) oM o'm
and the distribution function is
4 y - u(m)
Fém) yi uim)’ =y exp -exp..__-i._ 4-9)
o(m)
where
(m) _B(m) ... ﬁ(m) (4-5)

i1

Hence, we obtain the partial derivatives required for the likelihood equations as
(deleting m superscript)

\
aqu_l__y-m+y-u‘“py-ui
9o 4 02 02 o
81nf -2,
_J+-_1exp y- Iﬂ)
apj g (o4 g
(4-6)
aln(1-F y
Hexp e
90 0 a
dln(1-F) z. -
____i=_uexp<_y_i>
aﬁj o o J

Substituting these into eqs. (3-9) we obtain the likelihood equations for any

specified mode as



N
1 1 | -
= -3 z, exp ) 0 Gg=1,9
failed by
mode fallures > “n
Z: ¥, - B\
L (yi - Ky +0) - l. (yl - “l) exp<_l__.l_)=
2 2 o
o o
falled by all
mode faflures J

These nonlinear equations have no closed-form solution and need to bc selved by
some iterative method.

It is well-known that, under appropriate regularity conditions, maxin.um
likelihood estimators (MLE) are consistent and asymptotically normally distributed.
It is also known for the Weibull and extreme value distributions that the minimal
sufficient statistics are the trivial ones consisting of the order statistics. It thus
becomes of considerable interest to determine how rapidly the MLE's approach
their asymptotic unbiasedness and covariance structure. The asymptotic co-
variance structure and the Cramer- Rao lower bound are defined by the inverse
of the Fisher information matrix (Zacks [14, p. 194] and Kendall and Stuart
(7, p. 28). .

For the model considered in this report the Fisher information matrix is

the block-diagonal matrix

1 o ... o
o 1@
L ] . (LB)
0o 0 I(M)d

where
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|
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“mL ! 9“lnL
28™2 | oM 5 oM
__________________ mmmmmm
22 InL . L : 92 In L
3 ﬁyn) 5 oM 833m) g™, 5 ld(m)l 2
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In the following section it will be shown how an approximation to this expectation
occurs naturally when solving the likelihood equations via nonlinear least squares.
5.0 SOLUTION BY LEAST SQUARES

Using the general nonlinear regression model

W=h(¢,0 +¢€ (5-1)
T_ . T _
where £~ = (gl, e, gJ) is a vector of independe:it variables, ¢~ = (61, v,
en) is a vector of random errors, 9T = (01, C e, Gp) is a vector of parameters

to estimate, and the maxtrix of observed data is

~ —
Wy dn - gy

(5-2)
Wn ‘Enl o EnJ

Approximating the function h as its truncated Taylor series gives (Draper

and Smith [2, Ch..10])

' 3 h,0)
DGO = BE0) + ) (O - O —— . (5-3)
k
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Also, let
0, = prior guess for 0
v = correction vector
o _
h = h(£ ’ 00)
Yk = %" %o

(5-4)

and X be the matrix of partial derivatives of h evaluated at ¢ = O That is,

] h«u,on
90

(xu, k) =

k
0=00

With this notation eq. (5-1) can be approximated as
Wa-h=Xy te

which has (least squares) solution

y= @ = xTx ! xT (w- 1%

(5-5)

(5-6)

(-7

Thus ')‘r is the estimated correction vector. This method may be applied to the

solution of the likrlihood equations if the W's, 0's, and h of eq. (5-1) are

defined as
\
W, =0; 6,=8; h¢,,0=210L
1 1 1 1
8/31
W =0; 0,=p,; hi¢ ’U):Blnl,
dJ J Jd J
GHJ
0 lnL

Wi = 03 U4y = 0n hlbyyy 9 =

00)

With this notation we see that the partial derivatives of h(, O required in

eqs. (5-3) and (5-5) are actually the second partial derivatives of the log-

likelihood function required in the expectation of eq. (4-9). Thus when the X

matrix is evaluated one has an estimate of the covarlance matrix of the param-
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eters. When used together with Monte- Carlo simulation experiments, substi-
fution of the known parameters into the second derivatives and the observed
sample lifetimes for each trial may be done. These results are then averaged
to obtain an estimate of the expectation of eq. (4-9). The application of least
squares methods to Maximum Likelihood estimation has been treated by Jennrich
and Moore [6] .

6.0 SIMULATION EXPERIMENTS

Three serles of sampling experiments were performed. In each of these ex~
periments only two failure modes were considered. The first experiment in-
vestigates the effects of censoring and sample size when the two modes have con-
stant location parameters and identical scale parameters. The second experi-
ment investigates the effects of various experiment designs in the case where
mode 1 location parameter !~ a linear function of a single stress parameter and
mode 2 location parameter is constant. Both modes had identical scale parameters.
The third experiment investlgates the effects of ill-conditioning on the estimators.

For each experiment the true values of the parameters were known, Uni-
formly distributed random variables were generated and observations for each
mode were obtained by inverting the cumulative distribution functions. For each
obgervation one lifetime for each mode was generated and the observed lifetime
chosen as the smaller of the two. Only estimates of mode 1 parameters were ob-
tained and recorded. The starting values for the iterative solutions were the true
values used to generate the observations.

For each simulation, several pleces of information were obtained. The
means, mean squared errors, and covariance matrix of the estimates were re-
corded. The average amount of censoring by mode 2 was recorded along with a
separate mean value of the estimates of the scale parameter for each amount
of censoring. Also the Fisher information matrix of eq. (4-9) was evaluated for
each sample and its mean value recorded. This was then inverted to obtain an
estimate of the asymptotic covarfance matrix of the parameter estimates.

The goal of these experiments was to obtain information concerning the

means and variances of the parameter estimates and to investigate the approach
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to asymptotic behavior. Due to the iterative nature of the solutions required
some sample sizes were rather small in order to avoid excessive computer times.

The following three sections describe each of the experiments and the results
obtained.

6.1 EXPERIMENT A

This series of simulation:. \nvestigates the performance of the MLE's for
two populations with identical scale parameters and location parameters of varying
separation. In particular the parameters chosen are

JC VI o P

.‘
uM =22

W=Dy s a=(o0.1, 0, 0.1, 0.3

(These are highly skewed and distinctly non-normal distributions. Figure 1 shows
one such extreme value density function and the normal density with the corres-
ponding moments. )

Sample sizes of n= 5, 10, and 20 were considered. ot all combinations
of A and n were investigated. Those combinations investigated are given in
table I. There were 1000 simulations performed for each case. Any sample
which had less than two mode 1 failures was rejected and another sample chosen
in its place.

The results of these experiments are presented in table 1. The first two
columns specify the combination of A and n. Column three indicates the pa-
ran.eter and column four the mwan of the 1000 estimates for that simulation.
Column five presents the estimated standard deviation of the mean reported in
column four and is obtalned by dividing the observed standard deviation of that
parameter by the square root of the number of simulations.

The major points are that the location parameter {5 slightly biaused toward
lower values and that the scale parameter can be strongly biased. The bias in
the location parameter is worst for the smallest sample sizes and the most

censoring. The bias In the scale parameter is close to -1/n where n is the
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sample size. The bias in ¢ could also depend upon A but this is not perfectly
clear. Figure 2 plots the means of o and of ;i as a function of A for the three
sample 3izes. Also included is a bar indicating plus and minus one standard
erroxv of the mean. The blas may decrease as A decreases,

Harter and Moore [3] report on similar experiments. . They were not con-
cerned with competing failure modes but ra*her with the case where the rq
smallest and/or r, largest observations are censored. For this case they re-
port rapid approach of the estimators to their asymptotic properties (if censoring
i3 not severe) and that the scale parameter estimate is biased downward by a
factor of 1/m where m=n - ry - Ty 1s the number of uncensored observations.
Similar results were found in the competing failure mode type of censoring.

The last four columns of table I provide the observed covariance matrices

of the estimates ;l(l) and o

and the corresponding estimate based upon asymp-
fotic theory.

The ohserved covariance matrix was computed as

[(1] >_\ l:(n (1

cov@”, 3(1__’1 =Tlc ) Ei(il) - M(i}ﬂ E;‘l) - M(&il > (6-1)
Ay .1 ~ (1) ~(Ly\2
"E’]“EE >E’ - ule ]} )
where
k= 1000 trials
and
[(1 E A1) )
) (6-2)

-1
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The estimate of the asymptotic covariance matrix was obtained as follows. Sup-
pose the sample size is n where Yyr + - 0 ¥y, 8TE mode 1 fallures and Y+l

-y ¥, are mode 2 fallures. Then

m
2
2
" ImL_ m _ 2 ¥y - 0
2 2 3
©o o o =1
n
Yy~ K 1 2
+—1§ > exr»(i ) =y - w)" +2y- 0
oS/ / g o
=1
n
2 A y; -
) 1nL=_g_1_+L§ f+217H exp<1 a
docoyp o o c g
=1
n
2 Yy - U
it .2 E :ex,,(i- > 63
@ w o i
=1
where the y and o are the known values of u(l) and 0(1) used in generating
the observations. It is thus possible to estimate
92 In L 32 1n L)
9 “2 dudo
E > (6-4)
Yy 1.2 2
9" In L 9" In L
dudc 3 0_2

by obtaining the average of each expression in 6-3 over all the simulated samples.

It should be noted that for small A and n this approximation may be biased to an

unknown degree due to rejection of samples with insufficient mode 1 failures.

The covariances are estimated by calculating the inverse of this matrix.
Examination of table I shows that for A = 0.3 the asymptotic and observed

covariances are quite close for all n's. For A = 0.1 the diagonal elements are



all quite close while the covariance i8 somewnat different for n=5. Even for
A = 0 there is good agreement except for the n =5 case. For A =-0.1 it ap-
pears the asymptotically based approximatio~ is a considerable underestimate.
The general conclusion is that if A = Q the estimators approach the asymp-
totic covariance structure very rapidly. Large A implies little censoring by

mode 2. These results are in qualitative agreement with Harter and Mobre [3] .

6.2 EXPERIMENT B

This series of simulations is the simplest nontrivial situation in which the
location parameter of one of the modes is dependent upon a stress variable. The

models chosen for simulation are graphed in figure 3 and defined by

WV =2.2+0.22

”(2) =2.5

o =o® 0.3

The goal of the experiment was to investigate fuirther the bias in the estimates
and the effect of different experiment designs with respect to z,. In particular,
three different sample sizes were used (n =7, 12, and 22). For each sample
size, three distributions of these observations with respect to z, were used.
For each, z, was restricted to the values 0, +1. One design concentrated all

the replication at zy = 0, the second design spread the replication as evenly

as possible among the three points, and the third design spread the replication
evenly between the two extreme values. The results are based on 100 simulations
of each case.

Table II presents the means and the standard deviations of the means of
each parameter. For the n= 7 sample size it appears that Eil) is biased
slightly toward lower values, 39) is apparently unbiased, and 8(1) is biased
to lower values. The amount of bias of ¢ does not appear to depend upon the

design. The standard deviation of 52 decreases as the design places more

replication at the extremes of the range.
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Table III compares the observed covariance matrices, the estimated asymptotic
covariances, and the covariance matrix of the location parameters assuming naive
normal theory. The observed and estimated asymptotic matirices were calculated
as in experiment A, The normal theory matrix is obtained by assuming that the
estimation process is equivalent to multiple linear regression with normally dis-
tributed error term and ignoring the fact of competing failure modes. That is,
the matrix is given by

(1.645) 0% (272)"!

where Z is the design matrix and 1.645 02 is the variance of the smallest ex-
treme value distribution with scale parameter o. This describes the covariance
structure of the location parameters only. Because of the limited number of sim-
ulations, these results are only indicative of the true behavior and only cursory
mention of these results is made here.

For all cases, the observed and asymptotic covariances between ﬁ 1 and 52
are near zero as in the normal situation. The covariances between ¢ and both
él and ﬁz are also small as in the normal case. Inspection shows the normal
approximation to be somewhat too large in general. The asymptotic approximation
appears to be closer for v@l) but tending to under estimate v(éz). In order to
provide more accurate comparisons, considerably more simulations should be
performed. The results obtained here indicate that the approach to asymptotic
covariance structure may be reasonably rapid.

6.3 EXPERIMENT C

This series of experiments was Intended to examine what might be termed
estimability conditions. This is most easily described with reference to figure 4
where p(l) =p + By z+ Bq 22 are plotted. Five different combinations of the
B's were used and are presented in table IV.and illustrated in figure 4. The scale
parameters in all cases are

oD = o® = 0.1

For each simulauon the design consisted of n observations each at z =

("2. "19 Ov 1’ 2)'
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With model A, there will be very few mode 2 failures at z = +2 and it will be
relatively clear that a second order polyno’ninal is required to fit the data. Ina
more extreme situation such as with model E, however, there will be few if any
mode 1 failures at z=1, z=2, It will then be considerably more difficult to
determine if the model should be as in E or as in F. In essence, the censoring
caused by mode 2 failures makes estimation of all three B parameters difficult
much as if in the ordinary linear regression situation observations were not made
at z=1, z=2. Thatlis, as if we were faced with ill-conditioned normal equations.

Tables IV and V(a) to (d) present the results of 100 simulations for various
combinations of model and sample size. Table IV presents the means of the pa-
rameter estimates while table V(a) to (d) presents the observed covariance
matrices of the estimates, the estimated asymptoti¢ covariance matrices and naive
normal theory approximation.

Considering first the means of the parameter estimates it is seen that 5(1)
is biased low for each sample size and the amount of bias appears to depend only
upon the sample size, not upon the amount of censoring.

The locus of tk 2 location parameter estimates is more biased as there is -
more censoring by mode 2 failures as is evident in figure 5(a) to (e). In these
figures a solid line indicites the true value of #(1). The graphs of the mean
values of ﬂ(l) are indicated with dashed lines. For model A where there is
minimal censoring, there is negligible bias. For model C where significant cen-
soring begins to occur there is a minor but noticeable upward bias where the cen-
soring occurs and similar bias downward where negligible censoring occurs. For
model E where almosgt all of the failures for positive z are mode 2 failures,
there is considerable upward bias at the right end of the function but minimal bias
at the left end. These results are quite reasonable of course. Where failures
are not observed, the maximum likelihood procedure pushes the location param-
eter toward as large a value as consistent with the data where there are failures
observed.

For each simulation series, the observed covariances, asymptotic co-

variances, and normal theory covariances of the scale parameters are given in
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table V(a) to (d) and certain plots of the results given in figures 6 to 8.

Table V(a) presents the results for n=1 and cases A and B only since it
was difficult to get batch simulation runs to complete without numerical difficulties
in the other cases. Tables V(b) to (d) present all the results for n=2, 4, and 8.
The naive normal theory approximation would predict that {32 and ¢ are mutually
independent and independent of 51 and 53. Examination of the tables indicates
that for case A (with minimal censoring) the corresponding observed and asymp-
totic covariances are indeed relatively small. The covariances become larger
as the degree of censoring for positive z values increases. Normal theory
and intuition also indicate significant covariance between ﬁl and 63. This is
also borne out qualitatively.

Since one picture is worth a thousand words, plots of the variances of ﬁl
are indicated in figure 6, variances of [§2 in figure 7 and variances of B3 in
figure 8. In each, the horizontal scale is n, the number of replications of the
design, and the vertical scale is the variance of the estimator. These figures
indicate that when censoring is infrequent (model A) both the normal theory and
asymptotic variances behave qualitatively and quantitatively similar to the ob-
served variances for even the smallest sample sizes. As the censoring becomes
more severe the observed variances are much higher than either normal theory
or asymptotic variances for small n while they become comparable for larger n,

It is easy to understand why the normal theory variance is an underestimate.
It is due to the (effective) inestimability for many samples because many observa-
tions for positive z are mode 2 failures. Hence slope and curvature are difficult
to define. The naive normal theory approximation ignores this. It is not clear
why the asymptotic estimate should tend to be small.

These results indicate that the approach to asymptotic theoi, is rapid if the
model is "estimable'" but slow otherwise. They also indicate that rapid approach
to normal theory approximation is quite possible. Much further simulation is

required to substantiate these conjectures.

w
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7.0 CONCLUSIONS AND RFCOMMENDATIONS

Previous studies have concentrated on the competing failure mode estimation
problem where many samples have been obtained from one single population or at
most where the location parameter depends on one stress variable and repeated
observations are made at each level of the stress variable. This paper is oriented
toward generalizing the multiple linear regression situation where more than one
stress variable exists and not many replications are performed at each combination
of stress variables.

This study has indicated the maximum lixelihood approach to be feasible.

For moderate sample sizes the estimators approach the asymptotic covariance
structure and asymptotic unbiasedness under certain conditions. When estimating
parameters for mode 1 when most of the faiflures are by mode i the location pa-
rameters are nearly unbiased while the scale parameter can be substantially biased
for small sample sizes. Both normal theory and asymptotic theory covariance
structures appear to hold for small samples. More extensive simulations are re-
quired to concretely verify and quantify these results.

In the situation where there is substantial censoring of mode i failures by
other modes, care must be taken to insure that the proposed model is estimable.
Otherwise serious biasing and much increased covariances result.

Based on the results obtained, the following procedure is recommended.

(1) Perform an ordinary multiple linear regression analysis of all observed
lifetimes regardless of mode of failure. This will provide rough estimates of the
terms needed in the response function and an initial guess for the scale parameters.

(2) Fit the model obtained from all the data to each mode separately using as
observations only the failures by that mode. This will indicate whether or not all
terms are estimable. If there is serious ill-conditioning, some terms will have
to be dropped to provide a model for which all terms are estimable. The ordinary
least squares regression analysis of this model will then provide initial estimates
of the location parameter values and the scale parameter.

(3) Refine these estimates by obtaining the maximum likelihood estimators.
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This report has not addressed the questions of hypothesis testing and confi-
dence limits. If the approach to asymptotic behavior is indeed as rapid as indi-
cated here, then perhaps tests and confidence 1imits based on the estimate of
the Fisher Information matrix provided by the sample will perform reasonably.
Additional simulation studies to investigate this should prove valuable,
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TABLE 1. - SUMMARY OF RESULTS OF SIMULATION EXPERIMENT A

(Results are based on 1000 simulations. Standard deviation of mean is

ontimated as cbserved standard deviation divided by V 1000.}

A |8 | Parameter | Mean of Standard Observed | Asymptotic
estimates | deviations | covariance | covariance
of mean (xlos) (xloa)

-0.1120 M 2.208 0.0021 4.3 2,73
¢ .099 .0012 1.61}1.33 1.00{1.13

0 8 M 2.1 0.0019 8.45 4.%9
c .087 . 0016 1.0212,70 .96812.29

10 m 2.1 0.0018 2,22 2,20
(4 092 .0011 .4711.26 .4311.27

20 m 2,200 0,0012 1.36 1.04
¢ .0n . 0008 .3110.71 .16]0.60

0.1] & m 2,19 0,0016 2,658 2,72
4 .084 .0013 .1311.79 -.15]1.78

10 m 2,198 0.0012 1.43 1.38
o .083 .0010 ,03]0.94 -.07]0.84

10 K 2.188 0.0012 1.54 )
o .083 . 0009 .08[0.89 @ | (o

20 K 2.19 0.0009 0.76 0.69
o .086 . 0006 -,03]0.41 -.01]0.43

3] 6 M 2.1%4 0.06158 2,22 2,28
4 . 082 .0011 -.33[1.21 -.5111.40

10 M 2,186 0.0011 1.16 1.14
o 092 .0008 -.23]0.62 -.23{0.64

10 K 2.195 0.0011 1.19 (a)
o .092 . 0008 -.1%] .65 (@ | (@

20 M 2.198 0.0008 0.66 0.57
(4 . 086 . 0006 -.10} .32 -.12] .32

(=) Not recorded.




TABLE II. - ME/NB AND ESTIMATED STANDARD DEVIATIONS
OF MEANS OF PARAMETER ESTIMATES IN SIMULATION
EXPERIMENT B

(Results are based on 100 simulations for esch case. |

Design Mean Standard devistion mean

1.8 | 2,3, 3,1, |4,51)@,3,2] 3.,1,9

n=7]8y| 2.188 2.181 | 2.191 |0,0040 [0.0038| 0.0047
L1 . 203 .19 .206 | .0097 | .0082] .0048
o .083 .081 .083 | .0029 } .0030} .0034

Design Mean Standard devistion mean

(lu 10. 1’ (‘."‘) (so 2'5’ (1,10, 1) (" " ‘) (50205)

n=1218,| 2.182 2,198 | 2,167 }0.0030 10.0031] 0.0031
By .212 199 197 .0114 | .0046] .0038
[ .089 .093 ,083 | .0022 | .0025] .0026

Design Mean Standard deviation mean

1,20,1) }(7,8,1 ](10,2,100]1, 20, 1)} (7, 8,7)}(20,2,10)

=228, 2.200 2,200 | 2.199 |0.0022 [0.0022 ] 0.002}
8, .210 .202 .198 .0101 | .0028 | .0026
o .098 092 .093 | .0018 | .0027| .0019
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TABLE Ill. - OBSERVED, ABYMPTOTIC, AND NORMAL THEORY COVARIANCES
OBTAINED FROM EXPERIMENT B
{Results are based on 100 simulations of sach case.)

Design Observed covariance | Asymptotic c:nﬂnco Normal thoorya
oao°) x10%) covariance (x10%)

1,8,1 ’1 1.88 1.7 2.35 [ ]
By | -3 9.80 .29 | 8.76 .00 8.23
c -8} -840 -.17] .29 | 0,93

2,8,2 pl 1,62 1.7 2.38
By | 29| 2.1 .28 | 3.08 .00 4,12
o }~-.06| -.183]0.88 -, 18 .2710.93

31,3 s | 222 1.1 2.38
p, 48] 2.0 .13 1 1,08 .00 2.74
o }-.28 23 11.14 -.34 .02]0.02

1,10,1 ’1 0.92 0.97 1,37
p, .08113.07 18 ) 7.04 .00 8.23
o |-.11] -.38 | 0.49 -.14 .08 0.56

4,4,4 ’1 0.83 1.00 1.37
ﬁz 18] 1.99 .13 1.45 .00 2.06
o ]-.21 .16 ] 0,68 -.21 .1310.852

52,8 31 0.98 1.01 1.37
p, 141 1.44 .13 | 1.17 .00 1.64
o | -.18 .14 1 0,68 -.20 .12/ 0.83

1,20,1 ’1 0.47 0.52 0.74
’2 .32110.19 .04 5.18 .00 8.23
c |-.12| -,1110.33 -.12 .0210.29

1,8,7 ’1 0.50 0.5% 0.74
’2 .04} 0.77 .06 | 0.88 .00 1.18
o |-.08 .0410.28 -.10 .03¢ 0.34

10,2,10 31: 0.46 0.35 0.74
pz .09 .67 % 0.5%9 .00 0.82

o.l-.07 .12 | 0.36 -.10 .0810.32




TABLE IV, - BDMULATION RESULTS FOR EXPERIMENT C

(Results are based upon 100 simulations of sach case.}

. True parsmeters Means of sstimates
ﬁ_n ’g ﬂ’ ’1 ’2 ’3 o
) ne1| A 2000 ]0.000 |-0.100 1.966 | -0.004 | -0.099 | 0,049
B|2.000] .00 ] -.078 1.v70| .o48| -.077| .o0m
c . —————
D -
E
p=2] A | 2.000 | 0.000 |-0.100 1.991 | -0.002 | -0.103 | 0.078
B 080 | -.078 1.992| .080 | -.080| .073
c .100 | -.080 1.096 | .104| -.049 | o076
D .180 | -.028 2,024 | .278| .023] .os0
E 200 | .000 2,058 .323] .o045] .o67
n=4| A | 2.000 | 0.000 | -0.200 :.002 ! -0.002 | -0.104 | 0.001
B ,080 | -.078 1.995 ] .049 ] -.078 | .o089
c .100 | -.080 1993 ] .100| -.081 | .o89
D 180 | -.028 2008| .174) -.007] .09
£ .200 | .ono 2024 | .288| .o18| .oe9
ax8| A| 2.000 | 0.000 | -0.100 2.004 { 0.001 | -0.103 | 0.088
B 080 | -.075 2.002| .os0o| -.078 | .o8s
c .00 | -.080 2002| .101 | -.082( .098
D .180 | -.028 1.997 ] .168| -.008 | .0s98
E| cocce | eomca | coemee | [ cceee commn | mmece | conne




TABLE V. - OBSERVED, ASYMPTOTIC, AND NORMAL THEORY COVARIANCES

FOR EXPERIMENT C

) a=1)
(Results based on 100 simulations of each case. |
Model Observed covariance Asymptotic covariance Normal theory
~10%) 0a0%) covariance (x10%)
A py| o0 7.88 7.99
[ 28 00 1.8 -.08 0,92 0 1.64
8y -2.00 .10 1,08 -2.31 .03 0.98 -2.885 0 1.18
o 77 00 .16 1.12 74 .00 .48 1.68
B ’1 7.09 7.98
8y .10 1,78 .09 1.02
’8 -2.32 ..02 1.2% -2.33 -.01 0.9
4 .30 .00 1,07 .86 07 -39 1.89
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TABLE V. - Continued.

M) n=2)
Model Observed covariance Asymptotic covariance Normal theory
oao’) {x10%) covariance (x10%)
A B, | b5.38 3,90 4.00
By .00 0.82 .01 .56 .00 0.82
By |-1.32 -.03 0.4 -1.14 .02 0.48 -1.18 .00 0.5%
o .28 .03 -.09 o0.68 12 .09 .10 0.77
B By | 408 4,05
fn | ~-18 0.87 .06 0.59
By | -1.05 .09 0.52 ~1.16 «.01 0.50
e | -.17 .12 -.04 0.68 .18 .00 -,11 0.88
C By | 5.89 4.21
Bq 2.18 4.85 .14 077
g | -.57 1.6 1.12 -1.18 .08 0.54
g 00 .31 .20 o.82 .10 .3t .20 o©.82
D p,|27.89 5.01
By | 37.56 175,57 3T 2.06
Bq | 12.30 27.70 11.35 -1.35 .66 0.95
] -1 .08 .02. 0,95 .31 .36 .08 0.9
E By | 29.9 4.95
By | 40.38 74.35 1.58 1.97
Bq | 12.86 27.70 11.25 -.68 3.39 2.13
o 1.25 0.70 .38 1,34 .45 1,33

1.52 .60




TABLE V. - Contiaued.

©) (n=4q)
-
Model Observed covariance Asymptotic covariance Normal theory
a0’ x10%) covariance (x10%)
A g | am 1.94 2,00
By .18 0.33 .02 0.28 .00 0.41
Bs -.59 -.04 0.26 -.55 .00 0.24 -.59 .00 0.29
(4 .01 -.01 -.01 0.3 .02 .03 -.04 0,38
B By 2.28 2.14
By | - om .04 0.3
By | -89 .04 o0.25 -.61 -.01 0.26
o -.08 .04 .00 0.48 .09 .01 -,05 0.40
C Bl 2,28 2.30
By | -09 o.m 10 0,42
53 -,685 .14 0.31 -.65 .04 0,30
4 -.16 .16 .06 0.57 .12 .09 -,02 0.49
D 8, | 590 2,37
By | 448 9.10 .23 1.25 ‘
ﬂa .00 3,185 1.46 -.61 .43 0.49
o 37 427 .08 0.51 .08 .33 .09 0,55
E By 12.68 2.60
8, |15.06 27.82 .90  4.09
BS 4,38 10.06 4.10 -.34 1.73 1.10
4 .48 .72 .22 0.53 .13 .61 .22 0.58




TABLE V. - Concluded.

@ =8
Model Observed covariance Asymptotic covariance Normal theory
(xloa) (x1o’) covariance (x103)
A ﬂl 1.20 0.86 1.00
82 .00 0.15 .00 0.14 .00 0.20
53 -.31 .00 0.13 -.27 .00 0.12 -.29 .00 0,15
4 .09 .00 -,04 0.17 .00 .00 -,02 0.19
B B, |13 1.92
Pa| 00 0.14 .02 0.15
By|-43 .02 o019 -.29 .00 0.12
o .04 .00 -.03 0.20 .02 .01 -.02 0.20
C By |1.49 1.12
Ba .09 0.22 .04 0.21
pa -.43 .02 0.19 -.31 .02 0.15
g .15 .10 .02 0.26 .05 .05 -,01 0.24
D 1.6 1.24
By| .21 2@ 12 0.62 ,
Ba -.39 1.32 0,84 -.32 .21 0,24
c .19 .33 .07 0,33 .09 .16 .03 0,27

Ty



NORMAL AND EXTREME VALUE DENSITY
FUNCTIONS:

e NORMAL, MEAN 2,142, STD. OEV. 0.1283
oo EXTREME VALUE 41 » 2.2, 0 = 0.1), MEAN
“— 2.1@, STD. DEv. 0.1282
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Figure 2. - Themeans of i and & as function of A for the
three sample sizes n =5, 10, 20. Bars indicate one standard
srror of the mean.
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Figure 3. - The location parameters of modes one
and two s 3 function of Z;. The dashed lines
indicate the upper and lower quartiles of sach

distribution.
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Figure 4. - The function uV(z) for models A-E.
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Figurs 6. - Vafiance of B, x10%) as  func-
tion of sample size for the difterent mode ]
models.
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models,



1 2 41 ) 2 4%
SAMPLE SIZE, n

MODEL C-9,

Figure 8. - Varlance of By 10%) a8 8 func-
tion of sample size for the different mode ]
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