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	'0'

L

National Aeronautics and
YIP

'	 Space Administration '-	 `ATP	
GF

Goddard Space Flight Corder c.
Greenbelt, Maryland 20771 t



LONG-TERM STUDIES WITH THE ARIEL 5 ASM.

II. THE STRONG CYGNUS SOURCES

S.S. Holt, L.J. Kaluzienski	 E.A. Boldt, and P.J. Serlemitsos

Laboratory for High Energy Astrophysics
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

The three bright 3-6 keV X-ray sources in Cygnus are examined for

regular temporal variability with a 1300-day record from the Ariel 5

All Sky Monitor. The only periods consistently observed are 5.6 days

for Cyg X-1, 11.23 days for Cyg X-2, and 4.8 hours for Cyg X-3. The

78.4-day period of Kemp, Herman and Barbour (1978) for Cyg X-1, the

9.843-day period of Cowley, Crampton and Hutchings (1979) for Cyg X-2,

and the 16.75-d period of Holt et al. (1976) for Cyg X-3 are not

confirmed.

Subject Headings: X-rays: binaries -- X-rays: sources
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I. INTRODUCTION

We have previously reported periodic modulation in the intensities

of all three of the bright X-ray sources in Cygnus, based upon analyses

of the first year of data obtained with the Ariel 5 All-Sky Monitor

(ASM). The data base has since grown to 1300 days, so that we can now

test for the presence of these effects over a temporal record which is

approximately four times longer. Detailed descriptions of the experi-

ment and data reduction algorithms are given by Holt (1976) and Kaluzienski

(1977), respectively, while examples of the analysis techniques applied

to the long-term ASM data bases of known periodic sources may be found

in Holt et al. (1979).

The 1300-d records of all three Cygnus sources are displayed in

Figure 1, modified by all of the corrections which the automated computer

algorithms are capable of applying. There are some obvious examples

of contamination which have eluded this procedure, c.f. the synchronous

increases in all three sources ca. day 1440 and the erratic high points

in the Cyg X-3 record during the extended high state of Cyg X-1. We

have removed, from further analysis, a total of approximately 40 days

of data during which time there may have been some systematic solar con-

tamination of the record owing to the proximity of the sun (in spacecraft

longitude) to the Cygnus sources; these data were removed via this geometry

condition only, and not by visual inspection of the record for potentially

contaminated data. The only data which were subjectively removed were

all the Cyg X-3 data taken during the prolonged Cyg X-1 high state.

As sources closer than ,,, 100 may sometimes be confused by the ASM, the

i	 I
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data base uses the maximum value which a source may have in order that

transient episodes of increased emission are not missed; this means that

some values of Cyg X-1 and Cyg X-3 data are systematically high. As

we are concerned here with possible periodic modulation of the source

intensities, we have assumed that contamination from neighboring sources

(and from other systematic effects) will be asynchronous with such inherent

modulation if the data base is long enough. A demonstration of the gen-

eral soundness of this approach to the analysis of the ASH data base

may be found in Holt et al. (1979), where we were able to extract known

periodicities from weaker sources in more highly confused regions of

the X-ray sky.

II. CYG X-1 DATA ANALYSES

Our initial report of 5.6-d modulation of the Cyg X-1 intensity

(Holt et al. 1976a) was for the initial ti 300 days of Figure 1. We can

now report that the modulation persists throughout the entire 1300 days,

with the possible exception of the "high state" data intervals. The

"high state" data were displayed on a cycle-by-cycle basis by Holt et

al. (1976b), with an indication that relative minima systematically

appeared at HDE226868 superior conjunction. Nevertheless, folding all

of the "high state" data at 5.6-d does not yield a significant minimum

at this phase; this apparent lack of net 5.6-d synchronization may possibly

be ascribable to the very large (ti factor of 4) asynchronous variations

over a relatively limited number of 5.6-d cycles.

We have divided the remainder of the Cyg X-1 record (excluding

only the two unambiguous "high state" episodes) into eleven intervals

.y



4

-^	 7

- 4 -

of 1-3 month duration, using natural gaps in the data record and visual

inspection of Figure 1 to arrive at boundaries between which Cyg X-1

may be relatively well-characterized by an average value. For all of

these eleven intervals, we folded the data in six bins using the HDE226868

ephemeris of Bolton (1975) with one bin centered at superior conjunction.

In seven out of the eleven cases, that bin was the one with minimum

intensity of the six. In the remaining four cases, that bin was second

lowest three times and third lowest once (and was always statistically

consistent with being lowest). The a priori probability of obtaining

any distribution of the eleven trials which has at least seven minimum

occurrences, no more than one occurrence of the third lowest, and no

occurrences of the three highest, is 5 x 10 -5 . The eleven trial intervals

were then coalesced into two groups: one with relatively high average

value (approximately 450 days of non-contiguous coverage), and the other

with relatively low average value ( approximately 650 days). No attempt

was made to remove trends: the data we=re simply sorted into the six

5.6-d bins and a weighted average of all the data in each bin was com-

puted. These two independent 5.6-d light c ,,irves are displayed in Figure

2, along with the overall light curve for all eleven intervals (i.e.

the weighted average of the two other traces).

For the high-average and low-average light curves, the minima at

HDE 226868 superior conjunction relative to the overall average for the

six bins are significant at the 2.8 and 2.3 sigma levels, respectively.

For the overall light curve, the statistical significance is 3.4 sigma.

This significance is based entirely on the errors assigned to the individual

data points, which are ( typically) inflated by ti 30% over statistics

I
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to accommodate contributions from systematic effects which are not directly

measurable. If we were to use, instead, the scatter of the six bins

about their mean in the overall light curve to estimate the "effective"

statistical error, the significance of the decrement at superior con-

junction would be reduced by almost a factor of two (which suggests that

there are still some systematic effects which cannot be properly corrected).

Nowhere in the above have we imposed the argument that we expect the

5.6-day effect, if real, to be in phase with superior conjunction. Perhaps

the most direct way to make this adjustment is to consider the intensity

in the bin centered at superior conjunction against the average of the

other five (rather than all six); in that case, the decrement at conjunction

is significant at the 4.1 sigma level (using the estimated data errors

to compute the bin errors), or 3.1 sigma (using the scatter of the remaining

five bins about their mean). Note that this decrement represents only

ti 1% of the total area under the 5.6-day light curve. As there is no

corresponding minimum at inferior conjunction, we find no evidence for

a fundamental periodicity of 2.8-days rather than 5.6-days.

We could not have "discovered" the 5.6-d periodicity of Cyg X-1

without previous knowledge of both the period and the phase; the 5.6-d

modulation is not detected with any statistical significance in a Fast-

Fourier transform of the data displayed in Figure 1. It is true that

we achieve a local maximum at 5.6-d for 
x2 

as a function of trial period

(against the hypothesis of a constant source intensity), but there are

many such peaks with even greater formal statistical significance at

much longer periods. We consider the phase consistency, therefore, to
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be crucial to the identification of the effect we observed with a true 	 i

periodicity in the X-ray source. All other pseudoperiodi cities in our

record are presumed to reflect the Fourier decomposition of a distinctly

variable emission history.

Kemp, Herman and Barbourf-(1818) have detected a 78.4 periodicity

in the first 1100 days of the data in Figure 1, which apparently correlates

with other photometric and polarimetric data of Cyg X-1. Applying ex-

actly the same data selection and correction criteria as we have for

the 5.6-d effect discussed above (but not the same as used by Kemp et

al. 1978), we are unable to detect any significant modulation at this

period. The FFT and X2-vs.-trial-period analyses which we perform routinely

each, in fact, yield local minima at 78.4-days. The overall 78.4-day

light curve can be fit with a modulation of amplitude v 3.5% (at a phase

within 10% of that reported by Kemp et al.), but we can detect modulation

which is formally much more significant at periods > 5 days removed from

78.4 days. As discussed briefly above, we have no reason to assume that

these period candidates represent true modulation of the source intensity.

IAe can not exclude a 78.4 day modulation with amplitude ti 5%, but we

can not detect it, either.

III. CYG X-2 DATA ANALYSES

Holt et al. (1976c) reported a periodicity of 11.17+.10d in the

fi rst 400 days of Cyg X-2 data displayed in Figure 1 9 with an amplitude

ti 10%. This periodicity could be independently detected in later

mples of the data, as well. A synopsis of the new evidence for the

esence of the effect Is displayed in Figure 3. The best-fit period
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to all of the data is 11.23+.03d, and the best-fit sinusoidal amplitude

of the modulation is 7.2%, although it can be slightly better-fit by

a saw-tooth form than by a sinuosoid. An autocorrelation function was

constructed as a diagnostic tool, wherein the data were grouped in one-

day bins (characterized by the weighted average and assigned error of

all data in that bin), with days during which there was no data given

the average source value (and an assigned error of three times that value).

The autocovariances were then computed by weighting each bin using the

assigned errors, so that the "best" data contributed most and the artifically-

filled bins virtually nothing. This autocorrellagram is displayed to

demonstrate that multiples of 11.23-d are discernible, and that overall

variations in Cyg X-2 intensity typically occur over N 50 day intervals.

IV. CYG X-3 DATA ANALYSIS

The finest temporal resolution available from the ASM is ti 100

minutes, or N 1/3 of the well-known 4.8-h variation of Cyg X-3. Never-

theless, the lack of sharp intensity gradients in this variation allows

us to consistently detect the modulation by tagging each measurement

with the time of the middle of the data accumulation interval, and fold-

ing as in the Cyg X-1 and Cyg X-2 examples above (with the data added

to only the bin into which the mid-time of the observation falls). Even

though each measurement actually extends over several light curve bins,

Figure 4 indicates that the asynchronous sampling allows us to achieve

a reasonable measure of the light curve. We attempted to search for

dependence of the light curve shape on average intensity, but could not

detect any statistically significant variations. Plotted in Figure 4
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are the high-average, low-average and overall 4.8-h light curves (exactly

as was done for Cyg X-1 in Figure 2). For a variety of average intensity

values between 0.1 and 0.7 (not shown explicitly in Figure 4), we always

achieved statistical consistency with the three parameters which charact-

erize the overall average curve: a minimum centered in bin 1, a maximum

in bin 10 (phase 0.62 .+ .03 relative to the center of bin 1), and a

maximum-to-minimum-lain ratio of 1.87 + .14. While we are not able to

comment on the shape of the 4.8-h variation for any individual cycle,

it would appear that the above three parameters are not strongly dependent

on the local source intensity on the average. While our sampling con-

straints clearly force our value of the maximum-to-minimum-bin ratio

to represent a lower limit, a systematic variation in this ratio as a

function of average intensity could have important consequences in model

determinations. We do observe a slightly decreasing ratio with increasing

intensity, but the individual ratio errors exceed the deviations from

average.

We have previously reported a period of 16.75+.25-d from the first

400 days of Figure 1, along with independent confirmatory data over ti 3

cycles from the Ariel 5 SSI experiment during which there was no ASM

coverage (Holt et al. 1976d). The present data indicate that the actual

period	 may be 33.0+0.2d, as demonstrated in Figure 5. The x2-peak

is not impressive, but the coincidence of several pieces of evidence

is consistent with this conclusion. The high-average 33.0-d trace has

considerable overlap with that used to find the originally-reported

16.75-d effect; clearly, this trace can be reasonably well-fit with two
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similar cycles over N 33.0-d. The low-average trace, which is a completely

independent data sample, also exhibits two peaks, but their separation

is clearly not equal to half of 33.0-d. An autocorrelation for all the

Cyg X-3 data, which is computed in a manner similar to that displayed

in Figure 3 for Cyg X-2, suggests the reproducability of a 33.0-d light

curve: in the autocorrellagram of Figure 5, we have indicated the positions

of expected features for two peaks separated by N 10-d in a 33-d cycle.

Lastly, the completely independent Ariel-5 SSI data which were approximately

in phase with the 16.75-d ASM ephemeris agree even more closely with the

presently reported 33.0-d ephemeris.

V. DISCUSSION

a.	 Cyg X-1

The 1300-d light curve of Cyg X-1 exhibits rather less variability

on timescales less than ti 1 month than do those of Cyg X-2 and Cyg X-3.

Aside from the dramatic high-state episodes commencing near days 480

and 670, there are few significant short-term variations. The largest

short-term increase (near day 610) is definitely real, as it was 0so

observed from SAS-3 (Canizares et al. 1976), but the small number of

others (such as that near day 1440) may arise from ASM systematics.

Otherwise the data are generally consistent with a bimodal source intensity

which, in the low-state, is characterized by gradual monotonic variations

extending over months. No convincing evidence for true periodicity in

this long-term variation could be found.

The persistent 5.6-d modulation almost certainly has its origin

in the increased line-of-sight gas column density near HDE226868 superior

low
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conjunction which is manifested most strikingly in "absorption dips"

(cf. Murdin 1976). If we assume that the absorption arises from cold

gas, the present results indicate that the average increased column

density encountered near superior conjunction corresponds to ,, 1022

H-atoms/CM2.

b.	 Cyg X-2

We observe a modulation of the Cyg X-2 intensity with a period

of 11.23 ± .01 days. Other candidate periods which have been previously

reported for Cyg X-2 or its optical counterpart V1341 Cyg (all photometric)

are 13.6-d (Chevalier et al. 1975), 0.92-d (Wright et al. 1976) and 5.9-

d (6asko 1977). We find no evidence for any of these candidate periods

in the ASM data. The many X-ray and optical similarities between Sco

X-1 and Cyg X-2 suggest that timescales in excess of a few days might

not appear to be likely associations with a binary period, as the Sco

X-1 binary nature is now well-established with a period 0.787 days (Gottlieb,

Wright and Liller 1975; Crampton and Cowley 1975). New evidence for

a spgctroscopic period of 9.843 days (Cowley, Crampton and Hutchings

1979), further complicates the picture. We find no evidence for a 9.843

day modulation in the ASH data, but we appreciate that a spectroscopic

period is less ambiguously interpretable in terms of a binary system

than are photometric periods.

The origin of the 11.23 day effect we measure is considerably less

straightforward. It would be reassuring if we were able to sensibly

connect the 11.23 and 9.843 day effects. The 1.7 day binary period of

X-1 and its 35 day variation (usually ascribed to accretion disk

I &I
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precession of some sort) do, in fact, result in "dips" at their beat

period of 1.6 days. An analogous situation here would require a disk

precession period of N 80 days (which timescaie is not indicated in the

ASM data).. In view of the imprecise understanding of the 35 day effect

in Her X-1 which still remains, even after the detailed scrutiny to which

it has been subjected (c.f. Boynton, Crosu and Deeter 1978), it is not

at all clear that 11.23 days could not be the "precession" period.

Similarly, a third body cannot be excluded. A binary period as large

as 9.843 days would be less likely to yield significant X-ray photometric

modulation than would a shorter period, in which case the absence of

a direct connection between 11.23 days and 9.843 days is disappointing,

but not necessarily surprising. The final confirmation of either 9.843

or 11.23 days with a binary period would be disappointing (at least to

these authors), since it would virtually demand that the degenerate object

in the system be a neutron star. The apparent success in applying the

spectral modelling of Kylafis et ai. (1979) to Cy X-2 with the assumption

of a degenerate dwarf as the compact object represents a significant new

step in the utilization of X-ray spectra (and spectral-temporal cor-

relations) for the inference of fundamental source parameters; it would

indeed be unfortunate if Cyg X-2, which appears to be prototypical of a

degenerate dwarf in all respects vis-a-vis the Kylafis et al. model,

turns out to be a neutron star instead.

C.	 Cyg X-3

The 4.8-hour modulation of Cyg X-3 is at the high-frequency limit

of the ASM data capability. We find that the parameters which characterize
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the shape of the modulation (epoch of minimum, phase of maximum and ratio

of maximum to minimum intensity) are independent (typically to w 10%)

of the local source intensity. This modulation is ascribed to the binary

period of a neutron star in the stellar wind of its companion (c.f. Becker

et al. 1978) or embedded in an optically thick shell (c.f. Milgrom 1976).

Becher et. al. have detected a marked phase dependence in the spectra

of two relatively .ow intensity episodes of Cyg X-3, which is manifested

most obviously in precisely the 3-6 keV energy band to which the ASM

is sensitive. In both of the two Becker et al. measurements, the maximum-

to-minimum ratio- were systematically higher by ,, 5% in the band 3-6

keV than in the band 6-20 keV (although the 6-20 keV ratios of the two

differed from each other by a like percentage).

The low-average trace of Figure 4 yields a ratio of 2.22 ± .30

which, although it should represent a lower limit by virtue of the sampling

systematics of the ASM, agrees well with the Becker et al. values of

ti 2.1 and ti 1.9. The high-average trace yields 1.75 ± .13 and, while

consistent with the overall trace value of 1.87 ± .14, is suggestive

of a decreasing ratio with increasing intensity. Serlemitsos et al. (1975)

have pointed out that the total X-ray luminosity of Cyg X-3 is independent

of high-or-low state, as the spectrum (at like 4.8-hour phase; apparently

changes from power-law to blackbody with increasing observed intensity

with the luminosity unaffected (in facia, the luminosity is inferred

to be close to Eddington-limited). The present result is consistent

with the picture of a hard X-ray source which becomes more optically

thick (via electron scattering) with increasing intensity, as

a
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the maximum-to-minimum ratio of the 4.8-hour modulation certainly

does not markedly increase with increasing intensity.

The precise 4.8-hour period value we have chosen to fold the

data over is that of Parsignault et al. (1976). Our data record cannot

statistically exclude either the Parsignault et al. period with P =

0, the Copernicus period with P = 0 (Mason, Sanford and Ives 1976), or

the newly proposed COS-B value with P # 0 (Manzo, Molteni and Robba 1978).

The 16.75-d period we previously reported (Holt et al. 1976d)

does not appear to persist through the entire 1300-d data base. If

any such long-term periodicity is present, it is more likel y to be

33.0 ± .2-d with two peaks separated by 1/3 of the period. A host of

exotic possibilities arise if such modulation can be confirmed (e.g.

an eccentric orbit has two points of closest approach to a focus which

differ by less than half the orbital period, in which case the 4.8-hour

modulation might be reexamined for a rotational origin), but our data

do not demand its reality.
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FIGURE CAPTIONS

Figure 1 - Raw 1300 day histories of Cyg X-1, Cyg X-2, and Cyg X-3.

Each data point represents an average intensity over

5.6 days. There are some obvious systematic increases

which occur simultaneously in two or all three sources.

See text for an explanation of how the data were accepter

for further analysis.

Figure 2 - The total Cyg X-1 record, less the data in the two

unambiguous high states, folded modulo 5.6 (ephemeris of

Bolton 1975) and 78.4 (ephemeris of Kemp, Herman and Barbour

1978) days. The solid traces represent the separate light

curves for episodes where the average source intensity

was relatively high or relatively low (see text). The

dashed traces are t",, light curves for all of the data.

The inset exhibits the lack of X 2 "signal", which would

have a shape similar to the dashed triangular trace if a

78.4 day periodicity was detectable in our data.

Figure 3 - Cygnus X-2 data. The upper trace is an autocorrellagram

with one-day lags (see text); the arrows represent the

locations of expected features for an 11.23-day period.

The lower trace is all the data folded modulo 11.23 days.

The inset is the distribution of the X 2 obtained, as a

function of trial period, for folds similar to the lower

trace against the hypothesis of a constant source intensity.

The epoch of minimum for a sinusoidal fit to the lower

trace midway through our data sample is JD2,443,000.9.



Figure 4 - Cyg X-3 data folded modulo the 4.8-hour period of

Parsignault et al. (1976). The dashed trace includes all

the data, while the solid traces are the separate folds

for relatively high and relatively low average source

intensities. The center of bin 1 corresponds to the minimum

epoch of Mason, Sanford and Ives (1976).	 As described in

the text, each measurement is typically accumulated over

ti 5 bins, but is added to only that bin which corresponds

to the midpoint of that measurement.

Figure 5 - Cygnus X-3. The light curves, autocorrellagram and X2

distribution are as described in previous captions. The

arrows represent the positions in the autocorrellagram

where features are expected for a 33-day modulation with

two peaks separated by 10 days. The epoch for the start

of the light curve trace, midway through our data sample,

is JD2,442,987.5.
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