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ABSTRACT

GRAVITATIONAL SPECTRA FROM THE TRACKING OF

PLANETARY SPACECRAFT IN ECCENTRIC ORBITS

Two dimensional gravitational spectra are derived from simple harmonic

analysis of range rate tracking data on planetary orbiters. The eccentricity of the

orbit is arbitrary and results are shown to vary substantially with the aspect angle

of the tracking line of sight with the orbit plane. The development for arbitrary

start and stop times (with respect to periapsis) uses modified eccentricity functions

evaluated by quadrature.

Simulations with a point—masses model of Venus using tracking data on the

Pioneer Venus Orbiter show excellent predictions of the average orbiter spectrum

over one Venus day. The Venus gravitational signal should be above the tracking

noise level for are lengths longer than 40° (in true anomaly) about periapsis and

for terms as high as 55th degree.

Analysis has b°en made of tracking residuals from a short arc fit to Mariner

Mars 9 data over the Hellas Basin (using a complete 6th degree field). Results

are most consistent with higher residual gravitational power than predicted from

Kaula's rule for Mars.
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GRAVITATIONAL SPECTRA FROM THE TRACKING OF

PLANETARY SPACECRAFT IN ECCENTRIC ORBITS

"P

INTRODUCTION

The spectrum of a surface harmonic field is a convenient summary of (roughly) the power avail-

`

	

	 able at a discrete seris of wavelengths. In the case of the gravitational field at the surface of a planet,

the wavelength is also a fairly good indicator of the maximum depth of the equivalent spectrum of

source anomalies (e.g., long wavelength, deep source, see Khan, 1977). Detailed interpretation of the

spectrum in terms of the depth of density anomalies for the Earth began with Guier and Newton (1965)

with notable analyses by Allan (1972), Lambeck (1976), and Kaula (1977). Recently Ferrari (1977)

has applied Allan's method to the Moon and Mars. My purpose here is merely to show how easily

the spectrum, in particular a smoothed version of it, can be derived directly from harmonic analysis

of range rate tracking data to planetary orbiters. This work is an extension of the ideas in Wagner

and Colombo (1978). Here I consider the `fixed direction' tracking of spacecraft in eccentric

orbits under arbitrary viewing angles with respect to the orbit plane and periapsis.

DEVELOPMENT OF THE TRACKING SPECTRUM

I define the spectrum of the planet's gravitational field as the potential degree variances:

1Q

	

oQ 
	 (CQm + Sjm),

M=0

where the external potential for a `spherical' planet is given as

Q	 r Q	 _	 _

V = r F,	 1 r 

_

PQm (sin0') [ C Qm cosmV + SRmsinmX']
Q=0 m=0

r, ,O', V being the distance from the center of mass, latitude and longitude respectively (ro is the

mean radius, p the Gaussian gravity constant) and the P Qm are fully normalized associated

Legendre functions (Heiskanen and Moritz, 1967). For convenience, I consider the planet to be

without rotation and the surface spherical coordinate system to have a pole along the tracking

1
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Figure 1. Coordinate System Orientations

Line of Sight (LOS). The field harmonics Vgm arc initially given in this system. But, we shall

see that the invariance of the spectrum in rotation makes this initial choice arbitrary. In what

follows, primed harmonics refer to the pole of the orbit plane: ( a', b')gm,. The periapsis of the

orbit is at a and w, f and I are the planet centered argument of periapsis, true anomaly and in-

clination of the orbit to the equator.

From Hotine (1969), the acceleration of the spacecraft by the gravitation field in the LOS

direction is given in terms of fully normalized harmonics as:

0	 g+1

LOS = 7	 `r°)	 Pfm (sin0')[agm cosmX' + bgm sinmX'] ,	 (1)
g-0 M =0 r

where,

(a' b)gm - Ngm (Cg-1,m' Sg-1,m) with

Ngm = [(2u - 1)(Q 2 - m2 )(2Q + 1)-1 ]'/', and
	

(2)

7 = µ
r20

2



1 g

To first ovier, the orbit of the spacecraft is an ellipse virtually unchanging in a single pass
C

k

of the planet. Therefore, (to first order) we want to analyze a time series of the anomalous line

of sight accelerations along the path of the fixed ellipse. This involves initially a transformation

i	 of the accelerations to a coordinate system with a pole normal to the orbit plane. Followingl
Kaula ( 1966, p. 31, 34) (see also Wagner, 1976), I find:

R+1 2(R-m' even)
f	 LOS = '3' r—° 	 P Rm'(o)[aQm'cosm'(w' + f) + bjim'sinm (w' + f))	 (3) t.

	

R=0 r	 m'-o
t

where

_	 R	 _R-m even

PRm (o)aRm' 	 [R,m >(R-m') /2(1') + FR.m,(R+m')/2(h)]
fab	

(4)
x	 m =0	 Rm R-m odd
f

except

_	 R	 R-m even

PRo (o)aRo = 	 r2'M'R/2(l') bm	 for Q even,	 (S)

	

dd	
r

M=0	 Rm^ R-m o

and

bRm12-m

R - m even

PRm' (o)bRm' - Lr [rR,m,(R -mj/2(h) 	
(6)

M=0	 82m 	 odd

An efficient formula for evaluating the usual inclination functions F Qm p(I') is found in Allan

(1967a). Here the inclination functions.0like the associated legendre function are fully normalized.

Finally, the anomalous accelerations can be written as a time series by expanding functions of

r and f in terms of the mean anomaly (M) of the satellite in its orbit of semimajor axis 'a' ana

eccentricity V. For a full revolution of data, using [G Qpq (e)] Kaula 's eccentricity functions

(Kaula, 1966, p. 35), 1 find

( r.) 2+1^cosm'(w'+ f) 	 (ro)R+1 00 [cosm(G+ + G_A aosnm

n o	 +r	 sinm' w' + f	 a	 -o sinw

w

'm' G + G-A cosnm
(7)

- [sinw'm'(G+-G_)] sinnm

+ [cos ca m'(G+ - G_)] sin nm

3
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where

G+ - GQ,(2-m')/2,n-m'(e),	
(g)	 I

G_ = GQ,(Q-m' )/2,-n-
m'(e),

and the mean anomaly is a linear function of the time (t) from periapsit' M = (Zn/T)t, T being

the orbit period.

Let the periodic time series of accelerations for a full revolution be -epresented by the

Fourier series:

LOS = (LOS) +	 (CLOSn cosn m + SLOSn sinn m)	 (9)
n=1

Then Equations (7), (6), (5) and (4) substituted in (3) gives the Fourier Coefficients of

Equation (9) as

oc ( ro ) k+l

  

Q (k-m	 fab̂meven)	 Q	 Q-m even
CL6Sn = -t E — 	 E coswni [G++ G_) 1:[F_ + F+)

Q 0 a 	 m -o	 m- o Qm Q-m odd (10)

Q	 Q - m even

+ sinw'm'[G + + G	 m-) 1: a9[F_ - F+ ]	 ,
M=0	 aQm Q-m odd

and

Q+1 Q(Q-m even)	 Q	 Q-m even
SLOSn = Y	

Cr
—°)	 - sinwm'[G+ - G_)	 [F +F+] aQm

Q 0 a	 m'=0	 m- o 	-bQm Q-m odd

0 1)
Q 	 Q - m aven

+ cosw m'[G+ - G_) L IF -'F+]f
aQml

bQm

M=0 	 Q-m o6d

where

F- = FQ,m,(Q-m')/2 (I'),

F+ - ^Q,m,(Q+m')/2(I^1,

except chat if m' = 0,	 one F is used in [F_ + F+].

4
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Let the power spectrum of these accelerations be:

Pn(LO-S) = 2 [CLOSn + SLOSn) .

What is the expected power spectrum over all possible LOS positions with respect to the planet

(I', w' constant)? I have no answer to this question at present. But there is an easy answer to

a complementary ergodic question and that answer appears to be the same. The complementary

question is: What L the expected spectrum for a given LOS position over all possible gravitational

fields [C*, 3*; whose potential coefficients are chosen randomly, in an uneorrelated manner with:

E(C2m , Sg*m) = aJ ,

where,

81 = aj / (2u + 1) ,

the mean square coefficient of the planet 's field by degree?

Squaring Equations (10) and (11) [written for the random field (a*, b*)), and taking the

expectations (rioting that the expectations of cross products of field coefficients are zero), the

result is:

[-
	 2(Q+1)	 A (k-m' even)	 k

E[Pn(LOS)l = y2	
t

^
	-(^'+ +G?j2.d(F? + F+) Nm
 ,-

Q o a	 m 0	 -o	
(12)

Q

+ 4(cos2w'm')G+ G_	 F_F+ NIm,
M-0

where:

F+ = F+, m' # 0

F+ = O, m'=0

Note the dependence of this result on the gravitational spectrum (bj). While the reference

for the field is along the LOS, the surface spectrum is the same with respect to any pole. In

particular, the SQ _ 1 in Equation ( 12) are the same as the field spectrum conventionally referred

to the planet 's North Pole.

5
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Figure 2. Planet, Orbit and LOS Coordinates

To utilize Equation (12) for predicting the tracking spectrum, we need to find I' and w'

(the complements of the aspect angles of the view (L) with respect to the orbit plane and the

periapsis direction) in terms of conventional planet centered coordinates (Fig. 2). Using Figure

2, I find:

	

I' = cos 1 [cos Isin Lo + sin I cos Losin(X o — LX)]
	

(13)

and

W, = 90° — cos- 1 Vsin7rosinLo + cos7rocosL.ocos(L X — trX )]/sin I'},	 (14)

where arm, 7rX are the planet centered latitude and longitude of periapsis, LO , L? fare the cor-

responding coordinates of the viewing direction (LOS) and Ao is the planet centered longitude of

the ascending equator crossing of the orbit.

The expected spectrum for given aspect angles of the view can be simplified for average or

more specific viewing.conditions. From (12) the expected spectrum averaged over all aspect

angles (90°—w') with respect to periapsis is simply

00	 r	 2(Q+1)	 Q(Q-m' even)	 Q

E[ n(LOS)](w'> = y2 L
17 

t a	 bQ 	 E	 (G+ + G?) 1:(T2 + '+ )NQm	 (15)
Q U \	 m' -0	 M =0

6
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Calculations show the periapsis aspect has little affect on the average spectrum when full
i
f

realistic fields are considered However, the spectrum changes by over 100% with viewing aspect

F	 to the orbit plane (90°-I'). Maximum power occurs when viewing in the orbit plane, minimt;m

when the LOS is normal to the plane. This spectrum for the Cross Track (CT) view is especially
F

simple to find since for I' 0, the only non zero Ir is (from Allan, 1967b, p. 1836):

^Q.m',(Q - m')/2(0) ° Pgm,(o),

so that:

0o r 2(2+1)	 M-m' even)

E[1'n(L'I')1<<,^) ° 72 	 —°^	 4 	 (G+ + G?)pJM,(o)Njm', 	 (16)
9-0 a	 m'-0

a generalization of the result for circular orbits in Wagner and Colombo (1978, p. 6).

The expected spectrum, averaged again over all viewing aspects (I) can be estimated from the

invariance (Wagner, 1977):

Q

m -0

Thus in Equation: (15), the averaged spectrum is estimated to carry a constant averaged NIm :

Q	
202 - 1)z

NQm = (2Q + 1)-1 E N2	
202

m =o	 S(2Q+1)

so that:

00 r^ 20+1)	 Q(2Q - 1)2 2(Q-m' even)
E[Pn(LOS)](w,,1,)= y2	 —	 82_1 	 (G+ +G?)P2.&,)),	 (17)

Q- ^ a	 X2Q 1)	 m'-o

a similar generalization of the result in Wagner and Colombo (1978, p. 6).

In general, the anomalous gravitational power spectrum on eccentric orbits contain effects

at all frequencies from every gravitational term. Here power from a t,.-rm of degree Q- I radiates

to frequencies n greater than Q as well as n Bess than Q. However, as will be seen, except for low

degree terms, most of the radiation of power is still downwards.

7
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THE POWER SPECTRUM FOR INCOMPLETE ARCS OF DATA

The track spectrum for data om circular orbits tends to be uniform over the span of the arc

Tlie anomalous accelerations are everywhere --: the same distance from the planet. In an eccentric

orbit, however, the accelerations are smaller away from periapsis, distorting the spectrum. This

distortion is accounted for by the development for a full revolution of data with the Kaula eccen-

tricity functions [Equation (7)]. But, for the partial arcs of tracking data which are actually

taken, these results cannot be used directly.

One solution to this problem would be to complete a full revolution with artificial data in

a reasonable manner. A more straightforward approach is to develop the spectrum for data over

arcs less than a full revolutior.. For this purpose consider an orbit function defined on the inter-

val Mmin to Mmax (Fig. 3).

The objective functions and their expansions [see Equation (7)] are of the form:

00

;M) = (r/a)u exp(ivf) _	 Xn,'(e)exp(inM').	 (1R)
n=-oo

NIRM

-7r	 Mmin 
0	

Mmax	 Ir	 M

27r	 7T

M,	
M' _	 [2M - (M max + Mmin]]

-7T	 I	 Mmax - Mmin

Figurc 3. Development Interval for Orbit Functions

8



Here, u and v are integers (i = r--I ) and n are the frequencies (or wave numbers) of the Fourier

expansion in the interval -u to it of the modified mean anomaly W. The notation for the Fourier

coefficients follows that for the Hansen coefficients which develop the orbit functions for full

revolutions (e.&, Allan, 1967b, p. 1843, 1844).

To evaluate these modified or partial Hansen coefficients, multiply both sides of ( 18) by c1fae

particular wave, exp (-h M'j and integrate with respect to M' from -x to x. Only the :articular

wave term remains, yielding:

1

3Cn'v(e) 
_ 

2r f-W
(r/a)u expi(vf - nW)dM'.	 (19)

In general, M max # 1 Mmin I and of -OX is not an odd function about M' = 0. Thus, for an

unevenly sampled arc about periapsis, the modified Hansen coefficients ace complex numbers:

1

91 n w(e) _ --	 (r/a)ucos(vf - nW)dM'	 (20)
2x JJJ

1

O)q,v(e)= 
2a f-W

(r/a)°sin(vf - r:M') dM',	 (21)

and the spectrum of the orbit functions contain twice as many terms as in Equation (7). But

since most of the useful data on high eccentricity orbits will be. fairly close to periapsis on both

sides, it is convenient to study the simpler case of even sampling centered or periapsis. In this

case, the modified Hansen coeffizients are real only [Equation (20)1 as they are for full revolu-

tions. The development in Equation (7) is then the same with the use of modified Kaula functions

G'gpq(e) where

Q 1,A-2p	

1f-V

R	 Q+1

Gtpq(e) = X -̂2p+q (e) - 2a 	
(a/r) cos[ (Q- 2p)f - (Q - 2p +q)M 1 dM , 	 (22)

and

M' = xM/Mmax .

9
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V
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Mmax Emax esinEmax
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SIMULATIONS

Numerous calculations have been made with harmonic and point -mass Earth models which

f4fify the track spectrum , Ored 'feted ' f6r"the ide6tri6. orbiter. ' Idthi die Analyses, the anomalous

LOS accelerations along a fixed ellipse are integrated numerically over a given arc length TA in

(me.

Imagine a.set . of LOS acceleration data given in this arc. Thie• harmonic -analysis of this data

yields the coefficients in the expansion:

LOS L6S0 +	 (cLdsncos 27mt/TA+ SLOSn sin 27mt/TA)'	 (24)

rk=1

Integtating -(24),. the LOS velocities (or rangeg rates) are:

Go

L6S = L6s, + L6SOt + E (TA /27rn) CLdSn sin 2rnt/TA
n=

(25)

- (TA /27rn) SL6Sn cos 2rntj/T 
A *

The secular term L6SO t can be eliminated by subtracting from the velocities a trend line connect-

ing the first and last points (t = 0, TA ), which also guarantees continuity of the data there. The

I
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power spectrum of the resulting (LOS) velocity datz: (n>0) is then related to the power spectrum

of the source accelerations by:

Pn(L6S) _ (2uniTAP (̂ L6S),	 (26)

which also holds for expectations.

The point—masses (Mascon) model investigated consisted of the central mass (u) of the Earth	 _}

with 266 randomly chosen concentrations in three layers. The mass magnitudes and locations in

the shallowest layer (20km depth) are shown in Figure 4 (units: 1.8 x 10' 6µ). The locations of

the masses in the 2 deeper layers are also shown (see also, Wagner and Colombo, 1978, p. 16).

The gravitational spectrum of this model (Fig. 5) is somewhat weaker than Kaula's rule for the
i

Earth (Kaula, 1966, P. 98).

The fidelity of the spectrum predicted for this model is best revealed in analyses of the funda-

mental LOS anomalous accelerations themselves. Twenty orbit—arcs were generated with random

inclinations and nodes for the same (Pioneer—Venus) orbit shape (perigee height: 200km, eccen-

tricity 0.844, period: 24 hours). Periapsis locations and (infinite distance) viewing aspects (I', ( j )

were also chosen randomly (Fig. 6). All arcs were 1800 long in true anomaly (52 minutes) centered

at periapsis. (The planet did not rotate during the arc.)

For an extreme example, the LOS accelerations in arc 1, with periapsis directly over a fairly

strong near—surface concentration, is shown in Figure 7. The power spectrum for this arc (Fig. 8)

is deficient at low frequencies. The expected spectrum has been calculated for average viewing aspects

from Equation ( 17). It gives good predictions for higher frequencies, anticipating the presence of

some `spikey' behaviour in a typical arc over this model.

The harmonic analyses of accelerations were done without matching the end points, to con-

form with the development of the acceler7tions over a partial revolution. As Figure 9 shows, the

average power spectrum for the 20 arcs is remarkably well predicted by the theory, even to the

highest frequencies dominated by the effect of the discontinuity at the end points.

11
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The analysis of velocity or LOS range rate perturbations requires the data at the ends of the

-arc to be matched. When this is done, predictions , of the spectrum are excellent. For exmnple,

40 similar (180° periapsis centered) arcs of LOS range rate perturbations were analyzed. Here,
f

periapsis locations were random, but all views were in that d irection. The planet model in this case,
r

however, wass a simple harmonic one consisting of just the complete (0,0) through (2,2) term's of

k the Mascon field. Orbit and spectrum computations for this truncated model were considerably

faster than with the full field. 	 Also, it was felt the average arc results would converge faster on

the expected spectrum since severe distortions at periapsis would be avoided (as in arc ar ).a.t

. it appears to take more arcs to determine a good average spectrum for just theseActually,p 1
r

low harmonics than for the whole field. Limited local sampling is a notoriously poor way to

determine global low order harmonics or their average effects.	 Nevertheless, the results of these

analyses, with all views in the direction of periapsis, afforded a good test of the predictions for

various aspect angles. The spectrum from low order terms shows considerably more power with

along track viewing at periapsis than at any other aspect. The results (in Fig. 10) confirm the

validity of the aspect dependent parts of the theory [ calculated from Equations (12) and (26)].

It also shows the considerable amount of power radiated (in an eccentric orbit) to frequencies (n)

higher than the maximum field degree (S). i

In the circular orbit case there is no such power radiated upwards except that due to the end, y
a

y discontinuity. This latter effect can be minimized by matching higher derivitives (Wagner and

1	
^

Colombo, 1978, p. 8, 18). But this adjustment is no longer needed with the present, more gen-

' 2ral theory for partial` revolution data which predicts this high frequency `ramp' distortion,
_

^	 r

1

" SIMULATION OF PIONEER VENUS ORBITER MISSION

In an illustration of results which should be forthcoming from the Pioneer-Venus mission, I
K

? have analyzed the anomalous LOS velocity residuals in 10 partial revolution arcs over the Mascon

E	 i
1

model planet. The coverage of this data is shown within the dashed lines of Figure 11. Notice

t
t

t 18
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that only a narrow band north of the equator is covered and the viewing aspect to the orbit

plane is also limited. But the average spectrum for these arcs is still fairly well predicted (using

average viewing conditions) as seen in Figure 12.

More detailed estimations for Pioneer Venus hava been made with a sm,:oth power spectrum

of the form:

4	 82 = Alr .	
.

Here 8 = —2 as in Kaula's rule for the Earth and A is scaled (from 1 x 10 -5 for the Earth) to the

size and masses of the terrestrial planets such that interior stresses are the same as in the Earth

(Kaula, 1969). Thus, for Mars and the Moon, A should be 6.76 x 10-5 and 36.45 x 10' 5 ; in fair

agreement with the actual low degree field (Gapcyriski, Tolson, and Michael, 1977; Ananda, 1977).

The scale rule is:

A(Terr. Planet)	 µe 2 rp 4

10" 5	µp	 r1	 e
so that for Venus it is estimated that A = 1.22 x 10"5.

Using this smooth spectrum and the elemerts for Pioneer Venus: Perigee height 200 kni, period

24 hours (eccentricity: 0.844), I have calculated the expected spectrum for two (typical) data

arcs centered on periapsis (Figs. 13a and 13b). The upper bound line (for average views) includes

effects of 1st degree harmonics which may be removed with better knowledge of the position of

the center of mass of Venus. Notice in Figure 13a the large variation (up to 200176) of expected

power with the orbit plane viewing aspect. The variation over periapsis aspects (for the full field)

is much less significant. These figures can be used to estimate the spectrum of the field not in-

cluded in the orbital data reduction, i.e., the truncation power.

For example, if the 2—way Doppler range rate data has an intrinsic accuracy of 0.03cm/sec

for an averaging interval of 1 minute and 26 frequencies are estimated in the 180° (52 min!-ite)

arc then the `white' noise level for each frequency will he 0.03/(26) 1/2 = 0.006cr /sec/frequency.
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From Figura 13a, this is just at the signal level for 21 cycles. Reading across to lower frequencies

at this level, this threshold power at 1 cycle is just affected by all the gravitational terms above

about degree 55. The threshold power at higher frequencies are sensitive to only lower degree

gravitational effects because the potential at altitude declines strongly with degree. Also, from

Figures 13a and 13b, it is noted that appreciable power from low degree harmonics radiate to

higher frequencies. But for the shorter data-arc at high frequency, this is due more to `leakage'

from the end discontinuity than the inherent power of the field.

THE EFFECT ('F ORBIT DETERMINATION ON THE POWER SPECTRUM

The development of LOS perturbations here is to a fixed ellipse with mean elements which

have not accommodated themselves to these fluctuations. But particularly when the tracking does

not cover a full revolution or more, the determined reference orbit will necessarily adjust itself to

the limited data thereby reducing the overall power of the gravitational fluctuations. In fact,

tracking coverage is never sufficient; orbits always adjust to accommodate data.

If the mean orbit were known, the effect of orbit determination is merely the effect on the

LOS of the variation between the adjusted and the true mean elements of the trajectory. This

problem has been studied by Gottlieb (1970) in connection with the early direct use of LOS

accelerations to model lunar Mascons (see also Phillips, et al., 1978). Since the problem arises

from the tfference of two ellipses, it can be expected that the greatest distortion (and reduction)

will be in the lowest frequencies (0, 1 and 2 cycles/arc). On the other hand, if a good low order

gravity model is used in the trajectory determination, this distorting effect of orbit error will be

minimized.

An extreme example of LOS low frequency power reduction in orbit determination is shown

in Figures 14 and 15. Figure 14 shows the .STS-6 to GEOS 3 LOS range rate signal from the

Goddard Earth Model 6 (Smith, et al., 1976) less C 20 , on a 96 minute arc of an elliptic orbit

before and after adjustment. The average LOS is inclined 600 to the orbit plane and, in spite of

t
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the rather long arc, a large change of the orbit plane (mostly) is required in the orbit adjustment, elim-

inating most of the gravitational variation at 1 and 2 cycles. The end—matched power spectra for

these two cases are shown in Figure 15 together with the predicted spectrum from VEM 6 (less
_	 )t
C20 ). In fact, the power at all frequencies (to the beginning of `leakage') for the unadjusted orbit

is well predicted by the theory even though both planet and viewing aspects move. Here, Equa-

tion (15) was used for a full revolution of data. For the adjusted orbit, only the power at 0 (not

shown), 1, 2 and 7 cycles is seriously deficient.

Another, less severe case is shown in Figures 16a,b. Figure 16a shows 40 minutes of LOS

range rate residuals from ATS-6 to Apollo—Soyuz (rev. 115 over Africa) due to a field complete

from (10,0) to (45,45). The geopotential was truncated from Rapp's (1977) model to illustrate

the excellent predictions of the spectrum for high degree effects. The spectrum (Fig. 16b) is for

the (simulated) residuals on an orbit adjusted to the signal. Evidently the accommodation is

slight, to (mainly) high frequency fluctuations, because even the low frequency power is well

predicted.

The simplest solution to the distortion of the residual tracking spectrum from orbit determin-

ation is just to ignore the low frequency residual power. As Figures 13a,b show, for the eccentric

orbiter there should be enough power from low degree terms (Q < 3) radiating to higher frequencies

(n> 2) to maintain sensitivity for their solution. The solution for higher degree terms (Q > 3)

should be easier since they have maximum sensitivity at higher (undistorted) frequencies (n> 3).

A more sophisticated approach would be to solve directly from the tracking data for the

orbit and point—mass concentrations along or near the track. The LOS accelerations of these on

the orbit would yield an undistorted power spectrum. But, since the smoothed gravitational

spectrum is all that is sought with limited data, it is probably sufficient for this purpose to ignore

the lowest frequencies in the interpretation of the track spectrum even for circular orbits.
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INVERSION OF TRACK POWER SPECTRA

The predicted LOS range rate tracking spectrum for an eccentric orbiter can be written as a

linear transformation of the gravitational spectrum:

Pn(LbS) _	 Sn,!?a-1	 (27)2.0

where S2 are sensitivity coefficients calculable from Equations (12) and (26) for the appropriate

orbit and viewing conditions. For the circular orbit case this system of equations generates two

simple, uncoupled triangular matrices in 89 even and 81 odd. There is no influence for 2 < n in

this case. Therefore, for c-:+rcular orbits, given a measured track spectrum, the solution for the

gravitational spectrum can proceed by simple back substitution in (27) starting at a sufficiently

high degree and frequency. But for the eccentric orbit, the sensitivity matrix is full. Therefore,

the solution for the gravitational spectrum, using (27), must proceed by inversion of ever larger

(non symmetric) matrices until the result stabilizes.

A great simplification can also be accomplished in the eccentric orbit case if only a few

parameters of a smooth gravitational spectrum is desired. Then Equation (27) can be formulated

f

	

	 as a set of condition equations for each frequency of the track spectrum in terms of the smooth

gravitational spectrum parameters.

For example, suppose we assume the smooth spectrum in the usual form:

S Q = AQB , Q > 0	
(28)

= C, Q=0

Equations (27) then become:

Q(max)
P2 = C2 Sn ,i +	 Sn,RA2(9 - 1)2B; n = 1, 2, 3, ....	 (29)

2=2

which are non linear in `A' and `B.'
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But these equations can be linearized about a `starting' solution Ao , Bo, Co. If the power

at more than 3 frequencies are given, the equations can then be solved in a `least squares' sense

to minimize the squared residual [Pn (measured) - Pn (A, B, C) 1 2 . Again, experimentation will be

required to find whether the results are stable and the residuals smallest as the maximum degree

considered becomes large.

The linearized condition equations for A, B and C are:

44

aP2	 aP2	 8P2
p2 (measured) = p2 (A0 , Bo , Co ) + n AA + —° 6B + —n 6C,	 (30)it	 aAo	 NO	 aco

aPn	 Q(max)
= 2Ao 	 Sn,Q(Q - 1)2ao

aAo	 Q=2

Q(max)L = 2Ao	 S2,	 - 1)2ao Loge (Q - 1)
aBo	 V=2

where:

and:

aPn

aco 
= 2Co Snj

(A, B, C) = (Ao + AA, Bo + AB, Co + AC)

Of course, if the planets mass is well enough known `C' can be set to zero. I retain it here

because the Mascon model I use is not adjusted to give C oo= 0. Two great conveniences of the

smooth spectrum equations are that:

(1) we can formulate them to suit the measurements, and

(2) we can edit or down weight those measurements which have known distortions, for

example, due to `leakage' at high frequencies, or orbit determination at low frequencies.

As an example of the numerical solution for a simple gravitational spectrum from a measured

LOS power spectrum, I have analyzed 10 range rate arcs with respect to the (0,0) through (2,2)
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model implied by the Mascon planet. The orbits for these arcs were all of high eccentricity, with

only fair coverage oNer the planet and viewed from different aspects. Equations (17) and (26)

were used to calculate the sensitivity coefficients and expected spectrum (Table 1). In the solution,

only the measured power at n = 1, 2, 3 cycles per arc was used. Therefore, the solution for A, B

and C [iteratively from (30)] was determined without residual error (starting from 10-5 , -2.0 and

10- 5 respectively). The solution took 4 iterations to converge and the result is consistent with the 	 p

discrepancy between the measured and predicted track spectrum; the measured being too high at

low frequency and too low at high frequency.

INTERPRETATION OF LOS SPECTRUM: MARS-MARINER 9

The only planetary spacecraft in highly eccentric orbits for which suitably long arcs of track-

ing exist (prior to Pioneer Venus) are the Mars-Mariner and Viking orbiters (e.g., Gapcynski, et al.,

1977; Sjogren, et al., 1975). The tracking of these orbiters has resolved gravitational features as

small as 1200 km (9th degree terms). These features show broad correlation with the topography

of Mars. From this correlation, Ferrari (1977) has foand that over large areas (low degree terms)

the crust of Mars is significantly stronger (supports significantly higher loads) than that of the

Earth. This finding can also be inferred indirectly from the low degree gravity spectrum of Mars

which is significantly stronger than Kaula's scaled rule. (The assumption must be made, of course,

that these terms arise from the crust.) It is of great interest to know whether the excess gravi-

tational power holds for high degree terms as well because if it doesn't, Mars wculd have a rela-

tively thinner less developed crust than the Earth. On the contrary, the powerful, broad topography

of Mars argues for a relatively thicker, more developed (younger?) crust.

Published residual LOS tracking data (Gapcynski, et al., 1977, p. 4326) has been analyzed

from a 194 minute Mars-Mariner 9 pass (rev. 354) over the Hellas Basin (Fig. 17). The range rate

residual data from Gapcynski, et al., appears to show a significant high frequency signal. The

residual measurements are referred to an orbit fit to the (one minute averaged) 2 way Doppler
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signal with a complete 6th degree field. This field. in turn, used the tracking data in this pass so

that we should expect to see the effects of aliasing in the residual power spectrum.

To achieve Figure 17, I hand—filtered the original residual points. from the original data the

noise level appeared to be about 0.03 cm/sec. (I used 6.6cm/sec/Hz to convert the S band Doppler

(2300MHz carrier) to range rate.) This seemed to be reasonable for 1 minute averaged data. Har-

monic analysis was then performed on a `signal' which was linear (a series of lines) between the

turning points (highs and lows) of the filtered data. The barmonic noise characteristic of this

filter was easily determined by averaging 10 analyses of the linear filter with random k'u =

0.03cm/sec) data at the turning points. (Both signal and noise data were `end matched' before

being analyzed.)

The residual spectra of `signal' and noise for this arc are shown in Figure 18 along with the

expected spectrum for this orbit (e = 0.60, height of periapsis = 1660km, average viewing con-

ditions) from Kaula's scaled rule (Q> 6). There are 3 parts to this figure, each important to the

interpretation:

(l) The spectrum of the `signal' (which includes an unknown amount of noise) declines

from 1 to 6 cycles, then rises abruptly to a maximum at 9 cycles and generally declines

after that, slowly to about 25 cycles then rapidly.

(2) The expected spectrum has a maximum at 1 cycle declining slowly to 7 cycles, then is

almost flat to about 15 cycles where it precipitously loses almost all power. The flat

portion is due to the `sudden' introduction of gravitational power at Q> 6. The rapid

fall off at higher frequencies is due to the high altitude of the satellite.

(3) The estimated noise spectrum (shown for an overall level of 0.06cm/sec) is flat tc, about

15 cyL.e falling steadily after that. Note that 42 turning points are involved, for a max-

imum estimation of about 21 frequencies if the data were equally spaced in time. The

declining portion of both the noise and `signal' spectra is clearly a characteristic of the
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filter. The vertical arrows (in Fig. 14) give upper bounds (I arc in 10) for the fluctuation

of power among the 10 `random' noise data sets. Roughly speaking, I frequency out of

10 at an average random noise level of 0.06 cm/sec will reach the power level at the end

of the vertical arrows.

Clearly, the frequencies beyond 25 cycles are the result of noise which calibrates at some

level above OX6cm/sec. This result is somewhat s..rprising unless the data is sampled at, not

averaged over 1 minute intervals (or is otherwise randomly disturbed). Can the other side of the

spectrum, the low end (n < 6 cycles) is just as clearly due to the gravita* = ial spectrum above

6th degree of approximately the level as Kaula's scaled rule. The fact that the power at 1 cycle

seems relatively low compared to the others may be the result of orbit adjustment to this data.

The fact that this low frequency part of the signal is everywhere less than expected may be

merely due to aliasing in the low degree gravitational harmonics fit to the Doppler tracking in this

arc. The field solution has undoubtedly absorbed some of the low frequency information properly

belonging to higher degree terms. Indeed it is more likely that the gravitational spectrum above

degree 6(for this arc) is stronger than Kaula's rule and the actual aliasing below 7 cycles is more

severe still. This would permit the `signal' highs at 9 and 19 cycles to be explained by the field

at an average noise level only a little higher than 0.06cm/sec. For these features to be explained

as noise would require a level of 0.09 cm/sec which would virtually wipe out all of the apparently

significant low frequency signal. In particular, the high at 9 cycles appears most likely to be a

gravitational feature since it is the persisting fluctuation which reaches it's maximum effect at

periapsis. As a confirmation of the above interpretation, I note that Sjogren, et al., (1975, p.

2899, 2900) report this data is i ndeed sampled (not averaged) at 1 per minute with an average

noise level of 0.07cm/sec.

SUMMARY AND CONCLUSIONS

The line of sight track spectrum (accelerations and range rate) due to the gravitational field

has been simply related t(- the source spectrum for general planetary orbiters under a variety of
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iviewing conditions. While the theory requires the line of sight orientation, the field and the orbit

to be fixed du_-ing a pass, simulations under mare relaxed conditions still show excellent results

(see also Wagner and Colombo, 1978). The expected anomalous gravitational spectrum for the

Pioneer-Venus orbiter has been worked out in detail for two uses of periapsis centered data.

Harmonic terns as High as degree 55 may be visible in this data

It appears likely that the power in the very lowest frequencies of the track spectrum will be

reduced in the accommodation of the orbit to the data This effect may either be estimated by

mass modeling (or error analysis) or the low frequency terms may simply be ignored in the inter-

pretation of the overall spectrum.

Interpretation of a residual track spectrum for a Mars-Mariner 9 pass ove- the Hellas Basin

indicates gravitational features there stronger than Kaula- s (equal-Earth-stress) rule for Mars.
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