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AN IMPLICIT ALGORITHM FOR THE CONSERVATIVE, TRANSONIC FULL POTENTIAL

EQUATION WITH EFFECTIVE ROTATED DIFFERENCING

Terry L. Holst	
ti

Ames Research Center

and

John Albert*

University of Santa Clara

SUMMARY

A new differencing scheme for the conservative full potential equation

which effectively simulates rotated differencing is presented. The scheme is
implemented by an appropriate upwind bias of the density coefficient along
both c;oardinate directions. A fast, fully implicit, approximate factorization
iteration scheme is then used to solve the resulting difference equations.

Solutions for a number of traditionally difficult transonic airfoil test cases
are presented.

I. INTRODUCTION

Tn reference 1, a new implicit approximate factorization algorithm (AF2)
was presented. This algorithm has been applied to the solution of the tran-

sonic small-disturbance equation (ref. 2) and the conservative full potential
equation (refs. 3 and 4). In both cases, significant improvements in conver-

gence speed have been realized over standard successive line overrelaxation
;SLOR) algorithms. Stability in the full potential formulations for super-
sonic regions of flow has been achieved by the addition of an artificial vis-

cosity term similar to that introduced in reference 5. However, in the pres-

ent formulation the addition of the artificial viscosity term has been achieved
by an upwind bias of the density coefficient. This strategy greatly simplifies
the solution procedure and effectively allows the simple two- and three-banded

matrix form of the AF scheme to be retained over the entire flow field, even
in regions of supersonic flow. Other researchers (refs. 5-8) have used simi-
lar steady-state differencing procedures in a wile variety of problems to fur-
ther substantiate this approach as being both :-,::liable and flexible.

The use of a numerical transformation to establish an arbitrary finite-
difference mesh was introduced as an aspect of the present full potential

*Supported under NASA-Ames University Consortium Joint Research Inter-
change NCA2-OR685-803, currently graduate rtudent, Dept. of Mathematics,

University of Chicago, Chicago, Ill. 60637.
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algorithm in reference 4. This grid generation technique was developed in
reference 9 and has been extensively used for many applications (refs. 10
and 11). The basic transformation (x,y --> E,n) is illustrated in figure 1.
With this approach, body-fitted finite-difference meshes for arbitrary airfoil
geometries can be routinely and efficiently generated. Extension of this pro-
cedure to more complicated geometries including three-dimensional problems is

also possible.

In reference 4, the density coefficient was upwinded along only the wrap-

around direction (F, coordinate, see fig. 1) and not in the n-coordinate

direction. Upwinding the density coefficient along only one coordinate direc-

tion does not in every case allow the numerical domain of dependence to fully
accommodate the physical domain of dependence. Hence, in certain cases (usu-

ally solutions with strong shock waves), convergence is difficult or impossible
to achieve. The purpose of this investigation is to develop an effective form
of "rotated" differencing which will allow the numerical domain of dependence

to more nearly match the physical domain of dependence, and thereby, improve
the reliability of the present algorithm.

The finite-difference scheme including the new rotated differencing is

presented in the next section along with several helpful guidelines for improv-

ing the convergence speed of the AF2 algorithm. The last section contains a

variety of computational results including several classically difficult test
cases which subject the new differencing scheme to the extreme test.

The authors express their gratitude to Vladimir Urobot, University of

Santa Clara, for his assistance during the course of this study.

II. THE FULL POTENTIAL EQUATION ALGORITHM

A. Governing Equations

The full potential equation written in strong conservation-law form is

given by

(P^x)x + W y ) y = 0
	

(la)

1
1/Y-1

P
	

_

[1	 Y + 1 (^
x2 

+ ^y2)J	
(lb)

where the density (p) and velocity components (fix and ¢ y) are nondimensional-
ized by the stagnation density (p s ) and the critical sound speed (a * ), respec-
tively; x and y are Cartesian coordinates; and Y is the ratio of specific
heats.

Equation (1) expresses mass conservation for flows that are isentropic
and irrotatio-,,al. The corresponding shock-jump conditions are valid
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A2
= &xnx

+ ^yny

Ag = nx2 + ny2

J = ^x ny Cynx

U = A 1 ^^ + A2^n

V = A2 ^^ + A3^n

A l = ^x2 + ^y2

r^

roximations to the Rankine-Hugoniot relations for many transonic flow
lications. A comparison of the isentropic and Rankine-Hugoniot shock polars
givei ► in reference 12.

Equation (1) is transformed from the physical domain (Cartesian coordi-
es) into a computational domain by using a general independent variable
nsformation. This general transformation, indicated by (see fig. 1)

_ ^(x,Y) 1

(2)

n = n(x, y )	 J	 j

maintains the strong conservation-law form of equation (1) as discussed in
references 10 and 13-15. The full potential equation written in the computa-
tional domain (^-n coordinate system) is given by

1PU	 PV
\J/ 

C 
+ (J)

n

 = 0

rr	

ll I ^Y-1

P = Ll - Y + 1 (U^ + V^

where

(3a)

(3b)

(4)

U and V are the contravariant velocity components along the E
 
 and n direc-

tions, respectively; A 1 , A2 , and A 3 are metric quantities; and J is the
Jacobian of the transformation.

The transformed full potential equation (eq. (3)) is only slightly more

complicated than the original Cartesian form (eq. (1)) and offers several sig-
nificant advantages. The main advantage is that boundaries associated with

the physical domain are transformed to boundaries of the computational domain.
This aspect is illustrated in figure 1, where the physical and computational

domains for a typical transformation are shown. The inner airfoil boundary
becomes the n = nmax computational boundary. Nate that no restrictions have
been placed on the shape of the outer boundary. Arbitrarily shaped outer
boundaries, including wind-tunnel walls, may be used.
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B. Grid Generation

The grid generation algorithm used in the present study is an adaptation
of the scheme introduced by Thompson, Thames, and Mastin (ref. 9) and has been
discussed in detail in reference 4. Basically, this scheme uses numerically
generated solutions of Laplace's equation (or in some cases Poisson's equation)

to establish regular and smooth finite-difference meshes around arbitrary

bodies. These equations are transformed to (and solved in) the computational
domain (i.e., ^ and 9 are the independent variables and x and y are the

dependent variables). A fast approximate factorization relaxation algorithm
is used to solve these equations. Once values of x and y are known for each

point in the mesh, the metric quantities of equation (4) are computed by stan-
dard finite-difference formulas. Further details about this procedure are
found in reference 4.

C. Spatial Differencing

A second-order accurate finite-difference approximation to the full

potential equation (eq. (3a)) is given by

d^LU\J /	 + d ry\J /	 - 0	 (5a)
i+1/2,j	 i,j+1/2

where

Ui+1/2,j - Ali+1/2,j(^i+l,j 	 ^i,j)

1
+ 4 A2 i+1/2,j 0i+1 , j+1	 ¢i+l,j-1

+ ^i,j+1	
^i,j_l)	 (5b)

V1,J+1/2 
- 4 A2i,j+1/2i+l,j+1 ^i-1,j+1

+ ^i+l,j	 ^i-1,j)

+ A3
i,j+1/2 0 i , j+ 1 	 ^i,j)	 (5c)

The quantities p, A 1 , A2 , A 3 , and J are all stored at integer points in the
finite-difference mesh (i.e., at i,j). Values needed at half points (i.e.,

i+1/2,j or i,j+1/2) are obtained by using simple averages. The operators,

d^( )	 and	 dn( )

r.

r
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are first-order accurate backward difference operators in the F and n direc-
tions, respectively, and are defined by

aF( 
)i , j 	 ( )i ,j	 ( )i—i,j

bn( )i
, j	 ( )i , j	 ( )i,j-1

The density calculation is performed in a straightforward manner by using equa-
tion (3b). Values of U, V, ^^, and ^n required for the density calculation
are given by

	

_ 1	 _

	

_ 1	 _

	

^ni,j	
2	 i

,j+ 1 	 i,j -1
(6)

	

Ui , j	 (A1^C + A2^n)i,j

	Vi,j	 (A2^F + A3^n)i,j

Special formulas replace equations (5) and (6) at boundaries and are discussed
in reference 4.

Equation (5) is a suitable finite-difference scheme for subsonic flow
regions. However, for supersonic regions, a properly chosen artificial vis-
cosity term must be added. For example, Jameson (ref. 5) adds the following
viscosity term to the Cartesian form of the full potential equation:

	

-AXOP
x x	 Y

) - nY( VP 1 ^ 
Y 

1)x	 y

where v = max[0,1 - (1/M 2 )] (M is the local Mach number). Exact implementa-
tion of equation (7) in the present case involving the F - n coordinate
system is difficult. Approximate implementation was achieved in reference 4
by using an artificial viscosity of the following form

P F I J I I	 (8)

where the absolute value of the U-velocity component has been included as a
consequence of the wraparound coordinate system. Equation (8) is a good
approximation to the first term of equation (7) on the upper and lower sur-
faces of an airfoil where the general F - n coordinate system is approxi-
mately Cartesian. This strategy has been very successful for cases in which
the supersonic zones are relatively small (i.e., cases in which the leading
and trailing edges are reasonably far removed from supersonic flow). However,
for cases containing strong shock waves at the Trailing edge or supersonic
free streams, a more complete approximation to equation (7) is required. An
obvious extension of equation (8) is given by

5
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#y^

_LC IvP C I J I
J
 - An(P IVI	 (9)	 .
E	 \	 n

As pointed out by Jameson (ref. 5), addition of equation (7) (with appropriate
upwind differencing) to the centrally differenced full potential equation
(Cartesian form) provides automatic upwind differencing of the streamwise
terms in supersonic regions, thus including the full effect of rotated differ-
encing. Use of equation (9) (with appropriate upwind differencing), there-
fore, closely approximates the effects of a rotated differencing scheme.

The complete finite-difference approximation to equation (3a) is given by

d C V-D	 + d rPVI	 _ a

 [(VU)i+1/20/j_Ji+1/2,j	 nJi,j+1/2	 AJj(Pi+
i 2,	 Pi+k+1/2,j)J

do (\J /	 (Pi,j+1/2	 Pi,j+k+1/2)] = 0
	 (10)

L	 1 2i, J+ /

where

-1 when U 
1
.	 > 0+1 /2,j

k =	 (lla)

1 when U
i+1/2,j < 0

-1 when V
i ,j +1 / 2 > 0

k =	 (llb)

1 when V 
1
.	 < 0
,J+1/2

In the artificial viscosity term, P C is evaluated with a backward difference
when Ui+1/2	 > 0 and with a forward difference when Ui+1 2 	 <0. Like-
wise, P n is'evaluated with a backward difference when Vi,j+1%2 > 0 and with
a forward difference when Vi,j+1/2 ` 0. This maintains an upwind influence
in the differencing scheme for supersonic regions anywhere in the finite-
difference mesh for any orientation of the velocity vector. The test on
Ui+1/2,j is determined by whether a grid point is in the upper or lower half
of the airfoil flow field, thus sim p lifying the computational algorithm-

The scheme given by equations (10) and (11) is centrally differenced and
second-order accurate in subsonic regions. In supersonic regions, the differ-
encing is a combination of the second-order accurate central differencing used
in subsonic regions and the first-order accurate upwind differencing resulting
from the addition of artificial viscosit ,, . As the flow becomes increasingly
supersonic, the scheme is increasingly retarded in the upwind direction.
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As shown in reference 3, equation (10) caa be rearranged to give

d4^i\J/i+l 2 ^ + ^ n IFJ(V)i,j+1/21  = 0
	 (12a)	 \

where

^i = [(1 - v)P]i+1/2,j + vi+1/2,jpi+k+1/2,j
	 (12b)

p 	 [(1 - v)pI i,j +1/2 + vi,j+1/2Pi,j+k+1/2	
(120

The addition of the artificial viscosity given by equation (9) is thus equiva-
lent to retarding the density in equation (5a). Artificial viscosity is not
added explicitly as in the Jameson procedure.

in the n direction near the airfoil boundary, a problem arises when the
V-component of velocity is negative. The upwind biased density coefficient at
i,NJ-1/2 (pNJ- ,) requires the use of the density at i,NJ+1/2, which is out-
side the finite difference mesh (see eq. (12c)). A value of density at this
location is extrapolated from interior values using

p i,NJ+1/2 - (15p i,NJ - 10p i,NJ-1 + 3pi,NJ-2)/8

Other values of density exterior to the finite-difference mesh are not
required since at the airfoil surface (j = NJ) the following boundary condi-
tion is applied:

y^

V	 _	 V

pNJ-1^J)i,NJ-1/2	
-pNJ(J 

i,NJ+1/2
(13a)

This boundary condition applied in either subsonic or supersonic regions is
first-order accurate. Another boundary condition, which is second-order accu-
rate for subsonic flow and first-order accurate for supersonic flow, has been
tried and can be expressed as

An l	 3 pNJ-1/2 M
i,NJ	

3pNJ-1(VDi,NJ-1/2 + 3 pNJ-2\J/i,NJ-3/2
i,NJ

(13b)

where the first term is zero because of the Vi,NJ = 0 boundary condition.
Results using these two boundary conditions have been compared and displayed
little or no difference.

Several variations of the spatial difference scheme given by equation (12)
have been considered. These variations arise from different evaluations of
the artificial viscosity coefficient v and are presented as follows:

•
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Version 1

If Mi+1/2,j >- 1, then	 6 1

i+1 /2,j	 (Mi+1 /2,j - 1)C	 (14a)	
a

If Mi+1
/2,

j < 1, then

vi+1/2,j = 0

	
(14b)

Version 2

,max[(M2	-
^j 	

1)C,0] for Ui+1/2^j > 0

i ma;: [ ( M
i+1 	 - 1)C,0] for Ui+1/2 	 < 0, j	 .j

where the standard supersonic form for v (i.e., v = 1 - 1/M 2 ) has been multi-
plied by CM 2 . The parameter C is a user-specified constant, usually
between 1.0 and 2.0. Multiplication by this additional term is used to
increase the amount of artificial viscosity and therefore, the amount of
upwinding in the difference scheme. In addition, the value of v is never
allowed to exceed 1.0. This seems to improve the stability and in some cases
improves the convergence rate. Expressions for vi,j+1/2 are written simi-
larly to those for vi+1/2,j and depend on Mi,j+1/2 and Vi,j+1 /2•

In addition to the basic form of artificial viscosity already presented
(see eq. (9)), another form was tested and is given by

(1)P J1 ^^/^ - An \ PT1 AT ETA,	 (16)

The complete finiLe-difference approximation to equation (3a) using this form
of artificial viscosity is obtained similarly to equation (10) and will not be
presented. The coefficient v for this artificial viscosity form is evalu-
ated similarly to the v coefficient of version 2 (see eq. (15)). The only
difference is that the sign test on Vi +1/2 is replaced by a sign test on

This is desirable (for this case) because both the sign of

and the density upwind direction should change at the Same point to maintain
consistency. This artificial viscosity form along with version 2 evaluation
of v will be referred to as version 3 in the section on computed results.

D. The AF2 Iteration Scheme

The AF2 fully implicit approximate factorization scheme used in the pres-
ent study is discussed in reference 4. Implementation of the scheme is
achieved by writing it in a two-step form given by

8



Step 1

la - dip jn (
J3/ 	 Jf i , j - awLmi , j	 (17)

i, j-1 /z

Step 2

A
ad n	aBd^ - 

d pin J )	 d C ilj	 f i'j	 (18)
i+1 /2,j

where the n superscript is an iteration index, w is a relaxation parameter
(set equal to 1.8 for all cases), 

Lni.j 
is the nth iteration residual oper-

ator (defined by eq. (12a)), and f iij	 inter-mediatean intemediate result stored at
each point in the finite-difference mesh. In step 1, the f array is obtained
by solving a simple bidiagonal matrix equation for each r = constant line.
The correction array (Ci , , = ^i+1 - ^i j ) is then obtained in the second step
from the f array by solving a ^ridiagonal matrix equation for each
n = constant line. Note that with the AF2 scheme the n-direction differ-

ence approximation is split between the two steps. This generates a mn t type
term, which is useful to the iteration scheme as timelike dissipation. (The
iterative process is considered as an iteration in pseudotime. Thus, the time

derivative is introduced by ( ) n+ 1 - ( ) n - ( ) t, ) The split n term also
places a sweep direction restriction on both steps, namely, outward (away from
the airfoil) for the first step and inward (toward the airfoil) for the second
A ep. No sweep restrictions are placed on either of the two sweeps due to
flow direction.

A ^^t type term has been added inside the brackets of step 2 (see
eq. (18)), to provide time-dependent dissipation in the C direction. The
parameter B is determined as follows

M -1 ^ j > 1 upper surface

BM>1
if

I
Mi >- 1 lower surface

B	 =
+1 '^ (19)

i^J Mi < 1 upper surface
-1 ,j

BM<1 if
Mi

< 1 lower surface
+l,j

where BM<1 is fixed at a value of 0.3 and BM>1 is a user specified con-
stant which can be adjusted as needed. (The default value for BM.. 1 is equal
to 1.0, which is sufficient to stabilize most moderate strength shock-wave
calculations.) The double arrow notation on the ^-difference operator indi-
cates that the difference is always upwind, which on the upper surface is a
backward difference and on the lower surface is a forward difference. The
sign is chosen in such a way that the addition of ^Et increases the magni-
tude of the second sweep diagonal.

The quantity a appearing in equations (17) and (18) can be considered
as tit -1 . This direct analogy to time provides one strategy for obtaining

.1

r

r^
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fast convergence, namely, advance time as fast as possible with large time
steps (i.e., small values of a). As pointed out in reference 3, this is
effective for attacking the low-frequency errors but not the high-frequency
errors. The best overall approach is to use an a sequence containing sev-
eral values of a. The small values are particularly effective for reducing

the low-frequency errors, and the large values are particularly effective for
reducing the high-frequency errors. A suitable a sequence with analytically

estimated endpoints is given in reference 3.

An additional possibility for improving the convergence rate is to not

only use an a sequence, but also vary the a sequence with spatial poF'.tion.
With such a strategy, the a sequence can be adjusted locally to accommodate

any type of error, i.e., a relatively large residual would indicate a high-

frequency error and the need for smaller alphas, and a relatively small resid-
ual would indicate low-frequency error and the need for larger alphas. To

date, this strategy has not been implemented in any sophisticated manner.
However, a simplified version has been tested which assumes that the highest

frequency errors will be supported in the finest region of the finite-

difference mesh (i.e., near the airfoil). In this region (specifically for
the three n = constant coordinate lines nearest the airfoil), the lowest

alphas (largest time steps) are never allo^.ed to fall below a certain value.
With this constraint, it was found that the lowest global values of alpha

could be reduced by as much as a factor of five which resulted in a convergence
rate improvement of roughly a factor of two.

Normally, flow-field, type-dependent differencing is used to achieve sta-
bility in transonic flow calculations. Incorporating these different operators
into iteration procedures, such as the AF2 scheme presented here, would be
cumbersome if not impossible. Using the upwind bias of the density coeffi-
cient, which is always evaluated at the nth iteration level, allows the simple
two- and three-banded matrix form of the AF2 scheme to be retained over the

entire flow f^. ,ald, even in regions of supersonic flow. In fact, use of
upwinded density coefficients in any general iteration scheme could be used to
remove the difficulties introduced by type-dependent differencing. The result-

ing general scheme would retain the same basic differencing (at the n + 1
iteration level) throughout the entire flow field, relying on the upwind bias

of the density (at the nth iteration level.) to provide the artificial viscosity
in supersonic flow regions. This represents a significant simplification in

the handling of supersonic flow regions for transonic flow calculations.

III. COMPUTED RESULTS

The new rotated differencing algorithm introduced in the previous section

is evaluated in this section by presenting a range of numerically computed
examples, including transonic and supersonic free-stream test cases. In all

cases the numerically generated finite-difference mesh was converged until the
maximum residual dropped by three orders, of magnitude. For a typical mesh

with 4470 grid points (149 x 30), this required approximately 30 to 40 iterations
and about 5 sec of CPU time on the Ames 7600 computer. An example of a

10
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numerically generated finite-difference mesh for the NACA 0012 airfoil is

shown in figure 2.

A. Artificial Viscosity Variations

A series of calculations has been computed to determine the effect of the
spatial differencing variations presented in the previous section. The test

case chosen for this purpose is an NACA 0012 airfoil at a free-stream Mach
number of 0.75 and 2° angle of attack. Systematic variations of the param-

eter C for all three artificial viscosity versions (see eqs. (14)-(16)),

including both rotated (NDIF = 1) and nonrotated (NDIF = 0) forms, were inves-
tigated. (The nonrotated difference scheme simply has no n-direction arti-
ficial viscosity term. This causes the term (pV/J) n to remain centrally dif-
ferenced in supersonic regions.) These solutions are typically represented by

the pressure coefficient distributions shown in figures 3 and 4. As expected,
cases involving larger amounts of artificial viscosity (i.e., larger values of
C) produce slightly smaller lift coefficients and larger amounts of shock
smearing. Use of the rotated differencing option (NDIF = 1) had a similar
effect causing a slight amount of additional shock smearing. This trend was
basically exhibited by each of the three differencing variations. Two of the
schemes (versions 2 and 3) produced similar solutions for most of the cases.

The version 1 solutions (see fig. 3) were somewhat different, displaying dis-
persive overshoots at the shock wave. Increasing the value of C reduces the

size of the overshoot but does not entirely eliminate it. Some difficulty in
maintaining stability as well as the normal convergence rate has been experi-

enced with the version 1 scheme and is attributed to the existence of disper-
sion in these solutions.

The lack of an overshoot for the version 2 solutions (see fig. 4) can be
explained as follows: The artificial viscosity coefficient vi+1/2,j as com-
puted in the version 2 differencing scheme is actually evaluated at i,j (for
Ui+ 1 / 2, j > 0) instead of at i+1/2,j. This effecLively provides a substantial
increase in the artificial viscosity at the shock wave, especially at the last
supersonic point near the shock-wave center (because v i,j /v i+1/2,j >> 1 at
this point), and usually a slight decrease in other supersonic regions

(because vi,j/,)i+1/2,j < 1). The effect of this substantial increase in
artificial viscosity at the shock is to dramatically inhibit the formation of
dispersive shock-wave overshoots. Since the version 1 differencing scheme
does not have this property, shock-wave overshoots can be suppressed only by
adding a large amount of artificial viscosity everywhere in the supersonic

region.

Numerical experiments with other cases including several classically dif-
ficult cases, which will be presented in the next section, have been conducted
with artificial viscosity versions 2 and 3. Although the differences were
small, the version 2 differencing was chosen as superior. The main advantage
was slightly faster and smoother convergence es pecially for supersonic free-
stream cases. From this point on only artificial viscosity version 2 solutions

will be presented.

v
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B. Convergence Reliability

Three clasically difficult test cases have been investigated to help aval-
uate the convergence reliability of the present algorithm, especially the 	 •
newly implemented rotated differencing option. These cases involve three dif-
ferent free-stream conditions for an NACA 0012 airfoil: (1) M^ = 0.98, a = 0°,
(2) M^, = 0.95, a = 4°, and (3) M^ = 1.15, a = 0°. Each case has an unusually
large amount of supersonic flow and a rather unique shock-wave pattern. Clas-
sical relaxation schemes would probably experience either very slow convergence
or instability with these cases.

Solutions with M. approaching unity— The pre:-,sure coefficient distribu-
tion for the first case (M,,, = 0.98, a = 0°) is shown i.n figure 5. This case
is nonlifting (C L = 0.0 and CM = 0.0) and has a large amount of wave drag
(CD = 0.1038). The airfoil is almost totally immersed in supersonic flow
which begins at approximately 5% of chord and continues through an oblique
shock wave at the trailing edge. A more complete description of the flow
field is shown by the Mach number contour map displayed in figure 6. Existence
of a rather unique double shock-wave structure, sometimes referred to as a
"fishtail shock," is clearly evident. Relatively weak oblique shocks emanate
from the trailing edge and merge with a normal shock downstream of the airfoil.
The triangular region between the oblique and normal shocks has a nearly con-
stant supersonic Mach number (approximately equal to 1.1). This shock-wave
pattern is characteristic of solutions with free-stream Mach numbers near
unity. It has been observed experimentally as well as computationally and is
generally considered to be the correct qualitative solution. For instance, a
fishtail shock solution, for a 10% circular arc airfoil at M,, = 0.98 and
zero degrees angle of attack, was presented in reference 6. This calculation
was a solution to the conservative full potential equation using a Cartesian
mesh and small-disturbance boundary conditions. 	 Because the flow was essen-
tially aligned with the finite-difference mesh, "rotated differencilig" was not
necessary. However, wi'.', the present wraparound coordinate system, rotated
differencing is essential for maintaining the stability of difficult cases such
as the present fishtail shock solution. For example, in the supersonic trian-
gle between the oblique and normal shocks (see fig. 6), the ^ direction is
nearly normal to the direction of flow. This makes the ^-direction artifi-
cial viscosity term ineffective in achieving an upwind influence. The upwind
bias of the density along the n coordinate (which is achieved by a forward
difference of p n in the n-direction artificial viscosity term) provides
the necessary upwind influence to stabilize the calculation.

Another very important ingredient for maintaining stable convergence is
having the proper amount of timelike dissipation (a nt and ^ Et ). (This fact
concerning AF schemes was first mentioned to the authors by J. South, NASA
Langley.) A fixed amount of ^ r, t is automatically added to the iterative
process by the construction of the present AF2 algorithm. Likewise, the
amount of ^Ct added in subsonic regions is also fixed (SM<l = 0.3, see
eq. (19)). The amount of ^Ct added in supersonic regions is controlled by
a user-specifl.ed constant (6 M, 1 ) which can be adjusted as needed. For the
fishtail shock calculation just presented, the 6M>1 parameter was equal to
five. Smaller values produced instabilities for this calculation.
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As pointed out in reference 16, nonconservative full potential equation
solutions with the free-stream Mach number approaching unity are characterized

by strong oblique shock waves at the trailing edge followed by subsonic flow.
The fishtail shock structure for these cases is not predicted. Conservative
vs nonconservative differencing was the subject of discussion in reference 17

where similar differences for the transonic small-disturbance equation were
reported. It is generally understood that these differences are the result of

effective mass creation at shock waves for the nonconservative differencing
schemes. Therefore, to obtain the proper mass balance and the correspondingly

correct solution (to either the full potential or transonic small-disturbance

potential equation), conservative differencing is required.

The pressure coefficient distribution for the second case (also involving,
a free-stream Mach number near unity (M,,. = 0.95)) is shown in figure 7. This

case is at an angle of attack of 4° and therefore produces lift (C L = 0.43).

The airfoil is again almost completely immersed in supersonic flow, which

begins at about 5% of chord (upper surface) and continues through oblique
shocks at the trailing edge. A more complete description of the flow field is

shown by the Mach number contour map displayed in figure 8. The oblique shock
emanating from the trailing edge upper surface has been strengthened by the

addition of circulation while the oblique shock emanating from the trailing
edge lower surface has weakened and is almost nonexistent. The normal shock

above the airfoil is much stronger than the normal shock below the airfoil.

Except for these changes, the basic structure of the fishtail shock pattern is

the same as for the first case.

This is the first time in transonic flow computations that calculations
such as those of the last two cases have been computed using an exact airfoil
mapping. Without the newly developed rotated difference scheme these calcula-

tions would have been unstable. The difficulty of these cases demonstrates

the reliability of the present transonic flow solution procedure.

Supersonic free-stream solutions— The pressure coefficient distribution
for the last case (M. = 1.15, a = 0°) is shown in figure 9. This case like
the first is nonlifting and has a large amount of wave drag (CD = 0.931). The

decrease in wave drag for this case relative to the first fits in well with

the established CD vs M trend. An oscillation in the pressure distribution

at the trailing edge is exhibited for this case and is attributed to the inter-

action of the shock wave and the mapping singularity at the airfoil trailing
edge. A more complete description of the entire flow field is shown by the

Mach number contour map displayed in figure 10. A detached bow shock wa•.'e,
characteristic of supersonic free streams, exists just upstream of the airfoil.
Weak oblique shocks emanate from both the upper and lower surfaces at the air-
foil trailing edge. The flow is supersonic at approximately 85% of all grid
points in the flow field. The region of flow just downstream of the normal

part of the bow shock and in the vicinity of the leading edge stagnation point

is the only subsonic region. Thus, the finite-difference scheme over almost

the entire flow field is first-order accurate.

Some difficulties were experienced with this calculation and are attrib-

uted to the use of standard subsonic ooundary conditions on the outer boundary
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(i.e., explicit specification of the frT.--stream solution). For instance,
unstable results were obtained with the standard mesh. To stabilize this cal-
culation the outer boundary had to be moved to a radius of 12 chords away from
the airfoil instead of the usual 6 chords. In addition, the remesh option,
which provides special grid point clustering at the airfoil (described in
ref. 4), had to be used. Because supersonic free-stream cases are not of

primary importance in the present study, no attempts have been made to stabi-
lize this calculation on the standard mesh with a more appropriate supersonic
outer boundary condition.

C. Convergence Speed

In the last section several classically difficult test cases have been

presented in an attempt to establish the high level of reliability associated
with the present new algorithm. Virtually any airfoil problem in the tran-
sonic range (i.e., subsonic free stream) is deemed solvable by the present

technique. In this section the convergence rate of these solutions is exam-
ined. This topic was the subject of discussion in reference 4, where only

moderately difficult cases were considered. An example of a particularly

rapid convergence for an "easy" calculation is shown in figures 11 and 12.

(The residual history for this calculation is given in ref. 4.) This calcula-

tion is subcritical (M. = 0.72) and nonlifting (a = 0°, NACA 0012). The pres-

sure coefficient distributions after 9 and 15 iterations, with only every other
point plotted for clarity, are compared with the solidly converged solution in

figures 11 and 12, respectively. The solution trend is established after only
9 iterations, and plottable accuracy is established after only 15 iterations.

The lattez solution corresponds to a reduction in the maximum residual of
about one and a half orders of magnitude and represents only about 2 sec of
computer time. The convergence speed exhibited in this calculation represents

the ultimate speed achievable with the present algorithm.

Of course, this type of convergence is not obtained in most cases. Both
the existence of lift and supersonic regions of flow slow down convergence.

An example of this is the convergence rate of the first case considered, i.e.,
an NACA 0012 airfoil, M. = 0.75, and a = 2° (see section III.A). Convergence
histories for this case are displayed in figure 13. The lift coefficient (CL),
number of supersonic points (NSP), and maximum residual (IRImax), normalized
to 1.0 for the first iteration, are all plotted vs iteration number (n).
These curves, as well as all convergence history curves presented in this sec-
tion, are constructed by plotting the appropriate quantity after every eighth
iteration. The convergence rate in all cases has been approximately optimized
by a trial and error process. Both NSP and CL climb rapidly and reach 1%
of their final values within 48 iterations. The lift coefficient overshoots
slightly, which is characteristic of both C L and NSP for many calculations.

The flow field is essentially converged at this point even though the maximum
residual has dropped by less than an order of magnitude.

Establishment of crude convergence for such a small reduction in the max-
imum residual is a characteristic behavior of many calculations using the

present algorithm, especially for cases involving a large amount of supersonic
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flow. For example, convergence history curves for the first two cases dis-
cussed in section III.B (fishtail shock cases) are presented in figures 14

and 15. The maximum residual in each case does not even start to L- ,.-op until

after the solutions are approximately converged. i .ring the initial phase of
convergence in which the residual does not drop, the shock sonic line's posi-
tion is rapidly being adjusted. This excites high-frequency errors, and there-

fore, keeps the residual artificially high, even though the error is being
reduced. The convergence history displayed in figure 14 indicates convergence
in approximately 80 iterations, which is signified by the constant value of
NSP. At this point the residual starts dropping exponentially, taking approx-

imately 220 iterations to reach a six-order-of-magnitude reduction. The con-
vergence history displayed in figure 15 indicates convergence in approximately

100 iterations, and is signified by constant values of both NSP and :L.
Shortly after this point the residual starts dropping exponentially, raking

approximately 300 iterations to reach a six-order-of-magnitude reduction in

maximum residual. The degradation in convergence speed of the latter case is

associated with the addition of lift into the problem, and more specifically,

by the approximate technique for updating the circulation in the vortex solu-

tion (e.g., see ref. 4). For larger amounts of lift the convergence rate will

be even slower.

The last convergence history curve presented in figure 16 is associated
with the last test case discussed in section III.B (NACA 0012, M W = 1.15,
a = 0°). Because for this case all grid points in the flow field are initially

supersonic, the value of the NSP parameter decreases (instead of increasing)
to the correct value as the solution converses. This solution is essentially

converged in 100 iterations. The maximum residual again hesitates in the
initial phase of convergence and then drops exponentially, taking approxi-
mately 330 iterations to reach a six-order-of-magnitude reduction.

IV. CONCLUSIONS

A fast, implicit algcrithm for solving the conservative full potential
equation with effective rotated differencing has been presented. The rotated
differencing is simply achieved by an upwind evaluation of the density coeffi-
cient along both coordinate directions. This provides an effective upwind
difference of the streamwise terms for any orientation of the velocity vector

(i.e., rotated differencing), and, thereby, greatly enhances the reliability
of the present algorithm. Use of the newly developed rotated differencing

scheme has been instrumental in computing a number of classically difficult
test cases including several cases with "fishtail" shock-wave patterns and a
case with a detached bow shock wave. This represents the first time such cal-

culations have been computed using the conservative full potential equation

with an exact airfoil mapping.

Results indicate that even for the classically difficult test cases pre-
sented herein, the solution convergence rate is maintained at an exceptionally
high level, which is indicative of the present fully implicit approximate fac-
torization (AF2) algorithm. A characteristic of the AF2 convergence history

r;
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for many cases containing a large amount of supersonic flow (i.e., strong
shock waves), is that the solution is essentially conjerged before the maximum
residual even begins to drop. This indicates that the high-frequency error
content of the solution does not decay until the solution is essentially con-
verged. Because of this feature, the need for a different convergence cri-

teria, other than a specified reduction in the maximum residual, is indicated. 	 k
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