
..• ,. 

NASA TECHNI CAL ME}WRANDU11 NASA TM-75384 

APPROXI11ATION THEORY FOR BOUNDARY LAYER SUCTION 

1111111111111111111111111111111 111111111111111111111111111111111 
3 1176 00001 2592 

THROUGH INDIVIDUAL SLITS 

A. WALZ 

I 
/NASA-TM-7538419790015739 
I 

I 
" -- -~ -~ - ----~-------

Translation of IINaherungstheorie fur Grenzschichtabsaugung durch 
Einzelschiltze", Deutsche Versuchsanstalt 
fur Luft- und Raumfahrt, Institut fur 
Angewandte Mathematik und Mechanik, 
Freiburg, 'Vlest Germany, DVL-184, June 

1962 

LIBRARY COpy 
fvlA r 1 0 1979 

aANGLEY RESEARCH CENTE~ 
LIBRARY, NASA 

HAMPTON, V1RGltl/I\' 

NATIONAL AERONAUTICS AND SPACE ADHINISTRATION 
WASHINGTON, D. C-. 20546 MAY 1979 



• 

1. Report No. 
1

2
• 

Goyo,nment Accession No. 
---------------- - -----~ 

,NASA TM-12.38~ 
3_ Rot,p'"""', c",,,rog ~J", 

--,----------
4. nile and Subtitle S. Report Dole 

APPROXIMATION THEORY FOR BOUNDARY LAY-
Hay 1979 _ 

6. Perlorming Orgonization Cod ... 

ER SUCTION THROUGH INDIVIDUAL SLITS 
7. Author( s) 8. Performing O,goni lolio:'l Reporl No_ 

A. 'ltlalz, Institute for Applied Mathe-
matics and Mechanics, German Research 10. Worle Unit No. I 
Institute for Aviation. I 

I 

11. Conlract or Grant No. 
9. Perlorming Organilo'ion Name ~d Add, ... NASw ~199 

Leo Kanner Associates 13. Type of Roport and Period Coyer.d 

Redwood City, California 94063 
Translation 

12. Sponsoring Agency Name and Addre .. 

~ational Aeronautics and Space Adminis- 14. Sponloring Agenty Code 

~ration. Washington. D.C. 20546 
I S. Supplementary Noiu 

Translation of Naeherungstheorie fuer Grenzschichtabsaugung 
durch Einzelschlitze", Deutsche Versuchsanstalt fuer Luft-
und Raumfahrt, Institut fuer Angewahdte Mathematik und Me-
chanik, Freiburg, West Germany, DVL-184, June 1962. 

. 

16. Abstroct 
The basic concepts of influencing boundary layers are sum-
marized, especially the ~revention of flow detachment and 
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behind the slit. An approximation of the shape parameter 
produces a useful formula, which can be used to determine 
the most favorable position of the slit. An aerodynamic 
example is given. 
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P " . rec1.s 

The application of boundary layer suction is as a rule con­
cerned with single slits, while the majority of the theories 
deal with the case of continuous suction. In this report, a 
simple theory for suction by single slits is developed. The 
theory is connected with the calculation procedure for lami­
nar and turbulent boundary layers, described in DVL Reports 
84(1959) and 136(1960). 

In this theory there are only two unknowns for the velo­
city profile, a thickness parameter and a shape parameter. The 
basic concept of suction theory now consists in ascertaining the 
values of these tvl0 parameters behind the suction slit from the 
parameter values in front of the slit, since the arriving velo­
city profile with the given suction quantity is "clipped" ac­
cording to the continuity condition and the parameter values for 
the remaining profile are specified in an appropriate manner. 
The calculation then continues behind the slit with this para­
meter value. 

The theory is fully developed in this report at first only 
for turbulent boundary layers on the basis of velocity profiles 
according to the common and simple exponential law. As early as 
1943 the author had presented an incomplete form of this theory 
in a limited-access report of the Aerodynamical Research Insti­
tute, Gottingen, and compared it with measurements. Several 
essential findings of this older report have been reproduced in 
the current report. 
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APPROXI11ATION THEORY FOR BOUNDARY LAYER SUCTION 
THROUGH INDIVIDUAL SLITS 

A. Walz 

I. Introduction. 15~} 
The viscosity of fluids has effects that are almost always 

undesirable in flow technology. Among these are, e.g., the 
resistance of bodies in the flow to friction and pressure, the 
pressure losses in pipelines, and the detachment of the flow 
with its subsequent disadvantages. For the order of Reynold's 
numbers prevalent in flow technology, the viscosity is practi­
cally restricted in its action to a very thin boundary layer. 
Thus the above unfavorable phenomena are also to be referred to 
pr.ocesses in the boundary layer, for large Reynold's numbers. 

L. PRANDTL L-17 was the first to show (1904) the connection 
between the processes in the boundary layer and the outer flow 
of potential. From then onwards, the way was clear for all in­
vestigations that attempted to choose the contours of objects in 
a flow or the cross sectional curve' of channels in such a way 
that the boundary layer processes, in respect of flow resis­
tance and detachment phenomena, occur in an optimal manner. Some 
of this work led to the development of airfoil profiles with 
small resistance (the laminar profile) and at the same time a 
high maximum lift L-2,3,4,27. Recently, R. EPPLER L-£7 has 
treated this problem with the modern methods of potential the­
ory and boundary layer theory. F. X. Wortman L-Z7 has made ex-

-::-Numbers in the margin indicate pagination in the foreign text. 
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tensive measurements in regard to this problem. But also in 
this connection we should mention all the mathematically profound 
a~d experimentally difficult works that explore the conditions 
for stability of the laminar boundary layer (cf. the newest 
findings of H. G8rtler's research group, Freiburg Institute, 
'Vlest Germany, and for a bibliography see, e.g., DVL Report 8). 

Let us now assume that we have exhausted all possibili­
ties to constitute an optimal pressure, working on the boun­
dary layer from without. It is now to be asked whether there 
are yet other physical or technical possibilities for inter­
vention in the boundary layer processes. In critically evalu­
ating these possibilities, it is seen that a distinction should 
be made between the measures for preventing ~ detachment 
and those for reducing ~ frictional resistance. This will 
be illustrated with the help of figures 1 through 7. 

II. ~ Fundamental Possibilities ~ Influencing ~ Boundary 
Layer. 

II. 1. l-leasures!2 Prevent stream Detachment. 

The manner in which a boundary layer (assumed to be lami­
nar) affects a pressure gradient dp/dx in the flow direction 
should be immediately apparent from fig. 1. In the case of 
dp/dx = ° (flow along a level plate), we find something like 
the indicated curve of the velocity u with the distance y from 
the wall (Blasius profile L-27). The particles of fluid close 
to the wall still have a slight kinetic energy, by which they 
become "playthings" of external pressure gradients dp/dx, which 
are nonetheless active or "impressed" in the neighborhood of the 
wall. If dp/dx < 0, then the particles near the viall are ac-
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celerated. Velocity profiles that are more full than the Bla­
sius profile are the result. In the case of a positive pres­
sure gradient (dp/dx> 0), kinetic energy is expended in the 
formation of the static pressure field. The velocity close to 
the wall decreases even further than for the Blasius profile. 
The result is velocity profiles with a turning point so that, 
in the neighborhood of the wall and for sufficiently large dp/ 
dx, there may occur an inversion of the velocity direction, with 
consequent flow detachment. 

To avoid flolO[ detachment in this case we can use, for ex­
ample, a wall stage l-1i th adjacent suction channel, as shown 
schematically in fig. 2. The "sick ll flow of the boundary layer 
near the wall disappears now in the suction channel (naturally 
one Illtist provide for a 10l-1er pressure in the channel with res­
pect to the outer pressure), and a new, "healthy" boundary lay­
er flow begins behind the suction point. It has a fuller ve­
locity profile, able to overcome further pressure rises. 

A comparison of the velocity profiles before and after the 
suction point shows immediately that, while the suction has pre­
vented detachment of the flow, it leads to a greater wall fric­
tion behind the suction point, due to the greater velocity. We 
thus cannot expect to reduce the frictional resistance by suc­
tion alone. The points later discussed in connection with figs. 
8 and 9 have some bearing here. We now consider still other 
possibilities for preventing flow detachment. 

It is technologically more simple to produce a suction by 
a slit in the surface, as sketched in fig. 3. The result is 
practically the same as the case in fig. 2: the energy-poor L1 
boundary-layer flow beneath the dot-and-dash streamline is en­
gulfed in the suction slit. Behind this slit, a fuller and en­
ergy-rich velocity profile is again available to confront new 
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pressure increases vd thout danger of detachment. 

Fig. 4 represents the case of a continuous suction, such 
as by a porous wall. It is the object of much research (see 
the bibliography in L-1Q7). We shall content ourselves here 
with a reference to the bibliography. Another possible way 
to increase the kinetic energy of the boundary layer near the 
wall is by blowing, tangential to the surface and in the flow 
direction, as shown in fig. 5. By this means, the velocity 
profile behind the blowing point becomes more full. But at 
the same time, the thickness of the boundary layer can grow, 
which is not the case for the preceding measures. 

Finally, it is possible to influence the boundary layer 
in prevention of flow detachment by moving the wall in the flow 
direction. But this measure has till now hardly been applied 
in practice, apparently due to the mechanical difficulties. 
(Examp'le: the Flettner Rotor for producing a circulation flow, , 
see L-107, p. 247). 

To illustrate what advantages can result to flow technol­
ogy by the prevention of flow detachment, the classical experi­
mentof L. PRANDTL L-117 on a short diffuser with two suction 
slits should be recalled, figs. 6 and 7. Also the successful 
attempts of the AVA Gottingen to increase the maximum lift of 
airfoil profiles should be consulted (for a summary of which 
see, 'e.g., L-1g7. 

II.2. Measures 1£ Reduce ~ Frictional Resistance (Maintain­
tenance 2f ~ Boundary Layer's Laminarity). 

For the measures depicted in figs. 1-5 we can say in sum­
mary that, near the wall, the velocity within the boundary la­
yer is increased. In this way, the flow is prevented from de-
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tachment in regions of pressure rise. But these measures, as 
already indicated, at first appear to be ill-suited to reduc- ~ 
ing the frictional resistance, since the shearing stress ~w of 

• the wall increases, after Newton's theorem, with the velocity 
I 

gradients perpendicular to the wall (y-direction). 

, 'I( aU) 
T'w .1 f-! ~Y y.o 

u = the velocity' component parallel to the wall (x-direction) 
~ = the viscosity coefficieht . 

. " . I . 
But reducing the thickness of the boundary layer and making the 
velocity profile more full ban have an additional important ef­
fect, about which we have nbt yet spoken: the laminar condition 
of the boundary layer can b~ stabilized or--in other words--can 
be prevented from entering bhe turbulent condition at turning 
points •. The consequence oflthis is illustrated in figs. 8a, 8b, 
and 9. If the laminar and he turbulent velocity profile are 

. - 8 It· compared, f~gs. tla and b, fith the h~ckness of the boundary 
layer being equal in both cases,o,= 6t , and the velocity u6 at 
the edge of the boundary la~er also being equal for the two, it 
is seen that the veloci ty g~adient (a u/a y ) y .. o of a turbulent 
boundary layer is much greaber than that of a laminar, since the 

(1 ) 

. turbulent exchange'movementb bring kinetic energy into the wall 
proximity. 1 In this way thb frictional resistance can be much 
greater for a turbulent, thhn a laminar boundary layer. If we 
consider, for example, the hotal frictional coefficient CF of 
a level plate (IV = total reristance per unit of wid.th, I = length 

1 If it is intended to preveht flow deta.chment, then the conver­
sion of the boundary layer from the laminar to the turbulent 
condition is to be regarded I as a desirable process, which can 
have as favorable an effect as suction. Thus, for flow proces­
ses with a small Reynold's number, artificial turbulence, such 
as produced by a trip wire, is a simple measure to prevent de­
tachment, often used in pra tice. 
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of the plate,J = density of the fluid) 

w c = 2 
F f.uo L 

2 . 

with _ 

c = 
f 

= the local coefficient of friction, 

then we find OF and the Reynold's number 

JUd-
R = ---

I ~ 

connected by the curve 0F{R1), which is very different for a 
laminar and a turbulent boundary layer (fig. 9). When the Rey­
nold's numbers are greater than 107, {CF)turb can be almost one 
power of ten greater than {OF)lam. For R1~ 107, the differ­
ence between the two can become greater still. 

If special measures are not taken to maintain the laminar­
ity of the boundary layer, there occurs a transition at about 
Rx ~ 10 6 (x = path length) from the laminar to the turbulent 

condition, for flow along a smooth and even plate. This is a 
consequence of instability of the laminar boundary layer. Now 
it is stated in the stability theory of a laminar boundary la­
yer that the layer can remain laminar, even at Rx> 106, if 

a) the thickness of the boundary layer is reduced by suc-
tion, 

b) the velocity profile is made more full than the Bla­
sius profile of the level plate. 
However both of these are conditions that can be fulfilled by 
suction of the boundary layer. Apparently it is very impor­
tant not to suck off more fluid than is absolutely necessary 
to maintain the stability of the laminar layer, since both mea-

6 
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sures, a) and b), increase the wall shearing stress of the la­
minar boundary layer. Furthermore, a certain amount of power 
must be expended in transporting the suctioned material, which 
increases with the quantity transported. Since the maintenance 
of boundary layer laminarity can improve the frictional coef­
ficient by several orders of magnitude (especially for the case 
of large Reynold's numbers Rl ), these unfavorable consequences 
of suction play only a minor role in comparison to the theo­
retically minimal quantity or suction. It is also apparent that 
the theoretically minimal quantity of suction is attained for 
the case of continuous suction (fig. 4), which is also a mea­
sure for preventing flow detachment. The technical realiza­
tion of this case is naturally very difficult, since porous 
surfaces are easily occluded. 

As H. HOLSTEIN L-1~7 was the first to show, and as W. 
PFENNINGER L-157 has recently demonstrated with measurements, 
the optimal case of continuous suction can be approximated with 
a rather large number of slits, succeeding each other in the 
flow direction. The technique of suction through single slits 
is also promising for aircraft design, as seen from both past2 L1Q 
and recent experiences. 

,We PFENNINGER L-1£7 has briefly reported on new experimen­
tal results of suction by single slits, during which it was pos­
sible to maintain the laminar boundary layer on airfoils up to 
very high Reynold's numbers, Rl~ 3 .107• The coefficient of 
profile resistance CF (with the power expenditure for the suc­
tion taken into account) was CF~ 10-3• (For a turbulent boun­
dary layer, CF was nearly 6 times as great). The results, dis­
cussed in L-1~7, as to the amount of suction that should be em­
ployed, are also in good accordance with the theoretical cal-

2Cf• the bibliography on the ~ests in the AVA G6ttingen and the 
ETH Zurich, L-1g7 to L-127. 

7 



cUlations for the stability problem. 

According to a report by H. R. Head ~117, results have 
lately been achieved in England that are equally favorable. 

Thus we can consider the maintenance of boundary layer la­
minarity by suction to be a special modern problem in flow me­
chanics. 

III. Approximation Theory ~ Suction through ~ §l!i. 

111.1. A General statement of the Problem. 
~~--~ ~~~~-- -- ---

It is a great deal more easy ~o implement suction with sin­
gle slits, than continuous suction through porous materials (dan­
ger of occlusion). Yet for the theoretical treatment of this 
problem, we find a totally different picture, since we can easily 
specify exact solutions of the boundary layer equations, when 
dealing with the continuous suction of a laminar boundary layer 
(cf., e.g., B. H. Schlichting L-1Q7); but the theoretical treat-
ment of single-slit suction is complicated (cf., e.g., W. Wuest 
/-18, 127, W. Rheinboldt L-207). 

In this report we shall describe a simple theory for suc-
tion with single slits. It can be applied to laminar, as well 
as turbulent boundary layers. This theory follows very closely 
the approximation theory that was presented in DVL Reports 84 
and 136. The theory enables the design engineer to calculate, 
with sufficient accuracy, the amount and power of suction needed, 
for example, to raise the maximum lift coefficient of a given 
airfoil profile by a certain amount, or to· prevent flow detach- L1 
ment in a given short diffuser. In applying this theory to la­
minar boundary layers, we must also take into consideration the 
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elementary findings of stability theory (cf., e.g., L-10,197). 

It is even possible to use this approximation theory to in­
vestigate the case of continuous suction as a boundary case with 
a great number of single slits arranged in succession. still, 
a calculation of this sort has not yet been attempted. 

As long ago as 1943 the author had presented an imperfectly 
developed form of this theory for suction through single slits in 
a ZWB Report of the AVA GBttingen (Nr. 1775)L-217, not generally 
available, and correlated it with measurements. In order to cal­
culate the turbulent boundary layer before ~nd behind the suction 
site, the then-common procedure of E. GRUSCHX1ITZ L-2g7 was used. 
It has been shown that, for the correlative measurements in the 
region of Reynold1s numbers that was employed, this procedure 
is only slightly le'ss exact than the newer procedures, such as 
those of E. TRUCKENBRODT ~2J7 and A. WALZ L-2&7. In this re­
port we shall again present the essential results of the previ­
ous calculations and correlations with measurement,' but shall 
gi ve only the improved version of the theory. ltlork is now being 
done to confirm the former results with this improved theory, as 
well as to calculate the case of suction of laminar boundary la­
yers. 

III.2. ~ ~ Precise statement 2! ~ Problem. 

We shall consider a two-dimensional, stationary, incompres­
sible flow along a solid surface, e.g., along the contour of an 
airfoil profile. Let us assume that an infinitely long suction 
slit runs transverse to the principal direction of the flow. 

The breadth of this slit is taken to be negligibly small in com­

parison to the depth I of the airfoil, or 

2..« 1 
I 

(1 ) 
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If, now, a lower pressure is used to suction flow mater­
ial into the interior of the airfoil, this suction flow has 
two diverse effects: 

1. a direct effect on the boundary layer flow, since 
its material is disappearing into the suction sink; 

2. an indirect effect on the boundary layer, since a 
sink flow is superimposed on the potential flow outside the L!g 
boundary layer. The velocity distribution at the edge of the 
boundary layer, altered by the action of the sink, causes the 
boundary layer before a~d behind the suction slit to develop 
differently, than if the sink were not there. 

A theory for suction must thus comprise, in addition to the 
main problem of boundary layer theory, also a pure problem of 
potential theory, due to the sink effect. In the boundary layer 
calculations, the potential theory distribution of velocity at 
the edge of the boundary layer must be known in advance. For 
this reason we choose to deal at first with this supplementary, 
potential theory problem of the sink effect. It will be seen 
that this effect, even for very small suctions, is considerable. 

111.3. ~ Influence 2f ~ Suction ~ ~ ~ External ~­
city Distribution. 

We shall now calculate the additional velocity that a two­
dimensional, pointlike sink (with linear extension along the air­
foil span) produces on the surface of an airfoil profile. For 
simplicity we now assume that the profile depth is infinitely 
great and, consequently, that the airfoil surface, upon which 
the sink is situated, is infinitely extended. If Q is the suc­
tion quantity that disappears in a unit of time across the wing­
spread b of the airfoil and into the sink, then the potential 
theory additional velocity ~ U o at a distance a from the sink 
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midpoint is, in the familiar manner, 

a 6. u = s 1rab 
(2) 

where 2ab~ is a cylinder surface with the sink line as axis. 

It is helpful to make the additional velocity~uo nondimen­
sional with the undisturbed velocity of the approach flow u~, 

and also to introduce in eq. (2) an airfoil surface (now taken 

to be finite): 

F = bl 

where 1 is the depth of the profile. 'VIe now obtain: 

G 
U oo Ib 'Jra - U oo F (4) 

\,le designate ill 
Q . 

Uco F (5) 

as the "suction figure". Thus the suction quantity Q is re­
lated·to an imaginary quantity, ~F, supposed to occur during 
flow with a velocity u~ along the airfoil surface F in unit time. 

Relation (4) can also be used for a finite breadth s of the 
suction slit, if the.midpoint of the sink is placed in the mid­
dle of the suction slit. The calculation in this case proceeds 
only to the edge of the sli t, so that the singulari ty ~ U 0 - 00 

for a-O at the sink midpoint causes no trouble in practice. 

F. EHLERS L-227 (AVA Gottingen) has proved, in an unpub­
lished work of 1944, that the simple relation (4) for the ad-
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ditional velocity, resulting from the effect of the sinK, must 
be corrected if a finite wing depth 1 is assumed. In this case 
we must assume a sink on a circular periphery and, in order to 
determine the additional velocity on a given profile, and in­
clude the sink in the conformal representation of the circle 
(z-plane) on the profile contour (;-plane). According to Eh­
lers, the additional velocity is more exactly expressed by 

IdZI (ctg cp- 'f A _ ctg 
ds 2 

) (6 ) 

than by (4). Here, alluding to L-227 and L-227, R is the radius 
of the image circlel~§lis the absolute value of the differen­
tial quotient of the image function ;=f(z) that represents the 
circle (z-plane) on the profile plane (';-plane), and rp is the 
angle on the image circle, with which the individual profile 
points are co-ordinated: rp' = 0 corresponds to the rear edge of 
the profile, rp= rpA to the suction site on the profile. 

The total velocity Uo of potential theory, which is de­
cisive for the development of boundary layers, is, from a linear 
superposition of the main and the additional flow: 

The theoretical investigations of Ehlers have also pro- ~ 
duced the interesting result that the sink flow also influences 
the circulation about the profile, i.e., the lift A. This re­
sult is physically explained by the fact that the sink flow, as 
well as the main flow about the profile, is subject to the 
Kutta-Zhukovskiy flow-off condition at the rear edge. From the 
side of the suction site that is closer to the rear edge, less 
material flows to the sink, since the sharp rear edge hinders a 
flow from the underside of the profile around to the slit. The 
sink flow thus contributes to the circulation about the airfoil 
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profile. 

The lift coefficient ca is defined, as is known, by: 

A 

According to Ehlers, the lift coefficient is enhanced by 

due to the effect of the suction sink on the circulation. This 
effect of a sink flow, especially the accelerated increase in 
ca as the suction sink approaches the rear edge (rA ~ 0) , has 
been qualitatively confirmed by the measurements of B. REGEN­
SCHEIT L-267. For cf>A = 0, (8) produces the value' .o.Ca = co , 

which is no longer physically logical. Evidently formulas (8) 
and also (6) can only be used if cf>A and cf>-cf>A are substantially 
different from zero. In practice, this difficulty in the use 

(7a) 

(8 ) 

of the Ehlers formula does not occur, since there are always 
finite widths s of the suction slit. Thus, in the case of for­
mula (8), the distance of the sink midpoint from the rear edge is 
always s/2 and the corresponding arc cf>A on the image circle 
(due to the large ,value of Idz/dgl in the neighborhood of the 
rear edge) is always relatively large. The additional velocity 

ll. u 0 of eq. (6) is only of interest for boundary layer calcu­
lations up to the edge of the suction slit, or to the distances 
±s/2 from the sink midpoint. Here also the infinity site is 
avoided. ~ 

Fig. 10 shows a schematic representation of streamlines 
in the region of a suction slit. An essential feature of this 
pattern is the backwater line (dot-and-dash) which, for a pro-, 
perly chosen suction quantity, ends at the rear edge of the suc-

13 



tion slit. The flow material between this line and the profile 
surface disappears into tpe suction slit. Fig. 11 shows (quali­
tatively) the corresponding velocity curve at the edge of the 
boundary layer, including the additional velocity due to the ef­
fect of the sink. It can be seen that the sink creates an ac­
celeration of the total velocity Uo upstream and a retardation 
downstream. For boundary" layer calculations, at any rate, only 
the velocity distribution above the solid profile surface in 
£ront o£ point I and behind point II in £ig. 11 is o£ interest. 
This is the region that can be used with sufficient exactness in 
formula (6). In the region I,ll = s directly above the suction 
slit, there are positive additional velocities in the forward 
half and negative ones in the rear half, so that the integral 
of the additional velocities between I and II is equivalent to 
zero. Thus, for the development of the boundary layer directly 
above the slit, i.e. between I and II, the suction sink is, to 
a first approximation, without meaning. Since there is no wall 
friction above the suction slit, we can ignore the finite (and 
presumably very small, according to eq. (1» breadth s of the 
suction slit for the boundary layer calculations, and take as a 
basis the velocity curve Uo(x) shown schematically in fig. 12, 
with a discontinuity at the suction site. 

This discontinuity presents no difficulties for the calcu­
lations. It is the case, for boundary layer computations, that 
the influences of the acceleration before the slit and of the 
retardation behind are somewhat compensated in their effect on 
the development of the boundary layer profile between I and II, 
when the velocity discontinuity is assumed. 

111.4. Alterations 2£ ~ Boundary Layer Parameters £X Suction. 

111.4.1. ~ Fundamental Physical Concept. 



It is now important to ascertain the direct alteration of 
the velocity profile due to a given suction quantity. We can 
assume that only a P9rtion of the boundary layer material, as 
a rule less than half, is removed. For this case, the stream- L!2 
line curve in fig. 10 can also be used. A more vigorous suc-
tion, according to experimental experience, provides no advan­
tageous effects, and when the suction is to reduce the resis-
tance it is only a disadvantage, as we have already discussed. 

Fig. 10 already enables us to evaluate how the velocity 
profile is altered by suction: 

A certain velocity profile arrives at the forward edge of 
the suction slit (point I). The backl-later line divides this 
profile into an inner (near the wall) and an outer region. Be­
hind the suction slit, the inner region of the velocity profile 
has disappeared. The outer region now forms the initial profile 
for the development of the boundary layer behind the suction 
slit. The velocity profile, "clipped" by suction, glides almost 
without friction along the backwater line above the slit and a­
cross to the rear edge of the latter. In this way, the veloc­
ity at the "division surface" is reduced to zero when the back­
water point reaches the rear edge of the slit II. Thus the more 
full velocity profile II behind the slit is derived from the ve­
locity profile I in front of the slit. At the same time, the to­
tal thickness of the boundary layer has been reduced from 01 to 
0rI. The exact shape of the velocity profile II is in any case 
unknown. It must therefore be clarified whether and how the ve­
locity profile II for a given suction quantity and for a given 
velocity profile I ca~be characterized so unequivocally that 
the boundary layer calculation can be continued behind the suc­
tion slit. We shall limit ourselves here to a boundary layer 
calculation with an approximation procedure, as has been des­

cribed, for example, in DVL Reports 84 and 136. In this pro-
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cedure, the velocity profile of the boundary layer is estab­
lished by two characteristic magnitudes: a thickness parameter 
and a shape parameter. Our problem. is solved if it is possible 
to calculate the numerical values of these two parameters for 
the velocity profile II from the numerical values of the para­
meters of the velocity profile I, for given suction quantities. 

111.4.2. Determination of ~ Boundary Layer Parameters Al­
tered £l Suction. 

. 
111.4.2.1. A Brief Summary 2f the Boundary Layer Calculation 
Procedure f2! Constant Material Values (Incompressible Flow). 

The above-mentioned approximation theory for boundary la-
yer calculation L-2k7 basically works with integral conditions L1l 
for impulse and energy within the boundary layer. These two in­
tegral conditions are presented in the form of two ordinary dif­
ferential equations for two characteristic magnitudes of the 
boundary layer. As already indicated, it is convenient to choose 
a·thickness parameter and a shape parameter as the character-
istic magnitudes, and the velocity profile u(x,y) is then gene­
rally described by an expression in the form: 

(9) 

Here o(x) is the thickness parameter (the total thickness of the 
boundary layer) and H(x) is the shape parameter. The function f, 

which· is different for a laminar and a turbulent boundary layer, 

is assumed to be known in reference to special exact solutions 
or measurements. The definition of the shape parameter can be 
chosen at will. 
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In this approximation theory with integral conditions, the 
following three integral expressions play a special role in the 
case of incompressible flow (to which we limit ourselves here): 

6 
c5 =j.JL (1- .JL ) d Y j 

2 Us Us 
o 

Displacement Thickness Thickness of Impulse Loss 

6 =/JL [1 - (_U_)'2.] dy 
3 U 6 Us 

o 
Thickness of Energy Loss . (10,11,12) 

From physical and formal reasons it is expedient to intro­
duce as the thickness parameter of the boundary layer not the 
"total thickness 0 ", which is difficult to define, but the mag­
nitudes: 

Z = 6 (R(' )n 
2. 02 with 

n=1 for a laminar 
n=0.268 for a (13,14) 

turbulent boundary layer 

and to introduce as shape parameter: 

These differential equations (with , indicating the deri- L1& 
vative with regard to x) now appear as: 

, 
Z'+Z .!!LF(H) - F. (H)= 0 

Us 1 2 (16) 
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with 

F =(2+n)+(1+n)~1 (H) j 
1 02 

F.=1- ~(H) 
3 02. / 

F =(l+n)oc.(H) 
2. 

n-N 
F. c::2PCH)R - Ho..(H) 

It- 02 

(18,19) 

(20,21) 

a(H) = partial function of the local frictional coef­
ficient, dependent on the shape parameter H 

a(H) = portion of the dissipation function dependent 
on the shape parameter H (for a turbulent boun­
dary layer, a (H) a a =0.0056) 

laminar boundary layer 

turbulent boundary layer 

n = Na l 

n=O,268' 1 
I n-N = O. 

N = 0,168 

(;22) 

(23) 

uo(x) is the velocity distribution, to be assumed as given, 
at the edge of the boundary layer; in the case treated here, it 
must also include the additional velocity of the suction sink. 

In DVL Report 136 L-2~7 analytical expressions for the uni­
versal functions F 1 to F4 for lWriinar and turbulent boundary la­
yers (for incompressible and compressible flow, with and without 
heat transfer) as well as solution methods for the system of e­
quations (16) and (17) have been given, so that no further ex­
position is needed here. 

We must now answer the question as to how the parameters 
Z and H during incompressible flow are altered under the influ­
ence of an unsteady suction by a slit. It should also be men­
tioned that there are no fundamental difficulties in generali-



zing this theory for compressible flow. 

111.4.2.2. Derivation of the Connection between the Suction 
~;;...;;;;..--....;---= - - -

Number CQ ~ ~ Boundary Layer Parameters. 

We have already established in section 111.4.1. that the 
shape of the velocity profile II behind the suction slit is not 
at first completely known. But since, within the framework of 
the approximation theory sketched in section 111.4.2.1., inte­
grals of the form (10), (11), and (12) on the velocity profile 
are essentially concerned, it is possible to represent these 
integral expressions at the site II, i.e. behind the suction, 
by the difference of two integral expressions. Star~ing from 
the physical representation of the flow curve in the region of 
the suction slit, as' shown in fig. 11a, the following are valid: 

(6,) II = ( S, )1 - (S1) Q . 
(24) 

(02.) II = (62. )1 - (°2 ) Q 
(25) 

(°3) 11 = (63 )1- (6.3)Q (26) 

with 
Ya. 

( °1) Q = I ( 1 - ~o ) d y (27) 
°YQ 

( 02,) Q = I ~ (1 - ~ S ) d Y (28) 
o . 

(03)Q = lu~ [I-( ~ 6 )2J dy (29) 

° 

Here YQ is the distance from the wall to which the veloci-
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ty profile I, arriving at the suction slit (fig. 11a), must be 
"clipped" in order that the given suction quantity per unit of 
time 

(30) 

disappears into the suction slit. With (30), 

YQ 
Q = C Q U co b l = b U 5 f U~ d Y = b U 0 6 G- (31 ) 

o 

must be valid. Thus the "thickness of suction" 0Q is defined as: 
/20 

(32) 

From (31) and' (32) it also follows that 

~= 
I (32a) 

As we shall later show in deta~l, there is no difficulty in 
calculating the integral expressions (27) to (29), and thereby 

the values (01)II' (02)II' (03)II in (24) to (26) for a given 
group of laminar or turbulent velocity profiles according to eq. 
(9) as functions of the suction number cQ' the shape parameter 
H, and the local velocity ratio u'o/uco • 

In this way, from eqs. (13) and (14), the thickness para­
meter ZII can also be immediately determined as the initial va­
lue of the computation behind the suction slit. 

It appears at first somewhat more difficult to ascertain 
the shape parameter HII of the velocity profile, altered by 
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suction, from the magnitudes {o·1 )1:1' (02)11' (° 3)11' i.e., to 
again classify this somewhat tttruncated ll velocity profile in the 
form category of expression (9). 

For a single-parameter family of curves, which we have 
taken as a basis in the approximation theory with the general 
expression (9), the relationships 01/02 and 03/02 = H (see eq. 
(15» are specifically correlated. Thus 01/02 is a specific 
function of the chosen shape parameter H. For the velocity pro­
files altered by suction we can no longer assume that they may 
be accurately classified in the original family. We must much 
rather expect that the relationships (01)11/{o2)11 and 

(53 )u -H 
(s) ,II 

2.Il 
(33) 

of the profiles altered by suction can no longer be specifically 
coordinated to each other. If we nonetheless assume the expres­
sion (9) of the original velocity profiles to be valid, then we Lg1 
obtain, from (01)11/(02)11 and (03)11/(02)11' two rather dif-
ferent HII-values: HIIi2 and HIIs2 • It is now our concern to 
arrange, at least approximately, the velocity profile altered by 
suction in the original1family of single-parameter velocity pro­
files, ,i.e., to find in this family a profile that is most simi-
lar to that altered by suction. A physically reasonable pre­
scription for this arrangement of the flclipped" velocity pro-
files in the original family of curves is now, evidently, to form 
an arithmetic mean HII from the two generally different values 

H-1 and HII ,. 
J. 12 32 

H = II 2 

and to continue the calculation behind the suction site II with 

(34) 
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this value. This principle for the determination of HII is the 
more dependable as the values of Hand H are less dif-

1I12 1I32 
ferent from each other. 

As we shall later establish, this prerequisite for the de­
pendability of the approximation theory is fulfilled in a use­
ful manner. 

IV. ~ Application 2f Suction Theory 12 Turbulent Boundary 
Layers. 

IV.1. Usage Formulas 2n ~ Basis 2! Power Profiles. 

We shall now occupy ourselves at first with the suction of . 
~urbulent boundary layers. For the velocity profiles in this 
case (at any rate for the calculation of the integral expres­
sions (24) to (29», we can take as a basis the simple exponen­
tial expression 

(35) 

with 

o <k < 1 or more exact 0.1- < k < 0.7 (36) 

On this basis, the integral expressions (10) to (12) can be im- /22 
mediately and continuously evaluated. These are the expressions 
that are valid for the velocity profile in front of the suction 
site, and which we must thus distinguish with the index I. 

From (10), (11), (12) with (35) it follows that 
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( 6,) k I 
T r= 1+ kr 

(~) = 
() I 

( 03 ) = -:-:--""",!,2_k...:;:.I~~--;: o I (l+kr )(1+3kI ) / 

From which is obtained 

(40) 

and, wi th (15), 

or 

The integral expressions (24) to (29) assume the form, with (35), 

. 1+ k 
( O')Q YQ (y~/61 ) I 

Or 
- ~ 1 + kr (43) 

(Ol) (y 10 ) t +kr (YQ 1°1 ) _ Q I 

I Or 1 + k I 1 + 2 kz 
(44) 

(63 ) (Y
Q 

lOr) l+kr ( 16) 1+3 kr 
YQ I (45) 

6r 
-

1 + kr 1+ 3 kr 

From this it follows, for the magnitudes behind the suction site 
(distinguished by the index II), that 

(46) 
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I+k f+ 2 k 
(02)U kr (Yn lar) r (Yo.l0r) I 

- (1+ kr )(l +2 kI ) 
+ . or 1 +k 1+2 k 

I I 

(03 )n 
1+kI f+3"'r 

2 kI (Ynlor) 
+ 

(Yn/Or) . 
OI - (1+kl )(l t 3kI ) 1 + kI 1+3k r 

For the thickness of suction ~/o, with (32), it is now valid 
that 

From which the magnitudes, needed in (46) to (48), with (32a) 
and (38) yield 

(48) 

(49) 

(50) 

All the magnitudes appearing in (50) are known: kI{HI ) fol­
lows from (41); (0 2/1)1 from ZI according to eqs. (13) and (14); 
and uo/u~ and cQ are given in the original statement of the prob­
lem. 

We can now, to check the methods, described in section 
111.4.2.2, for the determination of the shape parameter HII be­
hind the suction slit, easily form the relations {01/02)II and 
(03/02)11. The result is shown in fig. 13. HII with kI(HI ) as 
parameter is diagrammed above the "suction distance" Yr!0r 
(which is connected to the suction number cQ' according to (50». 
On the one hand, with (47) and (48), HII follows directly from ~ 
the definition (33): 
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On the other hand, one ~an calculate HII from (o1/o2)II by way 
of relations (40) and (41), namely as: 

H = 2 1 + 2 kn 
II'2 1 + 3 kn 

with 

) - 1J 
II 

(51 ) 

(,51 a) 

As can be seen from fig. 13, the values HIland HII are 
32 12_ 

only slightly different, so that we should regard the value HII , 
obtained by arithmetic averaging according to eq. (24), as a 
usable initial value for the shape parameter behind the suction 

site. 

This analysis is immediately valid for turbulent boundary 
layers. For laminar boundary layers a corresponding verifi­
cation is still wanting. 

The value ZII' which in addition to HII is used to continue 
the boundary layer calculation behind the suction site, follows 
unequivocally from eqs. (47), (13), and (14). 

IV.2. ! General Appraisal 2f the Suction Effect. 

With the simple derived relationships, we can now make a 

quick survey of the effect of a definite suction quantity on the 

boundary layer. For this purpose, we begin with fig. 13, from 

25 



l-lhich it is immediately apparent to what relative distance from 

the wall, yql0r' the velocity profile with shape parameter 
Hr(kr ), arriving at the suction slit, must be "clipped" in or­
der for a velocity profile with a prescribed value Hrr to arise 
behind the suction slit. The relative suction distance YQ/o1 
and the suction number cQ are connected to each other by eq. (50). 
The other magnitudes appearing in eq. (50 )--uo/uoo, k(Hr ), and 
(o2/1)r--are known with the calculation of the potential flow 
and the boundary layer up to the suction site r. The relations 
(41) and (42) provide the connection between k and H. Lg2 

We shall discuss the application of eq. (50), in combina­
tion with fig. 13, by an example. For this example we shall 
assume that the turbulent boundary layer in front of the suc­
tion slit has passed through a region of pressure rise of such 
intensity that, without suction at this location, flow detach­
ment would immediately ensue. According to L~7, detachment of 
the turbulent boundary layer can be expected when the shape pa­
rameter H is somewhat less than the value 1.571 : 

Hdet • < 1.57 (52) 

To this value of Hdet there corresponds, according to eq. (42), 
the value 

kdet • > 0.606 

'Vle should now determine the suction quantity that reduces 

the shape parameter HI = 1.57 (kI = 0.606) to the value HII = 

1rn many instances flow detachment is first observed when H< 
1.53. Such cases apparently prevail when a pressure drop, fol­
lowing a pressure rise, suctions away the dead water region, 
formed by the detachment, in the flow direction. 
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1.80 (kII = 01.43). This value of HII characterizes a veloci­
ty profile such as that appearing in a flow without pressure 
gradients and with large Reynold's numbers (cf. L-17, DVL Re­
port 136, p. 51). To achieve such a suction effect, one must 
"clip" the velocity profile to YQ/~I = 0.53, according to fig. 
13. The appropriate suction number cQ is, ~rom eq. (50): 

1 + 2 k U 02 1,505 • 2.21 2 U 6 _02 ) 
--:-_I_ ( --L -1-) = 0,53 0.606 .( u..,., . 1 'I 

kr Uoo 

= 132 (U6 02.)r 
' uDo ·( 

The suction quantity Q then follows from eq. (5). 

Thus cQ is proportional to the thickness of impulse loss 
°2/1 (related to the wing depth 1). For large Reynold's num­
bers, as can be assumed in the region of validity of boundary 

(54) 

layer theory, °2/1 is a very small number (almost one power of /26 
ten smaller than the ratio 0/1). Thus, cQ is also very small. 
For Reynold's numbers RI = pU 00 l/ll of magnitude 106, c

Q 
in the 

chosen example has the magnitude of 10-2, according to calcu­
lations and measurements. 2 

We shall now evaluate the sink effect for cQ = 0.01, using 

the simple formula (4). For cQ = 0.01, the following additional 
velocities Llu 6/u oo obtain, dependent on the distance a/I from 
the sink midpoint on the profile surface: 

2It should be mentioned here that, when using suction to main­
tain the laminarity of the boundary layer, even smaller values 
of cQ come into consideration. In the experimental findings of 

Pfenninger L-1£7
4
,cited at the close of section II, c

Q 
has the 

magnitude of 10- • 
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a/I o 0,01 0.02 0.05 0.10 

00 0,318 0.159 0.064 0.032 

It is seen that the additional velocities at cQ = 0.01 are al­
ready so large that they must be taken into account in the cal­
culation of the boundary layer. 

v. An Example f.!:2!!! Aerodynamics: Ascertainment 2f ~ ~ 
Favorable Disposition 2f ~ Suction Slit for Increases 2f 
ca max ~ ~-profile 23015. 

1f it is intended to suppress flow detachment by suction, 
then the question arises as to the disposition of the suction 
slit so that the suction quantity for a given velocity curve 
u o(x) becomes a minimum. 

To begin, we can make the following rough predictions a­
bout the slit disposition that can bring ,about a minimum suction 
quantity: 

The suction slit should be disposed downstream at the lat­
est where flow detachment would ensue without suction (with uti­
lization of the sink effect, which somewhat reduces the pressure 
rise, also slightly behind this position). But the slit should 
not lie to much in front of the detachment site, since a boun­
dary layer, made thinner by suction, grows more quickly than a 
thick one, due to the increased friction. 

The most expedient disposition of the suction slit can now 
be clarified by the developed theory in combination with a cal­
culation for pressure distribution and boundary layer. 
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As an example for such a calculation, in 1942 in the Aero­
dynamical Research Institute, Gottingen, an airfoil,profile of 

the type NACA 23015 was chosen (Zvffi Report 1775) L-217. To 
check the theory, in a water channel of the AVA Gottingen mea­
surements of the pressure distribution were carried out for this 
profile, along with flow observations by the spread of a dye. 
From the measurement of the pressure distribution p(x)/ S~~2, 
the velocity distribution uo(x)/u~ , necessary as a basis for 
the boundary layer calculation, was obtained from Bernouilli's 
Principle. The flow observations enabled recognition of both 
the turning point and the detachment point of the turbulent 
boundary layer, with good accuracy. In this way, the prerequi­
sites needed to compare measurements with boundary layer calcu­
lations (with suction) were produced. 

At that tim~ the integral condition of the impulse, eq. 
(16), for laminar and turbulent boundary layers, was already 
available for the boundary layer calculation. 1 The "wall bind­
ing" served as the second equation for a laminar boundary layer 
(see, e.g., L-217, eq. (11a». For a turbulent boundary layer, 
as already mentioned at the beginning, the Gruschwitz differen­
tial equation for the shape parameter was used L-217 (cf. eq. 
(38» : 

2 S 2k k ] 2k 

"l = 1- ( ~5 )y=6
2 

=1 - (<5-) =1. - [ ( 1+ k) (1 + 2k ) (55) 

1For a turbulent boundary layer, the empirical law for the shear­
ing stress of the wall was not yet so accurately known as is to­
day possible, after the works, e.g., of Ludwieg-Tillmann L-297. 
In calculating the detachment point of turbulent boundary la= 
yers, this uncertainty was not really significant, since in this 
case the frictional member is subordinate to the pressure member 
in the pressure equation. 
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Eq. (42) provides the connection with the magnitude H# used by 
us. K. W1EGHARDT L-217 has proved that this equation# with con­
stants that have been empirically determined from a limited num-
ber of measurements, 
tion for the energy. 
useful in the region 

can be interpreted as an integral condi­
The equation has shown itself to be very 

of Reynold's numbers for which the con-
stants had been determined. As a rule# its results are only 
slightly worse than the new energy equation (17), which has a 
better physical foundation (cf.# e.g., J. ACKERET L-2§7). 

Thus the comparison between calculation and measurement, 
carried out in the cited internal report# is essentially still 
valid. We therefore reproduce several pictures from this re­
port# which reveal the essential findings (figs. 14 to 19). It 
can be established that the boundary layer calculation# with con­
sideration of the suction influence, renders rather well the 
practically attainable ca max values as a function of the suc­
tion number cQ and the angle of attack a. The theory also pre­
dicts well the most favorable disposition of the suction slit 
·(in the present profile example, x/I = 0.2)# as seen in figs. 21 
and 22. 

A check with the somewhat improved theory# presented in this 
report# is in preparation. The improvements# as already men­
tioned# concern the integral condition for the energy #. eq. (17), 
and furthermore the determination of the shape parameter HII 
behind the slit. In the earlier calculations# only the relation 
(01)I1/(02)1I was used to determine the shape parameter of that 
time, n(H). According to the improvement of the theory pre­
sented here# the shape parameter (H)I1 of the velocity profile 
can be determined more certainly as a mean from the relations 

(01)11/(02)1I and (~3)1I/(02)II' using eq. (34). As seen in 
fig. 13, this mean H does not differ essentially from its two 
components. This fact also indicates that nothing decisive will 
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be altered when the former result of tho comparison between 
measurement and calculation is subjected to verification. 

The result of such a verification, as well as the application 
of the here-depicted theory in the case of a laminar boundary 
layer (the problem of maintaining the laminarity of the boun-
dary layer by numerous, successive, single slits; see, e.g., 
the measurements of Pfenninger L-15,1£7) shall be reported in 
due time. 2 

VI. Summary. 

The majority of the presently known theories for the suction 
of the flow's boundary layer concern the physically optimal case 
of the continuous distribution of the suction quantity over the 
surface, which is at the same time mathematically more easy and 
more exact. In practice, at any rate, to approximate the phy­
sically optimal case of the suction effect, reasons of design 
dictate a rather large number of successive single slits, but 
also and frequently only a single slit, if, e.g., flow detach­
ment is to be avoided. An exact treatment of this case is dif­
ficult. On the contrary, an approximate solution, especially 
in connection with the calculation procedures for laminar and 
turbulent boundary layers, described in DVL Reports 84·and 136, 
can be relatively easily produced. The author had already de­
veloped an imperfect form of this suction theory in 1943. The 
most important results of this report, at the time enjoying only 

2nuring the printing of this report, W. Wuest, AVA G8ttingen, 
has programmed the approximation theory, developed here, for a 
turbulent boundary layer. Systematic calculations with many 
successive single slits have produced a satisfactory accord 
with experiment. 
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limited publication, have been again presented in the current 
report. Comparisons with measurements have demonstrated the 
fundamental validity of this simple theory, above all for turbu­
lent boundary layers. Today this theory can also be checked 
in the case of suction to maintain the laminarity of the boun­
dary layer, in combination with the stability theory and the 
measurements of \'1. PFENNINGER. \1orks in this direction are 
being prepared. 

For suction by single slits, the external velocity field 
of potential theory, i.e. the starting basis for the boundary 
layer calculation, is influenced by the suction sink. Simple 

I 

evaluation formulas are adduced for this influence. 

32 

Alfred Walz, University Lecturer and 
Doctor of Engineering, Freiburg, FRG. 



Figures 

, a) A bsauge n 
• 

y 

1--- U 1---- U 

-' ~ 
-;) .~ Absaugung 

Figure 1 Figure 2. Key: a) suction. 

u 
a)AbsaugeQ 

r U 
r-~---~~----~---- --~--~~----~-

..... 
..... , 

- - -- .,,,, 
~ ." ..... - - -- .......... '. ,,~ . " , , ...... -- ~ .... " '\ . ~ ..... 

.... , \ \ " ..... ", . .... 
..... '\ \ \ 
" \ \. \ " 

U5 

i 
\ \ \ \ . 
IV '" of ... .J-r-...,......,-,.=r--:--~--r---

Absouge -Schlitz 
b) 

c) K onti nuierliche 
Absaugung 
(Theorie SchLichti ng) 

Figures 3 and 4. Key: a) suction; b) suction slit; c) con-
tinuous suction (Schlichting Theory) 33 



34 

a) Ausblasen 
r~--------·---------\ 

u 

--- -- ---
Or 

0][ / 
_/- -

/ - L---- -
-

-~ ------------ ----

Figure 5. Key: a) blowing. 
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Figure 20. Key: a) slit; b) Ga max without suction; 
c) (calculation for even flow); d) (measure-
ment); e) measurement (FB Nr. 1611); f) calculation; 
g) geometrical angle of attack; h) effective angle 
of attack. 
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ment; b) calculation. 
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ment; b) calculation. 
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