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FOREWORD
4

7t 
This study was conducted between March and October 1976 as part of

the work performed by Science Applications, Inc. under Contract No.

NASW-2893 for the Lunar and Planetary Programs Division, Code.SL, of NASA

Headquarters. The results are intended +a assist NASA planners assess the

trajectory/payload performance requirements of candidate flight modes in

delivering spacecraft systems to orbit the planet Mercury.
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STAR Abstract

The objective of this task is to provide a data base and comparative

rmance analyses of alternative flight mode options for delivering a

of payload masses to Mercury orbit. Launch opportunities over the

d 1980-2000 are considered. Extensive data trades are developed for

the ballistic flight mode option utilizing one or more swingbys of Venus.

Advanced transport options studied include solar electric propulsion and

solar sailing. Study results show the significant performance tradeoffs

among such key parameters as trip time, payload mass, propulsion system

mas.,, orbit size, launch year sensitivity and relative cost-effectiveness.

Hanabook-type presentation formats, particularly in the case of ballistic

mode data, provide planetary program planners with an easily used source

of reference information essential in the preliminary steps of mission

selection and planning.
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SUMMARY

The objective of this task is to provide a data base and comparative

performance analyses of alternative flight mode options for delivering a

range of payload masses to Mercury orbit. Launch opportunities over the

period 1980-2000 are considered. Extensive data trades are developed for

the ballistic flight mode option utilizing one or more swingbys of Venus.

Advanced transport options studied include solar electric propulsion and

solar sailing. Study results show the significant performance tradeoffs

among such key parameters as trip time, payload mass, propulsion system

mass, orbit size, launch year sensitivity and relative cost-effectiveness.

Handbook-type presentation formats, particularly in the case of ballistic

mode data, provide planetary program planners with an easily used source

of reference information essential in the preliminary steps of mission

selection and planning.

A comparative summary of trajectory and payload characteristics for

16 ballistic launch opportunities is presented in Table S-1. The first

four columns show the launch date, number of Venus swingbys, flight time

co Mercury, and launch energy C 3 (10d window). Post-launch retro mass

and orbited payload data shown in the last two columns assume the Scuttle/

IUS(III) launch vehicle, a space-storable retro system, and a 500 km cir-

cular orbit about Mercury. The 1986 V(3), 1988 (V2)-a, 1994 and 1996

launches are among the better opportunities from the mid-1980's through

the end of the century. However, the payload capability with IUS upper

stages is marginal in most cases and certainly insufficient for extensive

science investigations, e.g., multiple lander deployment. Note that mas-

sive retro systems, more than six times the payload weight, are required

for ballistic missions. Availability of a Tug upper stage would signifi-

cantly improve payload transport capability. This is shown in Figure S-1

which is an example from the set of performance graphs presented in

Appendix A. For a selected periapse altitude and orbit period (open circle

intersection), the payload capability of each launch up per stage (solid

circle intersection) is read off the left-hand scale; in the example a

two-stage retro is assumed.

v



Figure S-2 compares payload/flight time performance of the three

flight modes for achieving a 500 km circular orbit at Mercury. Use of the
i

Shuttle/IUS(III) launch ve:iicle is assumed. The six sample ballistic 	
tt

opportunities shown on the graph span the range of ballistic mission

performance, i.e., flight times between 750 and 1250 days and orbited	 J

payloads between 250 and 650 kg. Retro system capability, in order of

increasing performance, is Earth-storable, solid/monopropellant and space-

storable. Solar electric propulsion offers a considerable performance

improvement in terms of reduced flight time (500-600 days) and payload

increases to the level 500-1000 kg. This potential of low-thrust trans-

port is further enhanced by the solar sailing concept which could deliver

sufficient payload, up to 2000 kg, for multiple surface lander deployment

missions.

Estimates were made for the recurring cost of the transport vehicle

(SEP or solar sail) and the total costs of the chemical retro systems used

for each mode of flight. Figure S-3 shows a comparison of the three flight

modes in terms of a specific cost index, i.e., propulsion system cost per

kilogram of delivered payload plotted as a function of flight time. Since

low specific cost and short flight times are most desirable, it is seen

that solar sailing provides the best performance, followed by SEP and then

ballistic mode transport. In the ballistic case, the most cost-,effective

retro propulsion is generally the combined solid/mono system, followed

closely by space-storable, with Earth-storable systems being least cost-

effective.

In making the above comparison between SEP and solar sailing, the

basic assumption used was a SEP recurring cost of $20M-$24M and a consid-

erably lower sail recurring cost of $6M (FY'77 base period). Furthermore,

the payload performance stated for SEP was based on current technology

parameters. Since these assumptions are certainly subject to question,

a sensitivity analysis was performed and the comparative results are shown

in Figure S-4. One may conclude, for example, that a SEP vehicle of ad-

vanced design is more nearly comparable with a solar sail vehicle in terms

of cost-effectiveness.

vi
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r vii

In summary, the results of this study have shown that low-thrust

propulsion is far superior to the ballistic flight mode in transporting 	 4 !

appreciable payloads to Mercury orbit. It also appears to be more cost-

effective, provided that low-thrust systems are deve'.nped for and used

across a wide spectrum of planetary mission applications. Solar sail

vehicles have a performance advantage over SEP for Mercury missions. This

might not be the case for other planetary targets beyond 1 AU distance.

Although "conventional" ballistic missions can be flown to Mercury, the

flight time tends to be quite long and the payload delivery marginal with

IUS launches. Large payload delivery requires the equivalent of a Tug(E)

launch vehicle and a very large retro propulsion system carried to Mercury.

Also, good ballistic launch opportunities do not occur every year as they

do for low-thrust propulsion.

z•



i

r^

Table S-1

COMPARATIVE SUMMARY OF BALLISTIC MODE MERCURY ORBITERS

Launch
Date

Transfer
Type

Flight
Time
(days)

C3

(km/sec} a

Retro*
Mass
(kg)kg)

Orbited*
Pa load

2/26/80 V(3) 1126 30.90 3095 425

6/26/80 V(1) 657 34.20 2965 285

7/9/81 V(2)-a 1067 32.80 2930 450

10/'2/81 V(2)-b 422 45.41 2425 125

3/6/83 V(2) 989 17.45 4075 500

7!8/83 V(3) 953 25.25 3550 350

6/24/85 V(1} 420 49.60 2150 190

7/18/86 V(2) 911 24.44 3790 200

7/29/86 V(3) 1247 19.17 3750 670

3/19/88 V(2)-a 741 25.80 3460 420

7/10/88 V(2)-b 621 28.05 3345 355

7/2/89 V(2) 792 43.25 2370 320

7/13/91 V(2) 1019 25.80 3505 365

7/25/94 V(2) 877 19.38 %, 630

2/9/96 V(3) 782 23.00 3630 470

7/13/99 V(4) 1177 26.35 3310 445

*Shuttle/IUS(III), space-storable retro (two stages), 500 km
circular orbit.
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MERCURY ORBITER TRANSPORT STUDY

1.	 INTRODUCTION

1.1 M -sion ronce is and Payload Requirements

Mercury is thou g ht to occupy a unique place in the solar system because

of its close proximity to the Sun, its high mass density, and the recently

measured magnetic interaction with the solar wind. It is expected that in-

-reared knowledge about Mercury will provide the necessary clues to its

internal evolution and consequently to the early history of the inner solar

system. Scientific objectives and investigations fall into five broad cate-

gories: surface morphology, composition, magnctospheric physics, internal

mass distribution, and external gravitational theories. The exploration of

this planet has begun with the {Mariner 10 mission which achieved three suc-

cessive flyby encounters in 1974-75. A follow-on orbiter mission, perhaps

in the mid-198 , "s, is considered to be an important next step in this ex-

ploration process. Ela Surface penetrators E2I and alternative landerE3]

concepts have also been studied in conjunction with Mercury orbiter mis-

sions. Such a Lander would he carried into orbit about Mercury by a space-

craft bus with subsequent deployment to a selected landing site. Hopefully,

sufficient payload capability would exist to allow multiple surface probe

deployments. T,,ble 1-1 provides a reference list of expected mass require-

ments in Mercury orbit to conduct different levels of scien.:e investigation.

Mercury revolves about the Sun with an orbital period of 88 days,

perihelion 0.308 AU, aphelion 0.457 AU, and inclination 7 0 relative to the

ecliptic plane. Since its synodic period with Earth is 's16 days there

exists an average of three direct launch opportunities each calendar year.

These opportunities vary in terms of trajectory/payload performance due to

Mercury's orbital eccentricity and spatial orientation; one of these could

be identified as a "best choice" in any given year taking into account all

mission and spacecraft design features. If another planetary body such as

Venus is included in the flight plan, then the transfer mode is no longer

direct with the consequence that launch opportunities and performance depend

1
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Table 1-1

PAYLOAD REQUIREMENTS FOR MERCURY ORBITER MISSIONS

Science Mission Type	 Orbit Size	 Orbited Payload Range_(kg)a

Particles and Fields	 Elliptical, 12 h-24h	350-450

Planetology	 Circular, p = 1.8 h	400-600

Dual Orbiters	 Each of above	 1000-1400b

Orbiter and Small Lander(1)	 Elliptical deployment 	 650-850
Circular deployment 	 550-750

Orbiter and Small Landers(3) 	 Elliptical deployment	 1150-1350
Circular deployment 	 900-1100

a Includes science payload and spacecraft bus subsystems, but excludes retro propellant
and inerts unless otherwise stated; science payload 40-60 kg; landers 150-250 kg.

bMass in elliptical orbit prior to release of circular orbiter, hence -includes retro
system for circular orbit insertion.
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strongly on the geometry and time phasing of the three planetary bodies. It

is in fact the Earth-Venus-Mercu ry transfer mode employing a Venus gravity- 	
1r

assisted swingby which may allow the Mercury orbiter mission to be accom-

plished without advanced propulsion technology. However, it is recognized

that advanced technology systems such as solar electric propulsion (SEP)

or solar sailing offer greater flexibility in mission planning, launch ve-

hicle selection, and mass delivery capability.

Capture into Mercury orbit can be relatively difficult from a propul-

sion standpoint because of the planet's small gravitational attraction.

Figurr 1-1 shows orbit insertion AV requirements as a function of orbit

eccentricity over a range of hyperbolic approach speeds. Ballistic mode

transfers have typical approach speeds in the range 5.5 to 7.0 km/sec.

Insertion AV is 2.8-5.3 km/sec for close circular orbits. Very large retro-

propulsion systems may therefore be expected for the ballistic flight mode.

Low-thrust transfers, by contrast, have typically low approar,s speeds in the

range 0-2 km/sec, and hence have retro AV requirements no greater than

1.6 km/sec even for circular orbits. These characteristic results should

be kept in mind as they bear strongly on the comparative payload capability

data to be presented.

1.2 Study _Objectives and Scope

The purpose of this study is to provide a data base and comparative

analyses of alternative flight modes for delivering a range of payload

mass to Mercury orbit. Launch opportunities over the period 1980-2000 are

considered. Extensive data trades are developed for the ballistic flight

mode option utilizing one or more swingbys of Venus. Advanced transport

options studied include solar electric propulsion and solar sail vehicles.

In the case of SEP, data is obtained only for conventional technology sys-

tems, i.e., flat arrays without concentrators and standard power processing

units. Solar sail technology is considerably less developed than SEP at

present, although extensive ongoing studies at JPL are providing the needed

data base for sail trajectories and vehicle design.

3



Fig. 1-1	 VELOCITY IMPULSE REQUIREMENTS FOR
MERCURY ORBIT INSERTION (h p = 500 km)
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Study results are intended to show the significant performance trade-

offs among such key parameters as trip time, payload mass, propulsion system

mass, orbit size, launch year sensitivity and relative cost-effectiveness.

Handbook-type presentation formats, particularly in the case of ballistic

mode data, should provide planetary program planners with an easily used

source of reference information essential in the preliminary steps of mis-

sion selection and planning.

Study results are also predicated on NASA-planned launch vehicle can-

didates and retro propulsion systems. Table 1-2 lists the main ground rules

est,..Iished at the start of the study. Shuttle-launched upper stages in-

clude two configurations each of the Interim Upper Stage (IUS) and the Tug.

The IUS(II)* consists of two solid motor stages (1 large, 1 small) whereas

the IUS(III) is the pro posed three-stage version (2 large, 1 small). The

Tug(R) is recoverable in Earth orbit and therefore utilizes an additional

Kick stage to achieve escape velocity. Highest injected mass performance

is obtained with the expendable Tug(E) upper stage. Performance comparisons

of the four launch vehicle candidates are shown in Figure 1-2.

Retro propulsion options include the solid/monopropellant and Earth-

storable liquid systems, and space-storable liquid systems assumed to be

available in the post-1935 time period. In the case of low-thrust applica-

tions, only Earth-storable retros are considered for Mercury orbit inser-

tion since AV requirements are relatively small. Additional ground rules

include provision for a 10-day launch window and a midcourse guidance

budget under 250 m/sec for ballistic-swingby transfers. A standard budget

of 150 m/sec for orbit trim maneuvers is allowed for all missions. Finite

thrust penalties can be significant for large retro AV maneuvers and are

therefore accounted for in all ballistic mission performance calculations.

The beneficial effect of staging large retro AV maneuvers is also presented

in the analysis.

*The IUS(Twin) is a more recent configuration of two large stages and would
have approximately the same performance as the IUS(III) in the low C3
region of interest.

r L
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Table 1-2

LAUNCH VEHICLE AND RETRO OPTI NS

• SHUTTLE —LAUNCHED UPPER STAGES

IUS(II)
IUS(III)
TUG(R)/KICK

TUG(E)

• RETRO PROPULSION STAGES
SOLID/MONOPROPELLANT

EARTH—STORABLE

SPACE—STORABLE

1980 ^-►

1980

1955 ^-►

1985

1980 Mw-*

19,0 Wm-*

1955 w•-*

• ADDITIONAL GROUNDRULES

LAUNCH WINDOW

MIDCOURSE GUIDANCE

ORBIT TRIM MANEUVERS

FINITE THRUST EFFECT

AT ORBIT INSERTION

MOI STAGING EFFECT

10 DAYS

:5250 M/SEC (BALLISTIC MODE)

150 M/SEC

900 LBF ( LIQUID)

20,000 LBF (SOLID)

FIRST STAGE:	 °o -3' 24H

SECOND STAGE: 
24 H ,--^ PH

1% ADAPTER MASSES

6
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The report is organized as follows: Section 2 discusses the ballistic
and low-thrust transport modes in terms of their basic characteristics and
payload capabilities. Section 3 then presents study results in a comparison

format between the candidate flight modes with discussion of payload/flight }

time trades and cost implications. Appendix A contains all the performance
graphs fur ballistic launch opportunities; these are set aside in a hand-

book-type section for easy reference by mission analysts and planners. A

summary of study results preceding this introduction section is presented	 l

for the busy reader wishing only to abstract the main results and conclusions.

8
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2.	 TRANSPORT OPTION CAPABILITIES

2.1 Ballistic Mode (Venus Swingby)

The Ballistic Opportunity/Configuration Matrix shown in Table 2-1

essentially delineates the scope of the ballistic mission portion of this

study. Every case examined is characterized by launch year, number of

Venus swingbys, launch vehicle upper stage and retro propulsion type. The

options available for any particular launch year are indicated by asterisks

in the appropriate row and columns of the matrix.*

Each asterisk relating the number of Venus swingbys to a launch year

represents a unique opportunity identified in prior trajectory studies

performed by G. Hollenbeck, et al., at Martin-Marietta 
[41 

and D. Bender at

JPL. E53 Some of the opportunities provided by these two sources were not

considered, having been eliminated because they were clearly inferior to

other opportunities with similar launch dates. Note, however, that in 1981

and 1988 two asterisks appear in the V(2) column, indicating that there are

two double swingby opportunities of interest in each of these years. The

two 1981 opportunities are included because they represent a substantial

tradeoff in flight time and payload. In the 1988 opportunities, such

tradeW possibilities are less significant; however, since neither oppor-

tunity exhibits a clear-cut performance advantage, the fact that the launches

occur at different times during the year (March and July) can be important

for programmatic purposes.

The remaining columns of the matrix identify candidate upper stages

and retro units expected to be available in the respective launch years.

These potential configurations and their anticipated IOC's have been dis-

cussed previously.

*Although it is not indicated by the matrix, a retro staging option has
also been considered in this study (see p. 16).

7
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Table 2-1

BALLISTIC OPPORTUNITY/CONFIGURATION MATRIX (MERCURY ORBITER)

LAUNCH
VENUS SWINGBYS

LAUNCH VEHICLE OPTIONS
SHUTTLE UPPER STAGE

RETRO PROPULSION
OPTIONS

YEAR V(I) V(2) V(3) V(4) IUS(II) IUS(III) TUG(R)/KICK TUG(E) E/S S/S SOLID/MONO

1980

1981 ** * * ^`

1983

1985

1985

1988 **

1989

1991 * * '^

1994

1996

1999



Trajectory Characteristics

Table 2-2 summarizes the trajectory characteristics for all the launch

opportunities considered. listed are the flight times, injection energy C31

planned midcourse maneuvers AVMIC , hyperbolic excess approach velocity VHp,

and the required velocity impulse budget AV  for navigation and midcourse

shaping maneuvers. Data used in constructing this table was obtained from

the two aforementioned sources and augmented where needed by additional

trajectory analysis using the MULIMpE63 program.

The tabulated values were derived on the basis of a 10-day launch win-

dow covering the best 10 days of each opportunity with respect to mission

performance. To be conservative, the given C 3 represents the largest value

over this period. The same is generally true for V Hp except in a small

number of cases where midcourse maneuver requirements are the more critical

factor. Indicated flight times are referenced to the center of the launch

window.

Since the navigation and trajectory shaping requirements were available

for only a few opportunities, it was necessary to develop a simple algorithm

for estimating AV  for the remaining cases. The alternative was to perform

detailed navigation analysis for these cases, which was clearly outside the

scope of this study.

The algorithm used is based on average maneuvers employed in different

portions of the Earth-Venus-Mercury trajectory as derived from the data on

hand. The maneuvers of interest were apportioned as shown in Table 2-3.

By assuming the required number of additional solar revolutions to be equal

to the number of Venus swingbys, and combining the planned midcourse maneu-

ver with a post-Venus swingby correction, the desired algorithm can be ex-

pressed in the following equations.

11



Table 2-2

BALLISTIC MODE CHARACTERISTICS SUMMARY

10-Day Launch Window

LAUNCH
YEAR

TRANSFER
TYPE

FLIGHT
TIME
(DAYS)

C3

(km/sec) 2

AVM/C

(km/sec)

VHP

(km/sec)

AV N*

(km/sec)

1980 V(3) 1126 30.90 0 6.070 0.263

1980 V(1) 657 34.20 0.100 6.650 0.196

1981-a V(2) 1067 32.80 0.357 5.619 0.519

1981-b V(2) 422 45.41 0.069 7.130 0.239

1983 V(2) 989 17.45 0.610 5.792 0.771

1983 V(3) 953 25.25 0 6.517 0.263

1985 V(1) 420 49.60 0.400 6.265 0.528

1986 V(2) 911 24.44 1.564 5.809 1.725

1986 VW 1247 19.17 0.054 5.645 0.291

1988-a V(2) 741 25.80 0.200 6.160 0.364

1988-b V(2) 621 28.05 0.574 5.995 0.735

1989 V(2) 792 43.25 0.230 5.858 0.393

1991 V(2) 1019 25.80 0 6.585 0.199

1994 V(2) 877 19.38 0.130 5.753 0.296

1996 V(3) 782 23.00 0 6.200 0.263

1999 V(4) 1177 26.35 0 6.100 0.323

*Values include AVM/C

y^

,.	 I

1
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Table 2-3

AVERAGE* NAVIGATION AND MIDCOURSE
SHAPING MANEUVERS

Maneuver Function Mean (m/sec) S.D. (m/sec)

Removal of Launch,
Injection Errors JJl = 7.46 al = 5.06

Correction of Pre-Venus
Swingby Q.D. Errors y2 = 1.04

02
= 0.68

Correction of Post-Venus
Swingby Errors

P3
= 38.55 Q3 = 25.40

Error Correction During
Non--Swingby Solar Revolutions u4 = 0.74 04 = 0.42

Targeting Maneuvers at
Mercury u5 = 1.48 a5 =	 1.11

*Average based on seven trajectories derived by Martin-Marietta.t41

'r
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u l + p 5 + N(u 2 + p 3 + u,,) + [( AVM/^ + p 3) - 
113]

1
+ ^5 + 14( a2 + a3	 + a2 	 (2)

AV 
	 ".2 "AV + 3a AV(3)

In these equations, N represents the number of swingbys, and the various

means (p i ) and standard deviations (a i ) are those defined in Table 2-3.

As a separate but related issue it should be noted that an additional

AV of 150 m/sec was budgeted for each opportunity in order to carry out trim

maneuvers in Mercury orbit. This value was a "best estimate" on our part,

based on previous orbiter mission studies.

Finite Burn Effects

Because of its importance to Mercury orbiter missions, the effects of

finite burn/gravity losses during orbit insertion must be accounted for.

To incorporate these effects into this study in the simplest and most effi-

cient manner, it was decided to model existing data by conventional curve

fitting procedures. The data source for this effort was an engineering

memorandum written by R. A. Wallace [71 of JPL in which he documents results

obtained by using a finite burn orbit insertion simulation program (LOSS).

The data, presented in graphical form, relates net spacecraft mass in orbit

to the Mercury arrival mass for the following range of parameters:

(1) Orbit Period: 1.86 hours (circular) to 24 hours

(2) Orbit Periapse Altitude: 500 km (fixed)

(3) Asymptotic Approach Velocity: 5.6 krr/sec to 6.4 kw/sec

(4) insertion Thrust Level:* 303.94 lbf to 20,000 lbf.

*Thrust levels and scaling laws used were based on retro systems equivalent
to one, three, and ten Viking motors; and also a solid propellant system

equivalent to a small shuttle IUS motor.

14



0
To isolate the effect of finite burn insertion on the net orbited pay-

load, an equivalent data set for the case of impulsive insertion was ana-

lytica 'y derived. A curve flitting approach was then employed to develop

an approximate relationship between the payload masses obtained from the

two insertion modes over the entire parameter range. The following equation

is the resit of this effort:

ML + 
ME 

+ fm 	 e-3.3T/Mo]0.0335AVI} 	 (4)
M'+M +fM
L	 E	 o

M.	 = orbited payload mass, finite burn insertion (kg)

M,	 = orbited payload mass, impulsive insertion (kg)

MO	 = Mercury arrival mass (kg)

ME	= retro engine mass (kg)

f	 = tankage fraction

T	 = thrust (lbf)

AV 	 = insertion velocity impulse (km/sec)

By use of the above ind the standard payload equation,* i.e.:

ML = ry01( 1  - f )e-oV/C - f] - M E	(5)

C	 = exhaust velocity (km/sec)

a relationship could then be established between the actual and the impul-

sive eV insertion requirement. A brief explanation is given below.

Given an orbit insertion of arbitrary burn duration, where the planet

arrival mass is M  and the net orbited payload is M L , Equation (5) specifies

a corresponding equivalent velocity impulse, AV. Assuming that impulsive

insertion into the same orbit requires a velocity impulse of magnitude oVI,

the payload for the same arrival mass is:

*"Ingle-stage, rubber retro assumed.

15
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[e- (AV - AVI )/ Cl

j
(7)

M, = M.[(1 + 
f)e-AV I /C _	 _ M

E	(6)	

t 

ale algebraic manipulation of Equations (5) and (6) leads to the following:

ME+ME+fm0
ML 

+ M + fMo -

illy, substitution of the desired expression in Equation (4) and further

simplification produces the desired relationship,

AV
AVI	

= 1 - 0.0335 C In1
l 

 - e-3.3T/Mo1
	(g)

Equation (8) has been used in plotting the two graphs shown in Figure 2-1.

These graphs, based on use of an Earth-storable propellant (I sp = 300 sec),

are provided as an example to indicate the finite burn effect in a parameter

space relevant to the cases studied. Both graphs are essentially equivalent

in that they represent the loss due to finite thrust as a penalty to be added

to AV 
I* 

In one case this is given in terms of percentage, and in the second

case, as a required velocity increment. The independent variable in both

cases is the initial thrust-to-.weight ratio, i.e., acceleration. It was

found that over the region of interest to this study, the curve-fit model

represented by Equation (8) gives a fairly accurate accounting of the actual

finite thrust losses and its relative simplicity made it amenable to incor-

poration in the subsequent analyses.

Retro Staging Options

The upper and lower solid curves in Figure 2-2 represent the payload

performance of a two-stage and one= stage retro system for the particular

March 1588 launch opporturity. The two -stage curve indicates the results of

an optimal staging policy, and clearly exemplifies the improved performance

which could be expected over the single stage case for the range of AV's

16
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!ded for insertion into Mercury orbits. However, use of an optimal staging

icy for this application would normally require a staging maneuver prior

insertion, and because of the relatively small gravitational field of

^cury, it was felt that staging at that time would be a rather critical

I risky venture. Therefore, an alternative staging policy was devised

I used throughout the analyses.

The alternative staging policy assumes that the first stage is used

initial insertion into a 24-hour orbit having a periapse altitude of

km. The second stage would then be used for a transfer to the final

)it. The performance obtained by using this policy is indicated by the

aotted curve it Figure 2-2. For the nearly circular orbits, this staging
option can still provide substantial improvement over the single stage case.

A similar policy which was also examined, was one involving only a

single stage, but requiring two retro burns. As in the previous policy,

the first burn was again P -sed for initial insertion into a 24-hour 500 km

orbit, and the second burn used for transfer to the final orbit. The rea-

son for investigating this strategy was the hope that splitting the total

required burn into two smaller burns would result in reduced finite thrust

penalties. However, it was found that the initial insertion would normally

require such a large portion of the total AV, it would absorb most of the

penalty incurred by simply proceeding with a single birn policy. Since the

benefits received were not worth the additional complexity required, this

strategy was dropped from further consideration.

Mercury Orbiter Performance Curves

Performance analyses of all the ballistic opportunities were performed

by means of a specially written computer program whose graphical output is

particularly useful for mission planning. An example of the output format

is presented in Figure 2-3. In this format, payload performance curves

similar to those shown in Figure 2-2 are superimposed over curves represent-

ing the orbital parameters. These latter curves are drawn as dashed lines

19
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representing periapse altitude as a function of Insertion impulse* for fixed

period orbits. The curves are bounded on the right by the circular orbit

limits, and on the left by the escape parabola. The solid and dotted curves
A,

are again used to represent one and two-stage payload performance respec-

tively. In this case, such curves are drawn for four different launch

vehicles.

Some simple examples will illustrate how these curves can be used.

Consider first, a case where a 24-hour orbit at 500 km periapse altitude is

desired. To determine the payload which could be delivered by each of the

four launch vehicles, first bring a horizontal from the 500 km mark on the

right-hand axis to its intersection with the dashed curve representing a

24-hour period. This intersection is indicated in Figure 2-3 by are open

circle. A vertical drawn at this point will intersect the four payload

curves at the points indicated by the solid circles. The net orbited pay-

load for each launch vehicle can then be read off the left-hand axis.

As another example, suppose the desired orbit has a period of 6 hours

and a periapse altitude of 1000 km. The intersection of the 6-hour curve

and the 1000 km horizontal is symbolized in Figure 2-3 by an open square.

A vertical drawn at this point will now intersect seven payload curves.

The intersection with the four solid carves will give, as before, the net

orbited payload delivered by the four different launch vehicles using single

stage retros. The intersection with the three dotted curves, as represented

by the solid squares, determines the payload delivered by the indicated

launch vehicles and two-stage retros. The fact that the dotted and solid

curves coincide at the point of intersection for IUS(2) signifies that a

two-stage retro would offer no performance advantage over a single stage

unit for that particular launch vehicle and orbit.

Similar performance curves for all ballistic opportunities of interest

are compiled in Appendix A of this. report. Three sets of curves, each

representing a different retro propulsion option, are provided for each

*The values of insertion impulse do not include a finite thrust penalty.
The effect of finite thrust is accounted for in the net orbited payload.

20
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opportunity. As a matter of general interest, it was decided to include

all launch vehicle and retro options for every opportunity irrespective of

the availability considerations implied by the Opportunity/Configuration

Matrix of Table 2-1.

2.2 Solar Electric Propulsion Mode

The SEP flight mode has long been considered a good potential candi-

date for Mercury orbiter missions. Technological readiness by the mid-1980's

is not viewed as a problem; however, the cost of development could be rela-

tively high (100-150 M$) and probably justifiable only if SEP is utilized

over a wide range of planetary missions. Current technology and mission

studies have concentrated on a SEP design in the 15-21 kw size with ion

thrusters operating at 3000 sec specific impulse and an overall propul-

sion system efficiency of 62%. Propulsion system mass values are listed

in Table 2-4. Thruster and power conditioner modules are each approximately

3 kw and two thrusters are held in standby condition in case of failure of

the nominally operating thrusters.

Trajectory data for SEP transfers to Mercury were obtained from both

JPL 181 and SAI sources and appropriately scaled to a common set of propul-

sion system parameters. An example of normalized performance data for

optimal 550-day transfers to Mercury launched in 1984 is shown in Table 2-5.-

To illustrate how this data is used consider the case of C 3 = 16 (km/sec)2

and Po = 18 kw. The values of initial and final mass are calculated as

Mo = 18 x 233.0 = 4194 kg and 18 x 144.5 = 2601 kg. Since the injected

mass capability of the IUS(III) is 4700 kg at C3 = 16, this trajectory is

"captured" by that launch vehicle with a margin of almost 500 kg. Somewhat

better performance is thus available by increasing C3 to match the IUS(III)

capability. The interpolated result is C 3 = 20, VHP = 1.660, Mo/Po = 239.5,

and MF/Po = 151.0. Values of initial and final mass are now 4311 kg and

2718 kg, respectively. Subtracting the SEP system mass of 942 kg from the

final mass gives 1776 kg for the net mass at Mercury approach. The retro

AV requirement for insertion into a 500 km circular orbit and orbit trim

22



Table 2-4

SEP SYSTEM MASS AND POWER ASSUMPTIONS

Input Power Number Propulsion System Effective
at 1 AU of Dry Mass Specific'Mass
Po (kw) Thrusters MPS (kg) a= MPS/PQ (kg/kw)

15 8 888 59.2
18 8 942 52.3
21 10 1105 52.6

• 1 S = 3000 sec, n = 62%

• Solar Power Curve:

0. 

1.4382 _ 0.2235 _ 0.2147

R 2	 R3	 R`+
P/ Po

1.3952

for R > 0.68 AU

for R < 0.68 AU

_	 23
'r



s

1

Table 2-5

NORMALIZED SEP PERFORMANCE FOR 550' MERCURY TRANSFERS

Mass-to-Power Ratio*

Mo/No MF/Po

(kg/kw) (k9/kw)

213.0 124.9

219.2 130.9

226.1 137.7

233.0 144.5

240.0 151.4

246.8 158.2

253.5 164.9

259.9 171.3

Injection Energy	 Approach Speed

C 3 (km/sec)2	 VHP (km/sec)

	

6.25
	

1.208

	

9.00
	

1.242

	

12.25
	

1.348

	

16.00
	

1.493

	

20.25
	

1.668

	

25.00
	

1.863

	

30.25
	

2.067

	

36.00
	

2.268

*Mo is initial mass at injection.

MF is final mass at Mercury approach.

(Ma - MF ) is propellant expenditLre.
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maneuvers is 1.478 + 0.15 = 1.628 km/sec. Finally, assuming an Earth-

storable system, the retro mass is calculated at 928 kg leaving 848 kg
	 ^3

available as net orbited payload.

A graphical illustration of the payload calculation is shown in

Figure 2-4 which plots net spacecraft mass in a 500 km circular orbit as

a function of injection energy for SEP power ratings of 15, 18 and 21 kw.

The three dashed curves indicate the limiting capability of the IUS(II),

IUS(III) and Tug(R)/Kick; i.e., the region to the left of these curves is

captured by the respective launch vehicles. SEP performance with the

IUS(II) requires low injection energy (C 3 < 8) and delivers 500-600 kg to

a circular orbit about Mercury. Use of the IUS(III) raises the payload

range to 680-935 kg with required injection energy between 15 and 28 km2/sec2.

In the latter case, increasing the power frc,o 15 to 18 kw results in a

170 kg payload gain, and a further increase to 21 kw gains an additional

85 kg. Availability of the Tug(R)/Kick launch vehicle offers a modest

improvement in payload delivery performance. For example, at P r = 21 kw

the net orbited mass is 1030 kg which is 109 higher than the IUS(III) capa-

bility.

Payload variation with flight time to Mercury is shown in Figure 2-5

(a) and (b). The short transfer class, between 1.5 and 2.5 solar revolu-

tions, requires flight times between 250 and 350 days. Since the payload

delivered to circular orbit is typically less than 400 kg, the short trans-

fers would restrict science payload capability or require elliptical orbits

to regain payload margin. As the flight time increases above 350 days the

payload curve tends to flatten out until intersection with the 2.5-3.5

revolution class transfers, at which point the payload then increases

quite sharply. The long transfer class missions have flight times between

450 and 600 days and payload capability between 300 and 1600 kg depending

upon the orbit size and SEP power rating. For example, at TF = 600 days

and Po = 21 kw, payloads of 1560 kg can be transported to a 24-hour ellip-

tical orbit and 1035 kg to a circular orbit. Payloads in this range would

allow comprehensive orbit mapping plus one or more small lander deployments.

25
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The data presented so far was for the 1984 launch opportunity. This

opportunity has slightly below average capability as can be seers from the

launch year sensitivity graph of Figure ::-6. The best opportunities in

the next decade are 1980 and 1986. Although the Earth-Mercury synodic

period cycle is 13 years, there exists a near-resonance period of b years.

This explains the fact that performance data tends to repeat closely every

6 years. The amplitude characteristics are such that the average perfor-

mance is only 8% down from the maximum and the minimum performance launch

year suffers an 18% penalty.

2.3 Solar Sailing Mode

The concept of solar sailing appeared in the literature as early as

1936, was studied more intensively during 1958-1962 after the advent of the

space program, but then went into hibernation in lieu of other propulsion

system developments. The main drawbacks had to do with assembly and deploy-

ment of very large sails, structural dynamics and attitude control, and

sail material lifetime. With the anticipated new technology of large--scale

in-orbit assembly in the post-Shuttle era, the potential of solar sail

vehicles has received renewed attention, most recently by Battelle Memorial

Institute.191

Thrust acceleration developed by the sail resuli.: :'rom the reaction

force of solar radiation pressure acting on a large surface area. The

solar pressure at a distance of 1 AU is approximately 9 X 10 -6 newton/m2

(0.2 x 10-6 1b/ft2 ). Characteristic acceleration a o is defined as the

effective thrust acceleration at 1 AU acting on a planar sail oriented

normal to the sunline

ao = 9 x 10
-6
 n M

0

where n is the sail reflectance efficiency, A is the sail area, and M  is

the total mass of the sail vehicle including payload. If the sail normal

is set to an angle a off the sunline, then the magnitude of the accelera-

tion at any distance r is given by the expression

(9)

1,
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a = a0Cos z e/rz	(10)

t _40A

1<
and the radially outward and circumferential components are a cos a and

a sin o, respectively. Trajectory control is obtained by the sail angle

program e(t) which typically lies in the range -60° < e < 60°. Outward

motion occurs for positive a and inward motion for negative e. In the case

of Mercury transfers, the optimal angle setting is near -35' throughout most

of the flight. At Mercury's distance (r = 0.388 AU) the acceleration avail-

able is thus 4.46 a o . Because of the 1/r 2 effect, it is readily appreciated

why the sail can be so effective at close solar distances.

To illustrate payload and sail size characteristics, consider that the

total vehicle mass is made up of sail vehicle and payload, i.e., Mo 
= MSV+MPL'

The component MSV is comer ised of sail material and structure. For the sake

of simplicity, assume that the structure component is proportional to the

sail sheet mass so that

MSV = uA	 (11)

where a = (1 + k)uS is the effective density or loading of the sail vehicle.

The payload* fraction may then be written as

M
Mb = 1 - 

MA
0	 0

aao
1 -9X10-6

n

Generalized performance parameters of a sail vehicle are graphed in Figure 2-7

as a function of the characteristic acceleration. An efficiency of 85% is

assumed to account for non-ideal reflection of incident light and also

*This includes any chemical retro system needed -'or orbit i nsertion. Hence,
for Mercury missions Mp h represents the net mass on approach to Mercury.

(12)
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deflection or warping of the sail under pressure. A sail vehicle density

of 5 g/m 2 is considered to be achievable with state-of-the-art materials and
technology. Note that the payload fraction can be above 90% at low accelera-

tion levels. The upper graph in Figure 2-7 is plotted from Equation (9)

assuming a square sail configuration. Initial mass is inversely propor-

tional to acceleration and linearly dependent on the sail area.

Mission payload and trajectory requirements are related through the

flight time necessary to achieve the terminal boundary conditions at a given

value of characteristic acceleration. Data for Mercury transfers obtained

from Carl Sauer 
[81 

of JPL is graphed as TF vs. a  in Figure 2-8. A 200-day

trip requires a characteristic acceleration of 0.7 x 10
-3
 m/sec t and yields

an approach payload fraction of 0.54 for a = 5 9/m 2 (see Figure 2-7). Corre-

sponding data for a 1000--day trip is a characteristic acceleration of

0.125 x 10-3 m/sec t and a payload fraction of 0.92.

The above sail characteristics are translated into specific performance

for Mercury orbiter missions as shown in Figures 2-9(a) and (b). Curves of

net orbited payload as a function of flight time are presented for both a

circular orbit and a 24 h period orbit. The solid, straight line curves

depict performance for fixed square sail sizes of 200, 300 and 400 meters;

this data is launch vehicle independent. The broken line curves show the

maximum capability for launches off the IUS(II), IUS(III) and Tug(R)/Kick

vehicles. As an example, consider insertion into a 500 km circular orbit

and a 300-day transfer to Mercury. Launches off the above-mentioned ve-

hicles require sail sizes of 331, 471 and 533 meters, and deliver payloads

of 765, 1626, and 2100 kg, respectively. Alternatively, suppose that the

sail size is fixed at 300 meters. The flight time/payload per formance is

365 days and 825 kg for the IUS(II), 720 days and 2020 kg for the IUS(III),

and 915 days and 2680 kg for the Tug(R)/Kick.
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The following observations may be discerned from the performance data:
f	 ^

(1) Solar sailing is an extremely effective propulsion concept
for transporting payloads to Mercury;

(2) For modest sized payloads (<1000 kg) and sail sizes (<400 meters),
short trip times under one year are possible;

(3) Substantially larger payloads can be delivered at the expense
of longer trip times, with the point of diminishing return
occurring at about 2 years. The IUS(III) capability is about 	 {
double that of the IUS(II), and the Tug(R)/Kick provides an
additional 30% performance above the IUS(III). The payload
range extends to nearly 4 metric tons for high eccentricity
orbits and 2.5 metric tons for close circular orbits.

These performance results assumed a sail vehicle mass density of 5 g/m2.

The sensitivity to this parameter is such that even if a is underestimated

by 50% the payload capability is reduced only 16% for 1-year trips and 7%

for 2-year trips.
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3.	 PERFORMANCE COMPARISON

Performance data generated for the ballistic, SEP and solar sail flight 	 1~
a

modes are collated in this section for purposes of direct comparison. Pay-

load/flight time formats are presented first and then followed by propulsion

system cost comparisons.

3.1 Payload and Flight Time Trades_

Figure 3-1 compares payload/flight time performance of the three flight

modes for achieving a 500 km circular orbit at Mercury. Use of the Shuttle/

IUS(III) launch vehicle is assumed. The six sample ballistic opportunities

shown on the graph span the range of ballistic mission performance, i.e.,

flight times between 750 and 1250 days and orbited payloads between 250 and

650 kg. Retro system capability, in order of increasing performance, is

Earth-storable, solid/monopropellant and space-storable. Solar electric

propulsion offers a considerable improvement in terms of reduced flight time

(500-600 days) and payload increases to the level 500-1000 kg. This poten-

tial of low-thrust transport is further enhanced by the solar sailing con-

cept which could deliver sufficient payload, up to 2000 kg, for multiple

surface sander deployment missions.

Similar comparison data is presented in Figure 3-2, but now use of

the Shuttle/Tug(E) and space-storable retro propulsion is assumed for the

ballistic mode missions. This represents the best performance that may be

expected for ballistic transport to Mercury through the remainder of the

present century. Also indicated on the figure is the range of payload

between a 24 h elliptical orbit and a circular orbit. Consider the 1988

ballistic launch opportunity, which has the shortest trip time (tit years)

relative to low--thrust flight. A payload of 1740 kg can be inserted into

24 h orbit or 840 kg into a circular orbit. This capability is still less

an the SEP performance which assumes an IUS(III) launch and Earth-storable

tro, and far short of the solar sail performance. The 1994 ballistic

portunity is considerably better than 1988, and provides more nearly

nparable performance to low-thrust capability.

NTfiT	
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Another interesting basis of comparison is the size of the retro

m needed for Mercury orbit insertion. The retro weights listed in

3-1 include both inerts and propellant loading. A 600-day transfer

arth-storable retro is assumed for the low-thrust flights, while the

stic data assumes an 877-day flight (1994 launch) and space-storable

Table 3-1

COMPARISON OF RETRO SUE a

SEP (21 kw)	 Sail (300 _m)	 Ballistic 1994

Retro Mass (kg)	 996

Orbited Mass (kg)	 1035

M retro /Morb	
0.96

1209 3770

1619 630

0.7b 5.98

aShuttle/IUS(III) launch, 500 km circular orbit.

The ballistic mode retro mass is more than three times larger than that re-

quired for low-thrust transport. Mote also that the ratio of retro to

orbited mass is almost 6 for the ballistic mode.

3.2 Cost Implications

In evaluating the relative merits of propulsion options, the program

planner is concerned with cost as well as mission performance trades. Esti-

mates were made of the propulsion system cost for each flight mode. Fig-

ure 3-3 shows the total (development plus recurring) cost of chemical retro

systems as a function of retro inert weight as predicted by the SAI plane-

tary mission cost modclJ i01 Historical experience shows that the recurring

component is approximately 15% of the propulsion system development cost,

and would most likely not exceed 5 M$. However, for the present application,

total cost seems a more relevant index since the retro system is not likely

to be an "off-the-shelf" item, but rather a unique design match to Mercury
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mission requirements. The smaller retro systems for low-thrust flight are

estimated • to incur a total cost in the range 12-17 M$ (fiscal year 1977
dollars are used for all cost). Significantly higher cost in the range

21-32 M$ is estimated for ballistic mission applications.

It seems reasonable to assume " .,	 w-thrust propulsion (SEP or sail)

would only be developed if ,,- pplied to a wide base of planetary missions.

We will therefore ignore the initial development cost and use only the re-

curring component in the present cost comparison. Updating earlier SEP
cost estimates to FY'77 dollars, the recurring costs of 15, 18 and 21 kw

systems are taken to be 20, 22 and 24 M$, respectively. The recurring cost

of a 300 X 300 meter solar sail is taken as 6 M$ which is 153 of an esti-

mated 40 M$ development cost.* We stress the	 Ginty in the sail cost--

it could easily double under closer scrutin-

Propulsion cost comparisons of the three flivi., nodes are shown in
Figure 3-4. These results are calculated for a Shuttle/IUS(III) launch and

a 500 km circular orbit of Mercury. SEP transport costs are the highest at

35-40 M$, and solar sail costs the lowest at 17-23 M$. Retro propulsion

costs for ballistic missions fre 21-32 M$ with the solid/monopropellant

systems being least expensive and space-storable systems being most expen-
sive.

Figure 3-5 compares the three flight modes in terms of a specJic cost

index, i.e., propulsion system cost per kilogram of delivered payload.

Since low specific cost and short flight times are most desirable, it is

seen that solar sailing provides the best performance, followed by SEP and

then t..,71 istic mode transport. In the ballistic case, the most cost-effec-

tive retro propulsion is generally the combined solid/monopropellant system,

followed closely by space-storable, with Earth-storable systems being least

cost- effecti ve.

In making the above comparison between SEP and solar sailing, the

basic assumption used was a SEP recurring cost of 20-24 M$ and a considerably

lower sail recurring cost of b P+M$. Furthermore, the payload performance

stated for SEP was based on current technolog; parameters. Since these

*Personal communication with Jerry Wright, JPL.
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assumptions are certainly subject to question, a sensitivity analysis was

performed and the comparative results are shown in Figure 3-6. One may

conclude, for example, that a SEP vehicle of advanced design is more nearly 	
t

comparable with a solar sail vehicle in terms of cost-effectiveness.

In summary, the results of this stud y have shown that low-thrust pro-

pulsion is far superior to the ballistic flight mode in transporting appre-

ciable payloads to Mercury orbit. It also appears to be more cost-effective,

provided that low-thrust systems are developed for and used across a wide

spectrum of planetary mission applications. Solar sail vehicles have a

performance advantage over SEP for Mercury missions. This might not be the

case for other planetary targets beyond 1 AU distance. Although "conven-

tional" ballistic missions can be flown to Mercury, the flight time tends

to be quite long and the payload delivery marginal with IUS launches. large

payload delivery requires the equivalent of a Tug(E) launch vehicle and a

very large retro propulsion system carried to Mercury. Also, good ballistic

launch opportunities occur infrequently (only twice between 1985-2000 with

circular orbit payloads > 500 kg) compared to annual low-thrust opportunities.
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Appendix A

PERFORMANCE CURVES FOR BALLISTIC OPPORTUNITIES

Computer-generated plots of Mercury orbiter payload are included for

each of lb launch opportunities covering the period 1980-2000 for the

Venus swingby ballistic transfer mode. There are five cases of twa launch

opportunities in a single calendar year; both are included but one usually

has superior performance and would be a clear-cut choice. The graphs are

ordered chronolo g ically, in sets of three. Each set contains separate

graphs for Eart,: storable, solid/monopropellant and space-storable retros,

presented in that order. Interpretation and use of the graphs has been

explained in Section 2.1 of this report. Table A which follows presents

a brief comparative summary of trajectory and payload characteristics for

the lb opportunities. The Shuttle/IUS(III) launch vehicle, a space-storable

retro, and a 500 km circular orbit are assumed for this purpose.
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Tabl e A

COMPARATIVE SUMMARY OF BALLISTIC MODE MERCURY ORBITERS

Launch
Date

Transfer
Type

Flight

(Tams)

C3

(km/sec)2

Retro*

Mass

Orbited*
Payload

2/26/80 V(3) 1126 30.90 3095 425

6/26/80 V(1) 657 34.20 2965 285

7/9/81 V(2)-a 1067 32.80 2930 450

10/22/81 V(2)-b 422 45.41 2425 125

3/6/83 V(2) 989 17.45 4075 500

7/8/83 V(3) 953 25.25 3550 350

6/24/85 V(1) 420 49.60 2150 190

7/18/86 V(2) 911 24.44 3790 200

7/29/86 V(3) 1247 19.17 3750 670

3/19/88 V(2) -a 741 25.80 3460 420

7/10/88 V(2)-b 621 28.05 3345 355

7/2/89 V(2) 792 43.25 2370 320

7/13/91 V(2) 1019 25.80 3505 365

7/25/94 V(2) 877 19.38 3770 630

2/9/96 V(3) 782 23.00 3630 470

7/13/99 V(4) 1177 26.35 3380 445

*Shuttle/IUS(III), space-storable retro (two stages), 500 km
circular orbit.
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