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TABLE 1
 

GLOSSARY OF TERMS
 

e error between unperturbed and perturbed model output or error 

between model output and corresponding experimental results 

E error criterion 

F function representing a second-order system 

qi denotes the ith parameter in a system 

S differential -sensitivity coefficient
 

§ logarithmic sensitivity coefficient
 

AS incremental sensitivity coefficient 

t time 

U fractional perturbation of a parameter 

y dependent variable 

Superscripts 

o corresponds to the unperturbed state of the model 

* corresponds to the model output 

Notation of Thermoregulatory Model (Chapter 5) 

CLOV clothing resistance 

PCAB barometric pressure
 

MUSCLE BF muscle blood flow
 

QBASAL basal metabolic rate
 

QEVAP heat loss due to sweat evaporation
 

QSENS sensible heat loss
 

QSHIV heat generated due to shivering
 

QSTOR heat stored in body relative to a reference state
 

RM metabolic rate due to exercise
 

SKIN BF skin blood flow
 

TCAB ambient temperature
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TABLE 1 (Continued) 

TDEWC 

THEAD 

TSKIN 

TW 

UEFF 

VCAB 

ambient dewpoint temperature 

head core temperature 

mean skin temperature 

ambient wall temperature 

efficiency of exercise 

free air velocity 
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1.0 	 INTRODUCTION 

The analysis of dynamic systems usually involves obtaining the solution 

of a model as functions of certain independent variables (i. e., forcing functions 

and initial conditions). However, it is often very desirable to have a knowledge 

of the variations of the solutions with respect to the parameters of the model. 

This need arises because parameter values are never known with complete 

accuracy in any real dynamic system and ,therefore, there always exists an 

uncertainty in the output behavior of a model representing that system. Since this 

is the case, the influence which parameter variations have on the system's behav­

ior can be important information in predicting errors in model output, in deter­

mining operating characteristics in the synthesis of yet-to-be designed techn­

nological control systems and in understanding the importance of specific para­

meters in the analysis of already designed biological systems. 

Definitions 

Sensitivity analysis is a method to study the response of a system due to 

variations in parameters. Parameters may be defined as properties of a system 

whose values are arbitrary rather than absolute, but are constant over a finite and 

specified time interval. Parameters may be under no control in which case they 

are a passive property of the system or they may be themselves part of a feedback 

loop and are time-variant in which case they may be better defined as dependent 

variables. However, although most physiological parameters are time varying to 

some extent they may be considered constant if their values change slowly com­

pared to the transient response of the system. Sensitivity analysis can be applied 

to the study of all types of parameters; initial conditions, time-invarient coefficients, 

time-varient coefficients, integration time steps, etc. 

The conceptual basis of sensitivity analysis is extremely simple; small 

variations are made in the values of the system parameters of a model and the 

effects of these changes are observed in the solution of the dependent variables. 
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Sensitivity functions are computed which describe the observed effects and these 

are interpreted to extract information about the dynamic system that could not be 

obtained from simply finding solutions to a particular set of input conditions. 

(Techniques are also available which can generate sensitivity functions without 

resorting 'to physically perturbing the parameters). This procedure can be com­

pared with the typical method of simulating dynamic systems, which in essense is 

to determine solutions of the model by changing independent forcing functions and 

initial conditions rather than system parameters. Sensitivity analysis may include 

the variation of forcing functions and initial conditions and in this sense this type of 

analysis may appear to overlap typical simulation experiments. However, there 

are several important differences between these two procedures. In sensitivity 

analysis the perturbations are much smaller, they are often performed by varying 

one parameter at a time, the end result is to obtain sensitivity functions rather than 

solutions of the dependent variable, and comparisons are usually made between two 

or more simulation runs rather than between model results and experimental data. 

Usefulness of Sensitivity Analysis 

Although sensitivity analysis is conceptually simple, it is capable of pro­

ducing much useful information. In this report we shall show that sensitivity 

analysis provides: 

a) a quantitative means of comparing the relative influence of different 

parameters on any system variable, 

b) a means of assessing the relative linearity that exists between any 

pargmeter and any variable, 

c) a means of determining interactive effects of two or more para­

meters on model behavior, 

d) a method of predicting the influence of perturbing any combination 

of parameters simultaneously on any of the system variables using simple linear 

models and avoiding the use of additional time-consuming simulation experiments, 

e) a tool to help assess the validity of a particular model without the 

need to collect and utilize extensive measurements from the real system, 
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f) information in the form that can easily be interpreted by those famil­

iar with the subject matter of the model, but not necessarily knowledgeable with 

simulation techniques, 

g) a systematic method of evaluating all parametric effects on overall 

nodel behavior and as such is capable of revealing unexpected behavior that might 

not otherwise come to light if the model was used only to simulate particular sets 

of -experiments, 

h) a means of assigning relative importance to all parameters which can 

be valuable both to the simulationist in performing parameter estimation or stability 

analysis and to the experimentalist in allocating resources for data collections, 

i) a means of utilizing uncertainty in input data to produce an estimate 

of uncertainty in model prediction, and 

j) a practical method of analyzing and comparing two different models 

purporting to represent the same physical system. 

Purpose and Scope of Report 

The main purpose of this report is to explore the applicability of sensitiv­

ity analysis in studying large scale models of physiological systems. Although 

there has not been much previous work in this regard this investigation has 

revealed that sensitivity analysis is not restricted to a single area of application, 

but many as the list above indicates. Therefore, a large part of this report deals 

with these varied applications. 

There are two main problems encountered during a sensitivity analysis: 

a) determining the sensitivity functions and b) analyzing these functions to obtain 

meaningful information about the system. In this report, both of these factors 

are discussed. Inasmuch as there are few examples in the literature of physio­

logical systems illustrating methods and application of sensitivity analysis, the 

suitability of these techniques are suggested by way of some original examples. 

However, the full potential of sensitivity analysis in analyzing complex physiolog­

ical systems must await further study. 
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Certain elementary methods in sensitivity analysis that may not prove 

suitable for large scale systems are described. This will be done to provide a 

basis for describing more applicable empirical methods and to suggest tools that 

could be used with less complex models. A detailed example will be presented 

illustrating some of the techniques of sensitivity analysis as it applies to a com­

plex model of the human thermoregulatory system. Finally, the application of 

sensitivity analysis to related areas in the study of dynamic systems will be 

discussed: error and noise analysis, stability analysis, parameter estimation 

analysis, and inverse sensitivity. 

Literature Review and Background 

Although at the present time sensitivity analysis is applied to numerous 

fields, there are few books devoted exclusively to this subject (5, 20, 21). The 

application of sensitivity analysis to physiological control systems may be about 

30 years old, sensitivity analysis first received important attention about 15 

years later and the first papers on biological application of sensitivity analysis 

did not appear until about five years ago (10)*. A review of several major sym­

posiums and journals concerned with physiological regulation and control over the 

past several years reveals only about a dozen papers that have utilized formal 

sensitivity theory and few that deal with larger scale physiological systems. 

While the biological field has received scant attention, the theory of 

sensitivity analysis has advanced considerably although application is devoted almost 

entirely to technological control systems (2, 5, 10, 16, 20, 21) where the trend is 

toward the design of adaptive systems, that is, self-correcting systems tint change 

Sensitivity analysis is used here in the formal sense whereby the computation 
of sensitivity coefficients occurs somewhere in the analysis. Other methods 
in which parameter variation effects are studied will be discussed separately. 
Of these parameter estimation analysis is the only. related area to receive 
considerable attention in the biological field (8). 
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parameters to optimize certain system functions. (This trend has some obvious 

implications and future applications in physiological control systems in which 

certain parameters such as set points and gains are thought to be under some type 

of control). Unfortunately, the emphasis of technological system theory is to 

compute optimum operating characteristics and synthesize or design systems rather 

than to measure control parameters and analyze function as is the case in physiological 

systems. Thus fundamental difference, and the fact that technological control 

systems are often much less complex than physiological systems, severely restrict 

the interchange between these two fields. 

Recently however, sensitivity analysis has been finding increased use in the 

analysis of such diverse systems as ecological , behavioral, economical, societal, 

and management systems (e. g., 7, 11, 13, 14, 15). Like physiological systems, 

but unlike technological systems, these are models of systems that are not com­

pletely man-made, their component interractions are highly complex and not well 

understood and they contain parameters that are difficult to measure. Thus, many 

of the references used in this report come from these areas as well as from the 

technological and physiological literature. 
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2.0 THEORETICAL BACKGROUND 

Consider the following linear or nonlinear mathematical model of a 

second-order system (e. g., a two-compartment system) with dependent vari­

able y and parameter q: 

F( y', Y, y, t, q)= 0 (2-1) 

The solution will be a function of time, t, in the form: 

y = y(t, q) (2-2) 

We can solve (2-1) successively using various values for the parameter. For 

example, let q be changed by an incremental amount A q. Then the solution 

becomes: 

y=y(t, q+ Aq) (2-3) 

Comparing (2-2) and (2-3) we obtain an indication of the sensitivity of the system 

which we can express by means of the fraction 

As = change of output variable Ay
change of parameter A-q 

y(t, q + Aq) - y°(t, ) (2-4) 

Aq
 

If AS has a limiting value as Aq approaches zero, we get the partial differential 

LimAS = S(t,q)= ) (2-5) 
hq-06.
 

Nomenclature 

S is known as the differential sensitivity coefficient of the dynamic system 

and can be obtained by differentiating (2-1) with respect to q. A S is sometimes 

*We shall also use the term sensitivity function to emphasize that S is not always 
constant but is dependent both on time and the value of q. 
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called the incremental sensitivity coefficient. The distinction between these two 

different sensitivities resides in the fact that the incremental value applies to 

changes in parameter variations of any size whereas the differential sensitivity 

strictly applies to infinitesimally small changes. We shall see that the differen­

tial sensitivity coefficient is a more useful indicator of trends of a system's 

behavior since it allows the derivation of general relations not connected with the 

actual form of the variation. In practice values for S or AS may be computed by 

several methods, both analytically and numerically (on analog or digital compuX­

ters). In this report, the interest will be primarily in methods suitable for com­

puter solution. 

Equation (2-2) is said to represent the fundamental behavior of the system 

while (2-3) corresponds to the varied behavior. The difference between the two, 

Ay = y(t, q + Aq) - y°(t, q) (2-6) 

is said to define the supplementary behavior. The simulation of any model is 

usually concerned with determining the supplementary motion due to a parametric 

disturbance (including changes in initial conditions or forcing functions). Sensitiv­

ity analysis can provide a convenient method for determining supplementary 

behavior. Equation (2-6) can be represented by a Taylor series, 
2 A2 

Ay(t, Aq)= ( )Aqoq--+ (A ) 2 +A......... (2-7)
bq bq
 

Neglecting higher order terms and substituting (2-5) we get 

Ay = S(t,q) Aq (2-8) 

This very important relationship allows us to predict the behavior of a system 

following a parametric variation using simple algebra and without the necessity 

of performing a simulation run. A knowledge of the sensitivity function is re­

quired however. In many cases this method of analyzing supplementary behavior 

is often more convenient than a direct simulation of the varied system. 
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The value of the differential sensitivity coefficient is determined to a 

large extent by two factors as indicated by Equation (2-5): 

1) the time or time period during which the sensitivity coefficient is 

computed, and 

2) The absolute value that is assigned to the parameter or parameters. 

In addition to these factors, the incremental sensitivity coefficient depends on the 

total deviation of the parameter (A q) from some nominal value. If the system 

is in a steady-state the sensitivity coefficient depends. only on the absolute value 

of the parameter, S(q). The fact that the sensitivity coefficient depends on the 

absolute value of the parameter represents an additional difficulty in the sensitivity 

analysis of dynamic systems, especially when the value of q may vary within 

broad limits (as is true in adaptive control systems). When the dynamic system 

has many parameters, (q., q2 ..... , qm) whose values are not known to a high 

degree of accuracy, the problem will be compounded sfhce sensitivity may depend 

on the particular values of all of them. In the general case the sensitivity coefficient, 

S(t, ql' q2 ..... , qn), is a quantity associated with every point of parametric space 

(i. e., the operating point) and changes with the position of the point. Thus, it is 

essential to carefully define and specify the time and parameter limits which are 

of primary interest. 

The Sensitivity Equations 

Assuming that the equations describing the dynamic system are known 

and are easily differentiable we can calculate the sensitivity coefficient on the 

basis of the definition given by (2-5). For the system given in Equation (2-1), 

the partial derivative of the function F with respect to q yields the following: 

dF =bF b. + &F + bF by + bF =0 (2-9) 

dq b bq b bq by bq bq 

and noting that 



C) qLqbt tq ;T ' bqrS 

Equation (2-9) becomes 

-bF + -F + bF S=_ S(0)=0 (2-10) 

Equation (2-10) is called the sensitivity equation of the dynamic system and its 

solution will yield the sensitivity coefficient, S(t, q). In practice the system 

equation (2-1) and the sensitivity equation (2-10) are solved simultaneously on an 

analog or digital computer. The sensitivity equations are generally linear even 

if the original system is nonlinear. 

Multivariable, Multiparameter Systems 

While the above discussion was concerned with a simple system with one 

parameter the methods are applicable to more complicated systems. For a sys­

tem with n variables and m parameters, there are n x m sensitivity coefficients: 

byi(t) 
Sij(t) (i=l,..., n; j=l, ... ,m) (2-11) 

which are obtained from a solution of m sensitivity equations similar to (2-10) 

except for the right hand, non-homogenous term which is differentiated with 

respect to a different parameter for each equation. We shall see that for large 

scale systems the derivation and solution of the sensitivity equations become 

somewhat impractical and we shall resort to more straightforward numerical 

methods to obtain the sensitivity functions. 

Equations (2-6) through (2-8), which have been derived for a single para­

meter system, can be easily extended to describe supplementary behavior for 

multiparameter systems. For example, the Taylor series expansion for a two 

parameter system, p and q , is given by: 
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Ay (Ap, Aq) = y(p + Ap, + Aq) - y(p, q) 

=p+ Aq + (b2V A2 

= 6)A (_6Lq)A A 2+:

6q 2 2 + pq/AP Aq +...... 

SAP + _S Ag + S AR + S . 
p q p 2 q 2 

+ S Ap Aq . ...... (2-12) 

The coefficients, S , are called second-order sensitivity functions and there 

are methods available to compute these either analytically or empirically (20). 

As a rule these and higher order terms are neglected since the values of p, q,* 

or S are sufficiently small. In that case, the general expression for 

supplementary behavior for a system with m parameter variations becomes, 

m 
Ay( ....... mM). Z 1i
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m 

= Z S.Aq (2-13) 

* 2 

The mixed partial derivative term in (2-12), b2 bpPy/bq, represents the
 
mutual influence of q and p on y and there are cases when this inter­
raction term becomes significant.
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3.0 METHODS FOR DETERMINING THE SENSITIVITY COEFFICIENTS 

In this section we shall use a simple mathematical model to illustrate 

several methods for deterixining the sensitivity coefficients for dynamic systems 

as well as discussing their application in a systems analysis. 

Population Growth Model (23) 

A population of bacteria growing in a finite space with an unlimited food 

supply can be described by the following differential equation showing the net rate 

of growth: 

Dy 2jr=Py- W = P/D 

P 
= (p- -w y) y; y(0) = A (3-1) 

where y(t) = the number of bacteria present at any time 

P y = the absolute rate of gtowth proportional to the present population, 

D y2 = the absolute rate of destruction proportional to the present popu­

lation squared, 

A = the initial population 

Figure 1 shows the solution to this equation for A0 = 1, W0 = 2, and 

P0 
= 1. (The superscript o designates this as a nominal base condition from 

which we shall study parameter perturbations). 

3 

Y A ° I 
2 00 2 

pO I 

II I I I 

00I2 3 4 5 6 

TIME 

Fiqure 1: Growth Curve of Population Model 
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The effects of changing the three parameters of the system on the growth curve 

are shown in Figure 2. One of the primary purposes of sensitivity analysis is 

to provide an alternate and more informative method of presenting the type of 

information contained in Figure 2. The first step in such an analysis entails 

computing the sensitivity coefficients of the system. Three methods for accom­

plishing this will be illustrated. 

Method I: Sensitivity Coefficients from the Analytic Solution 

If the analytic solution to a system is known the sensitivity coefficients 

can be computed in a very straightforward manner. The analytic solution to 

(3-1) has been found to be: 

W 
Y W -- (3-2) 

1 + - 1)e 2 

Taking the partial derivatives of y with respect to each parameter yields the 

sensitivity coefficients: 

S
A 

y
bA 

- 2 
[A 

Pt 

2 

SW - b W e=P 

6 2 t e- (3-3)bp W [3--

Since the sensitivity coefficients are functions of y Equations (3-2) and (3-3) 

must be solved simultaneously. The results of such a solution will be presented 

later in this section. 

Method II: Sensitivity Coefficients from the Sensitivity Differential Equation 

If the analytic solution of the original differential equation is not known 

explicitly, the sensitivity coefficients can be obtained by deriving the sensitivity 
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W 
3 O= 1.0 

2.5 

2­

1.5 

1.0 EFFECT OF W 

3P 
w0 = 2.0 

2.5 A0 =1.0 
2-0.5 

/.0.25 EFFECT OF P 

01 

A p0= 1.0 

2.5 W° = 2.0 

2 1 EFFECT OF A 

I I I I I I 

0 1 2 3 4 6 
TIME 

Figure 2: Effect of Parameters on Population Model Output 
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differential equations from the system equation and solving these equations for 
SA , SW, and S For example, the sensitivity equation for S is found by taking 
A'W' P A 

the partial derivative, by/bA, of each term in (3-1) and rearranging terms. Sim­

ilarly the equations for SW and S are found by taking partials by/bW and 

by/ o P, respectively. This yields the following: 

y
SA = ( - "W - SA ; SA(0) = 1
 
2P 

Sw"(P - )w + 2 ; Sw(0) = 

SP= (P - 2P- Y) Sp + y- 1 y 2 S (0) =0 (3-4) 

These sensitivity equations are linear with respect to S even though the original 

system equation (3-1) is nonlinear. Also observe that values of y are necessary 

to solve equations (3-4). In practice Equations (3-1) and (3-4) are solved sinml­

taneouslv on either analog or digital computer. Computation and programming is 

facilitated by the fact that, except for the rightmost non-homogenous terms in 

(3-4), the system differential equation and the sensitivity equations are all struc­

turally similar; thus, the sensitivity coefficients can be computed without changing 

the system's block diagram or its numerical method of solution. This is a partic­

ularly useful feature when dealing with large scale systems (6). 

The structural similarity of this system and the construction of a sensi­

tivity model are illustrated in Figure 3. The analog diagram is presented for 

obtaining the solution to Equations (3-1) and (3-4) (the model for SA was omitted 

for convenience). The top section is the model of the original system while the 

bottom two sections are the sensitivity models. The connecting links between the 

two are the non-homogenous terms of (3-4) and are functions of y. A single 

simulation run of these three almost identical-models will generate y(t), SP(t) 

and Sw(t). This method of obtaining the sensitivity coefficients is most suitable 
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SYSTEMPy 

P X MODEL 

y(t) 

Y 

.. _------SW y SENSITIVIT 
#Y2 

MODEL 

+ ~S W(t) 

Sp t 

2P 
MOD EL 

Figure 3: Analog Diagram of System Model and Sensitivity Models 

Notice the same structural similarity of all models except for con­
necting links which are functions of y. 
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for any system whose differential equations have been explicitly formulated, but 

whose analytic solution is not known. The disadvantage of this method is that a 

separate model is required for each sensitivity function as well as for the original 

system. 

Method Ill: Sensitivity Coefficients from a Single Sensitivity Model 

There is a class of models that are amenable to a method of determining 

all of the sensitivity functions simultaneously, using a single sensitivity model 

that is essentially a replica of the original system model. This approach is called 

the "sensitivity points" method and appears to be applicable only to a certain small 

class of linear systems (2. 10, 16, 20, 21). This may be a severe restriction if 

one is concerned with large scale, nonlinear systems operating over a wide range. 

However, if the operating point of interest is in a linear region, this method may 

have some applicability. Because the practical application of the method has not 

been described in sufficient detail in the literature, no attempt wilt be mane to' 

apply the sensitivity points technique to the example in this section. 

Nevertheless, an additional simple example of the technique is presented' in the 

Appendix so that it's attractiveness may be appreciated. Further study may be 

warranted to evaluate it's usefulness to large scale nonlinear models. 

Method IV: Sensitivity Coefficients from Parameter Variation 

In those cases where neither the analytic solution nor the explicit formu­

lation of the sensitivity equations are readily obtainable,an empirical method is 

available. This technique involves varying a single parameter by a small incre­

ment about its nominal value and performing a single simulation. The sensitivity 

coefficient is obtained by comparing the value of the output variable from this 

run with its value during a run in which none of the parameters are perturbed. 

Consider a general case in which there are m parameters, so that the 

solution for the unperturbed system may be written as: 

y f(t, q ) (i ........ m))
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The corresponding solution'for the perturbed case where a single parameter, 

q., 0 is varied an incremental amount is given by: 

0 0 

y = f(t, q., q. +Aq.) , (1=1.... m-1) (3-6) 

The incremental sensitivity function that describes the change in y due to the 

variation Aq is given by Equation (2-4): 

0 0 0 0 

Ay(t, qiq j +Aq ) - y (t,q i)AS.(t,g., Ag.) = ' j 
33-7


j 
. Ag.i 

Note from Equation (2-5) that AS. approaches the differential sensitivity 
3 

coefficient, S. (t, q. 
0 ) , as Aq approaches zero. Thus, if a parameter is per­

turbed by a very small amount (say 1%) the value of AS. determined from (3-7)3 

will be approximately equal to the true sensitivity coefficient. This method 

requires that each sensitivity function, S. (i= . m) be determined by a sep­

arate simulation during which only a single parameter is perturbed. It should 

be observed that in Methods I and II parameter sensitivity is determined by 

solving the system in the unperturbed case and that only in this empirical method 

are actual parameter perturbations used explicitly. The number of computations 

required in this method is nearly identical to that required by Method II. The 

later method requires -one simulation with multiple models while the former 

requires multiple simulations with only the system model. 

Logarithmic Sensitivity Coefficients 

A more meaningful and widespread definition of the sensitivity function 

b Iny b.-y 0 S. A.V/y (3-8) 
j b in q. bq./q o j Aqj/q( 

where S. is called the logarithmic sensitivity coefficient and is defined as the 

f 
fractional change in dependent variable due to the unity fractional change in 
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parameter value (i.e., doubling the parameter value). If S. is known then theJ 
percent change in the output variable, y , is given by S. multiplied by the percentJ 
change in parameter q. Equations (3-3) have been converted to logarithmic 

functions (SA, SW, SP) in the example to follow by multiplying them by A/y, 

W/y, and P/y, respectively, as the fourth term in Equation (3-8) suggests. 

Predicting Supplementary Behavior 

Once the sensitivity functions are determined for each of the parameters 

it is possible to estimate the variation of y for any combination of parametric 

changes. In order to derive the expression for predicting the supplementary motion 

of the population model we shall define U.1 as the fractional perturbation of a para­

meter about its nominal values: 

Aqi qi - qi0 
U. = f (3-9) 

i qil 


Equation (2-13) can be rewritten for the output of the population model using the 

definitions given in (3-8) and (3-9): 

q 
Ay/yO =X S (Aqi/qi) = W UW + SpUP + SA UA (3-10)

i=1 

A Av/yO--

w w = A , AAwhere, SW AW/Wo = AP/Po = SA=A / (3-11) 

Results of Sensitivity Analysih on Population Model 

The techniques discussed above will be illustrated using the population 

growth model. In Table II, values for y , S S aind have been com­
0 0 0puted for the case where A = 1, W = 2, and P = 1 which we shall define as the 

nominal, unperturbed state of the system. Values for the sensitivity coefficients 

have been obtained both by Method I (Si(theoretical)) U-sing the analytic expressions 

(3-3) and by Method IV (Si(estimated)). In the latter case, the incremental sensi­

tivity coefficients were computed from Equation (3-7) by varying one parameter at 



TABLE H 

SENSITIVITY COEFFICIENTS OF POPULATION GROWTH MODEL 

THEORETICAL VS. ESTIMATED VALUES -* 

THEOR. ESTIMATED THEOR. ESTIMATED THEOR. ESTIMATED 
TIME yO A= 1% A= 20% A= 1% A=20% A= 1% A=20% 

0 1. 000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 1.245 0.755 0.753 0.720 0.245 0.243 0.213 0.189 0.189 0.186 

1.0 1.462 0.538 0.535 0.492 0.462 0.460 0.417 0.269 0.268 0.256 

1.5 1.635 0.365 0. 363 0.354 0.635 0.633 0.592 0.274 0.272 0.248 

2.0 1.762 0.238 0.237 0.207 0.762 0.760 0.727 0.238 0.237 0.205 

2.5 1.848 0.152 0.150 0.130 0.848 0.847 0.823 0.190 0. 188 0.154 

3.0 1.905 0.095 0.094 0.080 0.905 0.904 0.888 0.142 0. 140 0.109 

3.5 1.941 0.059 0.058 0.049 0.941 0.941 0.931 0.103 0. 101 0.075 

4.0 1.964 0.036 0.035 0.030 0.964 0.964 0.957 0.072 0.071 0.050 

4.5 1.978 0.022 0.022 0.018 0.978 0.978 0.974 0.049 0.048 0.033 

5.0 1.987 0.013 0.013 0.011 0.987 0.987 0.984 0.034 0. 033 0.021 

5.5 1.992 0.008 0.008 0.007 0.992 0.992 0.990 0.022 0.022 0.014 

6.0 1.995 0.005 0.005 0,004 0.995 0. 995 0.994 0.015 0.014 0,009 

N n0 0 0 
Nominal Parameter Values Used: A = 1, W 2, P I 
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a time by either 1% or 20% from its nominal value. There is excellent agreement 

between the two methods over the entire time range when the variance is 1%. 

Agreement is worse for the larger variance of 20%. Figure 4 shows more clearly 

the relationship between the differential sensitivity coefficient and the incremental 

sensitivity coefficient with respect to the parameter W (at t=3) where A S has 

been computed for very large perturbations. This analysis suggests that the 

numerical procedure for estimating the sensitivity functions (Method IV) can be 

very accurate if the parameter perturbations are allowed to be small. 

The sensitivity functions of Table H (S. (theoretical)) have been plotted 

in Figure 5. The influence of the three parameters on the system's behavior are 

seen to be not only different from each other, but just as importantly, the relative 

differences change with time. Thus, the behavior of the growth curve of Figure 1 

is influenced almost entirely by the initial condition A at the outset of growth and 

by the production/destruction rate constant ratio W at steady states, while the 

influence of the production rate constant, P, has an important influence only in the 

midrange period. 

Figures 2 and 5 contain the same type of information. However, the per­

turbations required to generate the curves in Figure 2 were much larger than those 

implied in Figure 5 and a larger number of simulations were required as well. In 

large scale multivariable, multiparameter systems, the number of computer runs 

and the volume of data resulting from an analysis typified by Figure 2 could easily 

be prohibitively large and difficult to interpret. In addition, the sensitivity functions 

appear to produce a more coherent and easily interpretable picture of parameter 

sensitivity than is possible with variations in the output function. 

If this model were an accurate representation of a physical system under 

investigation, the sensitivity functions could provide valuable information to guide 

experimentation. For example, if only steady-state conditions were desired, the 

ratio W = P/D would have to be measured very accurately as compared to the values of 

P and A. Conversely, if the model were being used to predict growth and if W were 

the only parameter known accurately, it could be stated that the model's ability 
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to predict is poorest in the transient time periods. Perhaps this particular 

model is simple enough to have made these insights without resorting to comput­

ing sensitivity functions. However, in more complex models, the relationships 

are far from obvious and an analysis in this fashion might benefit both modeler" 

and experimenter. 

Sensitivity studies can be a valuable adjunct to a systems analysis with 

regard to determining model validity. A person familiar with the subject matter 

of the model (but not necessarily familiar with simulation techniques) can make a 

judgement concerning the validity of the model based on the reasonableness of the 

sensitivity relations. It is true that the behavior of the dependent variables in 

response to a specific stress (such as in Figure 1) also can provide valuable clues 

about model validity. However, it is worth pointing out that a variety of "black 

box" models could have generated the output curve shown in Figure 1 while only a 

deterministic model bearing a good likeness to the real system could produce 

parameter sensitivity functions that are reasonable. In addition, sensitivity func­

tions of system parameters (such as W and P) ate independent of any particular 

environmental stress so that a picture of model validity can be obtained without 

resorting to comparison with a particular data set. 

An important application of the sensitivity function is in predicting the 

supplementary motion of a system. Equation (3-10) may be rewritten as 

3 
y(t, AA, AW, AP) = y°(1 + S .0.) (3-12) 

i=1 

Thus, we have the capability to predict the value of y for parameter values that 

are different from but centered al~out -the nominal values. An illustration. of the 

accuracy of this equation is given in Table III. The solution to the population 

growth model has been found for four different sets of parameter values: 1) one­

half the noninal values used in Table If, 2) ,twice the nominal values, 3) 0.8 x 

nominal value, and 4) 1.1 x nominal value. The true solution to the model given 

by Equation (3-2) is listed under yTRUE and the predicted solution from Equation 

(3-12) is given under yPRED " The values for S. used in (3-12) were obtained from 



TABLE III 

BEHAVIOR OF POPULATION MODEL FOR SIMULTANEOUS VARIATION OF ALL PARAMETERS 

ACTUAL VS. PREDICTED BEHAVIOR 

NOMINAL 
PARAMETER VALUE RUN I RUN 2 RUN 3 RUN 4 

A 1.0 0.5 2.0 0.8 1.1 

W 2.0 1.0 4.0 1.6 2.2 

P 1.0 0.5 2.0 0.8 1.1 

TIME Ytrue pred Ytrue Ypred Ytrue Y pred Ytrue Ypred 

0 0.50 0.50 2.00 2.00 0.80 0.80 1.10 1.10 

1 0.62 0.53 3.52 3.32 1.10 1.09 1.65 1.65 

2 0.73 0.67 3.93 3.94 1.33 1.33 1.98 1.98 

3 0.82 0.82 3.99 4.08 1.47 1.47 2.12 2.12 

4 0.88 0.91 4.00 4.07 1.54 1.54 2.17 2.18 

5 0.92 0.96 4.00 4.04 1.57 1.58 2.19 2.19 

6 0. 95 0.98 4.00 4.02 1.59 .1.59 2.20 2.20 

7 0.97 0.99 4.00 4.01 1.59 1.60 2.20 2.20 
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Table H. The actual parameter values used for each run are shown at the top of 

each column. There is almost perfect agreement between the true and predicted 

solution for Runs 3 and 4 which are operating close to the nominal condition. For 

Runs I and 2, which are separated by a four-fold difference in parameter values, 

the agreement is still very good. The deviation becomes worse as the operating 

point moves further from the nominal value because Equation (3-12) has neglected 

the higher order terms shown in Equation (2-12). These terms become increas­

ingly significant for larger perturbations. 

The usefulness of predicting model behavior with simple algebraic equa­

tions rather than by direct simulation of the original analog system (which involves 

solutions of differential equations) is, of course, obvious. Fundamentally, this 

trocedure is not new since it is really based on linearization of a system using 

Taylor series expansion. However, the coefficients of the Taylor series in this 

case -are the sensitivity functions which have intrinsic meaning by themselves. 

In addition, the results are expressed in terms of linear algebraic equations 

rather than linear differential equations. The technique illustrated in this exam­

pie appears to be applicable to most nonlinear, multivariable, multiparameter 

models. However, the disadvantages have also become apparent: a) all the 

sensitivity coefficients must be computed in the desired time period, b) the 

degree of accuracy of the method around the operating point should be established 

by some independent check, c) in highly nonlinear systems higler order sensi­

tivity functions may have to be computed or alternatively, d) a series of first­

order sensitivity functions may have to be computed at closely spaced operating 

points. In addition, the equations for this procedure no longer describe a deter­

ministic system even though the coefficients were generated from one. There 

is a danger that persons not familiar with the use of this method may extend it 

beyond its limitations. Notwithstanding these restrictions the method appears 

to be powerful enough to be suitable for certain types of application even with 

complex-models, especially where high speed, large core computers are not 

available. 
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Summary 

This section has illustrated several methods for obtaining sensitivity 

functions and described some of the applications of a sensitivity analysis. Several 

methods are available for easily obtaining all the sensitivity functions simultan­

eously for linear or simple nonlinear systems (Methods I, H, III). Method I 

involved the formulation of sensitivity equations which were obtained by differen­

tiating the analytic solution of the system with respect to the system parameters. 

If the analytic solution cannot be easily formulated, differential sensitivity equations 

may be generated from the system equations according to Method H. The solution of 

these sensitivity equations in terms of using sensitivity models were described which 

structurally resemble the original system and can be obtained by simple manipula­

tion of the original system's block diagram. If the systems are complex, (i. e., no 

analytic solution attainable), nonlinear, and large scale (i. e., many parameters), 

Method 11 is still applicable and the sensitivity functions may be generated simultan­

eously. However, a considerable amount of preliminary analysis and additional 

programming is required. Essentially, this involves programming a number of 

sensitivity models (equal to the number of parameters) and determining the connec­

ting links between the models. An empirical method was described and illustrated 

(Method IV) that overcomes this limitation in that it requires working only with the 

original system (i. e. additional models are not necessary) and involves approxi­

mately the same computation time as the sensitivity model method (Method 1). 

However, this technique does not permit simultaneous determination of the sensi­

tivity functions, but rather only one function can be obtained during a single simula­

tion run in which a single parameter is varied. In addition the method suffers from 

the same inaccuracies that are inherent in any finite difference method. Neverthe­

less, these restrictions are not severe and it appears that Method IV may be quite 

suitable for large scale models. In Section 5. 0, the numerical estimation proced­

ure for a relatively complex thermoregulatory model is illustrated. 
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4.0 THE PERFORMANCE CRITERION
 

The basic question to be answered in a sensitivity analysis is "how does 

parameter variation effect the behavior or performance of the system under 

study?" If the concern is the the effect on a particular variable, such as skin 

temperature or sweat -rate in a thermoregulatory model, the solution can be 

relatively straightforward and has already been discussed (e. g. , see Equation 

2-12)). However, in many cases when dealing with a model with many dependent 

variables it is desirable to define a single measure of overall system performance. 

Such a measure, which is called the performance criterion would be extremely 

useful in performing both sensitivity analysis and parameter estimation since the 

effects of multiple parameter variations can be related to changes in this single 

variable rather than an arbitrarily large number of dependent variables. However, 

the definition of a performance criterion is difficult and cannot always be accom­

plished since it depends on the purpose for which the simulation Was carried out 

and on an assessment of subjective features. The use of a performance criterion 

(also called performance index, evaluation criterion, measure of deviance, error 

criterion, criterion function, and goodness of fit criterion) is more widespread 

in parameter estimation (or identification) problems than in sensitivity analysis, 

but in either case, little information is available to guide a user in its formulation. 

It is the purpose of this section to discuss some possible guidelines. 

Some examples may help clarify the concept and usefulness of a perfor­

mance criterion: 

1) In parameter estimation analysis the parameters of a simulated 

model are fitted to experimental data according to a specified criterion, of goodness 

of fit. Carson and Finkelstein (3) measured the plasma disappearance of labelled 

albumin after intravenous injection and fitted it to a simple three term model, 

J 

33 -a.t. 
yj =Y A. 3 (4-1) 

i=ii 

* 

where yj is the predicted albumin concentration at time t.. Estimates of the 

six parameters A., a. (i=1, 2, 3) were obtained when an error criterion 
1 1 
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n 242 
*21(yep (4-2) 

xp=j 

had been minimized where yexp is the value of sampled plagma concentrations 

at time t. The summation is taken for points within a given time interval.J 

2) In a more complex model of predicting plasma concentration 

changes during hemodialysis, Abbrecht and Prodany (1) estimated the mass 

transfer parameters for urea and creatinine by minimizing the error criterion 

summed over the number of consecutive sample points 

Sexp-Y 2 2exP 2 

E~exp 1x ~ E (y2exp)2_'2~(3 (4-3)E = Y-exp)2 

where y. and y. are the experimental and model predicted concentrations,
iexp 

respectively, for urea (i=1) and creatinine (i=2). 

3) Dcnders, et al (6) have used a more complex error criterion to 

estimate five parameters in a heart function model. The error criterion function 

was constructed from the left ventricular pressure P(t) and left ventricular 

volume V(t), resulting from experiments and those resulting from the model, 

P*(t) and V*(t). 

T 

E fwi j1 - P* + w2 j V - V*j + w3 (P -p*) 2 + w4 (V- V*) 2 dt (4-4) 

where weighting coefficients w. are used to give more weight to either the1 

volume data or the pressure -data depending on the accuracy of measurements. 

In all these examples the minimum of E equals zero if model and experi­

mental results perfectly match. In the first two examples the error criteria 

are functions of the error squared while in the latter case the absolute error 

is also incorporated; this results in positive values for E. 
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Compared to the work on parameter estimation there has been almost 

no effort to use overall performance criteria in sensitivity analysis of physiolog­

ical systems. While in parameter estimation, the difference between experimen­

tal and model responses is crucial there is no need to utilize these types of 

experimental measurements in sensitivity analysis. Rather the performance 

criterion is a measure of difference between the -response of the model at some 

nominal base condition and the model's response when one or all of the parameters 

are perturbed. The error criterion equations in the examples given above can be 

used for sensitivity analysis by simply replacing the experimental response with 

the model response for the perturbed case and letting the starred (*) variable 

represent the model's unperturbed case. Thus, parameter estimation may be 

described as a model-to-experiment study while sensitivity analysis is a model-to­
/ 

model study. Since a model-to-model analysis is really not a measure of error 

but of deviance it is more appropriate to replace the term "error criteria" by 

"performance criteria" or "measure of deviance." 

Miller (14) has described the use of the measure of deviance, D, in sen­

sitivity analysis of ecological systems. The sensitivity coefficients are formed 

by the partial derivatives,- S. = bD/bqi , where q (i=1,. , m) are the m para­

meters of the system. Values of S. can be found as previously described by1 

the method of parameter variation; parameters are deviated on either side of 

their normal value by a fixed small percentage of their normal values and the 

resulting performance criteria are computed. Then, 

- D(q ) D(qi + Aq) 
s.- bD - D(qi1 + Aq.)1 ~1 (4-5)Aq ii oq i Aq i 

Note that the value of D(q1 ) is computed for the unperturbed case and is zero 

by definition. The number of sensitivity coefficients of a large scale system of 

n dependent variables and m parameters is reduced from m x n to m when 

a performance criterion is used as a measure of overall system behavior since 

S. is computed only for the variable D. 1 
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While the choice of an overall performance criterion of a model is 

somewhat arbitrary, experience has provided certain guidelines in its formulation. 

These are discussed below: 

1) An overall performance criterion is a function of one or more of the 

systems dependent variables. This functiorl is usually (but not necessarily) of 

one of the following forms or a combination of them: 

n n 2
 
D e, 
 D (e)2 

n n 2D: Z leZ (e.) 
n * (4-6)
Z yji (Y )2 

n* * 

where y. the model response of the jth variable for the unperturbed case, 

y. = the corresponding variable for the perturbed case, e. = y. - y. and n is 

the number of samples taken over a finite time interval. 

2) The choice of variables used in forming the performance criterion 

should be related to the most important variables of the system or a combination 

of variables that are representative of some index of overall behavior. This 

choice could, of course, change as the objectives of the simulation study change. 

For example, the Guyton model of circulatory regulation has been extremely 

valuable in elucidating the mechanisms that control long term fluid volumes and 

blood pressure changes. Although it contains over 300 dependent variables it is 

conceivable that a meaningful performance criterion can be formulated from only 

two variables, arterial blood pressure and extracellular fluid volume since all 

the other variables are known to exert some influence on these two. It would be 

possible and often desirable to construct a performance criterion that gives more 

weight to one variable than another as well as giving different weights to the 
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transient and steady-state responses. Miller (14) has shown that a nunber of 

reasonable, but different choices for the performance criterion all produce very 

similar results in a particular example. He states "generally a balanced meas­

ure of all the output variables is more successful, and it is unwise to use one 

single output variable as a 'general indication of model behavior' " 

3) The value of D should be zero when there is no perturbation of 

parameters and be positive otherwise. 

4) The performance criterioi chosen should correlate well with other 

possible performance measures and with intuitive estimates of model change. 

5) The variables chosen to formulate D should be capable of easy and 

accurate measurement in the laboratory even though these experimental ne asure­

ments are not used in sensitivity analysis. There are two reasons for this require­

ment: a) the results can be judged more valid and can be more easily interpreted 

if the behavior of these variables in the real system are known for certain situa­

tions and b) sensitivity analysis can be a very powerful tool to select those para­

meters for parameter estimation and this latter method does depend very heavily 

on experimental measurements. The formulation of D used in sensitivity anal­

ysis can be used in the same form as the error criterion for parameter estimation 

analysis. 

6) The variables chosen to formulate D should be related in some 

direct way to the parameters of primary concern. Thus, if a mass transfer 

parameter of species i is an important parameter, the concentration of species 

would be a likely candidate to use in developing a performance criterion. 

In the next section the usefulness of the performance criterion in sensi­

tivity analysis will be developed by applying these techniques to a complex human 

thermoregulatory model. 
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5.0 	 APPLICATIOP OF SENSITIVITY ANALYSIS TO A MODEL OF THE 
HUMAN THER1VOREGULATORY SYSTEM 

In this section we will apply some of the techniques of sensitivity anal­

ysis to a fairly complex model of the thermoregulatory system which as been 

described elsewhere (12). For simplicity, the steady-state version of the model 

will be used exclusively, which -means we shall be determining static sensitivity 

coefficients and ignoring parametric sensitivity during transient states. The 

following presentation is not meant to be a complete sensitivity analysis of the 

system under study, but is rather suggestive of the type of analysis that might be 

performed. 

Typical Parameter Analysis 

A traditional analysis of parametric variation is illustrated in Figure 6 in 

which the effects of metabolic rate (exercise) on certain important variables 

have been plotted. Similar graphs using other parameters on the abscissa such 

as TCAB, TW, PCAB, and VCAB could be prepared. 

The sensitivity coefficients, S. = byi/bRM (where y represents any 

variable), could be generated by computing the slope of the curves shown. Since 

the slopes are somewhat steeper at the lowest values of RM it would be expected 

that the sensitivity coefficients would be different at either end of the abscissa. 

This is the reason that sensitivity coefficients are usually related to a perturba­

tion about a specific operating point. We shall be considering two operating points 

in this example, characterized by the input parameters shown in Table IV. The 

first case represents a moderately relaxed, supine subject and the other an exer­

cising, standing subject both in comfortable environments. 

Table 1 	presents the definitions of the symbolic notation used in this model. 

In a strict sense these should be described as independent variables, input para­
meters or forcing functions rather than system parameters. However, sensitivity 
analysis is suitable for studying the effects of these factors if the range of their 
values about an operating point is not excessive. 
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TABLE IV 

INPUT PARAVETERS FOR TWO OPERATING POINTS 

INPUT CASE 1: CASE 2: 
PARAMETER MODERATELY RELAXED MEDIUM EXERCISE 

RM (BTU/hr) 330 1165 

QBASAL(BTU/hr) 283 283 

UEFF 0 13.5 

TCAB( F) 68 75 

TW (OF) 68 75 

TDEWC (OF) 50 55 

VCAB (f/m) 30 30 

PCAB (psi) 14.7 14.7 

CLOV 0.35 0.5 

The sensitivity coefficients have been computed for a selected variety 

of parameters and variables for each of the two operating points. Shown in 

Table V, each value has been computed by varying a single parameter, listed 

on the left, by +10% away from the operating point and determining the change 

in the particular variable shown across the top of the table using computer simu­

lation of the model. The relative sensitivity coefficients were determined by 

Equation (3-8). 

There is a large variation of values among the coefficients shown in 

Table V; the higher the value the greater the effect of a given parameter on the 

designated variable. The skin and head temperatures are relatively insensitive 

to any parameter, which is expected since negative feedback temperature regula­

tion is an important feature of the model. Similarly, exercising muscle blood 

flow (Case 2) is insensitive to all the parameters studied except for metabolic 

rate, while perhaps surprisingly the model predicts a generally higher sensiv­

ity of the resting muscle flow (Case 1) to all the input parameters. Other differ­

ences in sensitivity between the two cases shown can be easily noted from this 



TABLE V
 

SENSITIVITY COEFFICIENTS FOR 10% CHANGE IN PARAMETER VALUES
 

(THERMOREGULATORY MODEL) 

CASE 1: REST 

PARAMETER QSTOR QEVAP QSEN QSHIV SKIN BF MUSCLE BF THEAD TSKIN 

RM 5.18 0.56 .0.08 -6.77 0.10 0.37 0.00 0.02 

TCAB 2.57 0.26 -1.16 -9.03 0.26 -3.15 0.00 0.05 

TW 2.94 0.25 -1.23 -9.64 0.10 -3.36 0.00 0.05 

TDEWC -0.03 -0.81 0.00 -0.70 0.09 -0.29 0.00 0.00 

VCAI 0.49 0.04 0.15 0.66 0.06 0.18 0.00. -0.01 

CLOV 0.69 -0.07 -0.18 -1. 56 0.10 -0.59 0.00 0.01 

CASE 2: EXERCISE 

PARAMETER QSTOR QEVAP QSENS QSHIV SKIN BF MUSCLE BF THEAD TSKIN 

RM .62 1.51 0.11 0 1.35 1.28 0.01 0.01 

TCAB .42 1.04 -1.62 0 1.04 0.01 0.01 0.04 

TW .53 1.13 -1.77 0 1.11 0.01 0.01 0.04 

TDEWC -. 06 0.00 -0.01 0 0.18 0.01 0.01 0.00 

VCAB -. 03 -0.09 0.14 0 -0.03 0.01 0.00 0.00 

CLOV 0.11 0.14 -0.21 0 0.21 0.01 0.02 0.01 
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table (especially the effects onQSHIV, QEVAP and QSTOR). This analysis allows 

one to observe quite easily which sections of the model are most and least sen­

sitive to a particular parameter. For example,. both the free air velocity (VCAB) 

and clothing resistance (CLOV) are seen to have their greatest influence on 

shivering in the relaxed state and on sensible heat loss in the exercising state. 

Also, it appears that many of the variables studied are more sensitive to wall 

temperature than to air temperature. In general, it appears that RM, TCAB, 

and TWALL exert a more profound influence on the model than do TDEWC, VCAB 

an d CLOV. 

Use of the Performance Criterion 

As mentioned in the previous section, the formulation of a single per­

formance criterion representing overall model behavior is a desirable objective. 

In the case of the thermoregulatory model the variable, QSTOR, representing 

the amount of heat stored in the body relative to reference state, appears to 

satisfy the requirements for a performance criterion outline in Section 4. 0. 

QSTOR is defined in the 41-node model as: 

41 -

QSTOR = CI(T. - TSETi) (5-1)
i=1 1 

where T. = temperature of the ith body node, TSET. is the reference set point 
1 1 

(corresponding to the temperature in a neutral thermal environment) and C. is 

the heat capacity (BTU/ 0 F) of the ith node. When the subject is in a neutral 

environment T.= TSET. and QSTOR = 0. Inasmuch as the individual body
1 1 

segment temperatures are the net result of all the thermal forces acting on the 

body QSTOR is a good indicator of overall model performance. (A similar but 

related criterion might be mean body temperature). QSTOR has already been 

successfully used to define the limits of thermal comfort for manned space flight 

(22). The outside tolerance limits have been set at QSTOR = - 300 BTU. 
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(These limits would be exceeded by slightly more than a one degree change in 

mean body temperature indicating that QSTOR is very sensitive to changes in 

heat balance). 

The sensitivity coefficients for QSTOR relative to several input para­

meters has already been presented in Table V. As can be noted, QSTOR is many 

times more sensitive to the parameters studied near the resting operating point 

than in the exercising state. One interpretation of this observation is that the 

absolute values of the input parameters should be known to a higher degree of 

accuracy during the resting state as opposed to the exercising state to achieve 

the same degree of model accuracy. 

The degree of linearity of QSTOR about the exercise operating point has 

been tested and the results summarized in Table VI. The values in this table 

have been obtained in exactly the same way as for those already described in 

Table V except that now QSTOR is the only variable studied and each parameter 

has been varied over a t 60% range from the operating point. The results 

suggest that the sensitivities are extremely constant over a wide range. 

The parameters studied thus far have been input parameters to the model 

which are usually known to a fairly high degree of accuracy. However, the model 

contains many other parameters, called system parameters, that are properties 

of the controlled or controlling systems and do not vary from run-to-run as-do 

the input parameters. Also, their values are not known with great certainty. 

Examples of these parameters are: the skin-air interface heat transfer coefficients, 

tissue thermal conductivities, basal blood flow rates and thermoregulatory control 

parameters. 

We have investigated the sensitivity coefficients of the seven thermo­

regulatory control parameters with respect to overall model performance as 

measured by QSTOR (see Table VII) to illustrate several points. 



TABLE VI 

VALUES OF THE OVERALL PERFORMANCE SENSITIVITY COEFFICIENT 

FOR ONE-AT-A-TIME PARAMETER CHANGES ABOUT THE NOMINAL 

OPERATING POINT FOR EXERCISE 

PARAMETER
 
INCREASE 0.5% 1% 	 10% 20% 40% 60% 

.M626 .627 .619 .738 .696 .6681'
 

TCAB .345 .346 .416 .420. .276 .169
 

TW .530 .532 .527 . 464] .291 .242
 

TDEWC -. 055 -. 054 -. 058 .063] .059 .019
 

UCAB -. 028 -. 028 -. 026 -. 025 -. 024 -. 023]
 

CLOV .109 .109 .106 .102 .095 .093]
 

UEFF -. 065 -. 065 -. 064 -. 064 -. 064 -. 064
 

PARAMETER
 
DECREASE -0.5% -1% -10% -20% -40% -60%
 

.M630 .630 .640 .663 .721 1.61]
 

TCAB .348 .348 .368 .388] .450 .653
 

TW .534 .535 .559 .579] .632 .744
 

TDEWC -. 051 -. 051 -. 047 -. 043 -. 036] -. 030
 

UCAB -. 026 -. 027 -. 028 -. 029 -. 032 -. 028]
 

CLOV .113 .111 .115 .120 .131 .145]
 

UEFF -. 061 -. 063 -. 063 -. 063 -. 063 -. 063]
 

Sir O  s.	 x..L... , QSTOR =332 ** See Table IV for absolute values ** * See Text for explanation 
QSTOR0 Aq.- of parameters at operating point. -of brackets 
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TABLE VII
 

SENSITIVITY COEFFICIENTS FOR THERMOREGULATORY CONTROL
 

PARAMETERS WITH RESPECT TO OVERALL PERFORMANCE
 

(Vary each parameter separately by 10%) 

SENSITIVITY COEFFICIENT - AQSTOR/STORSYSTEM NORMAL 
PARAMETER VALUE 

Rest Exercise 

CSW 705 .040 .407
 

SSW 63.9 .091 .068
 

CDIL 143 .115 .174
 

SDIL 9.2 .025 .019
 

CCON 2.78 .001 .000
 

SCON 2.78 .000 .000
 

PCHIL 25.7 2.1 .000
 

First, the sensitivities are seen to vary from a highly significant to a negligible 

level. Secondly, the sensitivities can have widely different effects during either 

exercise or rest, stressing the importance of studying these effects at different 

operating points. If experiments were to be performed to measure these para­

meters the level of accuracy required would be approximately proportional to the 

relative values of the sensitivity coefficients. In some cases (i. e., CCON, SCON) 

it would be of little benefit to expend resources except to make the coarsest of 

measurements. Also, if parameter estimation analysis were to be used (instead 

of direct laboratory measurements) to determine a more accurate fit of model 

performance to existing data the parameters that would appear to be the best 

candidates to select for estimation would be CSW, SSW, CDIL, and PCHIL (in 

the resting state). 
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Prediction of QSTOR From a Sensitivity Model 

It has been shown that it is possible to predict the value of a particular 

variable of a complex model from simple algebraic equations that are functions 

of the sensitivity coefficients with the need to perform simulations of the entire 

model on high speed computers (see Equations 2-13 and 3-12). Previously a 

simple example of this technique was illustrated. Here, the attempt is to 

predict values of QSTOR for a wide range of simultaneous parameter variations. 

Let D be a measure of deviance from some operating point, 

QSTOR - QSTOR (5-2)
QSTOR0
 

The relative sensitivity coefficients, S.1 , in Table VI have been determined by 

varying one parameter at a time: 

bD (QSTOR - QSTOR )/QSTOR ° (5-3) 
Wq(qq)/qOSi ­

where qi = the value of any parameter and (o) refers to the value at the operating 

point. Rewriting Equation (3-10) for n parameters and substituting QSTOR for 

y results in a formula for predicting D: 

n
 
'
 DPREDICT =--Si . (5-4) 

where U.1 is defined in Equation (3-9). In this exrm--r, the concern is with 

varying only those parameters listed in Table VI d the use of the value for S.1 

listed in the +1% column. Furthermore, a restriction to making changes in 

the parameters about operating points for Case 2 will be considered only within 

the ranges shown below. 
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TABLE VIII 

VALUES OF PARAMETERS AND SENSITIVITY COEFFICIENTS 

USED FOR PREDICTING CHANGES IN QSTOR 

NOMINAL MIAIMUM MAXIMUM 
PARAMETER VALUE VALUE VALUE 

RM 1165 330 2000 .627 

UEFF 13.5 5 22 .0647 

TCAB 75 55 75 .346 

TW 75 55 75 .532 

TDEWC 55 45 65 -. 0536 

VCAB 30 10 50 -. 028 

CLOV 0.5 0.1 0.9 .109 

-The brackets in Table VI represent the minimum and maximum values correspond­

ing to the above table. A series of 24 runs were simulated with the thermoregula­

tory model. Each run consisted of changing all seven of the parameters simultan­

eously. The actual values for the parameters for a given run were obtained by 

choosing values within the limits given above at random assuming that all values 

have the same probability of being chosen. For each run a value of D was com­

puted (DCOMPUTED) from Equation (5-2) and compared to the value of DPREDIC T 

determined from Equation (5-4). The values of S.1 used in Equation (5-4) are shown 

in Table VIII while values for U. were determined from the random perturbationsI 

for each parameter. It should be emphasized that Equation (5-4) uses the sensi­

tivity coefficients obtained fron simulations varying one parameter at a time by 

1% to predict values for D -in which all parameters are varied over a much wider 

range simultaneously. 

Figure 7 shows the results of this study. The dashed line represents 

perfect agreement between DPREDICT and DCOMPUTE' The origin represents 

the operating point. While the agreement becomes very poor for negative devia­

tions from the operating point it is encouraging to see a reasonable correlation
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of all the runs that can be described by two straight lines intersecting the origin. 

This is in spite of the very wide range of random parameter variations. Thus 

DPREDICT allows a good estimate of D (and therefore QSTOR) between the 

range of -0.2 < D '.- < +0.7. For example, assume that it is desired to 
PREDICT 

estimate the value of QSTOR for the following conditions: RM = 1300 BTU/hr; TCAB 

TCAB = TW = 80 0 F, and all other input parameters identical to those given in Table IV, 

Case 2. Then Equation (5-4) can be solved using only three terms, those describ­

ing the perturbations of RIV, TCAB and TW from the operating point: 

DPRDC =0.62710- 11651+ 0.346 [8075751 +0.532 [80 -75 

= 0. 131 

This value can be used to estimate DCOMPUTE = 0.125 from Figure 7 which 

corresponds to QSTOR = 374 BTU. The value actually obtained during simulation 

of this particular condition is QSTOR = 379. Values of D outside the range men­

tioned above can also be predicted once the correlation between DPREDICT and 

DCOMPUT E has been established (Figure 7), although the errors will be larger. 

The reasons for the deviation from the theoretical line in Figure 7 is probably due 

to two factors: 1) the assumption of constant sensitivity (especially for RM) over 

a range for which it is not really constant (see Table VI), and 2) neglect of higher 

order sensitivity coefficients (see Equation (2-12)). 

It would be possible to prepare a family of curves similar to Figure 7 

for a series of important operating points. Once this has been done, QSTOR could 

be reasonably well. predicted over a wide range in the manner just illustrated. 

Other variables besides QSTOR could be handled in the same way. The relative 

values of each term in Equation (5-4) will also provide a quantitative measure 

of the importance of each parameter. 
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Another important application of sensitivity analysis is to investigate 

the interdependence of parameters. In Figure 8 the metabolic rate and ambient 

temperature have been varied simultaneously over a wide range and QSTOR 

contour lines were drawn. The convergence of contour lines towards the lower 

left shows that QSTOR becomes more sensitive to simultaneous changes of TCAB 

and RM as these parameters decrease in value. Also, there appears to be a 

region of very high sensitivity in the region of 550 Btu/hr and 80 F, a commonly 

encountered environment. Further analysis of these and other parameters would 

be suitable for obtaining human tolerance limits and may reveal minimum or max­

imum points of-sensitivity. An analysis of second-order sensitivity coefficients 

of the type, b y/bqI bq2 would also help to reveal mutual interraction effects of 

parameters. 

These results have been illustrated for the steady-state case. For models 

that are capable of predicting time-dependent behavior such as is shown in Figure 2 

the quantitative relationships of sensitivity coefficients is more obscure than for 

the simpler steady-state relationships shown in Figure 6. Thus, the computation 

of sensitivity coefficients becomes even more relevant for studying transient 

behavior. It is important, however, to define the time limits of interest since 

it has been shown that sensitivity coefficients may be time-dependent. 
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6.0 OTHER APPLICATIONS 

Error and Noise Analysis 

The nossibility of using sensitivity analysis for predicting errors and 

uncertainty in model results based on uncertainty of input data has been sugges­

ted. Approaches to achieve this end have been discussed in References 7, 11, 

13, 14, and 19. They are based on assuming nominal values for parameters and 

some distribution of experimental error for each of these values. For example, 

a predicted variance for a particular variable may be obtained directly from 
a variance (b./q.) 2 

Equation (5-4) by letting U. have a mean value of zero and 

so that the variance of D (representing any variable) is: 

VAR(D) S. 2 (6/q) 2 (6-1) 

i=1 

The limitations of the use of this equation are the same as for those of using 

DPREDICT to estimate D described in the last section; higher order sensitivity 

coefficients may be neglected and the principle of linear superposition must be 

valid in the range studied. When these restrictions are met and numeric values 

are substituted into (6-1), the contribution to the overall uncertainty of each of 

the input uarameters can be immediately identified. Then the sensitivity coefficient 

establishes an analytical connection between component errors and the performance 

of dynamic systems. 

Parameter values are never known with 100% accuracy. If the standard 

deviation around the mean value can be estimated for each parameter it would be 

possible to place statistical confidence limits on a model's behavior (7) as well as 

identifying the experimental limits of accuracy needed in any parameter in order 

to reduce these confidence limits. This becomes especially desirable in large 

scale systems where the large number of parameters promulgate errors through 

the simulation (15) and in certain nonlinear systems where the interactive effects 
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of the parameters might lead to amplification of individual errors. Unfortunately, 

even though the techniques to accomplish this are rather straightforward, there 

are few, if any, examples to point to in the literature of physiological systems. 

A related problem that has application to error and sensitivity analysis 

is the effect of noise on the behavior of the system. Noise can be described as a 

statistical disturbance of a particular variable and is characterized by statistical 

properties such as a mean value, probability distribution, spectral density, etc. 

The variation of model output due to noise can be found by including a distribution 

function with each parameter or variable that exhibits noisy behavior. This prob­

lem becomes extremely relevant in parameter estimation analysis when model 

output is compared to data that has a significant noise level (17, 18). 

Stability Analysis 

It is appropriate to mention stability analysis of dynamic systems because 

of the inverse relationship between sensitivity and stability in negative feedback 

systems. In general sensitivity to disturbing factors can be reduced by an increase 

in feedback gain (in technological systems at least). On the other hand, the onset 

of instability occurs as a consequence of this gain increase. Thus, systems with 

high gain may have low sensitivity to external perturbations, but may also be 

operating on the borderline of instability. Most biological systems are normally 

stable and they do exhibit low sensitivity. Whether or not they are working some­

where near the stability limit via high gain factors is not known, but should be 

studied on a case by case basis (9). An analysis of stability can become an impor­

tant measure of the competence of a model in that if both model and actual system 

can be thrown into instability by the same parametric changes there is reason for 

having greater confidence in the mathematical representation. 

Little woik has been done on stability analysis of complex physiological 

system of a practical nature. Formal techniques for investigating stability in 

linear systems and for simple nonlinear systems have been reported (9, 18, 20, 

21), but for the most part, studying large scale nonlinear models is a trial and 
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error experience. Systems that exhibit oscillatory or periodic behavior in normal 

operation (i. e., eye movement, respiration) can often be made unstable more 

easily than systems that behave monotonically. Inherent instability is dependent 

upon the properties of the system and is normally not a function of the specific 

disturbance. If the system is inherently stable, all transients will ultimately dis­

appear regardless of the disturbance causing them. On the other hand any distur­

bance to an unstable system will initiate oscillations that increase in amplitude 

with time. 

Stability can arise from either inherent features of the real system or 

from structural features of the mathematical model (such as a long integration 

interval). The techniques of sensitivity analysis can reveal both types although 

it is not always possible to distinguish between the two. Tomovic (20, 21) has 

suggested that it may be easier to study the stability of a system by observing 

solutions of the sensitivity equations rather than the system equations themselves. 

At least one of the sensitivity coefficients in an unstable system will show divergent 

characteristics with increases in time. Like sensitivity, stability is a function of 

the operating point so that it becomes necessary to test all possible operating 

points for stability. Thus, a careful, systematic sensitivity analysis may often 

reveal not only points of instability but their causes as well. 

Parameter Estimation 

The object of parameter estimation (or identification) analysis is to deter­

mine the value of one or more parameters in a model. The parameters selected 

for estimation are usually impossible or difficult to measure directly in the real 

system. In practice, the technique involves repetitive adjustment of the parameter 

values until some subjective judgement of goodness of fit between model output and 

corresponding measurements in the system prototype has been satisfied. There is 

a large body of literature on parameter estimation in physiological systems and 

algorithms for optimizing parameters automatically have been the object of consid­

erable attention (e. g. 8). It is the purpose of this section to discuss parameter 

estimation in terms of sensitivity analysis, a relationship that is not often mentioned. 



51 

Some of the error criterion used in parameter estimation have already 

been discussed (see Section 4. 0). They all contain a difference function of the 

form 

e(t) = y(t) - y*(t) (6-2) 

where y is a dependent variable that has been measured in the real system and 

y is the corresponding model variable. The error criterion, E, is a function 

of e, usually e j or e , integrated over a specified time interval, e.g., 

T 

E =f lei dt (6-3) 
0 

Since y is dependent on the system parameters, q, e can be expressed as 

e(t) = e(t, q,, q2 ...... , qm). The criterion for the best fit between data and 

model is achieved when E reaches a minimum value, hopefully zero. This can 

also be expressed as 

b = O, .i 0 ...... bE = 0 (6-4) 
b qIb q2 b qm 

where bE/bqi is nothing more than the sensitivity coefficient of E with respect 

to the parameter qi" Thus, many of the techniques of sensitivity analysis can be 

used to evaluate the error criterion for parameter estimation. 

A more powerful use of sensitivity analysis (but one which has been used 

infrequently) is in determining which paramerers could most accurately be esti­

mated by the curve fitting procedure discussed above. Parameter estimation is 

used most effectively on paranheters exerting a strong influence on a particular 

model variable which can be easily measured in the real system. If sensitivity 

analysis is used prior to parameter estimation it is possible to select those para­

meters with the highest sensitivity coefficients as the best candidates for para­

meter estimation analysis. When the parameter sensitivity of a given error 
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criterion is low, then that parameter value cannot be estimated with certainty 

using that criterion; that parameter should be set at a reasonable constant value 

determined from other sources. Chang (4) has used this procedure to good 

advantage in investigating a complex circulation model. A similar example 

has been given in Section 5. 0. 

Inverse Sensitivity 

If the problem of sensitivity analysis is expressed as determining the 

behavior of a model given all the parameter variations, then the inverse problem 

would be to determine ,(or identify) the parameter variations capable of producing 

a given behavior of the real system. The problem of direct sensitivity can be solved 

satisfactorily if the sensitivity coefficients of the dynamic system are known. The 

method for finding inverse sensitivity is also based on a knowledge of the 

sensitivity coefficients. Unlike direct sensitivity analysis, both parameter esti­

mation and inverse sensitivity analysis requires data measurements from the 

real system. It is the purpose here to merely point out the existence of the 

inverse technique, its relationship to sensitivity analysis and its practical signif­

icance. 

In essense solving the inverse sensitivity problem is not unlike para­

meter estimation analysis. Analytic methods have been worked out for linear 

system (20) while empirical methods must be used for nonlinear systems. With 

inverse sensitivity we start from the known perturbation of the transient state and 

seek the set of parameter perturbations capable of causing them. For example, 

in Equation (2-13), the value of A y and the values of S.1 would be given and it 

would be required to determine Aq. This inverse problem may not have a 

unique solution. Uniqueness is dependent primarily on the number of parameters 

vs. the number of variables measure and the number of points in time at which 

measurements are made. Nevertheless, it would be valuable to know the various 

solutions possible since this would be a great aid in hypothesis testing. If several 
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different parameter perturbations could produce similar model results it 

may be possible to accept the most reasonable based on physiological plausibility 

or alternatively this information could provide the basis for further experimental 

testing. 
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7.0 CONCLUSIONS
 

General Applicability of Sensitivity Analysis 

Having discussed sensitivity analysis at some length, it is appropriate 

to consider its usefulness at various stages of model building and testing. The 

history of a simulation model may be conveniently broken into five stages­

1) thorough analysis of the system under study in order to ascertain its most 

important elements and to formulate their interactions and behavior mechanisms 

in mathematical terms, 2) construction of the mathematical model, transla­

tion to computer language, preliminary assignment of the required data base, 

implementation on the computer and program debugging, 3) model verifi­

cation by ensuring that a simulation model behaves as the experimenter/model­

builder intended for one or two special cases, 4) model validation by comparing 

model and real system responses for several other specific stresses, 5) advanced 

simulation tests of the models for the purposes of parameter estimation, validating 

the model over a wider data base, and making inferences from the model for the 

purposes of pure prediction or to guide laboratory experimental design. With this 

framework in mind it is possible to conclude that sensitivity analysis can find 

equal usefulness in the last three stages of model construction. 

A review of the literature of physiological systems analysis reveals that 

sensitivity analysis has either been neglected entirely or else has been used to 

provide merely supplementary information to the reader well after model valida­

tion (Stage 5). Even in other fields it is only recently that this technique has 

been used as a tool in its own right as a stepping stone to verify and validate 

models (Stages 3 and 4) and to provide information about the relative importance 

of parameters for the purposes of parameter estimation or deciding on the allo­

cation of resources for data collection. In this regard the physiological systems 

analyst can learn much from his counterpart who simulates ecological, behavioral, 

and management systems. In all fairness however, it should be pointed out that 

parameter variation studies of some type are uisually carried out on an informal 
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basis in almost all modeling endeavors even though they usually do not extend to 

formulating, computing, and interpreting sensitivity coefficients which are the 

basis of a systematic sensitivity analysis. 

Miller (13) has presented some compelling arguments that suggest 

sensitivity analysis can be extremely useful quite early in the development 

process. He has shown that identification of the relative importance of para­

meters can be made even in models that are somewhat inaccurate. The possi­

bility of identifying those parameters and the accuracy needed in their measure­

ment would mean that one could predict how much effort would be required in 

order to produce a valid model before massive resources were committed. The 

problem is to decide how much confidence to place in the sensitivity analysis of 

a simulation system before proper validation has taken place. In attempting to 

answer this question Miller (14) has shown that sensitivity analysis on certain 

classes of systems can be used to partially validate models by implicating 

experimentalists in interpreting results. One of the most important advantages 

of sensitivity analysis during these early stages of development is that it does 

not require extensive data collection to determine qualitative model validation. 

Once the model has become validated and its -credibility ascertained the 

techniques of sensitivity analysis can still be used to good advantage. Several 

examples have illustrated the capability of using sensitivity coefficients to form 

simple predictive linear models of complex systems. Some of the more advanced 

procedures of noise analysis, parameter estimation; stability analysis, and inverse 

sensitivity problems have been discussed. In addition there will usually 

always be other areas of the system under study that need strengthening by 

introducing new elements or improved parameter values. A sensitivity analysis 

on a validated model could provide the motivation, direction and support for this 

effort. Finally, when a model is used for making inferences"regarding untested 

situations, it has been shown that sensitivity analysis is useful for predicting 

uncertainty in model behavior based on measurement errorsof input data. 
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Application to Large Scale Physiological Systems 

This report is part of an overall study of physiological models that are 

as advanced in complexity as any in existence; they may be characterized as large 

scale, multivariate, multiparametric, nonlinear, homeostatic, dynamic models. 

As a result any simulation technique (i.e., parameter estimation, sensitivity 

analysis, stability analysis, etc.) is challenged to its theoretical and practical 

limits. 

If the sensitivity of a single parameter on such a system is desired, the 

problem is straightforward. But, if one wishes to observe sensitivity to the simul­

taneous variation of several parameters the problem is more difficult as has been 

shown. In this case the change of a specific parameter must be studied with 

various combinations of the other parameters. That is, one is dealing with a poly­

parametric sensitivity coefficient in a multi-dimensional parametric space. In 

this problem it is essential to scan a much larger parametric space than previously 

and one is obliged to determine interaction effects of parameters in this space 

(e. g., compute higher order sensitivity functions). The techniques we have dis­

cussed to measure all the sensitivity coefficients simultaneously are less practical 

for these systems. 

Large, scale models also suffer from potential large scale errors because 

as more parameters are added to the model the errors in their assigned value 

may be promulgated through a simulation and contribute to uncertainty in the 

models prediction. In these models, especially when they are in an advanced stage 

of development, a combined sensitivity-error analysis becomes highly desirable. 

This study has dwelled at some length on the value of overall performance 

criteria. The formulation of such a function would be more difficult with a large 

scale system, but it often requires a thoughtful and worthwhile re-evaluation of 

many aspects of the model, its goals and general usefulness. 

Certain problems in sensitivity analysis (i. e., error and noise analysis, 

parameter estimation, inverse sensitivity) require measurements from the 

real system, including measurement errors and behavior of specific dependent 

variables. As the data base of the system and its handling capability improves 
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these aspects of sensitivity analysis become more manageable and provide a tool 

with which to integrate the data with model performance. 

Thus, even though the problem is definitely tractable, a complete and 

systematic sensitivity analysis of a large system can take considerable time. 

This requirement can be greatly reduced by carefully selecting a smaller subset 

of parameters and dependent variables which are of interest and making certain 

assumptions regarding linearization about specific operating points. Sensitivity 

analysis itself can help to define these subsets by eliminating insensitive para­

meters in a systematic way from the area of concern. 

Whether or not the gains derived will always be commensurate with the 

time necessary for performing these analyses is difficult to judge. The decision 

is hampered by the fact that application to biological problems has lagged far 

behind theoretical developments. The literature reviewed does not report a single 

case where an extensive sensitivity analysis has been performed on physiological 

systems of the scale concerned with here. Nevertheless, the techniques dis­

cussed in this report have revealed that sensitivity analysis can be a useful tool 

in the hands of a competent systems analyst at nearly every stage of model devel­

opment. Thus, the need to begin applying some of the methods described in this 

report is clearly indicated. 
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APPENDIX 

OBTAINING ALL THE SENSITIVITY FUNCTIONS 
SIMULTANEOUSLY FROM A SINGLE MODEL 

The method described here called the "sensitivity points" method, is 

suitable primarily for linear systems of a certain type as described in References 

2, 10, 20, and 21. Its applicability to large scale nonlinear models is uncertain 

and it is included here for completeness. 

Consider the simple linear negative feedback system shown in Figure A-i 

with input x, output y, gain K1 in the forward path and gain K2 in the feedback 

loop. 

K 
u 

Figure A-I 

The following relationships are easily formulated: 

y =K z (A-i) 

u=K2 y (A-2) 

z = x-u (A-3) 

y = K (x - K2 y) (A-4) 

Open Loop Gain = u/z = K1 K2 (A-5) 

Closed Loop Gain = y/z = KI/(1 + K1 K2 ) (A-6) 
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The sensitivity functions may be obtained by solving (A-6) for y and seeking 

the partial derivatives: 

bY [1 1 1 
S b /K I (A-7) 

S by. j -1K (A-8)
2 bK2/K2' i+ KK 

The sensitivity coefficients can also be generated from an analog sensitivity 

model equivalent to the original model using the output from the original model 

as input: 

xS 

S2 

Figure A-2 

It can be easily shown that w and v in Figure A-2 are identical to the sensitivity 

coefficients S and S2 ' Noting the correspondence between x. and y, z and 

w, y and r and u and v we obtain from Equations (A-i) to (A-5): 

w=y-v =y-K 1 K 2 w = IK 2 y= 1 (A-9) 

and 
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v =KIK~[I 1-j21y=(-ov K1 (A-1)w'IK2 

Thus, the sensitivity functions can be obtained at points w and v (called 

sensitivity points by solving the original and sensitivity models simultaneously 

as indicated in Figure A-2. In like manner the output of the sensitivity model 

can be used as input into a third identical model to obtain second-order sensitivity 

coefficients if desired. 

The transfer functions K1 and K2 can represent Laplace operators describ­

ing an nth order linear system. Tomovic (20) has shown that the sensitivity 

functions for an nth order system can be generated in a similar fashion. For 

example, Figure A-3 represents the analog solution to a third-order system: 

dxdx .dx~ ytd-3- + d--X + a1 -- + a =y(t)
 

dt 3 dt 2 1a dt 0
 

The model on the left of Figure A-3 represents the original system whose solution 

is x while the identically structured model on the right is the sensitivity model. 

So I S1 I and S2 are the sensitivity points, where. 

Si 6x(t)'i btn a. 
1 

The following general conclusions can be drawn from this example: 

a) If the response x(t) of the system is introduced at the 

input of an identical system, then points S. (=1,2,... ., m) will exist on the sen­

sitivity model block diagram. 

b) All the sensitivity coefficients can therefore be determined by 

solving the sensitivity model simultaneously with the system model. 



System Model Sensitivity Model 

a 2 2 

So 

d3 X d2 X + a dX + a0 Y(t) 

dt dt 

Figure A-3: Block Diagram for Simultaneous Measurement of
 
the Sensitivity Coefficients
 


