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ON ISOCHRONQUS DERIVATIVES OF THE FIRST AND
SECOND ORDER IN SPACE DYNAMICS TASKS

B. Ts. Bakhshiyan and A. A. Sukhanov

INTRODUCTION

In many problems of space dynamics, whose solution requires a linear ap-
proximation, it is necessary to calculate the isochronous derivatives of the first
order from the phase coordinates using their values at the initial moment of time,
and also using the values of certain constants in the right sides of the equations
of motion (such as the gravitational parameter, equatbrial radius, etc.). These
derivatives are required when determining the trajectory of a spacecraft, for de-
termining the reliability of predicting and the magnitude of the correcting pulse,
for analyzing the perturbed motion and determining the errornof numerical methods

of celestial mechanics [1-9].

The second isochronous derivatives may be necessary for a more effective
solution of these problems, and also when considering the influence of nonlinearity.
For example, they are necessary for studying the inflﬁence of nonlihearity upon the
réliability of the least square method [10] and when analyzing the perturbed motion

in the second approximation [11].

The matrix of the first isochronous derivatives satisfies a system of vari-
ational equations and is related in a well-known way with the fundamental solution
of the conjugate system [12], which in its turn plays an important role when opti-

mizing space maneuvers and flight trajectories [13].

In these problems, the presence of simple finite relationships are of great
importance for isochronous derivatives and the solution of this conjugate system in

the two-body problem. This is due to the fact that for slightly%perturbed motion
in several cases these relationships may be used to solve the prbblem with the

necessary accuracy [2-8], and when it is necessary to consider the perturbations

*
Numbers in margin refer to pagination of foreign text.



they make it possible to greatly increase.the integration step of the variational
system of equations (or the conjugate system) by using the method of Encke and
Peano - Beken14, 15]. It is desirable that these finite relationships have the

following properties:

a) convenience and simplicity for use on a computer, and great computa-

tional speed;

b) universality, i.e., the lack of singularities for parabolic and circu-

lar orbits, and also in the case of rectilinear motion.

+ The formulas for isochronous derivatives of the first and second order,

_given in [1,2,4,8] and [11] do not satisfy condition b). In calculations using

them for trajectories which are close to parabolic or.rectilinear, large compu-
tational errors arise. More compleX'fOrmuias for the derivatives of first order,
obtained in [3, 16] by differentiation of the universal solution of the two-body

problem are  suitable for any Kepler motion, but they do not yield relationships

~ for the second derivatives which can be readily used on computers or the explicit

expressions for the fundamental solution of the conjugate system,

To calculate the isochronous derivatives, this article uses the relation-
ship between the derivatives of the first order and the fundamental solution of
the conjugate system (A, 1 and 2), 1In A.3 relationships are obtained for deriva-
tives of the second order. In A.4 and 5 using the methods given in ‘A. 1-3, formu-
las are obtained for calculating the first and second isochronous ‘derivatives:of
the two-body problem which are suitable for any type of orbits. Thus, for orbits
which differ from parabolic orbits, the relationships obtained may be written in
a form which is apparently the simpleét for use on a computer as compared with well-
known methods, A.6 gives formulas for calculating'thé first and second derivatives

using the gravitational parameter of the two-body problem.
A listing of all the formulas obtained is given in A.7.

We should also note that the integrals calculated in the Appendix are of

independent wvalue,

The authors plan to publish a preprint in the near future, which will ob-



tain the formulas given in this study in the form of a Fortran program.

1. MATRICES OF FIRST AND SECOND DERIVATIVES

Let us examine a dynamic system described By the vector differential

equation
fZ: ?(:r t) 1.1

with the initial condltions x(‘t ) [‘o Here x (xi )
. ’400,
*)

. A .
is the,\__n—dlmen31onal vector-column .,
]

The matrix of the isochronous derivatives: @ Cb(t to)of the phase

coordinates may be written in the following form, using thelr 1n1t1a1 values

B ”—i"— dxgl
t,

1‘-1 .

/l'

As is known [1], the matrlx @(

('*'Q)

)satlsfles a-variational system of equa-

tions

P = FCP Cb(to, t ) I, .3
whereF a%x ,. :- -- unit matrix.

K
The matrices of the secoqq derlvatlves l{/ (t t) K I, .“,

may be determined as follows:

v ()

)Below all the wvectors will be assumed to be yvectors—~colums; the sign "T"
designates transposition.

§1.4)




The study [9] gives the differential equations which are satisfied by the matrix

2. METHOD OF OBTAINING THE FIRST DERIVATIVES IN
SOLVING THE CONJUGATE SYSTEM

g

Let us look for the matrix 1@ as the solution of the system of equations

A D = Ro " 2.1

where ﬂ :' A(t) is a certa:Ln nondegenerate matrix of the n th order;
Ho:‘A (‘to) . We shall use Ai;Aofi to-designate the rows of the matrix
lA A : . Differentiating (2.1) with respeét to time, taki_né into account (1.3),
we find that | At satisfies the conjugate variational system of equations
A== A F H (f );7 RAei, t=4,.,n. @2
Thus, the determination of the matrix 5(1)_ is reduced to finding the fundamental

solution ; A('t) of the conjugate varlatlonal system of equations,

" Let us assume that ![y] independent first integrals of the system (1,1) are

known:

Differentiating (2.3) with respect to x at t .= const, we obtain

Vi (DC v (Io> ;

L

axo 00X 'Y
It is thus apparent that the gradlents of the flrst integrals of (1.1)
Av av __‘ ‘ (2.5)

o 3%
o

are the | [YL row of the matrix A. In order to obtain the.remaining:f} =Tl rows,

it is necessary to findn,.. msolutions of the system (2.2), which are independent



of each other and with the solutions (2.5). For the case when the system (1.1)
is reduced to the Hamiltonian form and n:--= I of its independent first integrals /8
are known, the last row of the matrix A may be found using the following theorem

[12] (exclusion method).

e .
Charnyy method. Let us assume RL) l = 1,..., n 1 -— gradients (2.5)

of the 1ndependent first integrals of the system (1.1) is reduced to the Hamiltonian

form. Then the n-dimensional row

[r H tdt ]’ J
o1

(Here f U l: 1 O J is the matrix of nth order) is the solution of the
1 )

system (2. 2), if the n-dimensional vector (r and the function A(t) satisfy the

following relationships:

![ALX ::CL ) 2.7)
)” F X‘ (2.8)
where C are the arb1trary constants. Thus_, the matrix A, whose row is
A l-— , éee ,ﬂ‘ , is degenerate then and Aonly then, when the following

condltlon is satlsfled L .
L.
where i'A‘._ are the expan31on coeff1c1ents of the Hamiltonian function gradient

I, ey n I.

e

with respect to the rows A. 1

~

3. OBTAINING THE SECOND DERIVATIVES

Let us find the expressions for the matrices (1.4) when the fundamental

solution of the system (2.2) is known in the form



Let us write (2.1) using the elements of the corresponding matrices:

Z AZP cpp; Ao& Z i= .‘., . ooy n

Differentiating this with respect to on s We obtain

e
P,Z?:.:;(D ¢7J +EPJ)¢P‘ +Z AQP "4} ) DO‘J + Eca.J 7 (3 1)

" where D E e = E e. are elements of the matrix
P" 7 PJ 0"} ) ' '

S S A SN R

Let us use }akﬂ to designate the elements of the matrix \A . Multlplylng

<, .
[

(3.1) by \aKe "> and summing the relatlonshlp obtained with respect to igi , with

allowance for the fact that

Z aKQ Ae

’Pi

and changing to matrix form, we find the formulas for the second derivatives (1.4):

— ST S e —

\I/K Zaxe[De*‘ Ee T(E +D CP] K i

We should note that 1f each of the matrlces ‘D EE may. be substituted in (3.2)

for certaln\ e in the form of two components, so that the'second'components

after substitution in (3.3) give an 1dent1cal zero, then we shall use \D ’E
in this case to designate the first components. This situation occurs for the

two~body problem (see A.5).

4. TFIRST DERIVATIVES FOR THE TWO-BODY PROBLEM

In this section, formulas are obtained for the first derivatives which do



not have singulatities for any types of Kepler orbits.

For the two-body problem, the vectors sjax;ﬂy and the matrix F have
the form R o
'%5Ei== E‘,hﬁPiF; ;} : (4.1)
where BEP e L IR
T '/u; et L.
AN G—_': (4.2)
7‘3' y o

where 7? -lf are the vectors of the coordlnates and the ve1001t1es of the

point, 4 .-—"ZI = Ilj-l )ﬂj' .—- gravitational parameter of the
attracting center. We flrst obtaln the first five rows of matrix A, which are in-
dependent of each other for any Kepler motion. We use the first integrals of the

two-body problem for this:

e (4.3)

m’l_

v
1
(

AM Qf‘

(4.4)

—+;'i}:ﬁ;‘ :

: Il

Let us assume Fsi ;VISi“ are certain constant three-dimensional vectors. Multi-
plying each of the equations (4.3) and (4.4) in a scalar manner by F)i" F)z

and dlfferentlatlng the relations obtained and (4,5) with respect to 72 ,”lf,,

according to (2.5), we find the first five rows of the matrix A

At =[ ..';T y " UL

where 7
W= Pix T, WyzUxpi, 1=1,2:  wn
For all types of orbits, except for rectilinear orbits, the rows {;}i&;:;]}g.

are independent for any non-colinear vectors "F)il;lﬁj£' . In the case of



rectilinear orbits and orbits clese to them, for the linear independence of these
rows, it is sufficient,’for example, that the vectors 7,p‘, 52 be
linearly independent of each other (this may readily be establisﬁed by substituting

-’17-(17 in (4.6), where'ﬁ-"a‘ is an arbitrary factor )., Therefore, for the uni-

D © —

versality of formulas (4.6), it is advantageous' to select- _A2 from thlS con-

dition in every case. As p1 y p2 , we may select, for example, two unit vectors

of the system of coordinates correspondl_ng to the components of the wvector 7

[N

which are the smallest in terms of modulus.

In order'to find the row "Aﬁ ', we may use the Charnyy theorem, We shall
search for a vector X‘ which satisfies (2,7) and (2,8) in the form

:gf}i?o(i.iz 4"'f31 1).:w
L odaT+ P2V

Substituting (4.8) into (2.8), with allowance for (1.1), (4.1) and combining the

(4.8)

T e

coefficients atﬁi‘_-;v; U , we obtain

(dp- o(z)'z+(o(1+ﬁl ﬁa )U'°"0 i
(o( ﬁ\) 2o<\) 3f31\) +)\))'Z+(o(2+ﬁ +)9i\))v-0__;

s the vectors \'FZ“ Uii are non-colinear, then it follows ‘from (4.9) that
" , '

(4.9

0(2_ + e,z +ﬁ1\) 0" R ,

|
For rectillnear motion, we shall find the vector {J‘ and the function ,A from
(4.8) and (4.10). '

Solving system (4.10), we find

(4.11)



a(z + pl\) =ch1} iy w1
A 20*74—38‘ +J81, (4.14)

where !a 81 are arbitrary constants. We may readily determine that the co-
efficients- dz and ﬁi are 1nc1uded in (2.6) and (2.7) only in the form of the
sum (4.13). This makes it possible to set in (4.8)

r,( O'.," : (4.15)

Thus, the wvector

EJ— ,» found using the formulas (4.8), (4.11) - (4.15), satisfies

the condition (2.8) of the Charnyy theorem. It may be readily seem that this vec-

tor will also satlsfy the condition (2.7) if the constants Cl = C5 are related

with the constants: a 8 - by the formulas

(4.16)

Since the row A5 is a _gradient of the Hamiltonian function (i.e., in (2. 9).

w . '

"Ai = 0 at l# 5 25. — 2 ), then (2.9) for the nondegenerate nature of
the matrix A in the case con31dered may be reduced to the inequality \Cs * O

We set

T=6Y, 1)

‘where \ "EJ_ is an arbltrary constant. Accordlng to (4.16), for the nondegenerate /13
\ —

Vo

nature of the matrix A, the’ constants ,\EL 82 must satisfy the condition
r “

gh.}.gzw -_;éo (w lw‘) (4.18)

(this condition is satisfied for any Kepler motion, since h' and W simultane-

{
ously vanish): !



Substituting the values of vigﬁi';fzh' found from (4.8), (4.11) - (4.15),

(4.17) into (2.6), we find the sixth row of the matrix A

fllxﬁ ;:;ffiliﬁ\é_kqf.giz Z\§f5’? é?;j:i |

(4.19)
where {~ .

. (4.20)

(4.21)

Herelwéndée thé'notétiéﬁ
. .7*U R
i 55 = fuj'T'“z (: ./ll "

\x S W S 'ZJL-— Z(JC t) ]”S Tdt (4.24)

It is shown in the Appendlx that the integral in (4. 19) is calculated 1n the form

(4,22)

(4.23)

of a converglng serles

\.
R X'zdt Y

AT A (4.28)

(4.29)

Q_

~

il
{} ";Jr
s

N
Il
!
2R
‘;fq;f ’
-y

(4,30)

10
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According to’the Appendix, at d # O (the motion differs from parabolic motion),
the integral (4.25) may be c'alcﬁlated ’using the final formula

R .f_(t t ) PT 7 7 + 'Zo ¥ (4.31)
- £2CXlﬁ7: ;;ﬁ;,,{ﬂ‘
where p C/ju is the focal parameter.

Let us consider the problem of selecting the constants 8, ) Ez in

- (4.19). 7Tn the general case, for nondegenerate conditions on any‘orbitsvef::the '

matrix A, consisting of the rows (4.6), (4.19), according to (4.18), we could take
€1=Slgn(h>, 82_: 1 . However, for a more effective calculation of the
row A6 it is advantageous to select the constants from the following conditions:

at lh[ > Eﬂj/?o _ ( E > O - the given small quantlty) we assume
E,—i E’\-O , and at Ih’<E/U/7 > deel, if
4, E,= 1 . In the

the- motlon is parabollc or close to it, we set E }f—' O
first case of the row A6’ we use the simple formula (4 20) to perform the calcula-

tion; in the second case -- we use’ formula (4.21). We should note that with this

selection of the constants : E.[-.:.’-; e 2 formula (4.31) cannot be used. The

series is calculated only for values of d which are small in terms of the modulus,

which 1eads to their rapid convergence.

5. SECOND DERIVATIVES FOR THE TWO-BODY PROBLEM

In order to calculate the second isochronous derivatives for known matrices ’
A and @ 5 accordlng to (3.3) it is sufficient to find the matrices DE EE
,E :.._i R '6 , determined from (3.2). We introduce the notation
oy poee K : . . - e

I
t

(5.1)

11



Pa-— TPy + B T :
D1fferent1at1ng the rows (4 6) with respect to ‘7 U we obtaln -- with
allowance for the notation in (4 2) and (5 l) - the flrst f1ve matrlces D2

fonen

-

o::{jo , according to (3.2),

B 2 :

IS N X tT
.
\'i -

Since the rows (4.6) do not depend on *

E o 8'- i,...,

* When f1nd1ng the matrices D6 EG , We shall assume that the selection of the

constants Ei ) Ez- in (4.19) is performed using the algorithm used in A.4.

leferentlatlng (4 20), we obtaln for orblts dlfferent from parabollc Ol’bltS

\(Ihl> ep/2e) ¢ D

EG ::."-' T
Now let us flnd the matrlces ' EG. for parabolic orbits and orbits close to
them ‘hl < €ju/7) . We note_that, if the inequality C -’# o
C5 is determlned from (4 16) at 8 O —— is satisfied for ‘the glven values of

the initial phase coordlnates 70 , -_-Ué‘ , then for a fixed constant ‘a , it is
satisfied also in a certain vicinity of these values (in v1ew of the continuity
of the function (4.16) with respect to 70 , Uo' . Thereftaée,vwhen finding
the derivatives of (4.21), we shall assume that the constant *\a does not depend

\?bl ’,—U-’o , although it equals numerically (4,17). Let us write the row
(4.21), using (4.17) - (4.24) in the form

B TV RTHF )T, (UT-2GRT], o0

12



. 'E)ﬁélii

where

designates the complete derivative, i.e., taking into account the dependence

I(Io) ). As is shown in the Appendix, the integral R may be represented

in the form

9 FQ ‘ ({) \‘)o , (5.5)

where

\Qh W(a-— > Cva, e

i ’ (5.8)
(This equation may be written as R (Q Differentiating (4.5), (5.

——

with respect to \r'z U and substituting in (5 8), we obtain

 prAssh(t-t)g+T, e

where A6 is the row (4.19), in which e -;_-_.C2 e 2

,foi; (5.10)

__ " (5 +v2)('l U)7+(3/u'z-2'zzuz+3ﬂ u}%
\""’2-"’ [( ()T 27 TUT i, e

'Q:‘.S\tﬁ dt . We first find WT(a i-‘o.)'c then (where %“c"
o o .

6)

13



According to (2.1),

AG @ - 'Anos =O . (5.12)

It may be seen from (5.7) that at h = 0 the following equation must be satisfied

@ -S 0 __O (5,13)

— T'
where ‘— (B);, 0 , L.e., accordlng to A.2, the row ' O p; in this
case must sat1sfy the conjugate variational system of equations (2, 2) Substitut-

ing UZ 2ju/7 in (5.11) (accordlng to 4, 5), we obtain o
-7 ﬂ.(-zfu)'? (/u7 3(7"U)2)U
5[ (3/u'z+('z*v))’z 272(1721)1)'

Subst1tut1ng (5. 14) in equation (2.2), where the matrix F is determined from (4.1),

(5.14)

we see that .Slp actually satisfies the conJugate variational system of equatlons

and, consequently, equation (5.13) is satisfied. It may be readily seen that /18

‘5 'SP + h (5.15)
We find from (5.7), (5.9), (5.10), (5.12), (5.13), (5.15)
IR (5.16)
2 fq/'f(,a R
where BT
P —
€ :E(v‘f’“’t)_ 5.17)

<% ( 70, %t ) A ;_'?4-

‘D1fferent1at1ng (5. 4) with respect to 7 U 70, UO and assuming that the

[ i

vector x'qj is constant, in agreement w1th the note made before the relationship

Dz- Dz £ + D; 2 7 (5.18)

(5.4), we obtain

14



4
1

ravitational parameter& l, the follow1ng formulas hold
8 |

where, with allowance for the notatlon in (4 2), (4 22) (4 24), (5 17),

° sI— = 19
25.20)

(5.21)

We should note that tne matr1cesﬁ[)6 "t;Ezg equal the derivative (3.2) within an

accuracy of terms which, accord1ng to (5.12), (5.13), may be disregarded in (3.3)
(see A.3).

6. DERIVATIVES WITH RESPECT TO THE GRAVITATIONAL
PARAMETER IN' THE TWO-BODY PROBLEM

In the two—body problem for isochronous derlvatlves of the flrst order of

. \—"' r T V
‘the vector of. the phase coordinates - FZ Z) "with respect to the

B

81‘ l (6.1)
- E%ﬂl )ﬂl (:]: (i) :t: ) I

iwhere|(I) is the matrix of the derivatives (1.2).

Relationship (6.1) is a result of the integrals obtained in [7] for vari-

ational systems of equations. The study [5] found these relationships by integra-

tion of the equations for the desired derivatives.

—— |'
Differentiating (6.1) with respect to QCO and jl‘, we obtain the formu-
las for the derivatives of second order . |

o
B/u 6 Io

(6.2)

15



9 6.3
2/3(‘ ) (6.3)

where are the matrices of the derivatives (.14)

7. SUMMARY OF FORMULAS

Let us calculate the formulas which make it possible to solve the conjugate

variational system of.-equations and to calculate the isochronous derivatives of the

first and second order for the two-body problem.

The matrix of the isochronous derivatives of the first order (1.2) may be

found from the system of linear algebraic equatioﬁs (2.1), where

are the matrices of 6th order. The first 5 rows of the matrix A, with allowance

for the notation in (4. 2), (4 3), (4.7), are determined from (4.6). As the three-
) dimensional vecf;ofs; fp.l ’ pl in (4.6) and (4.7), we may select -two unit vectors
of the system of coordinates correspondl:ng to the components of the vector 'Z'
which -are the emallest in terms of modulus. | The 6th row of the matrix at

‘lh’ > EJU/'ZO (motlon is different from parabolic motion) is determined from

(4 20), and at Ihl < Eju/7 (parabollc motion and motion close to it) -- from

‘ '
(4.21). Here’ h is the energy integral; E > O -~ ‘a given small quantity. The
quantities in (4.21) are determined from (4.22) - (4.30).

The matrlces of the isochronous derlvatlves of second order (1.4) for the

known matrlcesA @are found from (3.3), where a 2 are elements of the matrix
'A_ . Forie , .o .,é , the matrices t]) +in (3 '3), with allowance for the

notation in (4.3), (5. l), are determined from (5 2), and E E: O

lhl > Efu/'zo s where E > O , the same holds for the first derivatives, and
the matrix D° is determined from (5.4), E ._..O , and at lh' 8/1,//70

16



6 Es
the matrices D 5o & —- with allowance for (4.2), (4.4), (4.22) - (4.24),
(5.18) -- are determined from (5.19) - (5.22). The integral in (4.24), deter-
mined from (4.25) - (4.30), can be assumed to be already calculated when the first

derivatives are found.

The matrices Dig"l-.,ﬁ Eg , - _z“: 1 » 'T " ’ 6 in (3.3) represent the

v:—ii'ues of De ,: E e ,. at

7=, =T, t=t. . (7.2)

Thus, for.-'the_ca_'se‘."h_l'.-fé ;E]u/.'?;(parabolic motion and motion close to it), the

sum Dg"' Eo' in (3.3) equals the matrix (5.20) under the condition (7.1), /21

since the sum of the matrices (5.21) and (5.22) equals zero under this condition.

The .first and second isochronous derivatives of ;z-’
spect to the gravitational parameter !Ju for k ‘ matrices *l@ \If Kooy i -
P > & € param ;J% for known matri r";a-:‘:,":‘f - ’:;.. K.._ 1y
«e., 6 are determined from (6.1) - (6.3). : R

: ﬁ with re-
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APPENDIX

To calculate the integrals

'to
S 'Z dt 4.2)

we change-to a new variable —- the control time T, determined from the differen-

(A.1)

tial equation [4]

g? ‘/— ‘[’(t | .3)

We may readily obtain formulas (4 29), (4.30) from (4. 22) and (A.3) for the first

and second derivatives of 'Z w1th respect to\‘f.‘;: We flnd ‘the following from
(4.30) ne 1 f
' (Qn i) -
7 = ( 0() ‘AZ
(2n) ___ )n 1 .
where ‘z (K) d 7".;"5 K>:f

dqj K2
J/? 5

(4.27). Substltutlng
the 1ntegrals from both sides of the equation ottained, we find (4.28) for v T

(A.4)

from (A.3) in (4.30) and taking

From (A.1) and (A.3), we have

(c-)__: ]/%f S z o{‘l' o a.5)

Expanding the value R (0) - of t_he, function R(T) in Taylor series.

st the point ;7 , we obtain

18

—~ 1is determined by the formula



. .y .08 - py(n=1) L h
?W@@ﬁﬁzﬂ%%wfy;»

Ep(rTe 7T+7?j77+6) -

where

(2n) ;iu,, 2~ 2n 1,i? .
6_‘,2[(7) T (72)‘"’)]22,, -

2n+1.

We find the derlvatlves in (A 7) from (4 30) and (A 4)

(A.8)

T B ] o

Substituting (A.8) and (A.9) in the series (A.7), we obtain the formula (4,26)

i \_.'-
for \65 . We may show that the series (4.26) converges absolutely for all ﬁl: .

For the case when ci'#E() (the motion differs from parabolic motion)
we calculate the integral (A 1) in final form. We should_p@te that when the equa-

tions (4.23) and (4.25) are used for the focal parameter}7F)ithe following rela-
tionship holds: o

-t ’zv--(“zu)2 P L
Pew /w,i“27d7‘7‘ -

From (4. 24)

— - e »,._.‘4. 'I -

j’v'ldfr 7 77 +otj"z"-dT S"ZC{‘C‘ o

and from (A 3)

19



af'rrz CILT __: ij‘u‘ ( 'to_.to) . | (A.12)

Taking the integral from both sides of the equation (A.10) considering A.11) and
(A.12), according to (A.5), we obtain the final expression (4.31) for the integral

R,

We now find the integral (A.2), From (A.2) and (A.3), we have

Reflvtdc. s
-~ o - .

‘%u»—-

——

From L7 and A 3 bta n
VerT'L[; ( ) we obtai

Q\
ﬁJ

(A.14)

fJV

Using (4.4), (4.3), (4.29), (A. 14), we ﬁa§ obtain the formula

Cl_
..:]

=T =T U =AU
ST

Expre351ng\ fz from (4 4), accordlng to (A 3), (A 12), we have

‘71'
(A.16)

-l
Nl
'-6;1?

R A AR W‘f

BN B 0 e
{ L T e e g

Taking the integral of both sides of the equation (A.1l5), con51der1ng (A 12),‘

 (A.13), . QA 16), (A. 17), we obtaln .

2d./ﬂ@ —F—j(t t)+J_(7 ’Z)xC 774_770. . (A.18)

20
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=

N N1
Substituting (4.3) into (A.18) (we must substitute C—' 70-)( Uo ) ’

in the product 7 x C ).(4.27) and (4,29), we reduce (A.18) to the form (5.6),
o .-
(5.7).

21
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