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ON ISOCHRONOUS DERIVATIVES OF THE FIRST AND

SECOND ORDER IN SPACE DYNAMICS TASKS

B. Ts. Bakhshiyan and A. A. Sukhanov

INTRODUCTION /3*

In many problems of space dynamics, whose solution requires a linear ap-

proximation, it is necessary to calculate the isochronous derivatives of the first

order from the phase coordinates using their values at the initial moment of time,

and also using the values of certain constants in the right sides of the equations

of motion (such as the gravitational parameter, equatorial radius, etc.). These

derivatives are required when determining the trajectory of a spacecraft, for de-

termining the reliability of predicting and the magnitude of the correcting pulse,

for analyzing the perturbed motion and determining the errornof numerical methods

of celestial mechanics [1-9].

The second isochronous derivatives may be necessary for a more effective

solution of these problems, and also when considering the influence of nonlinearity.

For example, they are necessary for studying the influence of nonlinearity upon the

reliability of the least square method [10] and when analyzing the perturbed motion

in the second approximation [11].

The matrix of the first isochronous derivatives satisfies a system of vari-

ational equations and is related in a well-known way with the fundamental solution

of the conjugate system [12], which in its turn plays an important role when opti- /4

mizing space maneuvers and flight trajectories [13],

In these problems, the presence of simple finite relationships are of great

importance for isochronous derivatives and the solution of this conjugate system in

the two-body problem. This is due to the fact that for slightly! perturbed motion

in several cases these relationships may be used to solve the problem with the

necessary accuracy [2-8], and when it is necessary to consider the perturbations

*
Numbers in margin refer to pagination of foreign text,



they make it possible to greatly increase ,the integration step of the variational

system of equations (or the conjugate system) by using the method of Encke and

Peano - Bekei[14) 15], It ls desirable that these finite relationships have the

following properties:

a) convenience and simplicity for use on a computer, and great computa-

tional speed;

b) universality, i.e., the lack of singularities for parabolic and circu-

lar orbits, and also in the case of rectilinear motion.

The formulas for isochronous derivatives of the first and second order,

given in 11,2,4,8] and [11] do not satisfy condition b) , In calculations using

them for trajectories which are close to parabolic or ̂.rectilinear, large compu-

tational errors arise. More complex formulas for the derivatives of first order,

obtained in [3, 16] by differentiation of the universal solution of the two-body

problem are suitable for any Kepler motion, but they do not yield relationships

for the second derivatives which can be readily used on computers or the explicit

expressions for the fundamental solution of the conjugate system.

To calculate the isochronous derivatives, this article uses the relation-

ship between the derivatives of the first order and the fundamental solution of /5

the conjugate system (A, 1 and 2), In A.3 relationships are obtained for deriva-

tives of the second order. In A,4 and 5 using the methods given in A, 1-3, formu-

las are obtained for calculating the first and second isochronous derivatives"of

the two-body problem which are suitable for any type of orbits. Thus, for orbits

which differ from parabolic orbits, the relationships obtained may be written in

a form which is apparently the simplest for use on, a computer as compared with well-

known methods, A.6 gives formulas for calculating the first and second derivatives

using the gravitational parameter of the two-body problem.

A listing of all the formulas obtained is given in A,7,

We should also note that the integrals calculated' in the Appendix are of

independent value.

The authors plan to publish a preprint in the near future, which will ob-



tain the formulas given in this study in the form of a Fortran program.

1. ' MATRICES OF FIRST AND SECOND DERIVATIVES /6

Let us examine a dynamic system described by the vector differential

equation

U.l)

with the initial conditions ̂ JT/̂  ) — 3C:* Here T̂̂ f'Y j£ V"

i *)
is the- fl -dimensional vector-column

The matrix of the isochronous derivativesfCp ̂  C£<1 :£ Ln/of the phase

coordinates may be written in the following form, using their initial values

As is known II], the matrix|.Ĵ )/J. 4- Vsatisfies a variational system of equa-

tions

•••= Q-f/x} '•y •where)/— ~ CJ-^/Jiv^. 1 — unit matrix.

\W **&*(&&':K*'i, •'•'••
\ •*• ' • • •• •:' ' ' • • ' • . . .

! . r

The matrices of the second derivatives)

may be determined as follows:

*) f rBelow all the vectors will be assumed to be vectors-columns; the sign nfp«,
designates transposition.



The study [9] gives the differential equations which are satisfied by the matrix

2. METHOD OF OBTAINING THE FIRST DERIVATIVES IN /7

SOLVING THE CONJUGATE SYSTEM

Let us look for the matrix S() as the solution of the system of equations

A<£>> Ao , (2.D
where . ri — ri(T) is a certain nondegenerate matrix of the fj.,-th order;

f}n ~ r\[to) •
 We snall use f\*. r\Q? I to designate the rows of the matrix

\ /\0 • Differentiating C.2.1) with respect to time, taking into account (1.3),

we find that \f-\: satisfies the conjugate variational system of equations

Thus, the determination of the matrix >(J) is reduced to finding the fundamental

solution ,rnrD/ of the conjugate variational system of equations,

Let us assume that !|ŷ  independent first integrals of the system Cl.l) are

known;

c (X ) = W)̂ .̂ 4 (2.3)

Differentiating (2.3) with respect to f̂ Y* at t = const, we obtain
'sA»

9'. . .• ̂^--...^.^..^

It is thus apparent that the gradients of the first integrals of (1.1)

_ . .
n . -.- }Lf r---f'-:---̂ -:r:C-nn-v; ; '" ::" : :>-"<:/";?: •dx

'6 '""'/ . ' - • •
are the \ HT row of the matrix A. In order to obtain the remaining \\\ ~ 171 rows,

it is necessary to findQ — jryjsolutions of the system (2.2), which are independent



of each other and with the solutions (2.5). For the case when the system (1.1)

is reduced to the Hamiltonian form and n-̂ -. I of its independent first integrals /8

are known, the last row of the matrix A may be found using the following theorem

[12] (exclusion method).

Charnyy method. Let us assume ••»£••>•". t ~~ 1 7. • t j fi - j[ — gradients (2.5)

of the independent first integrals of the system (1.1) is reduced to the Hamiltonian

form. Then the n-dimensional row

(Here

(2.6)
\ ̂ / Vfl ̂ 'I ' ̂ ^

1-0:., -•-' '"'- '- ' ' ''•"•'• '

is the matrix of nth order) is the solution of the-I 01
system (2.2), if the n-dimensional vector 'V" and the function /V(TJ satisfy the

following relationships:

' ' "'' '•"•-"'"' ^ (2.7)

~: (2.8)

where C. are the arbitrary constants. Thus, the matrix A, whose row is

- * ' ' '
; — !>•• •• j ' is degenerate then and only then, when the following

condition is satisfied

\-"-rwhere I yj . are the expansion coefficients of the Hamiltonian function gradient
' A • • •""•'•• ' •'. '.'' • ' •' .-. i '. ' .'.•• .- "

with respect to the rows 'H.'-;' '•" ? •̂••T- • ' • • ' ';fT'-';T':r>i/'.--P. vC"-;>. ~'-."4-:> •>•'•>,• it — jLo

3. OBTAINING THE SECOND DERIVATIVES

Let us find the expressions for the matrices (1.4) when the fundamental

solution of the system (2.2) is known in the form

.

= At (55,



Let us write (2.1) using the elements of the corresponding matrices:

\ • n :. .:.'•:. ; '' . .
i = Aoei ,/ t,i = 1 ,..;., n

Differentiating this with respect to > JL-oJ , we obtain

where are elements of the matrix

C3-2)^
Let us use to designate the elements of the matrix f\ Multiplying

(3.1) by *K? , and summing the relationship obtained with respect to , with
! • • • ' _ . ' • i .-/^

allowance for the fact that

and changing to matrix form, we find the formulas for the second derivatives (1.4)

. .
We should note that if each of the matrices ijj R may be substituted in (3.2)rp • -• '•'-'--"
for certain \~ n , in the form of two components, so that the second components

v.-v r*^ ~p"
after substitution in (3.3) give an identical zero, then we shall use \\j . C.

in this case to designate the first components. This situation occurs for the

two-body problem (see A. 5).

4. FIRST DERIVATIVES FOR THE TWO-BODY PROBLEM

In this section, formulas are obtained for the first derivatives which do



not have singularities for any types of Kepler orbits.

For the two-body problem, the vectors and the matrix F have

the form

where

.•o'-' 'l:
Q'O

(4.1)

t. .: ,- / .--.*-——.

_ _
where *? 71" are the vectors of the coordinates and the velocities of the

point, "Y •rr|r£l- V r1;/ (/•/ , /U „— gravitational parameter of the

attracting center. We first obtain the first five rows of matrix A, which are in

dependent of each other for any Kepler motion. We use the first integrals of the

two-body problem for this:

(4.3)

(4.4)

(4.5)

:̂i'~̂ ;̂ :-4-,';̂ x̂

Let us assume are certain constant three-dimensional vectors. Multi-

plying each of the equations (4.3) and (4.4) in a scalar manner by ,

and differentiating the relations obtained and (4,5) with respect to

according to (2.5), we find the first five rows of the matrix A:

j «

> ~U ,

where

(4,7)

For all types of orbits, except for rectilinear orbits, the rows \{-̂ .

are independent for any non-colinear vectors TV' f) . In the case of
' rz

/n



rectilinear orbits and orbits close to them, for the linear independence of these

rows, it is sufficient,£for example, that the vectors *~L». pi j. {Do ^e

linearly independent of each other (this may readily be established by substituting

ĵr = G(*Z in C4.6), where ;"(j is an arbitrary factor ), Therefore, for the uni-

versality of formulas (4.6), it is advantageous to select Ĵ ivjr̂ 'jZ; from this con-

dition in every case. As D* 't p2 , we may select, :for example, two unit vectors

of the system of coordinates corresponding to the components of the vector *7

which are the smallest in terms of modulus.

In order to find the row I rig.', we may use the Charnyy theorem. We shall

search for a vector j which satisfies (2,7) and (2,8) in the form

•]T"'-~ (4.8)

Substituting (4.8) into (2.8), with allowance for (1.1), (4.1) and combining the

coefficients at \^ : f_J .-, we obtain

(4.9)

If the vectors are non-colinear, then it follows from (4.9) that

(4.10)

= =0-^^^"£i-\v
i —. • - • - . . • •* - • r

For rectilinear motion, we shall find the vector I.Y" and the function Ul from

(4.8) and (4.10). •

Solving system (4.10), we find

d'i~--5r?'*':2£̂
: ' • " ' • • ••'• . .'•.••:• •• . -^. (4.11)



>..: •;'... ;•:•. (4.12)

:, (4.13)

'• O 7C"T«ST -i ' *^ x^ •"'•"•'=• 2aT7 4-3 £L -

where I U j C^ are arbitrary constants. We may readily determine that the co-

efficients 0(9 an^ 7̂ 1 are included in (2.6) and (2.7) only in the form of the

sum (4.13). This makes it possible to set in (4.8)

,"Jii. == 0 . (4.15)

Thus, the vector ; / < , found using the formulas (4.8) , (4.11) - (4.15), satisfies

the condition (2.8) of the Charnyy theorem. It may be readily seen that this vec-

tor will also satisfy the condition (2.7) if the constants C - C,. are related

with the constants H f by the formulas
• '

L-=- £,

4:'-;:"£i H -
Since the row A_ is a -gradient of the Hamiltonian function (i.e., in (2.9)

M« s 0 at li ̂ ^ : !^_ — p ) > then (2.9) for the nondegenerate nature of
' - "^ - ' ' • • • • ' #» I r\

the matrix A in the case considered may be reduced to the inequality \£,_'_db-Q .

We set

;rt̂ if>:: w.17)
\ -C '• ' '' " ' , - . . • . .

where <~2. • is an arbitrary constant. According to (4.16), for the nondegenerate /13

nature of the matrix A, the constants -\P C must satisfy the condition
î ' ••*•

(A>18)

(this condition is satisfied for any Kepler motion, since h and ;/lL/. simultane
[ " '"

ously vanish) >



Substituting the values of \T j f[ found from (4.8), (4.11) - (4.15),

(4.17) into (2.6), we find the sixth row of the matrix A:

(4.19)A6= £t
where

(4.20)

(4.21)

Here we use the notation

s -

C4.22)

(4.23)

(4.24)

It is shown in the Appendix that the integral in (4.19) is calculated in the form

of a converging series -•-• ••<>. ' '•"•'~n' i- - '"'

.:•;. (4:;25)

where
î Ĥ jiy|̂ ptt.2«

/U2

and the control time,

(4.27)

(4.28)

C4.29)

C4.30)

714

10



According to";the Appendix, at CX ̂ F 0 (the motion differs from parabolic motion),

the integral (4.25) may be calculated using the final formula

-tJ^PT- (4.31)

where
" O /

Q •=: C //Uis tne focal parameter.

8:- -' • C
r 0 J * . 2 in

(4.19). In the general case, for nondegenerate conditions on any'orbits of;:the

matrix A, consisting of the rows (4.6), (4.19), according to (4.18), we could take
/

e 2 ~ *•' ' However, for a more effective calculation of the

row A,, it is advantageous to select the constants from the following conditions:
o . . .

at I il I ̂ C Av • O ( y.'-̂ . C/' — the given small quantity) we assume

C — I £ ==0 > and at lit J ̂ C / "/ to , i.e., if

the motion is parabolic or close to it, we set ^i ~~ ̂''•-"•>'*. ̂ *2= .In the

first case of the row A,., we use the simple formula (4.20) to perform the calcula-

tion; in the second case — we use formula (4.21). We should note that with this

selection of the constants Si--> '£v, formula (4.31) cannot be used. The

series is calculated only for values of Q( which are small in terms of the modulus,

which leads to their rapid convergence.

5. SECOND DERIVATIVES FOR THE TWO-BODY PROBLEM 715

In order to calculate the second isochronous derivatives for known matrices

A and ;<lb , according to (3.3) it is sufficient to find the matrices 'iT̂  PT »
r ••-'. ̂ v, -. .- ••. ' M-* . » ''-V-
'L.. 1 '••• /» , determined from (3.2). We introduce the notation
""*>••• f° . .

0

0
' J

I = i, 2
(5.1)

11



I Differentiating the rows (4.6) with respect to ̂  .•?>> we obtain — with

allowance for the notation in (4.2) and (5.1) — the first five matrices'" i

o
•̂•••̂ -̂nr^:-̂ &:'-̂ 2L':•;•'••..;•;•:. Ue ;-: ̂ -Ke -.-4

(5.2)

Since the rows (4.6) do not depend on 1T7.'':•'.'.•'•'*! T'' > according to (3,2),
-vp ) •, , O,' " ' '

When finding the matrices ^ [j~ , we shall assume that the selection of the

constants t< j C^ in (4.19) is performed using the algorithm used in A. 4.

Differentiating (4.20), we obtain for orbits different from parabolic orbits

( | hi
C5.3)

Now let us find the matrices T}6 IT/ f°r parabolic orbits and orbits close to
\J j JLw

them ( I ft I ̂  C/M/70J . We npte_that, if the inequality •Cg'TP-'O ™

C,. is determined from (4.16) at |£̂ = 0 — is satisfied for the given values of

the initial phase coordinates i*7 ' ' ' TT » then for a fixed constant |pT , it is
\ t-O 'J ^̂ O î "̂

satisfied also in a certain vicinity of these values (in view of the continuity

of the function (4.16) with respect to *7 TT ). Therefore,-'when finding
- V O 9 O \ ~ • •

the derivatives of (4.21), we shall assume that the constant '.Q"' does not depend

on \Z Vo ' although it equals numerically (4,17). Let us write the row

(4.21), using (4.17) - (4.24) in the form

(5-4)

716

12



where - R = A 7 C/.t .
J

We first find (where Vc"

designates the complete derivative, i.e., taking into account the dependence

. JL ( JL.QJ ). As is shown in the Appendix, the integral R may be represented

in the form

where
2 hR = (p ~ (5.5)

'vitj='i(fct3yffcv)5+2-7*& '•»•«. - . - i f . • ' ' • • - * . . . - *

From (5.5)

(5.7)

where

I''

, --V,'v-.";.' " (5.8)
(This equation may be written as (jF̂  rC);J ̂ 0 ^ ' Differentiating (4.5), (5.6)

with respect to \*7 oT and substituting in (5.8), we obtain

717

C5.9)

where A. is the row (4.19), in which

(5.10)

i.ll)

13



According to (2.1),

(5.12)

It may be seen from (5,7) that at h - 0 the following equation must be satisfied

(5,13)

where Z> p';, V Oy|1'=0 f i.e., according to A.2, the row ^ p; in this
'-- ' - 1_J ---.-•----•• ' . - -| f

case must satisfy the conjugate variational system of equations (2,2), Substitut-

ing Tf2 .̂'2/l/y*7 in (5.11) (according to 4,5), we obtain

(5.14)

~2 7
Substituting (5.14) in equation '(2'.2) , where ̂ the matrix F is determined from (4.1),

we see that (.'Ŵ  actually satisfies the .conjugate variational system of equations

and, consequently, equation (5.13) is satisfied. It may be readily seen that /18

(5.15)

We find from (5.7), (5.9), (5.10), (5.12), (5.13), (5.15)

.07 c
where

(5.16)

(5.17)

Differentiating (5.4) with respect to :VL *, C/ji 'o y.: ° aTl& assuming that the

vector <*U/, is constant, in agreement with the note made before the relationship

(5.4) , we obtain

C5.18)

14



where, with allowance for the notation in (4.2), (4.22) = (4.24), (5.17),

,6-"

\

F6:-'*?•&. 7-
vJ-T

(5.19)

(5.20)

(5.21)

. _ . ^ ,-p. £• -'•- r—6
We should note~that "the matrices! )~ .\ E. 9 equal the derivative (3.2) within an

accuracy of terms which, according to (5,12), (5.13), may be disregarded in (3.3)

(see A.3) .

6. DERIVATIVES WITH RESPECT TO THE GRAVITATIONAL

PARAMETER IN THE TWO-BODY PROBLEM

/19

In the two-body problem for isochronous derivatives of the first order of

the vector of- the phase coordinates - jC = I ̂  -''i •;.-. /L) I ' witlj respect to the
( ' ' ' • ,"•' , // •: :; '; , ."•'-•

gravitational parameter! /^| , the following formulas hold

is the matrix of the derivatives (1.2).

Relationship (6.1) is a result of the integrals obtained in [7] for vari-

ational systems of equations. The study [5] found these relationships by integra-

tion of the equations for the desired derivatives.

Differentiating (6.1) with respect to '\)C'o and jr* > we obtain tne

las for the derivatives of second order '

-o :

(6.2)

15



_::__L f n j = '• ? (6-3)

^> . 3/U/ 1 :4, d/U
* •' ,-'- :.- •/ ' - . • - ' - . • • J ••

where
^ T / i^ • • ' ' ' " ' • • ' * = • '
\L/ . . I A .1 • « . /» \ are t̂ 16 matrices of the derivatives (.14)
T ; 'A rv=, 1, ..., 6)

7. SUMMARY OF FORMULAS

Let us calculate the formulas which make it possible to solve the conjugate

variational system of equations and to calculate the isochronous derivatives of the

first and second order for the two-body problem.

The matrix of the isochronous derivatives of the first order (1.2) may be /20

found from the system of linear algebraic equations (2.1), where

are the matrices of 6th order. The first 5 !rows of the. matrix A, with allowance

for the notation in (4.2), (4.3), (4.7), are determined from (4.6). As the three-

• " ir— • ':': .:'•—
dimensional vectors Di » D ^n (̂ *6) and (4.7), we may select two unit vectors

of the system of coordinates corresponding to the components of the vector •'*£••*

which are the smallest in terms of modulus. The 6th row of the matrix at

;j fl j s* .̂ -/M/To (motion is different from parabolic motion) is determined from

(4.20), and at ;jn.f>5 t fU/ . 7o|(parabolic motion and motion close to it) — from

(4.21). Here ! f\ is the energy integral; C ̂  0' — a given small quantity. The

quantities in (4.21) are determined from (4.22) - (4.30).

The matrices of the isochronous derivatives of second order (1.4) for the

known matrices /} (J) 'are found from (3.3), where Q p are elements of the matrix
'"" : ~" '

i / \ - : i ' • fi '''""' '' ~""- ;"~ i-- '9 ' '
•'£(}•"•:•' • For| t = I/ •• »/^ > the matrices [J)C in (3,3), with allowance for the

' - ' " • ' " ' • ! ' f;_.g _!"-..-
notation in (4.3), (5.1), are determined from (5.2), and £_ rr(j,. At

jnj^P/U/^o , where £> • '0 , the same holds for the first derivatives, and

the matrix D6 is determined from (5.4), ,[T -=:Qt and at J h | ̂  £ fU/7o

16



the matrices j; C. — with allowance for (4.2), (4.4), (4.22) - (4.24),

(5.18) — are determined from (5.19) - (5.22). The integral in (4.24), deter-

mined from (4.25) - (4.30), can be assumed to be already calculated when the first

derivatives are found.

The matrices T» F" ' ." U = 1 , » • • i $ in (3.3) represent the
Ĵ /0 . >_. *— or . i.-.'

values of T) <• CT *• , at

' ';•- (7.D
Thus, for the case I l~» I -^ C yi y /•*7 (parabolic motion and motion close to it), the

s -s ''••!."' ̂  ~*J ' '°
sum )̂ -f C.0 in (3.3) equals the matrix (5.20) under the condition (7.1), /21

since the sum of the matrices (5.21) and (5.22) equals zero under this condition.

The first and second isochronous derivatives of *Z If with re-

spect to the gravitational parameter'/vf for known matrices 'O ,,,\
/ ̂  ' t - - -' I' :r'

..., 6 are determined from (6.1) - (6.3).
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APPENDIX /22

To calculate the integrals

; R = Tcft '&*. (A.I)
.;.-. • •— (»T_ ii

R=]Tdt;' (A. 2)

we change to a new variable — the control time * , determined from the differen

tial equation [4]

We may readily obtain formulas (4.29), (4.30) from (4.22) and (A.3) for the first

and second derivatives of v'Z: with respect to\̂ £ . We find the following from

(A. 4)

- . . . ;

where 1*7 -A — jd_± K'̂ x f^ • '; W ~ is determined by the formula
'• •• :";' ~ }jn~K 7 '•' -5 "̂-L'-' '•'.':. ̂':":c* •

Q C ;•- jj.
(4.27). Substituting ._ • • f~"-Cl I; from (A.3) in (4.30) and taking

the integrals from both sides of the equation obtained, we find (4.28) for \ T~ .
i' V1'

From (A.I) and (A.3), we have

/•#:"}•»̂
-. (A. 5)

Expanding the value R (OY — 0 of the function RllTy in Taylor series

st the point •j'J , we obtain

18
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i n=i ! l »

-,// , r?'2

where

-•77V2 4- rZr?:.'f ^ Q-^fT) (A-6)
• > • • ' k-. t'; , ~" • . ' - . : • . • - ' ^ : • ; ^ " <J J j

• % 723

•'- (A-7) ~~
(2n)! •

We find the derivatives in (A. 7) from (4.30) and (A. 4)

(A. 8)

(A. 9)

Substituting (A.8) and (A.9) in the series (A.7), we obtain the formula (4.26)

\ V^ \
for n) . We may show that the series (4.26) converges absolutely for all \

For the case when cX (the motion differs from parabolic motion)

we calculate the integral (A.I) in final form. We should note that when the equa

tions (4.23) and (4.25) are used for the focal parameter! T} the following rela-

tionship holds'.

JU JU
From (4.24) _^

.- :1r:' " 7 ".":/"••"•"•' ;-: • " . ' : / . ' • .~^,>-" : T
CA.ID

and from (A. 3) .

19



(A. 12)

Taking the integral from both sides of the equation (A,10) considering A.11) and

(A.12), according to (A.5), we obtain the final expression (4.31) for the integral

R,

We now find the integral (A.2), From (A.2) and (A.3), we have

—;.. 4 r>t " ."•'. :•
R = ':T=T \ .L.La-i >••. . (A. 13)

/24

From ' T = 17 ' anc^ (A. 3), we obtain

g

Using (4.4), (4.3), (4.29), (A. 14), we may obtain the formula

(A.14)

(A.15)

Expressing ry from (4.4), according to (A. 3), (A. 12), we have

"" "~ ' :.'•'••.-•' : .•,-••'. .'_.• T '' •;.'"• "'--' ' ''''
' 4 '•'•(*
— -i- \"" u J' '

^ (A.16)

Using the dependence (4.20), we calculate the integral

+ oi :
(A.17)

Taking the integral of both sides of the equation (A.15), considering (A.12), j

(A.13), .CA.16), (A.17),we obtain: _ _

20



Substituting (4.3) into (A. 18) (we must substitute C~ Co-
x"cJo / *

. - ' • • >

in the product £jT x £ ),(4.27) and (4,29), we reduce (A.18) to the form (5.6),

(5.7).
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