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A CONTEMPORARY APPROACH TO THE PROBLEM OF DETERMINING
 
PHYSICAL PARAMETERS ACCORDING TO THE RESULTS OF MEASUREMENTS
 

P. Ye. El'yasberg
 

Compared in the study are different approaches to prob- /2*
 

lems of determining (evaluating) some physical (biological,
 

economic, etc.) parameters according to the results of
 

measurements. Shown in the simplest examples are the short­

comings of the classical approach, which ivs risatomthb.eohethod
 

of maximum probabilitreand its various modifications (method
 

of least squares, optimal filtration, etc.), with which the
 

distribution of probabilities of errors of the initial data
 

is assumed as given. Also examined is the approach to the
 

problems of evaluation, used in recent years, when the dis­

tribution of errors is considered unknown, and only some
 

set, tbiwhibhlth-isd4tribution belongs, is given.
 

The basic results, obtained with this assumption, are
 

described. It is shown using examples that these results
 

are devoid, to a considerable extent, of the shortcomings
 

inherent in the classical approach, and this approach is
 

closer, in its nature, to the practice of solving problems
 

of evaluation.
 

1. Posing of the Problem /i
 

With the processing of great masses of information
 

(during processing of data of space and land physical experi­

ments, in geodesy, during the solution of a number of bio­

logical problems, in economics, during the determination of
 

the initial data for controlling the movement of various
 

systems, etc.), it is often necessary to solve problems of
 

*Numbers in the margin indicate pagination in the foreign text.
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determining some physical (biological, economic, etc.)
 

parameters according to the results of measurements.
 

We will use q=fq1 ,...,qm) to designate the vector of
 

the parameters which are to be determined, and d=tdj,...,dm3
 

to designate the vector of the measured magnitudes. There
 

occurs the relationship n>m between the number m of the
 

parameters being determined and the number n of the magni­

tudes being measured. With n=m, it can be said that the
 

problem is solved according to a sufficient number of measure=
 

ments, and with n>m, according to a surplus number of measure­

ments. We will assume that there is some mathematical model
 

of the phenomendna*n question, which makes it possible to conQ
 

struct a dependence ofthe type d=d(q). Then, the following
 

,dependence exists between the measured value of d of the vec­

tor d and the vector q:
 

where .=c,...,.i is the vector of the total errors of 

measuremefit in the model d=d(q).
 

With these designations, the problem amounts to deter­

mining the so-called evaluation a of the vector q, according
 

to measurements of d using some algorithm of evaluation q=q(d).
 

The purpose of this algorithm is the potential elimination of
 

the effect of the errors C . With a surplus number of measure­

ments (n>m), the problem of constructing an algorithm of evalu­

ation, generally speaking, is not similar. Therefore, the
 

problem occurs of selecting an optimal algorithm. Different
 

criteria of optimalness may be examined (rapidity of calcu­

lation, simplicity of algorithm, etc.). We will subsequently
 

proceed from the conditions of achieving maximum accuracy and
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stability of evaluation of q.
 

,Alongwith the problem of finding the magnitude of
 

q=q(.), it is of great significance to evaluate the accuracy
 

of the obtained result. This is important, for example,
 

during the comparison of results obtained on the basis of
 

different mathematical models, and according to different
 

measurements, as well as in those cases when the found
 

magnitude of q is utilized for purposes of controlling the
 

movement of some system (for example, for control of the
 

flight of a spacecraft).
 

We will subsequently call all of the problems examined
 

here problems of evaluation.
 

2. Classical Approach to Problems of Evaluation
 

The construction of the optimal algorithm q=q(d) and the
 

evaluation of the accuracy of the obtained magnitude of q de­

pend substantially on the adopted assumptions on the error c,
 
which is part of the right side of dependence (1). Wbewill
 

call the set of these assumptions the model of errors in the
 

future.
 

With the classical posing of the problem, is viewed 

as a random vector with a density of probabilities F(C,p), 

given with an accuracy of up to some vector p=[p1 ,.. .,pK of 

the parameters of distribution. In this case, the evaluations 

of % and D are found using the so-called method of maximum 
probability, which consists of the search for the minimum of 

the function of probability 4(q)=F[d-d(q)]. In other words, 

in this case 

P~va'2ma* F{ [(q,)1~j * 
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Assuming that the distribution F(C) of the vector of
 

is normal with a given mathematical expectancy and a co­

variation matrix D( ), which is known with an accuracy of
 

up to some positive multiple d2, the method of maximum
 
probability is reduced to the method of least squares. If
 

E(C) is given, then one can always reduce the problem to a
 

form in which E(c)=O [1]. Thus, the problem, according to
 

the method of least squares, is solved with the assumption
 

that
 

F(1)=ifCO(, tL), (5) 

where N[E(r), D(c)] is the known expression for the density 

of a multiple normal distribution with given mathematical 

expectancy E( ) and covariation matrix D(c), and L is the 6
 
given positively-determined matrix.
 

By making use of dependences (2) and (3), we obtain an 

algorithm of evaluation according to the method of least 

squares [i. 

9,,
 

We will note that, in the literature, the method of
 

least squares is often understood as algorithm (4) in that
 

case when the matrix L is diagonal. However, we will pro­

ceed here from the more general determination (4) of this
 

method.
 

The methods of maximum probability and least squareshhave
 

a long history. The method of least squares was first devel­

oped by Gauss in 1794. For nearly two centuries since this
 

time, this method recommended itself well for the solution
 

of various problems of celestial mechanics, geodesy, experi­
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mental physics, and other sciences. The widespread dissemi­

nation of the indicated methods in the common form, as well
 

as in various modifications (method of a maximum of empirical
 

probability, Kalman's filter, method of optimum allocatibh; etc.)',


evoked theettat~nteantrest of a number of leading specialists
 

in the area of Tmat'hejMaidt1lcA statistics. Their labors ufider­

lay the conducting of a serious mathematical investigation
 

of these methods, in which it was shown that they possess a
 
number of appreciable optimal properties [2. These proper­

ties have an asymptotic nature, i.e., they are demonstrated
 

with a number of measurements nro. In this case
 

-the mathematical expectancy of error 8q of the evalu­

ation of G approaches zero (asymptotic empiricalness); 
-the dispersions of all of the components of the error 6q 

approach their minimum values in ahgrea~ttumberfo-lhilfofhthe
 

possible empiricalnahgorithms of filtration (asymptotic /
 

effectiveness);
 

-the distribution of the errors of the obtained evalu­

ations approach es5n-orna~as( zo...... ;C 
-the evaluation of q, with some additional assumptions,
 

coincides, in probability, with the true value of q (con­

sistency).
 

We will note that the effectiveness of the method of
 
maximum probability, strictly speaking, does not hold for all,
 

but only for "nearly all" of the true values of the vector q.
 

In a great number of these vectors, so-called supereffective
 

evaluations may exist [3].
 

In addition, the indicated properties are usually proved
 

with the assumption that the vector C may be presented in the
 

form of a set of mutually independent and equally distributed
 

vectors. If this condition is not fulfilled, then some of the
 

indicated properties may not occur. Specifically, in this
 

case, the evaluation according to the method of least squares
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may be inconsistent [1,4].
 

The following practical conclusions are usually drawn
 
from the indicated properties of the examined evaluations:
 

-any enlistihgn-fr the solution of the problem,odf
 

additional measurements is useful, since it leads to improve­

ment of the accuracy of solution of the problem;
 

-by increasing the number of utilized measurements with­

out restriction, one can obtain as high an accuracy of evalu-

A 

ation of q as is desired%
 

The indicated theoretical properties of the evaluations
 

of the maximum probability evoked in the experimenters and
 

processors of information a striving to e,1kstcstmanyoinorbon L
 

mdasurbfnen±-sefstessib&nfd6rtthe solution of problems of the
 

examined type. Discovered for this purpose in recent years
 

were greater possibilities, determined by the rapid developp
 

ment of measuring and calculating technology. Many thousands
 

of measurements are utilized in a number of critical problems.
 

However, in practice, it turns out that an unrestricted in­

crease in the number n of measurements does not provide the
 

desired effect. Beginning with some n, the accuracy q prac­

tically ceases to increase, often beginning to worsen. In
 

this case, it turns out that the evaluations of the accuracy
 

q, obtained on the basis of the theory of the methods of maxi­

mum probability and least squares, are unjustifiably opti­

mistic. The latter circumstance is especially intolerable
 

during the solution of critical problems (determination of
 

basic physical constants, comparison of results obtained on
 

the basis of various mathematical models, determination of
 

initial data for the control of movement of different systems,
 

etc.).
 

The indicated circumstances are well-known by many re­
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searchers, who are practically occupied by questions .df
 

processing great masses of information. In them, a sense
 

of distrust has long been rooted towards the evaluation of
 

the accuracy obtained on the basis of the theory of the
 

methods of maximum probability and least squares. This
 

lack of correspondence between the theory and practice may
 

be explained only by deviations of the real conditions of
 

the experiment from the assumptions utilized during the con­

struction of the methods of maximum probability and least
 

squares (since the theory of these methods is mathematically
 

strict).
 

As is evident from expressions (2), (3), and (4), the
 

algorithms of evaluation, according to the examined methods,
 

depend substantially on the distribution F( ) of the errors
 

i. During the construction of these algorithms, it is neces­

sanyythat this distribution be given in advance. With a devi- L9
 

ation of the actual distribution F(C) from the adopted distri­

bution, the optimal properties indicated above do not occur.
 

We will elucidate this fact in examples.
 

We will examine the problem of determining some scalar
 

magnitude of q, according to its measured values of
 

di(=,...,n). In this case, dependence (4) takes on the form
 

I • (5) 

During construction of the algorithm of evaluation, we
 

will propose that the errors j(t=1,...,n) are distributed
 

normally, with zero mathematical expectancy and a dispersion
 

?. In this case, the correlation between the different errors
 

is absent. Then, ekpression (3) may be written in the form
 

F(' () 



where I is a unit matrix.
 

With these assumptions, algorithm (4) of evaluation,
 

according to the method of least squares, is reduced to the
 

search for the arithmetic mean
 

We 
A 
will designate the error in the obtained evaluation 

by 6q=q-q, and adopt the following magnitude in the capacity 

of the'characteristic of accuracy
 

where E(62 q) is the mathematical expectancy of the square of
 

the error 6q.
 

We will utilize P. to designate the value of 0 with the
 

utilization of algorithm (7) and assumption (6). It is easy /10
 

to show that
 

From expression (8), it follows directly that
 

"-V- (9) 

i.e., evaluation (7), with assumption (6), is consistent. In
 

this case, an increase in the number n of utilized measurements
 

always leads to an increase in the accuracy of evaluation of q.
 

We will now assume that assumption (6) is actually not
 

satisfied, but we will continue to utilize algorithm (7). Let
 

8
 



the errors i, in actuality, be represented in the form
 

Uo1) 

where are the errors of the model d=q, and ' are the errors
 

in the measurements.
 

The errors q occur because of the fact that the measured 
magnitude of d is not constant in actuality, but changes 

according to some law. Suppose that th5 only thing that we 
know about this law is the fact that the rate d of change in 

d is restricted according to a modulus, i.e., IlIa v, where v 

is a given constant. We will adopt the value of d at the 

initial moment in time t=0 as the parameter of q being evalu­

ated. We will assume that the measurements of d are carried 
out at the moments ti=±jtt(j=O,1,..., n--), where T is the 

given spacing of the change in the time of the measurements 

(here, we will limit ourselves to the case of uneveness of the 

number n of the measurements). With these assumptions 

As far as the errors in measurement are concerned, we
 
will assume that their mathematical expectanctesaare equal to
 
zero, the dispersions D(V) do not exceed the given magnitude


fit
 

max' and the coefficients of correlation K(CV) (to.t) 
do oht e±ceedvtheegivdKv&Jde of)K (i'K I~r, l)ilihenFeutilizing 

dependences (10) and (11), we find that the mathematical
 

expectancies E(Ci), the dispersions D(ci), and the coefficients
 

of correlation K(j,Ce) of the errors i satisfy the in­

equalities
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Comparison of models (6) and (12) of the errors shows
 

that the former assumes a sufficiently complete knowledge
 

of the distribution of the errors C, while the latter imposes
 

only slight restrictions of the characteristics of this dis­

tribution. Such an approach is considerably closer to the
 

real conditions, under which applied problems of information
 

processing are solved. In this case, is does not seem
 

possible to determine the accurate value of the magnitude of
 

P. However, itsis posbible to find its so-called guaranteed
 

value
 

where max appears in the set rF_ifflll of the distbh-di9\ ­

butions which satisfy the conditions in (12). 

Making use of dependences (5) and (12), one can show
 

that during the determination of the evaluation of q, using
 

algorithm (7)
 

guar-- h-.) (14) / 2 

where Y= Z-.drnax
 

It is evident from expression (14) that, as a function
 
of the values of the magnitudes of K and y, P either in­

guar 
creases monotonously with an increase intthe number n of
 

measurements, or diminishes at first, reaches some minimum,
 

and then begins to increase, With y=O, the minimum is not
 

reached for a finite n. In all cases
 

f5a. Jwijh fTz 15 
"-guar L o with -p0 
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D.epicted by the solid line in figure I is the graph of
 

the dependence of the ratio gua/&max on n with K=0.01, y=o.01.
 

The dotted line in this same figure depicts the graph of the
 

dependence P./O on n, calculated according to formula (8).
 

It is evident from the given results that, with the
 

assumptions in (12), evaluation (7) proves inconsistent
 

(one can show that, with these assumptions, it is generally
 

impossible to construct a consistent evaluation). With yjO,
 

there exists some optimal number n of utilized measure­opt
 
ments. With n>nOpt, any increase in the number n leads to
 

impairment of the accuracy of the evaluation of q.
 

Thus, the switch from model (6) of the errors to model
 

(12) fundamentally changes the nature of the dependence of
 

the evaluation of the accuracy of the magnitude of q on the
 

number n of utilized measurements. In this case, model (12)
 

ensures obtaining of results which are considerably closer /13
 

to practice in the processing of measurement information.
 

From (8) and (15), it follows that if at least one of
 

the magnitudes of K or y#O, then
 

Thus, with as small a deviation from the ideal model (6)
 

as desired, and a sufficiently great n, expression (8) does
 

not at all. characterize the actual accuracy of the evaluation
 

(7). This phenomenon we will subsequently call the instability
 

of the magnitude of Po, according to the basic assumptions. In
 

practice, some deviations from model (6) are unavoidable.
 

Therefore, expression (8) may be utilized only with small n.
 

With sufficiently large n, it is necessary to switch to a model
 

of errors which takes into account the potential spread of
 

the characteristics of distribution of the vector C in prob­

11 
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lems of evaluation of the accuracy of the magnitude of q and
 

the selection of the optimal composition of the measurements.
 

In this case, evaluation (7) proves to be biased and incon­

sistent.
 

In the capacity of a second example, we will examine the
 

problem of determining the velocity v of the change in some
 

magnitude d at the initial moment in time t=O. Here, we
 

will make use of the linear model
 

where di is the measured value of d, a is some constant, tj
 

is the time of the measurements, and C is the error.
 

We will assume that the moments t 1 Are determned-.,b b
 

the expressions
 

0 

where T is the given time. /14
 

By solving the problem by the method of least squares,
 

with assumption (6), we find the desired evaluation:
 

Let(09)
 

The dispersion of this evaluation with assumption (6) is
 

II
 Sft 

We will note that
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From here, it follows directly that
 

---=
I . *T (22)
 

Thus, although the magnitude of DO(t) diminishes with
 

an increase in the number n of measurements, it has a lower
 

boundary which is not equal to zero. Therefore, evaluation
 

(19), with assumption (6), proves inconsistent. This is
 

associated with the selection of the time of the measure­

ments (18).
 

We will now assume that the errors are correlated
 

among themselves. Here, the coefficients of the correlation
 

are
 

KQ K 'i',h- ii, , 0 

)(23
 

where k, and k2 are given magnitudes, which satisfy the con­

ditions
 

One can show that the correlation matrix made up of these
 

coefficients is positively definite, i.e., the conditions in
 

(23) are correct.
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=
With proposal (23), and the assumption that D(C.)

,... ,n), the dispersion of evalution (19) is deter­

mined by the expression 

Then, making use of the inequality
 

we find that
 

From here, it follows directly that
 

Qar 'O ) Cc. Oa) 

Depicted in figure 2 by the solid line is the graph of 

the dependence of D dZ)- on the number n, assuming that 

k1 =k2 =0.1. In the same figure, the dotted line depicts the
 

graph of the magnitude of Do(v) T-, calculated according to
0 n
 

formula (20).
 

Thus, in this example as well, the enlistment of additional
 

measurements leads to an unrestricted increase in the error
 

of the measutements. Here,
 

Z4 )/ 116Z ) 
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i.e., expression (20) proves unstable with any k1 -k2 O,4 no
 

matter how small.
 

Apparent in the given examples is a sharp increase in
 

the effect of small correlation dependences between the com­

ponents of the vector i with an increase in the number n of
 

these components. This may be illustrated on an example of
 

the calculation of the dispersion of the sum of the compon­

ents of the vector
 

The total number of diagonal terms in the right-hand
 

portion of this dependence is equal to h, and the number of
 

nondiagonal terms, associated with the presence,of corre­

lation connections between the components of the vecter, is
 

equal to -n(n-1). Therefore, the coefficients K(c., i..) of
 

the correlation on the order of 1/n may have a substantial
 

effect on the examined expression. With K( ., C .) on the
 

order of n (Oca<1), their effect becomes decisive.
 

The instability of the classical evaluations,ofhacuracy,
 

shewayimpthe~examples, has a general nature. One can prove
 

that, if the distribution F() of the errors ? is selectedtso
 

that the corresponding evaluation of the least squares (maxi­

mum probability) is theoretically consistent, then, with
 

sufficiently general assumptions, the classical evaluation
 

of accuracy of the obtained results proves to be unstable in
 

the sense indicated above. Thus, the theoretical consistency
 

of the evaluations of the maximum probability and the least
 

squares not only is not accomplished in practice, but also
 

leads to inconsistency of the evaluations of accuracy with
 

possible deviations from the adopted distribution F(c). 


As is common knowledge, it often turns out in practice
 

/17 
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that some percent of the measurements is burdened with large
 

errors, which occur from the adopted distribution F(j).
 

These measurements are usually called anomalous. The method
 

of least squares, based on the assumption of the normalcy of
 

the distribution F(t), is especially sensitive to similar
 

measurements.
 

In the capacity of an example, we wi.l examine the 

solution of problem (5) using algorithm (7) of the method 

of least squares. We will assume that, among n measurements 

of di((i=!,•..,n), there is some number m of anomalous 

measurements, which have the same error C=A(=l,...,m). 

The errors of the remaining n-m measurements are distributed 

according to the law in (6). Then, the evaluation q, deter­

mined according to formula (7), will have the additional error 

M9)
baddzVPA Ip= 

associated with the presence of anomalous measurements.
 

It is evident from comparison of expressions (8) and (29)
 

that, if there exists such ane >0 that the inequality p>P
 

takes place, irrespective of the number n, then, with a
 

sufficiently great n, the additional error (29) becomes de­

cisive.
 

We will compare the obtained result with the solution of
 

the problem according to the method of a minimum of moduli,
 

with which the evaluation of q is sought from the expression
 

As is common knowledge, here, the algorithm of evaluation
 

is reduced to the search for the selective median of the set
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of numbers d ( =1,...,n), i.e., the magnitudes of q for /18
 

which the number of measurements of di -which satisfy the
 
- A 

inequality di q, is equal to the number of measurements, 
which satisfy the inequality d. 4 [5]. The additional 

error 6addqof this algorithm, associated with the anomalous
 

measurements indicated above, may be found from the equation
 

where T(): is the normed density of the normal
 

distribution. -- *
 

The approximated solution of this equation, with a
 

sufficiently small p, gives
 

It is evident from comparison of expressions (29) and
 

(31) that the additional error of the method of least squares
 

is proportional to the magnitude A of the anomalous error,
 

whereas the additional error of the method of the minimum of
 

moduli does not depend on this magnitude. Therefore, with
 

A>>, the second of these methods proves considerably less
 

sensitive to anomalous errors of the examined type.
 

The strong dependence, shown in the simplest example, of
 

the evaluations of the method of least squares on anomalous
 

errors in measurements has a sufficiently general nature. It
 

is associated with the principle of minimization of the quad­

ratio form from the vector of discrepancies. Therefore, in
 

practice, during evaluation according to the method of least
 

squares, as a rule, one makes use of different empirical and
 

semiempirical method of preliminary purification of the
 

measurement information from coarse anomalous measurements. /19
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3. Contemporary Approach to the Problems of Evaluation
 

The aforementioned shortcomings in the classical
 

methods of evaluation are determined by the fact that the
 

actual distributions F(c), which are part of dependence (i)
 

of the errors, differ from those used during construction
 

and analysis of algorithms of evaluation. One of the methods
 

of overcoming this circumstance consists of numerous attempts
 

to make the distribution F(c) more precise, according to the
 

results of measurements (so-called adaptive algorithms of
 

evaluation). Although a number of interesting results is
 

obtained in this way, its possibilities are limited. Even
 

if we limit ourselves to finding the mathematical expectancy
 

E(c) and the covariation matrix D(c), with simultaneous
 

searching for the evaluation of q=[q1 ,...,q , then it will
. 


be necessary to determine a total of '-'_#,[scalar magni­

tudes~abcording tom-measurements of the components of the
 

vector d. Apparently, this is impossible, since the number of
 

determinable magnitudes considerably exceeds the number of
 

measurable magnitudes. Therefore, all of the existing adap­

tive algorithms of evaluation are based on sufficiently
 

strict assumptions on the form of the distribution F(C). The
 

most widespread is its tepresentation in form (3), with a
 

fixed matrix L. In this case, the adaptation amounts to the
 

search for the most suitable value of the factor d2. It is
 

evident that, in this posing of theppbbiem, all of the afore­

mentioned shortcomings of the method of least squares remain
 

in force.
 

A principally new approach to the problem of evaluation /20
 

consists of rejecting the representation of the distribution
 

F(c) and replacing it with some set F , which includes the
 

possible distributions of the vector 1. We will use N to
 

designate some scalar characteristic of the accuracy of evalu­

ation of q. For definiteness, we will consider that any in­

18
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crease in the accuracy of q corresponds to any decrease in N. 

Then, in the capacity of a guaranteed characteristic Nguarof 

the accuracy (6), we will adopt its upper boundary in the set 

F , i.e., the magnitude which satisfies the inequality 

X ffgua with F(Q)E9T. (02) 

If Iiguzi~s an accurate upper limit, then we will speak
 

of a strict guaranteed characteristic of accuracy. In this
 

case
 

J(u= supX. (3)guar C3 

The search for a minimum of the strict guaranteed charac­

teristic of accuracy serves as a criterion of optimalness in
 

problems of selecting a strategy of evaluation (i.e., the
 

choice of an algorithm of evaluation, a plan of measurements
 

and a mathematical model of the system beingeexamined). Here,
 

the optimal strategy Sopt is found using the dependence
 

=%petar min sup JY, (4) 

where the minimum is sought in the given set Z of permissible
 

strategies S.
 

We will note that the advisability of a similar approach
 

to problems of evaluation was evidently clear even to classical /21
 

scholars of mathematical statistics. However, the algorithms
 

of evaluation based practically on this approach began to
 

be created only in the middle of the 1960's. This is explained
 

by the following reasons.
 

A. In recent years, requirements have sharply increased
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for efficiency of evaluation and reliability of determination
 

of the accuracy of obtained results. This is associated with
 

the fact that evaluations of the parameters of physical
 

phenomena are being used ever more widely during the solution
 

of important applied problems (such as the control of move­

ment of different systems, the determination of basic physical
 

constants, etc.).
 

B. The switch to automatic methods of processing of
 

measurement information on computers made it especially in­

tolerable to utilize different empirical and semiempirical
 

methods of information processing, based on the intuition of
 

the researcher and requiring repeated intervention by man
 

into the operation of computers.
 

C. The constant improvement of measurement and computer
 

technology has stipulated the possibility of a sharp increase
 

in the volume of measurement information utilized during
 

evaluation. However, in this case, the effect of the indi­

cated instability of the classical results is manifested
 

especially strongly.
 

D. The utilization of modern computers and the algorithms
 

of optimization developed in calculations for these machines
 

has revealed the practical possibility of solving sufficiently
 

complex problems of the type of (34) 


It is evident from dependences (33) and (34) that the
 

solution of problems of evaluation, based on the approach
 

indicated above, depends substantially on the type of set F
 

of possible distributions of F(), as well as the utilized /22
 

characteristic of accuracy of iN:ad the, matthaema-icL-1mode1 (i).
 

In this connection, there is not _aegenerallznehtfodofor solv4-ng
 

these problems at the present time. However, for individual
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specific cases, sufficiently far-reaching results have been
 

obtained, and effective numeric algorithms have been developed.
 

A brief description of these results is given below.
 

4. Anti-Interference Evaluation
 

As was indicated above, one of the shortcomings of the
 

method of least squares is the great effect of anomalous
 

measurements on the accuracy of the obtained evaluations.
 

The presence of this shortcoming, as well as the necessity
 

of a new approach to problems of evaluation, were indicated
 

in studjess[7,8]. First proposed in study [9] was the method
 

of construction of anti-interference evaluation, and its
 

asymptotic optimalness was shown in terms of (34), for one
 

class F of possible distributions of F(C), which are close
 

(in a certain sense) to normal. This method was developed
 

in a number of subsequent studies. In study [10], it was
 

generalized to multiple regression problems. In this study,
 

as well as in [11], they analyzed the dependence of the type
 

of anti-interference algorithm on the set F of possibleddis­

tributions of F( ). One of the types of anti-interference
 

algorithms, namely the method of the minimum of moduli
 

(selective medians in a unidimensional case), was studied
 

in detail in studies [5,12].
 

All of the indicated studies are based on the assumption
 

that the vector d of the measurements is a set k of vectors
 

(in the specific case-scalars) dj (=1,...,k), which are
 

identically associated with q. The vectors of the errors 


(=1,...,k), which are assumed to be mutually independent
 

and equally distributed, correspond to these vectors in
 

dependence (1). Here, the magnitudes which are part of
 

equality (1) may be represented in the form
 

/23 
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where the function d'(q) determines the dependence of any of
 

the vectors (scalars) dj (j=1,...,k) on q.
 

In this case, the density F( ) of distribution of the 

vector i may be represented in the form 

where F'(Qj) is the density of distribution of any of the 

vectors j ( =1,...,k). 

In addition, it is assumed that the mathematical expec­

tancy is
 

E(; )=o (jzi . .,7.,(
 

Here, the condition F(O)eF is replaced by the condition
 

where F ' is the set of possible densities of distributions
 

of the vectors j ( =1,...,k).
 

The dispersion of the evaluation of any scalar function
 

of the vector q is utilized as the characteristic N of the
 

accuracy in dbpendences (32)-(,34).
 

The essence of the examined methods of constructing anti­

interference evaluations consists of-thatfaot-thattwithing /24
 

the set F' is selected the worst distribution of F'( J) se',
 

in which the minimum of Fisher information is achieved.
 

Constructed for this distribution is the corresponding algo­

rithm of maximum probability, and it is shown that, asymptot­
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ically (with k-vo), it satisfies the condition of optimalness 

of the type of (34) [i0,ii]. 

Specifically, if the set of all distributions, for which 

the density F'(O), B>O, is viewed asy ', then Laplace's 

distribution is the corresponding worst distribution, and 

the method of the minimum of moduli is the optimal algo­

rithm of filtration. In other words, this method corresponds 

to the case when practically nothing is known about the dis­

tribution F'( j). 

Thus, the anti-interference properties of the method of 

the minimum of moduli, shown above in the simplest example, 

has a sufficiently deep theoretical basis. Also examined in 

studies [10,11] are other methods of representing the set 

F', for which the corresponding optimal algorithms of evalu­

ation are constructed. 

On the whole, the examined method of constructing anti­

interference evaluations is promising, since it reveals the 

possibility of automation of the process of exclusion of 

anomalous measurements, and, finally, makes it possible to 

reduce to a minimum the intervention of man in the solution 

of problems of evaluation on computers. 

A shortcoming of this method is the fact that it is 

based on assumptions (35), (36), and (37). Here, the effect 

of correlation dependences between the vectors j=!,...,k) 

is not taken into account at all, and neither is the possible 

spread of the mathematical expectancies of these vectors. As 

was indicated above, with a large number of utilized measure­

ments, this effect on the evaluation of the accuracy q becomes 

decisive. Demonstrated here is the inconsistency of evalu­

ations of accuracy according to the adopted assumptions. The 
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latter fact is associated with the fact that the obtainable
 
A 

evaluations of q, in the majority of cases, are theoretically
 

consistent.
 

Evaluation with Restrictions According to an "Upturn"
 
(Case of Random Correlation of Errors)
 

The aforementioned strong effect of the correlation
 

dependences between the components of the vector c on the 
accuracy of the evaluation of q, as well as the impossibility 

of the reliable determination of these dependences, were causes 

of the appearance of a considerable number of studies, in 

which the existence of a random worst correlation between 

the magnitudes of j (i=i,...,n) is assumed. In other words, 

it is assumed that the coefficients of correlation K(ci, i)
 

may take on any values in the closed interval L-i,1. Here,
 

different methods are utilized for representing the set F.
 

The simplest of these are the so-called restrictions according
 

to an "upturn", of the form
 

where 6S (i1,...,n)are the given non-negative numbers.
 

Here, the guaranteed characteristics of accuracy (33)
 

are determined by the expression
 

=ma
 
guar~3;40
 

where 8, is the error in evaluation of j of some scalar magni­

tude k 

In the more general case, the following restrictions /26
 

may be utilized in place of (39):
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EQ,
 

where Q is the given set in the space of the vectors C
 

Often, in place of the conditions in (39), restrictions
 

are set on the values of the dispersions of the magnitudes of
 

Here, the possibility is assumed of the random correlation
 

between different components of the vector C, and the follow­

ing magnitude is utilized as the guaranteed charactersitics
 

of accuracy
 

1u .(42) 

One can show that, for a sufficiently broad class of
 

algorithms of filtration, the search for an optimal strategy
 
of evaluation, based on the minimization of expression (40)
 

with the6coftattions in (39), is equivalent to the solution
 

of the very same problem by means, of minimization of expression
 

(42) with the conditions in (41) [1].
 

Such an approach to problems of evaluation was first
 

utilized in study [13]. Examined here was the problem of the
 

selection of an optimal body of measurements, which provides
 

the achievement of a minimum of expression (40) with the con­

ditions in (39) and filtration according to the method of least
 

squares. The problem was reduced to linear programming, for
 

which there are well-developed algorithms of numerical solution.
 

The basic properties of this solution were studied. This study
 

served as an impetus for the conduct of a considerable number
 

of studies in the indicated area. Exhaustively studied here
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was the problem of the selection of an optimal linear unbiased
 

algorithm of evaluation, and an optimal plan of measurements /2
 
with conditions (39) and (40) or (41) and (42).
 

Developed here, along with a method for solving the
 

problem of optimization, was a method which amounts to the
 

finding of some generalized Tchebycheff polynomial which ­
deviates the least from zero[114], as well as a method which
 

utilijes the graphic geometric interpretation proposed in [15].
 
A listing of these studies and their results are located in
 

[1,16].
 

The basic result of the indicated studies is proof of
 
the fact that, with the assumptions made, only m of the
 

appropriately selected measurements are optimally utilized
 
(here, m is the dimensionality of the vector q). A further
 

increase in the number of utilized measurements is not only
 
of no use, but, generally speaking, leads to impairment of
 
the guaranteed accuracy of the obtained evaluations. It is
 

evident that, under these conditions, it is also impossible
 
to speak of the consistency of the evaluation of q. Thus,
 
tesults were obtained which are fundamentally contradictory
 

to the conclusions drawn on the basis of the classical assump­

tion (3).
 

In those cases when the mathematical model (1) is con­
structed on the basis of the solution of the vector differ­

ential qquation of movement
 

where t is the time and 11 is the interference vector, and con­

ditions of the type of (39) Qrd(41) may be imposed notrbnlyton_
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thefvectorsC of errors, but alsonon the vector n.
 

With similar assumptions, one concrete problem of evalu­

ation of the accuracy of determination of movement was examined
 

in [17]. In studies [18,19], this posing of the problem was
 

utilized for the study of determination of the movement of a /28
 

spacecraft, using Kalmanis filter. A detailed analysis of
 

the problem of construction of an optimal recurrent algo­

rithm of filtration, with augAffiekenIly general method of
 

representation of the sets to which the vectors of errors of
 

measurement and interference vectors mayi±elongy 4is-cariied
 

o-ut in120].
 

As an example, we will examine the problem of determining
 

the velocity V of the change in some magnitude d at the initial
 

moment of time t=0. Here, we will make use of the linear model
 

(10), and assume that the errors i satisfy the condition
 

where A>0 and w>Lare given numbers. The former of these
 

characterizes the maximum possible error of the measurements,
 

and the latter characterizes the maximum acceleration of the
 

magnitude d, not taken into account by the linear model (17).
 

This acceleration, generally speaking, is variable, and-we
 

are only given the maximum of its modulus.
 

We will find the evaluation of v of the desired magni­

tude, using a linear algorithm of filtration:
 

Y= X; al (45) 

where Xi (i=i,...,n) are, for now, the random coefficients of
 

the algorithm, which satisfy the condition of empiricalness
 

[1, which, in the examined case, may be written in the form
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0 i~t~ (46) 

Here, the error 8v of the evaluation of v is determined
 

by the expression
 

4(4 ) 

Hence, making use of (44), we will find the guaranteed
 

characteristics (40) of accuracy L23
 

g~ar 9(48) 

In this posing of the problem, the selection of an optimal
 
strategy S of evaluation in the set Z of possible strategies
 
is reduced to the search for the number n of measurements,
 

as well as the times ti and the coefficients Xi' which satisfy
 
condition (46) and provide the achievement of a minimum of
 

the magnitude in (48).
 

Switching to the solution, we will note that the
 
dimensionality of the vector q=ta,vJ of state of model (17)
 

m=2. Hence, making use of the results given above, we find
 

that the minimum of expression (48) is achieved with a number
 

n=m=2. Then, making use of (46), we will find the dependences
 
between the times t i of the measurements and the corresponding
 

- coefficients %i (j=1,2): 

,- " 

Substituting these expressions into (48), and seeking
 
the minimum according to t1 and t2, we obtain the solution of
 

the problem._
 

'r^y=- ^t-- (49),xq-x-4 
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Here, the following is achieved 

I - - -• 

ranli'N= m'Ln max IF e I= (Q 

We will note that, during the determination of the set E 

of possible strategies S, we do not impqse any restrictions 

on the times t . 

7 We will compare the obtained result with the evaluation 

according to the method of least squares, with the assumption 

of equal accuracy and non-correlation of the errors ;. In 

this case, we will assume: that the measurements are carried 

out with a constant spacing T, according to the time gt the 

moments 

/30 

where k=n/2 (n is the total number of measurements). 

With these assumptions, the coefficients tX (i=l,...,n) 

of algorithm (45) are determined by an equality of the type 

where, in the expression Et2 

according to all times ti . 

, the summation is carried out 

Substituting (52) into (48), and making use of (50), as 

well as the known expressions for the sums of the orders of 

a natural series of numbers, we find 

where 7 

IV£ur 2 4C2iK.l) J3 

is the value of the guaranteed characteristics (48) 

2ar 
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6f,'aecuracy with evaluation according to the method of least
 

squares and a uniform distribution of the times of the
 

measurements, and
 

(54) 

We will record the number k and search for the magnitude
 

of 0 which ensures achievement of minj. It is easy to show
 

that this will be the case with
 

Substituting this value of PThnto (53), we find
 

It is easy to assert that, with an increase in k,
 

increases monotonously from a magnitude 1 T(i)= i to tn (o) 

=%Oro,. The lower boundary of this interval corresponds
 

to the total coincidence of the examined algorithm of evalu­

ation, according to the method of least squares, with the
 

optimal linear unbiased algorithm given above. We will note
 

that, with a sufficiently large k, equality (55) may be re­

placed with the approximate dependence
 

TV _2T,, (5T) 

where T=2Tk and T =t2-t1 ,are the time intervals within which
 

the measurements are carried out, with evaluation according
 

to the method of least squares and with utilization of the
 

optimal algorithm (49), respectively.
 

Based on the obtained results, one can draw the following
 

conclusions.
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A. With planning of the experiment in accordance with
 

dependence (55) or (57), evaluation according to the method
 

of least squares, with uniform distribution of the times ti
 

with any number of measurements, is practically equivalent to
 

the optimal algorithm (49). This circumstance may be utilized
 

in that case when, along with the errors i, which satisfy
 

theceond±tiorr in (44), mutually non-correlated errors C'are
 

part of the fighthand portions of the dependences in (17)?
 

Then, making use of the method of least squares, with a 


sufficiently large number n of utilized measurements,
 

one can practically preclude the effect of the errors
 

B. With a deviation from the optimal relationships (55)
 
or (57) in one direction or the other, the guaranteed accu­

racy of evaluation, according to the method of least squares,
 

is impaired unrestrictedly.
 

C. The best guaranteed accuracy of the magnitude is
 

determined by expression (50), which does not depend on the
 

plan of the experiment. Thus, with the examined posing of
 

the problem, consistent evaluations of V do not exist.
 

The conclusions obtained here on the simplest example
 

have a sufficiently general nature. Experience in the use of
 

evaluation "according to an upturn" applied to different,
 

sufficiently complex problems shows that the method of least
 

squares is practically equivalent to the optimal linear un­

biased algorithm of evaluation in that case when the planning
 

of the experiment is accomplished on the basis of the methods
 

set forth above. With non-observance of this conditions, the
 

guaranteed accuracy of evaluation, according to the method of
 

least squares, may be considerably worse than the optimal
 

accuracy.
 

This conclusion follows from the fact that any linear
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unbiased evaluation is equivalent to the solution of prob­

lem (1) according to the method of least squares, using the
 

expression­

4 K8r[(-a~-( ,)]P[al-d(%)1, (59) 

where P is the weighted4 matrix, selected by the appropriate
 

method [26]. The difference between the classical algorithm
 

(4) 	and expression (58) consists of the fact that, in the
 

former case, the weighted matrix is determined by the equality'
 
-
P=L I, which follows directly from the well-known Gauss-


Markov theorem Ei], and in the latter case, the weighted
 

matrix can be found from the solution of the corresponding Z2
 
problem of linear programming.
 

Thus, for the solution of applied problems, one can
 

successfully make use of the well-developed algorithms of
 

the method of least squares (with the condition of preliminary
 

processing of anomalous measurements). However, planning of
 

the experiment and evaluation of the accuracy of the ob­

tained results should be carried out with regard for the
 

potential spreads of the distributions of the probabilities
 

of the errors .
 

6. 	Evaluation with Restrictions on the Elements of the Mathe­
matical Expectancy and the Covariational Matrix of Errors
 

Based on the methods described in the preceding section,
 

one can obtain sufficiently reliable guaranteed evaluations
 

of the accuracy of determination of the vector 'cf, according
 

to the results of measurements, as well as solving the prob­

lem of the selection of an optimal linear unbiased algorithm
 

of filtration and an optimal plan of measurements, which en­

sure a maximum guaranteed accuracy of q. Therefore, these
 

methods are presently beginning to be widely utilized during
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the solution of vital problems, which place high requirements
 

on the accuracy and reliability of the evaluation (for example­

for determining the initial data for controlling the flight of
 

a spacecraft). A shortcoming of these methods is the fact
 

that they often give excessively less sensitive evaluations
 

of the accuracy of 4. In this connection, methods have begun
 
to be developed in recent years for solving the examined
 

problems, assuming that the coefficients K(Ci, Cj) of corre­

lation between the components of the vector are not random, /34
 
but lie within some boundaries.
 

In the simplest variant of the indicated posing of the
 

problem, the problem of construction of the optimal linear
 

unbiased algorithm of evaluationaddsiect&4n%6fothe optimal
 

plan of the measurements was solved in [21]. The results of
 

this study are set forth in detail in [1]. Here, it is
 

assumed that the set F of possible distributions of F(C) is
 

determined by the inequalities in (41) and the condition
 

, t~j,(59) 

where 0 'k 4l is a given number, and expression (42) is uti­
lized as the guaranteed characteristics of accuracy.
 

Through these assumptions, it was proved that the optimal
 

situation is the utilization of the method of least squares,
 

with the condition of concentration of all of the points
 

measured in m (m is the dimensionality of the vector q),
 

determined by the solution of some problem of linear pro­

gramming. With an increase in the total number n of measure­

ments, the accuracy of evaluation increases; however, with
 

k>O 

UMbax Za(SE) >O, 
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i.e., the evaluation of q is not consistent. In this case,
 

beginning with some value of n, a subsequent increase in the
 

number of measurements leads to such an insignificant increase
 

in accuracy that it can be considered practically useless.
 

The indibated trbndmreeeived further development in study
 

[22], in which condition (59) is replaced by a restriction of
 

the type
 

where k1 and k2 are given numbers.
 

The aproblemeofbglamante ednevalu& ehxiw4as: exbminedbin a
 

consIderably more general posing in studies [23,24,25], in
 

which the following restrictions, which determine the set
 

of possible distributions, are placed on the elements of the
 

mathematical expectancy E=CE( ) , . .. ,E(Cj) ]hand the covari­

ation matrix D()=(Dij) of the errors. 

IE('Q,)I ! M- , (60) 

J3~3Vz,0LJ Z + i., (69) 

where Mi. D*., and ij'a 0 (ij=1,...,n) are given numbers. 

In place of condition (61), one can examine the following 

restrictions, placed on the dispersion D(cj) and the coeffici­

ents of correlation K(,Cj, ) 

where 6i, K*., and Wij >0 (%';j, ,j=1,...,n) are given numbers. 
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The following magnitudes are utilized as guaranteed
 

characteristics of accuracy
 

Two variants of the criteria of optimalness are examined,
 
utilized during the selection of a strategy S of the solution
 

of the examined problem in the set E of possible strategies.
 

In the first variant, we are searching for
 

VnKNuro rgugl USi guj. 6 4 ) 

In the second variant, the following is found 


imig .I.d, = .p(sl (65) 

y gfl'3 gmCIti& 

Here, P ua4S the guaranteed value of the mathematical 

expectancy of the square of the error 6k, Huar is the guaran­

teed reliability of the.realizat1en of the inequality I zI.< 
9is the permissible maximum error of evaluation of , and
 

P(") is the probability of realization of some event.
 

The first of these variants does not require any sort 

of assumptions on the distribution of the errors 6k. In 

order to utilize the second variant, it is necessary to have 

this distribution as a given. If it is normal, then one can 

write that, with mguar 51I 

Hr~zp - C, (66) 

where
 

It is easy to assert that the posings of the problem used
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in paragraphs 2 and 5 of the present study are particular
 

cases of the general posing given here. Actually, assuming
 

that, in expressions (60) and (61),
 

i =0, I I) ,..,?% 

and taking into account the fact that, here, mgmUr=0 and 

2=Dguar=D(6), we obtain the' classical posing of the problem, 

which underlies the method of least squares.
 

On the other hand, assuming that
 

and making use of the magnitude kua -mhxl 68 I as the character­

istics of accuracy, we obtain a posing of the problem which 

leads to evaluation according to an "upturn". 

Thus, the posing of the problem given here makes it
 

possible to construct a broad spectrum of solutions of the
 

problems of evaluation, which include the method of least
 

squares and evaluation according to an "upturn" as specific
 

cases. The selection of one variant or another within this
 

spectrum depends on the existing information on the mathe­

matical expectancy and the covariation matrix of the errors C,
 

as well as the required reliability of the solution of the
 

problem of evaluation.
 

With the aforementioned assumptions (60) and (61) or (60)
 

and (62), the following basic results were obtained in studies
 

[23,24,251.
 

A. For a random linear (or linearized) unbiased algo­

rithm of evaluation, the error 6L of which can be represented
 

in the form [1]
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where X=(XL,...,Xn) is some matrix with a ixn dimension, 

expressions are written down for the guaranteed character­

istics of accuracy mguarand Dgua which are the upper bound­

aries of the magnitudes of IE(6t)I andov(6z) in the set F. 

The first of these characteristics is strict in tbrmseof=(33), 

and satisfies the first of the equations in (63). As far 

as the second characteristic is concerned, we determine the 

conditions of strictness which are necessary and sufficient, 

and show that, in this case, it satisfies the second of the 

equalities in (63). 

B. For the case when the mathematical model (1) is 

linear relative to q, we examine the problem of construction 

of a linear unbiased algorithm of filtration and selection 

of a plan of measurements which are optimal according to 

one of the criteria of (64) or (65). It is shown that it 

comes down to the problem of quadratic (in specific cases- /38 

linear) programming, for which there is a numerical algo­

rithm of solution. Some properties of this solution are 

examined. Specificflilyy it is shown that, in the general 

case, the obtained evaluation is inconsistent. The conditions 

are determined under which the optimal plan of measurements 

is reduced to the accumulation of measurements at some finite 

number of points. 

The obtained results are naturally extended to the case 

when the mathematical model (1) is constructed based on the 

solution of the vector differential equation (43). 

As an example, we will examine the determination of 

the velocity v, based on model (17), assuming that the errors 

with restricted values of the dispersions and the coeffici­

ents of correlation are added to errors which satisfy the 

conditions in (44). Here, the set F of possible distri­
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butions of the errors C is determined by the following con­

ditions, imposed on the mathematical expectancies E( i), the
 

dispersions D(ci), and the coefficients of correlation
 

K(Ci, ) of the components i of the vector ,
 

where A ,O,w .C, 62 >0, and 1> K> 0 are given numbers.
 

Given in study [24] is the solution of the problem of
 

selecting a linear unbiased algorithm for constructing the

A 

evaluation of v with theuasskmptions in (68), and also
 

assuming that the number n of utilized measurements is given
 

(or restricted at the top). In this case, optimization is
 

carried out according to criterion (64). As a result, it is
 

shown that the optimal plan enviasges the conduct of all
 

measurements at two moments in time t1 and t2 . Here,
 

fls'fl 
 -T4X (60o) 

where Tq is the total duration of the interval of measurements,
 

ni are the number of measurements at the moments tv,-xv are
 

the sums of the coefficients xi of algorithm (45) of evalu­

ation (i=1,2), which correspond to these moments, and
 

Here 

irL i4YAarAa4 A) (71) 

We will compare the obtained result with the evaluation
 

according to the method of least squares, with uniform distri­

bution of the times of the measurements in the closed interval
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[_ T (72) 

where T is the given duration of the interval (72). 

Given in [24] is the asymptotic expression, corresponding 

to this case, for Patwhich is correct with a sufficiently 

large n 

r-u :9(r + wt l a 

The minimum of this expression is achieved with the con­

dition (57). Here, Ogua31.06frain fgualwhere the magnitude of 

min a is determined by expression (71).
E gua 

Thus, the switch from the optimal algorithm of fil-

tration to the method of least squares, with uniform distri­

bution of the times of the measurements, impairs the magni­

tude of a only slightly. However, this result is achieved 
gua a 

only with the correct selection of the duration of the T­

dimensional interval. It is evident from (73) that the 

deviation from condition (57) in one direction or the other 

may lead to a sharp impairment of the guaranteed accuracy of 

evaluation of v. 

/40 

Given in [251 is the solution of this very same problem 

with replacement of condition (64) of opti-malness by con­

dition (65). Here, the law of distribution of errors 6k 

is assumed to be normal. The optimal plan, obtained as a 

result, also provides for the conduct of all measurements 

at two moments in taimett1 and t2 . Here, 

t'r 21h4 h~,:~± 

where T, is the optimal duration of the interval of measure­

ments, for the determination of which a numerical algorithm 
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is given. Also compared are the values of the maximum
 

errors cZ, at which an identical guaranteed reliability Htiar
 

determined by expression (65), is provided. It is shown that,
 

in the examined problem, with H -'O.999, the switch from the
 
guar
 

criterion in (65) to the criterion in (64) entails an increase
 

in the maximum error of no-more than 17%.
 

Thus, with the assumption of the normalcy of distribution
 

of the evaluation of 6U, optimization according to the cri­

terion in (65) makes it possible to somewhat improve the
 

preciseness of the value of the maximum error ca with a
 

given guaranteed reliability (by comparison with the utili­

zation of the criterion in (64)).
 

With random distribution of the errors 6k, the magni­

tude of Pa, determined by expression (64), sufficiently 

guar 
 A
 

completely characterizes the accuracy of evaluation of 2.
 

Specifically, in this case, it is associat&d with the
 

guaranteed reliability Iu and the maximum error by the
 

following relationship, which follows directly from Tchebycheff's
 

inequality [2]
 

I-U2 (74) 

Therefore, in the examined example, expression (71)
 
A
 

characterizes the maximum accuracy of evaluation of v, with
 

a given number n of measurements. Hence, making use of (70)
 

and assuming that n-, we find the magnitude 

ft 7 guar 

which determines the precise lower boundary of P in the
 guar
 
set of all linear unbiased algorithms of evaluation with a
 

random number n of measurements. This magnitude determines
 
A 

the best information content of the evaluation of v, inherent
 

4o
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in the given problem. 'This'magnitude depends on the parameters
 

-, k, d, and A, which are part of condition (68) and deter­

mine the set Fof possible distributions of the errors
 

It is evident that-the equality
 

is aenpeesgryndduafftieientcoonditioncefif the possibility of
 

constructing a consistent linear unbiased algorithm of evalu­

ation. This equality may occur with one of the following
 

conditions:
 

A. fw=O, kdj0, A0O-. From dependences (69) and (70), it
 

is evident that, in this case, consistency is achieved be­

cause of the unrestricted increase in the duration T of the /42
 

interval of-measurements.
 

B. w #0, kd=Q, A=O. Consistency is achieved because of
 

the fact that To-0.
 

C. w =0, kd=O, A=0. Consistency is achieved with a random
 

T. only because of the fact that n-00. We will note that a
 

specific case of this condition is the simultaneous'ful­

fillment of equalities =k=A=,P. If, in this case, one re­

places inequalitypb(c)< d2 with equality D(Ci)=d2 , then
 

the dependences in (68) are transformed into assumptions
 

which lead to an algorithm of evaluation-according to the
 

method of least squares.
 

Thus,, in the examined problem, a consistent evaluation
 

can only be obtained in dome idealized phrticular cases, which
 

almost never take place in practice.
 

With kd=O, the righthand portion of equality (75) coin­
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cides with the corresponding expression (50), obtained on
 

the basis of restriction according to an "upturn:.
 

We will examine also the case A=0. Here, expression
 

(75) takes on the form
 

Thus, with a=0 and assuming the random correlation be­
lit 1/2

tween the components of the vector of the errors, k=tzot
 

With restriction of the moduli of the coefficlentssof corre­

lation of the magnitude, the value of X diminishes in pro­

portion to k Y4.
 

It is evident from the examined example that the guaranz
 

teed accuracy of evaluation depends substantially on the re­

strictions which determine the set F of possible distri­

butions of F( ). Here, the placement of more rigid restric­

tions makes it possible to improve the guaranteed evaluation /43
 

of accuracy.
 

7. Statistical Simulation of Problems of Evaluation
 

The above-described methods for solving problems of
 

evaluation have strict mathematical bases, which are based on
 

some assumptions about the ideal mathematical model d=d(q),
 

the set F of possible errors , and the set E of permissible
 

strategies of the solution of the problem. In the general
 

case, when these assumptions are not fulfilled, one can use
 

the method of statistical simulation, which consists of the
 

following.
 

We will examine problem (1) with some given d=d(q), F, 

and E. We will be given the algorithm of q=qjd) and the compo­

sition J of the measurements which belong to the set of per­
missible strategies. They can be obtained from the solution 
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of the strict problem, with some idealized assumptions, or 

found on the basis of heuristic considerations. In addition, 

we will be given the nominal value qo of the vector q. Making 

use of the generator of random numbers, and taking into 

account the condition F( )EF, we will construct a random set 

of vectors Qj (=1,...,N) of the errors, and the corresponding 

model set of measured vectors.d4=d(q)+ (j=,...,w). Then, 

we will compute the model evaluations of qj=q(34) and find 
their errors q=..-q ... ,. The statistical charac­

teristics of the set of these errors are utilized for the 

evaluation of the quality of the examined solution of the 

problem of evaluation. By carrying out similar computations 

for different compositions of measurements and algorithms of 

evaluation, one can select the optimal ones among them. Here, 

optimization can be carried out not only according to the 
A 

criterion of achieving maximum accuracy of evaluation of q, 
but also from other considerations (simplicity of the utilized 

/44 

algorithms, their rapid action, etc.). 

An advantage of this method is the possibility of Lits 

utilization for the most varied assumptions and criteria of 

optimalness. A shortcoming is the impossibility of obtaining 

mathematically strict solutions. Here, only the more or less 

'!jpausifble" results can be found (in the sense that it is 

understood in [27]). In spite of this,-the method of statis­

tical simulation is utilized successfully for the solution of 

applied problems of evaluation [28,29,30]. 

8. Conclusion 

It follows from the results given above that notable 

successes have been achieved in recent years in the develop­

ment of methods of evaluation, based on the assumption that 

the distributions of the errors in the initial data are not 

precisely known, and belong to some given sets. Here, the 
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basic progress has taken place in the following two areas.
 

A. It is assumed that the vecter of measurements d is
 

a set of a finite number of vectors di, which are identically
 
associated with the vector q of state. The errors which
 

correspond to these vectors are assumed to be identically
 
distributed and mutually independent. Also given is a set
 

F' @f possible distributions F'(Cj) of these errors, and we
 
seek an algorithm of evaluation, which possesses asymptotic /45
 
,effectivenesswith the "worst" distribution F'( j) in the set
 
F'. In this case, "worst" is understood to mean such a distri­

bution F'('j)sF' with which a minimum of Fisher information
 

is achieved. It is shown that algorithms constructed in this
 
way possess good stability with respect to interference,
 

caused by anomalous errorsC i. Methods are developed for
 

constructing similar ant&iinterference algorithms with
 
different methods of representing the set F'. The number of
 

such algorithms includes th&ZtethodLtf least moduli, which has
 

been developed in sufficient detail.
 

A shortcoming of a similar approach is the fact that
 
possible dependences between different vect6rs of j are
 

not taken into account in it, and neither are possible differ­

ences between the distribution of these vectors and the devi­

ation of their mathematical expectancies from the adopted a
 
priori values. This leads to consistency of the obtained
 

evaluations. From the theoretical point of view, the con­

sistency of the evaluation can be shown to be attractive, but
 
'inpractice, with the utilization of a sufficiently large
 

number of measurements, it leads to instability of the evalu­

ations of the accuracy of the obtained results. This, in
 

turn, may be a cause of obtaining unjustified and optimistic
 

evaluations of accuracy, as well as coarse errors during the
 

solution of problems of experiment planning.
 

B. The set F of possible distributions F(;) is deter­
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mined by some restrictions, placed on the values of the ele­

ments of the vector of the mathematical expectancy E( ) and
 

the covariation matrix-D() of the errors
 

A particular case of such an assumption is the restriction
 

of the area to which the errors ° may belong in the corres­

ponding vector space. With these assumptions, one can $ter- /46
 

mine the guaranteed accuracy of the evaluation of-q, obtained
 

using any linear (or linearized) unbiased algorithm of fil­

tration. Also solved is the problem of selecting an optimal
 

linear unbiased algorithm of filtration and constructing
 

the corresponding optimal plan of the experiment. Here,
 

utilized in the capacity of a criterion of optimalness, is
 

either the achievement of a-minimum of the guaranteed mathe­

matical expectancy of the square of the error 6k in the
 

evaluation of k of sdme scalar parameter P=6(q), or a maximum
 

of the guaranteed reliability of the fact that 6p <2, where
 

2; is the given maximally-permissible error in the evaluation
 

of k. This problem comes down to the well-developed algorithm
 

of quadratic (linear) programming. Its solution is equiva­

lent to the search for an optimal weighted matrix during <in
 

evaluation according to the method of least squares. Such
 

a method is successfully used to obtain reliable guaranteed
 

evaluations of the accuracy of the magnitude of 4 with given
 
possible spreads of the mathematical expectancy and the co­

variation matrix of the errors in the initial data, as well as
 

to construct the corresponding optimal algorithms of evalu­

ation and plans of the measurements.
 

As shortcoming of such an approach is the fact that the
 

problem is solved in a set of all possible linearunbiased
 

algorithms of evaluation. This is equivalent to the assump­

tion of normalcy of the distribution of the errors C. As was
 

indicated above, this is the cause of the strict dependence
 

of the accuracy of the obtained evaluations of interference
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evoked by anomalous measurements. In addition, it should be
 
kept in mind that the solution of the above-indicated prob­

lems of optimization depends on the selection of the para­

meter £=Z(g), the accuracy of which we are interested in.
 

Therefore, if the necessity occurs of optimizing the accu- Z4?
 

racy of the evaluations of several parameters_£d=Zj(q)
 

(j=1,...,k), then, in the general case, it is necessary
 

to construct several algorithms q$rqj(d), each of which
 

optimizes the guaranteed accuracy of the corresponding evalu­

ation. We will note that, in a number of specific cases,
 

it is possible to successfully find the universal optimal
 

strategy of solution of the problem, which only slightly
 

impairs the accuracy of the evaluations of £j (j=1,...,k),
 

as compared with their best achieveable accuracy.
 

Unfortunately, not a single study is known to us which
 

would unite both of the above-indicated approaches and solve
 

the problem of optimal guaranteed evaluation, with simul­

taneous regard for the possible spreads of the types of
 

distribution of F(), the possible dependences between the
 

distributions of the probabilities of different comjonents
 

of the vector C, and the spreads of their mathematical
 

expectancies. The solution of the examined problem, with
 

such general assumptions, is obviously a matter of the future.
 

While such a general solution has not been achieved, one can
 

recommend the following sequence of anti-interference guaran­

teed evaluation.
 

A. Found in the first stage is the preliminary evalu­

ation of r' for which the algorithm q=j(d) is utilized,
 

which possesses sufficient interference-resistance. As a
 

function of the nature of the possible interference, this may
 

be either the usual method of least squres, or one of the non­

linear anti-interference algorithms of evaluation (for example,
 

the method of the minimum of the moduli). Processing of the
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available anomalous measurements is carried out based on the
 

obtained result.
 

B. The-mathematical model (1) of the problem is linear­

ized relative to the found approximate value of qo=qpr, and c /48
 

one or several optimal linear unbiased algorithms qjqj(d)
 

are constructed, which provide the best guaranteed accuracy
 

of the evaluations of thegkiven parameters £0
j-j(q) (j=1,...,k).
 

A similar method for solving the problem of evaluation
 

is considerably more timeOcDnsuming than the normal method
 

of least squares. In addition, it requires detailed pre­

liminary analysis of the possible errors C for the correct
 

selection of the set F of possible distributions of these
 

errors. However, for the solution of sufficiently vital
 

problems and the utilization of modern computer technology,
 

it may be considered fully justified.
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Figure 1 
Dependence of the Guaranteed Value of Pguarof the Square

of the Error of the Arithmetic Mean on the Number n of 

Measurements
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Figuire 2A 
Dependence of the Dispersion D(9) of the Evaluation 

of the Velocity on the Number n of Measurements 
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