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A CONTEMPORARY APPROACH TO THE PROBLEM OF DETERMINING
PHYSICAL PARAMETERS ACCORDING TO THE RESULTS OF MEASUREMENTS

P. Ye. El'yasberg

Compared in the study are different approaches to prob- [2#
lems of determining (evaluating) some physical (biological,
economic, etc.) parameters according to the results of
measurements. Shown in the simplest examples are the short-
comings of the classical approach, which givés rise toutheseirethod
of maximum probabilityeand its various modifications (method
of least squares, optimal filtration, etc.), with which the
distribution of probabilities of errors of the initial data
is assumed as given. Also examined is the approach to the
problems of evaluation, used in recent years, when the dis-
tribution of errors is considered unknown, and only some
set, ©oiwhithlthissddstribution belongs, is given.

The basic results, obtained with this assumption, are
described. It is shown using examples that these results
are devoid, to a considerable extent, of the shortcomings
inherent in the classical approach, and this approach is
closer, in its nature, to the practice of solving problems
of evaluation.

1. Posing of the Problem /3

With the processing of great masses of information
(during processing of data of space and land physical experi-
ments, in geodesy, during the solution of a number of bio-
logical problems, in economics, during the determination of
the initial data for controlling the movement of various
systems, etc.), 1t is often necessary to solve problems of

*Numbers in the margin indicate pagination in the foreign text.



,

determining some physical (bioclogical, economic, etec.)
parameters according to the results of measurements.

We will use a={qys..: qp} to designate the vector of
the parameters which are to be determined, and d={dis...,dyt
to designate the vector ofi the measured magnitudes. Theref
occurs the relationship ny m between the number m of the
parameters being determined and the number n of the magni-
tudes being measured. With n=m, it can be said that the

problem is solved according to a sufficient number of measure=

ments, and with n™m, according to a surplus number of measure-

ments. We will absume that there is some mathematical model

of the phenomencniim question, which makes it possible to con?
struct a dependence oftthe type d=d{g). Then, the following
dependence exists between the measured value of 5‘of the vec-
tor d and the vector q:

{dzc;l(q’“‘? W

1

where g;={z.,...,xn} is the vector of the total errors of

"measurement in the model d=d(q) .

With these designations, the problem amounts to deter-
mining the so-called evaluation § of the vector g, according

to measurements of d using some algorithm of evaluation a=q(a).

The purpose of this algorithm is the potential elimination of
the effect of the errors . With a surplus number of measure-
ments (n>m), the problem of congtructing an algorithm of evalu-
ation, generally speaking, is not similar. Therefore, the
problem occurs of selecting an optimal algeorithm., Different
criteria of optimalness may be examined (rapidity of calcu-
lation, simplicity of algorithm, etc.). We will subsequently
proceed from the conditions of achieving maximum accuracy and




stability of evaluation of §.

Along with the problem of finding the magnitude of
§4=4¢a), it is of great significance to evaluate the accuracy
of the obtained result. This is important, for example,

during +the comparison of results obtained on the basis of
different mathematical models, and according to different
meagurements, as well as in those cases when the found
magnitude of € is utilized for purposes of controlling the
movement of some system (for example, for control of the
flight of a spacecraft).

We will subsequently call all of the problems examined
here problems of evaluation.

2. Classical Approach to Problems of Evaluation

The construction of the optimal algorithm a=§(a) and the
evaluation of the accuracy of the obtalned magnitude of g de-
pend substantially on the adopted assumptions on the error ¢,
which is part of the right side of dependence (1). Waewill
call the set of these assumptions the model of errors in the
future.

Fa

With the clasgsical posing of the problem, £ ig viewed
as a random vector with a density of probabilities F(Z,p),
given with an accuracy of up to some vector p={p1,...,pK} of
the parameters of distribution. In this case, the evaluations
of @ and P are found using the so-called method of maximum
probability, which consists of the search for the minimum of
the function of probability ¢(q)=F[a—d(q)]. In other words,
in this case

~
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Assuming that the distribution F(z) of the vector of ¢
is normal with a given mathematical expectancy and a co-
variation matrix D(z), which is known with an accuracy of
up to some positive multiple ¢°, the method of maximum
probability is reduced to the method of least squares. 1T
E(r) is given, then one can always reduce the problem to &
form in which E(g¢)=0 [1]1. Thus, the problem, according to
the method of least squares, is solved with the assumption
that

" F(3=N(ostL), )

where ¥[E(z), D(z)] is the known expression for the density
of a multiple normal distribution with given mathematical
expectancy E(r) and covariation matrix D(gz), and I is the
given positively-determined matrix.

By making use of dependences (2) and (3), we obtain an
algorithm of evaluation according to the method of least
squares [1].

- o— e
¥

ei(:ar.am;n[&-dcq,)]‘l:‘[&"-dmy)], @

We will note that, in the literature, the method of
least sguares is often understood as algorithm (4) in that
case when the matrix I is diagonal. However, we will pro-
ceed here from the more general determination (4) of this
method.

The methods of maximum probability and least sguareshhave
a long history. The method of least squares was first devel-
oped by Gauss in 1794. TFor nearly two centuries since this
time, this method recommended itself well for the solution
of various problems of celestial mechanics, geodesy, experi-

L



mental physics, and other sciences. The widespread dissemi-
nation of the indicated methods in the common form, as well
as in various modifications (method of a maximum of empirical
probability, Kalman's filter, method of optimum allocaﬁibﬁlhetcl3}wi )
evoked theeihténtelrntérest of a number of leading spégialists

in the area of mmathefaticali statistics. Their labors ufdder-

lay the conducting of a serious mathematical investigation

of these methods, in which it was shown that they possess a

number of appreciable optimal properties [2]. These proper-

ties have an asymptotic nature, i.e., they are demonstrated

with a number of measurements n=ec. In this case

-the mathematical expectancy of error 6g of the evalu-
ation of § approaches zero (asymptotic empiricalness);

-the dispersions of all of the components of the error &g
approach their minimum values in ahgrea¥tthumbérfoflaldfofhthe
possible empiricalna?gorithms of filtration (asymptotic /7
effectiveness);

~-the distribution of the errors of the obtailned evalu-
ations approachesﬁhbrhaﬂﬁ%?@@ﬁ@%bii@?ﬁb@ﬁéigy)L

-the evaluation of ¢, with some additional agssumptions,
coincides, in probability, with the true value of ¢ (con-
sistency) .

We will note that the effectiveness of the method of
maximum probabllity, strictly speaking, does not hold for all,
but only for "nearly all" of the true values of the wvector ¢.
In a great number of these vectors, so-called supereffective
evaluations may exist [3].

In addition, the indicated properties are usually proved
with the assumption that the vector g may be presented in the
form of a set of mutually independent and equally distributed
vectors., If this condition is not fulfilled, then some of the
indicated properties may not occur. Specifically, in this
case, the evaluation according %o the method of least squares



may be inconsistent [1,47.

The following practical conclusions are usually drawn
from the indicated properties of the examined evaluations:

—any enlistinhgn fior the solution of the problem,odf
additional measurements is useful, since it leads to improve-
ment of the accuracy of solution of the problem;

-by increasing the number of utilized measurements with-
out restriction, one can obtain as high an accuracy of evalu-
ation of € as 1s desired:

The indicated theoretical properties of the evaluations
of the maximum probability evoked in the experimenters and
processors of information a striving to enbisicagtmanyomoréon
méasurehentseistpossibhénfsrtthe solution of problems of the
examined type. Discovered for this purpose in recent years
were greater possibilities, determined by the rapid develops
ment of measuring and calculating technology. Many thousands
of measurements are uti#lized in a number of critical problems.
However, in practice, it turns out that an unrestricted in-
crease in the number n of measurements does not provide the
degired effect. Beginning with some n, the accuracy i prac-
tically ceases to increase, often beginning to worsen. 1In
this casge, it turns out that "the evaluations of the accuracy
¢, obtained on the basis of the theory of the methods of maxi-
mum probability and least squares, are unjustifiably opti-
migtic. The latter circumstance is especially intolerable
dur;ng the solution of critical problems (determination of
basic physical constants, comparison of results obtained on
the basis of various mathematical models, determination of
initial data for the control of movement of different systens,
etc.) .

1

The indicated circumstances are well-known by many re-



searchers, who are practically occupled by questionsof
processing great masses of information. In them, a sense

of distrust has long been rooted towards the evaluation of
the accuracy obtained on the basis of the theory of the
methods of maximum probability and least sguares. This

lack of correspondence between the theory and practice may
be explained only by deviations of the real conditions of
the experiment from the assumptions utilized duping the con-
struction of the methods of maximum probability and least
sguares {since the theory of these methods is mathematically
strict) .

As is evident from expressions (2), (3), and (4), the
algorithms of evagluation, according to the examined methods,
depend substantially on the distribution F(z) of the errors
. During the construction of these algorithms, it is neces-
saryythat this distribution be given in advance. With a devi-
ation of +the actual distribution F(t) from the adopbted distri-
bution, the optimal properties indicated above do not occur.
We will elucidate this fact in examples.

We will examine the problem of determining some scalar
magnitude of g, according to its measured values of

a:i{2=1,...,n). 1In this case, dependence (4) takes on the form
"

di=gu¥, (Lxl,...,n) . (5)

During construction of the algorithm of evaluvation, we
will propose that the errors ¢<(i=1,...,n) are distributed
normally, with zero mathematical expectancy and a dispersion
¢®. In this case, the correlation between the different errors
is absent. Then, ekpression (3) may be written in the form

TFOpeNGETD) (6 .



where I ig a unitv matrix.

With these assumptions, algorithm (&) of evaluation,
according to the method of least squares, 1s reduced to the
gsearch for the arithmetic mean

@""i‘iasr (3)

n iz4

We willl designate the error in the obtained evaluation
by 6q=§—q, and adopt the following magnitude in the capacity
of the characteristic of accuracy

EANEGHR

where E(8%°%) is the mathematical expectancy of the square of
the error &q. ’

We will utilize B. to designate the value of B with the
utilization of algorithm (7) and assumption (6). It is easy
to show that

e
J’““"\ra' . (8)

From expression (8), it follows directly that

f;f;"};} peo, )

i.e., evaluation (7), with assumption (6), is consistent. In
this case, an increase in the number n of utilized measurements
always leads to an increase in the accuracy of evaluation of a.

We will now assume that assumption (6) is actually not
satisfied, but we will continue to utilize algorithm (7). ILet

8



the errors g4, 1in actuality, be represented in the form

1 [} - 1

¥.=% +50 (i=f,...n), {10y
where ;é are the errors of the model d=g, and E; are the errors
in the measurements.

The errors £} occur because of the fact that the measured
magnitude of d is not constant in actuality, but changes
according to some law. Suppose that the only thing that we
know about this law is the fact that the rate d of change in
d is restricted according to a modulus, i.e., |dlg v, where v
ig a given constant. We will adopt the value of 4 at the
initial moment in time t=0 as the parameter of ¢ being evalu-
ated. We will assgsume that the measurements of d are carried
out at the moments t£=ijt(j=0,i,...,n“1), where T is the

2
given spacing of the change in the time of the measurements

(here, we will 1imit ourselves to the case of unevenesg of the
number n of the measurements). With these assumptions

- N s am s o mevmeas - a

Jelejov (j=ot,... 5% (14) /i1

As far as the errors f j in measurement are concerned, we
will agsume that their mathematical expectanciesaare equal to
zero, the dispersions D(;E) do not exceed the given magnitude
of n;x, and the coefficients of correlation K{t},z2) (1 #t4)
do nod gxceedvtheegivérKvalle of)K (TKdrg IhekiMhenseusilizing
dependences (10) and (11), we find that the mathematical
expectancies E(ci)’ the dispersions D(z;), and the coefficients
of correlation K(¢;,Ce) of the errors ¢; satisfy the in-
equalities -

| |E (%}] ¢ jtv,ﬁb(fa)és,’:m,]K(‘gi,‘gt)ign(m.), 2)



Comparison of models (6} and (12) of the errors shows
that the former assumes a sufficlently complete knowledge
of the distribution of the errors £, while the latter imposes
only slight restrictions oA the characteristics of this dis-
tribution. Such an approach is considerably closer to the
real conditions, under which applied problems of information
processing are solved. In this case, 1s does not secem
possible to determine the accurate wvalue of the magnitude of
B. However, itsis possibille to find its so-called guaranteed
value

max B, {13)

.
B ey

. ——— — - ——— — e — -

where max appears in the seb Eipfoall of the disthi-dizn -
butions which satisfy the conditions in (12).

Making use of dependences (5) and (12), one can show
that during the determination of the evaluation of g, using
algorithm (7)

ﬁgll;l'g‘mn’ 1%‘5- + K+ %’R {h-%)z 5 (14)

o

where y=a¥L—.
frax
1t is evident from expression (14) that, as a function
of the values of the magnitudes of K and v, %uar either in-
creasesg monotonously with an increase intihe number n of
measurements, or diminishes at first, reaches some minimum,
and then begins %o increase, With y=0, the minimum is not

reached for a finite n. In all cases

. &;ﬂ - SmmWith T:’O » 145}

hfhguar oo Wi.th T¢0 .

- - [ R U -
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Depicted by the solid line in figure 1 is the graph of
the dependence of the ratio Bgum/dmax on n with K=0.0L, y=0.01.
The dotted line 1in this same figure depicts the graph of the
dependence B./d on n, calculated according to formula (8).

T4 ig evident from the given results that, with the
assumptions in (12), ewmaluafion (7) proves inconsistent
(one can show that, with these assumptions, it is generally
impossible to construct a consistent evaluation). With y#0,
there exists some optimal number nopt of utilized measure-
ments. With n.knbpt, any increase in the number n leads to

impairment of the accuracy of the evaluation of g.

Thus, the switch from model (6) of the errors to model
(12) fundamentally changes the nature of the dependence of
the evaluation of the accuracy of the magnitude of ‘G on the
number n of utilized measurements. In this case, model (12)
ensures obtaining of results which are considerably closer /13
to practice in the processing of measurement information.

From (8) and {15), it follows that if at least one of
the magnitudes of K or vy#0, then

lim P U3z 0 , (16)

Thus, with as small a deviation from the ideal model (6)
as desired, and a sufficiently great n, expression (8) dees
not at all. characterize the actual accuracy of the evaluation
(7). This phenomenon we will subsequently call the instability
of the magnitude of Bo, according to the basic assumptions. 1In
practice, some deviations from model (6) are unavoidable.

Therefore, expression (8) may be utilized only with small n.
With sufficlently large n, it is necessary to switch to a model
of errors which takes into account the potential spread of

the characteristics of distribution of the vector r in prob-

11



lems of evaluvation of the accuracy of the magnitude of a and
the selection of the optimal composition of the measurements.
In this case, evaluation (7) proves to be biased and incon-
sigtent.

In thetcapacity of a second example, we will examine the
problem of determining the velocity v of the change in some
magnitude d at the initial moment in time t=0. Here, we
will make use of the linear model

dicdsvti«%  (i=,... 1), 5D

R [ — [ —

where d; is the measured value of d, a is some constant, tf
ig the time of the measurements, and s is the error.

We will assume that the moments t3F are determimnediby b
the expressions

b=t (3=4,... ,%—), {18)

where T ig the given time.

By solving the problem by the method of least squares,
with assumption (6), we find the desired evaluation:

- =2 t;c’{{/gt“ A {19)

The dispersion of this evaluation with assumption (6) is

M= ool .
2.0 LR ﬁ (20)

I [T a:i

We will note that

12
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h-pan

. {21}

From here, it follows directly that

U..m N(P) = 5'32

o0

. (22)

Thus, although the magnitude of DO(G) diminishes with
an increase in the number n of measurements, it has a lower
boundary which is not equal to zero. Therefore, svaluation
(19), with assumption (6}, proves inconsistent. This is
assoclated with the selection of the time of the measure-
ments (18).

We will now assume that the errors r; are correlated

among themselves. Here, the coefficients of the correlation
are

| .

Kiypgh tidte |, t 170

K(§1,§g) = { i (23)
sz,ifh tt't-t < 0

b

where k; and k, are given magnitudes, which satisfy the con-
ditions

POKYK,, Kes 1% 0, (ke | Ike] ¢4 (24)

One can show that the correlation matrix made up of these
coefficients is positively definite, i.e., the conditions in
(23) are correct.



With proposal (23), and the assumption that D(Ci)=
¢*{(#=1,...,n), the dispersion of evalution (19) is deter-
mined by the expression

Nty

r i 1 I
B -k, Reke | 22

| &; =1+ z (,.'; ) > 25)

| B Lz"'f—-aj T \TR } (

I

Then, making use of the inequality

w/y )
Z'%' —g-m). (26)
‘ e e
we find that
SN
| "’b,*(u)ﬁ"r Era P—“(z t) (23)

From here, it follows directly that

. b -’;D(U)“m @8)

oo

Depicted in figure 2 by the solid line is the graph of

Fs b=
the dependence Oi'D;(@)%%; on the number n, assuming that

k3=ko=0.1. In the same figure, the dotted line depicts the

' ~ 2 .

graph of the magnitude of Doh))j%;, calculated according to
o]

formula (20).

Thus, in this example as well, the enlistment of additional
measurements leads to an unrestricted increase in the error
of the measurements. Here,

Bim D,(8)/D, (7Y = = /16

| newos
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i.e., expression (20) proves unstable with any k,-k %0,.mo
matter how small.

Apparent in the given examples is a sharp increase in
the effect of small correlation dependences between the conm-
ponents of the vector i with an increase in the number n of
these components. This may be illustrated on an example of
the calculation of the dispersion of the sum of the compon-
ents of the vector ¢ :

D(L5)= gi{(g‘,g,) \EXCRE T

The total number of diagonal terms in the right-hand
portion of this dependence is equal to A, and the number of
nondiagonal terms, assocliated with the presencer of corre-
lation connections between the components of the vecter, is
equal to -n(n-1)}. Therefore, the coefficients K(Ci’ Ci) of
the correlation on the order of 1/n may have a substantial
effect on the examined expression. With K( ., £ .) on the
order of n~ - (0<a<l), their effect becomes dezisi$e.

The instability of the classical evaluations,oflraccuracy,
shown>inpthe ,examples, has a general nature. One can prove
that, if the distribution F(Z) of the errors ¥ is selected:so
that the corresponding evaluation of the least sguares (maxi-
mum probability) is theoretically consistent, then, with
sufficiently general assumptions, the classical evaluation
of accuracy of the obtained results proves to be unstable in
the sense indicated above. Thusg, the theoretical consistency
of the evaluations of the maximum probability and the least
squares not only is not accomplished in practice, but also
leads to inconsistency of the evaluations of accuracy with
possible deviations from the adopted distribution F(g).

As is common knowledge, it often turns out in practice

15



that some percent of the measurements is burdened with large
errors, which occur from the adopted distribution F(g).
These measurements are usually called anomalous. The method
of least squares, based on the assumption of the normalcy of
the distribution F({), is especially sensitive to similar
measurements. )

In the capacity of an example, we wi.l examine the
solution of problem (5) using algorithm (7) of +the method
of least squares. We will assume that, among n measurements
of d;{(%=1,...,n), there is some number m of anomalous
measurements, which have the same error gi=A((§=l,...,m).
The errors of the remaining n-m measurements are distributed
according to the law in (6). Then, the evaluation ¢, deter-
mined according to formula (7), will have the additional error

8409 PR p= (29)

assoclated with the presence of anomalous measurementits.

It is evident from comparison of expressions (8) and (29)
that, if there exists such ane >0 that the inequality p>f
takes place, irrespective of the number n, then, with a
sufficilently great n, the additional error (29) becomes de-
clsive.

We will compare the obtained result with the solution of
the problem according to the methed of a minimum of moduli,
with which the evaluation of ﬁ'is sought from the expression

31,'{“‘3 m‘in Z ld.,-q/[.

(30)

Ag is common knowledge, here, the algorithm of evaluation
ig reduced to the search for the selective median of the set

16



of numbers ai (3=1,...,n), i.e., the magnitudes of q for
which the number of measurements of 3i,'which satisfy the
inequality ai g&, is equal tohﬁhe number of measurements
which satisfy the inequality déé 4§ [5]. The additional
error 0,44€ of this algorithm, associated with the anomalous
measurements indicated above, may be found from the equation

e S

0 m e |
‘5; L{'('t)d.‘ttm :_-'—1"13 [

. oy
where TUJin%é?lg, is the normed density of the normal

distribution. ~

The approximated solution of this equation, with a
sufficiently small p, gives

Sq19 = pSVE . &9

It is evident from comparison of expressions (29) and
(31) that the additional error of the method of least squares
is proportional to the magnitude A of the anomalous error,
whereas the additional error of the method of the minimum of
moduli does not depend on this magnitude. Therefore, with
A>>g, the second of these methods proves considerably less
sensitive to ancomalous errors of the examined type.

The strong dependence, shown in the simplest example, of
the evaluations of the method of least squares on anomalous
errors in measurements has a sufficiently general nature. It
is associated with The principle of minimization of the quad-
ratic form from the vechor of discr'epancies.I Therefore, in
practice, during evaluation according to the method of least
squares, as a rule, one makes use of different empirical and
gemiempirical method of preliminary purification of the
measurement information from coarse anomalous measurements.

/19
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3. Contemporary Approach to the Problems of Evaluation

The aforementioned shortcomings in the classical
methods of evaluation are determined by the fact that the
actual distributions F(g), which are part of dependence (1)
of the errors, differ from those used during construction
and analysis of algorithms of evaluation. One of the methods
of overcoming this circumstance consists of numerous attempts
to make the distribution F(z) more precise, according to the
results of measurements (so-called adaptive algorithms of
evaluation). Although a number of interestiné results is
obtained in this way, its possibilities are limited. Even
if we limit ourselves o finding the mathematical expectancy
E(g) and the covariation matrix D(Zz), with simultaneous
searching for the evaluation of a={qi,...,qm}; then it will
be necessary to determine a total of -8 ,m| scalar magni-
tudes,atecording-soznzmeasurements of the components of the
vector 4. Apparently, this is impossible, since the number of
determinable magnitudes coﬂsiderably exceeds the number of
measurable magnitudes. Therefore, all of the existing adap-
tive algorithms of evaluation are based on sufficiently
strict assumptions on the form of the distribution F{(r). The
most widespread is iits Tepresentation in form (3), with a _
fixed matrix L. In this case, the adaptation amounts to the
search for the most sultable value of the factor d®. It is
evident that, in this posing of thepprvoblem, all of the afore-
mentioned shortcomings of the method of least squares remain
in force.

A principally new approach to the problem of evaluagtion
consists of rejecting the representation of the distribution
F(z) and replacing it with some set F , which includes the
possible distributions of the vector r. We will use ¥ to
designate some scalar characteristic of the accuracy of evalu-
ation of Q. For definiteness, we will conslder that any in-

18



crease in the accuracy of a corresponds to any decrease in W,
Then, in the capacity of a guaranteed characteristic ¥ gygyof

the accuracy (6), we will adopt its upper boundary in the set
F s i.e., the magnitude which satisfies the inequality

N¢ Wouar with F(¥)e T, (32)

If Nguals an accurate upper limit, then we will speak
of a strict guaranteed characteristic of accuracy. In this
case

Jrgu‘a.x'? :’&g)e%( . (33)

The gearch for a minimum of the strict guaranteed charac-
teristic of accuracy serves as a criterion of optimalness in
problems of selecting a strategy of evaluation (i.e., the
choice of an algorithm of evaluation, a plan of measurements
and a mathematical model of the system beingpexamined). Here,
the optimal strategy aﬁﬂ is found using the dependence

- ]
= arg min; sup JY (34)
Sopt deest s

—_—

where the minimum 1is sought in the given set X of permissible
gtrategies S.

We will note that the advisability of a similar approach
o problems of evaluation was evidently clear even to classical
gscholars of mathematical statistics. However, the algorithms
of evaluation based practically on this approach began to
be created only in the middle of the 1960's. This is explained
by the following reasons.

A. In recent years, requirements have sharply increased
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for efficiency of evaluation and reliability of determination
of the accuracy of obtained results. This is assoclated with
the fact that evaluations of the parameters of physical
phenomena are being used ever more widely during the solution
of important applied problems (such as the control of move-
ment of different systems, the determination of basic physical
constants, etc.).

B. The switch to automatic methods of processing of
measurement information on computers made it especilally in-
tolerable to utilize different empirical and semiempirical
methods of information processing, based on the intuition of
the researcher and requiring repeated intervention by man
into the operation of computers.

C. The constant improvement of measurement and computer
technology has stipulated the possibility of a sharp lncrease
in the volume of measurement information utilized during
evaluation. However, in this case, the effect of the indi-
cated instability of the classical results is manifested
especially strongly.

D. The utilization of modern computers and the algorithms
of optimization developed in calculations for these machines
has revealed the practical possibility of solving sufficiently
complex problems of the type of (34) 7

It is evident from dependences (33) and (34) that the
solution of problems of evaluation, based on the approach
indicated above, depends substantially on the type of set F
of possible distributions of F(z), as well as the utilized /22
characteristic of accuracy gfimiéﬁﬁ the mathéifatical medel (1).
In this connection, there is not asgeneralemethofofor solwing

these problems at the present time. However, for individual
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specific cases, sufficiently far-reaching results have been
obtained, and effective numeric algorithms have been developed.
A brief description of these results is given below.

b, Anti-Interference Evalugation

As was indicated above, one of the shortcomings of the
method of least squares is the great effect of anomalous
measurements on the accuracy of the obtained evaluations.

The presence of this shortcoming, as well as the necessity
of a new approach to problems of evaluatlon, were indicated
in studiesg[7,8]. First proposed in study [9] was the method
of construction of anti-interference evaluation, and its
asymptotic optimalness was shown in terms of (34), for one
class F of possible distributions of F(Z), which are close
(in a certaln sense) to normal. This method was developed

in a number of subsequent studies. In study [107], it was
generalized to multiple regression problems. In this study,
as well as in [11]], they analyzed the dependence of the type
of anti-interference algorithm on the set F of possibleddis- -
tributions of F(z). One of the types of anti-interference
algorithms, namely the method of the minimum of moduli
(selective medians in a unidimensional case), was studied

in detail in studies [5,12].

A1l of the indicated studies are based on the assumption
that the vector d of the measurements is a set k of vectors

(in the specific case—scalars) dj (;=1,...,k), which are
identically associated with q. The vectors of the errors Cj /23
(7=1,...,k), which are assumed to be mutually independent

and equally distributed, correspond to these vectors in
dependence (1). Here, the magnitudes which are part of
equality (1) may be represented in the form

t i 'djq di(q) ?1 j
d= I dlgy= . 1 E=4 ¢ | (39
d. dia) ¥,
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where the function d'(q) determines the dependence of any of
the vectors (scalars) dj (j=l,...,k) on ¢-

In this case, the density F(g) of distribution of the
vector r may be represented in the form

.
i

F <§)=}ﬁ 'Y, 30 |

where F'(zj) is the density of distribution of any of the
vectors £ ( =1,...,k).

In addition, i% 1s assumed that the mathematical expec-
tancy is

, E(é‘gi)ze (5=t,...,x), OO .

Here, the condition F()eF is replaced by the condition
1 ’ . .
F(gYeF  (j=t,..., ®), (38)

where F ' is the set of possible densities of distributions
of the vectors ¢, ( =1,...,k).

The dispersion of the evaluation of any scalar function
of the vector q i1s utilized as the characterigtic ¥ of the
accuracy. in dependences (32)~-(34).

The essence of the examined methods of constructing anti-
interference evaluations consists of ‘thetfact.thaitwithing
the set F' ig selected the worst distribution of F‘(Cj) erF',
in which the minimum of Fisher information is achleved.
Constructed for this distribution is the corresponding algo-
rithm of maximum probability, and it is shown that, asymptot-
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ically {with k~«), it satisfies the condition of optimalness
of the type of (34) [10,11].

Specifically, if the set of all distributions, for which
the density F'(0)y g>0, is viewed as p', then Laplace's
distribution is the corresponding worst distribution, and
the method of the minimum of moduli is the optimal algo-
rithm of filtration. In other words, this method corresponds
to the case when practically nothing is known about the dis-
trivbution F'(gy) .

Thus, the anti-interference properties of the method of
the minimum of moduli, shown above in the simplest example,
has a sufficiently deep theoretical basis. Also examined in
studies [10,117] are other methods of representing the set
P
ation are constructed.

s for which the corresponding opbtimal algorithms of evalu-

On the whole, the examined method of constructing anti-
interference evaluations 1s promising, since it reveals the
possibility of automation of the process of exciusion of
anomalous measurements, and, finally, makes 1t possible to
reduce %o a minimum the intervention of man in the solution
of problems of evaluation on computers.

A shortcoming of this method is the fact that it is
based on assumptions (35), (36), and (37). Here, the effect
of correlation dependences between the vectors g Qj=1,...,k)
is not taken into account at all, and neither is the possible /25
spread of the mathematical expectancies of these vectors. As
was indicated above, with a large number of utilized measure-
ments, this effect on the evaluation of the accuracy a becomes
decigive. Demonstrated here is the inconsistency of evalu-

ations of accuracy according to the adopted assumptions. The
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latter fact is associated with the fact that the obbtainable
evaluations of ﬁ, in the majority of cases, are theoretically
consistent.

5. Evaluation with Restrictionsg According to an "Upturn"
{Case of Random Correlation of Errors)

The aforementioned strong effect of the correlation
dependences between the components of the vector ¢ on the
accuracy of the evaluation of &, as well as the impossibility
of the reliable determination of these dependences, were causes
of the appearance of a considerable number of studies, in
which the existence of a random worst correlation between
the magnitudes of zi (£=1,...,n) is assumed. In other words,
it is assumed that the coefficients of correlation K(gi, ;i)
may take on any values in the closed interval [-1,1]. Here,
different methods are utilized for representing the set F.
The simplest of these are the so-called restrictions according
to an "upturn", of the form

%<8, (<1, n), (39

where 64 ({=1,...,n) are the given non-negative numbers.

Here, the guaranteed charactertstics of accuracy (33)
are determined by the expression

a -
= ° :1
Neuaezlotl, wa |.

A ey

where 8§ is the error in evaluation of g of some scalar magni-
tude g =2(q) .

In the more general case, the following resgtrictions
may be utilized in place of (39):
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Fed,

where Q@ 1s the given set in the space of the vectors ¢ .

Y *
Often, in place of the conditions in (39), restrictions
are set on the values of the dispersions of ‘the magnitudes of
[

D(E)<S, (Lei....n) <D

v

Here, the possibility is assumed of the gandom correlation
between different components of the vector ¥, and the follow-
ing magnitude is utilized as the guaranteed charactersitics
of accuracy

uar e D (e, (42)

One can show that, for a sufficiently broad class of
algorithms of filtration, the search for an optimal strategy
of evaluation, based on the minimization of expression (40)
with thecdcorditions in (39), 1s equivalent to the solution
of the very same problem by means of minimization of expression
(42) with the conditions in (41) [1].

Such an approach to problems of evaluation was first
utilized in study [13]. Examined here was the problem of the
selection of an optimal body of meagsurements, which provides
the achievement of a minimum of expression (40) with the con-
ditions in (39) and filtration according to the method of least
squares. The problem was reduced to linear programming, for

which there are well-developed algorithms of numerical solution.

The basic properties of this solution were gstudied. This study
gserved as an impetus for the conduct of a considerable number
of studies in the indicated area. Exhaustively studied here
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was the problem of the selection of an optimal linear unbiased

algorithm of evaluation, and an optimal plan of measurements
with conditions (39) and (40) or (41) and (42).

Developed here, along with a method for solving the
problem of optimization, was a method which amounts to the
finding of some generalized Tchebycheff polynomial which s
deviates the least from zero.[14], as well as a method which

utilizes the graphic geometric interpretation proposed in [15].

A ligting of these studies and their results are located in

[1,16].

The basic result of the indicated studies is proof of
the fact that, with the assumptions made, only m of the
appropriately selected measurements are optimally utilized
(here, m is the dimensionality of the vector gq). A further
increase in the number of utilized measurements is not only
of no use, but, generally speaking, leads to impairment of
the guaranteed accuracy of the obtained evaluations. It is
evident that, under these conditions, it is also impossible
to speak of the consistency of the evaluaticn of a. Thus,
results were obtained which are fundamentally contradictory
t0 the conclusions drawn on the basis of the classical assump-
tion (3).

In those cases when the mathematical model (1) is con-
structed on the basis of the solution of the vector differ-
ential equation of movement

: ll %% " {E-(q,t-)+rLj £43%)

where t 1s the time and N is the interference wvector, and con-

ditions of the type of (39) ord(41) may be imposed notTbnly-=om..
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thefvectorsy of errors, but alsonon the vector n.

With similar assumptions, one concrete problem of evalu-
ation of the accuracy of determination of movement was examined
in [17]. TIn studies [18,19], +this posing of +the problem was
utilized for the study of determination of the movement of a /28
spacecraft, using Kalman's filter. A detailed analysis of
the problem of construction of an optimal recurrent algo-
rithm of filtration, with auvsidffichently general method of
representation of the sets to which the vectors of errors of
measurement and interference vectors maylbelongy+is'oarfied
out in*{Z@]. .
As an example, we will examine the problem of determining
the velocity v of the change in some maghlitude d at the initial
moment of time t=0. Here, we will make use of the linear model
(10), and assume that the errors g; satisfy the condition

2
|’§tlsﬁ*%ﬂ' (i=d,... ,n), (4%

where A>0 and 'w>A. are given numbers. The former of these
characterizes the maximum possible error of the measurements,
and the latter characterizes the maximum aqceleration of the
magnitude d, not taken into account by the linear model (17).
This acceleration, generally speaking, is variable, and we
are only given the maximum of its modulus.

We will find the evaluation of v of the desired magni-
tude, using a linear algorithm of filtration:

-~

G =3 xidi, - (45)
[EY] .

where ¥4 (Z=1,...,n) are, for now, the random coefficients of
the algorithm, which satisfy the condition of empiricalness

[17], which, in the examined case, may be written in the form
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2 % Zt.x‘-i ' (4¢)

[CY] ity

Here, the error &y of the evaluation of G is determined
by the expression

T
v JAE 2 T (a7) )

Hence, maﬁing use of (44), we will find the guaranteed
characteristics (40) of accuracy

N =wox {82] = lel(m-‘”t‘)- (48)

cuar g

In this posing of the problem, the selection of an optimal

strategy 8 of evaluation in the set X of possible strategies
is reduced to the search for the number n of measurements,

as well as the times t{ and the coefficients y;, which satisfy
condition (46) and provide the achievement of a minimum of

the magnitude in (48).

Switching to the solution, we will note that the
dimensionality of the vector g={a,v} of state of model (17)
m=2., Hence, making use of the results given above, we find
that the minimum of expression (48) is achieved with a number
n=m=2. Then, making use of (46), we will find the dependences
between the times t; of the measurements and the corresponding
coefficients % , (£=1,2):

| A -

l X“'-"“xz:— t;_t‘

Substituting these expressions into (48), and seeking
the minimum according to t, and t,, we obtain the solution of

n=2, L-t =2 xe- xz_fr @9)

the problem.
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Here, the following is achieved

min | = M = . 5 ‘
, MMin ENguhr";-_‘“ max 15¢]=y/2aw &10) |
H - . - N
We will note that, during the determination of the set Z
of possible strategies S, we do not impose any restrictions
on the times t 4

7 We will compare the obtained result with the evaluation
according to the method of least sguares, with the assumption
of egual accuracy and non-correlation of the errorsgfi. In
this case, we will assume: +that the measurements aretcarried
out with a constant gpacing t, according to the time a® the
moments

t LYy ('}zf, S {51) '

L=
b e e

where k=n/2 (n is the total number of measurements).

With these assumptions, the coefficients i (4=1,...,n)
of algorithm (45) are determined by an eguality of the type

.- hr"_ j - o
EfprtpEy 0 (52)

FIl]

where, in the expression It?®, the summation is carried out
according to all times t;.

Substituting (52) into (48), and making use of (50), as
well as Tthe known expressions for the sums of the orders of

a natural serles of numbers, we find

HNopar BEIES P _3[Eekken] ()
"t Nevar ?-g.i‘ 4(2x+1) B

—

where E}paris the value of the guaranteed characteristics (48)
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6flaccuracy with evaluation according to the method of least
squares and a uniform distribution of the times of the
measurements, and

ﬁ"—-fﬁfrf ‘ (s4)

We will record the number k and search for the magnitude
of B which ensures achievement of miny. It is easy to show
that +this will be the case with

o= \[KLkr) (55)

Substituting this value of Biinwo (53), we Tind

= QVK(K*U
SR A (e itis (56)

It is easy to assert that, with an increase in k, ’mé"'f(“;

increasesmonotonously from a magnitude h‘éh TW=1 to mfi;x Y{eo)=

-~

E%fijﬁ@- » The lower boundary of this interval corresponds
to the total coincidence of the examined algorithm of evalu-
ation, according %o the method of least squares, with the
optimal linear unblased algorithm given above. We will nove
that, with a sufficiently large k, equality (55) may be re-
placed with the approximate dependence

TzV2 To,
where T=271k and To=t2-t1,are the time intervals within which
the measurements are carried out, with evaluation according

to the method of least squares and with utilization of +the
optimal algorithm (49), respectively.

(57)

Based on the obtained results, one can draw the following
conclusions.
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A. With planning of the experiment in accordance with
dependence (55) or (57), evaluation according to the medhod
of least squares, with uniform distribution of the times tf
with any number of measurements, is practically equivalent to
the optimal algorithm (49). This circumstance may be utilized
in that case when, along with the errors g4, which satisfy
theceonditioms in (44), mutually non-correlated errors g; are
part of the righthand portions of the dependences in (17)/
Then, making use of the method of least squares, with a _[zg
sufficiently large number n of utilized measurements,

one can practically preclude the effect of the errors ;%.

B. With a deviation from the optimal relationships (55)
or (57) in one direction or the other, the guaranteed accu-
racy of evaluation, according to the method of least squares,
is impaired unrestrictedly.

C. The best guaranteed accuracy of the magnitude is
determined by expression (50), which does not depend on the
plan of the experiment. Thus, with the examined posing of
the problem, consigtent evaluations of v do not exist.

The conclusions obtained here on the simplest example
have a sufficiently general nature. Experience in the use of

t

evaluation "according to an upturn" applied to different,
sufficiently complex problems shows that the method of least
squares is practically equivalent to the optimal linear un-
biased algorithm of evaluation In that case when the planning
of the experiment is accomplished on the basis of the methods
set forth agbove. With non-observance of this conditions, the
guaranteed accuracy of evaluation, according to the method of
least squares, may be considerably worse than the optimal

accuracy.

This conclusion follows from the fact that any linear
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unbiased evaluation is equivalent to the solution of prob-
lem (1) according to the method of least squares, using the
expression. -

3:, =arg mc';n [&jd(q,)]’P [d-dig)], (58) .

- ——

where P is the weighted: matrix, selected by the appropriate
method [26]. The difference between the classical algorithm
(4) and expression (58) consists of the fact that, in the

former case, the weighted matrix is determined by the equality’

P=L"', which follows directly from the well-known Gauss-
Markov theorem [1], and in the latter case, the weighted
matrix can be found from the solution of the corresponding

problem of linear programming.

Thus, for the solution of applied problems, ocne can
successfully make use of the well-developed algorithms of
the method of least squares {with the condition of preliminary
processing of anomalous measurements). However, plamming of
the experiment and evaluation of the accuracy of the ob-
tained results should be carried out with regard for the
potential spreads of the distributions of the probabilities
of the errors r.

6. Evaluation with Restrictions on the Elements of the Mathe-
matical Expectancy and the Covariational Matrix of Errors

Based on the methods described in the preceding section,
one can obtain sufficlently reliable guaraniteed evaluations
of the accuracy of determination of the vector ﬁ, according
to the results of measurements, as well as solving the prob-
lem of the selection of an optimal linear unblased algerithm
of filtration and an optimal plan of measurements, which en-
sure a maximum guaranteed accuracy of az Therefore, these
methods are presently beginning to be widely utilized during
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the solution of vital problems, which place high requirements

on the accuracy and reliability of the evaluation (for example—

for determining the initial data for controlling the flight of
a spacecraft). A shortcoming of these methods is the fact
that they often give excessively less sensitive evaluations

of the accuracy of 9. In this connection, methods have begun
to be developed in recent years for solving the examined
problems, assuming that the coefficients K(tz, £4) of corre-
lation between the components of the wector r are not random,
but lie within some boundaries.

In the simplest variant of the indicated posing of the
problem, the problem of construction of the optimal linear
unbiased algorithm of evaluation,anddsélectibn-ofothe optimal
plan of the measurements was solved in [217]. The results of
this study are set forth in detail in [1]. Here, it is
assumed that the set F of possible distributions of F(r) is
determined by the inequalities in (41) and the condition

RS sx, w¢5,” 69

S

where 0 fk €1 is a given number, and expression (42) is uti-
lized as the guaranteed characteristics of accuracy.

Through these assumptions, it was proved that the optimal
gsituation Is the utilization of the method of least sgquares,
with the condition of concentration of all of the points
measured in m (m is the dimensionality of the vector q),
determined by the solution of some problem of linear pro-
gramming. With an increase in the total number n of measure-
ments, the accuracy of evaluation increasesg; however, with
k>0

lim max é‘)(ﬁf)>{-j ,
b CO 9
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i.e., the evaluation of ¢ is not consistent. 1In this case,
beginning with some value of n, a subsegquent increase in the
number of measurements leads to such an insignificant increase
in accuracy that it can be considered practically useless.

The inditatedetrendmeecelived further development in study
[22], in which condition (59) is replaced by a restriction of
the type
ki€ K5, )¢ |

where k; and k, are given numbers.

Thezproblemsofibzuanantegdnevalupdeinrwas: examinedbin a
consiiderably more general posing in studies [23,24,25], in
which the following restrictions, which determine the set
of possible distributions, are placed on the elements of The
mathematical expectancy E={E(ci),...,Egcj)}anuithe covari-
ation matrix D(z)=(Dsj) of the errors.

'

L TECRD] eme , (60)
l ;D?J" 3 £ "L‘<‘ m:j'l-lh“ (61)

where Mz, ij, and Vs 0 (£:5=1,...,n) are given numbers.

In place of condition (61), one can examine the following
restrictions, placed on the dispersion 2(%:) and the coeffici-
ents of correlation K(Ci';j )

DI, Ky <K (5 %) €K oy (62)

where 8¢, K¥:, and wij’;o (£ #5,2,4=1,...,n) are given numbers.
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The following magnitudes are utilized as guaranteed
characteristice of accuracy

mv{,zr%ax |E(S€)I,€Dgu=n§m D(Ee). (63)

Two variants of the c¢riteria of optimalness are examined,

utilized during the selection of a strategy S of the solution
of the examined problem in the set £ of possible strategies.

In the first variant, we are searching for
. 2 Q@ L
"}gh ﬁgu; ﬁgu—n;ax E(5 E)-h'lgu"'@gu_ (64)

In the second variant, the following is found

;rméxx ngw Hys ™ rr%'m P(lseise) .  (65)

2
Here, Bgu

expectancy of the square of the error &%, ngar is the guaran-

aIis the guaranteed value of the mathematical

teed reliability of the.realizashen of the ineguality [62]s=
¥ is the permissible maximum error of evaluation of £, and

P{+) is the probability of realization of some event.

The first of these variants does not require any sort
of assumptions on the digtribution of the errors &2, In
order to utilize the second variant, it is necessary to have
this distribution as a given. If it is normal, then one can
write that, with mguarész[l:l

v_ . :x"' y L 2—?“ ) 3 i
B CEER) @ OFE) » (0

where

It ig easy to assert that the posings of the problem used
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in paragraphs 2 and 5 of the present study are particular
cases of the general posing given here. Actually, assuming
that, in expressions (60) and (61),
4
Mi =0 w,=0, ({.D:');:G'?-L (Li=1,...,n)

and taking into account the fact that, ﬁere, mguufo and
B®=DguarD(82), we obtain the classical posing of the problem,

which underlies the method of least squares.

On the other hand, assuming that

gbszn, mi;::D {t,j=4,...,n)

R —

and making use of the magnitude nkuafm%xl 69 | as the character-
igstics of accuracy, we obtain a posing of the problem which
leads to evaluation according to an "upturn".

Thus, the posing of the problem given here makes it
possible to construct a broad spectrum of solutions of the
problems of evaluation, which include the method of least
squares and evaluation according to an "upturn" as specific
cases. The selection of one variant or another within this
spectrnum depends on the existing information on the mathe-
matical expectancy and the covariation matrix of the errors .,
as well as the required reliabllity of the solution of the
problem of evaluation.

With the aforementioned assumptions (60) and (61) or (60)
and (62), the following basic results were obtained in studies

[23,24,25].

A. For a random linear (or linearized) unbiased algo-
rithm of evaluation, the error &% of which can be represented
in the form [1]

|;_SE:X§ , ‘ kéﬁ
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where X=(X;,...,%n) is some matrix with a 1 xn dimension,

expressions are written down for the guaranteed character-
1stics of accuracy mguarand Dguaf
aries of the magnitudes of |E(82)| and p(62) in the set F. ’
The first of these characteristics is strict in termszof-(33),

and satisfies the first of the equations in (63). As far

which are the upper bound-

as the second characteristic is concerned, we determine the
conditions of strictness which are necessgary and sufficlent,
and show that, in this cage, it satisfies the second of the
equalities in (63).

B. For the case when the mathematical model (1) is
linear relative to g, we examine the problem of construction
of a linear unbiased algorithm of filtration and selection
of a plan of measurements which are optimal according to
one of the criteria of (64) or (65). I% is shown that it
comes down to the problem of quadratic (in specific cases— Zﬁﬁ
linear) programming, for which there is a numerical algo-
rithm of solution. Some properties of this solution are
examined. Specificallyy it is shown that, in the general
case, the obtained evaluation is inconsistent. The conditions
are determined under which the optimal plan of measurements
is reduced to the accumulation of measurements at some finite
number of points.

The obtained results are naturally extended to the case
when the mathematical model (1) is constructed based on the
solution of the vector differential equation (43).

As an example, we will examine the determination of
the velocity v, based on model (17), assuming that the errors
with restricted values of the dispersions and the coeffici-
ents of correlation are added to errors which satisfy the

conditions in (&#4). Here, the set F of possible distri-
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butions of the errors ¢ is determined by the following con-
ditions, imposed on the mathematical expectancies E(zZ), the
dispersions p(zZ), and the coefficients of correlation
K(Ci’Cj) of the components zi of the vector z ,

[ECleas B Dg)es’ KA, flek (asijeh,..n), (68 |

where A 20, » 20, d° >0, and 12 X2 0 are given numbers.

Given in study [24] is the solution of the problem of
selecting a linear unbiased algorithm for constructing the
evaluation of v with theuagstmptions in (68), and also
assuming that the number n of utilized measurements is given
(or restricted at the top). In this case, optimization is
carried out according to criterion (64). As a result, it is
shown that the optimal plan enviasges the conduct of all
measurements at two moments in time +, and t,. Here,

. - s

tt‘-"‘tz"";rf > T,:Z\lﬂ,%ﬁé— 3 (69)
ne=nsg ‘i*:"?‘r""%‘* 3

where Tq ig the total duration of the interval of measurements,

n; are the number of measurements at the moments ti, xi are

the sums of the coefficlents x; of algorithm (45) of evalu-

ation (£=1,2), which correspond to these moments, and

=6 \’iﬁﬁ‘i-rK . (70)

Here

LI T - - 7 ) o -
fin f s W VYSar +8). @

We will compare the obtained result with the evaluation
according to the method of least squares, with uniform distri-
bution of the times of the measurements in the closed interval
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Nk%

R . x
g \'tg, Sw:?ﬂ- 4 (?2)

where T is the given duration of the interval (72).

Given in [24] is the asymptotic expression, corresponding

to this case, for %;Hm”which is correct with a sufficiently
large n

!
ﬁg’uﬁg(b’m 256 ‘UJA . (:;3)!

The minimum of this expression is achieved with the con-
dition (57)}. Here, %mélwl.oé,m%p Bruaw where the magnitude of
mln %yar is determined by expression (71).

Thus, the switch from the optimal algorithm of fil- /o
tration to the method of least squares, with uniform distri-
bution of the times of the measurements, impalrs the magni-
tude of %uar only slightly. However, this result is achieved
only with the correct selection of the duration of the T-
dimensional interval. It ig evident from (73) that the
deviation from condition (57) in one direction or the other
may lead to a sharp impairment of the guaranteed accuracy of
evaluation of v. i

Given in [25] is the solution of this very same problem
with replacement of condition (64) of optimalness by con-
dition (65). Here, the law of distribution of errors &
is assumed to be normal. The optimal plan, obtained as a
result, also provides for the conduct of all measurements
at two moments In timett; and t,. Here,

where T; is the optimal duration of the interval of measure-
ments, for the determination of which a numerical algorithm
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is given. Also compared are the values of the maximum

errors 32, at which an identical guaranteed reliability Hydar

determined by expression (65), is provided. It is shown that,
in the examined problem, with nga1§“0'999’ the switch from the

eriterion in (65) to the criterion in (64) entails an increase
in the maximum ervor & of no more than 17%.

Thus, with the assumption of the normalcy of distribution
of the evaluation of 62, optimization according to the cri-
terion in (65) makes it possible to somewhat improve the
preciseness of the value of the maximum error R with a
given guaranteed reliability (by comparison with the utili-
zation of the criterion in (64)).

With random distribution of the errors 6%, the magni-
tude of B p» determined by expression (64), sufficiently /4
completely characterlzes the accuracy of evaluation of 2.
Specifically, in this case, it is associatéd with the
guaranteed reliability'ﬁgug% and the maximum error by the
following relationship, which follows directly from Tchebycheff's
inequality [2]

: S —_
guar ( ,& ¢4

Therefore, in the examined example, expression (71)
characterizes the maximum accuracy of evaluation of v, with
a given number n of measurements. Hence, making use of (70)
and assuming that n—e, we find the magnitude

- : SRS
Y= m.m.p \[W(WHL) ) (?5)

which determines the precise lower boundary of Bgua}n ‘the
set of g1l linear unbiased algorithms of evaluation with a
random number n of measurements. This magnitude determines

the best information content of the evaluation of G, inherent
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in. the given problem. 'This magnitude depends on the parameters
Wy k, 0, and A, which are part of condition (68) and deter-
mine the set F of possible distributions of the errors ¢ .

It is evident that the equality

xS0 B e

is aengeessgrggéndgéﬁfﬁiémentcgon@itigﬁgiﬁthe possibility of
constructing a consgistent linear unbiased algorithm of evalu-

ation. This equality may occur with one of the following
conditions: ' )

A. t»p=0, kG0, A#0. From dependences (69) and (70), it
is evident that, in this case, consistency is achieved be-
cauge of the unresitricited increase in the duration T of the Z&g
interval of measurements.
B. w #0, ko=0, A=0,. Consiétency is achieved becaﬁsé of
the fact that TOﬂO.

C. w=0, k6=0, A=0. Consistency ie achieved with a random
To only because of the fact that nwe. We will note that a
gpecific case of thig condition is the simultaneous: ful-
fillment of equalities w=k=A=0, If, in this case, one re-
places inequality D( r{)< 0° with equality D(g;)=0%, then
the dependences in (68) are transformed into assumptlons
which lead to an algorithm of evaluation .according to the
method of least squares. -

Thug, in the examined problem, a consistent evaluation
can only be obtained in Some idealized particular cases, which
almost never take place in practice.

With k9=0, the righthand portion of equality (75) coin-
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cides with the corresponding expression (50), obtained on
the basis of restriction according to an "upturn:.

We will examine also the case 4=0. Here, expression
(75) takes on the form

ps : wicH K%,

Thus, with 24=0 and assuming the random correlation be-
tween the components of the wvector of the errors,ig%ﬁﬁéy%
With restriction of the moduli of the coefficienitssof corre-
lation of ‘the, magnitude, the value of ¥ diminishes in pro-

portion to k :

It is evident from the examined example that the guaran-
teed accuracy of evaluation depends gubstantially on the re-
strictions which determine the set F of possible distri-
butions of F(r). Here, the placement of more rigid resgtric-
tions makes it possible to improve the guaranteed evaluation
of accuracy.

7. Statistical Simulation of Problems of Evaluation -

The above-described methods for solving problems of
evaluation have strict mathematical bases, which are based on
some assumptions about the ideal mathematical model d=d(q),
the get 7 of possgible errors T, and the set ¥ of permisgsible
gtrategies of the solution of the problem. 1In the general
cagse, when these assumptions are not fulfilled, one can use
the method of statistical simulation, which consigts of the
following.

We will examine probkem (1) with some given d=d(q), F,
and T. We will be given the algorithm of g=q(d) and the compo-
sition d of the measurements which belong to the set of per-
missible strategies. They can be obtained from the solution

2



of the strict problem, with some idealized assumptions, or
found on the basis of heuristic considerations. In addition,
we will be given the nominal value g, of the vector g. Making
use of the generator of random numbers, and taking into
account the condition F(r)eF, we will construct a random set
of vectors r; (j=l,...,¥) of the errors, and the corresponding
model set of measured veotors.dd=d(q)+gj (4=1,...,5) - Then,
we will compute the model evaluations of §;=4(d;) and find
thelir errors 6qj=a5-q6 (4=1,...,%). The statistical charac-
teristics of the set of these errors are utilized for the
evaluation of the quality of +the examined solution of the
problem of evaluation. By carrying ocut gimilar computations
for different compogitions of measurements and algorithms of
evaluation, one can gelect the optimal oneg among them. Here,
optimization can be carried out not only according to the
criterion of achieving maximum accuracy of evaluation of a,
but also from other considerations (simplicity of the utilized
algorithms, their rapid action, etec.).

An advantage of this method is the possibility of Iits
utilization for the most varied assumptions and criteria of
optimalness. A shortcoming is the impossibility of obtaining
mathematically strict solutions. Here, only the more or less
“phaugible"” results can be found' (in the sense that it is
understood in [27]). In spite of this,- the method of statis-
tical simulation is utilized successfully for the solution of
applied problems of evaluation [28,29,301.

8. Conclusion

It follows from the results given above that notable
successes have been achieved in recent years in the develop-
ment of methodsg of evaluation, based on the assumption that
the distributions of the errors in the initial data are not
preclsely known, and belong to some given sets. Here, the
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basic progress has taken place in the following two areas.

A. It is assumed that the vector of measurements d is
a set of a finite number of vectors dj, which are identically
assoclated with the vector q of state. The errors which
correspond to these vectors are assumed %o be identically
distributed and mutually independent. Also given is a set
F'6f possible distributions F'(;ja of these errors, and we
seek an algorithm of evaluation, which possesses asymptotic
effectiveness with the "worst” distribution F'(t¢j) in the set
F'., 1In +this case, "worst" is understood to mean such a distri-
bution F'(Cj)eF' with which a minimum of Fisher information
is achieved. It ig shown that algorithms constructed in this
way possess good gtability with respect to interference,
caused by anomalous errorsit 4. Methods are developed for
constructing similar antizinterference algorithms with
different methods of representing the set F'. The number of
such algorithms includes théimethodief least moduli, which has
been developed in sufificlient detail.

A shortcoming of a similar approach is the fact that
possible dependences between different vectors of tj are
not taken into account in it, and neither are possible differ-
ences between the distribution of these vectors and the devi-
ation of thelr mathematical expectancies from the adopted a
priori values. This leads to consistency of the obtained
evaluations. From the theoretical point of view, the con-
sistency of the evaluation can be shown to be attractive, bdut
in practice, with the utilization of a sufficiently large
number of measurements, it leads to instability of the evalu-
ations of the accuracy of the obtained results. This, in
turn, may be a cause of obtaining unjustified and optimistic
evaluations of accuracy, as well as coarse errors during the
solution of problems of experiment planning.

B. The set F of possible distributions F(z) is deter-
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mined by some restrictions, placed on the values of the ele-
ments of the vector of the mathematical expectancy E(g) and
‘the covariation matrix.-D(Z) of the errors .

A particular case of such an assumption is the restriction

of the area to which the errors r may belong in the corres-
ponding vector space. With these assumptions, one can deter-
mine the guaranteed accuracy of the evaluation of'a, obtained
using any linear (or linearigzed) unbiased algorithm of £il-
tration. Also solved is the problem of selecting an optimal
linear unbiased algorithm of filtration and consgtructing

+the corresponding optimal plan of the experiment. Here,
utilized in the capacity of a criterion of optimalness, is
either the achievement of a minimum of the guaranteed mathe-
matical expectancy of the square of the error 62 in the -
evaluation of E of some scalar parameter 2=2{qg), or a maximum
of the guaranteed reliability of the fact that 64 g%, where
2 is the given maximally-permissible error in the evaluation
of §. This problem comes down to the well-developed algorithm
of quadratic {(linear) programming. Its solution is equiva-
lent to the search for an optimal weighted matrix during Frv
evaluation according to the method of least squares. Such

a method 1s successfully used to obtain rellable guaranteed
evaluations of the accuracy of the magnithde of a with given
possible spreads of the mathematical expectancy and the co-
varigtion matrix of the errors in the initial data, as well gs
to construct the corresponding optimal algorithms of evalu-

ation and plans of the measurements.

As shortcoming of such an approach is the fact that the
problem is solved in a set of all possible linear unbiased
algorithms of evaluation. This is equivalent to the assump-
tion of normalcy of the distribution of the errors . As was
indicated above, this igs the cause of the strict dependence
of the accuracy of the obtained evaluations of interference
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evoked by anomalous measurements. In addition, it should be
kept in mind that the solution of the above-indicated prob-
lems of optimization depends on the selection of the para-
meter 2=2{q), the accuracy of which we are interested in.
Therefore, if the necessity occurs of optimizing the accu-
racy of the evaluations of several parameters_%f=%j(q)
(j=t,...,k), then, in the general case, it is necessary

to construct several algorithms §j=ag(d), each of which
optimizes the guaranteed accuracy of the corresponding evalu-
ation. We will note that, in a number of specific cases,

it is possible to successfully find the universal optimal
strategy of solution of the problem, which only slightly
impairs the accuracy of the evaluvations of Ej (3=1,...,:k},
as compared with their best achieveable accuracy.

Unfortunately, not a single study ig known to us which
would unite both of the above-indicated approaches and solve
the problem of optimal guaranteed evaluation, with simul-
taneous regard for the possible spreads of the types of
distribution of F(r), the possible dependences between the
distributions of the probabilities of different components
of the vector r, and the spreads of their mathematical
expectancies. The solution of the examined problem, with
such general assumptions, 1s obviously a matter of the future.
While such a general solution has not been achieved, one can
recommend the following sequence of anti-interference guaran-
teed evaluation.

A, TFound in the first stage is the preliminary evalu-
ation of éfr’ for which the algorithm &=§(é) is utiliged,
which possesses sufficient interference-resistance. As 2
function of the nature of the pogsible interference, this may
be either the usual method of least squres, or one of the non-
linear anti-interference algorithms of evaluation (for example,
the method of the minimum of the moduli}). Processing of the
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available anomglous measurements ig carried out based on the
obtained result.

B. The mathematical model (1) of +the problem is linear-
ized relative to the found approximate value of g, qpr, and .
one or several optimal linear unbiaged algorithms qJ"qJ(d)
are constructed, which provide the best guaranteed accuracy

of the evaluations of thegg&iven parameters f£7=25(a) (j=1,...,k).

A similar method for solving the problem of evaluation
is considerably more timeliconsuming than the normal method
of least squares. In addition, it requires detailed pre-
liminary analysis of the possible errors g for the correct
selection of the set F of possible distributions of these
errors. However, for the solution of sufficiently vital
problems and the utilization of modern computer technology,
it may be considered fully justified.
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Figure 1
Dependence of the Guaranteed Value of Bguarof the Square
of the Error of the Arithmetic Mean on the Number n of
Megsurements
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Figure 2,
Dependence of the Dispersion D{(v) of the Evaluation
of the Velocity on the Number n of Measurements



