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ABSTRACT

This report presents methods for computing the properties of the reflection
from a cube-corner array when it is illuminated by a laser pilse. Such information
is useful in the design of satellite reiroreflector arrays and ground tracking equip-
ment as wel! as in the analysis of the data obtained. The methods derived include
the effects of coherent interference, diffraction, polarization, and dihedral-angle
offsets. Considerable space is devoted to deriving expressions for the diffraction
pattern and active reflecting area of various types of retroreflectors.



METHOD OF CAICULATING RETROREFLECTOR-ARRAY
TRANSFER FUNCTIONS

David A. Arnold

1. INTRODUCTION

The work described in this report was begun as part of the Lageos study program
(formerly called Cannonball) supported by grant NGR 09-915-164 from the National
Aeronautics and Space Administration (NASA). The laser ranging accuracies pro-
posed for the Lageos satellite required the development of a transfer function to
relate the observed return pulses to the center of mass of the satellite. Preliminary
transfer-tunction analyses done for the Lageos retroreflector array are presented
in Weiffenbach (1973). ibe development of the techniques and computer programs
has been continued under NASA grants NGR 09-015-196 and NGR 09-015-002. Trans-
fer functions computed for most of the retroreflector-equipped satellites now in orbit
have been published (Arnold, 1972, 1974, 1975a,b, 1978). This report documents the
techniques and equations used in calculating the transfer functions presented in those
references. Transfer-function analyses have also been done for some of the retro-
reflector satellites at Goddard Space Flight Center (Felsentreger, 1972; Fitzmaurice,
1977; Minott, 1972, 1974a,b; 1976, 1978; Plctkin, 1964; Regardie, 1976). Since the
optical properties of the cube corners are of primary importance, a large part of this
report is devoted to reviewing the basic properties of cube corners, deriving analytical
expressions for the active reflecting area of various cube-corner designs, and develop-
ing methods for computing the diffraction pattern of these retroreflectors. The diffrac-
tion calculation foi' a circular reflector employs numerical integration over one of the

variables in the surface integral.

This work was sapported in part by grants NGR 09-015-164, NGR 09-015-196, and
NGR 09-015-002 from the Maticral Aeronautics and Space Administration.



Expressions for the incoherent and coherent returns from an array are pre-
sented. The phases of the reflections from individual cube corrers are chosen by
use of a pseudo random-number generator. Statistics on the variutioa of the proper-
ties of the return pulse due to coherent interference are derived by computing many

coherent returns.

The last section outlines the method of computing the position and orientation of

each cube corner in an array in which design data are used.



2. BASIC RETROREFLECTOR PROPERTIES

2.1 Retroreflection

A retroreflector consists of three mutually perpendicular reflecting surfaces.
Let the reflecting surfaces be the xy, yz, and zx planes (Figure 1). A light ray inci-
dent on one of the surfaces, such as the Xy plane, has the component of the velocity
vector normal to that plane, the z component, reversed. After reflection from the
three surfaces, zll components cf the velecity vector are reversed and the ray has

been retroreflected.

Figure 1. Basic retroreflector.

2.2 Angle of Incidence on Back Faces

Each of the three orthogonal reflecting surfaces in a cube corner reverses the
component of the light's velocity vecter normal to that surface. Since the magnitude
of the velocity vector is not changed by any of the reflections, it follows that the angle
of incidence of the beam with a particular face must be a coastant independent of the
order in which the reflections occur. Therefore, the angle of incidence on a given
face is equal to the angle the incident beam makes with each face. This property is
particularly useful when determining the cutoff angles for total internal reflection in

uncoated cube corners.



2.3 Symmetrv of Incident and Reflected Rays

The vertex of a retroreflector is halfway between the lines defined by the incident
and the reflecte. rays. In a two-dimensional retroreflector (Figure 2), OC is con-
structed through the vertex parallel to the incident ray AB and the reflected ray DE.

By the law of reflection, a;=a, and pl = (5?, and by construction, S ) and [31 = [33.
Therefore, BC —~ OC and OC = CD because the triangles are isosceles. Since BC = CD,
the line OC is halfway between the incident and the reflected rays. The same diagram
is equally valid in three dimensions since the third reflection reverses the component
of the velocity perpendicular to the paper and does not alter the angle of the lines in this
perspective. The above proof is the same for any pair of axes; thus, the line OC must
be in the same plane as AB and DE and halfway between them.

a31B 3 Bz

Figure 2. Two-dimensional retroreflector.

2.4 Equal Path Length for All Rays

The distance traveled by all rays is the same as the distance traveled by the ray
that goes to the vertex. In Figure 3, BG is constructed parallel tc CE, so
CB=DH= EG. Also, CD=0D= DE, as shown previously. Therefore, the path
B—C-E-G is equai to the distance HO + OH.



Figure 3. Path length for 2 two-dimensional retroreflector.

AT is constructed perpendicular to the incident and reflected rays and is a phase
front. Since AB= ﬁ, the path A-C—E-TF equals B—C-E—G. The equalities above
also hold for the horizcntal and vertical components of all the line segments. Since
this is true for any pair of axes, the three-dimensional distance traveled by all rays
from the phase front is the same. This proof works for either a hollow reflector or

a solid one whose face is perpendicular to the light beam.

If the reflector is made of a dielectric whose face is flat, the optical path length
for all rays is also constant. In Figure 4, BF | Ol and AG | TH. As shown before,
the path B-C-E~F equals the distance JO + OJ. Since FG ic twice JI, the path
B—C—E~G equals I0 + OI. Outside the dielectric, AB is twice HI, so AB= HI + IH.
These relations hold for both the horizontal and the vertical components of the dis-
tances. Since a similar proof exists for any pir of axes, the three-dirnensional
optical path length for all rays is the same as the optical path length of the ray that
travels to the vertex. If the front surface and the back reflecting faces are not
optically flat, or if the angles between the reflecting faces are not exactly 90°, the
optical path length will be different for different rays.



Figure 4. Solid two-dimensional retroreflector.

2.5 Range Correction for Optical Path Length:

The range measured by timing a laser pulse reflected from a hollow cube corner
is the range to the vertex of the reflector. I the retroreflector consists cf a dielectric,
such as fused quartz, then it is necessary to correct for the slower velocity of tle light
bcam in the dielectric. The optical path length is n times the geometrical path length,
where n is the index of refraction. If the length of the retroreflector from the vertex
to the center of the front face is L, the opticai path length in the cube corner ac nor-
mal incidence is nL.. The difference between the optical and the geometrical path length
is nL - L= L(n - 1) The range measured to a solid cube corner at normal incidence
is greater than the range measured to a hollow cube corner by L(n - 1). The range
correction will vary with the incidence angle of tne beam on the front face of the cuhe
corner. It is a little simpler to calculate the correction from the center of the front

face of the reflector than from the vertex.

The corzection factor AR is the difference between the optical path length nOB
and ihe distance AC (see Figure 5); that is,

AR =nOB -AC . (2-1)

The length of the reflector is L= OA. The incidence angle is i and the refracted
angle is r. From Figure 5, we sec that

(2-2)



o)

Figure 5. Optical path length in a retroreflector.

Using Snell's law,

sini _ n
sinr ?
ve get
. sin i
sin r=>=- ,

from which we can write

COS T = ‘/1 - sin2 r
2

_ _sin” i
= 1 )
n
2 2.



Substituting this into equation (2-2) yields

OB = &
CcCOST

= .__.EL___.. (2_3)

Vn2 - sin2 i

rom Figure 5,
AC=ABsini
=Ltanrsini

Lsmr
cos T

sini

L sini/n

) (1/n) Vo2 - sin? i

sin i

L sin2 i

=— (2-4)
Vv n - sin? i

Substituting equations (2-3) and (2-4) into equation (2-1), we get
AR = nOB - AC

n2I_ L sin2 i

Vi2-sin2i Vi -sini

= ———————L (n2 - sin2 I)
n2 - sin2 i

]



The correction wit!. ~espect to the vertex can be expressed as follows:

AR’= AR - L cos i

=LVn2—sin i-Lcosi

2
L(V r.2 - sin2 i- cos i) .

2.6 Tnput and Output Aperi.xes

As shown in Section 2.3, the retroreflected ray leaves along a line on the opposite
side of the vertex from the incident ray. Figure 6a shows {he retroreflecto: from the
direction of the inciden* »eam; a ray incident at point A will be retroreflected from
point B, which is an equil distance on the other side of the vertex O. Similarly, point
C moves to point D. For any shaped retroreflector face, the shape of the retroreflected
beam can be constructed by moving each point on the outline of the face an equal dis-
tance on the other side of the vertex. Figure 6b shows the result for a triangular
retroreflector at normal incidence. The solid line, the shape uf the retroreflector
face, is called the input aperture, and the dotted line, giving the outline of the retro-
reflected beam, is the outpat aperture. The overlap of the two figures is the active
reflecting area. Any ray that is incident outside the overlap region will not be retro-
reflected, since the symmetry of the incident and the reflected rays would require
that the last reflection occur at 2 point outside the cube corner.

Figure 6. a) Method of constructing the cutput aperture; b) triangular input and out-
put apertures.



When the incident beam is not at ncrmal incidence, the vertex as viewed from
the direction of the beam is not in the center of the aperture. When the output aper-
ture is constructed, it is also off center, so the intersection of the two figures giving
the active reflecting area is decreased. Figure 7 depicts this effect for a square
aperture. At normal incidence, the apertures coincide, while at an oblique angle of

T =1

i {

| / |

0 | © 0 |
| !

i |

- l J

NORMAL INCICENCE OBLIQUE INCIDENCE

Figure 7. Disrlacement of the input and output zpertures in the plane of the front
face.

incidence, the centers of the input and the output apertures are separated by some
distance OO’. The separation of the apertures can be calculated from the incidence
angle, as shown m Figure 8. The ray A incident on the center of the input apert:re
is retroreflected as ray A’. The distance D between the poinis of intersection of A
and A’ with the front face is

D=2Ltan¢’ ,

where &' is the angie between the rays and the symmetry axis of the cube corner. The
separation is given in the plane of the front face of the retroreflector. As viewed from
the angle ¢', this distance is D ~os ¢'. If the cube corner consists of a solid dielectric,
then the separation as viewed from the incidence angle ¢ is D cos 4. The angles ¢ and ¢’
are related by Snell's law,

gin
sin ¢’

Similarily, the intersection of the input and output apertures as computed in the plane

of the front face will be smaller by the factor ccs ¢ when viewed from the direction of
the incident beam.

10



Figure 8. Separatiua of input and output apertures.

In general, the direction of the incident beam is given by the two angles 6 and ¢,
where ¢ is measured from the normal to the frcut face and 6 is the azimuth angle
around the normnal. The input and output apertures separate along the line given hy
the projecticn of the incident beam onto the front face (see Figure 9).

rtT———n" -
—t /I/

| o A 8

| _ |

| o —+

| |

N JIR |

Figure 9. Direction of separation of the input and output apertures.

In summary, the active reflecting area for a retroreflector when illuminated by
a beam whose direction is given by the angles 6 and ¢ is the intersection of the input
and output apertures in the plane of the front face multiplied bv cos ¢. The separation
of the apertures is along the plane of incidence, the separation being 2L tan ¢’ in the
plane of the front face.

11



2.7 Tube Analogy

Instead of thinking of both the input and the output apertures 2s being in the plane
of the front face of the retrorefiector, we can visualize the active reflecting area by
considering the apertures as the openings at either end of a tube. In fact, when
looking into a retroreflector, it appears as though the output aperture is an equal
distance in back of the vertex from the input aperture. In this representation, the
output aperture is constructed by taking each point on the input aperture and moving
it an equal distance on the opposite side of the actual position of the vertex, as shown
in Figure 1¢. This technique is similar to the model of cube-corner phenomena given
in Eckhardt {(1971).

IMAGE OF
FRONT FACE OUTPUT APERTURE
e 7
\ / / /
\ / : /
\ 7/ / /
\ / ’ /
\ / ; ’
N/ VERTEX ‘ /
¢ [
‘ 4
/ /
; %
’
/ /
/
o 4
/ /
FRONT FAZE INPUT APERTURE

Figure 10. Tube analogyv for input and output apertures.

The space seen by looking through the tube from various angles is the active
reflecting area for that incidence angle. The analogy holds for a solid cube corner
by filling the tube with a dielectric (Figure 11). The active reflecting area for a
solid reflector is larger than that of a hollow one at off-normal incidence because the
rays are bent into the cube corner.



\ m OUTPUT APERTURE

X INPUT APERTURE

ACTIVE
REFLECTING AREA

Figure 11. Solid-cube-corner tube analogy.

2.8 Masking and Recession

By means of a variety of techniques, the active reflecting area of a cube corner
can be made {o decrease more rapidly as the incidence angle departs from the normal
to the front face. The tube analogy is perhaps the best way to visualize the effect of
these techniques. I the cube corner is made narrower while keeping the length from
vertex to face constant, the reflecting area is decreased directly at normal incidence
and the cutoif angle (the angle beyond which there is no retroreflected signal) is
smaller as measured from normal incidence. The same effect could be achieved by
masking the front face by the same amount. Figure 12 shows both techniques.

If a hollow reflector is recessed in a cavity of the same shape as the face, the
effect is the same as changing the width-to-length ratio, as was done in the two pre-
vious techniques. If a solid cube corner is recessed, the effect is somewhat more
complicated. The wall of the container shadows the face of the reflector at an oblique
incidence angle. Since refraction occurs at the dielectric boundary, the displacement

13



D of the input and output apertures is the sum of two terms. As shown in Figure 13,
D is given by
=2(Rtan + L tano’) ,

where R is the amount of recession, and ¢ and ¢’ are the angles of the beam before and

after refraction, respectively.

Vo \ \

Vo \ \ A

NORMAL MASKED NARROW

Figure 12. Effect of reducing the width-to-length ratio.

a) b)

)

[ - Y A W . W W W W W W R W \\\l/

Figure 13. Recessed solid cube corner.
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2.9 Multiple Apertures

The technique of masking can be used to produce pai.'s of apertures on a retro-
reflector. If half the aperture of a cube corner is covered (Figure 14), there will be

—
i
\
L

¥Figure 14. Half-covered retroreflector.

no effective reflecting area. Rays entering ‘he oper left half of the retroreflector must
exit on the right side by the principle of the symmetry of the incident and reflected

rays about the vertex. If holes are made in the mask on the right side of the aperture,
rays entering the holes will exii from the open left balf and those entering the left half
exactly opposite the holes will exit from the holes. Thus, pairs of apertures can be
produced, as shown in Figure 15. Figure 15 has the mask covering slightly nore than
half the aperture, in order that a line will not be opened up in the center if the cube cor-
ner is slightly misaligned. The problem of alignment is also the reason for not having
matching holes in a mask that covers the entire aperture. Corresponding apertures
would not be exactly opposite each other except at pormal incidence.

Figure 15. Pairs of apertures.

15



2. 10 Multiple Retroreflection

In a solid cube corner, a partial reflection occurs at the front face both as the
light enters the cube corner and as it leaves. The light reflected on entrance is not
in the retroreflection direction except at normal incidence. The light reflected back
into the cube comer as the beam is leaving can give ris. to multiply retroreflected
beams. The contributicn of these multiple retroreflections is negligible, largely
because the reflection coefficient is small. Except at normal incidence, the active
reflecting area decreases for each successive reflection, and caly every other beam

leaving the cube corner is in the correct direction.

At normal incidence, the rction coefficient is
; 1 2
= n =
R (n + 1} y

For n= 1.46, 'i=0.035. The path of multiply retroreflected rays according to the
tube analogy is drawn in Figure 16.

RN

G [

E

:r/ -F‘/ E/\'E

Figure 16. Multiple retroreflection.

al’

Figure 17 shows the widths and positions of the various input and output apertures

and active reflecting areas for a square cube corner.

16



le—| THIRD ACTIVE REFLECTING AREA AND FOURTH INPUT APERTURE
fe—}—>| THIRD OUTPUT APERTURE
| le—t——| FIRST ACTIVE REFLECTIVE AREA AND SECOND INPUT APERTURE

r—l——{———o] FIRST OUTPUT APERTURE
. ]

,-——4—4F1RST INPUT APERTURE
le—f——4 seconn ouTPuT APERTURE

SECOND ACTIVE REFLECTING AREA AND THIRD INPUT APERTURE

Figure 17. Widths of successive apertures for multiple retroreflection.

Let T be the transmission coefficient given by 1 -~ R and let Wo be the intensity
of the incident beam A. Table 1 gives the width of each beam for a square retroreflec-
tor with sides of unit length and incidence angle such that 2L cos ¢ = 0.25. Tne inten-
sities of each beam arc calculated for R = 0.035 and T = 0. 965.

Table 1. Intensity and width of successive reflections within a cube corner.

Intensity

Beam Width Analytical Numerical
—
A Indefinite Wo Wo
B 1 RWo 0.035Wo
T 1 TWo 0.965Wo
D 0.75 T®Wo 0.931Wo
E 0.75 RTWo 0.0338Wo
F 0. 50 RT*Wo 0.0326Wo
G 0. 50 R2TWo 0.00118Wo
H 0.25 R%1r?*wo 0.00114Wo
T 0.25 R3TWo 0.60004Wo
53 0. 00 RT?wo 0.00004Wo

17



In the above case, only beams D and H are in the retrureflection direction, and
the intensity of each successive retroreflected beam is decreased by R2 = 0. 001225.
The separation of the input and output apertures increases by 4L tan ¢’ between each
sucecessive retroreflection. The cutoff angle nccurs when the width of the front face
is less than 2L tan ¢’ for the first retroreflection and when it is less than 6L tan ¢’
for the second.

2. 11 Dihedral-Angle Offsets

In a perfect retroreflector, the angle between any pair of reflecting faces is
exactly 90° and the reflected beam is exactly antiparallel to the incident beam. If
the dihedral angles differ from 90° by a small amount, the reflected beam will be
split into two, four, or six beams, depending on whethcr one, two, or three dihedral
angles are changed. Each spot corresponds to a particular order of reflection.
There are 3! = 6 possible orders of reflection. The orientation of each face is given
by the urnit normals 31, 62’ and 33 to each face. The reflection from each face
reverses that component of the light's velocity vector that is normal to the face. Let
V and V’ be the directions of a ray before and after reflection, respectively, with

the vector V’ given by
V'=V-2(V-nn ,

where 3 is the normal to the face. Application of the above formula three times
yields the direction cof the reflected beam for a particular order of reflection. For-
mulas for the direction of the reflected rays ofter the three reflections are given in
Yoder (1958), Chandler (1960), and Rityn (1947). Chandler's formula is

a - AN AN S
t=q+2aX (aa-PBb+vo) , (2-5)

where —t is ibe final direction; 'oI is the origiral direction; a, B, and y are the small
angles by which the angles between the three mirrors exceed right angles; and 5, 't;,
and ¢ are the normals to the three mirrors taken in order in a right-hand sense.
Equation (2-5) is valid to first order when the mirrors are nearly mutually perpen-
dicular. The angle a is the angle between the faces whose normals are b and '5, etc.

18



The normals may be strictly perpendicular; that is, they do not need to include the
small deviations caused by the dihedral-angle offsets.

In the transfer functions given in Weiffenbach (1973) and Arnold (1972, 1974,
1975a,b), the directions of the reflected rays were computed by applying the law of
reflection three times. The small deviations in the normals must be included to use
this technique.

The unit normals to the faces can be computed as follows (see Figure 18). Let
the normals to the faces without dihedral-angle offsets be the unit vectors /f, %, and
ﬁ along the three coordinate axes x, v, and z, respectively. If the angle Letween the
xz plare and the yz plane is (7/2) + §, this can be expressed by

A _n bA
nl—1+23 ,
A A b
=izl
Fa
ny=k

For small angles 6, the above expressions are quite adequate. Offsets in the other
two dihedral angles can be similarly represented. The normals shculd be divided by

their absolute magnitudes to ensure that they are strictly unit vectors.

3/2

(m/2)-8
§/2

Figure 18. Normals to the reflecting faces with dihedral-angle offsets.
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It is desirable to have the unit normals given in the coordinate system of the
symmetry axis of the corner cube since the incidence angle of the laser beamn is given
with respect to this axis. The symmetry axis is in the direction of the vector
x=y=z= 1, as shown in Figure 19, and is given by the angles GA and xA. From

Figure 19. Direction of symmetry axis.

Figure 19, we see that

cos 0, = INZ
sing, = IVZ
cos Ny = VZNG
sin )\A =1//3
The normals in the xyz coordinate system can be given in the coordinate sy. tera of

the symmetry axis by rotating the original coordinate system about the 7 axis by 0 A

and about the y axis by —)\A. This brings the x axis along the axis of the cc¢. in

matrix form, the total rotation is given by

20



’ 3 i )
X / cOS )\AO sm)\A cos OA smeA 0

! ‘=K 0o 1 0 -sinf, cos BA 0]lly
’ -sin )\AO cos A\ 0 0 1 zZ

<

z A

Substituting the values of the sines and cosines and multiplying the matrices, we get

1
X = &tytz) ,
=L o
y _\[2—(5 X,
P |
Z —-E(Zz—x—y) .

In Figure 20, the unprimed axes represent the original coordinate system, and the
primed axes ure the rotated coordinates.

Figure 20. Relationship of x, y, z and x’, y’, z’ coordinate axes.

The incident laser beam after refraction at the front face is in a direction given
by the angles 8/ and &’ in the primed coordinate system (see Figure 2i).
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Figure 21. Direction of incident beam after refraction.

A second rotation of the coordinate system must be porformed to get the normals
to the faces in the coordinate system of the ' s2: beam. By rotating the coordinate
systexn about the x’ axis by 6’ and then about the new z’ axis by ¢’, we get

‘x"'\ Fcos ¢’ sing” 0,1 0 0 x'
y"’) ={-sin &’ cos ' O \0 cos 6’ sin 8’ y’
z" 0 0 17 \0 -sin 9’ cos g"/ \z’

The relationship of the primed a d double-primed coordinate axes is given in Figure
22. The x’ axis is the symmetry axis of tie reflector, the y'z’ plane is parallel to the

front face, :nd the x” axis is paralie} fo the beam after it enters the cube corner.

Figure 22. Relationship of x’,y", 2’ and x",y¥", z” axes.

| Sv]
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If the ¢omer cuse is holiow, the reflections can be done for all six possikle
sequences o reflections by taking the incident beam, given by tbe vector x” = -1,
y” =~ 2" = ¢, and refiecting it {from each of the normals to the faces in the double-
primed coordinate sysvem. The y” and z” coordinztes of the reflected beam give
the deviations from the incident divection. The effect on these deviations due to refrac-
tion when the rays exit from a solid cube corner is discussed be’ow.

2.11.1 Effect of refraction on beam divergence

Let the incident beam on the cube corner be in the direction (8, ¢) and let the
direction of the beam afier refraction be (©', ¢'), where

sin¢=ncsinod’ .

Cwing to dizedral-angle offsets, the direction of the retroreflected beam before being
refracted out of the cube corner is (8" + dd’, &' + d’) for a marticular orcer of reflec-
tion. After refraction, the directicn becomes (8 + d6, ¢ + db), where

0+do=0"+do’ ,
do=de’

sin (6 + do) = n sin (B’ + &)

Since the arc distance between (8’, ¢°) and (2" + d8’, &') is s’ = sin &’ d¢’ and that
between (8, ¢) and (@ + d9, &) is s = d8 sin &, the deviation of the ray perpendicular to

the plane of incidence has been increased by the ratio s/s’:

_d8sing _sing _

s’ d8’ siné’  sing

s
|4

To obtain the change in the component of the deviation in the plane of incidence, we
expand sin (¢ + db) and sin (¢’ + db’), which yields



sin ¢ + do) = nsin @’ + db’) ,

sin ¢ cos db + cos ¢ sin db = n(sin ¢’ cos do’ + cos ¢’ sin do’) .
Since db and do’ are very small, we have approximately

sno +dd coso=nsine’ +ndo’ cosd’ .
By using sin ¢ = n sin ¢’, this reduces to

do ccsd=ndo’ cos &’

Therefore, the component of the deviation parallel to the nlam ol incidence is

increacse by the ratic

i 14
% COs
7= I

7 cos ¢

2.11.2 Beam spread at normal incidence

The beam spread at normal incidence when all dihedra! angles are offset by an
equal amount is given by the formula (Rityn, 1967)

Y= 6 né s

o) e

where, following Rityn's notation, 6 is the angle by which the dihedral angles exceed
90° and v is the angle between the incident and the reflected rays. This formula is
good to first crder when the dikedral angies are nearly 90°. If the deviation y is
large compzred to the beam spread due to diffraction, the positions of the reilected
spots in the far field can be accurately predicted. If y is on the order of the spread-
ing due to diffraction, the formula represents the deviation of the exiting phase fronts
exactly, but the positions of the maxima in the far-field pattern are altered as a

resuit of interference amcng the six reflected beams. In this case, a diffraction
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calculation for the whole cube corner is necessary in order to predict the intensity
distribution in the far field tv a sufficient accuracy.

2.11.3 Phase gradients due to dihedral-angle offsets

Let the direction of the reflected beam from a cube corner for a particular
sequence of reflections be given by the umit vector

v

where -% points toward the illuminating source. Since the dihedral-angle offsets are
assumed to be small, we have

vx= 1,

vy <1 ,
v «1 .
z

The rates of change of phase across each sector in the y and z directions are

a= kvy s

b= kvz ,
where

k=2n/\ ,

\ being the wavelength.

Figure 23 shows a ray going to the vertex of a hollow cube corner. The two

reflected rays correspond to different orders of reflection from the back surfaces,
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which results from the incident ray being infinitesimally displaced from the vertex

in different directions. Two factors are evident from the diagram, but they can be
negiected because vy and v, are so smuil. First, the sace between each ray and the
incident ray is a dead spot containing no reflected radintion. Second, the phase fronts
drawn perpendicular to the unit vectors, giving the directions of the reflected rays,
do not intersect the incident ray at exactly the same point. In diffract:on calculations,
the phase difference due to dihedral-angle offsets will he taken as zero at the point
where the phase fronts intersect the incident ray going tc the vertex. These effects
are insignificant in t¢ rms of their effect on the far-field paitern. A larger effect,
which has also been neglected, is the reflecting area lost owing to the rounding of the
back edges to prevent chipping in solid cube corners.

INCIDENT

QF<

Figure 23. Relationship of phase fronts for different sectors.

2. 12 Six Sectors

A ray retroreflected from a cube corner /mdergoes three successive reflections
at the back faces. The order in which the r :flections occur is determined by where
the incident ray strikes the cube corner. Since the direction and polarization of the
reflected ray may depend on the order of reflection, we must determine the regions
corresponding to the six orders of reflection.
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In Section 2. 11, the normals to the reflecting surfaces were computed in the
x",y",z" coordinate system. The x” axis is antiparallel to the incident beam after
refraction into the cube corner, and the y” axis is in the plane of incidence. In
Figure 24, the projections of the normals onto the y”2z” plane are shown as two-
dimensional vectors labeled 1 to 3. The dotted-line vectors 1’ to 3’ are antiparallel,
respectively, to the first three. These six vectors form the angular boumdaries of
the six sectors of the cube comer as viewed from the direction of the incident beam
inside the reflector. Let the reflecting faces be identified by their unit normals.

The three-digit number in each sector gives the order of reflection for light emerging
from that sector. The order of reflection is determined from the principle that the
incident and reflected rays are symmetrical with respect to the vertex. For example,
all rays leaving the sector between the ! axis and the 3’ axis must have originated in
the 1'-3 sector. The normal to the 1'-3 sector is the 1 axis, and that to the 1-3’
sector is the 3 axis. By a process of elimination, since the first reflection is fram
the 1 plane and the last from the 3 plane, the second is from the 2 plane. The oxrder
of reflection is therefore 123, as shown in the 1-3’ sector.

/3

14

Figure 24. Ovrder of reflection for each sector.



The angular boundaries of the six sectors will be modified by refraction of the
rays at the front face. Let an x,y, z coordinate system be set up outside the reflec-
tor. The x axis is antiparallel to the incident beam outside the cube corner and
collinear with the ray to the vertex. The z and z” axes are parallel, and the y axis
is in the plane of incidence. The boundary lines of the I'” sector outside the cube
comer are given by the Ith vector in the yz plane, whose companents are

_ o COS ¢
YI YI Ccos ¢' ’

where

sic ¢’

The slopes of the boundary lines when Yy is not zero are given by

and the angles of the lines are

=17
a.[—tan y—I .
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3. ACTIVE REFLECTING AREA

In this section, analytical expressions are derived for the active reflecting area
of a retroreflector whose face is in the shape of a circle, triangle, or hexagon. For
all cases, the separation of the input and output apertures in the plane of the front
face is given by

D=2Ltan¢’ ,

where L is the length of the cube corner and ¢’ is the angle of refraction:

y'=sin” (£29)

n

in which n is the index of refraction and ¢ is the angle of incidence.

3.1 Circular Retroreflector

The active reflecting area of a coated circular retroreflector is independent of
the azimuth angle of the incident beam and is a function only of the angle between the
beam and the normal to the frent face. The input and output apertures are circles in
the plane of the front face.

Let the radius of the front face be r. The maximum possible value for r for a
given L occurs when the circular face is tangent to each of the reflecting faces (and
perpendicular to the symmetry axis of the cube corner). In Section 2.11, it was
shown that the angle between the symmetry axis and each face is the angle whose
tangent is 1/V2. From Figure 25, we see that

T
max _ _1
L V2!
or
r =L
max 3
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FRONT FACE

BACK EDGE

tan.l(l/ﬁ)

REFLECTING FACE

Figure 25. Ratio of cube-corner length to the radius of the front face.

The active reflecting area is cos ¢ times the infersection of two circles of radius
T separated by the distance D. The intercection of the two circles is four times the
shaded area shown in Figure 26. The angle 6 is given by

- 2
0= cos 1 (%{—“) .

A
%

’/

Figure 26. Active reflecting area for a circular retroreflector.

The area of the sector OAB is

(11'1‘2)i = r2 9
27 2

b
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and the area of the triangle OAC is

L @)csmoy-Dugin

The active reflecting area is

4 cos ¢ (r2_g___l__)£_?_n£)= (Zrze—Dr sing)cos¢ ,

wtich is zero when

™Y

v
H

The cutoff angle be is defined by

DC
TOF

Substituting D_= 2L tan ¢/, into the above equation, we get
c c 4
2L tan ¢(’3

-1

From Snell's law,

. =1 .
o= sin (nsm¢(’3) .

In summary, if D/2 < r, the active reflecting area of a circular retroreflector is

area =(2r29 - Dr sin9) cos ¢ = (2r26 - 2r2 cos 0 sin 0) cos ¢

= 2r2(9 - cos 0 sin 8) cos ¢
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where
0= cos

1 D
2r

I D/2 =1, the area is zero.

3.2 Triangular Retroreflector

The active reflecting area of a triangular retroreflector is independent of the
azimuth as long as the intersection of the input and output apertures has six sides.
A somewhat lengthy calculation is required to derive this simple result. When the
overlap has four sides, there is an azimuth dependence, which is repeated every 120°.
Only cases with 6 between 0° and 60° need be considered, since the result for 8
between 60° and 120° is the same as for 120° - 6. Let the radius of the inscribed
circle in the front face be r. The maximvm value of r is L/v2, which occurs when
the circle is tangent to the reflecting faces. Let W be the width of the hexagonal
active reflecting area at normal incidence (see Figure 27). The relationship of W and

ris

W= 2r.

\W/Z

w//3

)

Figure 27, Triangular retroreflector at normal incidence.
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The analysis is divided into two cases. In Case 1, which occurs at small values
of D, the active reflecting area has six sides. Case 2 runs from the transition point

to the cutoff of the cube corner, and the active area has four sides.

The following areas must be calculated in order to get the overlap of the input and

output apertures in Case 1, as shown in Figure 28.

areaI=-;:B_"£_
1 1 . 1 .
=5 ——(W-Dcos9+v3Dsin8)= (W - D cos 6 +V3D sin 6
1 . 2
=—%—(W D cos 6 + V3D sin 6)” ,
areaH=-;—Fj'T)§
=-21-(wf3Dsin6) (D sin )
=§Dzsin29 ’

areay, = ab (5.5 -Te)

= (W - D cos 9)[ (W4 2D cos 9) -Dsme}
\3
=L W-Dcos8) (W+ 2D cos 8 - V3D sin )
V3

The overlap of the two aperatures is
overlap= 4 area; - 2 -Teay + area]II
— (W - D cos 6 + V3D sine)2 - v3D? sin® @
2V3

r(W D cos 8) (W + 2D cos 6 - V3D sin 6) .

33
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Figure 28. Triangular retroreflector, Case 1.

CALCULATION OF DISTANCES IN FIGURE 28

ab = the width of the hexagon minus the displacement of the upertures in
the 9 = 0° direction

=W-Dcos b6

cd = the height of a star point plus the displacement of the apertures in the
6 = 0° direction

=22V—+Dcose
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Figure 28 (Cont.)

—_ 2 —=_ 2 (W

ae=—cd= — (5 +Dcos 0
V3 »/Ta'_(2 )
1

e + 2D cos ©
=W )

fg = the height of a star point minus the displacement of the apertures in
the 0 = -60° direction

=E—Dcos (60° + 0)

2
W ° . 6 i
=5 - D(cos 60° cos 6 - sin 60° sin 0)
W 1 V3
=5 - )<2cos9- 3 sme)
=2 (W - D cos 0 + V3D sin 6)
—_ 2 =
ah=—
ﬁfg
=Tl§_ (W - D cos 9 + V3D sin 6)
W= &
=—271_3—(W—Dcose+.x/'§D sin 0)
E=——‘/§E=E
=2 (W - D cos 0 + V3D sin6)

bj =2ai - ab= (W - D cos 8+ V3D sin9) - (W - D cos 6) =v3D sin 8
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After evaluating equation (3-1) by use cf an algebra computer program, we get the
following result:

= .
overiap = 3'-23— (W2 - D2) .

The evaluation, though lengthy, is straightforward and involves nothing more com-

plicated than recogmzing the identity —D2 cos2 6 - D2 sin2 6= -D2.

The active reflecting arez for Case 1, then, is

_
2 w2 -Dcoso . (3-2)

The transition irom six sides (Case 1) to four sides (Case 2) occurs when
bj=ai ,
v’§Dsin6=%(W— D cos 6 + V3D sin 6)
2V3D sin®=W -Dcos 6 + V3D sin@

’

V3Dsin9=W -Dcos9 . (3-3)

The two cases are thus defined by

Casel: V3Dsir9<W-Dcos6 ,

Case 2; V3D sin® >W - D cos 6

The geometry of the active reflecting area for Case 2 is shown in Figure 29. The

intersection of the apertures for Case 2 is

7

be Xab=—= (W - I cos 0) (2W + D cos 8 - V3D sin 6)

V3
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Figure 29. Triangular retroreflector, Case 2.

CALCULATION CF DISTANCES IN FIGURE 29

EE:% - D cos (60° + 8) = fg (from Case 1)
=%(w - D cos 8 + 3D sin 9)
®--233
V3
=L,._(-V-Dcose+x’§D sin 6)
v3
ab = ac - ¢b

N __% (W - D cos 6 + ¥3D sin 9)

v

2 1 -
=—W-—=(-Dcos @ +.3Dsing

NEY \/3( . )
=%(2W+Dcose - V3D sin 6)

v




The active reflacting area is

___Qco%_ (W-Dcos8) (2W+Dcos 6 - V3D sin Q) . (3-4)
Y
Cutoff occurs when

be=W-Dcos6=0 , (3-5)

and thus the active reflecting area is zero when

Dcos6>W

Since equation (3-2) for Case 1 is independent of 8, there are no special formulas
for different azimuths. Whua 6 = 0°, the cutoff and transition points coincide, so the
reflecting area is given for all ¢ by Case 1. The cutoff angle for 6 = 0° is obtained
by setting cos 6 = 1 in equation (3-5), which gives

W-D=0

b

W=D .
Substituting D = 2Ltan¢é, we have
2Ltangl =W

oL, (0= 0°)=tan™" (%—) :

The active reflecting area for Case 2 with 6 = 60° is obtained by putting cos 6 = 1,/2
and sin 0 = V3/2 in equation (3-4), giving
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L5 ¢ W - D cos 8) (2W + D cos 8 - v3D sin 8)
V3 0=60°

;c—“/’.-g_ﬁ(w --3)(2W+-213_gn) =°?°“;§—Q (2W - D) 2W - D)

= £0S9 oy . py?

VS

The transition f~r 6 = 60° using equation (3-3) is

V3D sin 8 =W-D cos 0 ,
6=60° 8=60°
'3 D
ﬁD‘T=W—— ,
3 D_
§D+—2--W 3
D=W/2 ,

Substitut:ng D= 2Ltan¢":, we get
2L tan ¢! = 2W
" = 60"y = tan-1 (W
¢!, (0= 60") = tan (L) .

This is the largest possible cutoff angle for any retroreflector design. If application
of the formula
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¢, = sin”} (n sin ¢[)
leads to imaginary values of ¢ & then & c= 90°.

In summary, the active reflecting area of a triangular cube corner is given by
tue following formulas for the range 0° < 8 < 60°. Forv3Dsin8 <W - D cos 6,

T 9
ama=-\.,—3(W“—D2)cos¢ ;

for V3D sin6 > W - D cos 6 > 0,

ama:“—%‘ﬁ(\v-ncos ) 2W + D cos 8 -+3D sin 8) ;
hY

and for W - Dcos 6 < 0,

area=90 .

The active area for other values of 6 is obtained by sing the following symmetry

properties:

area (0) = area (8 + N X 120°) |

area (8) = area (-9) |

area (0)= area (120° - 06) ,
where N is an integer.

3.3 Hexagonai Retroreflector

The active reflecting area of a hexagonal retroreflector varies with the azimuth
angie 6 except at normal incidence. This variation repeats every 60°. Also, since

all cases between 30° and 60° give the same answer as for 60° - 6, we need consider
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only the cases where 0 is between 0° and 30°. The active reflecting area may be
bounded by either six sides (Casc 1) or four sides (Case 2), as shown in Figure 30,
depending on the values of 6 and ¢.

a) b)

Figure 30. Hexagonal retroreflector: a) Case 1, b) Case 2.

The width W of the hexagon is 2r, where r is the radius of the inscribed circle
(see Figure 31). The maximum value of r for a given L is

w/J/3

—

Figure 31. Hexagonal retroreflector at normal incidence.
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[

as in the case of the circular reflector; this value occurs when th> inseribed circle

is tangent to the reflecting surfaces. In the diagram for Case 1 (Figure 32), the
following areas must be calculated:

171
z[—f‘

2W -13D cos 0-D sin 9)+-%(W -1\3Dcos @ +Dsin6ﬁ
Al
N3 w - 2Dsino)
NG 2

__1

YO

— (3W - 23D cos 0) (W ~ 2D sin 0)

anean=b_c-d—e
N 1D U 1
=D sin 8l—= (2W -+v3D cos 6 - D sin {)
L3 !
areay, = arel; -

The intersection of “he apertures is

area= 2 area, + area
o i}

[

(-3W - 2D cos 0) (W - 2D sin 0) + D sin 0 —1.3_ (2W - v3D cos 8- D sin er,]
Evaluating the above expression gives

area = '-:l—; [3

V3 2

— 2 _—
W‘2 - DW (3 cos 0 +sinf)+ D™ sin0 (3 cos 6 - sin ei’
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The active reflecting area for Case 1, therefore, is

c—‘%—‘h [% W2 - DW{/3 cos 0 + sin 8) + D sin 0 ('3 cos 6 - sin eﬂ . (3-6)
v .

The transition from Case 1 to Case 2 occurs when

Ei=—1—(w-v"§ncose+nsine)=o . (3-7
V3
The two cases are defined by

Casel: W>D(E3cosH-sing) ,

Case2: W <D({3cosO-sing) .

In the diagram for Case 2 (Figure 33), the area of intersection consists of area Il
plus twc times area I. Defining

T=’5E=i,3_(2w—f§Dcose—Dsin6)
A

(3-8)
= %3_ [2W - D(/3 cos @ + sin 6)]
and
m-Pm=FT
we have
s ()
B

aman=36ﬁ= (Dsin6)T ,

43



Tigure 32. Hexagonal retroreflector, Case 1.

CALCULATION OF DISTANCES IN FIGURE 32



Figure 32 (Cont.)

cd = fc

=-LDsin6

v3

a_f-—*;c_:—E:Dcose-—‘é:Dsine
gh=af

=Dcos6--—l—Dsine

Vi)

’hI:“{-'g_=% -Dcose+71,.é-Dsin0

=%(W-»/’3‘Dcose+nsine)‘
bj=cj-be=% - Dsin®

de=Tae -ac - cd

= —Dcose-—l—Dsine

73 3

(2W - V3D cos 6 - D sin 8)

=~,1§-(2W-J§Dcose-nsine)
A
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Figure 33. Hexagonal retroreflector, Case 2.

CALCULATION OFf DISTANCES IN FIGURE 33

=D cos 6

ol

gl

=Dsin@

]
I

be
D

P <
ca|~oﬂl~

sin 6

de = ae - ac - cd

2W 1 .
= —_— .—.D
V3 V3 sin 6

=-;%(2W-\/'§Dcose-Dsin9)

-Dcos 0 -

ﬁ=£
\[_ (2W - V3D cos 6 - D sin )

jm

bk

|55 e

1l

Nl)—l )

(2W - V3D cos 6 - D sin 9)
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and the intersection of the apertures is

area = 2 area_I + area.II

=i2—§'r2+nsineT

The active reflecting area for Case 2 is
. V3 2\ _ - V3 -
cos¢(Ds1neT+-§-T)—T(Dsme+—2—T>cos¢ . (3-9)

This expression has been evaluated by using an algebra computer program, with the
following result:

2 cos

. [W(W - V3D cos 8) + Dz(cosz o- Zl)] . (3-10)

Cutoff occurs when

T=— rzw—D(ﬁcosemine)]:o ,
\'3L

(3-11)
and the active reflecting area is zero when

D(/3 cos 6 + sin 0) > 2W .

The cutoff angle ¢ (’: as a fuuction of 6 can be computed by substituting D= 2L tan ¢é
into the above the expression, which yield-

2Ltan ¢, (V3 cos 8 + sin8) = 2W

-1 W
’ = ta.n . )
be [L(w/'i’f cos 6 + sin G)J (3-12)

The unrefracted cutoff angle ¢ , is

I | oy
¢~ sin (n51n¢c)
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The cutoff angle is largest when 6 = 0° and smallest when 6 = 30°. At 30°, the

transition and cutoff points coincide, so a single formula expresses the active reflect-

ing area for all values of . The active reflecting area for this special case is
obtained by substituting

6= 30°

cos O =

NOf b
N’|:B| .

sin 6 =
into equation (3-6) for Case 1:

E’s;‘i[ng-nwtf:?cose+sin9)+1)2sine(»/':‘?cose-sine)”
73 0=30°
2

:gzﬁ[é 2 _pw(d+d D_(i_l
s 12V Dw(z”z)* 2 \2 2/

=92-C%‘*2 [3W> - 4DW + D?]
vV

=Losd - -
2y CW - D) (W-D)

The cutoff angle for 6 = 30° using equation (3-12) is

-1 s w Q

’r ©6=30°=t ( ‘

b 0= 300 = T w2+ 2
= tan--1 <%>

The other special case, 6 = 0°, is ohtained by setting

8=10° ,
cosb6=1 ,
sing=0
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in Case 1. The formula betore transition using equation (3-6) becomes

c:/>_§¢ B—WZ—DW(\/'ﬁ'cosG*sine)+D2 sin 0 (\/'.'Tcose-sineil

0=0°
- 225 (3w - xow)

= w(fz-gw -D)cosé ,
and after transition, by using eguation (3-8) with ® = 0°

T = 0°) = \—,}3- [2W - D (/3 cos 0 + sin 6)]

2
—_W-D
8=0° V3 ’

in equation (3-9) it becomes

2
=gTZCOS¢=%-§( W-D) cos¢ -

T (D sin® + %2 T) cos ¢ %

6=0°

Transition from Case 1 to Case 2 at 6 = 0° occurs using equation {3-7) when

1 .
= [W - D(/3 cos 6 + sin 9)] !e=0° =90

’

W-v3D=0 |,

while cutoff takes place using equation (3-11) when

L

{
5 [2W - D (V3 cos 0 + sin 61! =0=2W-v3D .

lo=o-
Substituting D = 2L tan ¢/, we get
2W = V3D = 2\/§Ltan¢’c ,

or

N

' o 0°) = tan-l (W)
¢C(e-0) ta-n \\/:?TL) .
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In summary, the active reflecting area of a hexagonal cube corner is given by the
foilowing formulas for the range 0° < 8 < 30°. For D3 cos 6 - sin 6) < W,

. ) _
area = c"—%? [% w2 -DW¢3 cos 8 + sin 6) + D2 sin 8 '3 cos 8 - sin 9)] .
N

for D(:3 cos 8 - sin 3) > W and D(/3 cos 6 + sin 8) < 2W,
2 ; — 1
area = ﬂ;ﬂ [W(W -+3D cos 9) + D2(00s2 0 - i)] ;
\I

snd for D(\'3 cos € + sin 6) > 2W,

area= 0

The active area for other values of 6 is obtained by using the following symmetry
properties:

area (@)= area (6 + NX 60°) ,
area (0) = area (-9) ,

area (9) = avea (60° -06) ,
where N is an integer.

3.4 Cutoff Angzles for Total Internal Reflection

The cutoff angle for total intern~] reflection is defined by the eaquation
n sin r, = 1, (3-13)

where T, is the angle of incidence of the ray. There will be total internal reflection

whenever the incidence angle r satisfies the relation
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1

1§

r>r_ =sin
c

The incidence angles that do not give total internal reflection are contcined in a cone
of half-angle T, about the normal to the dielectric boundary (see Figure 34).

e

INDEX OF
REFRACTION n

N

Figure 34. Total-internal-reflection cone.

As shown in Section 2.2, the angle of incidence of the light with a particular
r2fleciing face in a cube corner is the same as the angle that the incident beam makes
with that face after refraction at the front surface. This property makes it possible
to visualize the directions of the incident beams that do not undergo total internal
reflection at all the back faces. In Figure 35, a quarter-cone of haif-angle rc has been

drawn about the normal to each reflecting face of a cube corner. If a vector drawn

Figure 35. Total-internal-reflection cones about each axis.



from the origin antiparaliel to the incident beam (after refraction) lies within any of
the three quarter-cones, the beam will not undergo total internal reflection when it

is incident on the face whose normal is the axis of the cone. As depicted in Figure 35,
the cones do not overlap, and total internal reflection is lost at only one face in this
case. If r, is greater than 45°, the cones intersect and the incidence angles in the
intersection lose total reflection at two faces. Viewed from the front face of the
reflector (Figure 36), a Y-shaped region is formed by the intersection of the cones

Figure 36. Region of total internal reflectioxn.

with the front face. The ray that goes to the vertex must be incident on the front
face within this Y-shaped area to give total internal reflection. Let 6 be the angie
of incidence of the beam on the front f2ce (measured from normal incidence) and ¢’

be the angle after refraction. The smallest value of ¢ that does not give total reflec-
tion is ¢é, which is given by

4
X =a -7
»c C b4



where a, the angle between the symmetry axis of the prism and a back edge (see
Figure 37), is given by

Substituting values for a and r, we get

1

B[4

g, = tan”! % - sin”

SYMMETRY
AXIS

[FY]

O

[a}

w |
X P e
O

> PR

a

Figure 37. Minimum cutoff angle for total internal reflection.

For a given4’, we can compute the azimuth iimi. 9 for total refleciion. Let Bc
be measured from the projection of a vack edge vnto the front face, as shown in
Figure 35. The circle is the intersection with the front face of a cone of half-angle
o' about the symmetry axis of the cube corner. The Y-shaped area is the intersec-
tion of the .hree cones of half-angle r, with the front face. To cgmpute 9, let the
symmetry axis of the prism be the z axis, and let the back edge A lefining the origin
of ec be in the xz plare (se,e\z Figure 39'. The angle a between the symmetry axis

- A
(z axig and the tack edge (A) has been shown to be tan 1 V2. The unit vector A
is given by
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Figure 38. Azimuth angle for loss of total internal reflection.

Figure 39. Diagram for computing {otal-internal-reflection cutoff angles.

A
A = (sinq, 0, cos a)

The unit vector % antiparallel to the incident beam after vefraction is



A
V= (sing’ cos O, £in o’ sin 6, COs o’)
In order for the angle between £ and & to be the cutoff angle r,, we must have
I
cos r, = A - 0

1
sin ¢’ cos ec+ = cos &’

Eiﬂliﬂ

Solving for ec, we get

V3 cos rc—cosq: =12 sino’ cos 8_ ,
<

V3cos T - coso’
”1( ¢ ) i (3-14)

9 = cos —
c \ v2 siné

Equation (3-13) can be used to rewrite cos r. as

cos T =‘[1—sin2r =Jl——-l-=l'[nz-
c c nz n

Also, cos ¢’ can be written as

— [ .2
cos b’ = VI-Sin2¢'= l-im—z-ff:%Vnz-sinqu .
n

Substituting these expressions into equation (3-14) gives

{\3 {1/m) V - 1- (1/n) V - am 1

9 =
¢ cos” +'2 sin &/n
- cos” (\3\[11 _1- Vi -sin’s
B ”sm» }
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For a thorough discussion of the loss of total internal reflection in uncoated cube
corners, see Chang (1970). In his paper, Chang gives sin ¢ as a function of Bc. If we
convert his notation to ours, his result becomes

Y |
] Vn2-lcosec-V3-2n2 sinz()c

sing = >
2 cos ec+1
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4. POLARIZATION

A beam of light retroreflected from a solid cube corner undergoes two refractions
and three reflections. Each encounter with a boundary introduces a change in either
the amplitude or the phase or both. Since the changes are different for the components
of t# ray parallel and perpendicular to the plane of incidence, the polarization state
of the ray is also changed. Changes in amplitude affect the total energy retroreflected
and thereby reduce the apparent active reflecting area of a cube corner. The diffrac-
tion paftern of the prism is affected by both phase and amplitude changes. The fcllow-
ing three cases will be considered:

A. Transmission across a dielectric boundary.

B. Reflection from a dielectric boundary, including
1} Ordinary reflection.
2) Total internal reflection.

C. Reflection from a metal surface, including
1) Perfect metal.
2) Real metal.

At each encounter with a boundary, the ray must be resolved into components
parallel and perpendicular to the plane of incidence. The coordinate system with
unit vectors defining the directions of the components is shown in Figure 40. The
angle of incidence is 0

and the angle of refraction is 6,. The complex vectors for

0’ 1’
the incident, refracted, and reflected electric vectors are E E and E”, respec-
tively, given by

E= E_LE-L+E g,

3 LﬁL+E £,

-ﬁ E”ﬁﬂ +Er|’i EII .
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The unit vectors are real, and the coefficients are, in general, complex. The trans-
mission and reflection coefficients used in this report are taken from Stratton (1941

pp. 494-506).

REFRACTIVE INDEX n 2

——— — — — — —— —— — — —

REFRACTIVE INDEX n

Figure 40. Polarization coordinate system.

4.1 Transmission across a Dielectric Boundary

After refraction across a dielectric boundary, the components of £ are given

by the Fresnel relations

2cos0_sin®
E’ = 0 1 g
1 sin(90+61) L ?

2 cos 00 sme1

E} ==
I sm(00+61)cos(60-9

E

D El
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At normal incidence, both formulas reduce to the same relationship:

f Z— 2 E

- ?
L n12+1 L

2
’:
Ei=agrif o
with

ny

nmig Py

where n, is the index of refraction of the transmitting medium and n, is the index of
refraction of the incident medium. The angles 8o and 0 p are related by Snell's law

n, sin 90=n1 sin Gl

The transmitted ray is always in phase with the incident ray. In the case of a light
beam crossing the front face of a cube corner at an incidence angle ¢ and a refracted
angle $’, we have

90=¢ ’
61=¢" ’
hjp=n

as the beam enters the cube corner and

0=¢" ’
91=¢ ’
bool
12" n

as it leaves the retroreflector.
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4.2 Reflection from a Dielectric Boundary

4.2,1 Ordinary reiection

In uncoated cube corners, the reflection at a particular back face is partial when
the incidence angle satisfies the relation

nsineos 1
and total when
nsine0 =1 .

The reflected electric field components Ej: and E'ﬁ in the case of partial reflection are

sin (9, - 9,)
Er=-——20 Lg
1 sin (8, + 6,) L

. tan (8, - 0,)
It tan (8, + 6

D E

which, at normal incidence, reduce to

Bl =-a,+1% > (4-1a)

n
EII—n +1Ell

. (4-1b)

In the case of a ray incident on the back face from inside the solid cube corner,

=
i
Bl
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Therefore, equations (4-1) become

no _{(i/m)~-1n _ l-ngp _n-1
E/= (17n)+,1EJ. n+1E.L n+lCy

ne D=1
Ey=-a71% -

The difference in sign is due to the fact that at normal incidence,
" —
B,

AII .
Ep= ‘ﬁu .

4,2,2 Total internal reflection

For total internal reflection (n sin 09 = 1), the components of the reflected field

are
A7
WEZE
Ey =2, E ,
where

n cos 6 —iVnzsinze -1
_ 0 0
Z = ?

L : inl -
ncoseo+1 n< sin 60 1

‘/2 .2
coseo—m n- sin 60 1

Z, = g
I cos 60+in‘/n2 sin 90-1




4.3 Reflection from a Metal Surface

4.3.1 Perfect metal

The case of reflection from a perfect-metal surface (infinite conductivity) gives
the simple relations

,,= -
E.L E.L !

/-

e
4.3.2 Real metal

Reflection from a real-metul surtace produces changes in both phase and ampli-
tude. The reflecting properties of the metal are specified by the complex index of
refraction a + i3. For a perfect metal, p = «». If the conductivity is zero, p= 0 and
the material is a perfect dielectric with index of refraction a. The components of the
reflected electric field ave

II=
E/=2E ,
I { -
1= 2 Ey

where

(n cos 90 -q)-ip

Zi__ (ncos 6, +q) + ip

[cos 60(0,2 - ;32) - nq} + i (2aP cos 90 - np)
Z —

" [cos eo(az - pz) + nq] + i(2ap cos 90 - np)

q=y(€+D)y/2 ,
P=V(C‘D)/2 ’
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C= '/4.12;32 +@2-¢ -nfsin’ o)

2
D=q’ _‘32_n2 sin” 6y -

Values of a and B for certain metals are given in Schulz (1954).

4.4 Polarization State of Each Sector

The direction of incidence of a beam on a cube corner is specified by the angles
0 and ¢, where ¢ is measured from the normal to the front face (see Fimure 41). The
volarization state of the incideni beam is given as a complex vector

NORMAL TO
FRONT FACE OF X
RETROREFLECTOR
é z
|
!
I
y
|
|
|
I
1
1 7
N | yd
1] /
9 AN | yd
N | s

Figure 41, Cocrdinate system for an incident beam.



- A A A
E=Exx+Eyy+Ezz R

where E Ey’ and E_are complex numbers and x, y, and Z are real unit vectors.
~he unit \ector X pomts toward the source, y is in the plare of incidence pointing in

the direction of increasing ¢, and = is perpendicular to the plane of incidence pointing

in the direction of increasing 6. The polarization state of the beam incident on an

array is given as a complex vector E’ in a coordinate system related to the coordinate

system of E by a rotation about the x’ axis through an angle y. The components of

E are

- ’ . 4 3
Fy—Eycmy+EZ siny ,

- _ T o ’
EZ— Eysmy+Ezcosy .

Both Ex ar ' E ; are zero because electromagnetic radiation is a transverse wave.

If there are dikedral-angle offsets in the cube comer, the polarization siate EI of the
radiation emerging from the Ith sector will have a small component in the x direction
because the direction of the emerging beam has been changed slightly. This com-
ponent will not be ccnside. ~d in the polarization calculations. The effect of dihedral-
anzle offsets will be included only through the phase changes that they produce across
each sector.

The polarization states EI of the six sectors are obtained by computing the
changes in polarization due to refraction on entering the cube corn~r, to reflection at
each of the back faces in the appropriate order for each sector, and to refraction on
leaving the cute cornexr. The changes in the components of the polarization vector
parallel and perpendicular to the plane of incidence were given in Sections 4.1, 1.2,

and 4. 3, and the nrder of the reflections for each sector was given in Section 2. 12.
The formulas for the change in polarizaticr during refraction can be applied

directly to the ir ident polarization state E since “-;v is parallel and Ez is perpendicular
to the plane of incidence. After refraction, the direction of the beam is (®', o), where
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o' = sin™} (——M: ) .

Section 2. 11 showed how to compute the normals ﬁ r 32, and 33 in the x",y", z"”
coordinate system. This system has the x” axis in the direction ®’, &), th» y“ axis
in the plane of incidence in the direction of increasing ¢’, and the z” axis perpendicular
to the plane of incidence in the direction of increasing 6. The polarization state i:‘o
after refraction into the cube has the components

E,=0 ,
E.=RE,
E,,=RE, ,

where R“ and R.L are coefficients giving the change in the parallel and perpendicuiar
components of the polarization vector due to refraction. The direction of propagation

A
after refraction in the x”,y"”, z” coordinate system is v 0’ given by

A A
v,=-x" .
¢

In order to apply the changes in polarization at each reflection, the polarization
vector must be resolved into components parallel and perpendicular to the plane of
-~ incidence (see Figure 42). Let QIJ be the unit vector giving the direction of motion
'E of the ray for the Ith sector before the Jth reflection takes place, and let E.. be the

A
¢ polarization state for the ray with direction ¥ For all sectors,

U.
A A
Yio™ Yo
E,=E, -

N
Let be the normal to the plane from which a ray of the Ith sector is reflected on

th

its 37 reflection. The direction of motion after the J°  reflection is



__A 2l\ . A /\
=v (VIJ nU)n

.

A X,
p__w ")
LA A ’

IVIJXHIJ!

N A A

E" 'E_LX‘IJ ’
N

Ell:.ﬁl ’
A!I_AII /\;

BT EIXYE 541

The parallel and perpendicular components of the polarization vector ﬁIJ are
- A - N
EIJ . E" a.ndli:IJ . EJ_,

respectively. The components of ﬁIJ are complex, and those
of ﬁ“ and ﬁ: |, are real. To compute the dot product, we multiply the corresponding

componenis of the vectors without taking the complex conjugate of any of the numbers.
The polarizatior vector after reflection is
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-—h

By 341°

AA

R E)E” + B E )E"
- l+ I
f ) 1 ?

Y N

i (EIJ i _L(ELI )
where R!i and RJ,_ are the compiex coefficients giving the change in tke parallel and
perpendicular campenents of the polarization vector due to reflecticn. After three
reflections, the direction of moticn is nearly X” if we neglect the effects of dihedral-
angle offsets. Since the v” ana z” components of the polarization vector are parallel
and perpendicular, respectively, to the plane of incidence, the complex coefficients
RI and R l(giving the change in polarizatiin on leaving the front face) can be applied

directly to obtain the polarization vector E
are therefore

I for each sector. The companents of f:I

E =RE, |,
E, =RE_, .
1 4 %3

Peck (1972) gives a study of the polarization states produced by either single cube
corners or cavities consisting of two cube corners facing each other.
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5. DIFFRACTION

5.1 Diffraction Integral

According to Huygen's principle, the field up at a point p due to radiation emitted
from a surface s is

= 'R
up-afu—ﬁ—dfn ’ (5-1)

where a is a constant to be determined, u is the field on the surface s, k= 2nA,

\ is the wavelength, clf“L is the projection of the surface element in the direction of
pointp,a.ndRistbedistamefromdfntop. The constant a can be evaluated by con-
sidering the case of radiation from an infinite plane with u equal to a constant. The
value of u, must then be the sare as u. The result of perforraing the integral for
this case (Landau and Lifschitz, 1962, pp. 167-158) shows that

P . S |
T2wiai C

Substituting this into equation (5-1) gives

e

p=xij (5-2)
S

The intensity Ip at point p is

H)uu*.
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Let a coordinate system be set up with the x axis antiparallel to the beam
illuminating a cube corner and with the origin just outside the cubc corner. The y
and z axes are parallel and perpendicular, respectively, to the plane of incidence.
Let an x’,y’, 2z’ coordinate system be established in the far field parallel to the x,y, z
system with the x and x’ axes collinear (see Figure 43). The reflected field from the
cube corner in the yz plare is u, and the field at point p in the y’z’ plane isu_.

P
Finally, let the distance between the coordinate systems be D.
z 2’
y y’

CUBE / X SOURCE - x/
CORNER Y | |
| o |
re— —

Figure 43. Coordinate system for the far-ficld diffraction pattern.
5.1.1 Fraunhofer diffraction

When the distance D is very large and when the problem is restricted to cases
where the angular spread of the beam due to diffraction is small, equation (5-2)
reduces to the simpler formula of Fraunhofer diffraction. The distance R is given

by

R= D2+ ' -y)% + @2 -2)°

= D‘[l +1-)1-2- [(y’-y)2 * (Z’-z)z]

1 2
=D+ — l5"-y)* + @' -2) }
{ op? L 2]

- 1,2 2 2 2
~D+-‘,2—I-)—(y ~-2yy' +y + 2’/ —2zz’+z) .
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It is assumed that D is so much larger than the size of the area s that the quantities
y2/ 2D and z2/2D are zlways much less than a wavelength and can be neglected.
Therefore,

z'2+z’2 Yy z!
R=D+ 5 ‘(yn“‘ﬁ)

Since it is desirable to have the diffraction pattern given it terms of angles
rather {han as a function of y’ and z’ at a distance D, we can define the angular coor-
dinates of the observer (8,,6,) as

[+

1]
=/

D
ol

so that R becomes
/ ’2 2
= _Z__tL.) -
K (\D+ 55 8, + 28,)

Substituting this for the factor R in equation (5-2) and setting R = D in the denominator,
we get

ikR
_ 1 e
up—-)\—ifu—-R dfn
s
- 2 2 \
= ')\_11.]-5 u exp :ik KD + L;—Dz—-—) - 79, + zez)]}dy dz

r 2, 2
=)\—11D-e>q)Lik{\D+l-—f;‘%z—>J fuexp[-ik(yel+z62)]dydz .

s

The exponential outside the integral is a constant phase factor, which will disappear
when u  is multiplied by u; toobtain. It can therefore be neglected, resulting in
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1 -ik(yo, + 26,)
up ~ X_ID ue dy dz . (5-3)

S

5.1.2 Mod.. 2d Fraunhofer formulas

In equation (5-3), the intensity Ip = upu; is in units of energy per unit area per unit
time, and the formula contains the range in the denominator. But it is desirable to
compute diffraction patterms in a way that is independent of the range and the incident
field strength. These quantities can be provided when calculating particular cases by
using the range equation [eq. (7-12)] from Section 7.11. Omitting the range causes
U to be in units of area — i.e., the results have to be given in a particular system of
units. The equation can be written in a dimensionless form, however, as follows:

1 —ik(ye1 + 262)
E'(0,,0,) = 3 f e dy dz (5-4)

s
where S is the active reflecting area at normal incidence and
u’ = u/u0 ,

in which u, is the incident field. ILet a function ¥/(8 it 62) be defined as

0
*
F'(® 1’ 92) =E'(0 1 92) E’ (61, 62)
In the above form:, the intensity F'(6 r 92) is unity at the center of the diffraction

pattern of a perfect retroreflector at normai incidence. The relationship of the
modified Fraunhofer formulas to the original forms is

- S o
Up= Yo XD E'®p0)
I _—._iz_ F'(e ’e )I ’
P )\ZDZ PU2’70

where I. = u.u®*

0= Yoo Is the incident intensity.

72



In guing the integration over various sections of a cube corner, the formula

_ -ik(y® 1+ 285)
E(el, 62) = fu’ e " dy dz (5-5)

will be used to calculate the pieces of the integral in equation (5-4).

5.2 Calculation of Diffraction Patterns from an Array of Phases

To calculate diffraction patterns from an array of phases, let the field u’ in the
modified Fraunhofer formula [eq. (5-4)] be given as an array Uyy of field values at
the points (yI, % J) where

yI= IAY 3
zJ=JAz .

The complex number u’ is related to the amiplitude A and phase & of the field by

u'=Ae16=Acos 56+iBsind .

. ’ . ? 3

Let the field E’(@ 185 be given as an array ELM at the points (6 11 OZM) where
O1p,= L A9
Bon = M 28,

Since the aperture may not be rectangular, all values of Uy that are ourside the
aperture can be set equal to zero. The area element Ay Az is S/N, where N is the
number of nonzero items in the Wy array.

The modified Fraunhofer formula in the discrete case becomes

-ik[{T Ay(L 48.) + (J Az)(M A8,))]
, 1
ELM=ﬁZuIJe ' - (5-6a)
T
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-1(k Ay 88 ,)TL -i(k Az A9,)JIM
LM:%Z e 2 . (5~6b)
1J

Defining

C1=kAyAB1 ’

=k Az A9, ,
the expression for ELM becomes
1 -iC 1IL -iC JM
E’ == e
N Z Uy ©
IJ
1 -1c M -ic \B
ﬁ ) &
J
1 -1C s
N2 ) &
where
-ic,\"™
Spv = ZUIJ ° :
J
: . -iC2
All the complex exponentials in equation (5-7) are integral powers of e and

e—lC 1. This very useful property results from .he equal spacing between points
across the aperture and between points in the far field. If Ay = Az and Ael = A8,
then C 1= C2 and all terms are powers of a single exponential. Since complex multi-
plication involves only four multiplications and complex exponentiation involves the
computation of two transcendental functions (a sine and a cosine) by means of series

expansions, it is much faster to compute the powers by repeated multiplication and
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to save all the powers in an array. If each of the indices has a range of n values,
there are n2 complex numbers to be stored (or 2n2 if C 1 02)‘ A second property
that can be exploited to reduce computation time is the fact that SIM does not contzin
the index L. For each value of M, the n quantities SI'M can be computed and saved
while the quantities E’LM can be computed for the n values of the index L. The
physical reason that SIM does not contain L is that the phase cifferences between the
rows across the aperture are constant for each row in the far field, and thus the
summation over each column of the aperture needs to be done only once for each row

in the far field.

A straightforward computation based on equation (5-6a) requires n2 complex
exponentiations per point, resulting in a total of n4 exponentiations for the whole
matrix. Equation (5-7) requires n2 complex multiplications to compute the powers
of the exponentlal. For each vaiue of S[M’ n complex multiplications are needed,
for a total of n for all S[M Each point E . = requires n complex multiplications,

M

for a total of n for all E'LM The complete computation therefore requires
3,..2

2n” +n = 2n3 complex multiplications, a considerable savings compared to n4

exponentiations.

5.3 Diffraction Infegral for a Trapezoid

To calculate the diffraction integral for a trapezoid, let t~ _eld u’ be given by

o = ¢l@ +b2)

(5-8)
over a plane surface with linear boundaries, where a is the rate of change of phase
in the y direction due to dihedral-angle offsets and b is the rate of change of phase

in the z direction. The Fraunhofer equation is integrable in closed form under these
conditions. Let the area be divided into vertical strips bounded by straight lines on
the top and bottom, as shown in Figure 44.
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Z= C2+ Szy
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1 | y

Y Y2

Figure 44. Trapezoid aperture.

By employing the modified Fraunhofer formula [eq. (5-5)], the integral over the

area shown in the figure is

Y C,+S.y

2 oY -ik (y9, + 26,)
6,) = J’ ol(@y +bz) 1 2 dy dz

Yo CotSyy il(a - k8 )y + (b - k9,)z]
=J f e dy dz

we have

Y C,+S
2 2" %%
E(@,p) = j el(o’y+ pz) dy dz .

y'—'-Y1 z=C 1+Sly
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If p # 0, tL. integration over z gives

Y . .
‘ 2 ifay + B(C, + S, y)] ilay +B(C, + S,y)]
E(a,m=f IIB{‘* 2727 ¢ i }dy
Y=Y1
i F2 | (BC, + @+ BS,y]  -ilBC, + @ + BS )]
= -l—p- e -e dy
y=Y1
If we further define
Q=a+ps , I=1,2 , (5-11)

then
Y

2 iBC, +Qyy)  i(BC, +Q,¥)
E(a,ﬁ)=J %[e 2 2 -e 1 1 :Idy . (5-12)

Y=Y1
£fQ 1# 0, the second term in equation (5-12) is

Y

J-z _iel(pclJrQIY)dy:_iL ei(pcl+QlY2)_ei(ﬁ01+Q1Y1)
g ig P,
y=1
Using
_ I=1,2
Pl = BC + Q¥ , =12 (5-13)
in the above expression, we get
Y i(8C, + Q) ip ip
_1 16C 1Ydy=_1_<e 2 11)
ip A )



Isz # 0, the first term in equation (5-12) becomes

Py e,
' TR, |

s 3
__ 1 e‘Pzz ; e‘P21 .
A, ’

i(BC, + Q,Y,)  1BC, + QZYI)J
- e

and if Q, = 0,
. Y .
T2 | iC, +Qyy) 2 . ipC,
f —=e dy = f _Ee dy
y:

ip
y=Y1

If p= 0, equation (5-10) becomes

Cz+Szy o
J e’ dy dz
1 z=Cl+Sly

2
E@,0)=

5

Y

2

_ }LY

iay
e [(C2 +5,y) - (Cy + SIY)] dy
1 [eq. cont. on next page]
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Y

2 .
= j eny [(Cz-Cl)+(sz—Sl)y]dy .
y=Y,

i iuY inYl
E(o,,O):—a-(Cz-Cl)(e -e

P iaY faY ) iaY iaY
i 2 1 1 2 1
+ (Sz - Sl) l: S (Yze - Yle + —az(e e )} ’

while if a = 0, we have
Yy
0,0 [ fic, -0+ & - Sray
y=Y,

1 2 2
= (€~ C) (- T+ 315 -5 (- YY)

1 X
=@y =Yy [‘Cz"cl)*’i(sz'sﬂ ‘Y2+Y1)] y
In summary, ifg # 0, Q1¢0,andQ2¢0,

P, iP P, iP
E(o,,ﬁ):%\:—Qll le 12 _, 11) '61; (e 2 _e 21)] ) (5-14a)

-

p+0,Q,=0,andQ, #0,

-

; ip ip
1| BC 1 [ P2 21 3
Ef@,p =5 (ie (¥, -Y)-=-le ““-e ) (5-14b)
81 2 1 Q

®s+0,Q, %0, andQ2=0,

[ iP ip i3C
E(a,ﬁ)=—é[-§1]- \e 2. 11) -ie 2(Y2 -Yl)Jl . (5-14c)



B+0,Q,=0,andQ,= 0,

| . (iﬂCl ipCz)
E(o',ﬁ)=6 (Yz‘Yl) € -€ 7

. (5-14d)
=0, a%0,

i { oY,
E(a,0)=-;-(C2-Cl)\e -2

+ (5,8

Firzlly, if B=a= O,
_ ~ . 1 .
E0,0)= (Yz - Yl) [(bz - Cl) o 3 (SZ - Sl) (Yz + Yl)] - (5-14f)

5.3.1 Factorization of the diffraction integral

As shown in Section 7.4, the angles 91 and 6, are

61=e’1c03\r+6ésiny ’
- - a’ i ’
62-- el smy+92 cosy ,

where 9’1 ana eé are the angles to the observer in the coordinate system for the array
diffraction pattern.

The diffraction pattern of the array is given at a matrix of points (e'l, G"z) at inter-
vals A0 in both directions. Let

4 —
ol =L a0 ,
14 —
Ol =Moo
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where L and M are indices labeling poinis mn the array diffraction patteim. Substitut-

ing the expressions for ei and eé into those for 8, and 6,, we have

61L=LA9cwy+MA0siny ’

0, ~-LA@siny+MAEcosy .

2M

Putting these expressions into equatians (5-9) gives

a=a-kAab (Lcosy+Msiny) , (5-15a)

f=o-kAB (-Lsiny+Mcosy) . (5-15b)

The expression for QI from equation (5-11) can be substituted into equation (5-13)

for PIJ:

Py =BCp+ @ +BSY;
= oY + B(C, + 5,Y,)
= QYJ + ﬁzm ) {5-16)
where
2= Cp+ 8y ,

in which CI is the siope of the boundary line, SI is the intercept of the boumdary line,
and Y 3 represents the integration limits in Y. Incorporating a and g into PIJ’ we get
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P = a-kAB(Lcosy+Msiny)]YJ+[b-L‘AB(—Lsiny+Mcosy)] Z,

= a.'i'J + bZIJ

+MkAB(—YJ siny - ZIJ cosvy) .

+ Lk A9 (-Yj cos y + Z;; siny)

We can simplify this by defining

A J IJ
VUEI{AB(-YJCOSY+ZIJ siny) ,
WIJ;kAB(—YJsiny-ZUcosy) ’
which gives us
PIJ = UIJ + LVIJ + MWIJ . (®-17)

iP
The terms e U for a trapezsid in equations (5-14a, b, c) can then bz written

) . -
em =el(UIJ+L\IJ-M\\U;

. - L, . M
iC iv, . iW.
e IJ(e Io) (e IJ) -

The above expression is the product of two factors, the first cortaining only the
index L and the second containing only the index M. When computing the diffraction
pattern for ali values of I. and M, the computation time can be reduced by precom-

. . "y {1V W)
puting and saving the factors e (e } and (e ) . The powers of the expo-
nentials can be computed by repeated complex multiplication. Since I and J have two
values each, and since the range of L andi%‘; is n, cach matrix has 4n terms. It is
not necessary to store all the powers of e L

E@©!.

simultaneously; the values ova M
82,1’ can be computed for all L for the first value of M aad then (el 13\ R

be raised o the M+1 power to find E(0 ) fox all values of L.

4 9!
112 72, M+1
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oY

ipC
Iande Jgives

Substitution of a and g into e

H

if.'.c'.l ib +k &6 L sin y)C; i(-k 48 M cos ) C;
. e

i@ - kAB L cos ¥y i(-k AOM siny)Y;
e =e e .

These expressions can also be factored into terms involving only the index L or M,
and thus the diffraction pattern can be commputed by complex multiplication.

5.3.2 Reverse order of irtegration

When it is necessary tc reverse the order of integration over the variables, the
probiem is reformulated, as shown :n Figure 45. The sclution proceeds as before,
except that the roles of y anu z and *-ose of @ and f are interchanged. The formulas
summarized in the previous section and the results derived therein can be converted
to the present case by mak‘~g tho~3 substitations plus, when a and g do not appear
explicitly, the following:

L—-M ,
M—~L ,
Y=Y -
y -
/,’
P R A
-
,,
Cz
._.-_—-/!" y=C/ + Sz
Clh-—"' [}
‘ |
; |
| 3 .
Z, Z,

Figure 45. Tiupezoid aperture, reverse order of integration.
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5.4 Diffraction Infegra! for an Arbitrary Shape

For an arbitrary shape, we can calculate the diffraction integral by letting the
field u’ be given by equation (5-8) over a plane surface hounded by a curve z 1) on
the bottom and 220') on the top (see Figure 46). The Fraunhofer equation is iniegrable
along any line in the plane, as the phase of u’ is linear over the region. Since the
integration limits ara not linear, integration over the second variable cannot, in
general, be done, although numerical integration can be used.

z
; T z,(y)
L
]
Y, Y2 d

Figure 46. Aperture of arbitrary shape.

We get the foliowing integral over the area by use of the modified Fraunhofer
equation:

Y Z,(y) .
2 2 oo -ik(y®, + 20
E(el, 92) = f f el(as + bz) e ! 2) dy dz
y=Y1 z=zl(y)
Yo Z0)  jja- K6))y + (b - k8,)z]
= f J e dydz .
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Using o and p as defined previously feq. (5-9)], we get

I£p +0,

. (5-18)

f

Y., . .
2 ilay + fz,(y)] iy + Bz,(y)]
Emm=f -%% 277 e 1 lw
y=Y,

The integral consists of two terms, both of the form

J’fz , iy +pz )
B° v
y=Y,

where I is either 1 or 2. The integral can thus be represented approximately by

y=Q i5e y . (5-19)

fz y iky +pz o)) | Yy +BZ )
E e
y J

The diffraction pattern will be computed at equal intervals A9 of the angles 6/ and 0),.
The quantity uYJ + BZH is the same as P
equation (5-17) for uYJ + ﬁZU into equatioa (5-19), we get

2%
d

g ®s given in equation (5-16). Substituting

1B
Jd

iU iV. iw.
e ]

Jd

i@@Y, + pZ )
o
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which, in turn, can be substituted into equation (5-18) to give

v, . /v, ] iw, M iU, /iv, \l/ iw, \M
-t S | g ) J ) e
(5-20)

Equation (5-20) can be factored into terms containing only L or only M. The compu-
tation time can be reduced by precomputing and saving the factors, so that each value
of ELM can be determined by complex muliiplication.
B iUIJ( wn) ( iWIJ)M .
The quantities e e and \e each consist of 2mn terms, where
2 is the range of I, m is the range of J, and n is the range of L and M. The powers
of eIWIJ do not need to be stored simultaneously. The values of fﬁe\[a for the first

iW-
value of M can be computed for all L and then the quantities <el
to the M+ 1 power to find E for all L.

can be raised

L, M+1

F2=0

’

X2 2,00
E,0) = f f @) gy 4z
=Y | z=2,(5)

Yo
= [ & o -zl
y=Y,
io.YJ ’
=Ze (ZZJ—ZIJ) Av
J

After incorporating equation (5-152), we get

ila -k A9 (L cos y+ M sin Y)]YJ
ELM=ZG (Zog - 219 &

M

LS L, iW
=Ze (e ) (e Zoy =214y

~
J
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where

T =

LJ_aYJ ’
Jz—kABY cos y ,
WJE-kABYJsmy .

iU J
The quantities e e

vyl Wy
, e ,and Z1y should be precomputed and saved. Those
‘ iw

—

iw
for (—e J Jare computed by multiplying each successive power by e J to obtain the
next higher power.

fa=p=0,

Ela)p)—j j dXdy::Z(ZzJ-ZlJ)Ay
J

y-Y z=z;

5.5 Diffraciion Pattern of a Cube Corner

From the modified Fraunhofer integral [eq. (5-4)], the complex polarization
state i:"(el, 92) in the far field of a cube corner is

-, 1 o i(aly + bIz) -ik ('yel + zez)
E (0,,85) = EZ EI fje e dy dz , (5-21)

where EI is the polarization vector for the Ith sector, S is the are: of the Ith sector,

and ay and b are the phase gradients in the y and z dlrectlons, respective:y, due to

th

dihedral- 'mg'n offsets for the I~ sector. The intensity of each component o: polari-

zation is

’ ’ *
Fy(Ol, 92) = Ey(el’ 6:) E’y (91’ 62) ’

F 0,,0

*
,01,05)= E/(0,,8,) E/(6,,0 )
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and the total intensity is

F'(0),05) = Fy(8,6,) + F/(01,0,) -

The amplivude Ap of the reflected field in a polarization state given by the com-
plex unit vector P is obtained by taking the dot product of P and ﬁ’:

- * *
A =P.E=P E +P E' .
P yy z 2

The field -ﬁl,) having the poiarization P is

—

and its intensity Ip is

IL=E -E =A"A
p PP

The method of computing the six polarization vectors EI was given in Section 4.4,
and the phase gradients 3 and bI were computed in Section 2.11.3. The angular
boundaries of the six sectors and the order of reflection corresponding to each were
given in Section 2. 12. The active reflecting area S at normal incidence and the

integration limits for each section s, will depend on the shape of the front face.

I .
The integration for the polygon can be dcne analytically since the integration lir.its

are linear. The circular reflector requires numerical integration over one vr.riable.
5.5.1 Diffraction pattern of triangular and hexagonal retroreflectors

The previous section gave the diffraction integral for a cube corner. Now we
need to determine the integration limifs for each section 81 and for the, tclal active
reflecting area S at normal incidence. For both triangular and hexrgonal cube

corners, the active area at normal incidence is a hexagon of ares V3W2,2, where W
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is the width across flats. The following subsections describe how to set up the
integration limits and perform the integration over each of the six sectors. Since
each section is a polygon, the region of integration is defined by giving the vertices
of the polygon. The coordinates of the vertices of the total active reflecting area
are given n Sections 5.5.1.1 and 5.5.1.2.

If the phase and amplitude of the reflected beam are constant over the face of the
cube corner, the retroreflector acts like a simple aperture. The methods described
in Smith and Marsh (1974) are applicable in this case.

Julian, Hieser, and Magill (1970) compared measured and computed diffraction
patterns of hexagonal cube corners. The anélysis includes the effects of dihedral-
angle offsets and polarization changes at the reflecting faces. The technique is
complietely analytical and can be applied to any cube corner whose face is cut in the
shape of a regular polygon. A circular face can be adequately approximated by a
regular polygon with a large number of sides.

5.5.1.1 Vertices of the active reflecting area for a triangular retroreflector

In Section 3.2, the active reflecting area was computed for a triangular retrore-
flector. Here, we compute the coordinate. of the vertices of the active reflecting area
for use in caiculating the diffraction pattern of the cube corner. Much of the infor-
mation needed to locate the vertices was provided in Section 3. 2.

Referring to Figure 28 for Case 1 in Section 3.2, let y, z coordinate axes be set
up as shown in Figure 47. Three of the vertices are numbered counterclockwise;
the positions of the othe1 three can be computed by symmetry from the positions of
the first three (see Sec’ion 2.3). By using the distar.ces calculated for Case 1, the
coordinates of the three vertices numbered in the diagram are

W _3wW
=Wtz
zl=-—’€i +fe

a8
2
=—713= (-V2X+Dcos9)+Dsin6 s
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4

Figure 47. Triangular retroreflector (6 > 0°), Case 1.

+b

N
I
Bl
+
o
E
I
“’I‘”I

-

|-
—~~
ro| =

+Dcose)+Dsin6 ’

o
w
i
3l
+
2J

2

—+Dcose+-—(W D cos 6 + V3D sin 0)

o

=W+§Qcose+x/§gsin9

=W+421-(Dcose+~/§Dsine) s

23(W+{)DCODG) (W D cos 9 + v3D sin 6)
N

=§-%(2W+Dcosa+\f3bsin9)
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The above formulas apply to the range 0° < 6 < 60°. Since the physical situation
repeats every 120°, all cases can be covered by adding formulas for the range
-60°< 6 < 0°, In I'igure 48, - ree of the vertices are numbered for the case 8 < 0°.
This figure is the same as Figure 47, reversed from top to bottom; thus, we can
obtain the coordinates of the vertices for the case -60° < 6 < 0° by computing the
coordinates f : . - and then reversing both the order of the points and the sign of the
z coordinates. Since only sin 6 is affected by a change of sign in 6, the expressions

for the case -60° < 0 < 0° can be written
y,=W+3 (Dcos o+ V3D |sinel) ,

=——2—lﬁ(2w+ D cos 6 + V3D |sin 6{) ,

1
- W

Yo=727

z =—-—1—/E+D0099 -D [sin 8|

2" "v3\2 ‘ = ?
=W

Y373

z,=— (¥ . Deoso D |sin 6
3T m\Z T cos @) - D [sin 0|

/

Figure 48. Triangular retroreflector (6 < 0°), Case 1.
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Case 2 is given in Figure 49 with coordinate axes drawn and two of the vertices
numbered. The distances needed were given in Figures 27 and 28 for normal incidence

and Case 1 in Section 3.2. The coordinates of the points are

W 3w
V1= W=
2 _V3W
17 2 ’
y2—5—=¥+Dcos6 ,
L1l (W
22—\/'37 c _x@ <2 +Dcose> .
4

Figure 49. Triangular retroreflector (8 > 0°), Case 2,

The above formulas appl;- to the range 0° < 6 < 60°, while Figure 50 shows the

case -60° < 8 < 0°, The coordinates of these vertices are
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¥y = +Dcos O ,
- _ L (W,

zl--\/_s.(szcosG) ’
_ 3w

Yo=73

z ____\”§W

2 2

4

\

Figure 50. Triangular retroreflector (0 < 0°), Case 2.

From Figure 27, we see that the coordinates of the center of the active reflecting
area at normal incidence are y = W, z = 0, while for other incidence angles (see
Yigure 28), the right-hand triangle is displaced by Ay = D cos 6, Az = D sin @ and the
center of the active reflecting area is displaced by Ay/2, Az/2. Therefore, the
coordinates of the cenfer of the active reflecting area are

DO} s

y.=W+45Dcosb ,

Zz =

c Dsing ,

09f r-

a3



and those of the vertices with respect to this center are

Figure 51 shos the v”, z” axes, where the z” axis is perpendicular to the plane
of incidence. The coordinates of these vertices are

y{' = \; cos 6 + z{ sin® , (5-23a)

z;"= —y{ sin@ + zi’ cos 0 . {5-23Db)

4

Figure 51. Relationship between y;z’ and y”, z” axes.

Equations 5-22) and (5-23) are in a form that can easily be used in a computer pro-
gram. The algebra, though, is somewhat tedious: First we have to substitute the ex-
pressions for Y 2 to obtain yi’, zi’ and then substitute yi’, zi’ to obtain yi”, z; We have em-

ployed an algebra program to perform the substitutions, and the results are given below.

Case 1

| oo al ,
W _ 1sin 8| 2 1 cos e’sinei)
y1 =3 (cos g NG ) + D <s‘n 9 - 5 - 73 |

2 .
W [ . CcOos 6\ . cos €
Z e e—— ’ L r———— L ! ’ . ———
zy 5 <1sm 9 4 5 ) D <cos 8 |sin 8, 73 ) ,
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- 3 2 3 i
g(l__]_sme +cos9)+D(sin e__%+___[cos9|,_§_m6> ’
- Y Y

5

‘ 2
Wicos® . . cos 6
(—\-3?- ;smel) +D(COS 6|sm 9‘ +7§-—) ,

in 6/
=W-ls—m._—8'* f-2—,£- cos 8isin 6| ,
Vo

'3 A3
_ws8 2D (1 .2
zs-W 3 + .3_(4 sin e)

Case 2

yl=‘? T 1;in 9| + cos 0) '?I_) ,

z =%(x"§cose— jsinel) ,

1

! (s ol
3",=‘_;_(.511}§|_cos 6)+D(—é—-sin29+———-———c°sel§me‘) ,

= \ A AN

iy 2
|sin 6] + COSLG) + D,{"°s,_e - cos 0 lsin eD .
; V3 v V3 /

=

N
o

1
vo]

These equations are for the range 0° < 8 < 60°. The absolute-value signs on
sin 8 make it possible to use the same expressions for the range -60° < 6 < 0° by
reversing the order of the points as well as the sign of z. All y coordinates must
be multiplied by cos ¢ to get the coordinate of each vertex parallel to the plane of

incidence on a plane perpendicular to the line of s.zht.
5.5.1.2 Vertices of the active reflecting area for a hexagonai retroreflector
In this section, the coordinates of the vertices of the active reflecting area are

computed for use in calculating the diffraction pattern of a hexagonal cube corner.

Distances calculated in Section 3.3 are used in the derivation.
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Referring to Figure 32 for Case 1 in Section 3.3, let the y, 2 coordinate axes be
set up as shown in Figure 52. Only three of the vertices are numbered; the positions
of the other three can be computed by symmetry (see Section 2.3). By using the dis-
tances calculated for Case 1, the coordinates of the numbered vertices are

yl"'%ag +gi+le
_1W W D
2V3 V3 V3
.—I,-)‘rslne .
z]=--‘;—+5?
=--+Dsind® ,
_aw
2T 3 ?
22=0 ,
o l= =
33—§ag+gl
1w W
23 743
_V3W
==
- W
32
z

/)

Figure 52. Hexagonal retroreflector (0 > 0°), Case 1.
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These formr—las apply to the range 0° < 08 < 30°. Since the geometry repeats
every 60°, all cases can be covered by adding formulas for the range -30° <6 < 0°.
In Figure 53, three of the vertices are numbered for the case 6 < 0°. Figure 53 is
the same as the one for 6 > ¢°, reversed from top to bottom. The coordinates of the
vertices are obtained by computing the coordinates with |8 in the formulas for 6 > 0°
and then reversing the order of the points and the sign of the z coordinates. Since
only sin 0 is affected by the sigr of 9, the coordimates of the vertices for the range
-30° < 6 < 0° can be written

v -\r3_W
AS D) ’
s =W
1 2 7
2w
Y2 V3 T
2,=0 ,
_\3w D, .
.V3"' 2 +\’3— {smG! b

/ i
z3=};—_ D |sin@| .

Figure 53. Hexagonal retroreflector (8 < 0°), Case 1.
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Figure 54 shows Case 2 with coordinate axes drawn and two of the vertices
numbered. Using the distances from Figures 31 and 33 in Section 3.3, we get the
following coordinates of the points:

1 3=
}'2=§C+§ bk

:Dcose+-%7!-3-(2W- 3D cos 6 - Dsin@) ,
22=b'6+§5

=Dsin8 +4 2W - v3D cos 0 - D sin6) .

Figure 54. Hexagonal retroreflector (8 > 0°), Case 2.

These formulas apply to the range 0° < 6 < 30°. For the range -30° < 6 < 0°, the
coordinates of the vertices (see Figure 55) are
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y1=Dcoae+ %#(Zw-ﬁncos. -Dlsino)) ,

z,=~Dlsin6| - % (2W - V3D cos 6 - Dlsine]) ,

Figure 55. Hexagonal retroreflector (6 < 0°), Case 2.

Figure 31 in Section 3.3 gave y = W/V3, z= 0 as the coordinates of the center of
the active reflecting area at normal incidence. At other incidence angles, the right-
hand hexagon is displaced by Ay = D cos 6, Az = D sin 6, and the center of the active

reflecting area, by Ay/2, Az/2. Therefore, the coordinates of the active reflecting
area are

W
yc=—3 +§Dcose R
_1 :
z —-2-Dsm6 ’
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and the coordinates of the vertices with respect to the center of the active reflecting
area are given by equations (5-22). The transformation to y”, z” coordinates with
the z” axis perpendicular to the plane of incidence is shown in equations (5-23).

Usirg an algebra program for the substitutions, we get the following expressions
for y{’ and z’i’ :

Case 1

_Wicose . 2 1 coselsinel)
yl—?<f§ -Ism6|)+D(sm 9—-2—+——r§——‘ ’

v

. . 2
z =_-w-(———lsme‘+cose>+L‘(cosa|sin0|-sm 6) ,

1 2 \'r3_ \r3_
_ay€0s8 D
Y2 =W V3 - 9 9
isin 9|
=-W —
%9 V3 ?

WV cos 6} D
y3—2(|sm9]+ \@>—2 ,

z3=—‘2z (cos Q- ]sinel) .

Case 2

_weos8 D
31_W 73 2
_ sin 0
zl—-—W 3 s

ccs O Isin 9|

\/’g ’

2
i [
=Wcos 0+ ZD(sm%_e -\—3> .
v

Yo =W |sine| - 2D

VA

2 4
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These equations are for the range 0° <0 < 30°. Because of the absolute-value
signs on sin 6, we can use the same expressians for the range -30° <6 < 0° by
reversing the order of ihe points and the sign of z;. All y coordinates must be multi-
plied by cos ¢ to obtain the coordinate of each vertex parallel to the piane of incidence
on a plane perpendicular to the line of sight.

5.5.1.3 Vertices of a sector

The vectors KI dividing the active reflecting area of a cube comer into six sec-
tors were computed in Section 2. 12, Let VyJ and VzJ be the coordinates of the
vertices of the active reflecting area on a plane perpendicular to the line of sight.
The angles vy to each vertex are

v

-1
v.=tan " 5— ,
J VyJ

and the angles of the boundary lines are

The vertices within a sector whose boundary lines have the angles ay and a;,, are
those for which

aIS\JSaI‘*‘l

In addition, the vertices of a sector include the origin and the intersections of the
two boundary lines with the sides of the active reflecting area. The intersections
are computed by means of the method described in Se :tion 5.5. 1.4. Figure 56 gives
an example of a sector with the vertices numbered.
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>l

I+i 3

Figure 56. Vertices of a sector.

5.5. 1.4 Intersection of two line segments

We give herein a systematic method of testing for singularities in computing the
intersection of a sector boundary and a side of the active reflecting area. The sector
boundary is a line starting at the origin (y = z = 0) and extending to one of the sides.
Let the other end of the sector boundary be given by the coordinates y A2 ZA" Let
Yy 2) and Yo Zg be the ends of the side that is intersected by the boundary (Figure 57).

2 (y5, 25)
(Yps 25)
(y3, 25)
(y;» 24}
y

Figure 57. Intersection of two line segments.
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Let

Ay = Yo =¥1 (€-24a)

Az=z,-2, . (5-24b)

The slopes of the lines are

y

SA=E£=
A 3

:91’
Sp=az -

The equatior: of the sector boundary is
z= SAy s (5~-25)

and that of the intersecting side is

z=C+ 8y , (5-26)

where

If there are no singularities, the intersection Yo Zg is obtained by solving equations

(5-25) and (5-26) simultaneously. Substituting the former into the latter, we get
S Ay =C+ SBy

The Yg coordinate of the intersection is
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Yo= o
3SASB

By substituting Y3 into equation (5-25), the other coordinate of the intersection is

S

Z3 T Sp¥g -

After equations (5-24) have been computed, we can apply the following outline as a

seyuence for performing the computations and testing for singularities and error
conditions:

A. Hy, #0, compute S, = z,/y,.

1. Ifyl %Yo compute

S,= Az/Ay ,

C=zl--Syl .
a. IfSB;ﬁSA-, compute

Yg= C//(SA - SB) ’

=8

z NEEE

3
b. If SB = SA, the lines do not intersect.
2. ¥ Y=Yy, then

Y3

1
a

17 Y2 »

1l

Z3= 555
B. IfyA= o, theny3= 0.

1. Ify1 # Yo, compute
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SB=Az/Ay y
23=2y-8pyy -

2. ¥y, =Yy ‘the lines do not intersect.

5.5. 1.5 Integration limits for a sector

Let J and 2 J be the coordinates of the vertices defining one of the sectors of a
retroreflector The diffraction integral must be performed over the surface enclosed
by connecting successive vertices by straight lines. Let the first and last vertices
be the origin of coordinates and let the other i)oints be given counterclockwise around
the sector. The diffraction integral is done for each successive pair of points using
equations (5-14) from Section 5.3. The integration limits for each pair of points

indexed J and J+1 are

C+Sy

A

y=YJ+1 z=0

where

fy the integral is omitted for that pair of points.

3= Yy
5.5.2 Diffraction pattern of a circular reflector
Section 5.5 discussed the diffraction integral for a cube corner, except for how

to determine the integration limits for each sector 81 and the total active reflecting

area S at normal incidence. For a circular face with radius r, we have S= TTI‘Z.
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The integration is partly analytical, based ¢~ forr.:ulas (5-14), and partly numerical,
tased on Section 5.4. The nur--rical integration is done with a second-order technique
(Section 5. 3. 2, 7), with Section 5. 5. 2.6 shcwing which paris of the integration are
numerical. To obtain the best results, it is sometimes necessary to reverse the
order of integration over the variables (Section 5.5.2.5). Formulas for the z values
at each aunierical-integratior. point are given in Scction 5.5. 2.2, and the ~nd points

ol the section cf the ellivse bounding a sector are computed in Section 5.5.2.3. The
Airy formula, which is useful for checking the more general methods in the special
case ui the Airy pattern, is given in Section 5.5.2. 1.

Chang, Currie, and Alley (1971) present an aralytical solution for the far-field
diffraction pattem of a circuler cube corner at normal incidence. Polarization
effecis are included, bused on results from Peck (1972). The dirfraction integral
for cach sextant is evaluated according to the methods of Mahan, Bitterli, and Cannon
(1964).

5.5.2.1 Airy pattern
If the field u is constant across a circular apesture, ths diffiaction pattern is a

function only of the angle 6 from the center of the pattern. The intepsity I is given
by

2
I= IOG s
where I0 is the inwc ssity at the center of the pattern and
23 1 (=dOA)
G~ —mX ’

in which J 1 is the Bessel function of the first order and d is the diameter of the
aperture. This formula is useful beth for testing the numerical-integration techniques
to make sure that ther give the correct answer for this special case and for determin-

ing the accuracy of the numerical integration for various integration intervals.
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5.5.2.2 Elipse geomexy

The 2ctive reflecting area of a circular retror>flector ~onsists of the intersec-
tion of twu circles as viewed in the plane of the front face (Figure 58) and two
ellipses as viewed from the direction of the incident beam. 7The separation of the two

circles is 2c, given by

2¢ =21 tan ¢’ N

¢=L.an¢ |,

where L is the length of thc cube corner and

¢ = sin-l(%n—‘P) .

Figure 58. Intersection of input and output apertures for a circular reflector.
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When viewed from the direction of the incident beam, distances inthe y’ direction
are contracted by a factor a, where

a=cosd .
The equation of the circle in Figure 59a is
v - c)2 + z’2= r2 .

The equation of the ellipse in Figure 59b is obtained by substituting v’ = y/a and
2’ = z, resulting in

Eoe) s .

To integrate the diffraction pattern numerically, we must have values of z at equal
intervals in y. Solving for z, we get

P
2=+ Yr*-(L-¢) , (5-27)

where the plus sign gives the values at the top of the ellipse and the minus sign gives
those at the bottom. Equation (5-27) 1s used for the left half of the aperture (y < 0).
For the right half, the ellipse is centered at y = -ac, and the formula is

(-§+c)2+22=r2 i

a) b)

Figure 59. Ellipse zeometry.
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which can be solved for z to give

[ 8-
bo

z=+¥r —(‘§+c) .

Integrating first over z and then numerically over y does not give good results
when the slope of the eiiipse goes to infinity. As seen in Figure 60, the sector can be
Letter integrated s st iny and then in z. The *riangular section remaining in
Figure 60a can be integrated amalytically. We need tc express y as a function of z
n order to perform the numerical integration in the variable z.

a) b)

| =
S\

Figure 60. a) Normal order of integration; b) reverse order of integration.

Solving the equation

(%q:c P

for y, we have

)
V= a(:tc* ‘rz —22> ’
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where the upper signs refer to the left ellipse and the lower signs, to the right
ellipse.

5.5.2.3 Intersection of a line and an ellipse

The active reflecting area of a circular retroreflector is divided into six sectors
by the projection of the back edges onto the front face. In general, the diffraction
integral must be done over each sector separately, since dihedral-angle offsets and
polarization effects result in the field u being diferent in different sectors. Let the
boundary line between two sectors be given by

where S is the slope of the line (Figure 61,. The intersection is given by the solution
of the two equations

(5;0)2”2:;4‘

z=8 .

Substituting 22 = 82 y2 into the first equation gives

2
(rz2ey, &%= 2

2

y2 F 2acy + azc2 + :3.282y2 = a2r2 ,

9 9 9
(1+a’S") y2 F (2ac)y + a2(c2 -r)=0 ,

t2aCIV4ac -4(1+a Sz)a(c -

y:

2(1+ a”‘Sz) [eq. cont. on next pagel
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+ 2ac ¥2a ‘/?_ (c2+ a2sfe? - 1% - rzazsz)

2(1+ a’S)

tc:p'/r2+a282(r2-c2)

=a -
1+a232

Figure 61. Intersection of a line and an eilipse.

In cases where the boundary of a sector is vertical, the y component of the vector
defining the boundary line is zero and the slope S is infinite. In this case, the z coor-
dinate of the intersection of the line and the ellipse is computed by

cesfi2-(Tr)

The sign of the square root is chosen to be the same as that of the z component of the
vector defining the boundary line.

=% r -¢ .

y=0

5.5.2.4 Slope of an ellipse

The active reflecting area of a circular retroreflector is bounded by two ellipses,

whose equation is
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2 -,
(l;c) r22=12% .
a /
The slope is given by differentiating
2
p 2
z‘a =1 - (% F c)
to give

27 dz = -%(%;c)dy ,

Q__ _ (X/a!q:c
dy az

If z = 0, the slope is infinite. The value of the slope will be used in determining the
best order of integration in order to obtain accurate numerical resuits.

5.5.2.5 Order of integration over y and z variables

The active reflecting area of a circular cube corner is divided into six sectors,
each of which is bounded by two lines and one or two curves that are sections of an
ellipse. The numerical integration used to calculate the diffraction pattern gives
poor results when the slope of the curve as a function of the numerical-integration
variable becomes very large or infinite. The problem can be avoided by integrating
numerically over the other variable. A sector may be wholly contzined in one
quadrant of the coordinate system or may span two quadrants. If the latter situation
occurs, the numerical integration is perfermed over the variable that changes sign
over the sector. If the sector is in only one quadrant, the order of integration of the
variables is chosen such that the maximum slope as a function of the numerical-
integration variable is minimized. Since the slope is a monotonic function over a
single quadrant, it can be computed at the ends of the elliptical arc as a function of
both iutegration variables, and the variable having the smallest slopes (absolute
magnitude) can be chosen.
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5.5.2.6 Numerical and analytical parts of sector integration

If the boundary lines of a sector have slopes of the sam= sign, the integral can
be broken into an analytical part bounded by straight lines and a numerical part bounded
by two lines and a section of an ellipse, as shown in Figure 62a. If one of the sector
boundaries © vertical, the integration is wholly numerical, as shown in Figure 62b.
If the slopes are of different sign, the integration is numerical, and the curve has
sections of two different ellipses if y changes sign over the sector (Figure 62c) or a
single ellipse if z changes sign (Figure 62d). For Figures 62c and 62d, the numerical
integration must be split into two sections, one for each of the boundary lines. The
numerical integration is over the z variable in Figure 62d.

4
z a) b)

17}1\,

Figure 62. Analytical and numerical parts of sector integration.
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545.2.7 Second-order numerical integration

The numerical part of the diffraction integral for a circular cube corner is done
by means of a second-order technique. The interval is divided into equal pieces of
length 6, and the value of the integrand f(y) is computed at each point to obtain a set
of values fi. Fach set of three points is fitted with a quadratic, which can he integrated
analyticaliv. The result of the integration is Simpson's rule (Hildebrand, 1956, p. 73):

3
fy) dy =9 (f, + 46, +£) .

——

«
[

5.6 Symmetrv of Cube-Corner Diffraction Patterns

The far-field diffraction pattern of a retroreflector is calculated by equation
(5-21). Under certain conditions, the diffraction pattern has symmetry properties
that are helpful in checking the accuracy of a diffraction calculation. K a retroreflector
has perfect-metal reflecting faces, the polarization -ﬁl of the reflected light is the
same for all six sectors of the cube corner. Ir this case, the diffraction pattern has

{he symmetry property
k@ 1 92) = E(-0 Y _62) ’ (5-28)

which can be shown as follows. A ray incident at the point (-y, -z) ip sector I’
emerges from the point (y, z) in the opposite sector I with a phase change ay+ bIZ
due to dihedral-angle offsets. A ray incident at point (y, z) emerges from point
(-y, -z) with a2 phase gradient

a1,(-y) + bp,(-2) = (-ap)(-y) + (-bp)(-2)

=ay+ bIZ .

114



We have ay, = -8y and b, = --bI because the rays travel virtually the same path in
opnosite directions for the I and the I’ sectors. The diffraction integral is the sum
of pairs of poirts of the form

i(a,y + b,z) -ik(@,y +6,2z) i(ay + b,z) -ik(-0,y - 6,2)
ear Ize12+eaIyIze ¥~ Y%

i(ay + byz)
I A 5

cos k(ely + 922) .

Since the cosine function is symmetric w.th respect to a charge in sign of the argument
and since the diffraction integral is the sum of such symmetric terms, the diffraction
paitern has the property given in equation (5-28).

Another symmetry property can be seen from the same argument. If all the
dihedral-angle offsets are reversed in sign, the constants a and b change sign so that
the integral is the sum of terms of the form

i[(—al)y + (—bI) z] -i (aIy + bIz)
e 2 cos k(Bly + ezz) =e 2 cos k(ely + 922) .

Since the intensity is obtained by multiplying the integral by its complex conjugate,
the diffraction pattern is unchanged when the sign of the dihedral-angle offsets is

reversed.



6. RAYLEIGH DISTRIBUTION

The return signal from a satellite retroreflector array consists of reflections
from a large number of cube corners. Since the laser beam is coherent and each
reflection has a different phase, the reflections will interfere with each other, Fer
a large number n of reflections each baving unit amplitude, the normalized probability
that the resultant amplitude will be A is (Rayleigh, 1945, pp. 35-42)

2
p(A)dA=§e‘A O

Since the erergy E of the return signal is proportional to the square of the amplitude,
the probability of a given energy is obtained by substituting

E=A" ,
dE = 2A dA
into the above equation to give

e E/n

P(E) dE = dE .

=3

The mean energy E is given by -

E= j P(E)E dE
0
= o]
[- )
- . o E/m ' __J' - e E/m leq. cont. on next page)
0
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1

=0 -(ne'E/n) T
0

= ~(0-n)=n .

6. 1 Factors Modifying the Reyleigh Distribution

Three factors that exist in actual retroreflector arrays make the probability
distribution of the returt. energy somewhat different from the Rayleigh distribution:

A. The numbe: of reflectors is finite.
B. The amplitudes of the reflections from individual reflectors may not be equal.

C. The transmitted pulse is of finite length, and thus the envelopes of individual
reflections do not coinc‘de exactly.

6.2 Guidelines for the Application of the Rayleigh Distribution

The following guidelines can be used to determine when the Rayleigh distribution
is not appropriate:

A. The probability distribution for the resultant amplitude of a finite number
of equal phasors (Slack, 1946; Jaffe, 1971) is quite different when N is 2, 3, or 4.
For N = 5, the probability of E = 0 is about 15% lower than for the Rayleigh distri-
bution. At N = 10, the difference is only about 5%. Therefore, anything over about
N = 10 can be expected to give nearly a Rayleigh distribution.

B. If the amplitudes of the phasors are uriequal, the probability distribution will
still be 2 Rayleigh distribution as long as there is a Jarge number of phasors of each
amplitude (Rayleigh, 1945). Any number greater than about 10 is considered large
for this purpose.

C. As long as the pulse length is long compared to the separation of the retro-
reflectors, the Rayleigh distribution will be applicable.
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7. ARRAY TRANSFER FUNCTION

7.1 Retroreflector-Array Coordinate System

The coordinates of the center of the front face of each cube corner in an array
are given in a system whose origin is at the center of mass of the satellite in the
orbital configuration. If the array has a symmetry axis, let it coincide with the z
axis. The direction of the x axis is chosen to be at some convenient angle in the
plane normal to the symmetry axis. Let an x’,y’, z’ coordinate system be set up
parallel to the x,y, 2z system with its origin at the center of the fi-ont face of a cube
corner (see Figure 63). The orientation of the cube corner is represented by the

Figure 63. Array coordinate system.

three angles BR’ bps and Ops the first two giving the direction of the normal to the
front face of the cube corner in the x’,y’, z’ system (see Figure 64).

To show the angle e let an X’,Y’,Z’ coordinate system be set up with its origin
at the center of the front face, its X’ axis normal to the front face, Y’ in the direction

of increasing Op and Z’ in the direction of decreasing o The orientation angle ap
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Figure 64. Coordinate system for cube-corner orientation.

is measured counterclockwise from the Z’ axis to the projection of ore of the back

edges of the cube corner onto the front face, as shown in Figure 65.
’

Z

Figure 65. Cube-corner orientation angle a

R’
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7.2 Coardinate System of the Incident Beam and the Observer

Let the direction to the illuminating souTce be given by the angles es and °>S
related to the x, v,  comdinate s7stem of the array (Figure 66). Let the complex
vector B giving the polarization state of the incident beam be given in the x* y*, z*
coondinate system, defined as follows. The x* axis points toward the source and the
v* wud z* axes are in the direction of increasing BS and decreasing ¢S’ respectively.
This is the coordinate systen: of the observer and is the one in which the diffraction

ratterr oi the array will be given.

z
" x*
v*
- ¢’s |
!
|
|
i
} —y
~ ! //
\_/\\\ l -
- 65 \‘\ ] //
/./ T T T T T T T

Figure 66. Coordinate system of an incident beam.

7.2 Cocrdinate Systen: for the Difiraction Pattern of Cvbe Ceorners

The direction of the heam incident on a cube corner is specified by the two angles
6 and ¢, where ¢ is the angle between the normal to the front face and the incident
Deam. The azimuth angle 9 is measuvred to the projection of tue incident direction

~nto the front face, us shown in Figure 67. The coordinate system in which the
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diffraction pattern of the cube corner is computed has its 1 axis pointing toward the
source, its 2 axis in the plane of incidence pointing in the uirection of increasing ¢,

and its 3 axis perpendicular to the plane of incidence in the direction of increasing 9.

-
- 6

Figure 67. Projection of an incident beam onto the face of a cube corner.

7.4 Conversion between the Coordinate Systems of the Incident Beam and the Retro-
reflector

Le: /S\, be the unit vector pointing toward the illuminating source and R be the unit
normal to the front face of a cube corner in the array. In the coordimte system of
the array, the components of the vectors are

Sx: sin cbs cos es ’ sz sin éR cos GR ,
Sy = sin ¢S sin es , Ry = sin ‘?R sin BR ’
Sz=cos<g;S s szcos¢R .

The incidence angle ¢ on the cube corner is given by

A A
cosb=8+R

To compute the azimuth angie € of the projection of the incident direction oato the
A
cube corner face, the vector S must be expressed in the X', Y’, Z’ coordinate system,

in which the orientation angle o, is given. This is accomplished by rotating the

R
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A
coordinate system of S first about the z axis by the angle OR and then about the new
y axis by the angle ¢R (Figure 68). The components of the vector IS in the rotated
coordinate system are

" cos ¢R 0 -sin ¢R cos OR sin BR 0 Sx
Syn =t 0 1 0 -sin@p cosfp 0 Sy .
Sz,,. sin ¢R 0 cos ¢R 0 0 1 Sz
F 4

¥.gure 68. Direction of the normal to the cube-corner front face.

The relationship of the x”,y”, 2" coordinate system to that of X', Y’,Z’ is given

in Figure 69. 'the components of the vector S in the X’,Y’, Z’ coordinate system
are

Sx! = szll ]
Syl = Syn »

-~

Szl = —DX" ?

and the projection of the incident beam direction onto the Y’Z’ plane makes arn angle
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Figure 69. Relationship of X’,Y’, 2’ and x”,y", z" axes.

with the Y’ axis, as shown in Figure 70. The desired azimuth angle 0 is

Figure 70. Diagram for computing the azimuth angle 6.
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The complex vector E is in the x*,y*, z* coordinate system of Figure 66. The
diffraction pattern of a retroreflector is computead in the coordimate system defined
in Section 7.3. The two coordinate systems are therefore related by a rotation about
the x* axis through a rotation angle -, which can be computed by expressing the vec-
tor ﬁ in the <%, y*, z* coordinate system of the observer. This is done by rotating
the coordinate system of ﬁ about the z axis by the angle es and then about the new y
axis by the : gle ¢S’ The components of R in the rotated system are then

’Rx,, cos ¢ 0 -sin bg cos 8o sin 0g 0 Rx
Ry" 0 1 C -sin OS cos es 0 Ry .
R_, singg ¢ coso 0 o 1/ \R,

Figure 71 gives the relationship of the x”,y"”, z" coordinate system to that of x*, y*, z*.
The components of the vector ﬁ in the latter system are

Figure 71. Relationship of X", v”, z” and x*, y*, z* axes.
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and the projection of the normal to the front face of the cube corner onto the y*z* plane
makes an angle

R
-1 [ z*
’=
y' = tan (Ry*>

with the y* axis. as shown in Figure 72. The direction of the 2 axis in the y*z* plane
A
is opposite that from the projection cf the vector R onto the y*z* plane (see Figure 73).

3 AXIS\

- 2 AXIS
/: g
7 -
N \>i 11’ .

——————dR
-y z*

Figure 72. Diagram for computing the angle v.

R Sy «* AXIS

R | AXIS

|

|

I

l y*z* PLANE

—_ - —
2 AXIS

A
Figure 73. Relationship of the 2 axis to the unit vector R.
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The desired angle y as shown in Figure 72 is

y=y'-m .

Leu Ey* and E_, be the complex components of the incident polarization vector in the
X*, y*, z* coordinate system. The components E2 and E3 in the coordinate system
used for the diffraction pattern of the cube corner are then

E2=Ey* cosy+E ,siny ,

E3= —Ey* siny + Ez* cosy .

A point with the angular coordinates (Gi,eé) in the coordinate system for the diffrac-
tion pattemn of the array has the following angular coordinates in the coordinate system
for the diffraction pattern of an individual cube corner:

- 4 s ’ 3

el—GICOSYTezsmY ’
= 0! i ’

62— elsmy+ezcosy .

7.5 Transmitted Pulse

The transmitted pulse is assumed to be a monochromatic wave with a gaussian
envelope. The intensity across the retroreflector array is assumed to be uniform.
In the x*, y*, z* coordinate system, where the x* axis points from the array to the

source, the complex vector field incident on the array is

ik(x + ct) 1 ~x+ ct)2/4 o2
Yoar ’

T

- A A
E= Ey+E,z)e (7-1)

where k= 27/\, \ is the wavelength, c is the velocity of light, and o is the sigma of
the transmitted pulse. For simplicity, we have dropped the asterisks on x, y, and z.
The intensity I of the pulse is
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2, 2
I= (E E*+ E_E¥) —oe o &+ t)/20
YY 272 gv2n

If the width of the transmitted pu!se is given as the distance £ between half-power points,
o is calculated from

—w/2%/20% 1
¢ T2

which can be solved to give

1 1
-(3) —z=1o3 ,
20

£ 1
5 —=—=—=VIn2
2 V3¢ ?
oot _1 _ 42 _ _1/2 _
2 SIm? vInd 1.17741° 2.35482 °

7.6 Position of the Retroreflector along the Line of Sight

Let Q be a unit vector pointing from the array toward the incident beam and T be
the vector from the satellite center of mass to the center of the frent face of a cube
corner. The position of the cube corner along the line of sight is

A
S-C

If we take the optical path length in the dielectric {Section 2. 5) into account, the
apparent position of the cube corner along the lire of sight is

A
x=S-C-—LVn2-sin2¢ s
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where L is the length of the cube corner from the vertex to the face, n is the index of
- A
refraction of the cube corner, ¢ = cos 1 (/S\ * R), and x is the distance to the satellite

center of gravity minus the apparent distance to the cube corner.

7.7 Incoherent Returm

Thke equations given in this section apply to situations in which the return signal
is independent of the phase relationships among the reflections from individual cube
corners. If the array is illuminated by an incoherent source containing many frequen-
cies, the phase relationships are different for each frequency, so that averaging
occurs over all possible phase relationships. The equations also apply to a laboratory
experiment in which the total reflected energy is measured. The return pulse is the
sum of the total reflected signals from each cube corner. The primary use of these
equations is to compute the average behavior of a large number of returns measured
at some point in the far-field pattern when the array is illuminated by a coherent
source. In this situation, it is assumed that the phase relationships vary randomly
from pulse to pulse as a result of changes in viewing angle to the array. The inco-
herent return is constructed by adding the intensities of the reflections from each cube
corner at a point in the far field. In Section 7.8, it will be shown that this gives the
average pulse shape of 2 large number of coherent returns.

The reflection from a cube corner has the same mathematical form as the inci-
dent pulse, except that the reflection is moving in the opposite direction. The dis-
placement between the pulses reflected from two different cube corners is twice the
difference in distance to the two reflectors. Let the return pulse be constructed in a
coordinate system having its origin at the center of the reflection that would be received
from a cube corner at the center of r.ass of the satellite. The positive direction will
be taken as the direction to the observer. In this coordinate system, the intensity IK

of the reflection from the Kth cube corner is

S ~x-d)®/20?
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where dK is twice the distance of the apparent reflection pomt for the K‘th retroreflector
from the plane through the center of mass of the satellite perpendicular to the incident
beam. The constant S, giving the intensity of the reflection from the Kth cube corner
is proportional to the active reflecting area, if the total reflected energy is being meas-
ured, or to the intensity of the diffraction pattern at the position of the observer, if the
detector is located at a point in the far field. Depending on the method of detection,

Sy is either th¢ toval intensity (EyE; + c‘.zE:) or the intensity of any component of
polarization being measured.

The total intensity I of the incoherent return is
=) L
K

2 2
-(x-d.,)"/20
5y 5k JTE%

(03 V2w

)

K

and the total energy of the return is proportional to

oC

© 2 2
-(X-dK) /20
_ 1
f I""“"'ZK st P o

DI
K

The mean position of the return pulse is

f Ix) dx

el 2,,.2
o ~(x-d.,)"/20
ZSK f (x/ov2m) e x dx

- . (7-2)
2.5
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Substituting x’ + dl( =X, X =x- dK’ and dx’ = dx, we get

x2
_ %:er[(x' +dK)/U\/_2?]e x ¥ 2 dx’
x= —= =
PIEN
2 Sgdk
S S (-3

A measure of the spreading of the pulse duc to the array is obtained by computing
the second moment V of the return:

i le(x) dx
V==
j'l(x)dx
2, 2
@ -x-d.) /20
25 [ EloTme x dx
K * =00

= . (7-4)

e K
If we make the same substitutions for x, x—dk, and dx, the integral becomes

r
Y o dx

-0 -0

o 2, 2 © oy 2 '
f <2 e—(x-dK) /20 i f(x +dy) e__){,2/20,2

° 2 2, 2 ° 2,0 2
X -x""/20 x'  -x""/20
= —~——e dx’ +2 —e !
f V2T I f ov2T dx
Zo 2

[eq. cont. on next pag;
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a0 2 2
1 -x"/20
+d12(f————ome dx’

2 2

=0 +0+dK .

After we substitute this into equation (7-4),

o2 +
V;§SK( a2) |

% 5

Defining ¢’ = vV, we have

Fa

o' =

for dK « 0, the incoherent return is nearly gaussian, with a sigma of a’.

7.8 Coherent Return

The coherent return from an array is computed by adding the fields of the reflec-
tions from all the cube corners and squaring the sum to obtain the intensity. The
field of the transmitted pulse is given by equation (7-1). Let the return pulse be con-
structed in a coordinate system whose origin is the center of the pulse that would be
1eflected from a cube corner at the center of mass of the satellite. Let dK be twice the
distance of the K cube corner from the plane through the center of mass of the satel-
lite perpendicular to the incident beam. The quantity dK is known with sufficient accu-
racy for use in pcsitioning the envelope of the reflection from each cube corner. Houw-
ever, it is not known with enough precision to predict the relative phases among the
reflections. We will therefore assume that the relative phases are random and vary
randomly from pulse to pulse. Very small changes in aspect angle of the satellite are
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sufficient to change the phase relationships completely. In the expressions below,
the field strength EK can be any component of polarizati%l. The phase of the field
component can be absorbed in the random phase factor e K. The field reflected from

tle Kth cube corner is

ik(x~dg) Sy -x- dK)2/4°2
e [

E, = —
K . ov2w
i6 -(x- )2/402
_ Jkx e K SK e dK
ovemw
where GK = —kdk = a random phase between 0 and 2w,

The field of the whole array is

E=E EK
K

. 2, 2
- E Gkx Uk f Sk i) /40
overn ?

and the total intensity is

. ’ 2, 2
I(x; : EE" = ?eﬂm eleK -—-—SK e ey /40
' o oV2w

K
N =T
-lkX ! L id
XYy e e e
Z ‘/;/217 €
L
. 2 2
_Zel(eK-eLh,SKsL . [ (x-dg) +(x-dL)]
b=t —r—— .xp - -
ov2tw

- x-d; ¥ /40

2
KL 40
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Since EE” is real, all imaginary terms cancel, resulting in

[S_S (x- )2+(x—d )2
VS, em[_ dy L] . 1-5)

I(x)= cos (6 ) —
§ K L oV2rm 40.2

The mean value of cos ©Ox -BL) over a large number of coherent returns where the
phases vary randomly is 0 for K # L and 1 for K= L. Therefore, the mean return
pulse shape is

Sk - x-d)* /207
XK:U = e , (7-6)

which is the incoherent case derived previously.

In order to obtain the total energy by integration, t}.: exponent can be transformed
into a perfect square plus a constant;

x-dp)’ + -dp)P = - 2xd + &+ - axdp v

=2x2-2x(dK+dL)+(d12(+ d‘;‘)

+d;\2 + 2-]
(5 - (] @)

=2 [xz-x(dK+ dL) +
+d. \2
2<"' dKz L)

-5 (e rd P (2 +di>

ll

< dK+dL\‘ 2de —-d +2d +“d

2

[ o]

2
2< dK+dL\ , 2de1_+dL
2 2

)
+d.\2
2<x-dK2L>+ de-d)? .
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Substituting this into equation (7- we get

2 2 2

-t4_-d, )/8¢c ‘/S S x-(d, +d. )/2
i{x) = E cos (® Ve KL —KLexp __[ o 2L 1l
K L GVE‘IT 20 s

KL )
(7-7)

The total energy is proportional to

2, 2
x ~-(d.-d,)" /8o
fl(*c)dx \ cos (61\ L)e dh L SLASL .
o KL

If we substitute equation (7-7) into the first line of equation (7-2), the mean positioa
of the return pulse, we have

¢

2, 2 2, 2
-(d,.-4d,)7/8c -ix-(d.+ d, )/ 20
J Zcos«-}h 8y)e % ss/wﬁ)e[ R L%
—_2x KL

h oo
y d)/sg -rx( +d, )/4“ /20
jgcm(ei, 8;)e R’ (\,SI\S »,"‘)_i\ ® L%
(7-8)

Incorporating the following substitutions

d.+d
x':x-..‘_}\_;_l". , (7-9a)
N (7-9b)
d.+d
x=x"+ !\2 L (1-9(3)

into equation (7-8), we have
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- dy ~dp)°/80°

ViSe _f {f+ @+ apre/ovewy X120 g

2/0.2
- -d )/80 2 2
§c°s‘ex'°l)e T VL j: (Wovam & X 120" gy

Z cos (6, -6, )e
__ki K™ 'L

2 2
- @Ay - dp) /83
VS 5g, [ +d )/2]
2 2
- (dK - dL) /80

0, -0 [S
KZI.COS(K L) e \/-S;(TL

Ecosle -0.)e
KL YK 'L

If we substitute equation (7-7) into the first line of equation (7-4), make the change of
variables given in equation (7-92, b) plus

£

> dKjL)Z

X = x’z +x’ (dK+dL) +(

and perform the integrations, the variance of the return pulse becomes

2,.2
-(d,.-d,)" /80 . 3
D cos @ -0 )e & VESL 1+ ey
= EL 5% - {1-10)
- -d;) /8¢
Z cos (0, -6 )¢ VS 5y,

KL
The square root of the variance is

o'=\V .

7.8.1 Calculation shortcuts

The expression for the coberent reflected intensity was given ahove as a sum
involving a double index. This form was necessary in order to obtain the total energy,
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mean position, and second moment of the reflected pulse. For plotting the intensity,
however, it is much more efficient to calculate the field involving a single index and
square the result. Omitting the factor eib(, which disappears when E is multiplied
by E¥, we have

- x-d)/40°
e

2

o %k %
E(X)"*ZK‘e v;\:z—_;

from which the intensity is
Ix)= Ex) E*x) .

In computing the total energy, the mean, and the variance of a coherent return, the
sollowing techniques can be employed to reduce computation time. The cosine factor
cvan be expanded to give

cos (BK—GL) = €OS BK cos GL + sin GK sin GL .

The terms on the right can be precomputed and saved, which requires 2N trigometric
calculations, where N is the number of retroreflectors. Each value of cos 6 - eL)
can then be computed with two multiplications and one addition, a much faster proce-
dure than doing NZ cosine calculations.

in all the expressions, the terms with index KL are equal to those with index LK,
so we need to compute only about half the terms. Since terms with K = L are indepen-
dent of the randoia phases used, their sum can be precomputed and saved when many
coherent returns are being calculated for the same incidence angle on the array. The
terms ior K = L give the incoherent results.

7.9.2 Relation of coherence to diffraction

The calculation of coherent returns by use of a random-number generator to
assign phases to the reflections from individual cube corners is a way of gainiag some
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statistical information despite the impc--.oility of knowing the actuwal phase relation-
ships between the reflectionrs. A coherent calculation is actually a diffracticn calcula-
tion for the whole array at one point in the far field, based on assumed phases. If we
have accurate enough information, we can perform the diffraction integral cver the
whole array, calculating the phases from the relative positions of the reflectors in the
arrsy. Tte cbaracteristic width of the diffraction pattern of a single reflector is
roughly )\/DR, where D is the diameter of the cube corner. The basic vhysical
reason for this is that the phase relationship between the opposite sides of the cube
corner changes by 360° when the angular position of the observer changes by )‘/DR‘
The pkase relationship between reflectors on opposite sides of an array changes by
360° when the viewine angle changes by \/D X where D IS the diameter of the array.
Since D A is generally much larger than DR, we can expect the diffraction pattern of
the whole array to vary within a characteristic angle \/D A? giving rise to a mottled
appearance in the array diffraction pattern. It is these variations that are being
studied statistically in a cokerent calculation.

7.8.3 Coherent variations
Let X represent some property of the ith coherent return, such as the energy

or mean position, and let Wi be the weighting factor for the return. The mean value
of the quantity for a set of coherent returns is

and the variance of the quantity is

Z Wi, %’
Voo

i [eq. cont. on next pagel]
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= x2 - 2XX + ’J'(2
2 2
=X ~-X .
In cases where the average value X of a coherent quantity is substantially different

from the incoherent value, the statisti. 1 significance of the differences Ax can be
measured by the quantity Ax/oi, where

N being the pumber of coherent retums.
7.8.4 Mean valve of coberent quantities

It has alrzady been pointed out that the mean value of the intensity, equation (7-5),
averaged over many coherent returns is the incoherent intensity shown in equation
(7-6). Since the total energy is the integral of the intensity, the mean value of the
coherent energies is the incoherent energy. This result is also obtained from the

expression

2 2
-, -4.)/80
enexgy=z cos (GK-BL)e dK L ‘/SKSL .
KL

Since the average value of cos (BK—BL) ic 0 for K # L and 1 for K = L, the mean value
of the coherent eneryy is

energy=ZSK ’
K

which is the incoherent expression.

The situation is a littie more complicated for the other quantities. The mean
position of the return pulse is
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2, 2
- (dy -dy) /8¢

Vg Sy, (G +dp)/2

2 2
-, -d,)"/80
gcos (OK-GL)e dK L ‘ISKSL

Z cos (6,,-6;) e
KL : ’ (7-11)

X=

‘= which the mean value of the numerator is

E SKdK .

K

The denominatcr is the energy of the return that has a mean value of § SK Hit

were true that the mean value of the quotient of the two quantities is the quotient of

the mean values, then the mean value of X for the coherent returns would be the same
as the value of X for the incoherent return. Calculations of large numbers of coherent
returns for certain arrays have shown statistically significant differences between these
two values of X. The arrays used had unsymmetrical distributions of retroreflectors
along the line of sight. Presumatly, if both the incident pulse and the distribution of
reflectors were symmetrical, there would be no mechanism for causing a bias.

A technique for removing the difference between the average X of the coherent
returns and the X for the incoherent case is to weight each coherent X by the energy
of the coherent return. This lms the effect of canceling the denominator in equation
(7-11), so that we need to average only the numerator, whose mean value has already
been shown to be equal to the numerator in the incoherent expression for X, equation
(7-3). Computer runs on large samples of coherent returns have verified that this
weighting technique works to within the statistical uncertainty due to the number of
returns comruted. These computer runs also show, however, that the whole sample
must be used; excluding -turns below a certain energy causes a bias. This is
probably the result -f the fact that a return's low energy puts constrainis on the phases
such that they are no lenger random.

A similar situation exists with the variance given by equation (7-16}, whose mean
value of the numerator, § SK(cr2 + dlz(), is the same as in the incoherent case; the
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denominator is the energy. Weighting by the mean energy removes any bias between
the mean coherent value and the incoherent value.

7.8.5 Coherent variations versus pulse length

Computation of coherent returns for various arrays with different pulse lengths
has shown that the variation of the mean position of the return pulse decreases as the
pulse length decreases. A qualitative explanation of this phenomenon is the following:
If the pulse length is much shorter than the spacing between the reflections from
different reflectors, no interference occurs between the different reflections, because
they do not overlap. In this case, the coherent return is identical to the incoherent
retum, and all properties of the coherent return, such as the energy and mean posi-
tion, are constant. As the pulse length increases, both the degree of overlap between
individual reflections and the variations in pulse shape increase. Therefore, the
variations in energy, mean positian, and other properties will increase as the pulse
length increases.

7.9 Half-Maximum Range Correction

In a half-maximum detection system, the range to a retroreflector array is meas-
ured by recording the time interval between the half-maximum points on the leading
edge of the transmitted and received pulses. If the received pulse is the same shape
as the transmitted pulse, this will give the same range as a centroid detection system.
However, if the pulse is broadened by the array, because of the fact that the cube
corners are distributed in range from the observer, then the range measured by a
half-maximum system will, in general, be shorter than that measured by a centroid
detection system. The difference between the half-maximum range correction and
the centroid range correction must be computed by plotting the return pulse and
numerically finding the point on the leading edge where the inteasity is half the maxi-
mum intensity. In cases where the half-intensity point is multivalued, the first point
on the leading edge will be considered the halt-maximum point Xy /90 The difference
between the half-maximum point and the centroid on the transmitted pulse is ovInd,
as shown in Section 7.5. The corresponding difference on the received pulse is
X1 /2 ~X, where X is the centroid of the received pulse. The difference between the
half-maximum and the centroid range corrections is
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1 -
5 [(xl /5 =B -0VInd ] .
The factor of 1/2 converts the result to a one-way correction.

7.10 Pulse Spreading by Array versus Pulse Length

Computer runs on various retroreflector arrays with different pulse lengths
have shown that the amount of pulse spreading due to the array increases as the pulse
length decreases. There is one particiiar arrav geometry where this result can be
proved amalytically. Let the array corsist of a large number of reflectors whose
density along the line of sight is approxima‘ely gsussian. Let the density of reflectors
be

a i - (2x")2/20i'
I2x"y (2 dx") = 2 dx”

and :et the intensity of the incoming pulse be

-(x+ ct)2/20(2)
e -

1
0'0\/211'

1,(%)=

The contribution dI(x) to the incoherent return signal from an element of the array at
the point x” is a gaussian moving in the +x direction reflected from point x” at time

t = - x”/c and centered at 2x” at time t = 0. If we define x’ = 2x”, we getatt =0

—x'2/20§ - (x—x')z/zo%
e dx’
01\/21r o V2w

dI{x) =

and then we can integrate over x’ to obtain the total incoherent intensity:
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I(x) = f dI(x)

=1 J‘ 1ix’ gx-x'zz I;
= exp -5 |=5+ dx’
2“0100 { 2 Lz 02

The terms in the square brackets can be rewritten to form a perfect square plus a
constant, as follows:

2 T -
_x__2_+gx );2 =§_2_+x -2x;:+x
0y % 9 %

0% o1+ % %
-0?+o§ G{'_ c‘?x(j_(olx +X_2.
oiog o§+02 ol+02 0(2)
2. 2 2. 2 2 2 2,2 2
___°1+00 Q{’— ox | _ oix X (ol+ao
ofog a?+02 0(2) (o§+ 0‘3) 0(2) (o§+00)
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where

After we substitute this back into the exponent, the integral becomes

o ' 2 2
oy = =] e-x2/202 X x_-(olx/a)l
21r0'10’0 exp 9 2
(oloo/o)

“oc

2 2 o0, 0,
=1 X /20 ,F"_}_}L
" 2w0, 0, e 2m =5

B T x2/2(72
oV2Zw

The reflected pulse is a gaussian with o= VOﬁ + 0(2). A measure of the amount
of pulse spreading is the difference

so that

( 0?) o,
Acg= |0, +=—] - 0© =(——) o S
0 20’0 0 20‘0 1
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Instead of having Ao on the order of al, which we might have expected intuitively, the
spreading is reduced by the factor 01/200, so that Ac — 0 as 0 -

For very short pulscs,

2 2
2. 2_ % %
01+ 0,=0, 1+——'#cr11+——-—2 ’
7 20

1

and thus
4 g
= Ol _5 = 9 _
Ao = <ol+201 %9 01*“0(201 ) .

In the limit, as 00 -0, &0 —-o1 - UO = 01 as we would expect for a point reflector.

By taking the derivative of Ao with respect to 0q» We can prove the statement made
at the beginning of this section for the special case of a gaussian distribution of retro-
refiectors. We have

/
d _d ([2 =
o, L9 =55 &"1*"0 Uo)
o o
qg,
= o __ i .
0'1+0'0

Since 00/ o% + 0(2) =1, d(An)/don = 1, so that the pulse spreading increases as the

pulse length decreases.

7. 11 Range Eguation and Gain Function

The range equation giving the received energy as a function of the transmitted
energy can be written
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iE_./E
_ dE/E s’
Er= BTy "aq_ %Ts'a a0 % o

where E is the received energy, E is the transmitted energy, T A is the atmospheric
transmission factor, QS is the solid angle subtended by the active reflecting area of

the satellite array, Tg is the transmission factor of the array, Eg is the energy
reflected by the satellite, and Q. ie the solid angle subtended by the receiving telescope.
To calculate the number of photoeiectrons, the equation must be divided by hv and
multiplied by g » where h is Planck's constant, v is the frequency of the laser, and

— r
. g r is the efficiency of the receiver in photoelectrons per photon.

The solid angles QS and Szr are

QS=

ol

el N

-

where AS is the active reflecting area of the array, Ar is the area of the receiving
telescope, and R is the range. Introducing the definitions

dE/E
G, = ’
t dQS
. - dES/ES
S~ er ’

we get the foliowing equation for the number of photoelectrons N:

GA G
= E 8t 2 4
N=g g T, Ts&p (7-12)
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This definition of the gain functions G, and Gg differs from standard usage, which
includes a factor of 4'rr. Equation (7- 12) can be converted to the standard definition
of gain by adding (41r) to the denominator.

The gain GS of the array is proportional to the intensity of the diffraction pattern
of the array in the direction of the receiver. In the incoherent case, the intensity of
the whole array is the sum of the intensities of all the cube corners. In Section 5. 1.2,

we showed that the intensity Ip from each cube corner in terms of the dimensionless
intensity F’ is

For an array of identical cube corners, the intensity is

2
S A
] = ——— F’'I
E:p )\2D2 z: 0

In order to facilitate comparison with the range equation, let us make the substitutions

D=R ,

dE 1
L= G — ,
0 di tRZ

which results in

ZIp 2ZF’——-G =
Fo(r Xr)
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We can ignore the factors T A TS’ and épr and writez:lp in terms of the variables
used in the range eauation:

Z =S¥ ©,Ggh ~r 4

Comparing the two expressions forzl " we see that

SZE:F'
) s
1N

which gives

rs=%(TS‘}:F>
A \'s

For a single cube corner at normal incidence, AS = §. If the cube comer is perfect,
in the sense that the refiected field equals the incident field, then F’ = 1 at the center
of the far-field pattern, as shown in Section 5.1.2. The gain in this case is SAZ.
The standard definition of gain for a perfect reflector of area S is 4vS/x2.

7.12 Velocity Aberration

In the moving coordinate system of a retroreflector aboard a satellite, a laser
beam incident on the cube corner is reflected back along the same iine as the incident
beam. In the coordinate system of the observer on the ground, the reflected beam
makes an angle 2v/c with the incident beam, where v is the component of the satellite’s
velocity perpendicular to the line of sight. - The position of the receiving equipment in
the diffraction pattern of the array is therefore determined by the magnitude and direc~

_tion of the tangential component of the satellite's velocity. Since the transfer function
varies within the diffraction pattem, it can also vary with the amount and direction of
the velocity aberration. In cases studied, fortunately, the variation is not too large
and is reduced when the beam width is deliberately widened, such as by building
dihedral-angle offsets into the cube corners.
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7.15 Variation of the Transfer Function within the Diffraction Pattern

The light reflected from each cube comner in an array is initially a separate pen-
cil of light antiparallel to the incident beam. At large distances from the array, the
mdividual reflections spread, owing to diffraction, and overlap each other. It is
assumed that the return is dbserved at a distance large enough so that the diffraction
patterns of the individual cube come:s are muck larger than the size of the retro-
reflector array. Under these conditions, the difference in position of the centers of
the individual diffraction patterns can be neglected. The incoherent intensity at a
parcicular point in the far field is obtained by adding the intensity of the diffraction
pattern of each cube corner at that point. Since cube--corner diffraction patterns can
be rather lumpy, the incoherent return energy will vary at difierent points in the far
field. The average position of che incoherent return pulse is calculated from equation
(7-3). Althcugh the values of dK are essentially constant over the whole diffraction
patiern, the intensities SK of the individua! reflections vary from point to point.
Therefore, the mean position of the pulse varies at different points in the diffraction
pattern. At each point, there will also be variations about the incaherent values as
a result of coherent interference.

In cases where the infermation avaiiable on the cptica! specifications of the cube
corners is insufficient to model the diffraction patterns, we can assume that the
intensity due to each reflector is proportional to the active reflecting area of the cube
cormer. This is equivalent to assuming that the diffraction patteras of all cube cor-
pers are identical.
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8. RETROREFLECTOR-POS!TION CALCULATIONS

§.1 Calculation of Retroreflector Positions and Oricatations

I Section 7.1, we described the coordinate system of the retroreflector pcsitions
and orientations, in which three coordinates and three angles were given for each cube

¢omer.

The arrays carried by many of the retrorefleciur satellizes now in orbit consist
of several panels with cube corners arranged in rows ard celumns on each panei. The
genera! procedure for computing the position of eack cub2 corner is first to compute
the position with respect to the panel and then, through a series of translations and
rotations, to move the panel to its position on the sateilite. The rotations periormed
define the direction of th: norma1i to the front face of the cube corner.

Let the panel, row, and columr jncdices of a cube corner be I, J, and K, respec-

tively (see Figure 74). The position of a cube corner with respect to the supporting
panel is
XK= me+ K-1)dx ,

yIJK= Cyl+ (J-l)dy ’

The constant C,,_is th: height of the cube-corner face above the hinge pomt of the
i

panel.
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Figure 74. A panel of cube corners.

The arrangexent of the panels on most satellite arrays is such that it is conven-
ient to rofate the parel 2bout the x and y axes by the angles pl and ops displace the
panel by AxI, AyI’ and AZI’ axd then roftate about the z axis by the angle GI. The

result is
! e ' cos¢. 0 =iné 1 0 0 ...
XK axy R 1 *gx
! = \ig £ -Si
yIJK = A“"I + 0 1 0 0 cos p: sin ’GI YUK
szK Az, csing; 0 cos g 0 sinp; cosB, 211%
It —ai iy
xL Ccos GI sin BI 0 xIJK
” —_ 3 4
Yirk sin GI cos 0, 9 YIyK
” ’
ZH 0 0 1 ZUK

The double-primed coordinates are the positions of the center of the front face of eaci
cube corner in the array ccordinate system.
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The direction Ogs ¢R) of the normal to the front face of the cube corner is
obtained by performing the ﬁl, o and el rotations successively on the vector (0, 0, 1)
and then computing t- angles of the vector, from which we get

x’ cos$y 0 siné 1 0 0 0
v = 0 1 0 0 cos By - sin pl 0 ’
z -sin ¢I 0 cosé 0 sin ﬂI cos BI 1

14

= f1+mn_l %) ,

8 L

R

- ' 2
¢R=ml(\lx z+ _) ]

Let the orientation of the cube corner on the panel be a’, as shown ia Figure 75.
The angle o’ is the orientation with respect to the pole (OI, 4)1). The orientation a can
be computed with respect to the pole of the array coordinate system (8 = ¢ = €), as de-

scribed in Section 8.2, by using

Figure 75. Oricntation of a cube corner on a panel.



The above method was used to calculate retroreflector positions for the satellites
amalyzed in Weiffenbach (1973) and Amold (1972, 19753). The geometry of the Starlette
array, whose transfer function is given in Arnold (1975a), is described in Centre National
d'Etudes Spatiales (CNES, 1972). Photographs showing the construction of Starlette
have also been published (CNES, 1975). The information used to compute retroreflector
positions for Geos 3 can be found in Arnold (1975L;.

g.2 Oriertation with Respect to a New Pole

In computing the position and orientation of a cube comner in an array, the orien-
tation o’ can be given initially witn respect to some loca' pole having angular ccor-
dinates ep and & a with respect to the z axis of the array coordinate system (see Figure
7€). All such orientations must be expressed with respect te tke z axis of the array
©®=$ = J). Let the normal to the face of the reflector be given by the angles eRa.nd
og The orientation angle is measured left from the great circle joining the pcints

®g» ¢R) and (6 D ¢p) on a unit sphere, as shown in Figure 77. The plare in Figure 77

b}

Figure 76. a) Direction of a local nole; b) direction of the normal to the front face of
a cube corner.
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Figure 77. Diagram for computing the orientation of a cube corner with respect to a
new pole (8 = ¢ = 0).

ie tke front face of the cube corner. To express the orientation with respect to a
. -—
new pole, we must compute the difference in direction to the two poles. Lei V be
a unit veztor in the direction P ¢p) with the following components:
Vx= sm¢p cos ep ’
V. _=sin¢g_sino
y ®p p’

Vz = COs ¢p .

Let an x/,y’, 2’ coordinate system be defined with z’ in the direction of the normal to
the front face of tke cube corner (BR, ¢R), the x’ axis in the direction of increasing
4x» 2nd the y’ axis in the directior of increasing 6y. The components of V in the
x’,y’, 2 courdinate system can be obtained by rotating the x,y, z coordinate system
about the z axis by the angle BR and then about the rew y axis by the angle dR- The

result is
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V., c05¢R 0 --sin4>R cos('-)R sinOR 0 V.

X x
v’ = 0 1 0 -sin 9R cos BR 0 Vy .
Vv 2 sin ¢R 0 cos ¢R 0 0 1 Vz

The angle to the pole (8 = ¢ = 0) in the x'y’ plane is 6” = =, while the angle to the pole
(C] P ¢p) in the x’y’ coordinate system is

iV
9'=ta.n_1(-x-. ') .
V..
\ X,

The desired orientation a from Figure 77 is

(1=0.'+3'-1T .o

8.3 Condensing Large Arrays for Coherent Calculations

The amount of computer time required to compute the energy and mean position
of a coherent return from a satellite retroreflector array is roughly proportional to
the square of the number of active retrorefiectors. Satellites such as Geos 1 and
Geos 2 have a very large number of reflectors, all of which are generally active since
they all face the same directicn. The variations in energy and mean position are
largely independent ~f the number of reflectors as long as the number is reasonably
large. Guidelines regarding what is considered a reasonably large number of re-
flectors were given in Section 6. Considerable savings in computer time can be
accomplished by averaging groups of neighboring reflectors and representing each
group by a single reflector at the mean position, weighted by the number of cube cor-
ners av caged. All reflectors averaged must have the same orientation.
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8.4 Shadowing

8.4.1 Geos

Both Geos 1 and Geos 2 have a hemispherical structure in the center of the side
containing the retroreflector panels (see Figure 78). At large incidence angles, some
of the cube corners may be shadowed by its structure. Let X, y, and z be the coor-
dinates of a cube corner, and let the center of the hemisphere of radius R be located
on the symmetry axis of the satellite a dist: ez, from the satellite center of mass
(CM). The position of the cube corner in a coordinate system with its origin at the
center of the sphere is

x'=x , {8-1a)

yv=y , (8-1b)
r— - -

z'=z-2, - (8-1c)

i
|
I
4
I 7

* AN
CM _)

i T S —

N/

Figure 78. a) Geos 1 and 2 satellites; b) direction of incident beam on Geos 1 and 2.

Let the direction of the incident beam be (9, ¢), as shown in Figure 78. We can
rotate the x’,y’,z’ coordinate system about the z’ axis by 6 and about the new y’ axis
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by ¢ so that the final z” axis points toward the source. The coordinates of the cube

corner become
x” cos¢ 0 -sing cos O sine 0\ /x’
y' | = 0 1 0 -sin® cos6 0 }| ¥y . (8-2)
z” sing 0 cos¢, 0 0 1 z’

The cube corner will be shadowed if both
2”7 <0

and

Vx"z + y"2 <R .

The values of R and zc for the two Geos satellites are as follows:

Satellite R (m) z, (m)
Geos 1 0.3048 0.423
Geos 2 0.3048 0.444 .

8.4.2 Peole

The Peole satellite has a frustrum of a cone extending from the satellite in the
positive z uirection. The axis of the cone is the z axis. Let R, and R, be the radii
of the bottom and the top of the cone, respectively, and let z o be the z coordinate of
the base and H be the height. The position of a2 cube corner with respect to the center
of the bottom of the cone is given by equations (8-1), where X, y, and z are the coor-
dinates of the cube corner with respect to the center of mass of the satellite. Let the
direction of the incident beam be (0, $). Rotating the primed coordinate system so
that the z” axis poinis in that direction, we get the coordinates given by equation (8-2).
The frustrum of a cone in the double-primed coordinate system has the shape shown

in Figure 79.
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Figure 79. Shape of Peole cone.

The cube corner will be shadowed if the following four conditions are met;

or if

L"Z x”2
(R) + (—B—) <1

" 2 x"+x c)z
(Rz> + ( 2 <1l .
The values of the parameters, in meters, are

zc=0.891 s H=0.561 |, R1=O.151 , R2=0.051
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