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ABSTRACT 

This ~eport presents methods for computing the properties of the re£lection 

from a cube-corner array when it is illuminated by a laser pdse. Such informatian 

is useful in the design of satellite retroreflector arrays a d  ground tracking equip  

ment as lire11 a s  in the anaiys is of the data obtained. The methods derived include 

the effects of coherent interference, diffraction, polzrizatian, and dihedral-angle 

o£fsets. Considerable space is devoted to deriving expressions for the diffraction 

pattern and active reflecting area of various types of retroretlectors. 



MZTHOD OF CAICUIATING RETROREFLECTOR-ARRAY 

TRAhiSFER FUNCTIONS 

David A. Arnold 

1. INTRODUCTION 

The work described in this report was begun as  part of the Lageos study program 

(formerly called Cannonball) supported by grant NGR 09-015-164 from the National 

Aeronautics and Space Administration (NASA). The laser ranging accuracies pro- 

posed for the Lageos satellite required the development of a transfer function to 

relate the observed return pulses to the center of mass of the satellite. Preliminary 

transfer-l unction analyses done for the Lageos retroreflector array a re  presented 

in Weiffenbach (1973).  he development of the techniques and computer programs 

has been continued under NASA grants NGR 09-015-196 and NGR 09-015-002. Trans- 

fer  functions computed for most of the retroreflector-equipped satellites now in orbit 

have been published (Arnold, 1972, 1974, 1975a,b, 1978). This report documents the 

techniques and equations used in calculating the transfer functions presented in those 

references. Transfer-function analyses have also been done for some of the retro- 

reflector satellites at Goddard Space Flight Center (Felsentreger, 1972; Fitzmaurice, 

1977; Minott, 1972, 1974a,b; 1976, 1978; Plctkin, 1964; Regardie, 1976). Since the 

optical properties of :he cube corners are  of primary importance, a large part of this 

report is devoted to revie-ving the basic properties of cube corners, deriving analytical 

expressions for the active reflecting area of various cube-corner designs, and develop 

ing methods for computing the Mrac t ion  pattern of these retrorefiectors. The diffrac- 

tion calculation fo; a circulbr reflector employs numerical integration over one of the 

variables in the surface integral. 

This work was s~pported in part by grants NGR 09-015-164, NGR 09-015-196, and 
NGR 09-015-008 from the Yatimal Aeronautics and Space Administration. 



Expressions for the incoherent and coherent returns from an array are pre- 

sented. The phases of the reflections from individual cube comers are  chosen by 

use of a pseudo random-number generator. Statistics on the variatioa of the proper- 

ties of the r e t u ~ ~ l  pulse due to coherent interference are  derived by computing many 

coherent returns. 

The last section outlines the method of computing the position md  orientation of 

each cube comer in an array in which design data are  used. 



2. BASIC RETROREFIBCTOR PROPERTIES 

A retroreflector c~ns ls t s  of three mutually prpendicular reflecting surfaces. 

Let the reflecting surfaces be the xy, yz, and w planes (Figure 1). A light ray inci- 

dent on one of the surfaces, such as the xy plane, has the component of the velocity 

vector normal to that plane, the z component, reversed. After reflection from the 

three surfaces, 2ll components ~f the velocity vector are  reversed and the my has 

been retroreflected. 

Figure 1. Basic retroreflect~r. 

2.2 Angle of Jncidence on Back Faces 

Each of the three arthogonal reflecting surfaces in a cube corner reverses the 

component af the light's velocity vectcr normal to that surface. Since the magnitude 

of the velocity vector is not changed by any of the reflections, it follows that the angle 

of incidence of the beam with a particular face must be a costant independent of the 

order in which the reflections occur. Therefore, the angle of incidence on a given 

face is equal to the angle t5e incident beam makes with each face. This property is 

particularly useful when determining the cutoff angles for total internal reflection in 

uncoated cube corners. 



2.3 Symmetq of Incident and Reflected Rays 

The vertex of a retroreflector is balh7ay between the lines defined by the incident 

and the reflecte~ rays. In a two-dimensional retroreflector (Figure 2), is con- 

structed through the vertex parallel to the incident ray = and the reflected ray s. 
By the law of reflection: al = a2 and P1 = Pq, and by construction, al = a and P = P - - - - 1 3' 3 - -  
Therefore, BC r OC and OC = CD because the triangles are  isosceles. Since BC = CD, 

the lins is halfway between ihe incident and the reflected rays. The same diagram 

is  equally valid in three dimensions since the third reflection reverses the component 

of the velocity perpendicular to the paper and does not alter the angle of the Lines in this 

perspective. The above proof is the same for any pair of axes; thus, the line must 

be in the smie plane as kB and DE and halfway between them. 

Figure 2. Two-dimensional retroreflector. 

2.4 Equal Path Length for All Rays 

The distance traveled by all rays is the same as the distance traveled by the r a y  

that goes to the vertex. In Figure 3, RG is constructed parallel t~ m, so - - -  - - -  
CB = DH = EG. Also, CD = OD = DE, as shown previously. Therefore, the path 

B-C-E-G is equai to the distance -t OH. 



Figure 3. Path length for 2 two-dimensional retroreflector. 

- 
AF is constructed perpendicular to the incident and reflectec? rays and is a phase - - 

front. Since AB = FG, the path A-C-E-F equals B-C-E-G. The equalities above 

also hold for the horizcntal and vertical compments of all the line segments. Since 

this is true for any pair of axes, the three-dimensional distance traveled by all rays 

from the phase front is the same. This proof works for either a hollow reflector or 

a solid one whose face is perpendicular to  the light beam. 

If the reflector is made of a dielectric whose face is flat, the optical path length 

for all rays is also constant. In Figure 4, BF 1 5  and AG 1 E. As shown before, 

the path 33-C-E-F equals the distance + a. Since FG is twice x, the path 

ffG-E-G equals + a. Outside the dielectric, AB is twice HI, so m= + M. 
These relations hold for both the horizontal a.nd the vertical compments of the dis- 

tances. Since a similar proof exists for any mir of axes, t h ~  three-dimensional 

oGical path length for all rays is the same as the optical -th length of the ray that 

travels to the vertex. If the front surface and the back reflecting kces  are not 

optically flat, or if the angles between the reflecting faces are not exactly 9OU, the 

optical path length will be dSerent for different rays. 



Figure 4. Solid two-dimensional retroreflector. 

2.5 -nge Correction for Optical Path Length 

The range measured by timing a lase]' pulse reflected from a hollaw cube corner 

is the range to the vertex of the reflector. If the retroreflector consists cf a dielectric, 

such as fused quartz, then it is necessary to correct for the slower velocity of the light 

beam in the dielectric. The optical path length is n times the geometrical path lellgth, 

where n is the index of refraction. If the length of the retroreflector from the vertex 

to the center of the front face is L, the opticai path length in the cube corner ac nor- 

mal incidence is nL. The difference between the optical and the geometrical path length 

is nL - L = L(n - 1). The range measured to  a solid cube corner at normal incidence 

is greater than the range measured to  a hollow cube corner by L(n - 1). The range 

correction will vary with the incidence angle of tne beam ~n the front face of the cube 

corner. It is a little simpler to calculate the correction from the center of the front 

face of the reflector than from the vertex. 

The corxction factor AR is the difference between the optical path length n E  

and i he distance AC (see Figure 5); that is, 

The length of the reflector is L = FA. The incidence angle is i and the refracted 

angle is r. From Figure 5, ve see that 

- L OB=- . cos r 



0 

Figure 5. Optical path length in a retroreflector. 

Using Snellls law, 

sin i -=n 
sin r 9 

v -e get 

sin i sin r = - n 9 

from which we can write 

2 =: 4.2 - sin i . 



Substihting this into eqyatim (2-2) yields 

From Figure 5, 

- - 
AC = AB sin i 

sin r 
= L-sin i 

COS r 

- - L sin i/n sin i 
(l/n) ~ 2 Z x  

2 - L sin i 

-fizzz 

Substituting equations (2-3) and (2-4) into equation (2-l), we get 

2 
n L 

2 
- - Lsin i 

-- ,/-i 

- - L 2 2 .  (n - sin 1) v- 
2 = L n 2  - sin i . 



The correction wit!_ ,-espect to the \;ertex can be expressed as follows: 

,/v- = L n sin i - L c o s i  

- - L(4-i - cos i) . 

2.6 %nut and Outaut A m r ~ ~ ~ e s  

As s h m  in Section 2.3, the retroreflected ray leaves along a line m tbe oppsite 

side of the vertex from the incident ray. Figure 6a s&ows the retrorcflect~r from the 

directim CS the incident Learn; a ray incident at point A will be retroreflected from 

point B, which is an equll distance on the otker si3e of t k  vertex 0. Similarly, point 

C moves to point D. For any shaped retroreflector face, the shape of the retrorefleded 

beam can be construct~d by mcn-ing each point on the outline of the face an equal dis- 

tance an the other side ~f the ~ertex. Figcre 6b s h m s  the result for a triangular 

retroreflector 2.t normal incidence. The solid Ime, the shape of the retroreflector 

fxce, is called ths input aperture, and thc dotted line, gil-ing the outline of t?e retro- 

reflected beam, is the outpat aperture. The overlap of the two fi-s is the active 

reflect- area. Any ray that is incident outside the overlap region will not be retro- 

reflected, since the symmetry of the incident and the reflected rays would require 

k t  the last reflection occur at  P point outside the cube corner. 

Figure 6. a) Method of constructing the output aperture; b) tria@ar i n p ~ t  and out- 
put aperture s. 



When the incident beam is not at ncrmal incidence, the vertex as viewed from 

the direction of the beam is not in the center of the aperture. When the outpt  aper- 

ture is constructed, it is also off center, so  the intersection of the two figures giving 

the active reflecting area is decreased. Figure 7 depicts this effect for a square 

aperture. At normal incidence, the apertures coincide, while at  an oblique angle of 

NORKAL I NCI CENCE OBLIQUE INCIDENCE 

Figure 7. Disr!cicement of -he input and output zperh~res in the plane of the front 
Cce. 

incidence, the ceiiters of the input and the output apertures are separated by some 

distance 00'. T3e sepri t ion of the apertures can be calculated from the incidence 

angle, as shown m Figure 8. The ray A incident on the center of the input aperb~re 

is retrorefleded zs ray A'. The distance D between the poiuts of intersection of A 

and A' witb t5e front face is 

where +' i s  the angie between the r a y s  and the synlmetry axis of the cube corner. 'The 

separation is given in the plane of the front face of the retroreflector. A s  viewed from 

the angle +', this distance is i! qos +'. If the cube corner consists of a solid dielectric, 

then the separation as viewed from the incidence angle Q i s  D cos +. The angles C$ and b' 

are related by Snell's law, 

Similarily, the intersection of the input and output apertures as computed in the plane 

of the front face will be smaller by the factor cca + when viewed from the direction of 

the incident beam. 



Figure 8. Separatld of input and &put apertures. 

In general, the direction of the incident beam is given by the two angles 8 and +, 
where 4 is measured from the normal to tyhe frcut h c e  and 0 is thc azimuth angle 

around the n o m i .  The input and output apertums separate alang the lire given by 

the projection of the incident beam onto the front face (see Figum 9). 

Figure 9. Direction o: separation of the input and output apertures. 

In summary, the active reflecting area for a retroreflector when illuminated by 

a beam whose direction is given Ly the angles 8 and + is the intersection of the m p t  

and output apertures in the plane of the front face multiplied bv cos 9. The separation 

of the apertures is along the plane of incidence, the separation being 2L tan 9' in the 

plane of the front face. 



2.7 Tube Analogy 

Instead of thinking of both the input m d  the output apertures 2s being in the plane 

of the front face of the retroreflector, \:e can visualize tbe active reflecting area by 

considering the apertures a s  the openings at either end of a tube. In hct ,  when 

looking into a retrorefledor, it appears a s  thou$ the o?~tput aperture is an equal 

distance in back of the vertex from the input aperture. In this representation, the 

output aperture is constructed by ta!;ing each point on the input aperture and moving 

it an equal distance on the opposite side of the actual position of the vertex, as shown 

in Figure 10. This technique is similar to &e model of cube-corner phenomena given 

in Eckhardt (1971). 

IMAGE OF 
FROhT FACE OUTPUT APERTURE 

FRONT FAZE INPUT APERTURE 

Figure 10. Tube analogy for input and output apertures. 

The space seen by looking through the tube from larious angles is the a c t i ~ e  

reflecting area for that incidence angle. The analogy holds for a solid c& comer 

by filling the tube with a dielectric (Figure 11). The nctil-e reflecting area for a 

solid reflector is larger than that of a hollow one at  off-normal incidence because the 

mys are  bent into the cube corner. 



OUTPUT APERTURE 

INPUT APERTURE 

FLECTlNG AREA 

Figure 11. Solid-cube-corner tube analogy. 

2.8 Maskine: and Rec.ession 

By means of a =riety d technicpes, the active reflect- a m  of a cube corner 

can be made to  decrease more rapidly as  the incidence angle departs from the normal 

to the front face. The tube analogy is perhaps the best way to visualize the effect of 

tbese techniques. Lithe cube corner is made narrower while keeping the length from 

vertex to Bce constant, the reflecting area is decreased directly at normal incidence 

and the cutoff angle (the angle beyond which there is no retrorefiected signal) is 

smaller as  measured from normal incidence. The same effect could be achieved by 

masking the front fhce by the same amount. Figure 12 shows both techniques. 

If a hollow reflector is recessed in a cavity- of the same shape as  the face, the 

effect is the Sam5 as changing the width-to-length ratio, as was done iu the two pre- 

vious techniques. If a solid cube corner is recessed, the effect is somewhat more 

complicated. The wall of the container shadows the face of the reflector at an oblique 

incidence angle. Since refraction occurs at  the dielectric boundary, the displacement 



D of the input and output apertures is the sum of two terms. As shown in Figure 13, 

D is g i ~ e n  by 

wvbre R is the amount of recess i on, and 4 and + ' are the of the beam before and 

after refraction, respectively. 

NORMAL MASKED NARROW 

Figure 12. Effect of reducing the width-to-1enggt.h ratio. 

Figure 13. Recessed solid cube corner. 
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2.9 Multiple Apertures - 

The technique of masking can be used to produce pai~s of apertures on a retro- 

reflector. If half the aperture of a cube corner is covered (Figure 14), there will be 

Figure 14. Half-c~vered retroreflector. 

no effective mflecting area. Rzys entering the open left half of the retroreflector must 

exit on the right side by the principle of the symmetry of the iacident and reflected 

rays about the vertex. If holes are  made in the mask on the right side of the aperture, 

mys entering the holes will exii from the open left half 2nd those entering the left half 

exactly opposite the holes will exit from the holes. Thus, pairs of apertures can be 

prduced, as  s h a m  in Figure 15. Figure 15 has the mask covering s l imly  =ore than 

balf the aperture, in order hi. a l:n$ will not be opened up in the center i f  the cube cor- 

ner is slightly misaligned. The problem of alignment is also the reason for not halving 

matching holes in a mask that covers the entire aperture. Corresponding apertures 

would not be exactly opposite each other except at ~ o m a l  iccidence. 

Figum 15. Pairs of apertures. 
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2.10 Ivlultiple Retroreflection 

In a solid cube corner, a partial reflection occurs at the front face both as the 

light enters the cube comer and a s  it leaves. The light reflected on entrance is not 

in the retroreflection direction except a t  no-1 incidence. The light reflected back 

into the cube corner as the beam is leaving can give r i f . ~  to multiply retroreflected 

beams. The contributicn of these multiple retroreflections is negligible, largely 

because the reflection coefficient is small. Exce-pt at normal incidence, the active 

reflect- area decreases for each successive reflection, and caly 2 k e r y  other heam 

leaving the cube corner is in the correct direction. 

For n = 1.46, '; = 0.035. The path of multiply retroreflected rays according to the 

tube analogy is drama in Figure 16. 

Figure 16. Multiple retroreflection. 

Figure 17 shows the widths and positions of the tarious input and output apertures 

ard active reflecting areas for a square cube corner. 



THIRD ACTIVE REFLECTING AREA AND FOURTH INPUT APERTURE 

wr( T H l  RD OUTPUT APERTURE 

I F!RST ACTIVE REFLECTIVE AREA AND SECOND INPUT APERTURE 

p-4 FIRST OUTPUT APERTURE 

INPUT APERTURE 

SECOND OUTPUT APERTURE 

- A  SECOND ACTIVE REFLECTING AREA AND THIRD INPUT APERTURE 

Figure 17. Widtbs of successive apertures for multiple retroreflection, 

Let T be the transmiss ion coefficient given by 1 - R and let Wo be the intensity- 

of the incident beam x. Table 1 gives the width of each beam for a square retroreflec- 

to r  with sides of unit length and incidence angle such that 2L cos + = 0.25. The inten- 

sities of each beam a n  caiculated for R = 0, 035 and T = 0.965. 

Table 1. Intensity aad width of successive reflections within a cube corner. 

Intensity 

Beam Width Analytical Numerical 

Indefinite 

1 

1 

0.75 

0.75 

0.50 

0.50 

0.25 

0.25 

0.00 

RWo 



In the above case, only beams ond are in the retr~reflection direction, and 

t3e intensity of each successive retroreflected beam is decreased bg R~ = 0.001225. 

The separation of the input and output apertures increases by 4L tan +' between each 

successive retroreflect ion. The cutoff angle occurs when the width of the front face 

is less than 2L tan +' for the first retroreflection and when it is less than 6L tan +' 
for the second. 

2.11 Dihedral-Angle Offsets 

In a perfect retroreflector, the angle between any pair of reflecting faces is 

exactly 90" and the reflected beam is exactly antiparallel to the incident beam. If 

the dihedi-al angles differ from 90" by a small amount, the reflected beam will be 

split into two, four, or  six beams, depending on urhetbi3z one, two, o r  three dihedral 

angles a re  changed. Each spot corresponds to a particular order of reflection. 

m e r e  arc- 3: = 6 possible orders of reflection. The orientation of each face is given 
A A A 

by the mit normals n 1' "2' and ng to  each face. The reflection from each h c e  

reverses that companent of the light's velocity vector that is normal to  the face. Let 
a 
V and 9 be the directions of a ray before and after reflection, respectively, with 

the vector -f' given by 

A 
where n is the normal to  the face. Application of the above formula three times 

yields the direction ~f the reflected beam for a particular order of reflection. For- 

mulas for the direction of the reflected rays 2.Rer the three reflections a r e  given in 

Yoder (1958), Chandler (1960), and Rityn (1967). Chandler's formula is 

where -T is ihe final direction; < is the origiral direction; a, (3, and y a r e  the small 
-. -. 

~ l e s  by which the angles between the three mirrors exceed right angles; and a: b, 

and are  the normals to  the three mirrors taken in order in a right-hand sense. 

Equation (2-5) is valid to first order when the P-irrors a re  nearly mutually perpen- 

dicular. The angle a is the angle between the faces whose normals are $ and < etc. 



The normals may be strictly perpendicular; that is, they do not need to include the 

small deviations caused by the dihedral-angle offsets. 

In the transfer functions g i~en  in Weiffenbach (1973) and Arnold (1972, 1974, 

1975a, b), the directions of the reflected rays were computed by applying the law of 

reflection three times. The small deviations in the normals must be included to use 

this technique. 

The unit normals to the faces can be computed as follows (see Figure 18) Let 
A A the normals to the faces without dihedral-angle offsets be the unit vectors I, J; and 

A 
k almg the three coordinate &yes x, r, and z, respectit7ely. If the angle F h e e n  the 

xz plane ,and the yz plme is ( ~ / 2 )  t- 6,  this can t;e expressed by 

For small angles 6, the above expressions are quite adequate. Offsets in the other 

two dihedral angles can be similarly represented. The normals shculd be divided by 

their absolute magnitudes to ensure that they are strictly unit vectors. 

Figure 18. Nonnals to  the reflecting faces with dihedml-angle offsets. 



It is desirable to have the unit normals given in the coordinate system of the 

symn~etry =is of the corner cube since the incidence anglk of the laser belull is given 

with respect to this axis. The symmetry axis is UI the direction of the vector 

x = y = z = 1, a s  shown ip Figure 19, and is given by the angles 6 and A From A A 

Figure 19. Direction of symmetry axis. 

Figure 19, we see that 

cos eA= 1/a , 

s i n e A =  1/42 , 

cos LA = i T / v 5  , 

sin h A =  I/V% . 

The normals in the xyz coordinate system can be given in the coordinate sy. ten of 

the symmetry axis by rotating the original coordinate system about the 7 axis by BA 

and about the y axis by -LA. This brings the x axis along the axis of the a c  in 

matrix form, the total rotation is given by 



Substituting the values of the sines and cosines and multiplying the matrices, we get 

1 
X' = - ( x + y + z )  , 4 3  

In Figure 20, the unprimed axes represe2t the original coordinate system, and the 

primed axes &re the rotated coordiw-tes. 

Y 

Figure. 20. Relationship of x, y, z and x', y', z' caordinate axes. 

The incident laser beam after refraction at the front face is in a direction give11 

by the angles 8' and &' in the primed coordinate system (see Figure 2 i). 



Figure 21. Direction of incident bean1 after reImdim. 

A second rDtation of the coordinate system must txl ~ r f o r m e d  to get the normals 

to the hces in the coordhzte systen of the ' 35;' hea:xi. By rotating the coordinate 

system about the x' axis by 0' a d  then about the new z' axis by +', we get 

cosd's in+'  0 . 1 0 0 

@I cos Q' 6 )io cos e 
sin w) ( , : I )  . z" 0 0 1 0 -sin 9 '  cos 0' 

The relatianship of the primed s \d double-primed coordinate axes is given ia Figure 

22. The s' :txis is the sjmrnetly axis of t ~ e  reflector, the yfz' plane is pa mllel to the 

front face, :ad the s" asis is parallel to the bean1 aRer it enters the cube corner. 

\ / J  
Y 

Figure 22. Relationship of x;, y'  , z' :~nd s", g", z" ases. 



If the t89mer tux is hotiow, the reflections can be done for aU six possitle 

sequences c\r reflections by taking tne i;lcident beam, given, by the vectoz x" = -1, 

y" z" = 0, anti mf;ecting it f m ~  each of &e namals to the faces in the dauble- 
primed coordinate sys%m. The y" and 2:' coordimtes of tk renected beam give 

the &viatiow fmm the h i d e n t  Cirectian. The e&ct on these deviations due to ~ f r a c -  

tion w h  the rays exit from a solid cube corner is discussed Setw. 

2.11. I Effect of refraction on beam Gi~ergence 

Let the incident beam m tbe cube comer be in +& direction (9, 4) and le: the 

direction o£ tbe -'I &5r mfmct-icjn be (6': Q'), where 

Owing to dikedmi-angle offsets, the direzticn of the retroreflected ?xizm before being 

refracted oat of fie cube corner is (0 ' .t &> ' ,  C r  c d+') f3r a mrticuia: Qraer of reflec- 

tion. After refractim, the dirwticn beconws (0 + da, + + cbj, where 

sin (Q i dg)= n sin ( Q ' ~  a') - 

Si~ce  the arc distance between (Or ,  0') and (!!' + defy 3') i s  st = s in  6' d6' and that 

between (8, 6) and (8 + do, 6) is s = d@ sin 3, the deviation of the ray perpendicular to 

the plane of incidence has been increased by the ratio s/sr: 

To obtain the change in the component of the deviation in the pime of incidence, we 

expand sin (+ + &) and sin (0' + + I ) ,  which yields 



sin (+ - d ~ )  = n sin (9' + d$') , 

sin Q, c ~ s  4 + cos 4 sin dg = n(sin 4' cos d ~ '  + cos Q' sin . 

Since cib and 4' are very small, we have approximately 

By  US^" sin+ = n sin+', this mduces to 

dS, ccs 6 = c (IDZ COS 0' . 

Therefore, the conponellt of the deviation parallel to t?re 01 incideace is 

inereasell by the rati:- 

%=....of 
Q3 COS + 

2.11.2 Bean; spread at normal incidence 

The beam spread at normal incidecce iden all dikdrz! mgles a re  offset by an 

eqml m o m t  is @ - e n  hy the f ~ i ~ i u l a  (Rityn, 1967) 

where, foliovriq Rityn's notation, 6 is the angle by which the dihedral angles exceed 

90' and y is the angle between the incident and the reflected rays. This formula is 

g o d  to first ~rder when the dihedral angies are nearly 90'. If the deviation y is 

large compsmd to the beam spread due to diffraction, the positions of the mflccted 

spots in the far field can be accurately predicted. If y is on the order of the spread- 

ing due to diffraclioq the formula represents the deviation of the exiting phase fronts 

exactly, but the positions of the maxima ir: the far-field pattern a re  altered as  a 

resuit of interference amcng the six reflected beans. In this case, a diffraction 



calculation for the whole cube corner is necessary in order to predict the intensity 

distribution i3 the h r  field to a sufficient accuracy. 

2.11.3 Phase gradients due to dihedral-angle offsets 

Let the diredion of the reflected beam from a cube corner for a particular 

sequence of reflections be given by the unit vector 

A 
where -x ~ i n t s  toward the illuminating source. Since the dihedral-angle offsets are 

assumed to be small, we have 

The rates of change of phase across each sector in the y and z diiections are 

where 

X being the wavelength. 

Figure 23 shows a ray going to the vertex of a hollow cube corner. The two 

reflected rays correspond to different orders of reflection from the back surfaces, 



which results froan the incident ray being infinitesimally displaced fram fie vertex 

in different directions. Two factors a re  evident from the diagram, but they can be 

negiected because v ,and v are so smail. First, the srxice between each ray and the 
Y z 

incident ray is a dead spct containing no reflected mdh~tion. Second, the pbase fronts 

tiram perpendicular to the unit rectors, giving the d redions of the reflected rays, 

do not intersect the incident ray at  emctly the same poht. In diffraction calculations, 

the phase difference due to dihedral-angle offsets will he &!en as zero at the point 

where the phase fronts intersect the incident ray going tc  the vertex. These effects 

are insignificant in tr rms of their e&ct on the far-field pattern. A larger effect, 

which has also been neglected, is the reflect* area lost owing to  the ramding of the 

back edges to  prevent chipping in solid cube corners. 

Figure 33. Relationship of phase fronts for different sectors. 

2.12 Six Sectors 

A ray retroreflected from a cube corner ilndergoes three successive reflections 

at  the b c k  faces. The order in ~ h i c h  the r :flections occur is determined bj. where 

the incident my strihes the cube corner. Since the direction and polarizatsm of the 

reflected ray may depend on the order of reflection, we must determine the regions 

corresponding to th six o d e r s  of refledion. 



In Section 2.11, the normals to the reflecting surfaces were computed in the 

x", y ", zH coordinate system. The s" axis is antipara1 lel to the incident beam after 

refraction into the cube corner, and the y" axis is in the plane of incidence. In 
Figure 24, the projections of the normals onto the y"z" plane are shown as two- 

dimensional vectors labeled 1 to 3. The d m - l i n e  vectors 1' to 3' are antiparallel, 

respectively, to  the first three. These six vectors form the angular boundaries of 

the six sectors of the cube comer as  viewed from the direction of the incident beam 

inside the reflector. Let the reflecting bees be identified by their -At normals. 

The three-digit number in each sector g i ~ e s  the order of reflection for light emerging 

from that sector. The order of reflection is determined from the principle that the 

incident and mflected rays are s--metrical with respect to the vertex. For example, 

all rays leaving the sector between the : axis and the 3' axis must halve originated in 

the 1*-3 sector. The normal to the 1'-3 sector is the 1 axis, and that to the 1-3' 

sector is the 3 axis. By a process of elimination, since the first reflection is from 

the 1 plane and the last from the 3 plane, the second is from the 2 ~ l m e .  The order 

of reflection is therefore 123, as shmbm in the 1-3' sector. 

Figure 24. Order of reflection for each sector. 



The angular boundaries of the six sectors will be modified by refraction of the 

rays at the front face. Let an x, y, z coordinate system be set up outside the reflec- 

tor. The x axis is antiparallel to the incident beam outside the cube corner and 

collhear with the ray to the vertex. The z and z" axes are parallel, and the y axis 

is in the plane of incidence. The boundary lines of tbe sector outside the cube 

comer are given by the $ vector in the yz plane, whose compments are 

where 

u=, 
sic +? 

The slopes of the boundaly lines when yI is not zero are given by 

and the angles of the lines are 



3. ACTIVE REFLECTING AREA 

In this section, analytical expressions are derived for the ac$ive reflecting area 
of a retroreflector whose face is in the shape of a circle, triangle, o r  hexagon. For 

all cases, the separation of the input and cnxtput apertures in the plane of the front 

face is given by 

wbere L is the length of the cube corner and +' is the angle of refraction: 

in which n is the index of refraction and is the angle of incidence. 

3.1 Circular Retroreflector 

The active reflecting area of a coated circular retroreflector is independent of 

the azimuth angle of the incident beam and is a function only of the angle between the 

beam and the normal to the frcnt Eace. The input and output apertures a1.e circles in 

the plane of the front face. 

Let the radius of the front face be r. The maximum possible value for r for a 

given L occurs when the circular face is tangent to each of the reflecting faces (and 

perpendicular to the symmetry axis of the cube corner). In Section 2.11, it was 

shown that the angle between the symmetry axis and each face is the angle whose 

tangent is 1/vE. From Figure 25, we see that 

r L 
max = J2 



REFLECTING FACE 

Figure 2 5. Ratio of cube-corner length to the radius of the fro& face. 

The active mflecting area is cos times the intersection of two circles of radius 

r beparated by the distance D. The intereection of the two circles is four times the 
shaded area shown in Figure 26. The angle 0 is given by 

Figure 26. Active reflecting area for a circular retroreflector. 

The area of the sector OAB is 



and the area of the triangle OAC is 

(")(r sin 0) = 
Dr sin 8 

3 T 4 
. 

The active reflecting area i s  

wkich i s  zero when 

The cutoff angle 4, is defined by 

Dc -- 
2 - r  . 

Substituting Dc = 2 L tan 0;: into the above equation, we get 

From Snellys law, 

In summary, if D/2 < r, the active reflecting area of a circular retroreflector is 

2 2 2 area =(2r 8 - Dr sin 8 )  cos Q = (2r 8 - 2r cos 8 sin 8) cos r$ 

2 
= 2r (0 - cos 8 sin 8) cos r$ 



where 

If D/2 r r, the area is  zero. 

3.2 Triangular Retroreflector 

The a d i ~ e  reflecting area of a triangular retroreflector is independent of the 

azimuth as long as the intersection of the input and output apertures has six sides. 

A somewhat lengthy calculation i s  required to  derive this simple result. When the 

overlap has four sides, there is an azimuth dependence, which is repeated every 120". 

Only cases with 0 between 0" and 60" need be considered, since the result for 8 

between 60" and 120" is the same as for 120" - 8. Let the radius of the inscribed 

circle in the front h c e  be r. The maximrm value of r is which occurs when 

the circle is tangent to the reflecting faces. Ifit W be the width of the hexagonal 

active reflecting area at normal incidence (see Figure 27). The relationship of Y J  and 

r is 

Figure 27. Triangular retroreflector at normal incidence. 

3 2 



The analysis is  divided into two cases. Jn Case 1, which occurs at  small values 

of D, the active reflecting area has six sides. Case 2 runs from the transition point 

to tha cutoff of the cube corner, and the active area has four sides. 

The following areas must be calculated in order to get the overlap of the input and 

output apertures in Case 1, as shown in Figure 28. 

- 1 1  - 3  - (W - D  cos e + ~ ~ ~ s i n e ) ; ( w  - DCOS e + f i ~  s ine)  
2 E i  

- 1 -- (W - D cos 0 +XTD sine? , 
8 x 5  

1 = - (J3D sin 0) (D sin 0) 
2 

- -  
are%I = a .  (ae - G) 

= (W - Dcos 0) (W+ 2Dcos0) - D sin9 I 
1 = - (W - D cos 0) (W + 2D cos 0 - f i ~  sin 0) . 

43 

The overlap of the two aperatures i s  

overlap = 4 are? - 2 ,re% -t are%I 

- 1 -- 
2 6  

(W - D cos 0 + f i ~  sin C I ) ~  - ZTD~ sin2 0 

1 +- (W - D cos 8 )  (W + 2D cos 8 - fiD s ine)  . (3-1) 4 3  



Figure 28. Triangular retroreflector, Case 1. 

CALCULATION OF DISTANCES IN FIG'JRE 28 

- 
ab = the width of the hexagon minus the displacement of the apertures in 

the 8 = 0" direction 

- 
cd = the height of a star  point plus the displacement of the apertures in the 

8 = 0" direction 



Figure 28 (Cont.) 

- 2 - 2 W  a e = -  c d =  - (- + D cos 0) 
4 3  a 2  

- 
fg = the height of 3 star point minus the displacement of the apertures in 

the 0 - -60" direction 

- _ -  - D cos (60' + 0) 
2 

= -- - D(COS 60° cos 0 - sin 60' sin 0) 
2 

- W , (z cos 0 --r 8 4  0) -- - 1 
2 

1 = 3 (W - D cos 0 + G D  sin 0) 

- 2 - ah = - 
fi5 

1 -- - ( W - D c o s e + m  s i n e )  
4 3  

- 1 -- (W - D cos 8 i. n D  sin 0) 
2x7 

1 
= - (W - D cos 0 ?- G D  sin 0) 2 

- - -  
bj = 2ai - ab = (W - 9 cos 9 + a~ sin 9) - (W - D cos 0) = a~ sin 9 



Af te r  evaluating equation (3-1) by use cf an algebra computer program, we get the 

following result: 

3 2 2 overlap = - (W - D ) . 2 

The evaluaticm, tho@ lengthy, is straightforward and i2volves nothiqg more com- 
2 2 2 2 2 pA;cated than recogmzing the identity -D cos 8 - D sin 8 = -D . 

The active reflecting are2 for Case 1, then, is 

The tiwition from six sides (Case 1) to four sides (Case 2) occurs when 

1 V ~ D  sin 8 = - (W - D cos 8 + $ 3 ~  sin 8) , 2 

2\%D s i n e =  W - Dcos 6 +tr%D s in8  , 
- 
; 3D sin 9 = W - D cos 0 . 

The two cases are thus defined by 

Case 1: 15~ sir. 8 < W - D cos 8 , 

Case 2: -.@D sin 8 > W - D cos 8 . 

The geometry of the active reflecting area for Case 2 is shown in Figure 29. The 

intersection 91 the apertures for Case 2 is 



Figure 29. Triangular retroreflector, Case 2. 

CALCULATION OF DISTANCES IF? FIGURE 29 

- W cd = - - D  cos (60" + 0) = (from Case 1) 2 
1 = - - D cos 6 + , ' 3 ~  sin 8) 2 

- , . i --- (W - D cos 8 + J37Dsine) 
\;5 

- -  - I ( 2 ~  + D cos n - \ I ~ D  sin e)  
v3-  



The active rtfl2cting area is 

% (W - D oos 0) (ZW + D cas 0 - V ~ D  sin 0) . 
\ 3 

Cutoff occurs when 

and thus the active reflecting ama is zero when 

Since equation (3-2) for Case 1 i s  independent of 8, there are no special formulas 

for different azimuths. WhLd 0 = 0°, the cutoff and trans ition points coincide, so the 
reflecting area is given for all + by Case 1. The cutoff angle for 0 = 0" is &tained 

by setting cos 0 = 1 in equation (3-3, which gives 

Substituting D = 2L tan +> we have 

The active ~flecting area for Case 2 with 0 = 60' is obtained by putting cos C) = 112 

and sin 0 = ~%/2 in equation (3-4), giving 



The tramition f~ 0 = 60" using equation (3-3) is 

V ' ~ D  sin 0 = W - D c o s  8 

while cutoff for 0 = 60" using equation (3-5) is defined by 

W - D cos 8 
0=60° 

Substit&:ng D = 2L ian +;, we get 

-1 W 9; (0= 60m)= tan (-1 . L 

This is the largest possible cutoff q l e  for any retroreflector &sign. If application 
of th formula 



leads to  im3giraiy values of oe, then oC = 90'. 

In summary, the a c t i ~ e  reflecting area of a triangular cube corner is given by 

be followbg formuhs for the nnge 0' < 9 < 60". For \'TD sin 9 < W - D cos 0 ,  

for \ $ 3 ~  sin 8 > W - D cos 9 > 0, 

and for W - D cos 8 < 0, 

area = 0 . 

The active area for other values of 9 is  obtajned by 1:sing the following symmetry 

properties: 

area (a) = area (0 + N X 120") , 

ares (0) = area (-8) , 
area (6) = area (120" - 0) , 

where N is an integer. 

3.3 Hexagonai Retroreflector 

The adil-e reflecting area of a hexagoml retroreflector varies with the azimuth 

angle 0 except at normal incidence. This lariation repeats eve5  60". Also, since 

all cases between 30" and 60" give the same answer as for 60" - 0, we need consider 



only the cases wbere 8 i s  between 0" and 30". The active reflecting area may be 

bumded by either six sides (Case 1) or four sides (Case 2), as  shown in Figure 30, 

depending on the values of 8 and 4. 

Figure 30. Hexagonal retroreflector: a) Case 1, b) Case 2. 

The width W of the hexagon is 2r, whem r is the radius of the inscribed 

(see Figure 31). The maximm value of r for a given L is 

--------- 

circle 

Figure 31. Hevagonal retroreflector zt norrnal incidence. 

4 1 



as  in the case of the circular reflector; this \-due occcrs when th-: inscribed circle 

is tangent to the reflecting surfaces. In the diagram for Case 1 (Figure 32), the 

follo~ving 3reas must be calculated: 

1 -  -- 
a r e a  = - (bk t hi) bj 

1 2  

- -- I (3\iT - 2 1 D  cos 8) (ItT - 2D sin 0) , -. 

4\ 3 

1 
= D sin Rk (21V - V ~ D  coos 0 - D sin?), 

I2 3 2 

The intersection of :he apertures is 

I - 
= - (;3\V - 2D cos 0 )  (IV - 2D s i n e )  c D sin f3k (2W- 1 3 ~  cos 8 - D  sin 0) . 2 1' -. 1 

Evaluating the abo~e expression g i ~ e s  

3 
area = & [: lV2 - D1V (13 cos 0 + sin 9) + Dd sin 0 h 3  cos 0 - sin 81 . 



The active reflecting area for Case 1, therefore, is 

2 [$ w2 - D W ~ ~  cos 0 + sin 8) + D sin 8 6 3  COB 0 - sin 84 . (3-6) 
11% 

The transition from Case 1 to Case 2 occurs when 

- hi = - ( ~ - ~ D c o s 0 + ~ s h 8 ) = 0  . 
4 3  

The two cases are defined by 

Case 1: W > D ( a  cos 8 - sin 0) , 
Case 2: W < D ( e  cos 8 - sin 8) . 

In the diagram for Case 2 (Figure 33), the area d ktersectian consists of area I1 

plus hvc times area I. De£ining 

-- - I [ 2 ~  - D(C~ cos 0 + sin ell \5 

and 

we have 

-- 
areaII = bc bk = (D sin 8) T , 



I'igure 32. Hexagonal retroreflector, Case 1. 

CALCULATION OF DISTANCES IN FIGURE 32 

- 
ac = D cos 8 



Figure 32 (Con-. ) 

- - 
af=ac -E= Dcos8  -- A D sin 6 

_ -  - I (W - J ~ D  cos e + D sin e) 
4 3  

1 
= - (W - ZD sin L; 2 

1 
= - (2W - V%D cos 8 - D sin 8) 
J5 

1 
= - (2W - n D  cos 8 - D sin 8) 
\'3 



Figure 33. Hexagonal retroreflector, Case 2. 

CALCULATIO?! OF DISTANCES IN FIGURE 33 

- 
ac = D cos 8 

- 
bc = D sin 9 

1 
= - (2W - G D  cos 9 - D sin 8) 2 



and the intersection of the apertures is 

The active reflecting area for Case 2 is 

This expression has been evaluated by using an algebra complter program, with the 

following result: 

Cutoff occurs when 

T=- ' 2 ~  - D ~ T  cos B + sin 8) = o , L 1 
and the active reflecting area is zero when 

~(f i  cos 8 + sin 8) > 2W . 

The cutof[ angle 4; as a h,ction of 8 can lk computed by substituting D = 2L tan +; 
into the above the expressim, which yielc - 

2L tan +; (a cos 0 c sin 0) = 2W , 

The unrefracted cutoff angle +c is 



The cutoff angle is largest when 8 - 0" and smallest when 8 = 30". At 30°, the 

transition and cutoff points coincide, SO a single formula expresses the active reflect- 

ing area for all values of +. The active reflecting area for this special case is 

obtained by substituting 

1 sin 0 = - 2 

into equation (3-6) for Case 1: 

cos + z W 2  2 [ - D W ( ~  cos f3 + sin 8) + I) sin 9 @ cos e - sin Jz 2 

2 2 

- - [3W2 - 4DW + D'] 
2 4 3  

- - - (3W-D)  ( W - D )  . 
2a 

The cutoff angle for 8 = 30° using equation (3- 12) is  

+' (0 = 30") = tan -1 I W 1. 
C \L (~3/2/2) + ,(1/2)1\ 

-1 W 
= tan ) . 

The other special case, 8 = 0°, is obtained by setting 



in Case 1. The formula before transition using equation (3-6) becomes 

[:$ -DWflcosO+sinO)+D2 s ine ~ ~ C O R B  -sirlo) 1 l e = o o  

and after transition, by using equaticin (3-8) with e = 0 " 

1 T(9 = 0') = [2W - D (43 COR 0 + sin e)] 
1 3  e =o 

in equation (3-9) it becomes 

Transition from Case 1 to Case 2 at 0 = 0' occurs usiug equation (3-7) when 

while cutoff takes place using equation (3-11) when 

Substitutmg D = 2L tan +'@ we get 

ZW = &I3 = L tan 4', , 

or 

0; (9 = 0') = tan- l / w i  
\E) 



In summary, the active reflecting area of a hexagonal cuhe corner is gi-..en by the 

foilewing fornlulas for the range 0" < 0 : 30". For D@?% cos 9 - sin 8) < W, 

COS ' 2 a m a  = 4 [: W' -DW@ cos 0 + sin 8) + D sin (43 cos r )  - sin :))I ; 
v 3  

for D6.5 cos 0 - s i ~  3) > W and ~ ( \ 3  cos 8 + sin 0) < 2W, 

2 2 
area = [%rv - CZD cos 9) + D (cos e - i , 3 '1 

and for D ( \ 3  cos e + sin 8) > 3W, 

The zctive area for other values of 8 is obtained by using the following symmetry 

properties: 

area (0) = area (8 + N X 60") , 
area(0) = area(+) , 
zrea (8) = area (60" - 0) , 

where N is an integer. 

3.4 Cutoff A n ~ l e s  for Total Internal Reflection 

The cutoff angle for total in te rn~ l  reflection is defined by the emation 

n s i n r  = 1 , 
C 

(3- 13) 

ivherc?. rc is the angle of incidence of the ray. There will be total internal mflection 

whenever the incidence angle r satisfies the relation 



The incidence angles that do nat give total internal reflection a re  cankined in a cane 

of half-angle rc about the noimal to the dielectric boundary (see Figure 34). 

Figure 34. Total-internal-reflection cone. 

A s  shown in Section 2.2, the angle of incidence of the light with a particular 

rzflecting face in a cube corner is the same as the angle that the incident beam makes 

with that face afar refraction at the front surEace. This property makes it possible 

to visualize the directions of the incident beams that do n d  undergo total internal 

reflection a t  all the back faces. Io Tigure 35, a quarter-cone of half-=le rc has been 

drawn about the normal to  each reflecting face of a cube comer. If a vector drawn 

Figure 35. Total -internal-reflection cones about each axis. 



from the origin antiparaliel to the incident beam (after refractim) lies within any of 

the three quarter-cones, the beam will not undergo total internal reflection when it 

is incident on the face whose normal is the axis of the cone. As depicted in Figurn 35, 

the cones do not overlap, and total internal reflection is lost a t  only one face in this 

ease. If rc is greater lban 45', the cones intersect aul the iocidence angles ill the 

intersection lose total reflection a t  two faces. Viewed from the front face of the 

reflector (Figure 36)' a Y-shaped region is formed by the intersection of the canes 

Figure 36. Region of total internal reflectioz. 

with the front face. The ray that goes to the vertex must 'be incideat on the front 

face within this Y-shaped area to give tcffal intern1 reflection. Let be the q i e  

of incidence of the beam cra the front hce (measured from nonnal incidence) and +' 
be the angle after refraction. The smallest d u e  of 4 that does not give total reflec- 

tion is 0' , which is given by 
C 



where a, the angle between the spmetry  axis of the prism and a back edge (see 

Figure 37), is given by 

a = tan-' 1% . 

Substituting values for a and re, we get 

\ 
SYMMETRY 

I 
1 

Figure 37. hlinimum cutoff angle for total internal reflection. 

For a @yen +', we can c o r n p i  the azimuth iirni. Bc for total reflection. Let Bc 

be measured from the projection of a cack edge onto the front face, as s h m  in 

Figure 35. T b  circle is the intersectim with the front face of a cone of half-angle 

9' about the symmetry axis of tie cube corner. '.The Y -shaped area is the intersec- 

tion of the r6ree cones of half-angle rc with the frout face. To compute gc, let the 
A 

syn~metry axis of the prism be Lje z axis, and Iet the back edge A Jefining the origi2 

of 8 Se in the xz plme (see Figure S9\. The angle a between the symmetry axis 
C A A 

( L  axid and the Blck edge (A) has been shown to be tan-' v?. The unit vector A 

i~ given by 



Figure 38. Azimuth angle for loss of total internal reflection. 

Figure 39. Diagram for computing total-internal-reflection cut9ff angles. 

n 
A = (sin a, 0, cos a) 

A 
The unit vector V antiparallel to the incident beam after zefra~tioil is 



A 
y = (sin 9' cos 2  in 9' sin 0 cos 0') . 

c ' c ' 

In order for the angle between 9 and A to be the cli'off angle rc, we must hv: 

Solving for ec, we get 

- l j r 5 c ~ r  t - cos+' 
0 = cos 
c , .. 2 sinQ' ) - 

Equation (3-13) can be used to rewrite cos re as  

Also, cos +' can be written as 

Substituting these ex-pressions into equation (3-14) gives 

x ~ ( l / n j  G- (l/n) n - s m  Q 0 - cos 
C - 

:' 2 sin 6/n j 

= COS 



For a thorough discussion of the loss of total internal reflection in uncoated cube 

corners, see Cha.ng (1970). In his paper, Chang gives sin 4 as a function of ec. If we 

convert his notation to ours, his result becomes 

12 n - 1 eos ec - d q -  
sin9 = 2 2 cos OC + 1 



4. POLARIZATION 

A beam of light retrordected from a solid cube corner undergws two refractions 

and three reflections. Each encounter with a boundary i n t r h c e s  a change in either 

the amplitude o r  the phase or both. Since the charges a r e  diflerent for the components 

of t! ray parallel and perpendicular t o  the plane of incidence, the polarization state 

of the ray is also changed. Changes in amplitude affect the total energy retromflected 

and thereby reduce the apparent active reflecting ama of a cube corner. Tbe diffrac- 

tion pattern of +h prism is affected by both phase and amplitude changes. The fcllow- 

three cases will be cansidered: 

A. Transmission across a dielectric boundary. 

B. Reflection froni a dielectric boundary, including 

1 j Ordinary reflection. 

2) Total internal reflection. 

C. Reflection from a metal surface, including 

1) Perfect metal. 

2) Real metal. 

A t  each encounter with a boundary, the ray must be resolved into components 

parallel and perpendicular to  the plane of incidence. The coordinate system with 

unit vectors defining the directions of the components is shown in Figure 40. The 

angle of incidence is 8 and the angle of refraction is 8 The complex vectors for o7 1 . -  a 
the incident, refracted, and reflected electric vectors are  E, Ef, and e, respec- 

tively, given by 



The unit vectors are real, mci the coefficients are, in general, complex. The trans- 

mission and mflection coefficieats used in this report are taken from Stratton (1941, 

pp. 494-506). 

REFRACTIVE INDEX n 2  - - - - - - -  
REFRACTIVE INDEX n l  

Figure 10. Polarizati on coordinate system. 

4.1 Transmission across a Dielectric Boundary 

2 

After refraction across a dielectric boundary, the components of E' are given 

by the Fresnel relations 

2 c o s 0  s ine1 
E' = 0 
L sin (BO + el)  ' 

2 cos Oo s ine1 
E' = E .  

I/ ~ i n ( 0 ~ + 8 ~  ) cos (go - e l )  11 



At normal incidence, both formulas reduce to the same relationship: 

with 

where nl is the mdex of refraction of the transmitting medium and n2 is the index of 

refraction of the incident medium. The angles e,, and el are related by Shell's law 

The transmitted ray is always in phase with the incident ray. In the case of a light 

beam cross- the front face of a cube comer at an incidence angle + and a refracted 

angle ', we have 

as the beam enters the cube corner and 

as it leaves the retroreflector. 



4.2 Reflection from a Dielectric Boundary 

4.2.1 Ordinary rcfiection 

In uncoated cub comers, the reflection at a particular back face is partial when 

the incidence angle satisfies the relation 

n sin €I0 K 1 

and total when 

n sin 2 1 . 

Tbe reflected electric field components E" and Ei in the case of partial reflection are L 

sin (go - 1) - s i n ( ~ ~ + e ~ )  E~ 

which, at normal incidence, reduce to 

(4- la) 

In the case of a ray incident on the back face from inside the solid cube corner, 



Therefore, equations (4-1) become 

The difference in sign is due to the fact that at nornlal incidence, 

4.2.2 Total internal reflection 

For total internal reflection (n sm r I), the compments of the reflected field 

are 

where 

ZL = 
n cos go + id-1 9 

cos e0 - i n h 2  sin2 e - I 
z = cos 0 + in{+ 

0 



4.3 Reflection from a Metal Surface - 
4.3.1 Perfect metal 

The case of reflection from a perfect-metal surface (infinite conductivity) gives 

the simple relations 

4.3.2 Real metal 

Reflection from a real-metal surface produces changes in both phase and ampli- 

tude. The reflecting properties of the metal are  specified by the complex index of 

refraction a + ip. For a perfect metal, p = 00. If the conctuctivity is zero, p = 0 and 

the material is a perfect dielectric with index d refraction a. The companents of the 

reflected electric field are 

where 

(n cos €I0 - q) - ip - 
'L- (ncos g o +  9) + ip 

2 2 
- [cos eO(a - (3 ) - nql + i(2apcos go -w) 

, 
" " - [COS e0 - p2) + nq] + i (zap cos go  - np) 



2 2 " 2 2 2  C =  J4a p + ( a 2 - p - ' - n  sin eo) , 

Values of a and p ~ O P  ce.rtain metals are  given in Schulz (1954). 

4.4 Polarization - SY ate of Each Sector 

The direction of incidence of a beam on a cube corner is specified by the angles 

8 and +I, tvhare 4 is measured from the normal to the front face (see F i q r e  41). The 

polarization state of the incideni beam is given as a complex vector 

NORMAL TO 
FROYT FACE OF x 
REI'ROREFLECTOR 

z 

/ 

,/ 

-------- 

Figure 41. Coordirite sydem for an incident beam. 



A A A 
where Ex, E m-d Ez are complex numbers and x, y, and z are real unit vectors. 

Y' A A 
.-'he unit vector s points toward the source, y is in the plam of incidence pointing in 

A 
the direction of increasing 4, and z is perpendicular to the plane of incidence pointing 

in the direction of increasing 6. The polarization state of the beam incident on an 
a 

array is given as a comp!ex vector E r  in a coordinate system related to the coordinate 

system of by a rotation about the xr axis t h r w  an angle y. The compoaenk of 
A 

E are 

E = - E '  s i n y + E r  cosy . 
z Y Z 

Both E ar ' E'- are zero because electromagnetic radiation is a transverse wave. x X 

If there are  dihedrd-angle oftsets in the cube c ~ i n e r ,  the polarization state EI of the 
th rzdiation emerge from the I sector will have a small component in the x dimcticm 

because the direction of the emerging beam bas been chawged sightly . This c m -  

ponent will not tx c~nside,-rl m the polzrization c=ilculatiocs, The effect of aihedral- 

myle offsets will be included anly through the phase changes that they produce across 

each sector. 

The polarization stater EI of the six sectors are obtained by computing the 

changes in polarizatir>n due to refraction on entering the cube cornt?r, to reflection a t  

each of the back faces in the appropriate order for each sector, and to refraction on 

leaving the cuYe comer. The changes in the components of the polarization vector 

parallel and pel-pendicular to the p l a i ~  of incidence were g i ~ e n  in Sections 4.1, 4.2, 

a d  4.3, md the nrder of the reflections for each sector was given in Section 2.12. 

The formulas for the change in p9lxrizatic.~ during refraction can be applied 
A 

 direct!^ to the ir d e n t  polarization stax? E s i x a  7 is parallel and EZ is perpendicular v 
to the plane of incidence. After refraction, the direction of the beam is (0', be) ,  where 



9' = sin -1 (y) . 
A A A 

Section 2.11 s h m d  h w  to compute the normals nl, n2, and n3 in the x", y", z" 

coordinate system. This system has the x" axis in the direction (8', a' ), th? y" axis 

in th? plam of incidence in the direction of increasing +', and the z" axis perpendicular 
-L 

to the plane of incidence in the direction of increasing 8'. The poiarization state % 
after refraction into the cube has the compcments 

where R and Rl are coefficients giving the change in the pamilel and perpendicuiar 
ll 

components of the plarization -:ector due to refraction. The direction of propagation 
A 

a.fkr IY3f~dlon in the x", y", 2" coordinate system is vO, given 3y 

\ h order to apply the changes in polarization at each reflection, the polarization 

' vector must be resoli-ed into components parallel and perpendicular to the plane of 
A 

incidence (see Figure 42). Let 1- be the unit ~ e c t o r  giving the direction of motion 
\ 

IJ 
: of the ray for the I* sector before the 2% reflectio~ takes place, and let $ be the 

A 
f polrrization state for the ray with direction v For ail sectors, 

iJ 

--L 2 

E,, = Eo . 
&" 

Let $ be the normal to the ?lane from which a m y  of the ith sector is reflected on 

its J reflection. The direction of nlotion niter the J~~ reflection is 



Fig- 42. Unit vectors for parallel and perpendicular components of the electric 
field. 

A - A A A A 

" I ,  J+I - vU - 2(vU v n U L J  )XI • 

The unit vectors parallel and perpendicular to the plane of incidence, then, are 

The parallel and perpendicular components of the polarization vector ET, are 
-r r\ - r A  a UJ 

E~~ E and ED respectively. The companents of EM are complex, and those d~' 
of e ,  and kL are real. To c o m ~  the dot product, we multiply the corresponding 

componenk of the vectors without tabg the com-glex conjugate of any of the numbers. 

The polarizatior, vector after reflection is 



where R!, and R . are the comp:ex coefficients giving the ebaqge in parallel and 
L 

perpendicular companents of tb p ~ l ~ i m t i m  vector due to renectim. After three 

reflections, t h  direction of motion is nearly 2' if neglect tbe effects of dihedral- 

angle offsets. the y" ma z" components uf the polarizatirm vector are parallel 

and perpendicular, respectively, to the plane of incidewe, the complex coefficielts 

R and R (giving the change in polarization on leaving the front face) can be applied 1 I 
directly to obtain rhe polarizztim vector $ for each sector. The conpments of 4 
are &erafore 

Peck (1972) gives a study of tfie polarization states produced by either single cube 

corners or cavities consisting of hvo cube corners facing each other. 





5. DIFFRACTION 

According to Huypn's priacipae, the fisld u at a point p d m  to radiatian emiUed 
P 

froan n surface s is 

~maisacmstanttobecktenmined, uistbefieliianthewrEaczs, k =  2ah, 

r is the wavelength, 4 is tae projectitm of the d c e  element in the directia. of 

point p, a d  R is the d i s  from to p The emslant a can be evaluated by cm- 

sidering tk case of radiatim from an in€hite plane with u  equal to a cJnstant, The 

value of u must then be the sure as u Tbe result of performing the integml for 
P 

this case ( M u  and Lifschitz, 1962, pp. 167-158) shows that 

substitutiqg this into m i c m  (5-1: gives 

The intensity I st point p is 
P 



Let a coordinate system be set up with the x axis antiparallel to the bean1 

illuminating a cube corner and with the origin just outside the cuts comer. The y 

and z axes are parallel and perpeadicular, respec.tively, to  the plane of mcidence. 

Let an X', y', zf coordinate system be established in the Ear field parailel to the x, y, z 

system with the x and x' axes collinear (see Figure 43). The reflected field from the 

cube comer in the yz p- is u, and the field at  point p in the y'z' plane is u 
P- 

Finally, let the c i i m  between tbe coom6e  systems be D. 

Figure 43. Coordinate system for the Ear-field diffraction pattern. 

5.1.1 Fraunhofer diffraction 

When the distance D is very large and when the problem is restricted to cases 

where the angular spread of the Wni due to diffraction is small, equation (5-2j 

reduces to  the simpler formula of F r a d o f e r  diffraction. The distance R is given 

by 



It is assumed that D is so much larger than tbe size of the area s that the quantities 
2 2 y /2D and z /2D are rlwaya much less than a wa~elength and can be neglected. 

Therefore, 

Since it is desirable to have the diffraction pattern given ic terms of angles 

rather chan as a function of yr and zr at a distance D, we can define the angular coor- 

dinates of tbe observer (el, 02) as 

so that R becomes 

Substituting this for the factor R in equation (5-2) and setting R = D in the denominator, 

we get 

The exponential uutside the e r a 1  is a constant phase factor, which will disappear 

when u is multiplied by u* to obta-h I It can themfore be neglected, resulting in 
P P P ' 



-ik(yel + 20,) 
u -- dydz . 

5.1.2 Moct. ?d Fraunhofer formulas 

In equaticm (5-3), the intensity I = u u* is in units of energy per unit area per unit 
P P P  

time, and the fonnula contains the range in the denominator. But it is desirable to 

compute diffraction patterns in a way that is independent of the range and the incident 

field strength. These quantities can be provided when calculating particular cases by 

using the range equation [eq. (7- 12)l from Section 7.11. Omitting the range causes 

u to be in units of area - i. e., the results have to be given in a particular system of 
P 
units. The equation can be written in a dimensionless form, however, as folluws: 

where S is the active reflecting area at normal incidence and 

u' = u/u 0 '  

in which uo is the incident field. Let a function F'(B1, e2) be defined a s  

* 
F'(5, 02) = Er(e1,e2) E' (e1,e2) , 

In the above fom,  the intensity F'(B1, 02) is unity at the center of the diffraction 

pattern of a perfect retroreflector at normai incidence. The relationship of the 

modified Fraunhofer formulas to the original forms is 

where IO = u u* is the incident intensity. 0 0 



In dding the integration over various sedioos of a cube corner, +h formula 

--ikWl + zB2) 
E,,, e,, = Jut . d~ dz (5-5) 

will be used to calculate the pieces of the integ~?al in equation (5-4). 

5.2 Calculation of DiJifractim Patterns fram an Array of Phases 

To calculate diffraction patterns from an array of phases, let the field u' in the 

modified Fmmhofer formula [eq. (5-4)] be given as  an array % Of field values at 

tbe points (yp :. J) where 

The complex number u' is related to  the arlplitude A and phase 6 of the field by 

u' = ~e~~ = A cos 6 + iB sin 6 . 

Let the field E f ( e l ,  BZ\ be given as ar. array E& at the points (OIL, 92al) where 

Since the aperture may not be rectangular, all values of uIJ that are anside the 

aperture can be set equal to zero. The area e1ementAyA.z is s / N ,  where N is the 

number of nonzero items in the uIJ array. 

The modified Fraunhofer formula in the discrete case becomes 



t6e expression for E;Sd becomes 

where 

-iC 2 
All the complex expaaentials in equation (5-7) are  integral powers of e and 

-iC I 
- - A  e . This very useful property results from &e equal spacing between points 

across the aperture and between points in the far field. If Ay = AT and = M2, 
then C1 = C2 and all terms are powers of a single exponential. Since complex multi- 

plication involves only four multiplications and complex exponentiation involves the 

computation of two transcendental functions (a sine and a cosine) by means of series 

expansions, it is much faster to compute the powers by repeated multiplication and 



to  save all the powers in an array. If each of the indices has a range of n va lues, 
2 2 there are  n complex numbers to be stored (or 2x1 if C1 + C Z )  A second property 

that can be exploited to reduce compdation time is the fact that does n d  contain 

the index L. For each value of M, the n quantities % can be computed and saved 

while the quantities Etm can be compted for the n values of the index L. The 

plysical reason that % does not cmtain L is that the phase lifierences between the 

raws across the ape& are constant for each row in the fa1 field, and thus the 

summatian over each column of the aperture needs to be done only once for each row 

in +h far field. 

2 A straightforward comptatim based an equation (5-6a) requires n complex 
4 exponentiations per point, resulting in a total of n exponentiations for the whole 

2 matrix. Equatim (5-7) requires n complex multiplications to compute the powers 

of the expanential. For each vaiue of G, n complex multiplications are  needed, 
3 for a tctal of n for all h. Each point Efm requires n complex multiplications, 
m 

for a total of n" for all EfM. The complete computation therefore reqyires 
3 2n3 + 1;2 = 2n complex multiplications, a considerable savings compared to n 4 

exponent iatians . 

5. fi Diflraction Wcg - ral for a Trapezoid 

To calculate the diffraction M e g d  for a trapezoid, let t r. .-eld uf be given by 

u f =  e i(ay + bz) 

over a plane surface with linear boundaries, -where a is the rate of change of phase 

in the y direction due to dihedral-angle offsets and b is the rate of change of phase 

in the z directian. The Fraunbofer equatian is integrable in closed form under these 

conditions. Let the area be divided into vertical strips bounded by straight lines on 

the top and battom, as shown in Figure 44. 



Figure 44. Trapezoid aperture. 

Ey employing the modified Fraunhofer formula [eq. (5-S)], the hbgral over the 
area shown in the figure is 

~ e , ,  9,) = 7 f2+S2Y e i(ay + bz) dy dz 
-ik CyB + 20,) 

J'=Y1 Z=c +s y 1 1  

Defining 

we have 



If P # 0, U. integraticm over z gives 

If we further define 

then 

If Q # 0, the 3econd term in equation (5- 12) is 

Using 

in the above expressian, we get 



If Q2 f 0, the first term in equatirm (5-12) becomes 

and if Q2 = 0, 

lf p = 0, equation (5-10) becomes 

= ( * eiay k2 +S2y) - (C1 + sp j ]  dy 

Y'Y, [ eq. cont. on next page] 



while if a = 0, we have 



5.3.1  Factorization of the diffraction integral 

As shon in Section 7.4, tLe angles 8 and 82 are 

8 = 0' cos y + 0; sin y ? 1 1  - 
8 = - 0; s i n y  + 0' cos y , 2 2 

where 8; mi 86 are the angles to the observer in the coordinat~ system for thc array 

diffraction pattern. 

The diffraction pattern of the array is given at a matrix of points (€I;, 6:) at -am- 
vals A0 inboth directions. Let 



wbere L and &I are indices label* poinis m the array diffraction patte1.n. Shtitut-  

ing the expressiaas for 0; and 8; into those for anrl €I,, we have 
Y 

Putting these expressians into equaticns (5-9) gives 

The eqmssion for Q1 from equation (5-11) cun be substituted into eqation (5-13) 

far P,: 

where 

in which CI is the slope of tbe bandary line, 5 is the intercept of the boundsly line, 

and YJ represents the integration limits in Y. Iolcorporating a and p into PU, we get 



We can simplify this by defining 

which gives us 

iPu 
The terms e for a trap? sid in equations (5- l4a, b, c) can then bz written 

The above expreseian is the product of two'factors, the first coe in ing  d y  the 

index L and the second containing 3nly the index PI!. When ccmputing the diffraction 

pattern for ali values of L and M, the computation time can be reduced by precom- 
iTJu ieivUlL ( iwW)M 

puting and saving the factors e and e . The powers of the expo- 

nential~ can be computed by repeated complex multiplication. Since I and J have two 

values each, and since the range of L and.11 is n, each matrix has 4n terms. It i s  
IW*, 

not necessary t o  store all the powers of e- s imultaneomly; the value? of 

E(e:- e;, ; can be computed for all L for the first value of M md then 

be raised Lo the M+ 1 power to find E ( O i L  9; ' c,BI+-l ) fo: all values of L. 



'OYJ 
-.ituticm of a am! p into ewl and a v e s  

W, ir@ + k 08 L sin Y) CI i(-k & M cos V) CI 
e = e  e 9 

TbRse expmssians can also be Eadored into terms involving only tbe index L or M, 
a d  thus the dif€radim pattern can be corap&xl by complex multiplicsttim. 

5-3.2 Reverse order of irtegratian 

Wkn it is aecessaxy to reverse the order af -on over the variables, the 

probiem is reformulated, as shown h Figure 43. Tbe sdution proceeds as before, 

except that the roles of y a m  z and ?-me af a and p are interchanged. The formuias 

summarized in the p m i m  secticm and the results deri%ed therein can be converted 

to the present case by mak'*;: thoc J substitutlam plus, when a and f3 do not appear 

explicitly, the foil- 

L - c M  , 
M - L  , 
Y"-Y 

Figure 45. Tl ~pezoid  apeerire, reverse oreer of integration. 
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5.4 Diffraction Integral for an Arbitrary Slape 

For an arbitrary shape, we caz calculate the di&.action integral by letting the 

field u' be given by equation (5-8) over a plane surface bounded by a c m  zl@) on 

the M o m  and z2@) m th top (see Figum 46). The Fraunhder equation is iniegrable 

along any line in the plane, a s  the 2hase of u' is  linear aver the region. Swe the 
ill2egmtion limits ara not linear, integration w e r  the second variable cannot, in 
general, k done, aithough numerical integration can be used. 

Figure 46. Aperture of arbitrary shape. 

W e  get the foliowing integral over the area by use of the modified Fraunhofer 

equation. 

i[(a - kel)y + @ - W2)z1 
dydz . 

y=Y1 z=zl(y) 



Vsiq~ a and $ as d e w  previously Jeq. (5-9)], we get 

The integral consists ab two terms, both of the fonn 

whem I is either 1 or 2. The integral atn thus be represented approximately by 

The dBractim pattern will be homplded at equal interntls At3 of the angles 0; and 0;. 

 be quantity aY + BZU is the same as PU as given in equation (5- 16). Substituting 

equation (5-17) fcr aYJ + @Z into equatio;~ (5-19), we gzt IZ 



which, in turn, can be substituted into equation (5- 18) to give 

Equation (5-20) can be factored into terms containing only L o r  only M. The compu- 

tation time can be reduced by precomputing and saving the factors, s o  that each value 

of Em can be determined by complex mu1:iplication. 

i i ( i ~ ~ ~ ) ~  
The quantities e and e each consist of 2mn terms, where 

2 is the range of I, m is the range of J, and'n is the range of L and M. The puwers 
iWLT 

of e do not need to  be stored simultaneously. The 

value of B5 can be computed for all L 2nd then the 

to the M+ 1 pwer t o  find EL? Bf+l for a11 L. 

After incorporate equation (5-15a), we get 

i[z - k A9 (L cos y + M sin y)]YJ 
~ ~ = x e  (z2J - ZIJ) A~ 



iUJ (ei~J)L iWJ 
The quantities e , e , and ZIJ should be precomputed and saved. Those 

iWJ 
for d,i"-~n33re computed by multiplykg each successive power by e Lo obtain the 

next higher pcwe r . 

E (a, p) = 

y=Y z=z (y) 1 1 J 

5.5 Diffraction Pattern of a Cube Corner 

From the modified Fraunhofer integral [eq. (5-4) 1, the complex polarization 

siate $f(O1,  02j in the far field of a cube corner is 

th where % is the polarization vector for the sector, sI is the are: of the I sector, I 
md and bI are the phase gradients in the y and z directions, respe~tive~y, due to 

dihedral-mg-1. offsets for the Ith sector. The intensity of each c~mponent oi polari- 

zation is 



and the total intensity is 

The ampli~ude A 3f tbe reflected field in a polarization state given by the com- 
P 

plex unit vector $ is obtained by taking +he dot product of and Et: 

The field 3 ha~~ing the poiarization is 
P 

and its intensity I is 
P 

The method of computing the six polarizatio~l vectors E was given in Sect ion 4.4, I 
and the phase gradients aI and bI were computed in Section 2.11.:. The angular 

bo*mdaries of the six sectors m.d the order of reflection corresponding to each were 

given in Section 2.12. The active reflecting area S at normal incidence and the 

integration limits for each section s will depend on the shape of the front face. I 
The integration for the polygon can be done '&alytically since the iategration lirlits 

are linear. The circular reflector requires numerical integmtion over one vrxiable. 

5.5.1 Diffraction pattern of triangular and hexagonal retroreflectors 

The previous section gave the diffraction integral for a cube come?-. Now we 

need to determine the integration limits for each section s and for thf. tc:al active I 
reflecting area S at normal incidence. For both triangular and he=gonal cube 

corners, the active area at normal incidence is a hexagon of are? fiw2/2, where W 



is the width across flats. The following subsectio~s describe how to set up the 

integration limits and perform the integration over each of the six sectors. Since 

each section is a polygon, the region of integration is defined by giving the vertices 

of the polygm. The coordinates of the vertices of the total active reflecting area 

are given in Sections 5.5.1.1 and 5.5.1.2. 

If the phase and amplitude of tbe reflected beam are constant aver the face of the 

cube corner, the retroreflector acts like a simple aperture. The methxls described 

in Smith and Marsh (1974) are applicable in this case. 

Juliaa, Hieser, and Magill (1970) compared measured and computed diffraction 

patterns of hexagonal cube corners. The analysis includes the effects of dihedral- 

angle offsets and polarization &anges at the reflecting faces. The technique is 

completely analytical and can be applied to any cube corner whose face is cut in the 

shape of a regular polygan. A circular face can be a d e q i l y  approximated by a 

regular polygon with a large number of sides. 

5.5.1.1 Vertices of the active reflecting area for a trianjgilar retroreflector 

In Section 3.2, the active reflecting ares was computed for a triangular retrore- 

flector. Here, we compute the  coordinate^ of the vertices of the active reflecting area 

for use in caiculating the diffraction pattern of the c\rbe corner. Much of the infor- 

mation needed to locate the vertices was proviucd in Section 3.2. 

Rekrring to Figure 28 for Case 1 in Sectioa 3.2, let y, z coordinate axes be set 

up as shown in Figure 47. Three of the vertices are numbered c~~~~terc lockwise ;  

the positions of the othei three can be computed by symmetry from the positions of 

the first three (see Sec ion 2.3). By using the d i s b c e s  calculated for Case I, the 

coordinates of the three vertices numbered in the diagram are 



Figure 47. Tri-lar retroreflector (8 > O"), Case 1. 
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The above fon~cllas apply to the mnge 0" < 0 < 60". Since the physical situation 

repeats every 120°, all cases can be covered by adding fo;.ulas for the range 

-60" < 8 < 0". In Figu~-e 48, ree of the vertices are  numbered for the case 0 < 0". 

This figure is the same as Figure 47, reversed from top to bottom; thus, we can 

obtain the coordinates of the vertices for the case -60" < 8 < 0" by computing the 

coordinates f b~ : $  and then reversing both the order of the points and the sign of h e  

z coordinates. Since only sin 0 is affected by a change of sign in 9, the expressions 

for the case -60" < 8 < 0 "  can be written 

1 
y l =  w + (D cos e + GD /s ine ( )  , 

= - -  I (2W+ ~ c o s  0 + v ' 5 ~  / s i ne / )  , 1 243 

3W 
Y 2 = 2  ? 

- D / s i n ~ I  , 

3W 
Y 3 = 2  9 

z =I(E+ ~ c o s  B - D Isin 0 1  . 
3 4 3 ~ 2  

Figure 48. Triangular retroreflector (8 < 0"), Case 1. 

9 1 



Case 2 is given in Figure 49 with coordinate axes drawn and two of the vertices 

numbered. The distances seeded were given in Figures 27 and 28 for normal incidence 

and Case 1 in Section 3.2. The coordinates of the points a re  

Figure 49. Triangular re t roref lect~r  (8 > 0°), Case 2. 

The above formulas a p p t  to the range 0" < 8 i 60"' whiIe Figure 50 ~T-~ows the 

case -GO0 < 8 < 0". The coordinates of these vertjces a r e  



Figure 50. Triangula 1- retroreflector (8 < 0°), Case 2. 

From Figure 27, we see that the coordinates of the center of the active d e c t i n g  

area zc normal incidence are y = W, z = 0, while for other incidence angles (see 

Figure 28), the right-hand triangle is displaced by Ay = D cos 0, Az = D sin 8 and the 

center of the active reflscting area is displaced by Ay/2, ~ 2 / 2 .  Therefore, the 

coctrdiaates of tlrz center of the active reflecting area are 



and those of the ~ e r t i c e s  with respect t o  this center are 

v!= y; - 
- 1  * YC 9 

z ! = z  - 2  . 
i i c  

Figure 51 sho::s the y", z "  ases, where the z" axis is perpendicular to  the plane 

of incidence. The coordirites of these vertices are 

_v:= y! cos + z! sin 8 ? 
1 1 

z ? =  -y! s ine  + z! cos 8 . 
1 1 1 

Figure 51. Relationship between y: z' and y", z" axes. 

Equations ,5-22) and (5-23) a r e  in a form that can easily be used in a computer pro- 

gram. The algebra, though, i~ somewhat tedious: First we have to substitute the ex- 

pressions fur y 2. to obtain y.', z! and then substitute y:, zf to obtain yl,  z l .  We have em- i I 1 1  1 

ployed an algebra program to perform the substitutioos, and the results a re  given below. 

Case 1 

I 
2 1 cos Q j sin 8 ;  y1 =; (Cos 9 -d) + D (sin 0 - - - 

$3 2 \*5 

i 
2 cos 0 

1 2 
cOS '\ + D cos 0 sin 8 1 - -.) 2 = - W (/sin el 

~5 



y3 = w 1sin_8! cos 0 /sin 0 1  
-1 3 \ 3 

Case 2 

2 
z = -  ( ~ S h e l  +a) + D ,  (cos 0 - e a s e l s i n e i )  . 

,'3 \ 13 

These equstions a r e  for the 1-age 0 0  < 0 < 60". The absolute-value signs on 

sin 8 make it possible to  use the same expressions for the mge -60" < 0 < 0 "  by 

reversing the order of the points as \%-ell as the sign ~f zi. 411 y coordinates must 

be multiplied by cos + t o  get the coordinate of each vertex parallel t o  the plane of 

incidence on a plane perpendicular to the line of s-lht.  

5.5.1.2 Vertices of the actit? reflecting area for a helragcmi retrorefledor 

In this section, the cool-dinates of the vertices of the active reflecting area a r e  

computed for uee in calculating the diff-caction pattern of a hexagonal cube corner. 

Distances calculated in Section 3.3 are  used in the derivation. 



Referring to Figure 32 for Case 1 in Section 3.3, let the y, z coordinate axes be 

set up as show in Figure 52. Only three of the vertices are numbered; the positions 

of the other three Carl be computed by symmetry (see Section 2.3). By using the dis- 

tances calculated for Case 1, the coordinates of the numbered vertices are 

1 -  - - 
y1 = a .  + g i c  fc 

Figure 52. Hexagonal retroreflector (0 > 0°), Case 1. 



These form-rlas apply to the rauge 0' c 0 < 30'. Since the geometry repeats 

every 60°, all cases can be covered by adding fonnuias for the range -30' < 0 < 0'. 

In Figure 53, three of the vertices are numbered for the case 8 < 0". Figure 53 is 

the same as the one for 8 z Co, reversed from top to bottom. The coordinates of the 

lrertices are obtained by computing the coordi.mtes with (01 in the fonnulas for 8 > 0" 

and then reversing the order of the points m d  the sign of the z coordinates. Since 

only sin e is affected by the sigr? of 0, tbe coordinates of the vertices for the range 

-30' < 8 < 0' can be written 

Figuie 59. Hexagonal retroreflector (8 < O'), Case 1. 



Figure 54 shows Case 2 with coordinate axes drawn and two of the vertices 

numlered. Using the dis'mces from Figures 31 and 33 in Section 3.3, we get the 

following coordinates of the points: 

1 1  
= D eos e +.zn(2w - 4 3 ~ ~ 0 s  e - ~ ~ e e )  , 

Figure 54. Hexagonal retroreflector (8 > 0°), Case 2. 

These forniulas apply to the range 0" < 8 < SO". For the range -30" < 8 < 0°, the 

coordinates of the vertices (see Figure 55) are 



Figurn 55. Hexagonal retroreflector (0 < O"), Case 2. 

Figure 31 in Section 3.3 gave y - ~/a, z = 0 as the coordinates of the center of 

the active reflecting area at normal incidence. At ather incidence angles, the right- 

hand heragan is displaced by Ay = D cos 0, &- = D sin 0, and the center of the active 

reflecting area, by ~ y / 2 ,  &/2, Therefore, the coordinates of the active reflecting 

area are 



and the coordinates of the vertices with respect to the center of the active reflecting 
area are given by equations (5-22). The transformation to y", z" coordinates with 

the z" axis perpendicular to the plane of incidence is shown in equations (5-23). 

Usin? an algebra program for the substitutions, we get the following expressions 

for yl'and d!: 
1 1 

Case 1 

2 1 + cos e lsh el case- ls inel  + D  sin 0 - -  Y 1 =-  2 (-E- ) (  2 43  , ) 9 

lsin 0 1  = - i f 7  - 
22 xfT ' 

Case 2 -- 

cos 8 D 
y ~ = ~ - - -  2 '  

z = W  cos 0 + 2D 2 



These equations are for the range 0' < 8 < 30". Because of tbe absolute-value 

signs on sin 8, we tzm use the same ezrpressims for the range -30" < 8 < Oa by 

reversing the order of ihe points and the sign of zi. All y c o o r d i e s  must be multi- 

plied by cos + to obtain the coodnate of each vertex parallel to the plane of incidence 

on a plane perpendicular to tbe line of sight. 

5.5.1.3 Vertices of a sector 

The vectors dividing Ua active reflecting area of a cube corner into six sec- 

torswerecompdedin98ctim2.12. L e t V  andVZJbethecoordinates ofthe 
YJ 

vertices of the active reflecting area an a plane perpendicular to the line of sight. 

The angles vJ to each vertex are 

a .  the angles of the boundary lines are 

The vertices within a sector whose boundary lines have the angles 5 and 5+1 are 

those for which 

in addition, the vertices of a sector include the origin and the intersections of the 

b.vo boundary lines with the sides of the active reflecting area. The intersections 

are computed by means of the method described in Se :tion 5.5.1.4. Figure 56 gives 

an example of a sector with the vertices numbered. 



I 

Figure 56. Vertices of a sector. 

5.5.1.4 Intersection of two line segments 

We give herein a systematic method of testing for singularities in computing the 

intersection of a sector boundary and a side of the active reflecting area. The sector 

boundary is a line starting at the origin (y = z = 0) and extending to  one of the sides. 

Let the other end of the sector boundary be given by the coordinates yA, zA. Let 

y , z and y , z be the ends of the side that is intersected by the boundary (Figure 57). 1 1  2 2 

Figure 57. Intersection of two line segments. 



The slopes of the lines are 

The equatim of the sector boundary is 

==S*Y , 

and that of the intersecting side is 

z= C +  SBy , 

where 

R there aye no singularities, the intersection yg, z3 is obtained by solving equations 

(5-25) and (5-26) simu1taneous:y. Substituting the former into the latter, we get 

The yg coordinate of the intersection is 



By substituting y into equation (5-25), the other coordinate of the intersection is 3 

After equations (5-24) have been computed, we can apply the following outline as a 

sequence for wrforming the computations and testing for singularities and error 

conditions : 

A. If yA t 0, compute SA = z /y A A' 

1. If y 1' y2, compute 

a. If Sg $ SA, compute 

b. If S = S , the lines do not intersect. B A 

B. If yA = 0, then y3 = 0. 

1. I i y l  # y2, compute 



2. If yl = y2, the lines do not intersect. 

5.5.1.5 Integration limits for a sector 

Let .iJ and Z be the coordinates of the vertices defining one of the sectors of a J 
retrorefledor The diffraction integral must be performed aver the surface enclosed 

by connecting successive vertices by straight lines. Let the first and last vertices 

be the origin of coordinates and let the other points be given counterclockwise around 

the sector. The diffraction integral is  done for each successive pair  of points using 

equations (5- 14) from Section 5.3. The integration limits for each pair of points 

indexed J and J+l are 

where 

If Y = YJcl, the integral is omitted for that pair of points. 

5.5.2 Diffraction pattern of a circular reflector 

Section 5.5 discussed the diffraction integral for a cube corner, except for how 

to determine the integration limits for each sector sI and the total active reflecting 
2 area S at normal incidence. For a circular face with radius r, we have S = rrr . 



The intebratioa is partly analytical, based c-. fon.:ulas (5-14), and partly numerical, 

b e t !  on Sectian 5.4. The nur--ric;11 integmtion is done with a scmd-order technique 

(Section 5 . 5 . 2 . 3 ,  64th Section 5.5.2.6 shc'wing which paris of the integration are  

nunlerical. To obtain the best results, it i s  sometimes necessary to reverse the 

order of inkgrat io~ over the variabies (Section 5.5.2.5). Formulas for the z values 

at eac3 ilun:erical-iategratioz poinr are given in Scrtion 5.5.2.2, and the .-nd points 

uI the section ;f the ellipse bounding a sector are computed in .~c! iou  5.5.2-3. The 

Airy f~rmula, which i s  useful for checking the more geneml methods in the speeial 

case ui the Airy pattern, i s  given in Section 5.5.2.1. 

Cbng.. Currie, and AiJey (19711 present an Ujeical s~lution for the far-field 

diffraction pattern of a c i r c t d ~ r  cube corner at normal incidence. Polarizati~n 

ef fecb  are  deluded, lased an resulb from Peck (1972). The diffraction integral 

for each sextant. is e i - a l~ t ed  according to the methods of Mahan, Bitter1 j and Cannon 

(1964). 

5.5.2.1 Airy pattern 

I£ the field u i s  conslant across a circydar apeiture, fie diffi-action pattern is a 

function only of the angle 9 from the center of the pattern. The in tmsie  I is given 

by 

where I i s  the irirc s i ty  at the center of the pattern and 
0 

in which J is the Bessel function of the first order and d is the diameter of the 
1 

apertpre. This formula is  useful bcth for testing the numerical-integration techniques 

to make sure that thy. give the correct answer for this special case and for determin- 

ing the accuracy of the numerical integration for various integration intervals. 



Ths xctive reflecting ama of a circular retror~flactor qonsists of tho intersec- 

tion of Wu circles as viewed in the p&ne of the front face (Figure 58) and two 

ell&ses as viewed from the dilectioa of the hcident beam. The separatim of the two 

circles is 2c, given bJv 

where L is the length of tkr: cube comer a d  

Figure 58. Intersection of inpct and output apertures for a circular reflector. 



When viewed from the direction of the incident beam, dishnces in the y' directicm 

are contracted by a factor a, where 

a =  cos Q . 

The equation of the circle in Figure 59a is 

2 2 ( v f - c )  + z f 2 = r  . 

The equation of the ellipse in Figure 59b is obtained by substituting y' = y/a and 

Z' = Z ,  resulting in 

To integrate the diffraction pattern numerically, we must have values of z at equal 

intervals in y. Solving for z, we get 

where the plus sign gives the values at the top of the ellipse and the minus sign gives 

those at  the bottom. Equation (5-27') is bsed for the left half of the aperture (y 5 0). 

For the right half, the ellipse is centered at  y = -ac, and the formula is 

Figure 59. Ellipse seonlelry. 



which can be solved for z to give 

Integrating first mer z and then numerically over y does not give good results 

when the slope of the eiiipse goes to infinity. As seen in Figure 60, the sector can be 

Leer integmtsd 2 1 ,  st in y ar,J 3 e n  in z. The %angular section remaining in 

Figure 60a can be integrated amlytically. We need to espEss y as a function of z 

In order to perform the numerical integration in the variable z. 

Figure 60. a) Normal order of integration: b) rel-erse order of integration. 

Solving the equation 

for y, we have 



where the upper signs refer to the !eft ellipse and the lower signs, to the right 

ellipse. 

5.5.2.3 Intersection of a line and an ellipse 

The active reflecting area of a circular retroreflector is divided into six sectors 

by the projection of the back edges onto the front face. In general, the diffraction 

integral must be done mer each sector separately, since eihedral-angle offsets and 

polarizatim effects result in the field u being different in different sectors. Let the 

bormdaxy line '&tween two sectors be given by 

where S is the slope of the line (Figure 61;. The intersection is given by the solution 

of the two equations 

and 

2 Substituting z = 2;' into the first equation gives 

[ eq. cont. on next pagel 



Figure 61. Mersedicn of a line and an eilipse- 

In cases -where the boundary of a sector is vertical, the y component of the vector 

defining the boundary line is zero and the slope S is infinite. En this case, the z coor- 

dinate of the intersection of the line and the ellipse is computed by 

The sign of the square root is chosen to  be the same a s  that of the z component of the 

vector defining the boundary line. 

5.5.2.4 Slope of an ellipse 

The active reflecting srea of a circular retroreflector is bounded by two ellipses, 

whose equation is 



The slope is g i ~ e n  by differentiating 

to give 

If z = 0, the slope is infinite. The value of the slope will be used in determining the 

best order of integration in order t o  obtain accurate numerical results. 

5.5.2.5 Order of integration over y and z variables 

TIie active reflecting area of a circular cube corner is divided into six sectors, 

each of which is bounded by two lines and one or bvo curves that a= sections of an 

ellipse. The numerical integration used to calculate the diffraction pattern gives 

poor resu!ts when the slope of the curve as  a function of the numerical-integration 

variable becomes very large or infinite. The problem can be avoided by integrating 

numerically over the other variable. A sector may be wholly contzined in one 

quadrant of the coordinate system o r  may spari two quadrants. If the latter situation 

occurs, the numerical integration i s  perfcrmed aver the variable that changes sign 

over the sector. If the sector is in only one quadrmt, the order of integration of the 

variables is chosen such that the maximum slope as  a function of the numerical- 

integration variable is minimized. Since the slope is a monotonic function over a 

single quadrant, it can be computed at the ends of the elliptical arc  as a function of 

both i~tegration variables, and the variable having the smallest slopes (absolute 

magnitude) can be chosen. 



5.5.2.6 Numerical and analytical parts of sector Integmtion 

If the bamdary lines of a sector have slopes of the sams sign, the integral can 

be brokea into an analytical part bounded by straight lines and a numerical part bamded 

by two lines and a section of an ellipse, as shown in Figure 62a. If me of the sector 

boundaries ' certical, the integratkm is wholly numerical, as shown in Figure 62b. 

If the slopes are of diffemnt sign, the integration is numerical, and the curve has 

sections of two different ellipses if y changes sign over the sector (Figure 62c) or a 

single ellipse i f  z changes sign (Figure 62d). For Figures 62c and 624 the numerical 

integration must be split into two sections, one for each of the boundary lines. The 

numerical integration is over the z variable in Figure 62d. 

Figure 62. Analytical and numerical parts of sector integration. 



5.5.2.7 Second-order numerical integration 

The numeric& part of the diffraction integral for a circular cube corner is done 

by means of a second-order technique. The interval is divided into equal pieces of 

length 6, and the value of the integrand f(y) is cumputed at each point to  obtain a set 

of values fi. Fach set of three points is fitted with a qcadratic, which can !x integrated 

analytically. The result of the integration is Simpson's rule (Hildebrand, 1956, p. 73): 

5.6 S S e t r y  of Cube-Corner Di£fraction Patterns 

The far-field diffraction pattern of a retroreflector is calculated by equation 

(5-2 1). Under certain conditions, the diffraction pattern has symmetry properties 

that are helpful in checking the accuracy of a diffraction calculation. If a retroreflector 

has perfect-m~tal reflecting faces, the polarization zI of the reflected light is  the 

same for all six sectors of the cube corner. In this case, the diffraction pattern has 

which can be s h a m  as follows. A ray incident at  the point (-y, -2) in sector I' 

emerges from the point (y, z) in the opposite Sector I with a phase change p y  + bI z 

due to dihedral-angle offsets. A ray incident at point (y, z) emerges from point 

(-y, -2) with a phase gradient 



We have %, = -5 and bI, = -bI because the rays travel virtually the same path in 

opposite directions for the I and the I' sectors. The diffraction is the sum 

of pairs of poicts of the form 

i(%Y + 42) 
= 2e cos k(O1y + 022) . 

Since the cosine h c t i o n  is m e t r i c  with respect to a - in sign of the argument 

and since the difhactian integral is the sum of such symmetric terms, the diffraction 

pattern has the property given in equation (5-28). 

Anatber symmetry property can be seen from the same argument. If all the 

dihedral-angle offsets are reversed in sign, the constants a and b cbange sign so W 

the integral is the sum of terms of tbe form 

it (-a1)y + (-bI)zl -i (ap + 52) 
e 2 cos k(Bly + 0  z) = e 

2 2 cos k(O1y + 02z) . 
Since the intensity is obtained by multiplying the integral by its complex conjugate, 

tbs diffraction pattern is unchanged when the sign of the dihedral-angle offsets is 

reversed. 



6. RAY LEIGH DISTRIBUTION 

The return signal from a satellite retrorenector array consists of mflections 

from a large number of cube corners. Since the laser beam is coherent and each 
reflection has a dif6erent phase, tbe reflections will interfere with each other. Fcr 

a large number a of reflectians each having unit amplitude, the normalized probability 

that the resultant amplitude will be A is (Rayleigh, i945, pp. 35-42) 

Since tbe em-rgy E of the return signal is proportional to the square a$ the amplitude, 

the probabiiity of a given energy is obtained by substituting 

into the above equation to give 

The mean energy is given by 

[eq. cont. on next page] 



6.1 Factors Modifying the Reyleigfi Distribution 

Three factors +%at exist in actual retroreflector arrays mhke the probability 

distribution of the returr~ energy somewhat different fram the Rayleigh distribution: 

A.  The numbz of reflectors is finite. 

B. The amplitudes of the mflections from individual reflectors may not be equal. 

C. The transmitted pulse is of finite length, and thus the envelopes of individuai 

reflections do nat coinc :de exactly. 

6.2 Guidelines for the Application of the Rayleigh Distribution 

The follawing guidelines can be used to determine when the Rayleigh distribution 

is not appropriate: 

A. The probability distributicm for the resultant amplitude of a thite number 

of equal phasors (Slack, 1946; Jaffe, 1971) is quite different when N is 2, 3, or  4. 

For N = 5, the probability of E = 0 is aboilt 15% lower than for the Rayleigh distri- 

bution. At N = 10, the difference is only about 5%. Therefore, anything over about 

N = 10 can be expected to give nearly a Rayleigh distribution. 

B. If the amplitudes of the ~ h a s o r s  are miequal, the probability distribution will 

still be a Rayleigh distribution as  long as there is a large nuniber of phasors of each 

amplitude (Rayleigh, 1945). Any number greater than abaut 10 is considered large 

for this purpose. 

C. As long as the pulse length is long compared to the separation of the retro- 

reflectors, the Rayle lgh distribution will be applicable. 



7. ARRAY TRANSFER FUNCTION 

7.1 Retroreflector-Array Coordinate System 

The coordinates of the center of the front face of each cube corner in an array 

are given in a system whose origin is at the center of mass of the satellite in the 

orbital configuration. If the array has a symmetry axis, let it coincide with the z 

axis. The direction of the x axis is chosen to  be at some convenient angle in the 

plane normal to  the symmetry axis. Let an xp, yf ,  z p  coordinate system be set up 

parallel to the x, y, z system with its origin a t  the center of the fzont face of a cube 

corner (see Figure 63). The orientation of the cube corner is mpresented by the 

Figure 63. Array coordinate system. 

three angles Bg bR, and aR, the first two giving the direction of the normal to the 

front face of the cube corner in the x', y', z' system (see Figure 64). 

To show the angle an, let an X', Y', Z' coordinate system be set up with its origin 

at  the center of the front face, its X' axis normal to the front face, Yf in the direction 

of increasing OR, and Z' in the direction of decreasing c$Y~. The orientation angle a R 



Figure 64. Coordinate system for cube-corner orientation. 

is measured counterclockwise from the 2' axis to the projection of one of the back 

edges of the cube corner onto the front face, as shown in Figure 65. 

Figure 65. Cube-corner orientation angle a H 
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7 .2  Coccrdiuate :S\rsteai of the Incident Beam and the Observer - 
Let the dil~ctinn to t h  iiiun?inatiq sou= be giren by the angles eS and +S 

re!ated to thf? X, y, cmrdinate system ~f array (Figure 66). Let the complex 
-L 

x-ector E gil-irig t!e pohrizztt-ion of the incident beam be given in the x*, y *, z* 

coontinate system, defined as fr,Uo\vs. The x* axis points toward the source and the 

y* bnd Z* axes are i~ the dim?tio~ of increasing 0 anct decreasing 9 respectively. S S 
This is thc coordinate syst!n~ the obsem-er md is the one in which the diffractian 

ysttem oi the a m y  uill be gi~~ext. 

Pigvre G 6 .  Coordimte system d m  incident beam. 

The direaim t~f  the bun incidmt 011 8. C J ~ U ?  corner is specified 3v the two angles 

5 and 4, tivhere 41 is &t? :lr<le bctneen +Je nomaf to tke front face and the incident 

5fi.m. The a72i~1utb aqgl~  9 is mehscred to the projection of t1.e incident direction 

 do the t'rorzt face, as shovm in Figure 67. The coordinate system in which the 



diffraction pattexn of the cube comer is conlputed h ~ s  its i axis pointing toward the 

source, its 2 axis in the plane of incidence pointing in the iirection of increasing +, 
md its 3 axis perpendicular to the plane of incidence in the direction of incmasing 9. 

Figure 67. Projection of an incident beam cmto the face of a cube corner. 

7.4 Convers ion beheen the Coordirlate Systems of the Incident Beam and the Retro- 
reflector 

A 
Let S be the unit 1:edor pointing toward the illuminating source md 2 be the unit 

normal to the front hce of a cube comer in the array. In the coordinate system of 

the arirq-, t3e conlponents of the vectors a r e  

Ss=sino cose  S S *  I R R ' R - =  s in+ cos 8 

S = s i n +  s i n e  S S 3  
R   sin^ s i n e  

S Y R R ' 
S = cos OS , z 

R = cosQ 
2 .  R - 

The incidence angle + on the cube comer is @\-en by 

To compute the azimuth mgie 0 of the projection of the incident direction mto the 
A 

cube comer face, the rector S must be ex~ressc-d in the X', Y '. Z' coordinate system, 

in which ffie orientation angle o is given. This is accompiishe~l by rohting the 
R 



A 
coordimte system of S first about the z axis by the angle BR and then about the new 

1 .  

y axis by the angle OR (Figure 68). The components of the vector S in the rotated 

coordinate system are 

cos +R 0 -sin+ cos OR sin OR 

>@re 68. Direction of the normal to the cube-corner front face. 

The relationship of the x", y", z coordinate system to that of X', Y ', Z ' is gix-tn 

i;l Figur?e 69. I'he components of the vector s in the Xf,Y', 2' coordinate system 
are 

and the projection of the incident beam direction onto +he Y 'Z' plane makes 3fi angle 



Figure 69. Relationship of Xf,Y', Z t  and xN,y", z" axes. 

with the Yr axis, as shown in Figure 70. The desired azimuth angle 8 is 

Figure 7U. Diagram for computing t!ie azimuth angle 9. 
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The complex vector i? is in tbs x*,p*, z* coordinate system of Figure 66. The 

diffmction pattern of a retroreflector is computea in the coordinate system defined. 

in Section 7.3. The two coordinate systems are therefore related by a rotation about 

the x* axis through a rdatiaa angle 5,; which can be computed by e x p ~ s s i n g  the vec- 

tor fi in the :i*,y*, z* coordinate system of the observer. This is done by rotating 

th8 coordinate system of fi about tbe z axis by the angle OS and then about the new y 

axis by the ~ e ;  d e  OS The ccxnpaaents of fi in the rchted system are #en 

Fmfe 71 gives the relationship of the x",yn, z" coordinate system to that of x*, y*, z*. 

The components of the v&or ft in the latter system are 

Figure 71. Rclationship of s", y ", z "  and s*, y *, z* axes. 



and tbe projection of tb normal to the front face of the cube comer anto the y*z* plane 

makes an angle 

with the y* axis: as s h m  in Figurn 72. The direction of the 2 axis in tbe y*z* plane 
A 

is opposite that from the projection cf tbe vector R onto the y*z* plane (see Figure 73). 

Figure 72. Diagram for complting the angle y. 

h 
S A  x* AXlS  

2 AXlS 

A 
Figure 73. Relationship of the 2 &.xis to the unit vector R. 



The desired angle y as shown in Figtire 72 is 

Le'. E and EZ, be the complex components d the incident polarization vector in the 
Y* 

x*, y*, zr coordinate system. The compments E2 and E3 in the coordinate system 

used for r h  diffraction pattern of the cube comer are then 

E Z = E  c o s y + E Z * s i n y  , 
Y* 

E3 = -E sin y + EZ, cos y . 
Y* 

A point with the angular coordinates (8;,8 ;) in the coordinate system for the diffrac- 

tion pattern of the array  has the following angular coordinates in the coordinate system 

for the diffraction pattern of an individual cube corner: 

7.5 Transmitted Pulse 

The transmitted pulse is assumed to  be a mmochronlatic wave with a gaussian 

envelope. The intensity across the retroreflector ar ray  is assumed to be uniform. 

In the x*,y*, z* coordinate system, where the-x* axis points from the array t o  the 

source, the complex vector field incident on the array is 

A A ik(x + ct) 1 2 2 
E = (E$ + EZz)e -(x+ d) /40 

7 9 
\ u\K 

where k = 2;r& X is the wavelength, c is the velocity of light, and a is the sigma of 

the transmitted pulse. For simplicity, we have dropped the asterisks on x, y, and z. 

The intensity I of the pulse is 



If the width of the transmitted pulse is given as the distance I between half-power ~~, 
o is calculated from 

which can be solved to give 

7.6 Position of the Retroreflector along the Line of Sight 

Let 5 be a unit vector pointing from the array toward the incident beam and be 

the ~ector from the satellite center of mass to tbe center of the frcnt face cf a cube 

corner. Tne position of the cube corner along the line of sigkt is 

If we take the optical mth length in the dielectric (Section 2.5) into account, the 

apparent position of the cube corner along the lim of sight is 



where L is the length of the cube corner from the vertex to the face, n is the index of 
A 

refraction of the cube corner, 4 = cos-' ($ R), and x is the distance to  the satellite 

center ~f gmvity minus the apparent distance to  the cube comer. 

7.7 Incoherent Return 

The equations given in this section apply to situations in which the return signal 

is independent of the phase relationships among the reflections from individual cube 

corners. If tbe arrzy is illuminated by an incoherent source containing many frequen- 

cies, the phase relationships are different for each frequency, so that averaging 

occurs over all possible phase relationships. The equations also apply to a laboratory 

experiment in which the total reflected energy is  measured. The return pulse is the 

sum of the total reflected signals from each cube corner. The primary use of these 

equations is to compute the average behavior of a large number of returns mezsured 

at some point in the far-field pattern when the array is illuminated by a coherent 

s a m e .  In this situation, it is assumed that the phase relationships lary randomly 

from pulse to  pulse as  a result of changes in viewing angle to the array. The inco- 

herent return is constructed by adding the intensities of the reflections from each cube 

corner at a point in the far field In Section 7.8, it will be shown that this gives the 

a\-erage pulse shape of a large number of coherent returns. 

The reflection from a cube corner has the same mathematical form as  the inci- 

dent pulse, except that the reflection is mming in the opposite direction. The dis- 

placement between the pulses reflected from two different cube corners is twice the 

difference in distance to the two reflectors. Let the return pulse be constructed in a 

coordinate system having its origin at the center of the reflection that would be received 

from a cube corner at the center of rlass of the satellite. The positive direction will 

be talien a s  the direction to the observer. In this coordinate system, the intensity 4( 
f& of the reflection from the K cube corner is 



tb where $ is twice the distance of the apperent reflectim pomt for the K retroreflector 
from the plane through the center of mass of the satellite perpendicular to the incident 

beam. The constant SK gir* the intensity of the Nnection from the K~ cube corner 

is  proportional to the active reflecting area, if the total reflected energy is  being meas- 

ured, or to the intensity of the diffraction pattern at  the position of the observer, if the 

detector is located at a poiut in the far field. Depending on the method uf detection, 

SK is either the t d  intensity (E E* + S~E;) or the intensity oi aqp campcment of 
Y Y 

polarization being measured. 

The tatal intensity I of the incoherent mhm is 

and the total energy of the return is proportid to 

The mean position of the return pulse is 



A measure of the spreading of the pulse due to the array i s  obtained by computing 

the second moment V of the return: 

If we make fhe same substitutions for x, x-di, and dx, the integral becomes 

[ eq. cont. on next pagel 



After we substitute this into equation (7-4), 

for 4( << 0, the incoherent return is nearly gaussian, with a sigma of of. 

7.8 Coherent Return 

The coherent return from an array is computed by adding the fields of the reflec- 

tions from all the cube corners and squaring the sum to obtah the intensity. The 

field of the transmitted pulse is given by equation (7-1). Let the return pulse be con- 

structed in a coo~dinate system whose origin is the center of the pdse  that would be 

zeflected from a cube corner at  the center of mass of the satellite. Let dK be twice the 
th distance of the K cube corner from the plane through the center of mass of the satel- 

lite perpendicular to the incident beam. The quantity 4, is known with sufficient accu- 
,.I 

rac j  for use in pcsitianipg the envelope of the reflection from each cube comer. How- 

ever, it i ~ ,  I;& known with enaugh precision to  predict the relative phases among the 

reflections. We will therefore assume that the relative phases are randam and vary 

mdomly from pulse to pulse. Very small changes in aspect angle of the satellite are  



zuff.:cient to change the phase relationships completely. In the express ions below, 

the field strength EK can be any component of polarization. The phase of the field 

component can be absorbed in the random phase factor eieK. The field reflected from 
th t te  K cube corner is 

where BK = -kd' K = a random phase between 0 and 2-rr. 

The field of the whole array is 

and the total intensity is 



Since EE* is real, all imagfnary terms cancel, reeulting in 

The mesn value of cos (eK - BL) wer a large number of coherent rehuns where the 

phases vary randomly is  0 for K # L and 1 for K = L. Therefore, the mean return 
pulse shape is 

which is the incoherent case derived previously. 

In order to obtain the t-1 energy by integration, tl 2 exponent can be transformed 

into a perfect square plus a constant: 



Sub&iMing this into equatim (7- we get 

The 'rob i energy is propor t id  to 

If we substitute equation 0 - 7 )  into the first line oi equatim (7-2), the mean positim 

of the return _Dulse, we have 

Incorporating the fol lming substitutims 

ints equation (7-S), we have 



If we substitute equation (7-7) into the first line of equation (7'-4), make the c-e of 

variables given in equation (7-9a, b) plus 

and perform the integrations, the variance of the return pulse becomes 

The square root of the variance is 

7.8.1 Calculation shortcuts 

The expressian for the cokrent reflected intensity was given aha-e as a sum 

mvolviq a double index. This focn was necessary in order to obtain the total energy, 



mean positirrrq and second moment of the reflected pulse. For pldtiqlr the Mxnsity, 

however, it is much more efficient to calculate the field involving a single index azd 

square the result. Omitting the factor eih, which disappears ahen E is multiplied 

by E*, we have 

from 'which the intensity is 

In compi'iing tbe total energy, the mean, and the variance of a coherent reta~a, the 

Eollowhg techniques can be employed to  reduce computaticm time. The cosine factor 

can be espanded to give 

The terms on the right can be precomputed and saved, which requires 2N trigmetric 

calculatioas, where K is the number of retrore£leetors. Eacb value of cos [6K - BL) 
can then be computed with two multiplicaticms and one addition, a much Easter proce- 

2 dure &an doing X cosine calculations. 

h al l  the expressims, the terms with index PL arc equal to those with index LK, 

so we need to compute only about half the terms. Since terms with K = L are indepen- 

dent of the rando~n phases xed, their sum c m  be precomputed and saved when many 

cohered returns are being calculated for the same incidence angle an the array. The 

terms for K = L give the incoherent results. 

7. '?. 2 Relation of coherence to diffradicm 

The cnlculation of coherent returns by use of a random-number generator t~ 

assign phases to the reflections from individual cube comers is a way of gainjag some 



statistical information des?ite the impc - : i r  i IV of knowing the acttlal &me relaticm- 

ships between the reflectims. A coherent calculaticn is a & d I y  a diflEractb calcula- 
tiaa for the whole zrmy at me point ii; the far field, baaed <m assumed phases. If we 
have accurate en& information, we cau perform the diffnctim integral mer the 

&.ole m y ,  calculating the phases &om the relative positions of the reBectors in t&e 

arrsy. Tke characteristic w i a  of the dif3ractim pattern of s siigle reflec!or is 

m g h l y  h/DR, where + is the diameter of the cube comer. The basic nhysical 

reason for this is tbat the pbase relatianship between the w i t e  sides d the cube 

corner chaqges by 360' arben the angdaz pceitim of the observer changes by k/nR. 

The pkse  relationship between re£!ectors an opposite sidcs of an array m e s  by 
360' whe~ +be vie* angle changes by X/DA, where DA is the diameter of the amp. 

Since EA is generally much larger than %, we can expect the diffractian pattern of 

the whole army ta vary within a characteristic angle k/BA, giviqg rise to a m a l e d  

appearance in the army difhctian pattern. B is these variatim that are being 

studied statistic3iiy in a cobrent calculation. 

7.8.3 Coherent variatians 

Ld xi represent some property of the i t '  coherent retum, such as the energy 

or mean position, and let Wi be the weighting hctor for the return. The mean value 

of the quantity for a s d  of coherent retwas is 

and the tariance of the -tits- is 

[ eq. cont. on next page] 



In cases where the a\*emge value Z of a coherent quantity is wbstantially difleremt 

from the incoherent value, the statisti% 1 signi£- oi the di&emces  Ax can be 

measured by the qumtity Ado3 where 

N being the number of coherent retarns. 

7.8.4 Mean l a k e  of coherent quantities 

It has a i m @  been pointed out that the mean value of the intensity, equation (7-S), 

averaged a-er many coherent returns is the incoherent Mensity shown in equatim 

(7-6). Since the tdal energy is the integral of the intensity, the mean value of the 

coherent energies is the incoherent energy. This result is also dstained from the 

expression 

Since the average value of cos (OK - BL) is 0 for K # L and 1 for K = L, the mean value 

of the coherent enem- is 

which is the incoherent expression. 

The situatim is a 1 ittie more aomplicated for the other quantities. The mean 

position of the return pulse is 



'3 which the mean value of the numerator is 

Tbe denominator is the energy of the r e k m  that has a mean value of g k  nit 
were tnie that the mean kalue of the quatient of the two quantities is the qudient of 

the mean values, then the mean d u e  of X for the caherent rehuns would be the same 

as the value of Z for the incoherent return. Calcdaticms of large numbers of coherent 

returns for certain arrays have shown statistically significant differences between these 

two values of E. The arrays used had unsymmetrical distributims of retrorefiectors 

along the line of sight. Presumakly, if batb the incident pulse and the distributiun of 

reflectors were symmetrical, '&ere would be no mechanism for causing a bias. 

A technique for removing the Merence between a average 5 of the coherent 

retuxns and the X for the incoherent case is to we@& each caherent Z by the energy 

of the coherent return. This has the effect of canceling the denominator in equation 

(7-11), so thai we need to  average cmly the numerator, wbose mean value has already 

been shown to be e q d  to the numerator in the incoherent expressicm for 5, equation 

(7-3). Compter nms on large samples of caherent returns have verified that this 

w e n  technique works to within the statistical uncertainty due to ?be number of 

returns cm~xted,  These camplter nms also show, however, h t  the whole sample 

must be used; mcludhg -turns below a certain energy causes a bias. This is 
probably the result qf the fact that a r e t u m l s  low energy puts constraints an the phases 

such that they are no l~?ger  random. 

A similar situation exists with the variance given by equation (7-lG:, whose mean 

value of the numerator, %(u2 + <), is the same as in the incoherent case; the 



denominator is the energy. Weighting by the mean energy remuves any bias between 

the mean coherent value and the incoherent value, 

7.8.5 Coherent variations versus pulse 1- 

Compltatian of coherent returns for various arrays with different pulse lengths 

has shown that the variation of tbe mean position of the return pllse decreases as the 

pulse lag& decreases. A qualitative --on of this phe~omenon is the following: 

If the pllse length is much shorter than the spacing be4ween the reflecticms from 
different reflectors, no interference occurs between the different reflections, because 

they do not uverlap. I .  this -e, the c a h e r d  return is identical to the incoherent 

return, and all properties of the coherent return, such as the energy and mean posi- 

tion, are constant. As the pulse length increases, both the degree of overlap between 

indivi&aal refledions and the variatiuns in pulse shape increase. Therefore, tbe 

wmiatians in energy, mean position, and other properties will increase as the pulse 

le- incmses.  

7.9 Half-hfaximum Range Correction 

In a half-maximum Cetectim system, the range to  a retroreflector array is meas- 

ured by recording the t h e  interval between the half-maximii points on the leading 

edge of the transmitted and received pubes. If the received pulse is the same shape 

as the transmitted pulse, this w i l l  give the same range as a centroid detection system. 

However, if the pulse it broadened by the array, because of the fact that the cube 

corners are distributed in range from the observer, then the range measured by a 

half-maximum sydem will, in general, be shorter than that measured by a centroid 

detection system. The difference between the half-maximum range correction and 

the centroid range correction must be computed by plotting the return pulse and 

numerieslly fin-iing the point on the leading edge where the intemity is half the maxi- 

mum intensity. In cases where the haif-intensity point is multivalued, the first point 

on the leading edge will be considered Be half-ma2;imum point xlI2. The difference 

hetwem the half-maximum point and the centroid on the transmitted pulse is o m ,  

as shown in Section 7.5. The corresponding difference on the received pulse is 

xlI2 - P, where x is the centroid of the received pulse. The difference between the 

half-maximum and the centroid range corrections is 



The factor of 1/2 cmverts the result t o  a one-way correction. 

7.10 Pulse Spreading bg Array versus Pulse Length 

Computer n m s  on various retrorefledor arrays wi th  different pulse lengths 

have shown that the amount of pulse spreading due to  the array increases as the pulse 

length decreases. There is one partic-&r array geometry where this result can be 

prwed analytically. Let the array cacsist of a large number of reflectors whme 

density alang the line d si* is approxima4eiy gaussian. Let the density of refkctors 

be 

and id the intensity of the incoming pulse be 

The contribution dI(x) to the incoherent return signal from an element of the array at 

the point x" is a gaussian moving in the +x direction reflected from point x" at time 

t = - x"/c and centered at 2x" a t  time t = 0. If we define x' = 2x", we get at t = 0 

and then we can integrate over x' t o  obtain the total incoherent intensity: 



The terms in the square brackets can bc rewritten to form a perfect square plus a 

canstant, as follows: 



where 

After we substitute this back into the exponent, the integral becomes 

The reflected pulse is a gaussian with o= d-. A measure of the amount 

of pulse spreading is the difference 

For very iong inc idd pulses, 



Instead of having Au m the order of ol, which we might have expected intuitively, the 

spreading is reduced by the factor u1/20g, so that Ac -- 0 as  uo -- CO. 

For very short pulses, 

and thus 

h the limit, as uo -0, - = O as we would expect for a point reflector. 
1 1 

By taking the derivative of Au with respect t o  q,, we can prove the statement made 

at the begirming of this section for the special case of a gaussian distributim of retro- 

reflectors. We have 

Since %/d- s 1, d(&$/do,, a 1, so that the pulse spreading increases as the 

pulse length decreases. 

7.1 1 Range Equation and Gain Function 

The range equation giving the received energy as a function of the transmitted 

energy can be written 



where Er is the received energy, E is the trammitted energy, TA is the atmospheric' 

transmission factor, is the solid angle subtended by the active reflecting area of 

the satellite array, TS is the transmission factor of the array, ES is the energy 

reflected by the satellite, and Qr io the solid angle subtended by the receiving telescope. 

To calculate the number of photoelectrons, the equatian must be divided by hv and 

multiplied by g-, where h is Plemckfs eonstand, I) is the frequency of the laser, and 

&? is the efEciAcy of the receiver in photoelectrons per photon. r 

The solid angles % and Qr a re  

where A is'the active reflecting area of tke array, Ar is the area of the receiving S 
telescope, and R is the range. Introducing the definitions 

we get the foliowing equation for the number of photoelectrons N: 



This definition of the gain functions Gt and GS differs from standard usage, which 

includes a factor of 4% Equation (7-12) can be converted to the standard definition 
2 of gain by adding (479 to the denominator. 

The gain GS of the array is proportional to the intensity of the diffraction pattern 

of the array in the direction of the receiver. In the incoherent case, the intensity of 

the whole array is the sum of the intensities of all the cube corners. In Section 5.1.2, 

we showed that the intensity from each cube corner in terms of the dimensionless 

intensity F' is 
b 

For an array of identical cube corners, the intensity is 

In order t o  facilitate comparison with the xange equation, let us make the substitutions 

which results in 



We can ignore the factors TA, Ts, and 6 and wr i t ex$  in terms of the variables 

used in the range equation: 

Comparing the two expressions f o r C 1  we see that 
P' 

n 

which gives 

For a single cube corner at normal incidence, AS = S. If the cube comer is perfect, 

in the sense that the refiected field equals the incident field, then F' = 1 at the center 
2 of the far-field pattern, as shown in Section 5.1.2. The gain in this case is s/h . 

2 The standard definition of gain for a perfect reflector of area S is 47rsh . 

7.12 Velocity Aberration 

In the moving coordicate system of a retroreflector aboard a satellite, a laser 

beam incident on the cube comer is reflected back along the same line a s  the incident 

beam. I .  the cooidinate system of the observer on the ground, the reflected beam 

makes an angle 2v/c with the incident beam, where v is the component of the satellite's 

velociv perpendicular to the line of sigllt. - The position of the receiving equipment in 

the diffraction pattern of the array is therefore determiaed the magnitude and direc- 

tion of the tangential component of the satellite1 s velocity. Since the transfer function 

varies within the diffraction pattern, it can also vary with the amount and direction af 

the velocity aberration. In cases studied, fortunately, the var iat ia  is not too large 

and is reduced when the beam width is deliberately widened, such as  by building 

dihedral-angle offsets into the cube corners. 



7.13 Variation of the Transfer Function within the Wfradian Pattern 

The light reflected from each c31.e corner in an array is initidly a separate pen- 

cil of !ight ant~parallel to the incident beam. At large distances Cnnn the array, the 

mdividrral r d e c t i m  spread, owing to diffraction, and overlap each other. It is 

assumed that the return is &served at a distance large enough so that the diffraction 

patterns of the individual cube cornel-s are muct larger than the s i z e  of the retro- 

reflector array. Under these conditions, the difference in positian of &e centers of 

the individual diffraction patterns can be neglected. The incoherent ir&ensity at a 

palcicular point in tke h r  field is obtained by adding the intensity of the diffkactian 

pattern of each cube corner at  that point. Since cube--corner diffraction patterns can 

be rather lumpy, the incoherent return energy will vary at points in the far 

field. me average position of ;;be incoherent return pulse is calculated from equaticm 

(7-3). Althcugh the values of 4( are essentially coastant over the whde tX€ractim 

pettem, the intensities SK of the individual reflectims valy fmm point to poi.  

Therefore, the mean positicm of the pulse \aries at different poikts in tbc diffractim 

pattern. At  each point, there vill also be variations about the incoherent values as 

a result of coherent interference. 

Io cases where the infcnnztion available an the cpticd specifications of the cube 

corners is insufficient to model the diffraction patterns, we can a s s m e  that the 

intensity due to each reflector is yroportiona.1 to the active reflecting area of the cube 

zorner. ?%is is equivalent to assuming that the diffraction patterns of all cube cor- 

ners are identical, 



6.1 Cdcdation of Retroreflector Positiaas and OricslWicms - 

I.L Section 7.1, we described the coordinate sysfam of the retroreflector pcsitions 

drkntatians, in which &EX coordhmtse rtA three -lea were given for each cube 

eo~mer. 

The arrays carried by many of the retrnrdec&~r satc::i:;es ncnu in orbit caasist 
of sevrral panels wah cube corners arranged in r-s md columns on each panel. The 

geaera! procedure for computing the positicm ai each cut? cnrner ie first to compute 

the pition wifh respect to the pure1 and then, through a series of translati- and 

r&atim, to ma-e fhe p e l  to its piti011 on fie SateXita The ratstions perfoxmed 

define the direction of t k  nor'= i to the frant face af the c u b  corner. 

Let the penel, row, and c d w -  indicer. of a cUb6 corner be I ,  J, and K, respec- 

tively (see Figure 74). The pmitim of a cube comsr witb respect to the supporting 

-el is 

The comtant C, -- is t h z  height of the ~ube-c~rner hce above the hinge p o d  of the 
1 

~znei .  



Figure 74. A panel of cube comers. 

The amange~ent of the panels on n;@ satellite armys is such that it is c~mven- 

ien: to mtate the pmel &at the x and y axes by the angles 4 imd +I, displace the 

panel by 5 AyI, a d  AzI, a d  then r&te a b d  the z axis the aagle €J~. The 
result is 

The double-primed coordinates are the positians of the center of the front face 01 eack 

cube corner in the array coordinate system. 



The direction (BR, qR) of the normal to  the front Ence of the cube corner is 

obtained by performing the 4, mp and el rotatiorrs successively m the vector (0, 0, 1) 

and then cmprting tb angles of the vedar, from which we get 

Let the orientation of the cabe corner an the panel be a', as shown in Figure 75. 

The angle a' is the orientation with respect to the pole (Oy The orientation a cm 

be computed with respect to  the pole of the array coordinate system (8 = Q = 0, as dc- 

scribed in Section 8.2, by using 

Figure 75. Oricntatiorr of n cube corner on a panel. 



The abwe method was used to  calculate! retrordector positioos for the satellites 

analyzed in Weiffeabach (1973) and Amold (1972,1975a). The geometry of the Starlette 
army, w k m  transfer function is given in Arnold (1975a), is described in Centre National 

dtEtudes Spatiales (CNES, 1972). Photographs showing the construction of Starlet& 

have also been published (CNES, 1975). T k  informatian used to compute retroreflectcrr 

positions for Geos 3 can be found in Arnold (1975bj. 

8.2 O r i d t i o n  with Respect to a New Pole 

In cam- tbe mit ian and orientation of a cube corner m an array, the orien- 

tatim a' can be given initially with respect to some loca! pole having angular ccor- 

dinatw 9 and 4. with respect to the z axis of the array coordiaate system (see Figure 
P .i' 

Te). All such orieatations must be expressed wi& respect tc the z axis of the array 
(0 = $ = a). Let the normal to the h e  of the reflector be given by S e  q l e s  OR aad 

. The orientation angle is measured left from the great circle joining the mts 

en, OR) and (0 4 ) on a  nit sphere, as shown in Figure 77. The p h e  in Figure 77 
d P 

Figure 76. aj Direction of a local pole; b) direction of the normal to the front face of 
a cube corner. 
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Figure 77. magwm for computing the orientation of a cube corner with respect to a 
new pole (8 = # = 6). 

i= the- front facs of the cube corner. To express the orientztion with respect to a 
2 

new polt-, we must compute the difference in direction to the two poles. Lei V be 

a unit ve:tor in the direction (8 4 ) with the following components: 
P' P 

Let an xf,y', z' crtqrdinate system be defined with z' in the direction of the normal to 

the front face of tke cube corner (OR, +R), the x' axis in the direction of kccreasing 

and the yr axis in the directlor uf increasing OR. The cmrpcnents of 7 in the 

xr,y', zt coordinate system can be obtained by rotating the x,y, z coordinate system 

about the z axis Ey the hngle BR and then about the Rew y axis by the angle +R. The 

result is 



cot-14~ 0 -sin% cosBR sineR 

( vzf sin+R 0 0 1 cos o)(-si;gRc:OB $ $6) . 
The w l e  to  the pole (0 = = 0) in the x'y' plane is 8" = ~r, wbile the angle to  the pole 

(8 C+ ) in the x'y' coordinate system is 
P' P 

The desired orientatian a from Figure 77 is 

8.3 Condensing Large Arrays for Coherent Calcuiatians 

The a m a t  of computer time required to compute the energg and mean pasition 

of a coherent return from a satellite retroreflector array is roughly proportional to 

the square of the numher of active retrorefktors. Satellites such as Geos 1 and 

Geos 2 have a very large number of reflectors, all of which a re  genemlly actit-e since 

they all face the same directicn. The tariatians in energy and mean posit' ia are  

largely independent ?f the number of reflectors as long as the number is reascmably 

large. Guidelines regarding what is considered a reasonablq large number of re- 

flectors were given in Section 6. Considerable savings in computer time c a  be 

accomplished by averaging groups of neighboring reflectors and representing each 

group by a sing12 reflector at the mean position, weighted by the number of cube cor- 

ners av .qged. All reflectors averaged must have the same orientation. 



8.4.1 Geos 

Batb Geos 1 and Geos 2 have a hemispherica: structure in the center of the side 
containing the retroreflector panels (see Figure 78). At large incidence angles, some 
of the cube corners may be shadowed by its structure. Let x, y, and z be the coor- 

dinates of a cube comer, and let the center of the hemisphere of radius be located 

on the symmetry axis of the satellite a disk :e zc from the satellite center of mass 

(CM). The position of the cube corner in a coordinate system with its origin at the 

center of the sphere is 

x f = x  , (8- la) 

Y ' = Y  , (8- lb) 

Figure 78. a) Geos 1 and 2 satellites; b) direction of incident beam on Geos 1 and 2 .  

Let the direction of the incident beam be (8, +), as s h ~ ~ v n  in Figure 78. We car1 

rotate the x', y f ,  z f  coordinate system about the z' axis by 0 and about the new yr axis 



by 4 so that the final 2'' axis points toward the source. The coordinates of the cube 

comer become 

The cube corner will be shadowed if both 

z" < 0 

and 

The values of R asxi 4 for the two Geos satellites are as follows: 

Satellite U ! ! l  zc (m) 

Geos 1 0.3048 0.423 

Geos 2 0.3048 0.444 . 

8.4.2 Peole 

The Peole satellite has a frustrum of a cone extending from the satellite in the 

positive z uirection. The axis of the cone is the z axis. Let R1 and R2 be the radii 

of the M o m  and the top of the cone, respectively, and let zc be the z coordinate of 

the base and H be the height. The position of a cube corner with respect to the center 

of the bottom of the cane is given by equatims (8-l), where x, y, and z a re  the coor- 

dinates of the cube corner with respect to the center of mass of the satellite. Let the 

direction of the incident beam be (0, +). Rotating the primed coordinate system so 

that the z" axis points in that direction, we get the coordinates given by equation (8-2). 

The frustrum of a cone in the double-primed coordinate system has t b  shape shown 

in Figure 79. 



I 

R2 cos + x, = H sin + b = R, cos 4 
Figure 79. Shape of Peole cone. 

The cube corner will be shadowed if the followbg four conditions are met: 

The values of the parameters, in meters, are 
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