General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
NRL Memorandum Report 3939
NASA CR-152,222

Final Technical Report
Part I, Gallium-Doped Germanium
Evaluation of Photoconductors

W. J. MOORE
Semiconductors Branch
Electronics Technology Division

April 12, 1979

NASA Contract RA 32035-B

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
Introduction

An extended program has been carried out to determine the characteristics of gallium-doped germanium detectors produced by the Santa Barbara Research Center. Particular attention has been paid to those characteristics which were believed to be unusual or otherwise of an unpredictable nature with respect to IRAS performance.

Some general conclusions are possible based on these tests and, although many are self-evident, they will be repeated here.

(1) These devices can operate in the background limited (BLIP) condition for backgrounds in the $6-7 \times 10^8$ phot sec$^{-1}$cm$^{-2}$ range (or perhaps lower) at a temperature of 2.5K. Under these conditions the NEP is of the order of 4×10^{-17} watt Hz$^{-\frac{1}{2}}$.

(2) Operation at 3K imposes a severe penalty in that it produces conditions equivalent to a background of approximately 2×10^{10} photons sec$^{-1}$cm$^{-2}$ and may increase the 1/f noise above thermal g-r noise. At 3K the NEP is limited to about 1.5×10^{-16} watt Hz$^{-\frac{1}{2}}$.

(3) Anomalous signal and noise characteristics were observed with some, but not all, detectors. These anomalies are most severe at the lowest temperatures used in these tests (i.e. 2K). The device exhibiting the greatest anomalies would have optimum performance between 3K and 2K.

(4) Cosmic ray pulse fall times observed on both the 3- and 4-
series of detectors were of the order of 2 msec with a transimpedance amplifier and these observed times were amplifier limited.

(5) Noise spectra increase approximately as $P_n \propto f^{-1}$, where P_n is the noise power and f is the frequency, from 1 Hz down to at least .03 Hz.

(6) Signal responsivities were in excellent agreement with the manufacturer's data. Variations from the manufacturer's data occurred only as a result of differences in the operating conditions here and at SBRC. In general, a device would have substantially higher resistance at a given temperature and background in these tests than indicated by the manufacturer.\(^1\)

(7) The responsivity of these devices was high. Scaling previous Ge:Ga data calculated by the "power inband" method to the dimensions of these devices (a factor of 170) predicts responsivities of the order of 180 mho watt\(^{-1}\); whereas maximum measured responsivities for these devices were greater than 200 mho watt\(^{-1}\). It is concluded that the material from which these devices were constructed is at least as good as the best NRL material and that no serious damage occurs in processing.

(8) Signal vs frequency data determined from device response to a signal step indicate rolloff due to a single 6 dB/octave rolloff with a 3 dB point in the 1-3 Hz range at 3K. Some reduction in 3 dB frequency to about 0.2 to 1 Hz occurs at 2.5K. At 2K a second, slower, time constant appears and introduces additional signal reduction.

(9) Interfacing these devices to preamplifiers presents significant problems. These devices will have resistances of the order of 1x10\(^{12}\) ohms at minimum background ($\phi \lesssim 5x10^8$ phot sec\(^{-1}\)) at 2.5K and consider-
ably lower resistance at higher backgrounds and higher temperature. As a result it is difficult to interface these devices optimally to transimpedance amplifiers for all possible operating conditions. This has been a substantial problem in these tests.

Experimental Details and Results
A. Signal and NEP Measurements

The requirements of these tests (low background, low temperature) necessitated the design and construction of the third calibration system to be used in this series of tests. This system is based on the dipstick system built by the author at Cornell University.2 The major changes from the Cornell system were an increase in the dipstick diameter and inclusion of a movable aperture block which served as a low speed chopper for frequencies at or below 1Hz. The design of this system is shown in Fig. 1. Results reported here will not include data on sample 3-2b1-4 which was measured early in the program nor will the details of the anomalous signal response with time at 2K be reviewed. Both these topics were covered in interim reports. A typical calibration run consisted of strip chart recordings of the output of the source-follower preamplifier for bias off, bias on-signal off, and bias on-signal on. These measurements were repeated for various values of bias and as a function of both blackbody and detector temperatures. Results are presented in Appendix A.

The data in Appendix A include a number of entries for each calibration condition. These entries are described below.

TEMP. = The detector temperature as determined by a carbon resistor
on the detector mounting block. The entire enclosure was flooded with He gas for thermal equilibrium with the bath.

BB INTEGRATED FROM ... TO ... All responsivities (both power and photon) were calculated using all blackbody power in the approximate spectral band of the detector with cold crystal sapphire and crystal quartz filters.

BB TEMP = The temperature of the calibration blackbody as measured with a type E thermocouple. Both room temperature and liquid nitrogen temperature reference junctions were used during this study.

BIAS = The applied bias across the detector plus load.

BIAS DELTA V = The change in output of the source-follower preamplifier for a change from bias-off to bias-on. This value is the potential drop across the detector times the preamplifier gain. The preamplifier gain was approximately 0.9.

SIG DEL V = The change in source-follower output for a change from signal radiation off to signal on. Signal radiation was turned off with the movable shutter.

DC/1 Hz = This ratio is the ratio of peak dc signal volts to peak-to-peak signal volts when chopping with the movable shutter at 1 Hz.

NOISE = The rms noise value observed on a wave analyzer at 1 Hz.

BLACKBODY OUTPUT = The calculated blackbody radiation incident on the detector-sensitive area for the temperature and integration band given.

SIG. CONDUCTANCE (DC) = This is a derived quantity equal to the change in conductance per watt (or photon per sec) of signal. The calculation uses the large signal equations to derive a number characteristic of the device which is relatively independent of bias and measurement.
conditions.

VOLT. RESP. (DC) = The voltage responsivity calculated with the large-signal equations. When the signal is, in fact, large the calculation determines the correct small-signal responsivity.

CURR. RESP. (DC) = The current responsivity.

SIG. CONDUCTANCE (1 Hz) = As above but calculated using the 1 Hz signal as determined from the DC/1 Hz ratio.

VOLT. RESP. (1 Hz) = As above for 1 Hz.

CURR. RESP. (1 Hz) = As above for 1 Hz.

DETECTOR RESISTANCE = The resistance of the detector as calculated from the values of total bias, bias across detector, and load resistance.

The major uncertainty is in the load resistance. An error as great as 40% is possible. Note that the SBRC data sheets assume a load resistance independent of temperature below 3K. An error in excess of 100% is possible with that assumption.

DETECTOR BIAS = A number equal to the bias delta V divided by preamp gain.

BACKGROUND PHOTON FLUX DENSITY = The photon flux density required to produce the measured detector resistance calculated using the measured signal conductance. Note that the value calculated assumes that the detector resistance is optically (not thermally) limited. For a thermally limited resistance the background can be considered to be an optical equivalent of the operating temperature.

PC GAIN (Q.E. = 0.3) = This quantity (and the following quantities) are calculated using both the ac and dc responsivities described above with an assumed quantum efficiency of 0.3. Calculation of device parameters
using the ac responsivity implies that the lower ac response is the result of a slow process within the detector and not a result of RC rolloff prior to the preamp. A comparison of experimental NEP data with theoretical BLIP NEP values indicates that the ac results are appropriate for a detector at 2.5K (i.e. slow processes within the detector dominate the signal rolloff at 2.5K) while the dc results apply at 3K (i.e. RC rolloff dominates the signal rolloff at 3K).

SHOT NOISE = A calculated shot noise assuming a quantum efficiency of 0.3.

BLIP NEP = A calculated NEP for a noise equal to the shot noise.

QUAN EFFIC. IF BLIP = The quantum efficiency required to make the measured NEP a background limited value. When this quantity is of the order of 0.3 one can consider the detector to be, in fact, BLIP. Some of the NEP data is shown graphically in Figs. 2, 3 and 4.

Signal vs frequency measurements were made by determining the response to a step increase in signal. Analysis of these signal steps indicated a predominantly one time constant rise for operating temperatures of 2.5K or greater. At 2.5K the time constant ranged from 0.1 to 0.8 seconds and decreased to approximately .05 sec at 3K. Very slow secondary time constants were observed at 2K where \(T \approx 6 \text{ sec} \). These rise times indicate 3 dB frequencies at 3Hz for 3K operation and from 0.2 to 1 Hz for 2.5K operation.

B. Spectral Response

Spectral response has been determined by two different experimental techniques. Initial measurements were made with a grating spectrometer.
and a Golay cell. These measurements indicated relatively little reduction in response at 50 microns with respect to the peak response near 100 microns. However, these measurements were considered to be of questionable value due to contamination of the spectrometer output by higher order radiation in spite of a considerable effort to minimize out of band signals.

In order to avoid these problems a new approach was taken. Detector signal measurements were made as a function of blackbody temperature over the 30K to 120K range. An assumed detector response was then fed to a desktop computer which calculated and plotted the responsivity (mho phot⁻¹ sec) for each temperature. The spectral response was varied to give the most consistent responsivity over the blackbody temperature range used. This technique is not sensitive to details in the spectral response curve but does not have serious out-of-band radiation problems. The major weakness of this method is contamination by light leaks around the blackbody. These tend to cause an underestimation of the short wavelength response and therefore result in a worst case spectrum. Short wavelength response will be at least as good as indicated from these measurements.

A series of plots for two detectors are given in Figs. 5 through 14. The detector (with quartz and sapphire filters) is assumed to turn on at L1 microns, the smallest sensitive wavelength, rise linearly to L2 microns and fall to zero at L3 microns. The relative response at L1 is given by G₁. The average conductance responsivity is given by G. An inset shows the assumed spectral response.
C. Noise vs Frequency

As originally envisioned the noise vs frequency measurements below 1 Hz would have been done with an analog-to-digital converter and a computer. Equipment malfunctions prevented the use of this technique and forced reliance on an analog approach. This limited the lowest frequency at which we could make measurements to .03 Hz rather than the planned .01 Hz but did pay a dividend by making apparent a possible problem with digital noise data.

Detectors of the size of the SBRC Ge:Ga devices (.05 x .15 x .3 cm) exhibit a cosmic ray noise pulse every few minutes at sea level. Digital noise data consists of many digitized samples taken from the noise waveform over several minutes. In order to prevent aliasing of the Fourier transform a high frequency cutoff filter limits the maximum frequency present to half the inverse of the sampling period. That is \(f_{\text{max}} = \frac{1}{2T} \), where \(T \) is the sampling period. Therefore at least two samples are taken per period of the highest frequency present. A cosmic ray pulse passing through such filters is considerably reduced in amplitude and broadened but not eliminated. These pulses then contribute to the measured noise at low frequencies.

The analog system used here consists of an FM analog tape recorder on which the noise is recorded at minimum tape speed (1 7/8 ips) and played back at maximum tape speed (60 ips) resulting in a frequency multiplication by a factor of 32. On playback the noise is measured with a wave analyzer down to 1 Hz. With this system the cosmic ray pulses are very apparent and contribute to the noise spectrum if the result is read on the meter. This problem was avoided by recording the
wave analyzer output on a strip chart recorder and reading between the pulses.

The results on two detectors indicate that the noise increases approximately as 1/f below 1 Hz for the conditions of the tests. These conditions were not optimum for sample Ge:Ga 4-5bl-1 in that the background was higher than desired, and the noise was masked by pulses for f \(\leq 0.1\) Hz. The data are given in Fig. 15. However, for sample 3-2bl-3 the conditions were nearly optimum (\(\phi \approx 5 \times 10^8\) phot sec\(^{-1}\) cm\(^{-2}\)). These data are given in Fig. 16.

The noise spectrum for sample 3-2bl-3 is an interesting one in that it appears to consist of a section of noise above about 1 Hz which has been rolled off by the RC time constant and a section of 1/f noise below 1 Hz which is free of RC rolloff. This interpretation is consistent with the observation that this device appears to be nearly BLIP at 1 Hz under these conditions. Above about 2 Hz the device is amplifier noise limited. It is concluded from these spectra that the device noise has a 1/f spectrum throughout the region below 1 Hz.

REFERENCES
Fig. 1 — A schematic drawing of the calibration apparatus. The calibrating source, a blackbody, is located in vacuum in the upper part of the drawing. A sapphire window separates the blackbody vacuum from the detector atmosphere: low pressure helium gas. A quartz filter, aperture, and manually operated chopper complete the optical components. The assembly is immersed in pumped liquid He for cooling. Temperatures are determined by a type E thermocouple in the blackbody and a carbon resistor on the sample mounting block.
Fig. 2 — NEP at 1 Hz vs bias for sample 4-3bl-1. The anomalous rising curve at 3K was due to excess noise at that temperature attributable to a noisy contact. This noise was absent at 2K but a slow signal response time limited the NEP at that temperature.
Fig. 3 — NEP at 1 Hz bias for sample 3-2b1-3. The dashed curves are calculated values for the BLIP NEP as discussed in the text.
Fig. 4 — NEP at 1 Hz vs bias for sample 4-5b1-1. The dashed curves are calculated values for the BLIP NEP as discussed in the text.
Fig. 5 - Relative conductance per photon per second for sample 4-3bl-1 as a function of blackbody temperature. The assumed spectral response is given in the inset.

\[L1 = 40 \quad L2 = 120 \quad L3 = 135 \]
\[G1 = 0.50 \]
\[G = 7.43 \times 10^{-20} \text{ Mho\textquoteright Phot\textquoteright Sec} \]
\[\text{Ge:Ga 4-3Bl-1 DATA OF 5/16/77} \]
Fig. 6 — Relative conductance per photon per second for sample 4-3bl-1 as a function of blackbody temperature. The assumed spectral response is given in the inset.
Fig. 7 — Relative conductance per photon per second for sample 4-3bl-1 as a function of blackbody temperature. The assumed spectral response is given in the inset.
Fig. 8 — Relative conductance per photon per second for sample 4-3bl-1 as a function of blackbody temperature. The assumed spectral response is given in the inset.
Fig. 9 — Relative conductance per photon per second for sample 4-3bl-1 as a function of blackbody temperature. The assumed spectral response is given in the inset.
Fig. 10 — Relative conductance per photon per second for sample 4-3bl-1 as a function of blackbody temperature. The assumed spectral response is given in the inset.
Fig. 11 — Relative conductance per photon per second for sample 3-2bl-3 as a function of blackbody temperature. The assumed spectral response is given in the insert. A constant light leak of 6×10^6 phot/sec (8×10^6 phot sec$^{-1}$ cm$^{-2}$) has been assumed based on measurements of signal with a cold blackbody.
L1 = 40 L2 = 120 L3 = 135
G1 = 0.25 LEAK = 6.00E+006 PHOT/SEC
G = 4.35E-019 MHOS/PHOT/SEC
Ge:Ga 3-2B1-3 DATA OF 6/30/78

Fig. 12 — Relative conductance per photon per second for sample 3-2bl-3
as a function of blackbody temperature. The assumed spectral response
is given in the insert. A constant light leak of 6 X 10^6 phot/sec (8 X 10^8
phot sec^{-1} cm^{-2}) has been assumed based on measurements of signal
with a cold blackbody.
L1 = 40 L2 = 120 L3 = 135
G1 = 0.10 LEAK = 6.00E+00 PHOT/SEC
G = 4.94E-019 MHOS/PHOT/SEC
Ge:Ga 3-2B1-3 DATA OF 6/30/78

Fig. 13 — Relative conductance per photon per second for sample 3-2b1-3 as a function of blackbody temperature. The assumed spectral response is given in the insert. A constant light leak of 6×10^6 phot/sec (8×10^8 phot sec$^{-1}$ cm$^{-2}$) has been assumed based on measurements of signal with a cold blackbody.
Fig. 14 — Relative conductance per photon per second for sample 3-2b1-3 as a function of blackbody temperature. The assumed spectral response is given in the insert. A constant light leak of 6×10^6 phot/sec (8×10^8 phot sec$^{-1}$ cm$^{-2}$) has been assumed based on measurements of signal with a cold blackbody.
Fig. 15 — Noise vs frequency for sample 4-5b1-1. Data below about 0.1 Hz are uncertain due to interference from cosmic background radiation.
Fig. 16 — Noise vs frequency for sample 3-2bl-3

NOISE VS FREQUENCY
Ge:Ga 3-2bl-3
2.5K, .03V BIAS
SAMPLE NO. GE:GA 4-3B1-1 RUN DATE 5/5/77 TEMP.= 3 K
BB INTEGRATED FROM 48 TO 130 MICRONS STEP 0.2
ETENDUE = 2.35E-008 LOAD = 5.00E+010

BB TEMP = 114.5 BIAS = 0.0500
SIG. DEL V = 0.00792 DC/HZ = 1.19
BLACKBODY OUTPUT = 2.86E-012 WATTS
SIG. CONDUCTANCE (DC) = 1.46E+002 MHOS/WATT
VOLT. RESP. (DC) = 3.69E+003 VOLT/WATT
CURR. RESP. (DC) = 1.42E+003 AMP/WATT
SIG. CONDUCTANCE (1HZ) = 7.18E+001 MHOS/WATT
VOLT. RESP. (1HZ) = 3.00E+009 VOLT/WATT
CURR. RESP. (1HZ) = 6.98E-001 AMP/WATT
NEP (1HZ) = 6.25E-016 WATT/HZ^1/2
DETECTOR RESISTANCE = 1.35E+010 OHMS
DETECTOR BIAS = 1.07E-002 VOLTS

bias delta V = 0.0007
noise = 5.1E-6
9.03E+008 PHOT/SEC
4.62E-019 MHOS/PHOT/SEC
1.17E-011 VOLT/PHOT/SEC
4.48E-021 AMP/PHOT/SEC
2.27E-019 MHOS/PHOT/SEC
9.48E-012 VOLT/PHOT/SEC
2.28E-021 AMP/PHOT/SEC
1.98E+005 PHOT/SEC-HZ^1/2

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

BACKGROUND PHOTON FLUX DENSITY = 2.13E+010 PHOTONS/SEC-CMT2
PC GAIN (Q.E. = 0.3) = 5.84E-002 (AC)
SHOT NOISE (Q.E. = 0.3) = 1.55E-006 V/HZ^1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 5.16E-016 W/HZ^1/2 (AC)
QUAN. EFFIC. IF BLIP = 2.84E-001 (AC)

bias delta V = 0.1000
noise = 5.1E-6
1.09E+009 PHOT/SEC
3.21E-019 MHOS/PHOT/SEC
1.67E-011 VOLT/PHOT/SEC
5.78E-021 AMP/PHOT/SEC
3.21E-019 MHOS/PHOT/SEC
1.36E-011 VOLT/PHOT/SEC
3.13E-021 AMP/PHOT/SEC
2.79E+005 PHOT/SEC-HZ^1/2

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

BACKGROUND PHOTON FLUX DENSITY = 3.37E+010 PHOTONS/SEC-CMT2
PC GAIN (Q.E. = 0.3) = 7.17E-002 (AC)
SHOT NOISE (Q.E. = 0.3) = 2.44E-006 V/HZ^1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 5.74E-016 W/HZ^1/2 (AC)
QUAN. EFFIC. IF BLIP = 1.24E-001 (AC)
<table>
<thead>
<tr>
<th>Sample No. GE: GA 4-3B1-1</th>
<th>Run Date 5/5/77</th>
<th>Temp. = 3 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB Integrated from 40 to 130 Microns Step 0.2</td>
<td>Etendue = 2.35E-008</td>
<td>Load = 5.00E+010</td>
</tr>
</tbody>
</table>

Temp. = 3 K

<table>
<thead>
<tr>
<th>BB Temp = 114.8</th>
<th>BIAS = 0.1500</th>
<th>BIAS Delta V = 0.0244</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIG Del V = 0.01700</td>
<td>DC/1Hz = 1.19</td>
<td>Noise = 1.42E-5</td>
</tr>
<tr>
<td>Blackbody Output = 2.88E-012 Watts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG Conductance (DC) = 8.94E+001 MHOS/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volt. Resp. (DC) = 7.42E+009 VOLT/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curr. Resp. (DC) = 2.18E+006 AMP/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG Conductance (1Hz) = 5.49E+001 MHOS/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volt. Resp. (1Hz) = 6.10E+009 VOLT/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curr. Resp. (1Hz) = 1.34E+006 AMP/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEP (1Hz) = 1.08E-015 WATT/Hz^1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Resistance = 1.09E+010 OHMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Bias = 2.68E-002 Volts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Following Are Calculated From Above Data

Background Photon Flux Density

PC Gain (Q.E. = 0.3) = 9.71E-002 (AC)	4.33E+010 Photons/Sec-CMT2	
Shot Noise (Q.E. = 0.3) = 3.18E-006 V/HZ^1/2 (AC)	1.58E-001 (DC)	
BLIP NEP (Q.E. = 0.3) = 5.22E-016 W/HZ^1/2 (AC)	4.06E-006 V/HZ^1/2 (DC)	
Quan. Effic. If Blip = 7.03E-002 (AC)	6.6E-016 W/HZ^1/2 (DC)	

BB Temp = 101.5

<table>
<thead>
<tr>
<th>SIG Del V = 0.01930</th>
<th>DC/1Hz = 1.19</th>
<th>BIAS Delta V = 0.0306</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackbody Output = 2.88E-012 Watts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG Conductance (DC) = 9.70E+001 MHOS/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volt. Resp. (DC) = 1.13E+010 VOLT/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curr. Resp. (DC) = 2.97E+008 AMP/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG Conductance (1Hz) = 6.41E+001 MHOS/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volt. Resp. (1Hz) = 9.34E+009 VOLT/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curr. Resp. (1Hz) = 1.96E+006 AMP/WATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEP (1Hz) = 1.05E-015 WATT/Hz^1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Resistance = 1.01E+010 OHMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Bias = 3.36E-002 Volts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Following Are Calculated From Above Data

Background Photon Flux Density

PC Gain (Q.E. = 0.3) = 1.39E-001 (AC)	4.36E+010 Photons/Sec-CMT2	
Shot Noise (Q.E. = 0.3) = 4.17E-006 V/HZ^1/2 (AC)	2.11E-001 (DC)	
BLIP NEP (Q.E. = 0.3) = 4.46E-016 W/HZ^1/2 (AC)	5.13E-006 V/HZ^1/2 (DC)	
Quan. Effic. If Blip = 5.42E-002 (AC)	5.49E-016 W/HZ^1/2 (DC)	

8.21E-002 (DC)
SAMPLE NO: 8E8A 4=3B1-1
RUN DATE 3/28/77
TEMP. = 2 K

BB INTTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE = 2.35E-008
LOAD = 1.00E+011

BB TEMP = 105.1
BIAS = 0.0200
BB DEL V = 0.01710
DC/1HZ = 2.9
BLACKBODY OUTPUT = 2.30E-012 WATTS
SIG. CONDUCTANCE (DC) = 9.46E+001 MHOS/WATT
VOLT. RESP. (DC) = 1.35E+011 VOLT/WATT
CURR. RESP. (DC) = 1.69E+008 AMP/WATT
SIG. CONDUCTANCE (1HZ) = 2.17E+008 MHOS/WATT
VOLT. RESP. (1HZ) = 4.17E+009 VOLT/WATT
CURR. RESP. (1HZ) = 3.89E-002 AMP/WATT
NEP (1HZ) = 4.75E-016 WATTS/HZ1/2
DETECTOR RESISTANCE = 5.97E+012 OHMS
DETECTOR BIAS = 1.97E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY =
PC GAIN (Q.E. = 0.3) = 2.78E-003 (AC)
SHOT NOISE (Q.E. = 0.3) = 2.17E-007 V/HZ1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 5.28E-017 W/HZ1/2 (AC)
QUAN. EFFIC. IF BLIP = 3.56E-003 (AC)

BB TEMP = 104.5
BIAS = 0.0500
BB DEL V = 0.04250
DC/1HZ = 2.9
BLACKBODY OUTPUT = 2.26E-012 WATTS
SIG. CONDUCTANCE (DC) = 9.68E+001 MHOS/WATT
VOLT. RESP. (DC) = 3.13E+011 VOLT/WATT
CURR. RESP. (DC) = 4.27E+008 AMP/WATT
SIG. CONDUCTANCE (1HZ) = 2.22E+008 MHOS/WATT
VOLT. RESP. (1HZ) = 1.05E+010 VOLT/WATT
CURR. RESP. (1HZ) = 9.88E-002 AMP/WATT
NEP (1HZ) = 2.64E-016 WATTS/HZ1/2
DETECTOR RESISTANCE = 4.45E+012 OHMS
DETECTOR BIAS = 4.89E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY =
PC GAIN (Q.E. = 0.3) = 7.05E-003 (AC)
SHOT NOISE (Q.E. = 0.3) = 6.27E-007 V/HZ1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 5.97E-017 W/HZ1/2 (AC)
QUAN. EFFIC. IF BLIP = 1.54E-002 (AC)

28
SAMPLE NO. GE:GA 4-38i-1
RUN DATE 3/28/77
TEMP. = 2 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 2.35E-008
LOAD= 1.00E+011

<table>
<thead>
<tr>
<th>BB TEMP</th>
<th>BIAS</th>
<th>BIAS DELTA V= 0.0180</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.8</td>
<td>0.0200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIG DEL V</th>
<th>DC/1HZ=2.9</th>
<th>NOISE = 2E-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01290</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLACKBODY OUTPUT</th>
<th>9.21E-013 WATTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.78E+001 MHOS/WATT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIG. CONDUCTANCE (DC)</th>
<th>5.26E+010 VOLT/WATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT. RESP.(DC)</td>
<td></td>
</tr>
<tr>
<td>5.00E-001 AMP/WATT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIG. CONDUCTANCE (1HZ)</th>
<th>3.68E+000 MHOS/WATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT. RESP.(1HZ)</td>
<td></td>
</tr>
<tr>
<td>7.02E+000 VOLT/WATT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURR. RESP.(1HZ)</th>
<th>6.48E-002 AMP/WATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEP (1HZ)</td>
<td>2.84E-016 WATT/HZ^1/2</td>
</tr>
<tr>
<td>DETECTOR RESISTANCE</td>
<td>9.00E+012 OHMS</td>
</tr>
<tr>
<td>DETECTOR BIAS</td>
<td>1.98E-002 VOLTS</td>
</tr>
</tbody>
</table>

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

<table>
<thead>
<tr>
<th>BACKGROUND PHOTON FLUX DENSITY</th>
<th>1.82E+008 PHOTONS/SEC-CMT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC GAIN (O.E.=0.3)</td>
<td>4.35E-003 (AC)</td>
</tr>
<tr>
<td>SHOT NOISE (O.E.=0.3)</td>
<td>2.23E-007 V/HZ^1/2 (AC)</td>
</tr>
<tr>
<td>BLIP NEP (O.E.=0.3)</td>
<td>3.17E-017 W/HZ^1/2 (AC)</td>
</tr>
<tr>
<td>QUAN.EFFIC.IF BLIP</td>
<td>3.74E-003 (AC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BB TEMP</th>
<th>BIAS</th>
<th>BIAS DELTA V= 0.0458</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.5</td>
<td>0.0500</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIG DEL V</th>
<th>DC/1HZ=2.9</th>
<th>NOISE = 2.8E-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03450</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLACKBODY OUTPUT</th>
<th>9.10E-013 WATTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.33E+001 MHOS/WATT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIG. CONDUCTANCE (DC)</th>
<th>1.72E+011 VOLT/WATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT. RESP.(DC)</td>
<td></td>
</tr>
<tr>
<td>1.53E+000 AMP/WATT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIG. CONDUCTANCE (1HZ)</th>
<th>3.83E+000 MHOS/WATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT. RESP.(1HZ)</td>
<td></td>
</tr>
<tr>
<td>1.95E+010 VOLT/WATT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURR. RESP.(1HZ)</th>
<th>1.75E-001 AMP/WATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEP (1HZ)</td>
<td>1.44E-016 WATT/HZ^1/2</td>
</tr>
<tr>
<td>DETECTOR RESISTANCE</td>
<td>-1.53E+013 OHMS</td>
</tr>
<tr>
<td>DETECTOR BIAS</td>
<td>5.83E-002 VOLTS</td>
</tr>
</tbody>
</table>

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

<table>
<thead>
<tr>
<th>BACKGROUND PHOTON FLUX DENSITY</th>
<th>8.95E+007 PHOTONS/SEC-CMT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC GAIN (O.E.=0.3)</td>
<td>1.18E-002 (AC)</td>
</tr>
<tr>
<td>SHOT NOISE (O.E.=0.3)</td>
<td>4.58E-007 V/HZ^1/2 (AC)</td>
</tr>
<tr>
<td>BLIP NEP (O.E.=0.3)</td>
<td>2.31E-017 W/HZ^1/2 (AC)</td>
</tr>
<tr>
<td>QUAN.EFFIC.IF BLIP</td>
<td>7.72E-003 (AC)</td>
</tr>
</tbody>
</table>

29
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB TEMP= 59.5</td>
<td></td>
</tr>
<tr>
<td>SIG DEL V=0.00225</td>
<td></td>
</tr>
<tr>
<td>BLACKBODY OUTPUT=</td>
<td></td>
</tr>
<tr>
<td>SIG. CONDUCTANCE (DC)=</td>
<td></td>
</tr>
<tr>
<td>VOLT. RESP. (DC)=</td>
<td></td>
</tr>
<tr>
<td>CURR. RESP. (DC)=</td>
<td></td>
</tr>
<tr>
<td>SIG. CONDUCTANCE (1H)=</td>
<td></td>
</tr>
<tr>
<td>VOLT. RESP. (1H)=</td>
<td></td>
</tr>
<tr>
<td>CURR. RESP. (1H)=</td>
<td></td>
</tr>
<tr>
<td>NEP (1H)=</td>
<td></td>
</tr>
<tr>
<td>DETECTOR RESISTANCE=</td>
<td></td>
</tr>
<tr>
<td>DETECTOR BIAS=</td>
<td></td>
</tr>
</tbody>
</table>

Background Photon Flux Density:

- **PC Gain (Q.E.=0.3)**: 3.01E+009 Photons/sec-Cmt2
- **Shot Noise (Q.E.=0.3)**: 3.01E-009 V/HZ1/2 (AC)
- **Blip NEP (Q.E.=0.3)**: 8.23E-007 V/HZ1/2 (DC)
- **Quantum Efficiency If Blip**: 1.19E+007 W/HZ1/2 (DC)

Detector Resistance: 6.37E+003 Ohms

Detector Bias: 0.0100

Bias Delta V=0.0058

Noise: 2.2E-6

3.95E-007 Photons/sec-AC

3.86E+000 V/HZ1/2 (AC)

1.91E+007 W/HZ1/2 (DC)

5.03E+007 Photons/sec-AC

5.03E+007 Photons/sec-DC

1.89E+011 VOLT/PHOT/SEC

1.89E+011 VOLT/PHOT/SEC

1.89E+011 VOLT/PHOT/SEC

5.66E+022 AMP/PHOT/SEC

9.76E+004 PHOT/SEC-HZ1/2

3.30E+003 Volts

3.30E-003 Volts
SAMPLE NO. GE: 6A 3-2B1-3 RUN DATE 6/9/78 TEMP.=3 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009 LOAD= 5.00E+010

BB TEMP= 59.2 BIAS= 0.0200 BIAS DELTA V= 0.0110
SIG DEL V= 0.00382 DC/1HZ=2
BLACKBODY OUTPUT= 1.08E-013 WATTS NOISE= 3.6E-6
SIG.CDNOCTANCE(DC)= 1.64E+002 MHOS/WATT 4.46E-019 MHOS/PHOT/SEC
VOLT. RESP.(DC)= 4.94E+010 VOLT/WATT 1.34E-010 VOLT/PHOT/SEC
CURR. RESP.(DC)= 1.80E+000 AMP/WATT 4.90E-021 AMP/PHOT/SEC
SIG.CDNOCTANCE(1HZ)= 6.46E+001 MHOS/WATT 1.76E-019 MHOS/PHOT/SEC
VOLT. RESP.(1HZ)= 2.18E+010 VOLT/WATT 5.94E-011 VOLT/PHOT/SEC
CURR. RESP.(1HZ)= 7.11E-001 AMP/WATT 1.94E-021 AMP/PHOT/SEC
NEP (1HZ)= 1.53E-016 WATT/HZ1/2 5.60E+004 PHOT/SEC-HZ1/2
DETECTOR RESISTANCE = 7.64E+010 OHMS
DETECTOR BIAS= 1.21E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.= 0.3)= 3.92E+009 PHOTONS/SEC-CMT2 4.43E-002(AC)
SHOT NOISE(Q.E.=0.3)= 1.84E-006 V/HZ1/2 (AC) 1.12E-001 (DC)
BLIP NEP (Q.E.=0.3)= 8.46E-017 W/HZ1/2 (AC) 2.93E-006 V/HZT1/2 (DC)
QUAN. EFFIC. IF BLIP= 9.22E-002 (AC) 1.35E-016 W/HZT1/2 (DC)

BB TEMP= 60.5 BIAS= 0.0380 BIAS DELTA V= 0.0155
SIG DEL V= 0.00590 DC/1HZ=2
BLACKBODY OUTPUT= 1.17E-013 WATTS NOISE= 4.6E-6
SIG.CDNOCTANCE(DC)= 1.85E+002 MHOS/WATT 4.26E+007 PHOT/SEC
VOLT. RESP.(DC)= 7.08E+010 VOLT/WATT 5.08E-019 MHOS/PHOT/SEC
CURR. RESP.(DC)= 2.87E+000 AMP/WATT 1.94E-010 VOLT/PHOT/SEC
SIG.CDNOCTANCE(1HZ)= 7.09E+001 MHOS/WATT 7.88E-021 AMP/PHOT/SEC
VOLT. RESP.(1HZ)= 3.11E+010 VOLT/WATT 1.94E-019 MHOS/PHOT/SEC
CURR. RESP.(1HZ)= 1.19E+000 AMP/WATT 8.53E-011 VOLT/PHOT/SEC
NEP (1HZ)= 1.34E-016 WATT/HZ1/2 3.01E-021 AMP/PHOT/SEC
DETECTOR RESISTANCE = 6.57E+010 OHMS
DETECTOR BIAS= 1.70E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 3.99E+009 PHOTONS/SEC-CMT2 6.90E-002(AC)
SHOT NOISE(Q.E.=0.3)= 2.76E-006 V/HZ1/2 (AC) 2.76E-006 V/HZT1/2 (DC)
BLIP NEP (Q.E.=0.3)= 8.86E-017 W/HZ1/2 (AC) 4.47E-006 V/HZT1/2 (DC)
QUAN. EFFIC. IF BLIP= 1.31E-001 (AC) 3.44E-001 (DC)

31
<table>
<thead>
<tr>
<th>Sample No. GE:GA 3-2B1-3</th>
<th>Run Date 6/9/78</th>
<th>Temp. = 3 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB Integrated from 40 to 130 Microns Step 0.2</td>
<td>Load = 5.00E+010</td>
<td></td>
</tr>
</tbody>
</table>

BB Temp = 59.2
Bias = 0.0400
Bias Delta V = 0.0189
Noise = 6E-6

- **Blackbody Output** = 1.08E-013 Watts
- **Sigma Conductance (DC)** = 1.92E+002 mhos/Watt
- **VOLT. Resp. (DC)** = 8.23E+010 Volt/Watt
- **Curr. Resp. (DC)** = 3.63E+008 Amp/Watt
- **Sigma Conductance (IHZ)** = 7.57E+001 mhos/Watt
- **VOLT. Resp. (IHZ)** = 3.71E+010 Volt/Watt
- **Curr. Resp. (IHZ)** = 1.43E+000 Amp/Watt
- **NEP (IHZ)** = 1.47E-016 Watt/Hz^1/2

Detector Resistance = 5.40E+018 Ohms
Detector Bias = 2.88E-002 Volts

The Following are calculated from above data

- **Background Photon Flux Density** = 7.46E+008 Photons/Hz^1/2
- **PC Gain (O.E.=0.3)** = 8.92E-002 (AC)
- **Shot Noise (O.E.=0.3)** = 3.50E-006 V/Hz^1/2 (AC)
- **Blip NEP (O.E.=0.3)** = 9.45E-007 W/Hz^1/2 (AC)

Bias Delta V = 0.0230
Noise = 6E-6

- **Blackbody Output** = 1.08E-013 Watts
- **Sigma Conductance (DC)** = 1.92E+002 mhos/Watt
- **VOLT. Resp. (DC)** = 8.23E+010 Volt/Watt
- **Curr. Resp. (DC)** = 3.63E+008 Amp/Watt
- **Sigma Conductance (IHZ)** = 7.57E+001 mhos/Watt
- **VOLT. Resp. (IHZ)** = 3.71E+010 Volt/Watt
- **Curr. Resp. (IHZ)** = 1.43E+000 Amp/Watt
- **NEP (IHZ)** = 1.47E-016 Watt/Hz^1/2

Detector Resistance = 5.40E+018 Ohms
Detector Bias = 2.88E-002 Volts

The Following are calculated from above data

- **Background Photon Flux Density** = 7.46E+008 Photons/Hz^1/2
- **PC Gain (O.E.=0.3)** = 8.92E-002 (AC)
- **Shot Noise (O.E.=0.3)** = 3.50E-006 V/Hz^1/2 (AC)

Bias Delta V = 0.0230
Noise = 6E-6
SAMPLE NO. GE:GA 3-2B1-3
RUN DATE 6/9/78
TEMP. = 3 K

BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE = 6.84E-009
LOAD = 5.00E+018

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature</th>
<th>Bias</th>
<th>Delta V</th>
<th>Noise</th>
<th>Gain (DC)</th>
<th>Gain (AC)</th>
<th>Noise (DC)</th>
<th>Gain (AC)</th>
<th>Noise (DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>59.0</td>
<td>0.050</td>
<td>0.0230</td>
<td>0.0230</td>
<td>1.06E-013</td>
<td>3.98E+007</td>
<td>4.81E-019</td>
<td>2.49E-018</td>
<td>1.11E-020</td>
</tr>
<tr>
<td>SIG DEL V</td>
<td>0.00740</td>
<td>DC/1Hz=2</td>
<td>-</td>
<td>-</td>
<td>9.14E+018</td>
<td>2.06E+000</td>
<td>9.14E+010</td>
<td>4.17E+010</td>
<td>2.06E+000</td>
</tr>
<tr>
<td>BLACK BODY OUTPUT</td>
<td>1.06E-013</td>
<td>MHOS/WATT</td>
<td>-</td>
<td>-</td>
<td>4.06E+000</td>
<td>1.64E+000</td>
<td>1.32E-016</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>SIG CONDUCTANCE</td>
<td>1.77E+002</td>
<td>MHOS/WATT</td>
<td>-</td>
<td>-</td>
<td>7.14E+001</td>
<td>1.64E+000</td>
<td>1.32E-016</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>VOLT. RESP.</td>
<td>9.94E+018</td>
<td>VOLT/WATT</td>
<td>-</td>
<td>-</td>
<td>4.17E+010</td>
<td>1.64E+000</td>
<td>1.32E-016</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>CURR. RESP.</td>
<td>4.06E+000</td>
<td>AMP/WATT</td>
<td>-</td>
<td>-</td>
<td>7.14E+001</td>
<td>1.64E+000</td>
<td>1.32E-016</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>SIG CONDUCTANCE (1Hz)</td>
<td>4.17E+010</td>
<td>MHOS/WATT</td>
<td>-</td>
<td>-</td>
<td>2.06E+000</td>
<td>1.64E+000</td>
<td>1.32E-016</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>VOLT. RESP. (1Hz)</td>
<td>9.94E+018</td>
<td>VOLT/WATT</td>
<td>-</td>
<td>-</td>
<td>4.17E+010</td>
<td>1.64E+000</td>
<td>1.32E-016</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>CURR. RESP. (1Hz)</td>
<td>4.06E+000</td>
<td>AMP/WATT</td>
<td>-</td>
<td>-</td>
<td>7.14E+001</td>
<td>1.64E+000</td>
<td>1.32E-016</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>NEP (1Hz)</td>
<td>1.32E-016</td>
<td>WATT/HZT1/2</td>
<td>-</td>
<td>-</td>
<td>4.83E+004</td>
<td>1.64E+000</td>
<td>1.32E-016</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>DETECTOR RESISTANCE</td>
<td>5.11E+010</td>
<td>OHMS</td>
<td>-</td>
<td>-</td>
<td>2.53E-002</td>
<td>4.81E-006</td>
<td>3.90E+007</td>
<td>4.83E+004</td>
<td></td>
</tr>
<tr>
<td>DETECTOR BIAS</td>
<td>0.0600</td>
<td>DC/1Hz=2</td>
<td>-</td>
<td>-</td>
<td>0.0500</td>
<td>2.53E-002</td>
<td>4.81E-006</td>
<td>3.90E+007</td>
<td></td>
</tr>
</tbody>
</table>

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (DC) = 1.06E-013 WATTS
SHOT NOISE (DC) = 4.14E-006 V/HZT1/2
BLIP NEP (DC) = 9.93E-017 W/HZT1/2
QUAN. EFFIC. IF BLIP = 1.71E-001 (AC)

BB TEMP= 59.0
SIG DEL V=0.00820
BLACK BODY OUTPUT= 1.06E-013 WATTS
SIG CONDUCTANCE (DC)= 2.13E+002 MHOS/WATT
VOLT. RESP. (DC)= 9.96E+018 VOLT/WATT
CURR. RESP. (DC)= 5.98E+000 AMP/WATT
SIG CONDUCTANCE (1Hz)= 8.51E+001 MHOS/WATT
VOLT. RESP. (1Hz)= 4.55E+010 VOLT/WATT
CURR. RESP. (1Hz)= 2.08E+000 AMP/WATT
NEP (1Hz)= 1.47E-016 WATT/HZT1/2
DETECTOR RESISTANCE = 4.94E+018 OHMS
DETECTOR BIAS= 2.68E-002 VOLTS

BIAS DELTA V=0.0244
NOISE=7.5E-6

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (DC) = 1.06E-013 WATTS
SHOT NOISE (DC) = 4.14E-006 V/HZT1/2
BLIP NEP (DC) = 9.93E-017 W/HZT1/2
QUAN. EFFIC. IF BLIP = 1.71E-001 (AC)

BB TEMP= 59.0
SIG DEL V=0.00820
BLACK BODY OUTPUT= 1.06E-013 WATTS
SIG CONDUCTANCE (DC)= 2.13E+002 MHOS/WATT
VOLT. RESP. (DC)= 9.96E+018 VOLT/WATT
CURR. RESP. (DC)= 5.98E+000 AMP/WATT
SIG CONDUCTANCE (1Hz)= 8.51E+001 MHOS/WATT
VOLT. RESP. (1Hz)= 4.55E+010 VOLT/WATT
CURR. RESP. (1Hz)= 2.08E+000 AMP/WATT
NEP (1Hz)= 1.47E-016 WATT/HZT1/2
DETECTOR RESISTANCE = 4.94E+018 OHMS
DETECTOR BIAS= 2.68E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (DC) = 1.06E-013 WATTS
SHOT NOISE (DC) = 4.14E-006 V/HZT1/2
BLIP NEP (DC) = 9.93E-017 W/HZT1/2
QUAN. EFFIC. IF BLIP = 1.71E-001 (AC)

BB TEMP= 59.0
SIG DEL V=0.00820
BLACK BODY OUTPUT= 1.06E-013 WATTS
SIG CONDUCTANCE (DC)= 2.13E+002 MHOS/WATT
VOLT. RESP. (DC)= 9.96E+018 VOLT/WATT
CURR. RESP. (DC)= 5.98E+000 AMP/WATT
SIG CONDUCTANCE (1Hz)= 8.51E+001 MHOS/WATT
VOLT. RESP. (1Hz)= 4.55E+010 VOLT/WATT
CURR. RESP. (1Hz)= 2.08E+000 AMP/WATT
NEP (1Hz)= 1.47E-016 WATT/HZT1/2
DETECTOR RESISTANCE = 4.94E+018 OHMS
DETECTOR BIAS= 2.68E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (DC) = 1.06E-013 WATTS
SHOT NOISE (DC) = 4.14E-006 V/HZT1/2
BLIP NEP (DC) = 9.93E-017 W/HZT1/2
QUAN. EFFIC. IF BLIP = 1.71E-001 (AC)

BB TEMP= 59.0
SIG DEL V=0.00820
BLACK BODY OUTPUT= 1.06E-013 WATTS
SIG CONDUCTANCE (DC)= 2.13E+002 MHOS/WATT
VOLT. RESP. (DC)= 9.96E+018 VOLT/WATT
CURR. RESP. (DC)= 5.98E+000 AMP/WATT
SIG CONDUCTANCE (1Hz)= 8.51E+001 MHOS/WATT
VOLT. RESP. (1Hz)= 4.55E+010 VOLT/WATT
CURR. RESP. (1Hz)= 2.08E+000 AMP/WATT
NEP (1Hz)= 1.47E-016 WATT/HZT1/2
DETECTOR RESISTANCE = 4.94E+018 OHMS
DETECTOR BIAS= 2.68E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA

BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (DC) = 1.06E-013 WATTS
SHOT NOISE (DC) = 4.14E-006 V/HZT1/2
BLIP NEP (DC) = 9.93E-017 W/HZT1/2
QUAN. EFFIC. IF BLIP = 1.71E-001 (AC)
SAMPLE NO. GE:GA 3-281-3
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009
LOAD= 5.00E+010

BB TEMP= 59.0
SIG DEL V=0.08050
BLACKBODY OUTPUT= 1.06E-013 WATTS
SIG. CONDUCTANCE (DC)= 2.52E+002 MHOS/WATT
VOLT. RESP. (DC)= 1.01E+011 VOLT/WATT
CURR. RESP. (DC)= 6.25E+000 AMP/WATT
SIG. CONDUCTANCE (1HZ)= 1.00E+002 MHOS/WATT
VOLT. RESP. (1HZ)= 4.71E+010 VOLT/WATT
CURR. RESP. (1HZ)= 2.48E+000 AMP/WATT
NEP (1HZ)= 1.91E-016 WATT/HZ1/2
DETECTOR RESISTANCE = 3.19E+010 OHMS
DETECTOR BIAS= 2.73E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 1.54E-001 (AC)
SHOT NOISE (Q.E.=0.3)= 5.15E-006 V/HZ1/2
BLIP NEP (Q.E.=0.3)= 1.09E-016 W/HZ1/2
QUAN. EFFIC. IF BLIP= 1.58E-001 (AC)

BB TEMP= 58.9
SIG DEL V=0.01100
BLACKBODY OUTPUT= 1.06E-013 WATTS
SIG. CONDUCTANCE (DC)= 2.96E+002 MHOS/WATT
VOLT. RESP. (DC)= 1.35E+011 VOLT/WATT
CURR. RESP. (DC)= 8.52E+000 AMP/WATT
SIG. CONDUCTANCE (1HZ)= 1.13E+002 MHOS/WATT
VOLT. RESP. (1HZ)= 6.19E+010 VOLT/WATT
CURR. RESP. (1HZ)= 3.26E+000 AMP/WATT
NEP (1HZ)= 1.20E-016 WATT/HZ1/2
DETECTOR RESISTANCE = 3.27E+010 OHMS
DETECTOR BIAS= 3.16E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 2.83E-001 (AC)
SHOT NOISE (Q.E.=0.3)= 6.36E-006 V/HZ1/2
BLIP NEP (Q.E.=0.3)= 1.03E-016 W/HZ1/2
QUAN. EFFIC. IF BLIP= 2.20E-001 (AC)

BIAS DELTA V=0.0248
3.90E+007 PHOT/SEC
6.56E-019 MHOS/PHOT/SEC
2.76E-010 VOLT/PHOT/SEC
1.79E-020 AMP/PHOT/SEC
2.72E-019 MHOS/PHOT/SEC
1.28E-010 VOLT/PHOT/SEC
6.75E-021 AMP/PHOT/SEC
5.54E+004 PHOT/SEC-HZ1/2

BIAS DELTA V=0.0268
3.90E-001 (DC)
6.18E-006 V/HZ1/2 (AC)
1.74E-016 W/HZ1/2 (DC)
3.98E-001 (DC)

BIAS DELTA V=0.0288
3.90E-001 (DC)
6.18E-006 V/HZ1/2 (AC)
1.74E-016 W/HZ1/2 (DC)
3.98E-001 (DC)
SAMPLE NO. GE:GA 3-2B1-3 RUN DATE 6/9/78 TEMP.=3 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDE= 6.84E-009 LOAD= 5.80E+010

BB TEMP= 58.9 BIAS=0.0000 BIAS DELTA V=0.0295
SIG DEL V=0.00055 DC/1HZ=2 NOISE=9E-6
BLACKBODY OUTPUT= 1.06E-013 WATTS 3.88E+007 PHOT/SEC
SIG.CONDUCTANCE(DC)= 2.52E+002 MHOS/WATT 6.65E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC)= 1.13E+011 VOLT/WATT 3.06E-010 VOLT/PHOT/SEC
CURR.RESP.(DC)= 7.43E+000 AMP/WATT 2.02E-020 AMP/PHOT/SEC
SIG.CONDUCTANCE(1HZ)= 1.02E+002 MHOS/WATT 2.76E-019 MHOS/PHOT/SEC
VOLT. RESP. (1HZ)= 5.28E+010 VOLT/WATT 1.44E-010 VOLT/PHOT/SEC
CURR.RESP.(1HZ)= 3.90E+000 AMP/WATT 8.15E-021 AMP/PHOT/SEC
NEP (1HZ)= 1.52E-016 WATT/HZ^1/2 5.58E+004 PHOT/SEC-HZ^1/2
DETECTOR RESISTANCE = 2.81E+018 OHMS
DETECTOR BIAS= 3.24E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 1.87E-001(AC) 6.92E+009 PHOTONS/SEC-CMT2
SHOT NOISE(Q.E.=0.3)= 6.08E-006 V/HZ^1/2 (AC) 4.62E-001(DC)
BLIP NEP (Q.E.=0.3)= 1.15E-016 W/HZ^1/2 (AC) 9.57E-006 V/HZ^1/2 (DC)
QUAN.EFFIC.IF BLIP= 1.73E-001 (AC) 1.81E-016 W/HZ^1/2 (DC)

BB TEMP= 58.8 BIAS=0.1000 BIAS DELTA V=0.0316
SIG DEL V=0.01010 DC/1HZ=2 NOISE=1E-5
BLACKBODY OUTPUT= 1.05E-013 WATTS 3.86E+007 PHOT/SEC
SIG.CONDUCTANCE(DC)= 2.58E+002 MHOS/WATT 7.01E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC)= 1.19E+011 VOLT/WATT 3.24E-010 VOLT/PHOT/SEC
CURR.RESP.(DC)= 8.15E+000 AMP/WATT 2.22E-020 AMP/PHOT/SEC
SIG.CONDUCTANCE(1HZ)= 1.04E+002 MHOS/WATT 2.84E-019 MHOS/PHOT/SEC
VOLT. RESP. (1HZ)= 5.80E+010 VOLT/WATT 1.52E-010 VOLT/PHOT/SEC
CURR.RESP.(1HZ)= 3.30E+000 AMP/WATT 8.97E-021 AMP/PHOT/SEC
NEP (1HZ)= 1.59E-016 WATT/HZ^1/2 5.84E+004 PHOT/SEC-HZ^1/2
DETECTOR RESISTANCE = 2.66E+018 OHMS
DETECTOR BIAS= 3.47E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 2.05E-001(AC) 7.15E+009 PHOTONS/SEC-CMT2
SHOT NOISE(Q.E.=0.3)= 6.55E-006 V/HZ^1/2 (AC) 5.07E-001(DC)
BLIP NEP (Q.E.=0.3)= 1.17E-016 W/HZ^1/2 (AC) 1.03E-005 V/HZ^1/2 (DC)
QUAN.EFFIC.IF BLIP= 1.62E-001 (AC) 1.04E-016 W/HZ^1/2 (DC)
SAMPLE NO. GE:GA 3-2B1-3	 RUN DATE 6/9/78	 TEMP. = 2.5 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE = 6.84E-009	 LOAD = 7.00E+010
BB TEMP = 59.8	 BIAS = 0.0050
SIG DEL V = 0.00202	 DC/1HZ = 2.2
BLACKBODY OUTPUT = 1.46E+002 MHOS/WATT
SIG. CONDUCTANCE (DC) = 3.76E+010 VOLT/WATT
VOLT. RESP. (DC) = 5.97E-001 AMP/WATT
CURR. RESP. (DC) = 4.33E+001 MHOS/WATT
SIG. CONDUCTANCE (1HZ) = 1.19E+010 VOLT/WATT
VOLT. RESP. (1HZ) = 1.77E-001 AMP/WATT
CURR. RESP. (1HZ) = 2.94E-016 WATT/HZ1/2
NEP (1HZ) = 6.22E+011 OMS
DETECTOR RESISTANCE = 4.49E-003 VOLTS
DETECTOR BIAS = 0.0050

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 5.39E+008 PHOTONS/SEC-CMT2
PC GAIN (Q.E. = 0.3) = 1.10E-002 (AC)
SHOT NOISE (Q.E. = 0.3) = 4.90E-007 V/HZ1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 3.44E-017 W/HZ1/2 (AC)
QUAN. EFF. IF BLIP = 8.50E-003 (AC)

BB TEMP = 58.9	 BIAS = 0.0100
SIG DEL V = 0.00419	 DC/1HZ = 2.2
BLACKBODY OUTPUT = 1.06E-013 WATT
SIG. CONDUCTANCE (DC) = 1.47E+002 MHOS/WATT
VOLT. RESP. (DC) = 8.08E+010 VOLT/WATT
CURR. RESP. (DC) = 1.23E+000 AMP/WATT
SIG. CONDUCTANCE (1HZ) = 4.32E+001 MHOS/WATT
VOLT. RESP. (1HZ) = 2.51E+010 VOLT/WATT
CURR. RESP. (1HZ) = 3.62E-001 AMP/WATT
NEP (1HZ) = 9.74E-017 WATT/HZ1/2
DETECTOR RESISTANCE = 8.15E+011 OMS
DETECTOR BIAS = 9.21E-003 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 4.09E+008 PHOTONS/SEC-CMT2
PC GAIN (Q.E. = 0.3) = 2.26E-002 (AC)
SHOT NOISE (Q.E. = 0.3) = 7.49E-007 V/HZ1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 2.99E-017 W/HZ1/2 (AC)
QUAN. EFF. IF BLIP = 2.82E-002 (AC)

36
SAMPLE NO. GE:GA 3-2B1-3	 RUN DATE 6/9/78
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009	 LOAD= 7.00E+010

BB TEMP= 58.8
SIG DEL V=0.00395
BLACKBODY OUTPUT= 1.06E-013 WATTS
SIG.CONDUCTANCE(DC)= 1.46E+002 MHOS/WATT
VOLT. RESP. (DC)= 7.31E+010 VOLT/WATT
CURR.RESP. (DC)= 1.18E+000 AMP/WATT
SIG.CONDUCTANCE(1HZ)= 4.36E+003 MHOS/WATT
VOLT. RESP. (1HZ)= 2.34E+010 VOLT/WATT
CURR.RESP. (1HZ)= 3.53E-001 AMP/WATT
NEP (1HZ)= 1.83E-016 WATT/HZT1/2
DETECTOR RESISTANCE = 5.96E+011 OHMS
DETECTOR BIAS= 8.98E-003 VOLTS

BIAS=0.0100
DC/1HZ=2.2
NOISE=2.5E-6
3.86E+007 PHOT/SEC
3.96E-019 MHOS/PHOT/SEC
1.99E-010 VOLT/PHOT/SEC
3.21E-021 AMP/PHOT/SEC
BIAS DELTA V=0.0001

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 2.20E-002(AC)
SHOT NOISE(Q.E.=0.3)= 6.42E-007 V/HZT1/2 (AC)
BLIP NEP (Q.E.=0.3)= 3.58E-017 W/HZT1/2 (AC)
QUAN.EFFIC.IF BLIP= 3.62E-002 (AC)

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 4.72E-002(AC)
SHOT NOISE(Q.E.=0.3)= 1.81E-006 V/HZT1/2 (AC)
BLIP NEP (Q.E.=0.3)= 3.66E-017 W/HZT1/2 (AC)
QUAN.EFFIC.IF BLIP= 1.69E-001 (AC)
SAMPLE NO. GE:GA 3-2B1-3 RUN DATE 6/9/78 TEMP. = 2.5 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE = 6.84E-009 LOAD = 7.00E+010

BB TEMP = 58.8 BIAS = 0.0300 BIAS DELTA V = 0.0234
SIG DEL V = 0.01250 DC/1HZ = 2.2 NOISE = UNDEFINED
BLACKBODY OUTPUT = 1.9E5E-013 WATTS 3.86E+007 PHOT/SEC
SIG. CONDUCTANCE (DC) = 1.82E+002 MHOS/WATT
VOLT. RESP. (DC) = 2.42E+011 VOLT/WATT
CURR. RESP. (DC) = 4.26E+000 AMP/WATT
SIG. CONDUCTANCE (1HZ) = 5.18E+001 MHOS/WATT
VOLT. RESP. (1HZ) = 7.52E+010 VOLT/WATT
CURR. RESP. (1HZ) = 1.19E+008 AMP/WATT
DETECTOR RESISTANCE = 4.20E+011 OHMS
DETECTOR BIAS = 2.57E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 6.41E+008 PHOTONS/SEC-CMT2
PC GAIN (Q.E. = 0.3) = 7.42E-002 (AC)
SHOT NOISE (Q.E. = 0.3) = 2.94E-006 V/HZ1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 3.92E-017 W/HZ1/2 (AC)

BB TEMP = 58.8 BIAS = 0.0400 BIAS DELTA V = 0.0300
SIG DEL V = 0.01650 DC/1HZ = 2.2
BLACKBODY OUTPUT = 1.9E5E-013 WATTS
SIG. CONDUCTANCE (DC) = 2.22E+002 MHOS/WATT
VOLT. RESP. (DC) = 3.16E+011 VOLT/WATT
CURR. RESP. (DC) = 6.96E+000 AMP/WATT
SIG. CONDUCTANCE (1HZ) = 5.51E+001 MHOS/WATT
VOLT. RESP. (1HZ) = 9.90E+010 VOLT/WATT
CURR. RESP. (1HZ) = 1.65E+008 AMP/WATT
NEP (1HZ) = 3.34E+017 W/HZ1/2
DETECTOR RESISTANCE = 3.28E+011 OHMS
DETECTOR BIAS = 3.30E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 7.40E+008 PHOTONS/SEC-CMT2
PC GAIN (Q.E. = 0.3) = 1.03E-001 (AC)
SHOT NOISE (Q.E. = 0.3) = 4.27E-006 V/HZ1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 5.00E-017 W/HZ1/2 (AC)
QUAN.EFFIC. IF BLIP = 5.00E-001 (AC)

38
SAMPLE NO. GE:GA 3-281-3	 RUN DATE 6/9/78	 TEMP = 2.5 K
BB INTEGRATED FROM 48 TO 130 MICRONS STEP 0.2
ETENDUE = 6.84E-009	 LOAD = 7.80E+018

BB TEMP = 58.5	 BIAS = 0.0500	 BIAS DELTA V = 0.0380
SIG DEL V = 0.02050	 DC/1HZ = 2.2	 NOISE = UNDEFINED
BLACKBODY OUTPUT = 1.93E-013 WATTS	 3.79E+007 PHOT/SEC
SIG. CONDUCTANCE (DC) = 1.95E+002 MHOS/WATT	 5.29E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC) = 3.99E+011 VOLT/WATT	 1.00E-009 VOLT/PHOT/SEC
CURR. RESP. (DC) = 7.48E+008 AMP/WATT	 2.01E-020 AMP/PHOT/SEC
SIG. CONDUCTANCE (1HZ) = 5.40E+001 MHOS/WATT	 3.48E-010 VOLT/PHOT/SEC
VOLT. RESP. (1HZ) = 1.25E+011 VOLT/WATT	 1.47E-019 MHOS/PHOT/SEC
CURR. RESP. (1HZ) = 2.05E+008 AMP/WATT	 5.57E-021 AMP/PHOT/SEC
DETECTOR RESISTANCE = 3.55E+011 OHMS
DETECTOR BIAS = 4.18E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 7.11E+008 PHOTONS/SEC-CM^2
PC GAIN (O.E. = 0.3) = 1.26E-001 (AC)
SHOT NOISE (O.E. = 0.3) = 5.22E-006 V/HZ^1/2 (AC)
BLIP NEP (O.E. = 0.3) = 4.17E-017 W/HZ^1/2 (AC)

BB TEMP = 58.3	 BIAS = 0.0600	 BIAS DELTA V = 0.0420
SIG DEL V = 0.02400	 DC/1HZ = 2.2	 NOISE = 5E-6
BLACKBODY OUTPUT = 1.02E-013 WATTS	 3.74E+007 PHOT/SEC
SIG. CONDUCTANCE (DC) = 2.44E+002 MHOS/WATT	 6.61E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC) = 4.64E+011 VOLT/WATT	 1.26E-009 VOLT/PHOT/SEC
CURR. RESP. (DC) = 1.02E+001 AMP/WATT	 2.78E-020 AMP/PHOT/SEC
SIG. CONDUCTANCE (1HZ) = 6.42E+001 MHOS/WATT	 1.74E-019 MHOS/PHOT/SEC
VOLT. RESP. (1HZ) = 1.48E+011 VOLT/WATT	 4.00E-018 VOLT/PHOT/SEC
CURR. RESP. (1HZ) = 2.70E+008 AMP/WATT	 7.31E-021 AMP/PHOT/SEC
NEP (1HZ) = 3.13E-017 WATT/HZ^1/2	 1.16E+004 PHOT/SEC-HZ^1/2
DETECTOR RESISTANCE = 2.33E+011 OHMS
DETECTOR BIAS = 4.62E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 8.64E+008 PHOTONS/SEC-CM^2
PC GAIN (O.E. = 0.3) = 1.67E-001 (AC)
SHOT NOISE (O.E. = 0.3) = 7.13E-006 V/HZ^1/2 (AC)
BLIP NEP (O.E. = 0.3) = 4.83E-017 W/HZ^1/2 (AC)
QUAN. EFFIC. IF BLIP = 7.13E-001 (AC)
SAMPLE NO. GE:GA 3-2B1-3 RUN DATE 6/9/78 TEMP.=2.5 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009 LOAD= 7.00E+010

BB TEMP= 58.2 BIAS=0.0600
SIG DEL V=0.02400 DC/1HZ=2.2
BLACKBODY OUTPUT= 1.01E-013 WATTS
SIG.CONDUCTANCE (DC)= 2.46E+002 MHOS/WATT
VOLT. RESP. (DC)= 4.67E+011 VOLT/WATT
CURR. RESP. (DC)= 1.03E+001 AMP/WATT
SIG.CONDUCTANCE (1HZ)= 6.46E+001 MHOS/WATT
VOLT. RESP. (1HZ)= 1.49E+011 VOLT/WATT
CURR. RESP. (1HZ)= 2.71E+000 AMP/WATT
DETECTOR RESISTANCE = 2.33E+011 OHMS
DETECTOR BIAS= 4.62E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 1.66E-001 V/HZ1/2 (AC)
SHOT NOISE (Q.E.=0.3)= 7.15E-006 V/HZ1/2 (AC)
BLIP NEP (Q.E.=0.3)= 4.81E-017 W/HZ1/2 (AC)

BB TEMP= 58.2 BIAS=0.0700
SIG DEL V=0.02700 DC/1HZ=2.2
BLACKBODY OUTPUT= 1.01E-013 WATTS
SIG.CONDUCTANCE (DC)= 2.42E+002 MHOS/WATT
VOLT. RESP. (DC)= 5.11E+011 VOLT/WATT
CURR. RESP. (DC)= 1.16E+001 AMP/WATT
SIG.CONDUCTANCE (1HZ)= 6.46E+001 MHOS/WATT
VOLT. RESP. (1HZ)= 1.66E+011 VOLT/WATT
CURR. RESP. (1HZ)= 3.10E+000 AMP/WATT
DETECTOR RESISTANCE = 2.14E+011 OHMS
DETECTOR BIAS= 5.27E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 1.92E-001 V/HZ1/2 (AC)
SHOT NOISE (Q.E.=0.3)= 8.36E-006 V/HZ1/2 (AC)
BLIP NEP (Q.E.=0.3)= 5.06E-017 W/HZ1/2 (AC)
SAMPLE NO. GE:GA 3-2B1-3 RUN DATE 6/9/78 TEMP. =2.5 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009 LOAD= 7.00E+810

BB TEMP= 58.1 BIAS=0.0000 BIAS DELTA V=0.8530
SIG DEL V=0.03000 DC/1HZ=2.2 NOISE=7E-6
BLACKBODY OUTPUT= 1.08E-013 WATTS
SIG.COUNTANCESC DC)= 2.56E+002 MHOS/WATT
VOLT. RESP. (DC)= 5.68E+011 VOLT/WATT
CURR. RESP. (DC)= 1.35E+001 AMP/WATT
SIG.COUNTANCESC1HZ)= 6.75E+001 MHOS/WATT
VOLT. RESP. (1HZ)= 1.84E+011 VOLT/WATT
CURR. RESP. (1HZ)= 3.68E+000 AMP/WATT
NEP (1HZ)= 3.48E-017 WATT/HZ1/2
DETECTOR RESISTANCE = 1.87E+011 OHMS
DETECTOR BIAS= 5.82E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY= 1.03E+009 PHOTONS/SEC-CMT2
PC GAIN (Q.E.-0.3)= 2.23E-001 (AC)
SHOT NOISE(Q.E.-0.3)= 9.77E-006 V/HZ1/2 (AC)
BLIP NEP (Q.E.-0.3)= 5.31E-017 W/HZ1/2 (AC)
QUAN.EFFIC.IF BLIP= 6.99E-001 (AC)

BB TEMP= 58.1 BIAS=0.0900 BIAS DELTA V=0.0555
SIG DEL V=0.03200 DC/1HZ=2.2 NOISE=UNDEFINED
BLACKBODY OUTPUT= 1.08E-013 WATTS
SIG.COUNTANCESC DC)= 2.87E+002 MHOS/WATT
VOLT. RESP. (DC)= 5.76E+011 VOLT/WATT
CURR. RESP. (DC)= 1.59E+001 AMP/WATT
SIG.COUNTANCESC1HZ)= 7.47E+001 MHOS/WATT
VOLT. RESP. (1HZ)= 1.94E+011 VOLT/WATT
CURR. RESP. (1HZ)= 4.15E+000 AMP/WATT
DETECTOR RESISTANCE = 1.47E+011 OHMS
DETECTOR BIAS= 6.10E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.-0.3)= 2.57E-001 (AC)
SHOT NOISE(Q.E.-0.3)= 1.13E-005 V/HZ1/2 (AC)
BLIP NEP (Q.E.-0.3)= 5.81E-017 W/HZ1/2 (AC)
SAMPLE NO. GE:GA 3-2B1-3 RUN DATE 6/9/78 TEMP. = 2.5 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009 LOAD= 7.00E+010

BB TEMP= 58.1 BIAS= 0.1000 BIAS DELTA V= 0.0580
SIG DEL V= 0.03400 DC/1HZ= 2.2 NOISE= 9E-6
BLACKBODY OUTPUT= 1.00E-013 WATTS 3.70E+007 PHOT/SEC
SIG. CONDUCTANCE (DC)= 3.17E+002 MHOS/WATT 8.58E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC)= 5.95E+011 VOLT/WATT 1.61E-009 VOLT/PHOT/SEC
CURR. RESP. (DC)= 1.84E+001 AMP/WATT 4.98E-020 AMP/PHOT/SEC
SIG. CONDUCTANCE (1HZ)= 8.13E+001 MHOS/WATT 2.28E-019 MHOS/PHOT/SEC
VOLT. RESP. (1HZ)= 2.04E+011 VOLT/WATT 5.53E-010 VOLT/PHOT/SEC
CURR. RESP. (1HZ)= 4.71E+000 AMP/WATT 1.28E-020 AMP/PHOT/SEC
NEP (1HZ)= 3.89E-017 WATT/HZ1/2 1.44E+004 PHOT/SEC-HZ1/2
DETECTOR RESISTANCE= 1.23E+011 OHMS
DETECTOR BIAS= 6.37E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY= 1.26E+009 PHOTONS/SEC-CMT2
PC GAIN (Q.E.= 0.3)= 2.92E-001 (AC) 1.14E+000 (DC)
SHOT NOISE (Q.E. = 0.3)= 1.26E-005 V/HZ1/2 (AC) 2.58E-005 V/HZ1/2 (DC)
BLIP NEP (Q.E. = 0.3)= 6.19E-017 W/HZ1/2 (AC) 1.22E-010 W/HZ1/2 (DC)
QUAN. EFFIC. IF BLIP= 7.58E-001 (AC) 2.95E+000 (DC)

42
SAMPLE NO. GE:GA 4-581-1
RUN DATE 7/11/78
TEMP. = 3 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE = 6.84E-009
LOAD = 5.00E+010

BB TEMP = 58.1
SIG DEL V = 0.00008
BLACKBODY OUTPUT = 1.00E-013 WATTS
SIG CONDUCTANCE (DC) = 1.56E+002 MHOS/WATT
VOLT. RESP. (DC) = 8.37E+008 VOLT/WATT
CURR. RESP. (DC) = 1.09E-001 AMP/WATT
SIG CONDUCTANCE (1HZ) = 1.49E+002 MHOS/WATT
VOLT. RESP. (1HZ) = 8.04E+008 VOLT/WATT
CURR. RESP. (1HZ) = 1.04E-001 AMP/WATT
DETECTOR RESISTANCE = 9.08E+009 OHMS
DETECTOR BIAS = 7.69E-004 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 3.48E+010 PHOTONS/SEC-CMT2
PC GAIN = 6.47E-003 (AC)
SHOT NOISE = 1.31E-007 V/HZ1/2 (AC)
BLIP NEP = 1.63E-016 W/HZ1/2 (AC)

BB TEMP = 59.8
SIG DEL V = 0.00018
BLACKBODY OUTPUT = 1.12E-013 WATTS
SIG CONDUCTANCE (DC) = 2.39E+002 MHOS/WATT
VOLT. RESP. (DC) = 1.80E+009 VOLT/WATT
CURR. RESP. (DC) = 2.87E-001 AMP/WATT
SIG CONDUCTANCE (1HZ) = 2.29E+002 MHOS/WATT
VOLT. RESP. (1HZ) = 1.73E+009 VOLT/WATT
CURR. RESP. (1HZ) = 2.74E-001 AMP/WATT
DETECTOR RESISTANCE = 7.59E+009 OHMS
DETECTOR BIAS = 1.32E-003 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 2.68E+010 PHOTONS/SEC-CMT2
PC GAIN = 1.72E-002 (AC)
SHOT NOISE = 2.62E-007 V/HZ1/2 (AC)
BLIP NEP = 1.51E-016 W/HZ1/2 (AC)
<table>
<thead>
<tr>
<th>Sample No. GE: GA 4-581-1</th>
<th>Run Date 7/11/78</th>
<th>Temp. = 3 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB Integrated from 40 to 130 Microns Step 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E= 6.84E-009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load = 5.80E+010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Bb Temp= 60.0 | BIAS= 0.0200 |
| Sig Del V= 0.00036 |
| Blackbody Output= 1.13E-013 WATTS |
| Sig Conductance DC= 2.07E+002 MHOS/WATT |
| VOLT. RESP. (DC)= 3.72E+009 VOLT/WATT |
| CURR. RESP. (DC)= 5.39E-001 AMP/WATT |
| Sig Conductance (1Hz)= 1.97E+002 MHOS/WATT |
| VOLT. RESP. (1Hz)= 3.57E+009 VOLT/WATT |
| CURR. RESP. (1Hz)= 5.15E-001 AMP/WATT |
| NEP (1Hz)= 6.48E-016 WATT/Hz¹/₂ |
| Detector Resistance = 8.37E+009 OHMS |
| Detector Bias= 2.87E-003 VOLTS |
| BIAS DELTA V= 0.0026 |
| Noise = 2.6E-6 |
| Signal Delta V = 8.00084 |
| BLACKBODY OUTPUT = 1.13E-013 |
| Sig Conductance DC = 2.07E+002 |
| VOLT. RESP. (DC) = 3.72E+009 |
| CURR. RESP. (DC) = 5.39E-001 |
| Sig Conductance (1Hz) = 1.97E+002 |
| VOLT. RESP. (1Hz) = 3.57E+009 |
| CURR. RESP. (1Hz) = 5.15E-001 |
| NEP (1Hz) = 6.48E-016 |
| Detector Resistance = 8.37E+009 |
| Detector Bias = 2.87E-003 |

The following are calculated from above data:

| Background Photon Flux Density= |
| PC Gain (Q.E. = 0.3) = 3.23E-002 (AC) |
| Shot Noise (Q.E. = 0.3) = 5.49E-007 V/Hz¹/₂ (AC) |
| BLIP NEP (Q.E. = 0.3) = 1.54E-016 W/Hz¹/₂ (AC) |
| BLIP QUAN. EFFIC. = 1.73E-002 (AC) |

| Bb Temp= 60.2 | BIAS= 0.0300 |
| Sig Del V= 0.00084 |
| Blackbody Output= 1.15E-013 WATTS |
| Sig Conductance DC= 2.01E+002 |
| VOLT. RESP. (DC)= 8.31E+009 |
| CURR. RESP. (DC)= 9.85E-001 |
| Sig Conductance (1Hz)= 1.92E+002 |
| VOLT. RESP. (1Hz)= 9.39E+009 |
| CURR. RESP. (1Hz)= 9.48E-001 |
| NEP (1Hz)= 3.45E-016 |
| Detector Resistance = 1.89E+010 |
| Detector Bias= 5.38E-003 |

The following are calculated from above data:

<p>| Background Photon Flux Density= |
| PC Gain (Q.E. = 0.3) = 5.89E-002 (AC) |
| Shot Noise (Q.E. = 0.3) = 1.11E-006 V/Hz¹/₂ (AC) |
| BLIP NEP (Q.E. = 0.3) = 1.39E-016 W/Hz¹/₂ (AC) |
| BLIP QUAN. EFFIC. = 4.90E-002 (AC) |</p>
<table>
<thead>
<tr>
<th>Sample No. GE:GA 4-5B1-1</th>
<th>Run Date 7/11/78</th>
<th>Temp. = 3 K</th>
</tr>
</thead>
</table>

BB Integrated From 40 to 130 Microns Step 0.2

- **ETENDUE**: 6.84E-009
- **LOAD**: 5.00E+010

<table>
<thead>
<tr>
<th>BB Temp= 60.3</th>
<th>Bias= 0.0400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig Del V= 0.00120</td>
<td>DC/1Hz= 1.04</td>
</tr>
<tr>
<td>Blackbody Output=</td>
<td>1.15E-013 Watts</td>
</tr>
<tr>
<td>Sig. Conductance (DC)=</td>
<td>2.01E+002 MHOS/WATT</td>
</tr>
<tr>
<td>Volt. Resp. (DC)=</td>
<td>1.18E+010 VOLT/WATT</td>
</tr>
<tr>
<td>Curr. Resp. (DC)=</td>
<td>1.36E+008 AMP/WATT</td>
</tr>
<tr>
<td>Sig. Conductance (1Hz)=</td>
<td>1.91E+002 MHOS/WATT</td>
</tr>
<tr>
<td>Volt. Resp. (1Hz)=</td>
<td>1.13E+010 VOLT/WATT</td>
</tr>
<tr>
<td>Curr. Resp. (1Hz)=</td>
<td>1.38E+008 AMP/WATT</td>
</tr>
<tr>
<td>NEP (1Hz)=</td>
<td>3.02E-016 WATT/Hz^1/2</td>
</tr>
<tr>
<td>Detector Resistance=</td>
<td>1.14E+010 OHMS</td>
</tr>
<tr>
<td>Detector Bias=</td>
<td>7.44E-003 VOLTS</td>
</tr>
</tbody>
</table>

Bias Delta V= 0.0066

- **Noise= 4E-6**
- **4.21E+007 Photons/sec**
- **5.50E-019 MHOS/PHOT/SEC**
- **3.24E-011 VOLT/PHOT/SEC**
- **3.72E-021 AMP/PHOT/SEC**
- **5.25E-019 MHOS/PHOT/SEC**
- **3.11E-011 VOLT/PHOT/SEC**
- **3.55E-021 AMP/PHOT/SEC**

The Following Are Calculated From Above Data

<table>
<thead>
<tr>
<th>Background Photon Flux Density=</th>
<th>2.12E+010 Photons/sec-CMT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Gain (Q.E.=0.3)=</td>
<td>8.13E-002 (AC)</td>
</tr>
<tr>
<td>Shot Noise (Q.E.=0.3)=</td>
<td>1.56E-006 V/Hz^1/2 (AC)</td>
</tr>
<tr>
<td>Blip NEP (Q.E.=0.3)=</td>
<td>1.37E-016 V/Hz^1/2 (AC)</td>
</tr>
<tr>
<td>Quan. Effic. If Blip=</td>
<td>6.28E-002 (AC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BB Temp= 60.4</th>
<th>Bias= 0.0500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig Del V= 0.00141</td>
<td>DC/1Hz= 1.04</td>
</tr>
<tr>
<td>Blackbody Output=</td>
<td>1.16E-013 Watts</td>
</tr>
<tr>
<td>Sig. Conductance (DC)=</td>
<td>1.93E+002 MHOS/WATT</td>
</tr>
<tr>
<td>Volt. Resp. (DC)=</td>
<td>1.38E+010 VOLT/WATT</td>
</tr>
<tr>
<td>Curr. Resp. (DC)=</td>
<td>1.60E+008 AMP/WATT</td>
</tr>
<tr>
<td>Sig. Conductance (1Hz)=</td>
<td>1.84E+002 MHOS/WATT</td>
</tr>
<tr>
<td>Volt. Resp. (1Hz)=</td>
<td>1.32E+010 VOLT/WATT</td>
</tr>
<tr>
<td>Curr. Resp. (1Hz)=</td>
<td>1.53E+008 AMP/WATT</td>
</tr>
<tr>
<td>NEP (1Hz)=</td>
<td>3.33E-016 WATT/Hz^1/2</td>
</tr>
<tr>
<td>Detector Resistance=</td>
<td>1.12E+010 OHMS</td>
</tr>
<tr>
<td>Detector Bias=</td>
<td>9.12E-003 VOLTS</td>
</tr>
</tbody>
</table>

Bias Delta V= 0.0063

- **Noise= 5.1E-6**
- **4.24E+007 Photons/sec**
- **5.30E-019 MHOS/PHOT/SEC**
- **3.78E-011 VOLT/PHOT/SEC**
- **4.40E-021 AMP/PHOT/SEC**
- **5.05E-019 MHOS/PHOT/SEC**
- **3.53E-011 VOLT/PHOT/SEC**
- **4.19E-021 AMP/PHOT/SEC**

The Following Are Calculated From Above Data

<table>
<thead>
<tr>
<th>Background Photon Flux Density=</th>
<th>2.26E+010 Photons/sec-CMT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Gain (Q.E.=0.3)=</td>
<td>9.60E-002 (AC)</td>
</tr>
<tr>
<td>Shot Noise (Q.E.=0.3)=</td>
<td>1.86E-006 V/Hz^1/2 (AC)</td>
</tr>
<tr>
<td>Blip NEP (Q.E.=0.3)=</td>
<td>1.41E-016 W/Hz^1/2 (AC)</td>
</tr>
<tr>
<td>Quan. Effic. If Blip=</td>
<td>5.37E-003 (AC)</td>
</tr>
</tbody>
</table>
SAMPLE NO. GE:GA 4-561-1 RUN DATE 7/11/78 TEMP.=3 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009 LOAD= 5.00E+010

BB TEMP= 60.7 BIAS=0.0600
SIG DEL V=0.00172 DC/1HZ=1.04
BLACKBODY OUTPUT= 1.16E-013 WATTs
SIG.CONDUCTANCE(DC)= 1.94E+002 MHOS/WATT
VOLT. RESP.(DC)= 1.65E+010 VOLT/WATT
CURR. RESP.(DC)= 1.93E+000 AMP/WATT
SIG.CONDUCTANCE(1HZ)= 1.65E+002 MHOS/WATT
VOLT. RESP.(1HZ)= 1.58E+010 VOLT/WATT
CURR. RESP.(1HZ)= 1.84E+000 AMP/WATT
DETECTOR RESISTANCE = 1.11E+010 OHMS
DETECTOR BIAS= 1.09E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 1.16E-001 (AC)
SHOT NOISE(Q.E.=0.3)= 2.23E-006 V/HZT1/2 (AC)
BLIP NEP (Q.E.=0.3)= 1.41E-016 W/HZT1/2 (AC)

BB TEMP= 60.7 BIAS=0.0700
SIG DEL V=0.00202 DC/1HZ=1.04
BLACKBODY OUTPUT= 1.18E-013 WATTs
SIG.CONDUCTANCE(DC)= 1.92E-002 MHOS/WATT
VOLT. RESP.(DC)= 1.54E+010 VOLT/WATT
CURR. RESP.(DC)= 1.95E+000 AMP/WATT
SIG.CONDUCTANCE(1HZ)= 1.65E+002 MHOS/WATT
VOLT. RESP.(1HZ)= 1.55E+010 VOLT/WATT
CURR. RESP.(1HZ)= 1.84E+000 AMP/WATT
NEP (1HZ)= 2.06E-016 WATT/HZT1/2
DETECTOR RESISTANCE = 1.16E+010 OHMS
DETECTOR BIAS= 1.32E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 1.31E-001 (AC)
SHOT NOISE(Q.E.=0.3)= 2.64E-006 V/HZT1/2 (AC)
BLIP NEP (Q.E.=0.3)= 1.42E-016 W/HZT1/2 (AC)
QUAN.EFFIC.IF BLIP= 8.33E-002 (AC)

46
SAMPLE NO. GE:GA 4-5B1-1 RUN DATE 7/11/78 TEMP.=3 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009 LOAD= 5.00E+013

BB TEMP= 60.6 BIAS=0.0000 BIAS DELTA V=0.0138
SIG DEL V=0.00238 DC/1HZ=1 NOISE=6.7E-6
BLACKBODY OUTPUT= 1.18E-013 WATTS 4.2E+007 PHOT/SEC
SIG.CONDUCTANCE(DC)= 1.87E+002 MHOS/WATT 5.19E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC)= 2.90E+010 VOLT/WATT 6.31E-011 VOLT/PHOT/SEC
CURR. RESP. (DC)= 2.58E+000 AMP/WATT 7.0E-021 AMP/PHOT/SEC
SIG.CONDUCTANCE(1HZ)= 1.87E+002 MHOS/WATT
VOLT. RESP. (1HZ)= 2.90E+010 VOLT/WATT
CURR. RESP. (1HZ)= 2.58E+000 AMP/WATT
NEP (1HZ)= 2.49E-016 WATT/HZ^1/2
DETECTOR RESISTANCE = 1.17E+010 OHMS
DETECTOR BIAS= 1.52E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 1.62E-001 (AC) 2.22E+010 PHOTONS/SEC-CMT2
SHOT NOISE(Q.E.=0.3)= 3.16E-006 V/HZ^1/2 (AC) 1.62E-001 (DC)
BLIP NEP (Q.E.=0.3)= 1.38E-016 W/HZ^1/2 (AC) 3.16E-006 V/HZ^1/2 (DC)
QUAN.EFFIC.IF BLIP= 9.14E-002 (AC) 1.40E-016 W/HZ^1/2 (DC)

BB TEMP= 60.4 BIAS=0.0900 BIAS DELTA V=0.0162
SIG DEL V=0.00260 DC/1HZ=1 NOISE=8.5E-6
BLACKBODY OUTPUT= 1.18E-013 WATTS 4.24E+007 PHOT/SEC
SIG.CONDUCTANCE(DC)= 1.66E+002 MHOS/WATT 4.56E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC)= 2.54E+010 VOLT/WATT 6.97E-011 VOLT/PHOT/SEC
CURR. RESP. (DC)= 2.70E+000 AMP/WATT 7.39E-021 AMP/PHOT/SEC
SIG.CONDUCTANCE(1HZ)= 1.66E+002 MHOS/WATT
VOLT. RESP. (1HZ)= 2.54E+010 VOLT/WATT
CURR. RESP. (1HZ)= 2.70E+000 AMP/WATT
NEP (1HZ)= 2.90E-016 WATT/HZ^1/2
DETECTOR RESISTANCE = 1.23E+010 OHMS
DETECTOR BIAS= 1.78E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 1.69E-001 (AC) 2.37E+010 PHOTONS/SEC-CMT2
SHOT NOISE(Q.E.=0.3)= 3.56E-006 V/HZ^1/2 (AC) 1.69E-001 (DC)
BLIP NEP (Q.E.=0.3)= 1.40E-016 W/HZ^1/2 (AC) 3.56E-006 V/HZ^1/2 (DC)
QUAN.EFFIC.IF BLIP= 7.80E-002 (AC) 1.40E-016 W/HZ^1/2 (DC)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>DC</th>
<th>IHZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Photon Flux Density</td>
<td>3.8E-005</td>
<td>3.8E-005</td>
</tr>
<tr>
<td>Blackbody Temperature</td>
<td>60.4°C</td>
<td>60.4°C</td>
</tr>
<tr>
<td>Blackbody Output</td>
<td>100 mW</td>
<td>100 mW</td>
</tr>
<tr>
<td>Conductance (DC)</td>
<td>1.7E-013</td>
<td>1.7E-013</td>
</tr>
<tr>
<td>Voltage Response (DC)</td>
<td>3.7E-016</td>
<td>3.7E-016</td>
</tr>
<tr>
<td>Current Response (DC)</td>
<td>1.2E+010</td>
<td>1.2E+010</td>
</tr>
<tr>
<td>NEP (DC)</td>
<td>5.0E-020</td>
<td>5.0E-020</td>
</tr>
<tr>
<td>Detector Resistance</td>
<td>9.3E+018</td>
<td>9.3E+018</td>
</tr>
<tr>
<td>Detector Bias</td>
<td>8.0E+017</td>
<td>8.0E+017</td>
</tr>
<tr>
<td>Noise</td>
<td>1.8E-006</td>
<td>1.8E-006</td>
</tr>
<tr>
<td>Quan. Eff. If Blip</td>
<td>4.8E-007</td>
<td>4.8E-007</td>
</tr>
</tbody>
</table>

The following are calculated from above data:

- Background Photon Flux Density = 3.8E-005 Photons/Sec-Hz1/2
- Blackbody Temperature = 60.4°C
- Blackbody Output = 100 mW
- Conductance (DC) = 1.7E-013 S
- Voltage Response (DC) = 3.7E-016 V/Watt
- Current Response (DC) = 1.2E+010 A/Watt
- NEP (DC) = 5.0E-020 W/Hz1/2
- Detector Resistance = 9.3E+018 Ohms
- Detector Bias = 8.0E+017 Volts
- Noise = 1.8E-006 Volts
- Quan. Eff. If Blip = 4.8E-007 Photons/Sec-Hz1/2

Sample No. GE 64-B1-1
Run Date 7/11/78
Temp. = 6.4 K
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No. GE:GA 4-581-1</td>
<td></td>
</tr>
<tr>
<td>Run Date</td>
<td>7/11/78</td>
</tr>
<tr>
<td>Temperature</td>
<td>3 K</td>
</tr>
<tr>
<td>BB Integrated From 40 to 130 Microns Step 0.2</td>
<td></td>
</tr>
<tr>
<td>BB Temperature</td>
<td>60.4</td>
</tr>
<tr>
<td>BB Conductance (DC)</td>
<td>1.58E+002 MHOS/WATT</td>
</tr>
<tr>
<td>BB Conductance (1Hz)</td>
<td>1.78E+002 MHOS/WATT</td>
</tr>
<tr>
<td>BB Voltage Response (DC)</td>
<td>4.09E+010 VOLT/WATT</td>
</tr>
<tr>
<td>BB Current Response (DC)</td>
<td>5.96E+000 AMP/WATT</td>
</tr>
<tr>
<td>BB Voltage Response (1Hz)</td>
<td>4.55E+010 VOLT/WATT</td>
</tr>
<tr>
<td>BB Current Response (1Hz)</td>
<td>6.71E+000 AMP/WATT</td>
</tr>
<tr>
<td>NEP (1Hz)</td>
<td>3.92E-015 Watt/Hz^1/2</td>
</tr>
<tr>
<td>DETECTOR RESISTANCE</td>
<td>8.04E+009 OHMS</td>
</tr>
<tr>
<td>DETECTOR BIAS</td>
<td>4.15E-002 VOLTS</td>
</tr>
<tr>
<td>BIAS Delta V</td>
<td>0.0378</td>
</tr>
<tr>
<td>NOISE</td>
<td>2E-5</td>
</tr>
<tr>
<td>BLACKBODY OUTPUT</td>
<td>1.16E-013 WATTS</td>
</tr>
<tr>
<td>LOAD</td>
<td>5.00E+010</td>
</tr>
<tr>
<td>POTENTIAL DELTA V</td>
<td>0.00425</td>
</tr>
<tr>
<td>BLACKBODY OUTPUT</td>
<td>1.16E-013 WATTS</td>
</tr>
<tr>
<td>LOAD</td>
<td>5.00E+010</td>
</tr>
<tr>
<td>POTENTIAL DELTA V</td>
<td>0.00475</td>
</tr>
<tr>
<td>THE FOLLOWING ARE CALCULATED FROM ABOVE DATA</td>
<td></td>
</tr>
<tr>
<td>BACKGROUND PHOTON FLUX DENSITY</td>
<td></td>
</tr>
<tr>
<td>PC GAIN (O.E.=0.3)</td>
<td>4.21E-001 (AC)</td>
</tr>
<tr>
<td>SHOT NOISE (O.E.=0.3)</td>
<td>7.44E-006 V/Hz^1/2 (AC)</td>
</tr>
<tr>
<td>BLIP NEP (O.E.=0.3)</td>
<td>1.64E-016 W/Hz^1/2 (AC)</td>
</tr>
<tr>
<td>QUAN.EFFIC.IF BLIP</td>
<td>5.23E-002 (AC)</td>
</tr>
<tr>
<td>BIAS Delta V</td>
<td>0.0456</td>
</tr>
<tr>
<td>NOISE</td>
<td>2.1E-5</td>
</tr>
<tr>
<td>BLACKBODY OUTPUT</td>
<td>1.15E-013 WATTS</td>
</tr>
<tr>
<td>LOAD</td>
<td>5.00E+010</td>
</tr>
<tr>
<td>POTENTIAL DELTA V</td>
<td>0.00475</td>
</tr>
<tr>
<td>THE FOLLOWING ARE CALCULATED FROM ABOVE DATA</td>
<td></td>
</tr>
<tr>
<td>BACKGROUND PHOTON FLUX DENSITY</td>
<td></td>
</tr>
<tr>
<td>PC GAIN (O.E.=0.3)</td>
<td>5.18E-001 (AC)</td>
</tr>
<tr>
<td>SHOT NOISE (O.E.=0.3)</td>
<td>8.68E-006 V/Hz^1/2 (AC)</td>
</tr>
<tr>
<td>BLIP NEP (O.E.=0.3)</td>
<td>1.78E-016 W/Hz^1/2 (AC)</td>
</tr>
<tr>
<td>QUAN.EFFIC.IF BLIP</td>
<td>6.37E-002 (AC)</td>
</tr>
</tbody>
</table>
SAMPLE NO. GE:GA 4-5B1-1		RUN DATE 7/11/78	TEM. = 3 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE = 6.84E-009	LOAD = 5.00E+010

BB TEMP = 60.3 ВIAS = 0.5000
SIG DEL V = 0.00570 DC/1HZ = 9 ВIAS DELTA V = 0.0520
BLACKBODY OUTPUT = 1.15E-013 WATTS
Sig.CONDUCTANCE(DC) = 1.87E+002 MHOS/WATT
VOLT. RESP.(DC) = 5.50E+010 VOLT/WATT
CURR.RESP.(DC) = 9.71E+000 AMP/WATT
Sig.CONDUCTANCE(1HZ) = 2.18E+002 MHOS/WATT
VOLT. RESP.(1HZ) = 6.12E+010 VOLT/WATT
CURR.RESP.(1HZ) = 1.09E+001 AMP/WATT
NEP (1HZ) = 3.20E-016 WATT/Hz1/2
DETECTOR RESISTANCE = 6.45E+009 OHMS
DETECTOR BIAS = 5.71E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 4.04E+010 PHOTONS/SEC-CMT2
PC GAIN (Q.E.=0.3) = 6.86E-001 (AC)
SHOT NOISE (Q.E.=0.3) = 1.03E-006 V/Hz1/2 (AC)
BLIP NEP (Q.E.=0.3) = 1.68E-016 W/Hz1/2 (AC)
QUAN.EFFIC.IF BLIP = 8.22E-002 (AC)
BIAS DELTA V = 0.0520
NOISE = 2.2E-5
4.21E+007 PHOT/SEC
5.12E-019 MHOS/PHOT/SEC
1.51E-010 VOLT/PHOT/SEC
2.66E-020 AMP/PHOT/SEC
5.76E-019 MHOS/PHOT/SEC
1.68E-010 VOLT/PHOT/SEC
3.08E-020 AMP/PHOT/SEC
1.17E+005 PHOT/SEC-Hz1/2

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY = 4.04E+010 PHOTONS/SEC-CMT2
PC GAIN (Q.E.=0.3) = 6.86E-001 (AC)
SHOT NOISE (Q.E.=0.3) = 1.03E-006 V/Hz1/2 (AC)
BLIP NEP (Q.E.=0.3) = 1.68E-016 W/Hz1/2 (AC)
QUAN.EFFIC.IF BLIP = 8.22E-002 (AC)
SAMPLE NO. GE:GA 4-5B1-1 RUN DATE 7/11/78
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDEU= 6.84E-009 LOAD= 7.00E+010

BB TEMP= 59.7 BIAS= 0.0050
SIG DEL V= 0.00148 DC/1HZ= 4.7
BLACKBODY OUTPUT= 1.11E-013 WATTS
SIG.CIGDUCTANCE (DC)= 7.14E+001 MHOS/WATT
VOLT. RESP. (DC)= 2.17E+010 VOLT/WATT
CURR. RESP. (DC)= 3.0E-001 AMP/WATT
SIG.CIGDUCTANCE (1HZ)= 1.86E+001 MHOS/WATT
VOLT. RESP. (1HZ)= 3.35E+009 VOLT/WATT
CURR. RESP. (1HZ)= 4.62E-002 AMP/WATT
NEP (1HZ)= 5.65E-016 WATT/HZ1/2
DETECTOR RESISTANCE = 1.20E+012 OHMS
DETECTOR BIAS= 4.73E-003 VOLTS

BIAS DELTA V= 0.0043
NOISE= 1.9E-6
NOISE= 4.07E+007 PHOT/SEC
NOISE= 5.93E-011 VOLT/PHOT/SEC
NOISE= 8.39E-022 AMP/PHOT/SEC
NOISE= 1.29E-012 VOLT/PHOT/SEC
NOISE= 1.29E-012 VOLT/PHOT/SEC
NOISE= 2.07E+005 PHOT/SEC-HZ1/2

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (O.E.=0.3)= 2.89E-003 (AC)
SHOT NOISE (O.E.=0.3)= 1.62E-007 V/HZ1/2 (AC)
BLIP NEP (O.E.=0.3)= 4.85E-017 W/HZ1/2 (AC)
QUAN.EFFIC.IF BLIP= 2.21E-003 (AC)

BB TEMP= 59.6 BIAS= 0.0100
SIG DEL V= 0.00300 DC/1HZ= 4.7
BLACKBODY OUTPUT= 1.10E-013 WATTS
SIG.CIGDUCTANCE (DC)= 7.14E+001 MHOS/WATT
VOLT. RESP. (DC)= 4.45E+010 VOLT/WATT
CURR. RESP. (DC)= 6.21E-001 AMP/WATT
SIG.CIGDUCTANCE (1HZ)= 1.87E+001 MHOS/WATT
VOLT. RESP. (1HZ)= 6.83E+009 VOLT/WATT
CURR. RESP. (1HZ)= 9.33E-002 AMP/WATT
NEP (1HZ)= 2.77E+016 WATT/HZ1/2
DETECTOR RESISTANCE = 1.48E+012 OHMS
DETECTOR BIAS= 9.55E-003 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (O.E.=0.3)= 5.83E-003 (AC)
SHOT NOISE (O.E.=0.3)= 2.98E-007 V/HZ1/2 (AC)
BLIP NEP (O.E.=0.3)= 4.36E-017 W/HZ1/2 (AC)
QUAN.EFFIC.IF BLIP= 7.44E-003 (AC)

51
BB TEMP = 59.4
SIG DEL V = 0.00600
BLACKBODY OUTPUT = 1.00E-013 WATTS
SIG. CONDUCTANCE (DC) = 7.89E+001 MHOS/WATT
VOLT. RESP. (DC) = 9.02E+010 VOLT/WATT
CURR. RESP. (DC) = 1.33E+000 AMP/WATT
SIG. CONDUCTANCE (1HZ) = 1.14E+001 MHOS/WATT
VOLT. RESP. (1HZ) = 1.35E+010 VOLT/WATT
CURR. RESP. (1HZ) = 1.92E+001 AMP/WATT
NEP (1HZ) = 1.32E-016 WATT/Hz^1/2
DETECTOR RESISTANCE = 8.40E+011 OHMS
DETECTOR BIAS = 1.85E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUNDF PHOTON FLUX DENSITY =
PC GAIN (Q.E. = 0.3) = 2.10E-002 (AC)
SHOT NOISE (Q.E. = 0.3) = 7.63E-007 V/Hz^1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 5.64E-017 W/Hz^1/2 (AC)
QUAN. EFFIC. IF BLIP = 5.46E-002 (AC)

BB TEMP = 59.0
SIG DEL V = 0.01400
BLACKBODY OUTPUT = 1.06E-013 WATTS
SIG. CONDUCTANCE (DC) = 1.03E+002 MHOS/WATT
VOLT. RESP. (DC) = 2.35E+011 VOLT/WATT
CURR. RESP. (DC) = 3.48E+008 AMP/WATT
SIG. CONDUCTANCE (1HZ) = 1.36E+001 MHOS/WATT
VOLT. RESP. (1HZ) = 3.28E+010 VOLT/WATT
CURR. RESP. (1HZ) = 4.64E+001 AMP/WATT
NEP (1HZ) = 5.75E-017 WATT/Hz^1/2
DETECTOR RESISTANCE = 8.74E+011 OHMS
DETECTOR BIAS = 3.70E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUNDF PHOTON FLUX DENSITY =
PC GAIN (Q.E. = 0.3) = 2.89E-002 (AC)
SHOT NOISE (Q.E. = 0.3) = 1.65E-006 V/Hz^1/2 (AC)
BLIP NEP (Q.E. = 0.3) = 5.93E-017 W/Hz^1/2 (AC)
QUAN. EFFIC. IF BLIP = 2.30E-001 (AC)
SAMPLE NO. GE:GA 4-5B1-1 RUN DATE 7/11/78 TEMP.=2.5 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2 LOAD= 7.00E+010

BB TEMP= 59.2 BIAS=0.0500 BIAS DELTA V=0.0416
SIG DEL V=0.01810 DC/IHZ=5 NOISE=2E-6
BLACKBODY OUTPUT= 1.06E-013 WATTS 3.95E+007 PHOT/SEC
SIG. CONDUCTANCE(DC)= 1.12E+002 MHOS/WATT 3.05E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC)= 3.07E+011 VOLT/WATT 8.36E-010 VOLT/PHOT/SEC
CURR. RESP. (DC)= 4.05E+000 AMP/WATT 1.27E-020 AMP/PHOT/SEC
SIG. CONDUCTANCE (1HZ)= 1.38E+001 MHOS/WATT 3.77E-020 MHOS/PHOT/SEC
VOLT. RESP. (1HZ)= 4.02E+010 VOLT/WATT 1.09E-019 VOLT/PHOT/SEC
CURR. RESP. (1HZ)= 5.76E-001 AMP/WATT 1.57E-021 AMP/PHOT/SEC
NEP (1HZ)= 4.94E-017 WATT/HZT1/2 1.81E+004 PHOT/SEC-HZT1/2
DETECTOR RESISTANCE = 7.47E+011 OHMS
DETECTOR BIAS= 4.57E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E. =0.3)= 3.59E-002(AC) 5.86E+008 PHOTONS/SEC-CMT2
SHOT NOISE (Q.E. =0.3)= 2.18E-006 V/HZT1/2 (AC) 2.90E-001(DC)
BLIP NEP (Q.E. =0.3)= 5.45E-017 W/HZT1/2 (AC) 8.21E-006 V/HZT1/2 (DC)
QUAN. EFFIC. IF BLIP= 3.64E-001 (AC) 1.55E-016 W/HZT1/2 (DC)

BB TEMP= 58.5 BIAS=0.0600 BIAS DELTA V=0.0495
SIG DEL V=0.02100 DC/IHZ=5 NOISE=2.5E-6
BLACKBODY OUTPUT= 1.03E-013 WATTS 3.79E+007 PHOT/SEC
SIG. CONDUCTANCE(DC)= 1.13E+002 MHOS/WATT 3.06E-019 MHOS/PHOT/SEC
VOLT. RESP. (DC)= 3.05E+011 VOLT/WATT 9.90E-010 VOLT/PHOT/SEC
CURR. RESP. (DC)= 5.94E+000 AMP/WATT 1.52E-020 AMP/PHOT/SEC
SIG. CONDUCTANCE (1HZ)= 1.42E+001 MHOS/WATT 3.86E-020 MHOS/PHOT/SEC
VOLT. RESP. (1HZ)= 4.86E+010 VOLT/WATT 1.32E-019 VOLT/PHOT/SEC
CURR. RESP. (1HZ)= 7.03E-001 AMP/WATT 1.91E-021 AMP/PHOT/SEC
NEP (1HZ)= 5.18E-017 WATT/HZT1/2 1.68E+004 PHOT/SEC-HZT1/2
DETECTOR RESISTANCE = 6.79E+011 OHMS
DETECTOR BIAS= 5.44E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E. =0.3)= 3.47E-002(AC) 6.41E+008 PHOTONS/SEC-CMT2
SHOT NOISE (Q.E. =0.3)= 2.73E-006 V/HZT1/2 (AC) 3.47E-001(DC)
BLIP NEP (Q.E. =0.3)= 5.62E-017 W/HZT1/2 (AC) 7.79E-006 V/HZT1/2 (DC)
QUAN. EFFIC. IF BLIP= 3.65E-001 (AC) 1.58E-016 W/HZT1/2 (DC)
SAMPLE NO. GE:GA 4-581-1 RUN DATE 7/11/78 TEMP.=2.5 K
BB INTEGRATED FROM 40 TO 130 MICRONS STEP 0.2
ETENDUE= 6.84E-009 LOAD= 7.00E+010

BB TEMP= 58.5 BIAS=0.08000 BIAS DELTA V=0.06200
SIG DEL V=0.02700 DC/1HZ=5.2 NOISE=5E-6
BLACKBODY OUTPUT= 1.83E-013 WATTS
SIG. CONDUCTANCE (DC)= 1.26E+002 MHOS/WATT
VOLT. RESP. (DC)= 4.58E+011 VOLT/WATT
CURR. RESP. (DC)= 7.80E+000 AMP/WATT
SIG. CONDUCTANCE (1HZ)= 1.49E+001 MHOS/WATT
VOLT. RESP. (1HZ)= 5.97E+010 VOLT/WATT
CURR. RESP. (1HZ)= 9.24E-001 AMP/WATT
NEP (1HZ)= 8.26E-017 WATT/HZ^1/2
DETECTOR RESISTANCE = 4.02E+011 OHMS
DETECTOR BIAS= 6.61E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 6.74E-002 (AC)
SHOT NOISE (Q.E.=0.3)= 4.28E-006 V/HZ^1/2 (AC)
BLIP NEP (Q.E.=0.3)= 7.17E-017 W/HZ^1/2 (AC)
QUAN. EFFIC. IF BLIP= 2.62E-001 (AC)

BB TEMP= 58.6 BIAS=0.10000 BIAS DELTA V=0.0663
SIG DEL V=0.02600 DC/1HZ=5.3 NOISE=6E-6
BLACKBODY OUTPUT= 1.84E-013 WATTS
SIG. CONDUCTANCE (DC)= 1.22E+002 MHOS/WATT
VOLT. RESP. (DC)= 3.66E+011 VOLT/WATT
CURR. RESP. (DC)= 8.16E+000 AMP/WATT
SIG. CONDUCTANCE (1HZ)= 1.51E+001 MHOS/WATT
VOLT. RESP. (1HZ)= 5.59E+010 VOLT/WATT
CURR. RESP. (1HZ)= 1.00E+000 AMP/WATT
NEP (1HZ)= 1.42E-016 WATT/HZ^1/2
DETECTOR RESISTANCE = 1.88E+011 OHMS
DETECTOR BIAS= 7.29E-002 VOLTS

THE FOLLOWING ARE CALCULATED FROM ABOVE DATA
BACKGROUND PHOTON FLUX DENSITY=
PC GAIN (Q.E.=0.3)= 6.24E-002 (AC)
SHOT NOISE (Q.E.=0.3)= 5.77E-006 V/HZ^1/2 (AC)
BLIP NEP (Q.E.=0.3)= 1.05E-016 W/HZ^1/2 (AC)
QUAN. EFFIC. IF BLIP= 1.63E-001 (AC)