
HASA -cR-)6T9h26

.(NASA-CR-159926)
A CONCXIUAl DESIGN FOR AN
 N79-24892

INTEGRATED DATA BASE MAKAGEMEWT SYSTEM FOR

REMOTE SENSING DATA
 Final Report (Business
and Technological Systems, Inc.)
 408 p Unclas
HC A18/MF Al
A.CSC.
 0 G3/82 22958

*/~%>/

VEo e-' A 49(

BTSTFR-78-65

A CONCEPTUAL DESIGN

FOR AN

INTEGRATED

DATA BASE MANAGEMENT SYSTEM

FOR

REMOTE SENSING DATA

Paul A. Maresca

R. Michael Lefler

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC,

Aerospace Building, Suite 440

10210 Greenbelt Road

Seabrook, Maryland 20801

Final Report

September 1978

Prepared under Contract No. NAS 5-24360

for

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland 20771

REFRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

US DEPARIMENTOF COMMERCE
SPRINGFIELD,VA. 22151

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY FURNISHED US BY

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS

ARE ILLEGIBLE, IT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

FOREWORD

This report was prepared by Business and Technological

Systems, Inc. under Contract No. NAS 5-24360 for the

NASA/Goddard Space Flight Center.
The report describes

a conceptual design for a data base management system

to support a wide variety o.f
scientific applications and

research activities. Because of the
ever increasing

volume of
data from science and applications satellites,

both launched and proposed for the 1980's, Goddard Space

Flight Center is entering an era in its data analysis

activities when it becomes necessary to locate, integrate

and process various remotely sensed data in a timely

fashion to achieve their maximum utilization and obtain

their maximum benefit. It is imperative that state-of
the-art techniques in data management be applied to the

problem of providing these data to the end user as quickly

and as easily as possible. To that end, this study was

initiated to design an integrated data base management

system which addresses these problems and others.

1--?

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions pro
vided to the work reported herein by Dr. Johannes G. Moik,

Technical Monitor, Mr. J. P. Gary, Ms. Karen Posey and

Ms. Rita Jamros, all of NASA Goddard Space Flight Center.

The discussion and ideas that
were interchanged during

weekly meetings between the authors and these members of

the GSFC/Goddard technical staff have influenced all phases

of this design effort. Additionally, the authors would

like to thank Ms. Patricia McKeever, Ms. Francine Knox and

Ms. Elizabeth Hammond for their able and patient assistance

in typing and editing this report.

TABLE OF CONTENTS

Page

SECTION 1 - INTRODUCTION............................ 1-1

1.1 	 Study Requirements.................................. 1-i

1.2 	The Applicability of Existing Data Base Management

Systems.. 1-2

1.3 	 The Conceptual Basis for a New System 1-4

1.4 	 Advantages of the Design............................ 1-5

1.5 	Data Formats... 1-9

1.6 	Contents of the Design Document.................... 1-10

SECTION 2 - -SYSTEM OVERVIEW......................... 2-1

2.1 	 Conceptual Description.............................. 2-1

2.1.1 The Dual System Concept 2-1

2Z1.1.1 The Front-End.............................. 2-3

2.1.1.2 The Back-End............................... 2-4

2.1.2 The System Environment....................... 2-7

2.2 	 The Organization of Information.................... 2-7

2.2.1 The Logical View of Data.................... 2-7

2.2.1.1 Data Bases................................. 2-8

2.2.1.2 Tables..................................... 2-9

/

2.2.1.3 Data Files................................. 2-10

2.2.2 The Physical View of Data................... 2-11

2.2.2.1 The Storage of Tables..................... 2-11

2.2.2.1.1 Sequential Tables........................ 2-13

2.2.2.1.2 Superstructures on Tables 2-14

2.2.2.1.2.1 B-Tree Indices......................... 2-15

2.2.2.1.2.2 Inverted Indices....................... 2-16

2.2.2.2 The Storage of Data Files................. 2-17

iv

TABLE OF CONTENTS (Continued)

Page

2.3 The 	Global Data Base................................ 2-19

2.3.1 System Tables 2-20

2.3.1.1 	SYSUSER Table..............................
2-21

2.3.1.2 	 SYSGROUP Table............................. 2-22

2.3.1.3 	SYSDB Table...............................
 2-23

2.3.1.4 SYSDD Table................................
2-25

2.3.1.5 	SYSREL Table............................... 2-26

2.3.1.6 	 SYSDOM Table...............................
2-27

2.3.1.7 	 SYSAUTH Table..............................
2-28

2'3.1.8 SYSCATL Table.............................. 2-30

2.3.2 The Data File Directory...................... 2-32

2.4 System Design Concepts.............................. 2-34

2.5 Backup and Recovery................................. 2-35

2.5.1 Command Recovery Facilities................. 2-35

2.5.2 System Recovery Facilities.................. 2-37

SECTION 3 - USING THE INTEGRATED DATA BASE

MANAGEMENT SYSTEM....................... 3-1

3.1 Operator Control.....................................
3-1

3.1.1 Operator Commands............................ 3-2

3.2 Accessing the System................................ 3-3

3.2.1 The Workspace Table.......................... 3-3

3.2.2 Access from a Remote Terminal 3-5

3.2.2.1 Utility Commands........................... 3-6

3.2.2.2 Data Definition Commands................... 3-7

3.2.2.3 Administrative Commands.................... 3-7

3.2.2.4 	Data Manipulation Commands 3-8

3.2.2.5 	Data File Commands......................... 3-8

3.2.3
 Access Via the Batch Command Reader 3-9

3.2.4 Access from an Application Program 3-10

3.2.4.1 	 Data Independence Within an Application

Program..................................... 3-13

7)

TABLE OF CONTENTS (Continued)

Page

3.3 The Data Base Administrator......................... 3-14

3.4 The User Community.................................. 3-16

3.4.1 Defining a New User to the System 3-16

3.4.2 Defining a New Group to the System 3-17

3.4.3 Controlling Group Membership 3-17

3.4.4 	 Removing a Group fr6m the System........... 3-18

3.4.5 	 Removing a User from the System 3-19

3.4.6 	 Connecting to and Disconnecting from the

System....................................... 3-19

3.4.6.1 An Interactive User....................... 3-19

3.4.6.2 An Application Program.................... 3-21

3.5 Relational Data Base Control3-22

3.5.1 	 Defining a Data Base........................ 3-23

3.5.2 	 Specifying a Data Base for Processing 3-23

3.5.3 	 Defining a Data Field....................... 3-26

3.5.4 	Defining a Table............................ 3-26

3.5.5 	 Expanding a Table............................ 3-27

3.5.6 	 Creating and Dropping Superstructures for

Tables....................................... 3-28

3.5.7 	 Controlling Access to a Table 3-21

3.5.7.1 Granting Access Rights.................... 3-31

3.5.7.2 Revoking Access Rights.................... 3-33

3.5.8 	Manipulating Data in a Table 3-35

3.5.8.1 Inserting Records into a Table 3-36

3.5.8.2 Updating Records in a Table 3-36

3.5.8.3 Deleting Records from a Table 3-37

3.5.8.4 Retrieving Records from a Table 3-38

3.5.9 	 Removing a Table............................. 3-40

3.5.10 	Removing a Data Field....................... 3-40

3.5.11 Removing a Data Base........................ 3-41

Vi

TABLE OF CONTENTS (Continued)

Page

3.6 Using the Data File Directory....................... 3-42

3.6.1 	 Defining a Directory Table.................. 3-43

3.6.2 	 Modifying the Data File Directory 3-45

3.6.3 	 Retrieving Data from the Data File

Directory..................................... 3-46

3.7 The Non-Relational Data Base 3-47

3.7.1 	 Adding a Data File to the Non-Relational

Data Base 3-48

3.7.2 	 Removing a Data File from the Non-

Relational Data Base 3-49

3.7.3 	Loading a Data File....................... 3-50

3.7.4 	 Unloading a Data File........................ 3-52

3.7.5 	 Invoking Data File Processing Procedures... 3-53

3.7.6 	Data File/Table Conversion 3-54

3.7.7 	Data File Processing by Application

Programs...................................... 3-55

SECTION 4 -THE INTERACTIVE COMMAND LANGUAGE 4-1

4.1 Introduction to the Interactive Command Language.. 4-1

4.2 Utility Commands..................................... 4-4

4.2.1 	ENTER... 4-5

4.2.2 	EXIT.. 4-6

4.2.3 	 ATTACH 4-7

4.2.4 	USE... 4-8

4.2.5 	PASSWORD...................................... 4-10

4.2.6 	MENU.. 4-11

4.2.7 	DESCRIBE...................................... 4-12

4.2.7.1 DESCRIBE DATABASE.......................... 4-12

4.2.7.2 DESCRIBE TABLE............................. 4-14

4.2.7.3 DESCRIBE FIELD............................. 4-14

vii

TABLE OF CONTENTS (Continued)

Page

4.2.7.4 DESCRIBE COMMAND........................... 4-15

4.2.7.5 DESCRIBE RIGHTS............................ 4-16

4.2.7.6 DESCRIBE GROUP............................. 4-16

4.3 Data Definition Commands............................ 4-17

4.3.1 	 DEFINE....................................... 4-19

4.3.1.1 DEFINE DATABASE............................ 4-19

4.3.1.2 DEFINE TABLE............................... 4-19

4.3.1.3 DEFINE FIELD............................... 4-21

4.3.1.4 DEFINE USER................................ 4-22

4.3.1.5 DEFINE GROUP............................... 4-22

4.3.1.6 DEFINE ASSERTION........................... 4-23

4.3.2 	 REMOVE....................................... 4-26

4.3.2.1 REMOVE DATABASE............................ 4-26

4.3.2.2 REMOVE TABLE............................... 4-26

4.3.2.3 REMOVE FIELD............................... 4-27

4.3.2.4 REMOVE ASSERTION........................... 4-27

4.3.2.5 REMOVE USER................................ 4-27

4.3.2.6 REMOVE GROUP............................... 4-28

4.3.3 	 EXPAND....................................... 4-29

4.3.4 	Generating Data Access Superstructures:

INDEX and INVERT 4-30

4.3.5 	DROPINDEX....................................4-33

4.4 Administrative Commands............................. 4-34

4.4.1 	 GRANT.. 4-35

4.4.1.1 Granting Rights on Tables 4-35

4.4.1.2 Granting Rights on Data Bases 4-37

4.4.2 	REVOKE 4-39

4.4.3 	 INCLUDE...................................... 4-41

4.4.4 	EXCLUDE...................................... 4-42

Viii

TABLE OF CONTENTS (Continued)

Page

4.5 	Data Manipulation Commands.......................... 4-43

4.5.1 SELECT.. 4-44

4.5.1.1 Query-by-Example Syntax................... 4-45

4.5.1.2 Relational Calculus Syntax................ 4-53

4.5.1.3 The Workspace Table....................... 4-57

4.5.1.4 Comparing the Two Approaches 4-60

4.5.2 INSERT.. 4-63

4.5.3 UPDATE.. 4-65

4.5.4 DELETE.. 4-66

4.5.5 DISPLAY....................................... 4-67

4.5.6 PRINT... 4-69,

4.6 	Data File Commands.................................. 4-70

4.6.1 COPY.. 4-72

4.6.2 CATALOG...................................... 4-74

4.6.3 UNCATALOG.................................... 4-75

4.6.4 LOAD.. 4-76

4.6.5 UNLOAD.. 4-79

4.6.6 KEEP.. 4-80

4.6.7 SCRATCH....................................... 4-81

4.16.8 PERFORM...................................... 4-82

SECTION 5 - THE APPLICATION PROGRAM COMMAND

LANGUAGE................................ 5-1

5.1 	 Introduction to Application Program Command

Processing .. 5-1

5.2 	 Issuing "Interactive" Commands from an Application

Program ... 5-2

5.2.1 Utility Commands............................. 5-4

5.2.1.1 The ENTER Command5-4

5.2.1.2 The EXIT Command........................... 5-5

5.2.1.3 The ATTACH Command.........................5-5

ix

TABLE OF CONTENTS (Continued)

Page

5.2.1.4 The USE Command 5-6

5.2.2 	 Data Manipulation Commands 5-6

5.2.2.1 The SELECT Command........................ 5-7

5.2.2.2 The INSERT Command 5-8

5.2.2.3 The UPDATE Command........................ 5-10

5.2.2.4 The DELETE Command........................ 5-12

5.2.3 	 Operations which Support "Interactive"

Commands.....................................
5-13

5.2.3.1 The BIND Command........................... 5-13

5.2.3.2 The FETCH Command 5-14

5.2.3.3 The LOCK Command
 5-15

5.2.3.4 The UNLOCK Command........................ 5-16

5.2.3.5 The GET Command 5-17

5.3 Data File Commands.................................. 5-19

5.3.1 	 The COPY Command............................. 5-20

5.3.2 	 The LOAD Command............................. 5-20

5.3.3 	 The UNLOAD Command........................... 5-21

5.4 Data File Processing Operations.................... 5-22

5.4.1 	Performing a SLICE Operation 5-23

5.4.2 	Performing a WINDOW Operation 5-24

5.4.3 	Performing a SUBSET Operation 5-26

5.4.4 	Performing a REGRID Operation 5-27

5.4.5 	Performing a MERGE Operation 5-28

5.5 Examples of the Use of "Interactive" Commands 5-29

5.6 Commands Which Access Data Files................... 5-32

5.6.1 	 The OPEN Command............................. 5-33

5.6.2 	 The CLOSE Command............................ 5-34

5.6.3 	 The GETHEAD Command......................... 5-34

5.6.4 	 The GETHIST Command......................... 5-35

5.6.5 	 The PUTHEAD Command......................... 5-36

5.6.6 	 The PUTHIST Command......................... 5-36

X

TABLE OF CONTENTS (Continued)

Page

5.6.7 The READ Command............................. 5-37

5.6.8 The WRITE Command 5-39

5.6.,9 The SEARCH Command........................... 5-41

5.7 Miscellaneous Commands.............................. 5-43

5.7.1 The FORMAT Command........................... 5-43

SECTION 6 - THE PHYSICAL STORAGE OF TABULAR DATA.. 6-1

6.1 The Tabular Data Storage Area...................... 6-1

6.2 Physical Pages....................................... 6-1

6.3 Managing Mass Storage............................... 6-2

6.4 Buffers and the Buffer Control Table 6-3

6.5 The Structure of Tables............................. 6-6

6.5.1 Storing Records on a Physical Page 6-6

6.5.2 Holes in a Page.............................. 6-9

6.5.3 Variable-Sized Records....................... 6-10

6.6 Access Method Superstructures....................... 6-10

6.6.1 B-Trees....................................... 6-10

6.6.1.1 Description................................ 6-10

6.6.1.2 Implementation Within the System 6-15

6.6.1.3 Enhancements...............................6-17

6.6.1.4 Arguments Against B-Trees................. 6-21

6.6.2 Inverted Indices............................. 6-23

6.6.2.1 Description................................6-23

6.6.2.2 Logical Pages.............................. 6-25

6.6.2.3 Searching an Inverted Index 6-26

6.6.2.4 Maintaining Logical Pages................. 6-27

SECTION 7 - DATA FILE HANDLING..................... 7-1

7.1 An Overview of Data File Processing................ 7-1

X.

TABLE OF CONTENTS (Continued)

Page

7.2 The Data File Catalog.............................. 7-6

7.3 The Data File Directory............................. 7-10

7.4 The Data File Identifier 7-12

7.5 System Standard Formats............................. 7-14

7.5.1 	A System Standard Format for Image Data 7-16

7.5.1.1 The Header Record in an Image Data File.. 7-17

7.5.1.2 Data Records in an Image Data File 7-17

7.5.2 	 A System Standard Format for Gridded Data.. 7-19

7.5.2.1 The Header Record in a Gridded Data File. 7-20

7.5.2.2 Data Records in a Gridded Data File 7-22

7.5.3 	 A System Standard Format for Cartographic

Data.. 7-24

7.5.4 	 "Format X"................................... 7-28

7.6 The LOAD and UNLOAD Commands....................... 7-28

SECTION 8 - SYSTEM INTERNALS 8-1

8.1 Control Structure Concepts......................... 8-1

8.2 Communications Control Structures.................. 8-1

8.2.1 	 The Remote Terminal Communications List 8-1

8.2.2 	The Application Program Communications

List.. 8-3

8.3 The Command Control Block.......................... 8-4

8.4 System Control Structures.......................... 8-5

8.4.1 User Control Blocks 8-6

8.4.2 	 Group Extensions.............................8-8

8.4.3 	Authorization Extensions.................... 8-10

8.4.4 	Data Base Control Blocks.................... 8-12

8.4.5 	Data Dictionaries............................ 8-14

8.4.6 	Relation Control Blocks..................... 8-15

8.4.7 	Domain Extensions........................... 8-16

xii

TABLEOF CONTENTS (Continued)

Page

8.5 Queues .. 8-18

8.5.1 The Command Queue............................ 8-18

8.5.2 The Initiator Queue.......................... 8-19

8.5.3 The Wait Queue............................... 8-20

8.5.4 The Output Message Queue.................... 8-20

8.5.5 The Interactive Terminator Queue 8-21

8.5.6 The Application Terminator Queue 8-21

SECTION 9 - SYSTEM SOFTWARE......................... 9-1

9.1 System Architecture................................. 9-1

9.2 The System Generation Program...................... 9-2

9.3 The System Control Program 9-4

9.4 The Interactive Command Processor 9-4

9.4.1 The Interactive Command Input Processor 9-5

9.4.2 The Interactive Command Terminator 9-6

9.5 The Application Program Interface.................. 9-6

9.5.1 The Communication Modules 9-7

9.5.2 The Application Program Command Processor.. 9-8

9.5.3 The Application Program Command Terminator. 9-8

9.6 Monitor ... 9-9

9.7 The Logical Interface............................... 9-10

9.8 The Physical Interface.............................. 9-11

9.9 The Data File Processor............................. 9-12

9.10 The Output Message Processor........................ 9-14

APPENDIX A - THE RELATIONAL MODEL OF'DATA A-I

A.1 Description and Definition.......................... A-1

A.2 Normalization.. A-4

A.2.1 First Normal Form............................ A-4

A.2.2 Anomalies and Higher Normal Forms ;... A-6

xtl-t

TABLE OF CONTENTS (Continued)

Page

A.3 	 Relational Operations and Query Languages A-9

A.4 	 History..
A-12

A.5 	 The Advantages of the Relational Model of Data
.... A-13

APPENDIX B - ADDITIONAL TOPICS..................... B-i

B.1 	Dynamic Memory Allocation........................... B-1

B.1,1 Approaches to Dynamic Memory Allocation B-i
....

B.1.2 The Fibonacci Buddy Method B-3

B.2 	Data Integrity, Consistency, and Quality B-6

B.2.1 Sources of Erroneous Data................... B-6

B.2.2 Backup and Restoration. B-7

B.2.2.1 Audit Trails...............................
B-7

B.2.2.2 Internal Backour Provisions B-8

B.2.3 The Integrity Subsystem..................... B-10

B.2.3.1 Integrity Assertions...................... B-10

B.3 	A Locking Mechanism to Support Concurrency B-14

B.3.1 Problems Introduced by Concurrent Updates..
 B-14

B.3.2 High Level vs. Low Level Locking B-16

B.3.3 Granularity B-18

B.3.4 A Physical Locking Mechanism. B-20

B.3.5 Scheduling Strategies........................ 3-24

B.3.6 Deadlock.....................................
B-25

B.4 	Data Compatibility :...............
 B-26

B.4.1 The Scope of the Problem.................... B-26

B.4.2 An Approach to Data Compatibility B-27

B.5 	System Security...................................... B-30

B.6 	The Macro Command Facility.......................... B-33

BIBLIOGRAPHY...
1

.aA)

LIST OF ILLUSTRATIONS

Figure Title Page

2-1 Integrated Data Base Management System Dual

System Architecture 2-2

3-1 An Example of Workspace Table Handling and

the Concept of Primary and Secondary Data

Bases.. 3-25

4-1 Sample Tables................................. 4-46

4-2a Sample Retrieval.............................. 4-48

4-2b Sample Retrieval Using'Comparison Operators. 4-48

4-3 Sample Retrieval Using AND................... 4-49

4-4 Sample Retrieval Using OR 4-49

4-5 Sample Retrieval with Cross Referencing 4-50

4-6 Sample Retrieval Illustrating the COUNT

Function....................................... 4-52

4-7 Sample Linearized Retrievals................. 4-54

4-8 Sample Retrievals Using Relational Calculus

Syntax....................................... 4-56

4-9 Relational Calculus Retrievals Using

Functions in the Target List............... 4\58

4-10a Retrieval with Automatic Units Conversion... 4-62

4-10b Retrieval with Automatic Output Units

Conversion................................... 4-62

5-1 Using the Application Program Command

Language..................................... 5-30

6-1 Linked List of Free Pages.................... 6-4

6-2a Storage of Records Within a Physical Page... 6-8

6-2b Physical File Structure for Tables 6-8

6-3 Pointer Structure of,a Table................. 6-11

6-4 Splitting a B-Tree Node During Insertion 6-14

6-5 A Sample B-Tree of Order 4................... 6-16

6-6 A Prefix Tree Compression for Seven Keys 6-19

6-7 Projected Pattern of Usage for Typical

Tables in the System (Other than

Directories)................................ 6-22

-V

LIST OF ILLUSTRATIONS (Continued)

Figure Title age

6-8 An Inverted Index............................. 6-24

7-1 Flow of Data Through the System 7-5

7-2a Conceptual Layout of a Two Dimensional File. 7-23

7-2b Conceptual Layout of a Three Dimensional

File.. 7-23

7-2c Conceptual Layout of a Four Dimensional

File.. 7-23

7-3 Stages Mapping a Four Dimensional Grid into

Records in a File.......................... 7-25

9-1 Integrated Data Base Management System

Software Prccesses and Command Flow 9-2

B-i Hierarchy of Lockable Units in a Data Base.. B-19

B-2 Concurrency Support Substructure B-22

B-3 Tables to Support Data Compatibility B-28

xvt

LIST OF TABLES

Table Title Page

4-1 System-Generated Formats..................... 4-68

5-1 Commands Available to Both Interactive

Users and Application Programs 5-3

7-1 A Possible Layout of the Header Record for

Image Data.................................. 7-18

7-2 A Possible Layout of the Header Record for

Gridded Data................................ 7-21

7-3 A Possible Layout of the Eeader Record for

Cartographic Data........................... 7-27

A-I Terminology Correspondences.................. A-3

B-i The Fibonacci Numbers........................ B-4

B-2 Count of Numbers in Various Ranges B-4

B-3 Count of Numbers in Various Ranges for

Fk = F-k + Fk B-6
i

-vii

SECTION I - INTRODUCTION

1.1 Study Requirements

This report presents the results of a study to produce

a conceptual design of an Integrated Data Base Management

System to support a variety of applications research activities.

The design was developed so as to be independent of any specific

computer or operating system. Initially, the system would be

required to support applications investigations in weather and

climate. Ultimately, it is anticipated that the technology

developed during this study and presented herein will be used

to support applications investigations in hydrology, agriculture

and relatedlearth resources disciplines. Prior to entering into

the actual design phase, a sample of the requirements of po

tential users of this system were analyzed. These users included

scientists performing studies in the above named areas as well

as programmers developing applications software in those areas.

Several factors affecting the design of the system were

brought to light during the evaluation of the user requirements.

Foremost among these was the need for the system to maintain

information about a large quantity of data stored mostly on

magnetic tape in a variety of formats. This information must

be maintained by the system in a form such that users can easily

determine what data is available and locate and retrieve sub

sets of that data without regard for format or physical location.

Because of the research environment in which this system would

operate, users must have the ability, not only to locate a

desired subset of data, but to be able to retrieve that subset

and structure it into a data base to meet their needs.

Once a user has located and retrieved the required data, the

system must provide capabilities such that the data can be

manipulated in numerous ways to obtain the desired results.

1-1

These data manipulation operations must provide users with

the ability to access and update data in on-line data bases

organized for random access as well as the ability to perform

meaningful operations on subsets of the sequentially organized

data in the off-line data base on magnetic tape. Thus, it be

came evident that significant flexibility in accessing, structur

ing, relating and processing data within the system was necessary

to support the user requirements.

1.2 'The Applicability of Existing Data Base Management Systems

Since there are currently several data base management

systems available for a number of computers, the possibility

.that one of these systems might satisfy the requirements

of the user community must be considered. The existing

systems represent what might be referred to as the first

generation of data base management systems. Some of these

systems have been available for several years with relatively

little change. Others have appeared in the past few years.

However, all of these systems share the first generation

characteristics of a centralized data base with centralized

definition and control of that data base. While these

characteristics are desirable under certain circumstances and

can be realized with the system proposed herein, they would

severely hinder users working in the environment described in the

previous subsection. Thus, the system described in this report,

which we feel is representative of the new generation of

data base management systems., stresses a more flexible approach

to data base management wherein the user has considerably more

control over the organization and processing of his information.

As an example of the operational restrictions of the

current generation of data base management systems, consider

a typical scenario for developing a data base. Initially,

1-2

the data base itself must be designed. This is, very often,

a lengthy process in which an individual with extensive know
ledge of the data base management system, often referred to

as the Data Base Administrator, and several of the potential

users are involved. An attempt is made by this group to

define all of the current requirements for system usage that

might affect data base content and. structure and to foresee

future requirements so that they can be included in the data

base when it is initially designed. The reason for this is

that in most systems it is difficult to restructure or extend

a data base once it has been constructed.

Once the data base has been designed, the Data Base

Administrator must code a description of the data base,referred

to in some systems as a schema. This description is coded in

a language, usually unique to the data base management system

being used, referred to as the Data Description Language.

After coding the data base description, it is compiled by a

program which is a part of the data base management system,

referred to as the Data Description Language Compiler or Schema

Compiler. Often, subschemas must be defined which describe

various subsets of the entire data base for use by specific

users or applications. These too must be compiled. Thus, in

most of the current generation of data base management systems,

users access the same
central data base via different subschemas.

Very often, the addition of files, data fields or new

relationships within an existing data base requires the inter

vention of the Data Base Administrator. Usually, the Data Base

Administrator must modify the data base description or
an exist

ing description of a subset of the data base or create
a new

description of a subset of the data base; all of which will

require some sort of recompilation. Additionally, the Data

Base Administrator might be required to run a utility program

to perform the necessary restructuring or to unload the data

base and then reload it to make the required modifications. All

of this is often a time-consuming and error-prone process.

1-3

It was felt that the procedures outlined in the scenario

above were intolerable in the environment in which this system

would operate and that some new concepts must be applied to

the design of a system which would be responsive to the needs

of the user community. It should also be noted that none of

the existing data base management systems satisfactorily

address the problem of supporting a large off-line data base

consisting of sequential data files.

1.3 The Conceptual Basis for a New System

Because of the need for flexibility and ease of use,

the relational data model was chosen over the network and

hierarchical data models to represent data stored in on-line

random access data bases. A data model is simply the way in

which a user logically views data. A more thorough discussion

of the relational model as well as the other data models is

provided in Appendix A of this document. Briefly, the

relational data model permits users to logically view a

data base as if it contained one or more flat, two-dimensional

tables. The rows of a table are analogous to records in a

file while the columns are analogous to data fields in those

records. Additionally, the user does not explicitly define

relationships within a relational data base since the system

maintains these relationships based on the contents of the

tables. Thus, the relational data model provides considerable

data independence between the way in which a user logically

views data and the way in which that data is actually stored

and manipulated by the system. Therefore, the relational data

model can provide the basis for a much more user friendly

inte-rface to the system and can also be the basis for future

research and development into a near-natural language interface

to the system. For these reasons, it was felt that the relational data

model would provide the flexibility necessary to support the

way in which a scientific user community would use the system.

1-4

In addition to the use of the relational data model,

the design employs the concept of dynamic data definition.

That is, relational data bases and the tables that constitute

them can be created and destroyed dynamically via interactive

commands. Additionally, existing tables can be dynamically

expanded by the addition of data fields and special indices

can be created which facilitate access to data stored in

tables.

I While the relational data model provides a basis for the

description of random access data bases stored on-line, it

does not address the problem of managing a large number of

sequential files on magnetic tape and, perhaps, direct access

devices. To accomplish this, it was felt that a file manage
ment system was needed. Thus, a dual system concept was evolved

with a relational data base management system as a "front end"

to provide the necessary flexibility and ease of access to

on-line data bases and a file management system as a "back end"

to provide access to sequential files in the large non-relational

data base. Additionally, techniques are defined whereby infor
mation can be transferred between the front and back end of

the dual system. It should be noted that although the approach

defined heroin is somewhat unique, each concept is based upon

work currently being done in the field of data base management

or on techniques that have been applied successfully in data

processing for many years.

1.4 Advantages of the Design

By employing the relational data model to describe on-line

data, the user is freed from the necessity of defining

relationships through which data can be accessed.
 In essence,

the user need not know how the data is physically stored to

access it. The concept of dynamic data definition permits

a user to create on-line random access relational data bases

1-5

as necessary to support his requirements. Thus, the time
consuming processes of. data base definition and, perhaps,

restructuring are all but eliminated.

By employing a file management system to support access

to sequential data files in the off-line, non-relational

data base, the advantages of sequential processing can be

realized when necessary.

Two concepts within the design provide the logical inter
face between the relational data base management system and

the file management system. These are the concepts of a

data file catalog and a data file directory. The Data File

Catalog is an on-line random access table maintained by

the relational data base management system. It provides

a one -to-one correspondence between a unique file identifier

assigned by the system and the physical location of a data

file. Each time a new sequential data file is added to the

off-line non-relational data base,,a record is inserted in

the Data File Catalog which contains the unique identifier

assigned to the new data file and its physical location.

Thus, at any time, given the unique identifier, the system

can locate the corresponding sequential file in the off-line

data base.

While the Data File Catalog provides the system, and

the users, with knowledge of the physical location of a

data file, it does not provide an indication of the contents

of the file. This information is provided by the Data File

Directory. The Data File Directory consists of one or more

random access on-line tables maintained by the relational

data base management system. Each record in a directory

table contains the data file identifier of a single sequential

file in the off-line non-relational data base. Additionally,

the record will contain values for attributes which are

1-6

descriptive of the type of data contained in the data file.

Thus, a record in a directory table describes the contents

of
a file but not its physical location. Rather than attempt

to
define a static directory structure which might be applicable

to all types of data maintained in the off-line data base, a

dynamic structure was chosen whereby additional directory

tables
can be added to the Data File Directory as a function of

new data types entered into the off-line data base. By inter
actively querying the Data File Directory, a user can locate the

data in the off-line non-relational data base which might be

required to perform a particular study.

One other advantage of providing file management capa
bilities is that data from existing systems sdch as
AOIPS

and Smips/VICAR can be processed by users of this system.

Naturally, this is important because of the investment already

made in software systems development and data processing.

At this point, it may be helpful to provide some scenarios,

similar to the one above, which illustrate the use of the pro
posed system. The first scenario illustrates the use of the

relational data base management system while the second illus
trates the interactive processing capabilities of the file

management system.

As in the previous scenario, a data base must be designed

before it is created. However, the design
can be performed

by the user who will create the data base since it will be

tailored to the user's requirements. Since the relational

data base management system supports the dynamic expansion of a

data base by adding tables and the expansion of tables by adding

data fields, the user need not try to foresee future requirements;

thus, reducing the time required in the design phase.
After

the design of the data base has been completed, the user

interactively defines his
 new data base and the. tables contained

1-7

therein. At this point, data may be entered into the tables

in the new data base. If, at some later time, new tables

must be defined or existing tables must be expanded or removed,

this can be accomplished very simply with interactive

commands.

If the data to be placed in the newly defined data base

is located in the off-line data base, the user could query

the Data File Directory to locate the required data. This data

could then be extracted from the off-line data base using the

interactive commands and placed into the new relational data

base. As indicated previously, this can be done by the

user interactively with no intervention by the Data Base

Administrator. If data are required that are contained in

other on-line relational data bases, t'he user can extract

that data from those data bases and transfer it to his own

data base using a powerful set of interactive data manipulation

commands.

An alternate scenario can be envisioned if the data

to be processed by the user is contained in the off-line

data base and is noX in a form which can be easily manipulated

interactively in a tabular form via the relational data base

management system (e.g., image data). To process such data,

the user could still locate the data required using the

Data File Directory. However, it would not be placed on-line

in tabular form to be accessed randomly but would be loaded on

a direct access device in sequential form and, in the process,

converted to one of several system standard formats. These for

ma-tsare discussed briefly below and in more detail in Section 7

of this document. The data can then be processed via

interactive commands in its sequential form. For example,

functions which can be performed include the regridding of

a gridded data file, the removal of a two-dimensional slice

from a multi-dimensional gridded data file, the overlaying

1-8

of two or more gridded data files, the extraction of a

subset of parameters from a gridded data file or the

extraction of a rectangular window from an image or gridded

data file. Additional functions can be added to those defined

above since this facility is implemented via library sub

routines. The result of processing a sequential data file

with any of these functions is the creation of a new

sequential data file for which an entry is made in the Data

File Catalog..

The preceding scenarios illustrate a powerful interactive

capabilityifor processing on-line,random access data in tables

as well as data in sequential files. However, the system des
f/

cription also includes an extensive Application Program Command

Language which provides facilities for manipulating data in tables

as well as data in sequential files by application programs.

Extended file manipulation commands for sequential files are

included in the Application Program Command Language which per

mit the searching of data files, the standard reading and writing

of data files as well as a re-read capability and a re-write

capability. Thus, the Application Program Command Language

extends the capability of an application program to process

sequential files.

1.5 Data Formats

As part of the study, the use of a standard format or

formats for sequential data files was investigated. Since

existing data to be included in the off-line data base were

already in such diverse formats and since new data in unknown

formats must be supported in the future, it was determined that

it would not be feasible to define a single format to encompass all

data. Additionally, it was felt that it would -not be practical to

require that all data entered into the off-line non-relational

data base be reformatted prior to inclusion. However, it was

1-9

felt that the use of standard formats for internal processing

of sequential data by the system would simplify that processing.

Thus, several types of standard formats have been defined;

one for each type of data managed by the system (e.g.,

gridded, image, etc.). New standard formats can be defined

as new data types are introduced into the system. Methods

have been defined within this document by which sequential

data files in their original format can be converted into

the proper system standard format.

1.6 Contents of the Design Document

The remainder of this document contains the conceptual

description of the system introduced in this section. The

description is detailed and somewhat technical in nature.

It was intended to provide a working basis for the develop

ment of a data base management system. Sections 2 and 3

provide an overview of the system and its capabilities.

Section 2 provides a system overview from the internals

standpoint, while Section 3 discusses the use of the

system. Section 4 describes, in some detail, the proposed

Interactive Command Language. Both the relational calculus

based language and a Query-By-Example type language are

discussed. It is intended that whatever interactive

command language would be implemented for the system, it

would be user friendly in that.it would carry on a dialogue

with the user to assist him in entering commands.

Section 5 contains a description of the Application Program

Command Language. This includes a proposed calling

sequence for each command and a brief description of each of

the arguments. Section 6 describes an approach to storing

tabular data maintained by the-relational data base manage

ment system. Section 7 discusses the handling of data files

and the use of system standard formats. While this document

does not attempt to define in detail all system standard

1-10

formats, it does include examples of some possible standard

formats. Section 8 discusses the system internals which in
clude the various control structures required to support the

internal architecture of the system.
These control structures

consist of control blocks, control block extensions, dictionaries,

lists and queues. Section 9 describes the actual system archi
tecture including the various modules needed to implement
a

system as conceived of in this document.

Two appendices are included to provide additional infor
mation, mostly of a theoretical nature, to the reader.

Appendix A describes the concepts on which the relational

data model is based. Appendix B covers additional topics

whicli
are associated with the design and development of such

a system.
These include data integrity, consistency and

quality, as well as a discussion of backup and recovery

techniques and provisions for supporting concurrent access

to data within the system.

I-ii

SECTION 2 - SYSTEM OVERVIEW

2.1 Conceptual Description

This section describes the architecture of the Integrated

Data Base Management System. This system is designed to pro
vide multi-user access to structured and unstructured data.

Structured data is stored in tabular form while unstructured

data is stored in the standard sequential form. Data stored

in tabular form resides
on direct access devices and can have

various types of indices associated with it to facilitate

retrieval. Data stored in sequential form are treated as

standard sequential data files and can reside on
any device

which supports the sequential organization of information.

The indices which are associated with tables are constructed

as
a function of the data contained in the tables and are

referred to generically as "superstructures". Superstructures

provide rapid access to data in tables and
a logical ordering

to records in tables.

2.1.1 The Dual System Concept

To support this dichotomy of data structure, a dual system

concept has been employed. The dual system is comprised of

a "front-end" relational data base management system which

manages information in tabular form and a "back-end" data file

processor which manages sequentially organized files. This

design philosophy not only provides the capability of proces
sing tabular and sequential data but forms the basis for the

development of a distributed data base system. Naturally,

the entire system can be implemented on a single computer.

However, the back-end data file processor could be implemented

on one or more physically separate computers from the
one on

which the front end relational data base management system is

implemented. This would allow the user to
locate and access

data which are stored at installations that are remote from

2-1

Integrated Data Base Management System

Dual System Architecture

APPLICATION
PROGRAMS I

APPLICATION
BATCHS

COMMANDS PROGRAM
INTERFACE

N I
TT

O0 C REAAoSM C RELATIONAL DATA
REMOTE P I

U
A MEBASE
CA S MANAGEMENT

FILE
PROCESSOR

I DO SYSTEM I

V R

wo H'
DBMS

LIBRARY RELATIONAL I
DATA BASES

F

£LLE I
AUDIT

the central computing facility on which the front-end relational

system is implemented. Figure 2-1 depicts graphically the

dual system architecture of the Integrated Data Base Management

System.

2.1.1.1 The Front End

The front-end will consist of a relational data base

management system with interfaces which support concurrent

access by multiple interactive users and multiple application

programs. The relational'system supports a tabular representa

tion of data. Logically, data can be viewed as
one or more

tables with the data fields as columns and the records as

rows. New rows may be added to
the table and existing rows

may be deleted. Likewise, new columns may be added to the

table and existing columns'may be updated. In the relational

system, one or more tables can be organized into a data base.

Each data base maintained by the relational system is indepen

dent; however, data may be transferred between data bases.

The definition and removal of data bases and tables is
a

dynamic process and is under complete control of the users.

Relationships among data in the tables of
a data base are

based entirely on data values. No predefinition of data base

structure or access paths is necessary. Thus, data bases can

be created and new tables added dynamically as a function of

the users' requirements.

The data required to control the processing of the rela
tional system is, itself, stored in'tables. Thus, tables

exist which contain information about the users of the system,

the data bases currently maintained by the system, the tables

contained in each of the data bases, the data fields within

each of the data bases and the rights to perform certain opera

tions on the tables. The system tables are contained in a

system data base referred to as the Global Data Base. The

Global Data Base also contains one or more tables which

2-3

constitute the Data File Directory. The Data File Directory

is the vehicle by which users can locate sequential data files,

maintained by the back-end data file processor, as a function

of their data content. Any number of tables can be created

and included as part of the Data File Directory. The format

of a directory table is not predefined. Normally, a directory

table will contain data fields which represent attributes of

the data files which it cross references.

Another concept of importance is that of ownership.

Ownership of data bases and tables is of primary importance

in determining who is allowed to remove data bases or tables

and who can grant specific access rights to tables. The

Globai Data Base is owned by the Data Base Administrator.

Thus, the Data Base Administrator has complete access to all

information in the Global Data Base. All other data bases

maintained by the relational system are owned by users,within

the user community. Tables within data bases may be owned by

the owner of the data base or other users. Only the owner'of

a table can grant access rights to that table. Thus, the

owner of a table -can grant operational rights to read, update,

insert, and delete records within a table to the entire user

community or various subsets thereof. Likewise, the owner

of a table may revoke any of those granted rights.

2.1.1.2 The Back-End

The back-end will consist of software, referred to as the

Data File Processor, which manages a large non-relational data

base consisting of sequential data files. Each data file is

assigned a unique data identifier by the system when it is

created. All references to data files in the front-end

relational system are via a data identifier.

When a new data file is entered into the Non-Relational

2-4

Data Base, an entry is inserted into a system table, referred

to as the Data File Catalog, which contains, among other

things, the data identifier and the physical location of the

data file. The data file may be physically stored on magnetic

tape or a direct access device which supports the sequential

data organization.

There are several methods which might be employed to

generate the data identifier. This document does not attempt

to select the best approach, however, two techniques are

mentioned briefly below. The first technique involves the

generation of a random number containing some fixed number of

decimal digits. The number would be converted into the

internal alphanumeric code of the machine on which the system

is implemented (e.g., ASCII, EBCDIC). The converted string

of digits would become the data identifier for the new data

file. This technique would probably require that an attempt

be made to retrieve a record from the Data File Catalog to

verify that the new data identifier is, indeed, unique.

Another technique would be to use the last two digits of the

current year and the three digit day number as the first five

characters of the data identifier. Two or three other

digits, generated using a counter, could be appended to obtain

the entire data identifier. Thus, each day the counter would

be reset to zero and would be incremented each time a new data

file were added to the Non-Relational Data Base. While this

technique does not require access to the Data File Catalog,

it does require that the system maintain a counter which is

not destroyed should the system terminate abnormally and it

places an upper limit on the number of data files that could

be added in a one day period. A variation of this technique

would simply use an n-digit counter without including date

information.

A data file may exist in two different formats: its

2-5

original data file format and a system standard format. It

is anticipated that the Integrated Data Base Management

System will support several system standard formats. For

example, system standard formats might be defined for gridded

data, image data and other data. New system standard formats

can be defined as required by adding new-format conversion

routines to the system library to convert data files from their

original data file format into the new system standard format.

Data file formats are discussed in a subsequent subsection,

but no attempt is made in the document to define in detail a

working set of system standard formats.

To facilitate the manipulation of data files, several

interactive commands are provided which permit users to con

trol the content and format of the Non-Relational Data Base

and to transform data files into relational tables and

relational tables into data files. Thus, a user could trans

form a data file into a table, manipulate the data in the

table, combine the data with that of other tables and trans

form the resulting table into a new data file. Also, a user

could load an off-line copy of a data file on magnetic tape

onto a direct access device or unload an on-line copy to an

off-line magnetic tape. Additionally, a user can invoke

library procedures to perform operations, such as regridding,

on a data file or display or plot the contents of a data file.

Additional facilities exist whereby data fifes can be

accessed or created by application programs. Using applica

tion program commands, an application program can open and

close data files, read all or a portion of a data file record,

write records into new data files, search a data file record

by-record for a particular value, rewrite records in a newly

created data file and process any header and history records

which may be associated with a data file.

2-6

2.1.2 The System Environment

The structure of the Integrated Data Base Management

System Software described herein can be divided into several

independent tasks that can be performed in an asynchronous

manner. Implementation of this software structure requires

a multi-programming operating system that can support this

form of subtasking. If the system is implemented on a com

puter whose operating system does not support these features,

some modifications must be made to the internal software

structure. The asynchronous tasks communicate with each

other through information queues. Each task will be in a

run state only while it has information to process. At all

other times, it will be in a wait state. Thus, several com

mands in various states of completion can be within the system

at any one time. Two other features which facilitate this

software structure are the dynamic allocation of main memory

and operating system facilities which support reentrant coding.

Neither of these features is mandatory to the implementation

of the system, as described in this document, since both can

be implemented as part of the software system.

2.2 The Organization of Information

Information managed by the Integrated Data Base

Management System can be viewed at two levels: the logical

level and the physical level. At the logical level, informa

tion is viewed as data bases, tables and data files. At the

physical level, information is viewed as physical pages con

taining tabular data, keys and pointers and sequential files

containing data records.

2.2.1 The Logical View of Data

The logical view of data is content oriented. That is,

2-7

it is not concerned with storage structures, access methods

or access paths but represents the way in which the users view

data. It is important that the user have the ability to

logically structure information in a natural manner.

Certainly, it is desirable that the system impose as few

restrictions on the logical view of data as possible. To

that end, the Integrated Data Base Management System permits

users to logically structure data into one or more tables of

user defined format and to organize tables into one or more

data bases to satisfy the user's requirements. Additionally,

large volumes of data can be stored in data files.

2.2.1.1 Data Bases

A data base is a collection of tables. New data bases

can be created at any time. Each data base has a name

associated with it whiph must be unique among data base names

known to the system. The creator of a data base becomes its

owner. Within a data base, tables can be created and removed

as necessary. Each data base has a Data Dictionary associated

with it. The Data Dictionary contains the description of each

data item in the data base. New data items can be defined as

needed to support the creation of new tables in the data base.

Each data base maintained by the system is independent from

all other data bases. Every interactive user or application

program can be logically attached for processing purposes to one

and only~one data base at any given time. Data can be trans

ferred between data bases via a Workspace Table; however, a

user attached to one data base cannot access the contents of

another data base.

The system will support a classification scheme for data

bases. When a data base is created, the system classifies

it as a working data base. The classification of a data

base can be changed at any time by the owner of the data base

2-8

or the Data Base Administrator. Besides the working data

base class, the Data Base Administrator can define any data

base classification scheme that is meaningful to the user

community.

A special data base, referred to as the Global Data Base,

is maintained by the system.
 The Global Data Base is owned

by the Data Base Administrator. It contains the system tables,

all directory tables and any other tables that the Data Base

Administrator determines to be of
use to the user community.

2.2.1.2 Tables

A table is a logical view of stored data.
New tables can

be created at any time.
 A new table belongs to the data base

to which the user is attached when the table is created.

Each table has a name associated with it which must be unique

among table names
in the data base to which it belongs. The

creator of a table becomes its owner.
 Tables contain zero

or more records which can be visualized as
rows in the table.

Each record contains one
or more data fields which can be

visualized as columns in the table.

Columns or combinations of columns
can have superstructures

defined on them. As currently defined, the system supports

hierarchical indices, referred to
as B-trees, and inverted

indices. Superstructures dan be defined when a table is

created or
after data values have been loaded into it.

Superstructures may be dropped at
any time. Rows or records

within a table can be added or
deleted. Columns or data

fields can be updated or added.
 A column can not be physically

deleted but
can be set to a null value in all rows. The

retrieval of data from a table is based entirely on
data values

in the table. Retrieval can be restricted to specific rows

or columns.
 Data from several tables can be retrieved jointly

into a special table referred to as the Workspace Table.

2-9

A Workspace Table is associated with each user connected

to the system. The Workspace Table is used to contain the

rows and columns that are retrieved from one or more tables as

a'result of a data base query operation. The Workspace Table

associated with each user is not contained in any data base.

Since it is not contained in any data base, the Workspace

Table can be used to transport data from one data base to

another. The contents of a Workspace Table can be accessed

only by the user with whom it is associated.

When a table is created, access to it is limited to its

owner and the Data Base Administrator. Either the owner or

the Data Base Administrator can grant rights to perform the

following operations on the table: read, update, insert and

delete. The operational rights can be granted to individual

users, to groups or to the entire user community. Likewise,

only the Data Base Administrator or the owner of a table can

revoke rights that have been granted on the table. Certain

other functions, such as the addition of columns to a table

or the removal of the table from a data base, are limited to

the Data Base Administrator, the owner of the data base contain

ing the table or the owner of the table.

2.2.1.3 Data Files

A data file is a collection of records which is treated1

as an entity by the system. Each data file has a unique

identifier, referred to as the data identifier, assigned to

it when it is entered into the system. The data identifier

is used to reference the data file as an entity. Data files

can be stored on any on-line device which supports the sequen

tial organization of data. However, the primary function of

data files is the storing of large quantities of data in an

off-line mode on magnetic tape.

The collection of all data files known to the system is

referred to as the Non-Relational Data Base. The system

2-10

maintains a catalog of all data files in the Non-Relational

Data Base. Existing data files may be added to the Non-

Relational Data Base by simply inserting a new entry into the

Data File Catalog. Likewise, a data file in the Non-

Relational Data Base can be removed by deleting its correspond

ing entry in the Data File Catalog. When a data file is

entered into the Non-Relational Data Base, it is assigned a

read-only status so that the data file can not be overwritten.

Data files in the Non-Relational Data Base can be accessed

on a record by record basis by application programs.

Application program facilities exist to read or search data

files and to write new data files. Using the Interactive

Command language, a data file can be copied from an off-line

device to an on-line device and from an on-line device to an

off-line device. Also, a data file can be transformed inzo

a table and a table can be transformed into a data file.

2.2.2 The Physical View of Data

The physical view of data involves the actual storage

mechanisms employed in the system to support the logical view.

Because of the dual system concept on which the logical design

is based, the physical storage facilities must support both

tabular data stored in relational data bases and sequential

data files stored in the Non-Relational Data Base. Thus,

the information space managed by the Integrated Data Base

Management System is partitioned into an area of on-line

storage where tabular data are stored and an area of storage

consisting, for the most part, of magnetic tapes on which

sequential data files are stored.

2.2.2.1 The Storage of Tables

The area in which tabular data are stored must be on-line

and can span multiple packs and multiple direct access devices.

2-11

The mapping of the tabular data storage area to the physical

storage media occurs at system generation time. At any other

time, a utility program can be used to extend this area.

The area in which tables are stored is subdivided into

pages. A page is the basic unit of storage for tabular data

and consists of a fixed size block of data which is transferred

between peripheral storage and main memory by a single I/O

operation. The size of a page is defined at system generation

time and cannot be changed. A page may contain data records

from a table or superstructure records associated with a table

or the page may be part of the free pool of unused pages.

Some portion of the tabular storage area will contain "before"

images-of pages that have been modified by commands in pro

gress. These "before" images facilitate dynamic restoration

of data bases when a command that was performing an update

operation is aborted by the user or terminated prematurely due

to an-1/0 error. A more detailed discussion of "before"

images and dynamic recovery techniques is contained in the

subsection entitled Backup and Recovery in this section.

Some area of main memory is allocated for page buffers.

The size of a single page buffer is the same size as a page

of data in the tabular data storage area. A default value

is specified for the number of page buffers at system genera

tion time. However, a different value can be specified each

time the system is started. The transfer of pages between

peripheral storage and the page buffers in main memory is

controlled by the Integrated Data Base Management System on

an as needed basis. An algorithm for buffer usage ,control

is defined in Section 6.

The actualcontent and format of a page in the tabular

data storage area depends upon the table to which the page has

been assigned and the function of the page. Each page

assigned to a table will contain either data records, records

2-12

from a hierarchical B-tree index or records from an inverted

index. Each page will contain a prologue which specifies the.

characteristics of the information stored on that page. Each

data record on a data page will, itself, have a prologue con

taining one bit for each data field in the record. A bit

will have a particular setting to indicate that the correspond

ing data field contains a data value and the opposite setting

to indicate that the data field contains a null value. A

data field will contain a null value if no value was specified

for it when the data record was inserted into the table. No

pointers to other records are stored within pages containing

data records from a table. Therefore, superstructures can

be added to or dropped from a table without affecting the

data pages of a table.

2.2.2.1.1 Sequential Tables

Atable which has no superstructures associated with it

is referred to as a sequential table. Data records in a

sequential table have the same physical storage structure as

those in tables for which superstructures exist; however,

there are some differences in their processing. Since no

superstructures exist to facilitate access to a sequential

table, the retrieval, update and deletion of records requires

the sequential searching of the data records and, in some

cases, requires the accessing of every record in the table.

Also, the holes in data pages caused by the deletion of data

records are not reused. All new records inserted in a

sequential table are stored at the logical end of the table.

At any time, a user can create hierarchical B-tree or

inverted indices on a sequential table. When this occurs, the

table ceases to be processed as a sequential table. Whenever pos

sible, the superstructures are used to facilitate access to data

records in the table and any existing holes in data pages

become available for the insertion of new -data records. If

2-13

all superstructures are dropped from a table, the table becomes

a sequential table and is processed as such. Any existing

holes in the data pages of the table become unavailable for

the insertion of new records.

Sequential tables are useful in cases where the contents

of a table are static, all or almost all data records are

retrieved whenever the table is read and the ordering of records

is immaterial or the data records must be retrieved in the

order in which they were inserted. Also, if the number of

data records in a sequential table is such that they can all

be stored on one or two data pages, it may be more efficient

to treat the table as a sequential table rather than create

superstructures for it.

2.2.2.1.2 Superstructures on Tables

The term superstructure is used generically to refer to

any type of indexing scheme for tabular data which is supported

by the Integrated Data Base Management System. Superstructures

are used to reduce the time required to access data records in

a table or to provide a logical ordering of data records in a

table.- The system, as described in this document, supports

two types of indexing for tabular data: the hierarchical B

tree index and the inverted index.

Superstructures can be created on single data fields or

multiple data fields in a table. Any data field in a table

can have either a B-tree or inverted index created on it, but

not both. Both B-tree indices and inverted indices can be

created on multiple data fields. A data field or combination

of data fields on which a superstructure has been created is

referred to as a key field.

Superstructures created for tables are stored on separate

pages from the data records in the table. Superstructures

2-14

can be created for tables and dropped from tables dynamically

under user control. The creation and dropping of superstructures

does not affect the data pages of a table. Whenever a table

for which one or more superstructures have been created has a

data record inserted, deleted or updated, all of its super

structures are modified to reflect the new contents of the

table.

2.2.2.1.2.1 B-Tree Indices

A B-tree index can exist for any data field or combination

of data fields in a table. A single data field for which a B

tree index exists can not have an inverted index created for it.

However, a data field which forms part of a combination B-tree

key field can, itself, have either a B-tree or inverted index

created for it. Thus, by specifying a single data field as a

combination B-tree key field, the data field can have, in effect,

both a-B-tree and an inverted index created for it.

When a B-tree index is defined for a data field or combina

tion of data fields, a uniqueness condition can be specified

indicating that no duplicate key values are permitted. If

the insertion or modification of a data record in a table

would cause a duplicate key value to be added to a B-tree
/
index for which the uniqueness condition has been specified,

the operation will be aborted. If the uniqueness condition

is not specified for a B-tree index, duplicate key values will

be permitted.

Each B-tree index consists of one or more index pages

organized in an hierarchical structure sometimes referred to

as a tree structure. Each index page contains one or more

key field values and their associated pointers to lower level

pages in the tree. Pages in the lowest level of the index

contain key values in ascending order and associated pointers

to the data records containing the key values.

2-15

A B-tree index should be created for data fields that

will contain unique or nearly unique values since there is a

one-to-one correspondence between a key value/pointer pair in

the lowest level of the index and a data record in the table.

The advantage of a B-tree index is that one record or a group

of records can be located in a large table with very few I/O

operations. Also, a B-tree index, as described in this docu

ment, causes the data records in a table to be logically

ordered on a data field or combination of data fields that

have been specified as a B-tree key field. Thus, data

records can be retrieved from a table in the ascending sequence

of data values in a B-tree key field.

2.2.2.1.2.2 Inverted Indices

An inverted index can exist for any data field or combination

of data fields in a table. A data field for which an inverted

index exists can not have a B-tree index created for it; how

ever, it can be part of a combination B-tree key fielA

Each inverted index consists of two parts: a domain

directory and a set of pointer lists. The domain directory

contains one entry for each distinct value found in the data

field on which the inverted index was created. Each entry

in the domain directory consists of a data value and a pointer

to the corresponding pointer list. There is one pointer list

associated with each domain directory entry in an inverted

index. Each pointer list contains one or more pointers to

data records in the table which contain the data value in the

associated domain directory entry.

An inverted index should be created for data fields where

the same value will be repeated in several records so that

there is a one-to-many correspondence between a data value in

a domain directory entry and the pointers in the associated

pointer list. The advantage of an inverted index is that a

set of data records that contain a specific value can be

2-16

located rapidly without accessing the data records themselves.

Also, boolean operations can be performed easily on data fields

for which an inverted index exists. After locating the domain

directory entries containing the data values of data fields

specified in a boolean expression, the boolean operations
are

performed on the associated pointer lists yielding a resulting

pointer list containing pointers to all data records satisfy

ing the boolean expression.

2.2.2.2 The Storage of Data Files

A data file is a collection of records organized for

sequential access and terminated by an end-of-file mark. A

data file can contain either data in its internal binary

representation or
data which has been converted to some

external code such as ASCII or EBCDIC.
 Up to three copies

of a data file can exist simultaneously and be referenced by

the same data identifier. These include an off-line copy on

magnetic tape in its original data file format, an on-line copy

on
 a direct access device in one of the system standard for

mats and an off-line copy on magnetic tape in the same system

standard format. Any one or a combination of these forms of

a data file can
exist and their physical location be maintained

by the system in the Data File Catalog.

While it will not be a requirement of the system that

data files be put into a system standard format prior to being

entered into the Non-Relational Data Base, the use of system

standard formats will be encouraged so as to facilitate the

sharing of data among the Integrated Data Base Management

System and other information processing systems. All data

files created by application programs using the facilities of

the Integrated Data Base Management System will be in one of

the system standard formats. Also, the loading of a data file

to a direct access device by the system will cause it to be

converted to one of the system standard formats unless it
is

2-17

already in such a format. It is anticipated that all data

file processing procedures invoked through the Integrated

Data Base Management System will read and write data files in

a system standard format. The general structure of a data

file in a system standard format includes a header record

which has a fixed format and describes the format of the data
records in the data file, zero or more processing history

records in a free format and one or more data records whose

format is a function of the type of data contained therein

(e.g., gridded, image, text, etc.).

An indication of the format of each copy of a data file

is stored along with its physical location in the Data File

Catalog. During the loading of a data file from magnetic

tape to a direct access device, the format indicator is used

to locate a module, residing in the Integrated Data Base

Management System library, that can be loaded and used to

access the data file. If the off-line copy of a data file

to be loaded is already in one of the system standard formats,

the corresponding input module will perform no format conver

sion but may perform windowing on the data file causing a data

file with a different data identifier to be created. If the

off-line copy is in its original data file format, it can be

loaded on-line only if an input module corresponding to the

data file format has been placed in the library. If an in

put module exists for the data file format, any data files

in that format that are loaded on-line will be converted, by

the input module, to a predefined system standard format.

Thus, existing data files can be entered into the Non-

Relational Data Base without first being put into a system

standard format.

Data files can reside on magnetic tapes or direct access

devices. One magnetic tape can contain more than one data

file and a data file can span more than one magnetic tape.

Data files created by application programs or internal

2-18

procedures will be stored, initially, on a direct access device

in one of the system standard formats. If required, the data

file can be unloaded to magnetic tape in the same system stan

dard format by an application program or interactively.

Data files residing on a direct access device may be stored

in a non-contiguous manner if this facility is supported by

the operating system of the computer on which the Integrated

Data Base Management System is implemented. That is, the

data file may be physically fragmented on the direct access

device but will be treated logically by the system as an

entity. If this facility is not supported by the operating

system, an alternative approach would be to write new data

files created by application programs or internal procedures

directly to magnetic tape since it would be difficult for the

system to anticipate the amount -of direct access space required

to store a new data file so that contiguous space could be

preallocated. Another option is to have the user specify

the amount of direct access space required for storage of a

new data file. While this might be feasible for certain types

of data, such as image data, the requirement of preallocating

contiguous direct access space for a data file would lead, in

general, to inefficient use of the space available for the

storage of data files and should be avoided, if possible.

2.3 The Global Data Base

The Global Data Base is a relational data base which is

automatically defined at system generation time by the System

Generation Program. The Data Base Administrator is the

owner of the Global Data Base. The Global Data Base con

tains the system tables which control much of the processing

within the system. The tables which constitute the system

Data File Directory also reside in the Global Data Base.

At any time, the Data Base Administrator can create new

tables in the Global Data Base which are neither system tables

2-19

nor directory tables. Presumably, these tables would contain

information of general interest to the user community. The

Global Data Base is structured in the same way as any other

data base within the system. Any operations that can be per

formed on user defined data bases can be performed on the

Global Data Base. However, access rights which would allow

the tables in the Global Data Base to be modified will be

restricted or controlled by special commands. Also, access

rights which would allow retrieval of certain information

from the system tables may be restricted or controlled by

special commands. Thus, the purpose of the Global Data Base

is to contain system information in a form that is consistent

with that of other information, to provide a repository for

information that is of interest to the entire user community

and to permit the Data Base Administrator to control access

to this information.

2.3.1 System Tables

All system tables are contained within the Global Data

Base. They are automatically defined at system generation

time by the System Generation Program. The systemtablesare

used to store system control blocks and other system related

information. Special commands are available to the user

community to define and remove data bases, data fields, and

tables and to grant and revoke access rights to tables.

Additional privilaged commands are available to the Data Base

Administrator to define and remove users from the system,

define and remove user groups and to catalog and uncatalog

data files. These commands ultimately cause one or more

system tables to be modified. Only the Data Base Administrator

is permitted to use the full complement of data manipulation

commands on the system tables. System tables are stored and

accessed in the same way as all other tabular data. Super

structures are defined for the system tables by the System

2-20

Generation Program to facilitate the storage and retrieval of

data records by the Integrated Data Base Management System

software. As the owner of the system tables, the Data Base

Administrator can create additional superstructures on them

to support any additional processing requirements. However,

the Data Base Administrator can not drop any superstructure

defined on a system table by the System Generation Program.

The following subsections describe briefly the contents and

structure of each of the system tables.

2.3.1.1 SYSUSER Table

The SYSUSER table contains one record for each valid user

of the system, including the Data Base Administrator. Each

record in the SYSUSER table contains a User.Control Block.

The User Control Block contains user descriptive information

and is described in Section 8.

When a new user is defined to the Integrated Data Base

Management System by the Data Base Administrator, a User

Control Block is created for the user and is inserted, as a

record, into the SYSUSER table. If an attempt is made-to

add a new user to the system whose user-id will duplicate that

of an existing user, the new user will be rejected because a

unique B-tree index exists on the user-id field of the SYSUSER

table. The B-tree index on the user-id field also provides

a logical ordering by user-id of the records in the SYSUSER

table.

When a user connects to the Integrated Data Base

Management System, the record containing the user's User

Control Block is retrieved from the SYSUSER table. The

record is located using the unique B-tree index created on the

user-id field. When a user is removed from the Integrated

Data Base Management System by the Data Base Administrator,

the record containing the User Control Block for the user is

2-21

located via the B-tree index on the user-id field and the

record is deleted from the SYSUSER table.

2.3.1.2 SYSGROUP Table

The Data Base Administrator can define a group for the

purpose of granting common access rights to all users belong

ing to the group. The concept of group access rights is

discussed in Section 3. The SYSGROUP table contains one

record for each group defined within the Integrated Data Base

Management System and one record for each user in each group.

Thus, the SYSGROUP table contains two types of records: one

record which defines the existence of a group and zero or

more records which specify the users who belong to that group.

The collection of all records that specify to which groups a

user belongs constitute the Group Extension for that user.

The Group Extension is described in Section 8.

When a new group is defined to the Integrated Data Base

Management System by the Data Base Administrator, a record

containing the name of the group and a blank user-id field is

inserted into the SYSGROUP table. This record indicates the

existence of the group and is used for verification purposes

whenever a user is included in the group. When a user is

included in a group by the Data Base Administrator, a Group

Extension entry is created for the user and is inserted, as a

record, into the SYSGROUP table. If an attempt is made to

add a new group to the system whose group name will duplicate

that of an existing group or an attempt is made to include a

user in a!group to which he already belongs, the request will

be rejected because a unique B-tree index exists on a combina

tion of the user-id and group-name fields in the SYSGROUP

table. The B-tree index on the combination of user-id and

group-name also provides both a logical grouping by user-id

and a logical ordering by user-id and group-name to the records

in the SYSGROUP table.

2-22

When a user connects to the Integrated Data Base

Management System, any Group Extension records associated with

the user are retrieved from the SYSGROUP table to form the

user's Group Extension to the User Control Block. The

records are located using an inverted index created on the

user-id field. Each entry in the Group Extension will point

to an Authorization Extension in main storage which specifies

the access rights granted to the group represented by the

entry. For the purpose of determining the user's right to

access tables, these group access rights will be treated as

if they had been granted to the individual user.

When the Data Base Administrator removes a user from a

group, the record corresponding to the specified user and

group is deleted from the SYSGROUP table. The record to be

deleted is located via the unique B-tree index on the combina
tion of user-id-and group-name fields. When the Data Base

Administrator removes a group from the system, all records

containing the specified group-name are deleted. This includes

the record containing a blank user-id field which defines the

existence of the group and any other records which contain the

user-id of users belonging to the group. The records to be

deleted are located via an inverted index on the group name

field.

2.3.1.3 SYSDB Table

The SYSDB table contains one record for each data base

defined within the Integrated Data Base Management System,

including the Global Data Base. Each record in the SYSDB

table contains a Data Base Control Block.
 The Data Base

Control Block contains information pertaining to the data base

and is described in Section 8.

When a new data base is defined to the Integrated Data

Base Management System by a user, a Data Base Control Block

2-23

is created for the data base and is inserted, as a record,

into the SYSDB table. If an attempt is made to define a new

data base with a data base name which duplicates that of an

existing data base, the new data base will be rejected because

a unique B-tree index exists on the data-base-name field of

the SYSDB table. The B7 tree index on the data-base-name

field also provides a logical ordering by data base name of

the records in the SYSDB table.

If a user connected to the Integrated Data Base

Management System indicates an intent to process information

in a data base whose Data Base Control Block is not resident

in main storage, the record containing the Data Base Control

Block for the data base is retrieved from the SYSDB table.

The record is located using the unique B-tree index created

on the data-base-name field. Additional records associated

with the data base may be loaded from other system tables at

that time. When a data base is removed from the Integrated

Data Base Management System by a user, the record containing

the Data Base Control Block for the data base is located via

the B-tree index on the data-base-name field and the record

is deleted from the SYSDB table.

Additional superstructures are created on the SYSDB

table by the System Generation Program to facilitate the

retrieval of information about data bases using the DESCRIBE

command which is available to the user community. Inverted

indices are created on the data base classification field,

the date created field and the field containing the user-id

of the owner of the data base. Thus, the DESCRIBE command

can retrieve information about data bases maintained by the

Integrated Data Base Management System as a function of the

data base classification, date created or owner of the data

base.

2-24

2.3.1.4 SYSDD Table

The SYSDD table contains one record for each data field

in each data base defined within the Integrated Data Base

Management System, including the Global Data Base.
 Each

record in the SYSDD table contains a Data Dictionary entry

which describes the attributes of the data field which it

defines. The collection of all records that define data

fields in a data base constitutes the Data Dictionary for that

data base. The Data Dictionary is described in Section 8.

When a new data field is defined by a user for an exist
ing data base, a Data Dictionary entry is created for the

data field and is inserted, as a record,'into the SYSDD table.

If an attempt is made to define a new data field with a field

name which will duplicate that of an existing data field in

the same data base, the new data field will be rejected

because a unique B-tree index exists on a combination of the

data-base-name and field-name fields in the SYSDD table.

The B-tree index on the combination of data-base-name and

field-name also provides both a logical grouping by data base

and a logical ordering by data base name and field name to the

records in the SYSDD table.

When a user indicates an intent to process information

in
a data base whose Data Base Control Block is not resident

in main storage, all Data Dictionary entry records associated

with the data base are retrieved from the SYSDD table to form

the Data Dictionary for the data base. The records are

located using an inverted index created on the data-base-name

field. Additional records are loaded from other system

tables at that time.
 When a data field is removed from a

data base by a user, the record containing the corresponding

Data Dictionary entry is located via the B-tree index on the

combination of data-base-name and field-name and the record

is deleted from the SYSDD table.

2-25

2.3.1.5 SYSREL Table

The SYSREL table contains one record for each table in

each data base defined within the Integrated Data Base

Management System including the system tables in the Global

Data Base.
 Each record in the SYSREL table contains a

Relational Control Block.
 The Relation Control Block contains

information pertaining to the table and is described in

Section 8.

When a new table is defined by a user for an existing

data base, a Relation Control Block is created for the table

and is inserted, as a record, into the SYSREL table.
 If an

attempt is made to define
a new table with a table name that

will duplicate that of an existing table in the same data

base, tie new table will be rejected because a unique B-tree

index exists on
a combination of the data-base-name and table
name fields in the SYSREL table. The B-tree index on the

combination of data-base-name and table-name fields also

provides both a logical grouping by data base and a logical

ordering by data-base-name and table-name of the records in

the SYSREL table.

When a user indicates an intent to process information

in a data base whose Data Base Control Block is not resident

in main storage, all records containing Relation Control

Blocks for tables in the data base are read fromthe SYSREL

table. The records are located using the unique B-tree

index created on the data-base-name and table-name fields.

When a table is removed from a data base by a user, the record

containing the Relation Control Block for the table is
located

via the B-tree index on the combination of data-base-name and

table-name fields and the record is deleted from the SYSREL

table.

2-26

2.3.1.6 SYSDOM Table

The SYSDOM table contains one record for each data field

in each table in each data base defined within the Integrated

Data Base Management System, including system tables in the

Global Data Base.
 Each record in the SYSDOM table contains

a Domain Extension entry. Whereas, a Data Dictionary entry

describes the general attributes of a data field, a Domain

Extension entry contains information pertaining to a data

field as it is used in a particular table. The collection

of all records in the SYSDOM table that describe data fields

in a particular table constitutes the Domain Extension for

that table. The Domain Extension for a table is described in

Secti6n 8.

When a new table is defined by a user, the data fields

which make up the table are specified. A Domain Extension

entry is created for each of the data fields in the table and

is inserted, as a record, into the SYSDOM table. A unique

B-tree index exists on a combination of the data-base-name,

table-name and field-name fields in the SYSDOM table. The

B-tree index provides both a logical grouping by data base

and table and a logical ordering by data-base-name, table-name

and field-name to the records in the SYSDOM table.

When a user indicates an intent to process information

in a data base whose Data Base Control Block is not resident

in main storage, all Domain Extension entry records associated

with tables in the data base are retrieved from the SYSDOM

table to form the Domain Extensions for each of the tables in

the data base. The records are located using the unique

B-tree index created on the combination of data-base-name,

table-name and field-name fields. Additional records are

loaded from other system tables at that time. When a table

is removed from a data base, the Domain Extension entry records

associated with the table are removed from the SYSDOM table.

2-27

The records containing the Domain Extension entries are

located via the B-tree index on the combination of data-base

name, table-name and field-name fields and the records are

deleted from the SYSDOM table.

2.3.1.7 SYSAUTH Table

The SYSAUTH table contains one record for each user or

group who has been explicitly authorized by the owner of a

table to perform one or more data manipulation operations on

the table. Records in the SYSAUTH table are used to control

access to tables maintained by the Integrated Data Base

Management System. Each record in the SYSAUTH table contains

an Authorization Extension entry that indicates which of the

operational rights (READ, INSERT, UPDATE, DELETE) have been

explic ly granted to the user or group on the table identified

in the record. The collection of all records that define

explicit operational rights granted to an individual user or

group constitutes the Authorization Extension for that user

or group. The Authorization Extension is described in Section

8.

When the owner of a table grants one or more operational

rights to an individual user or group,- the Authorization

Extension associated with that user or group is checked to

determine if the user or group has been granted rights

previously on the same table. If so, the existing Authorizatio:

Extension entry is modified and the corresponding authorization

record in the SYSAUTH table is updated to reflect the new

authorizations. If no authorizations exist for the specified

user or group on the table, an Authorization Extension entry

is created and is inserted, as a record, into the SYSAUTH

table. A unique B-tree index exists on a combination of the

user-id of the user or group-name of the group, the data

base-name of the data base containing the table and the table

2-28

name fields in the SYSAUTH table.
 The B-tree index provides

both a logical grouping by data base and table and a logical

ordering by user-id or group-name, data-base-name and table
name of the records in the SYSAUTH table.

When a user connects to the Integrated Data Base Management..

System, any authorization records associated with the user

are retrieved from the SYSAUTH table to form the Authorization

Extension to the User Control Block.
 The records are located

using an inverted index created on the userid field.

Additional authorization records might be retrieved from the

SYSAUTH table to form Authorization Extensions for groups to

which the user belongs; if such Authorization Extensions are

not already resident in main storage.
 When the owner of a

table revokes one or more operational rights from a user or

group, the authorization record corresponding to thefbser or

group and the table is retrieved and checked to determine if

the user or group will retain any operational rights on the

table. If so, the authorization record is updated to reflect

the reduced authorizations. If no authorizations remain for

the user or group on the table, the corresponding authorization

record is deleted from the SYSAUTH table.

Additional superstructures are created on the SYSAUTH

table by the System Generation Program to facilitate the

deletion of authorization records. Inverted indices are

created on the user-id/group-name field, the data-base-name

field and the table-name field.
 Thus, all authorization

records associated with an individual user or group can be

located and deleted if the user or group is removed from the sys
tem by the Data Base Administrator. If a database is removed,

all authorization records associated with tables in the data

base can be located and deleted. Likewise, if a table is

removed from a data base, all authorization records for the

table can be located and deleted.

2-29

2.3.1.8 SYSCATL Table

The SYSCATL table contains one record for each data file

maintained by the Integrated Data Base Management System in the

Non-Relational Data Base. The physical location and format

of up to three copies of each data file can be contained in a

single record. Each copy is referenced using the same data

identifier and, while they may not be in the same format,

*their data content will be exactly the same. The three copies

which can exist for a data file include: an off-line copy on

magnetic tape in the original data file format, an on-line

copy on a direct access device in one -of the system standard

formats and an off-line copy on magnetic tape in the same

system standard format. Each record in the SYSCATL table

will contain a unique data identifier and the physical loca

tion and..format of each existing copy of the data file. The

form -in which the physical location of each copy is specified

may depend -upon the operating system requirements for sequen

tial file handling. Additionally, each record'in the SYSCATL

table will contain the date on which each copy was created or entered

into the Non-Relational Data-Base, the date on which each copy was

last accessed,.the user-id of the user who created the on-line copy

and a temporary/permanent indicator associated with the on-line

copy. The SYSCATL table is referred to as the Data File Catalog.

When a new data file is entered into the Non-Relational

Data Base, a catalog entry is created for the data file and is

inserted, as a record, into the SYSCATL table. The record

will contain the physical location and format of the initial

copy of the data file being cataloged, as well as any other

pertinent .information. The initial copy of the data file

being cataloged may be on-line if it was created by an.

application program or internal procedure or off-line if it is

an existing data file on magnetic tape. A unique data

identifier is created by the Integrated Data Base Management

System for each new data file and a unique B-tree index is

2-30

created on the data identifier field in the SYSCATL table.

When a data file is to be processed, the data identifier

must be specified. The record containing the catalog entry

corresponding to the data identifier is retrieved from the

SYSCATL table using the unique B-tree index created on the

data identifier field. The physical location of the data

file is obtained from the retrieved catalog entry so that the

data file can be accessed. When commands are issued which

cause a new copy of an existing data file to be created, the

appropriate record in the SYSCATL table is updated with the

physical location and format of the newly created copy of the

data file. When at on-line copy of a data file is created,

it is given a temporary status in its catalog entry and the

user-id of the user creating it is retained. That user or

the Data Base Administrator may issue a command to change the

status of the on-line copy to permanent, in which case the

appropriate record is updated in the SYSCATL table to reflect

the change in status. If the user who created the on-line

copy of a data file or the Data Base Administrator issues a

command to scratch the on-line copy from the system, the

appropriate record is updated in SYSCATL table to reflect the

removal of the on-line copy. When a data file is removed

from the Non-Relational Data Base, the record containing the

catalog entry for the data file is located via the B-tree

index on the data identifier field and the record is deleted

from the SYSCATL table.

Additional superstructures are created on the SYSCATL

table by the System Generation Program to facilitate the

retrieval of information about data files. Inverted indices

are created on several of the data fields in the SYSCATL table.

Thus, information pertaining to data files in the Non-Relational

Data Base can be retrieved as a function of one or more of the

physical attributes of the data file.

2-31

2.3.2 The Data File Directory

The Data File Directory consists of one or more tables in

the Global Data Base which provide the user community with a

content based directory to data files in the Non-Relational

Data Base. Unlike the Data File Catalog which maintains a

,one-to-one relationship with the data files and contains the

physical attributes of each data file, the Data File Directory

supports a many-to-one relationship with the data files and

contains attribute values of data contained within each data

file. Thus, using the Data File Directory, a data file can

be located as a function of its information content. The

addition of new directory tables to the Data File Directory

is under complete control of the Data Base Aministrator, as is

the format of each directory table. Thus, with no predefined

structure or format,-the Data File Directory can evolve to

meet the changing requirements of the user community and the

varying contents of the Non-Relational Data Base.

.The tables which constitute the Data File Directory can be

referred to collectively as if they were a single table using

the name SYSDIR. Therefore, the retrieving, updating and

deleting of records in the Data File Directory can be per

formed on an individual directory table by specifying the

directory table name in the appropriate command or on the

collection of all directory tables specifying the table name SYSDIR

All data records must be inserted into a specific directory table.

Since all directory tables are contained in the Global Data

Base, each new directory table must be defined by the Data

Base Administrator, thereby making the Data Base Administrator

the owner of the directory tables. Presumably, a new directory

table would be defined to support each type of data maintained

in the Non-Relational Data Base. Since it is likely that

specific groups of users may be more cognizant than the Data

2-32

Base Administrator of the handling required for different types

of data files, the Data Base Administrator might wish to

designate an individual user from each such group as a Data
I

File Administrator. The Data File Administrator, as well as

the Data Base Administrator, would have the power to grant and

revoke access rights to the directory table. To accomplish

this, the Data Base Administrator would transfer ownership of

the directory table for a particular type of data to the user

designated as the Data File Administrator for that data. It

should be noted that the access rights to the collection of-all

directory tables, referred to as SYSDIR, are the same as the

access rights to the individual directory tables. For example,

if a user were granted the right to delete records in one

directory table but no others, the deletion of records by that

user via SYSDIR could cause the deletion of records only from

the directory table for which the user had been granted the

right to delete records.

When a new directory table is defined, one of the data

fields in the table must be the data identifier. The other

data fields should represent the attributes of the information

contained in the data files for which the directory table is

being created. When a record is inserted into a directory

table, it must contain a non-null value in the data identifier

data field. Other data fields can contain the null value.

The data identifier is verified using the B-tree index on the

data identifier field in The SYSCATL table, which is the Data

File Catalog. Thus, an entry can be made in a directory table

only for a data file for which an entry already exists in the

Data File Catalog.

Because some data files in the Non-Relational Data Base

can contain several types of data, a directory table can con

tain more than one record with the same data identifier. In

fact, different directory tables can contain records with the

2-33

same data.identifier; thereby allowing multiple descriptions

of the same data file to exist in the Data File Directory

simultaneously. When a record is deleted from the SYSCATL

table, indicating that the corresponding .data file is being

removed from the Non-Relational Data Base, any records in the

Data File Directory containing the data identifier of the data

file are deleted from the directory tables. Thus, no references

to data files that no longer reside in the Non-Relational Data

Base will exist in the Data File Directory.

2.4 System Design Concepts

The system design described in this document relies on a

set of control structures for intrasystem communication and

the management of system processes. The term "'system internals"

is used herein to.refer generically to control blocks, control

block extensions, dictionaries, lists and queues and their

relationship to one another. The various control structures

'havebeen divided into categories as a function of their usage

within the system and are described in detail in Section 8.

All control structures are transient in nature. Transient

control structures may exist only while a command is being

processed or while-a user is connected to the system or while

a particular data base is being accessed. The control

structures resident in main storage are dependent, for the

most part, on interactive user and application program activity,

thus reducing the main storage requirements of the system. The

main storage required for the transient control structures is

allocated dynamically, as required, and freed when no longer

needed.

The Integrated Data Base Management System-software, as

described in Section 9, consists of several asynchronous pro

cesses or tasks. Thus, the software design assumes the

2-34

availability of a multitasking operating system with subtask

ing for implementation. The software processes are essen

tially event driven. That is, each software process is in a

non-executing or "wait" state until one or more events
on

which it is waiting occurs. At that time, the process beings

executing and continues in the executing or "run"'state until

no more work remains for it; at which time, it places itself

into the wait state'again. Communication among the various

asynchronous processes is via the queues which were mentioned

previously.

The division of the software into separate asynchronous

processes is based on the various functions which must be per

formed on a command as it proceeds through the system. Thus,

several commands can be in different stages of processing at

any one time without delaying each other. When a delay does

occur, the-commands are held in queues to await further proces

sing.

2.5 Backup and Recovery

The backup and recovery features of the Integrated Data

Base Management System provide facilities for "backing out" the

effects of a command which terminates prematurely or is aborted

and for recovering the system to a consistent state after a

malfunction. The mechanism for providing both types of back

up and recovery is considerably different. The backup facili

ties and the recovery technique for each are described below.

2.5.1 Command Recovery Facilities

The command recovery facility provides the capability of

removing the effects of a command which has not
completed

successfully. Only commands which cause the tabular data

2-35

storage area to be modified will activate the command recovery

facilities. These include commands that modify superstructures

and system tables as well as those that modify user defined

tables. Commands which only retrieve information from the

tabular data storage area do not invoke the command recovery

facilities since no recovery is required should these commands

fail. The command recovery facilities are designed to provide

protection from intermitent command failure, not from a malfunc
tion which causes the Integrated Data Base Management System or

the operating system to terminate. Thus, this type of backup

and recovery procedure is controlled by the Integrated Data

Base Management System and is transparent to the user and to the

computer operator. The command recovery facilities consist of

two phases. The first phase is the backup phase and occurs

during command processing. The second phase is the recovery

phase and occurs during command termination.

During command processing, an image is written of each page

in the tabular data storage area that is modified. The image,

referred to as a "before" image, is simply a copy of the page

prior to modification. When, during the processing of a com

mand, a page is about to be modified, a before image is written

into the tabular data storage area on the first free page on the

chain of free pages. The page on which the before image was

written is removed from the free page chain and is placed on a

chain of backup pages associated with the command causing the

modification. A page pointer to the first page on the backup

chain for a command is contained in its Command Control Block.

Each new before image page is placed at the beginning of the

backup chain so that the backup chain will be in inverse

chronological order.

When a command which has modified the tabular data storage

area is terminated abnormally or is aborted, the effects of

that command on the tabular data storage area must be removed.

2-36

A command can be terminated abnormally due to an Input/Output

error or a hardware or software error.
 During command termina

tion, the Application Program Command Terminator or the Inter
active Command Terminator determines whether or not the com

mand being terminated completed successfully. If not and the

command has modified the tabular data storage area, the recovery

procedure of the command recovery facilities are invoked. The

recovery procedure uses the page pointer in the Command Control

Block to locate the first before image page in the backup

chain for the command. Each before image page contains the

page number of the page of which it is an image. Using that

page number, the recovery procedure can replace the existing

page with its before image. If the same page were modified

more than once by the same command, it may be replaced more

than once during the recovery procedure; however, the recovery

procedure follows the backup chain from the Command Control

Block replacing pages with their before images as they are

encountered on the chain.
 Since the chain is in inverse

chronological order, all pages will be recovered in the reverse

order to that in which the modifications were made; thus,

leaving all modified pages with their contents prior to execu

tion of the command. Since tables which are being modified

by a command cannot be accessed by any other command until the

table is released by the terminator, no other command can be

affected by the recovery procedure.

2.5.2 System Recovery Facilities

The system recovery facility provides the capability of

restoring the information in the system to a consistent state

prior to restarting the Integrated Data Base Management System

following a malfunction which terminates execution.
 As in

the command recovery facility, the system recovery facility

consists. of two phases. The first phase involves the genera

tion of a log file. The second phase involves the recovery

of the system to a consistent state using the Log File.

2-37

The generation of a Log File is a continuous process which

occurs during the execution of the Integrated Data Base

Management System. The log file will be written as a sequential

data set. Normally, the Log File will be written on a magnetic

tape but it can be written on any device which supports the

sequential organization of data. The Log File contains

before images of all records in the tabular data storage area

that have been added, deleted, or updated; begin-command and

end-command records; both application program and system check

point records and any other information which might provide a

useful audit trail of system activity. Whenever an interactive

or application program command enters the system, a begin

com.and record is written on the Log File. If, during processing,

a command modifies the tabular data storage area, a before

image of the record involved is written on the Log File.

Whenever a new data file is created by the Data File Processor,

a data file creation record is written on the Log File. hen

a command terminates, an. end-command record is written on the,

Log File.

When a malfunction causes the execution of the Integrated

Data Base Management System to be terminated, the Log File

must be used to recover the system. During the restart pro

cedure, the operator must identify the Log File to be used.

The Integrated Data Base Management System will position the

Log File at the end of the data set and read it in a backward

mode during the recovery procedure. If a backward read fea

ture is not supported by the operating system, the Log File

will be read in a forward mode, sorted in descending order by

time or a counter and written to a new data set prior to enter

ing the recovery phase. The recovery procedure will retrieve

before images of records from the Log File and restore the

tabular data storage area using these before images. Using

the begin-command and end-command records, a list will be

generated of all commands that have been backed out during the

2-38

recovery procedure and must be reissued.
 When the recovery

procedure encounters a system checkpoint record on the Log File,

the operator is notified. The operator may terminate the

recovery of the system at
that point or he may specify that the

recovery procedure should continue to the next system checkpoint

record.
 When the system has been recovered, it can be restarted

and users may then access the system.

2-39

SECTION 3 - USING THE INTEGRATED DATA BASE MANAGEMENT SYSTEM

3.1 Operator Control

The Integrated Data Base Management System is envisioned

as being a single copy, multi-user system which operates con

tinuously in its own region of main storage. The starting and

stopping of the system will be under the control of the computer

operator, using a set of special operator commands which can be

entered only through the operator's console. Besides being able

to start and stop the Integrated Data Base Management System,

the operator can monitor the system activity and perform a system

recovery operation using other operator commands.

Under normal operating conditions, the Integrated Data Base

Management System will be started at the beginning of each opera

tional day by the operator. Parameters may be entered when the

system .is started to control page buffer allocation, the system

checkpoint interval, and other such functions. Occasionally,

the operator may request information on the Integrated Data Base

Management System activity. At the end of each operational day,

the system will be stopped by the operator. Normally, the stopping

of the system will be preceded by a message to all interactive

users to disconnect from the Integrated Data Base Management

System. When the operator issues the command which stops the

system, no more users will be allowed to connect to the Integrated

Data Base Management System. All active users will be allowed to

disconnect from the system before execution is stopped. Under

unusual circumstances, the operator has the capability of aborting

execution of the Integrated Data Base Management System. When

system execution is aborted, no new commands are accepted and all

commands in progress are aborted, thus removing the effects of

the executing commands from the system. The appropriate records

are written to the Log File and the Log File is closed.

3-1

When the Integrated Data Base Management System terminates

during execution due to a hardware or software failure, the

operator must perform a system recovery operation. To do so,

the operator issues a command to initiate the recovery operation

and identifies the Log File to be used. The Integrated Data Base

Management System uses the Log File to restore the system,

stopping at each system checkpoint to allow the operator to

terminate the recovery operation. When the recovery operation

has been completed, the Integrated Data Base Management System

is restarted.

3.1.1 Operator Commands

Operator commands are processed by the System Control

Program and are not available to the Data Base Administrator

or the user community. These commands can be issued only by

the computer operator and allow the computer operator to control

the execution of the Integrated Data Base Management System as

described above.

The operator commands include:

START - Start the Integrated Data Base Management
System

STOP - Stop the Integrated Data Base Management
System. Allow all active users to disconnect
from the system. Do not allow any new users
to connect to the system.

ABORT - Stop the Integrated Data Base Management
System immediately. Write back modified
buffers to the data bases. Write necessary
checkpoint records to the log file. Do not
accept any new commands.

USERS - Display the user-id and processing status
of all active users of the Integrated Data
Base Management System.

3-2

STATS - Display a predefined set of usage statistics

representing current activity of the

Integrated Data Base Management System.

RECOVER -
Perform a system recovery operation using

a specified Log File and restart the

Integrated Data Base Management System.

3.2 Accessing the System

The Integrated Data Base Management System is designed to

be a multi-user, multi-access system.
 Thus, the system can

support concurrent
access by several users and provide multiple

modes of access to the users.
 The system is capable of accept
ing and processing, concurrently, interactive commands from

several remote terminals, interactive commands from a system

card reader and application program commands from several applica
tion programs. The following subsections describe the concept

of a Workspace Table to support retrieval and the three modes

of access available to a user of the Integrated Data Base

Management System.

3.2.1 The Workspace Table

One Workspace Table is associated with each interactive

user and application program connected to
the Integrated Data

Base Management System. A Workspace Table is not contained

within any data base, but is associated directly with the user

or application program. A Relation Control Block for the Work
space Table is created in main storage when a user or application

program connects to the system and a pointer to the Relation

Control Block is stored in the User Control Block.
No Domain

Extension is created for the Workspace Table at the time that

the user or application program connects to the system.
The

Workspace Table ceases to exist when the user or application

program with which
it is associated disconnects from the

Integrated Data Base Management System.

3-3

At any given time, a Workspace Table is in one of three

states. The state of a Workspace Table is a function of the

previous operations performed by the user or application pro

gram. The state indicator is contained in the User Control

Block for the user with which the Workspace Table is associated.

The Workspace Table states are as follows:

(1) 	The Workspace Table is empty.

(2) 	The Workspace Table is not empty and contains data

from the data base to which the user is currently

attached.

(3) 	The Workspace Table is not empty and contains data

from the data base to which the user was previously

attached.

Data are placed into the Workspace Table as a result of a

SELECT command. The SELECT command can be issued by an inter

active user or an application program and retrieves data from

one or more tables. The SELECT command is discussed in subse

quent sections. When a SELECT command is issued, a Domain Ex

tension is created in main storage for the user's Workspace Table

and is linked to the Relation Control Block. The entries in the

Domain Extension correspond to the data fields specified in the

SELECT command. Each data field must exist in the Data Dictionary

associated with the data base to which the user or application

program is attached when the SELECT command is issued.

As a result of the execution of a SELECT command, records

are retrieved which meet the conditions stated in the WHERE

clause, or its application program equivalent, and are stored

in the Workspace Table. The records will contain only the

data fields specified in the SELECT command. The resulting

Workspace Table is a sequential table. Thus, there are no super

structures associated with it. The contents of the Workspace

Table may be displayed or inserted in a permanent table or,

in the case of an application program, retrieved sequentially.

3-4

The,Workspace Table may be referenced in subsequent SELECT

commands. Any Workspace Table which exists when a SELECT command

is executed is always replaced by the new Workspace Table.

If a Workspace Table is created by a user or application

program while attached to one data base, data base A, and

the user or application program attaches to another data base,

data base B, the Workspace Table created from data base A con
tinues to exist and is accessible to the user or application

program. Therefore, the Workspace Table can be used to transfer

data from one data base to another.

3.2:2
 Access from a Remote Terminal

A remote terminal can be any remote transmitting and receiv

ing device which is supported by the telecommunications monitor

that performs the message handling for the Integrated Data

Base Management System. Remote terminal access to the system

is via a simple, yet powerful, interactive command language.

Commands in the interactive command language are logically

grouped into five categories which reflect the functions per
formed by the commands therein. Each command is identified

by a key word usually followed by one or more clauses.

When processing interactive commands, the system will treat

each line entered from a remote terminal, as a message. If,

during the syntactic analysis of a message, the system deter
mines that the message does not contain a complete command, the

system will suspend processing of the command and await
a con
tinuation in the next message received from the terminal. If

the next message received from the terminal is not the expected

3-5

continuation but is a new command, the partially processed com

mand will be aborted and the new command will not be processed.

A diagnostic message will be returned to the originating terminal

notifying the user of the action taken.

The five categories of commands are described briefly below.

A brief description of the function performed by each command

is included. A more extensive description of each command,

including command syntax, is contained in Section 4.

3.2.2.1 Utility Commands

Utility commands provide the user with general support

functions which include connecting to and disconnecting from

the Integrated Data Base Management System, designating a

data base for processing, browsing through data bases,

specifying alias names for tables, changing passwords and

using the menu feature. These commands are available to the

user community without restriction.

The utility commands include:

ENTER - Connect a user to the Integrated Data
Base Management System.

EXIT - Disconnect a user from the Integrated Data
Base Management System.

DESCRIBE - Display a textual description of the con
tents of data bases, tables and fields.

ATTACH - Indicate a user's intent to process informa
tion in a particular data base.

USE - Establish a one character alias name for

a table.

PASSWORD - Change a password.

MENU - Display a list of the available interactive

commands or specify the mode of interactive

processing to be used.

3-6

3.2.2.2 Data Definition Commands

Data definition commands provide the user with the capa
bility of dynamically defining and altering the structure of

data bases, tables and fields managed by the Integrated Data

Base Management System.
 Also, the user can dynamically con
trol the superstructures imposed on tables within a data base

that facilitate rapid access to information. Use of these

commands is restricted to the owner of the data base, table or

field being referenced.

The data definition commands include:

DEFINE - Identify a new data base, table, field,
user or group to the Integrated Data Base
Management System.

REMOVE - Remove a data base, table, field, user or group from the Integrated Data Base Manage
ment System.

EXPAND - Add new data fields to an existing table.

INVERT - Create the required indices such that

an inverted superstructure is placed on

specified fields in a table.

INDEX - Create a hierarchical B-tree superstructure

on specified fields in a table.

DROPINDEX - Remove both hierarchical B-tree and in
verted superstructures from specified

fields in a table.

3.2.2.3 Administrative Commands

Administrative commands provide the user with control over

the state and accessibility of data bases under his purview.

Using administrative commands, users can be added to or removed

from groups and authorization for users to perform certain

operations on data can be granted or revoked.
Use of these

commands is restricted to the owner of the data referenced

by the command or the Data Base Administrator.

3-7

The administrative commands include:

GRANT - Authorize individual users, groups or

the entire user community the right to perform

data manipulation operations on tables.

REVOKE - Cancel previously granted authorizations.

INCLUDE - Add a user to a group

EXCLUDE - Remove a user from a group

3.2.2.4 Data Manipulation Commands

Data manipulation commands provide the user with access to

records within the relational tables managed by the Integrated

Data Base Management System. Using data manipulation commands,

data can be retrieved from tables based on field values within

each record, new records can be inserted in tables, records

can be deleted from tables, fields within records can be

modified and data can be displayed or printed. Use of

these commands can be restricted by the owner of each table to

a specified subset of the user community.

The data manipulation commands include:

SELECT - Locate records in one or more tables which

satisfy a specified set of conditions.

INSERT - Add one or more records to a table.

DELETE - Remove one or more records from a table.

UPDATE - Modify fields in one or more records in a

table.

DISPLAY - Display fields from selected records at a

remote terminal.

PRINT - Print fields from selected records on a

hardcopy device.

3.2.2.5 Data File Commands

Data file commands provide the user with the capability

3-8

of controlling the Non-Relational Data Base. Using data file

commands, new data files can be entered into the Non-Relational

Data Base and existing data files can be removed from it. Data

Files that reside off-line on magnetic tape can be copied to an

on-line file on a direct access device. Likewise, data files

residing on-line can be copied to an off-line file. Use of

these commands may be restricted to the Data Base Administrator.

The data file commands include:

CATALOG - Enter a data file into the Non-Relational

Data Base.

UNCATALOG - Remove a data file from the Non-Relational

Data Base.

LOAD - Copy an off-line data file to an on-line

direct access device and convert the data

file to a system standard format, if

necessary.

UNLOAD - Copy an on-line data file to an off-line

-magnetic tape.

COPY - Transform non-relational data files to

tabular form and relational tables to

data file format.

PERFORM - Invoke a procedure from the Integrated

Data Base Management System library to

process data files.

KEEP - Mark a temporary on-line copy of a data

file as permanent..

SCRATCH - Purge an on-line copy of a data file.

3.2.3 Access Via the Batch Command Reader

The Batch Command Reader refers to a reader task which places

card images read from a system card reader into a data set for
re

trieval by the Interactive Command Input Processor. Commands from

the Batch Command Reader will be treated similarly to those from a remote

terminal. The Remote Terminal Communications List will contain an en

try for commands entered via the Batch Command Reader.
All interactive

commands,except the MENU command which is described in Section 4,are

valid for entry via the Batch Command Reader. Syntax checking of commands

from the Batch Command Reader is the same as that for commands entered

3-9

interactively from a remote terminal. Any output resulting from

the processing of a command entered through the system card reader

is directed to a line printer.

Although any interactive command can be entered on cards

via the Batch Command Reader, the primary use of card input

will, most probably, be the entry of commands whose processing

time exceeds that which a user would want to spend at a remote

terminal. These commands might include the COPY command where

the data file or table being copied is large, the INVERT or

INDEX command to create superstructures on existing tables

containing a large number of records and the LOAD or UNLOAD

Using
commands where the data file being moved is also large.

the Batch Command Reader facility, the user can punch the

commands on cards in the same format as they would be entered

on a remote terminal. The first card in the command input

stream must be an ENTER command just as in an interactive

session. The command input stream should be terminated with

an EXIT command; however, an end-of-file card will cause an

EXIT command to be placed on the data set being created if one

was not present in the card deck.

The implementation of the Batch Command Reader facility

will be operating system dependent. Some operating systems

may provide this capability with little or no additional de

velopment. Others may require special software to be written.

On some systems, it may be impossible to implement this feature.

Thus, the operating system on which the Integrated Data Base

Management System is implemented will determine the feasibility

of including the Batch Command Reader facility.

3.2.4 Access from an Application Program

The Integrated Data Base Management System is accessed from

an application program using the Application Program Command

Language. The Application Program Command Language is a language

3-10

which the 	programmer uses to cause information .to be trans
ferred between an application program and the Integrated Data

Base Management System. The command language is not a complete

language by itself. It relies on a host language to provide a

framework 	for it and to provide the procedural capabilities re

required to manipulate data.

The Application Program Command Language consists of a set

of CALL statements or its equivalent which are incorporated into

a procedural host language program.
The command language may be

used with any host language (e.g., FORTRAN, COBOL, PL--l, assembler

language)-that supports a CALL statement.
 The subroutine name

used in each CALL statement which accesses the Integrated Data

Base Management System will be the same. The command to be ex

ecuted will be defined by the first argument in the CALL state

ment argument list. For example:

CALL IDBMS('DELETE',...)

where: 	 IDBMS is the common subroutine name

DELETE is the command to be executed.

The execution of the CALL to the subroutine, IDBMS, will cause

control to be transferred to the Application Program Communication

Module, described in Section 9. The remainder of the argument

list will contain parameters which are relevant to the command

to be executed.

The Application Program Command Language contains a set

of commands for performing operations on tables and.a set of

commands for performing operations on data files.. The appli
cation program commands that reference tabular data can in

clude those commands that were specified for interactive users.

It may be desirable to omit certain interactive commands from

the Application Program Command Language, such
as those in

3-11

the data definition category and, perhaps, some others; thus

preventing application programs from creating and removing

data bases, tables and fields and, perhaps, granting and

revoking access rights. However, nothing in the system design

would prevent these commands from being included in the

Application Program Command Language.

As in the interactive command language, a SELECT command

can be issued by an application program. The SELECT command

will cause records to be placed in the Workspace Table associated

with the application program, but it will not cause records to

be transferred to the application program. An additional command,

FETCH, is available to retrieve records serially from the Workspace

table. If the Workspace Table is empty when the workspace

retrieval command is issued, a status code so indicating will

be returned to the application program. Otherwise, the system

maintains a logical pointer, referred to as a cursor, which

moves through the Workspace Table as records are accessed.

The execution of a SELECT command causes the cursor to be
set

to the first record in the Workspace Table. The initial

occurrence of the workspace retrieval command causes
data to be

retrieved from the first record in the Workspace Table and the

cursor to be moved to the next record in the table. Each sub

sequent occurrence of the workspace retrieval command causes

data to be retrieved from the record to which the cursor points

and the cursor to be moved to the next record. When the

last record in the Workspace Table is accessed, the cursor is

set to indicate that the end of the table has been encountered.

When the next workspace retrieval command is issued, a status

code will be returned indicating an end-of-table condition

has occurred.

3-12

3.2.4.1 Data Independence Within An Application Program

One of the important concepts for application programs

is that of data independence. That is, the separation of the

description of data maintained by the Integrated Data Base

Management System from the application programs that process

the data. This allows an application program to be insulated

to a certain extent from changes to the data structure. Data

independence within an application program is established at

the data field level for tabular data. A data field represents

a column within a table. Each command in an application program

which initiates data transfer must specify, by name, the data

fields to be transferred. The order of transfer is inferred

from the order of the data field names in the argument

list in the application program command. During retrieval, the

data field names- are used to extract data field values from

records in tables. During update, the data field names

are used to place data into records.

When accessing tabular data, an application program does

not concern itself with record formats. The system uses

information from the appropriate control structures to de

termine where the data fields specified in the data field

name list are located in a record. Thus, the order of data

fields in a table is immaterial to an application program.

Therefore, data fields can be repositioned in a table or data

fields not used by an application program can be added or de

leted from a table without modifying or recompiling the

application program. Also, data fields can be transferred

between an application program and a table in any sequence

without regard to their relative position within the actual

table.

3-13

3.3 The Data Base Administrator

The administration of the Integrated Data Base Management

System is an important function if the advantages of data base

technology are to be fully exploited. The Data Base

Administrator provides the coordination, perspective and

administration of the system by exercising specific responsi

bilities. These responsibilities include the definition of

system parameters, controlling the user community, controlling

access to tables in the Global Data Base, the definition of

directory tables, the definition of new tables in the Global

Data Base and user education and assistance.

The Data Base Administrator will be responsible for specify

ing system parameters which are submitted to the System

Generation Program during the initial system generation. Also,

the Data Base Administrator would have the responsibility for

providing guidelines to computer operators for the daily opera

tion of the system. These would include any system parameters

to be specified when the system is started each day and recovery

procedures to be followed should the Integrated Data Base

Management System malfunction in some manner or terminate pro

cessing altogether.

The responsibility for entering and removing users from

the system rests solely with the Data Base Administrator. To

control the user community, two privileged commands are avail

able only to the Data Base Administrator. it is envisioned

that a user wishing to gain access to the facilities of the

Integrated Data Base Management System would submit a request

to the Data Base Administrator who, upon approval of the request,

would enter the new user into the system using the privileged

command, DEFINE USER. A user-id and password would be speci

fied for the new user in the command. To delete a user from the

system, the Data Base Administrator would use the privileged

command, REMOVE USER, specifying the appropriate user-id.

3-14

The Data Base Administrator, in conjunction with cognizant

users, will define the format of new directory tables to be

entered into the System Directory in the Global Data Base.

Once the format has been defined, the Data Base Administrator

will create the new directory table using the DEFINE DIRECTORY

TABLE command. Since the DIRECTORY option of the DEFINE

TABLE command is valid only for tables being added to the

Global Data Base and since only the Data Base Administrator

can add new tables to the Global Data Base, only the Data Base

Administrator can add new directory tables to the System

Directory. In addition to directory tables, other, non-direc

tory, tables may be added to the Global Data Base by the Data Base

Administrator at any time. These tables would probably contain

information that is of general interest to the user community.

Since the Date Base Administrator is the owner of the tables con

tained within the Global Data Base, access to these Tables is con

.trolledby the Data Base Administrator. As with tables in any data

base maintained by the system, the GRANT and REVOKE commands

must be used by the Data Base Administrator to control access

to tables in the Global Data Base, including directory tables.

One of the primary responsibilities of the Data Base

Administrator is to provide education and assistance to the

users of the Integrated Data Base Management System. While

it is difficult to specify, at this time, the manner in which

these responsibilities should be carried out, some comments

can be made. The Data Base Administrator or members of his

staff could provide educational seminars for the user com

munity. These could range from introductory seminars for new

or potential users to seminars covering advanced concepts for

more knowledeable users. The Data Base Administrator-might

distribute, periodically, a newsletter containing timely

information of interest to the user community. Another area

in which the Data Base Administrator must play a key role

involves assisting users in entering new types of data into

the Non-Relational Data Base. This requires the definition

3-15

of one or more directory tables for the new data type, as

described above, and either writing or assisting a user in

writing a data file input module to process the new data type.

3.4 The User Community

The term "user community" refers to all valid users of the

Integrated Data Base Management System except the Data Base

Administrator. A valid user of the system is one for which

a record exists in the SYSUSER system table. A unique user

id and a password, which is not necessarily unique, are

associated with each user. Additionally, a user may be

included in a named group of users who share common access

rights. Certain privileged commands, which are specified in

the following subsections, allow the Data Base Administrator to

control the user community by inserting and deleting records in

the SYSUSER table.

3.4.1 Defining a New User to the System

A potential user cannot connect to the Integrated Data

Base Management System until that user has been defined to the

system by the Data Base Administrator. Prior to defining the

new user to the system, a unique user-id must be assigned to

the user by the Data Base Administrator. A password, which

does not have to be unique, must be selected by the user or

the Data Base Administrator. After assigning the user-id

and password to the new user, the Data Base Administrator uses

the DEFINE command with the USER option to identify the new

user to the system. This command is a privileged command and

will be accepted only from the Data Base Administrator.

Additionally, the DEFINE USER command may specify one or more

groups in which the new user is to be included for the purpose

of sharing common access rights with other users. The concept

of group access rights is described in the following subsection.

3-16

The execution of the DEFINE command with the USER option

causes a record to be inserted into the SYSUSER system table.

If one or more groups in which the user is to be included has

been specified in the command, corresponding records will be

inserted into the SYSGROUP system table. After the DEFINE

USER command has been successfully processed, the new user

can connect immediately to the Integrated Data Base Management

System.

3.4.2 Defining a New Group to the System

Users can be grouped together for the purpose of sharing

common access rights. Before a user can be included in a

group, the group must be identified to the system. This is

accomplished using a DEFINE command with the GROUP option.

The DEFINE GROUP command specifies the name of the group, which

must be unique among group names already known to the system.

This command is a privileged command and can be issued only by

the Data Base Administrator.

The execution of the DEFINE command with the GROUP option

causes a record to be inserted into the SYSGROUP system table.

At that time, the group will be empty; that is, the group will

contain no users. Even though the group is empty, access rights

can be granted to the group as described in a subsequent sub

section. After successful completion of a DEFINE GROUP command,

new or existing users can be included in the group as described

in the following subsection.

3.4.3 Controlling Group Membership

Essentially, groups are formed to facilitate the granting

and revoking of access rights to tables. As stated previously,

all users in a group have common access rights to a specific

set of tables. Users within a group may have additional

access rights which have been granted to them individually.

3-17

Also-, a user may not be a member of any group or may be a

member of several groups.

A user can be included in a group in two ways. A new

user can be included in one or more groups via the DEFINE

USER command when he is initially defined to the system. An

existing user can be included in one or more groups via the

INCLUDE command. The INCLUDE command is a privileged command

and can be issued only by the Data Base Administrator. When

a user is included in a group, a record is inserted in the

SYSGROUP system table.

A user can be removed from one or more groups of which he

is a member via the EXCLUDE command. Like the INCLUDE command,

the EXCLUDE command is a privileged command and can be issued

only by the Data Base Administrator. When a user is removed

from a group, a record is deleted from-the SYSGROUP system

table.

3.4.4 Removing a Group from the System

An existing group can be removed from the system using

the REMOVE command with the GROUP option. The group to be

removed must be named in the REMOVE GROUP command. This com

mand does not remove users within the group from the system,

but simply removes any access rights granted to users as a

result of their membership in the group. The group may be

empty or it may contain one or more users as members. Also,

the group may have zero or more authorization records,

representing access rights granted to the group, stored in the

SYSAUTH system table. The granting and revoking of access

rights to groups and to individual users is discussed in a

subsequent subsection.

The execution of the REMOVE command with the GROUP option

3-18

causes all records corresponding to members of the group to

be deleted from the SYSGROUP system table. Additionally,

all authorization records that are associated with the group

being removed are deleted from the SYSAUTH system table.

3.4.5 Removing a User from the System

An existing user can be removed from the system using the

REMOVE command with the USER option. This command is a

privileged command and can be issued only by the Data Base

Administrator.
 The user-id of the user to be removed must

be specified in the command.
 After removal, the user can no

longer connect to the Integrated Data Base Management System.

Also, the user will be removed from any groups of which he is

a member and any authorizations granted to the user, as
an

individual, will be revoked.
 All data bases owned by the

user will remain intact. They may be removed or their

ownership transferred to another user by the Data Base

Administrator.

The execution of the REMOVE command with the USER option

causes the record corresponding to the user being removed to

be deleted'from the SYSUSER system table.
 All records con
taining the user-id of the user are deleted from the SYSGROUP

system table. Also, all authorization records associated

directly with the user are deleted from the SYSAUTH system

table.

3.4.6 Connecting to and Disconnecting from the System

3.4.6.1 An Interactive User

The first action an interactive user of the Integrated

Data Base Management System must take is to connect to the system

using the ENTER command. A user-id and password must be

3-19

specified in the ENTER command. Only one user can be connected

interactively to the system under a given user-id at any one

time. Thus, if a user is already connected to the system under

the same user-id as is specified in an ENTER command, the command

will be rejected and the user will not be connected to the

system. The same action is taken by the system if the pass

word is not valid for the user-id specified in the ENTER

command. No other commands can be issued by a user until

a valid ENTER command has been processed for that user.

When an ENTER command is received, a check is made to determine

whether or not a user is already connected interactively to the

system under the user-id specified in the command. If not,

the user-id and password are verified. To accomplish this,

an attempt is made to retrieve a record, which is a User

Control Block, from the SYSUSER system table that contains the

user-id specified in the command. If such a record is located

it is read into main storage and the password contained in

the User Control Block is compared with the password specified

in the command. If they are the same, all authorization

records associated with the individual user are retrieved from

the SYSAUTH system table and are stored in the Authorization

Extension to the User Control Block in main storage. All

group records for groups of which the user is a member, if

any, are retrieved from the SYSGROUP system table and are

stored in the Group Extension to the User Control Block in

main storage. Finally, all authorization records for groups

to which the user belongs are retrieved from the SYSAUTH system

table and are stored in the group Authorization Extension in

main storage unless they are already resident therein. Then

control is returned to the user and he is now connected to the

system and attached to the Global Data Base. The concept of

being attached to a data base for processing is discussed in

a subsequent subsection.

When a user has completed an interactive session and wishes

3-20

to disconnect from the system, he must
issue an EXIT command.

During the execution of the EXIT command, all operations are

performed to terminate processing for the user issuing the

command.
 Main storage used for control structures which are

associated only with the user being disconnected, such as the

User Control Block, Authorization Extension and Group Extension,

is freed. Additional control structures may be removed from

main storage if they are not required to support other users

connected to the system.
 Any data contained in the user's

Workspace Table when he disconnects from the system will be

lost.

3.4.6.2 An Application Program

Every application program that uses the services of the

Integrated Data Base Management System must have the

Application Program Communication Module linked to it. The

Application Program Communication Module has a single entry

point and is entered each time that entry point is referenced

in a CALL statement in the application program. The command

to be executed is identified by the first argument in the

calling sequence. The Application Program Communication Module

performs the initial processing of commands prior to invoking

the Cross-Boundary System Routine to communicate with the

Integrated Data Base Management System.

Prior to executing any other CALL statement referencing

the Application Program Communication Module, a CALL statement

must be issued to the Application Program Communication Module

containing the ENTER command as
its first argument.

Additional arguments in the calling sequence must contain the

user-id and password of the user running the application

program.
 This causes the access rights associated with this

execution of the application program to be those of the user

running it. The system places no restrictions on the number

3-21

of application programs that can be run simultaneously by a

single user and a user can be connected to the system inter

actively while one or more of his application programs are

executing. Any commands issued by an application program to

access the Integrated Data Base Management System that are

issued prior to a successful ENTER command will be rejected

with the appropriate status code returned to the application

program.

When an ENTER command is received from an application

program, an attempt is made to retrieve a record, which is a

User Control Block, from the SYSUSER system table that contains

the user-id specified in the calling sequence. If such a

record is located, it is read into main storage and the pass
word contained in the User Control Block is compared with the

password specified in the calling sequence. If they are the

same, the authorization records, group records, if any, and

their associated authorization records are processed as des
cribed above for an interactive user. Finally, a character

is appended to the user-id in the User Control Block such that

the user-id is unique among those of both interactive users

and application programs currently connected to the system,

thereby permitting simultaneous access by the same user both.

interactively and via one or more application programs.

3.5 Relational Data Base Control

Using the Integrated Data Base Management System, a user

can dynamically construct, extend, manipulate and destroy

relational data bases to meet his changing requirements.

Also, a user has complete control over which users in the

user community can access his data bases and in what mode.

The following subsections discuss the commands available to

manage relational data bases. There is nothing inherent in

the system design which would prevent all of these commands

3-22

from being issued by an interactive user or an application

program. However, if desired, certain commands could be

limited to interactive or application program usage, only.

3.5.1 Defining a Data Base

To define a new relational data base, a user simply issues

a DEFINE command with the DATABASE option. The name of the

new data base must be included in the command and must be unique

among data base names already known to the system. After

successful processing of the DEFINE DATABASE command, a new
relational data base will exist that is owned by the user

issuing the command. However, the data base will be empty;

that is, it will contain no tables.
 The user will be attached

to the newly defined data'base.

The execution of the DEFINE command with the DATABASE option

causes a Data Base Control Block to be constructed for the new

data base.
 The Data Base Control Block is inserted, as a

record, in the SYSDB system table.

3.5.2 Specifying a Data Base for Processing

Every interactive user and application program connected

to the Integrated Data Base Management System always has a

relational data base to which any data manipulation command

or other data related command will be directed. This data

base is referred to as the user's primary data base and the

user is said to be attached to his primary data base. More

than one user can be attached to the same data base simultaneously.

As stated previously, when a user connects to the system,

he is automatically attached to the Global Data Base. When an

interactive user issues a DEFINE DATABASE command, he becomes

attached to the newly created data base.
During the course of an

3-23

interactive session or
the execution of an application program,

it may become necessary to access an existing data base

other than the Global Data Base. To accomplish this, the user

simply issues an ATTACH command specifying the name of an exist

ing data base, which may be the Global Data Base. After

processing of the ATTACH command, the data base named in
the

command becomes the user's primary data base.
All subsequent

data base related commands will reference that data base until

the user issues another ATTACH command. If no other users were

attached to the data base, the system will load all control

blocks and extensions associated with the data base from the

system tables.

At times,it is necessary for a user to transfer data from

one data base to another. Two facilities within the system

support this requirement. The first is the existance of a

user's Workspace Table which has been discussed previously.

The second is the concept of a secondary data base. A user's

secondary data base is simply the data base to which the user

was attached prior to attaching to his primary data base.

The system always retains the identity of each user's secondary

data base. If the user's Workspace Table contains data from

his primary data base and he issues an ATTACH command, the

contents of his Workspace Table remain intact.
The Workspace

Table will contain data from what is then the user's secondary

data base. The contents of the Workspace Table can be placed

in the primary data base, thus allowing the transfer of data

from the secondary data base to the primary data base.
 If

the user's Workspace Table contains data from his secondary

data base and he issues an ATTACH command, the contents of the

Workspace Table will be lost.
 Figure 3-1 illustrates the use

of the ATTACH command, the concepts of primary and secondary

data bases and the handling of the contents of a user's

Workspace Table.

3-24

CQtnad PIly 1)13 Seconrlary..l Cainz.t

FWI7I tuser-id, pansord O1nIhl, Nn1 U'r is nIinched to GIOIIAL dala hyn.
KlIn -storI'c t- obt.aincd for 1103 for

Workspace Table IV.

USE S MR MSOY)Il Jttal i.sh
Directory,
base.

an al lls

5Y;R)IR,
ihne for the Systan
in the GtDBA dal(ta

SLEfT (8.SCN.UE..INTrS.DI,.DID)
IllEIE S.SCNAM='NXIUS-G'

AND S. INI' 'SBUtV'

Wolkaqace Table (IV) Is created from CWWII,
Ila base. Dlgnilf IRtcnslon I s Created
for Wg containing SCUAMIRINSISTDATIFM and
IND. Snt.aced records nre retrieved frin
Ihti Sy.st('m Directory and are storird
Sequeitlal ly In IVG *

ATrAat O'0"Pr1FInF1I.E O lII lOFlI (IOEA;, eUcr

hate.

Is attlchrjd to OZXNITOFILE

V; is still available to

data

the user.

IQ
(it

it I'sr NIMlhuSS1lIV
IIHfT*IIn+

.ScAME,IV. tt4SrW.DAI.,W.DI) All records In W'o are Inserted into the
NIMIIUS13Uv table in the OZONn'llOFISI
data 'o.

Smi.ELCT
IUIl.R

(NIE.UsSIIIV.l)IT))
NJMftITSSIl V. M1: > 761110

New IW'uvspac Tfable (WO) Is created froin
(Y-nNIrIEOI. data baoe. 1VYceases to
t.io. IYmnn Exteniron is crated for
110 containling DID. Slected records are
it(Irlef-d (roin the l!IMlbtSSlUb table nd
are st')red(sequentially in IV0

1)IWPIAY V0 recor(tq
UrimI in I.

are (llc,lnyed at the rornte

ATI'Al 9011-TwI-, SoNIiMs11iiit (70MDTIOFIlE: Uscer Is attach.d to SOIIUINSIURE data base.

0 IV.,; still availai)e to ilie Uner.

DrUMfTE SFAAT.TIPH
AIIR lA'll; < 760101

Ileores arc d~e
:11) in [i the mOII;'fl110

fnron tli,!SrA9AIhMt1
JRII lata hase.

AlrA.l GUAI, GIOAl, ROIAISFUlIPU Uqcr Is attached to the GlODBAL data base.
WO cca, s e st sjince tie user has been
(h'la'hed frcn the OWONLAROrIL data base

fTrm('IIhi cl W was Creae.(oflt~~~~~u tdlct a r .ld. NO
Worlrjspcen 'rcffle u*l'ren.Iy exists.

Figure 3-1: An Example of Workspace Table Handling and IM, Concept of PrImarv and Secondary Data Bases

3.5.3 Defining a Data Field

Each data field to be used within a table must be defined

prior to its first appearance in a table definition or expansion

command. A data field will be local to
the data base to which

the user is attached when the 'data field is defined. A data

field can appear in zero or more tables in the data base with

which it is associated.

To define a new data field, a user issues a DEFINE command

with the FIELD option. The name of the new data field must

be included in the command and must be unique among data field

names already defined for the data base with which it
is

associated. Additionally, a description of the data field

consisting of the data type, field length where not implied by

the data type and units, where applicable, must be included

in the command. After successful processing of the DEFINE

FIELDcommand, a new data field will exist in the data base

to which the user was attached when issuing the command. The

new data field can now be used in the definition of new tables

or expansion of existing tables in the data base.

The execution of the DEFINE command with the FIELD option

causes
a Data Dictionary entry to be constructed for the new

data field. The Data Dictionary entry is stored in the Data

Dictionary in main storage that is associated with the data

base in which the -new
data field is contained. Also, the

Data Dictionary entry is inserted, as a record, in the SYSDD

system table.

3.5.4- Defining a Table

To define a new table, a user issues a DEFINE command with

the TABLE option.
 The name of the table and the data fields

which constitute the table must be included in the command.

3-26

The table name must be unique among table names already in the

data base in which the table is contained. The data fields

must have been previously defined within the context of the

data base to which the table is being added. That is, the

Data Dictionary associated with the data base must contain an

entry corresponding to each of the data fields.
 After success
ful processing of the DEFINE TABLE command, a new table will

be contained in the data base to which the user was attached

when the command was issued.
 A new table can be added to an

empty data
base or one which already contains one or more

tables.
 The user issuing the DEFINE TABLE command will be

the owner of the new table. The table will be a sequential

table in that.no superstructures will exist for it.
 The

creation of superstructures is discussed in a subsequent sub
section. The new table will be empty;
 that is, it will

contain no records.

The execution of the DEFINE command with the TABLE option

causes a Relation Control Block to be constructed for the

new table. Also, a Domain Extension containing one entry for

each data field in the table is constructed and linked to the

Relational Control Block.
 The Relation Control Block is

placed on the chain of Relation Control Blocks for tables con
tained in the data base.
 The Relation Control Block is inserted,

as a record, in the SYSREL system table.
 Each of the Domain

Extension entries are inserted, as records, in the SYSDOM

system table.

3.5.5 Expanding a Table

To append data fields to an existing table, a user simply

issues an EXPAND command. The name-of the table to be expanded

and the new data fields to be added to the table must be

included in the command. The table specified in the EXPAND

command must already exist in the data base to which the user

3-27

is attached when the command is issued. The data fields

must have been previously defined within the context of the

data base containing the table. That is, the Data Dictionary

associated with the data base must contain an entry corresponding

to each of the data fields. After successful processing of

the EXPAND command, the added data fields will be logically

appended to the right side of the table in the order specified

in the command. Superstructures can be created for the added

data fields either individually or in combination with original

data fields or other expansion data fields.

The execution of the EXPAND command causes a Domain

Extension entry to be created for each of the added data

fields. The Domain Extension entries are stored in the

Domain Extension in main storage that is associated with the

expanded table. Each of the new Domain Extension entries is

stored, as a record, in the SYSDOM system table. Existing

records, if-any, in the expanded table are not modified.

A null value will be supplied by the system whenever one of the

added data fields is retrieved from a record that existed

prior to the table expansion, unless an actual value has been

stored in the added data field during an update operation:

Added data fields will be physically present in records

updated or inserted subsequent to the table expansion.

3.5.6 Creating and Dropping Superstructures for Tables

As stated previously, a newly defined table is considered

to be a sequential table. It will remain as a sequential

table until one or more indices, referred to as superstructures,

are created for it. Superstructures may be created when a

table is empty or after it contains records. The creation of

superstructures is more efficient when the table is empty since

the system need modify only the table's Relation Control Block

and Domain Extension. The creation of superstructures after

3-28

records have been inserted into a table requires not only the

modification of the Relation Control Block and Domain Extension,

but the reading of eah record in the table and the writing

of records which constitute the specified superstructure.-

Two types of superstructures can be created for a table:

an inverted index and a B-tree index.
Both types can exist

for a single table. To create a superstructure for a table

a user issues an IhVERT or an INDEX command. An INVERT

command creates an inverted
 index, while an INDEX command
creates a B-tree index. Both commands require the name of

the table for which the superstructure is being created and

one
or more key fields to be specified. The table named in

the command must already exist in the data base to which the

user is attached when the command is issued.
Each key field

must contain the name of
one or more data fields from the

table and represents an entity for which values will be main
tained in the appropriate type of superstructure.

If a key field consists of a combination of two or'more

data fields, the key field must be given a unique name.

A combination key field is specified in the form:

key-name=(field-name-l,field-name-2[,field-namen]
..).

The key name must not duplicate any data field name in the

table for which the superstructure is being created nor any

other key name already defined for that table.
 The data

fields which constitute a combination key field need not be

contiguous in the table nor do they have to be specified in

the same order in the key field as in the table. A data field

which has a superstructure created for it
can be used in a

combination key field. Also,
a data field may be used in more

than one combination key field. If
a key field consists of

only one data field, no key name is required and the data

field name is used directly in the command. A single data

field can not have both a B-tree index and an inverted index

3-29

created for it, but it can participate in a combination key

field for both types of superstructures.

The execution of the INVERT and INDEX commands causes

similar actions to take place. For any single data fields

which are declared to be key fields, the corresponding

Domain Extension entries are modified in main storage and

are updated in the SYSDOM system table to reflect the

existence of the specified superstructure. For any combination

key fields, new entries are created in an auxiliary section

of the Domain Extension in main storage and each new entry

is inserted, as a record, in the SYSDOM system table. If

the table for which the superstructures are being created

is not empty, each record in the table is retrieved and the

proper superstructure is created for each of the key fields.

To remove existing superstructures from a table, the user

simply issues the DROPINDEX command. The name of the table

with which the superstructures are associated and the names

of.the key fields which identify the particular superstructures

to be dropped must be included in the command. The DROPINDEX

command removes both B-tree and Inverted indices from a table

for the key fields specified in the command. No ambiguities

arrise since the key-name assigned to a combination key field

is unique within a table and is associated with either a

B-tree or Inverted index and a single data field can have only

one type of superstructure created on it.

The execution of a DROPINDEX command causes the follow

ing action to be taken. For any single data field specified

in the command, the corresponding entry in the primary section

of the Domain Extension is modified to reflect the removal

of the superstructure from that data field and the associated

record in the SYSDOM system table is updated. For any

combination key fields specified in the command, the entries

3-30

associated with that key-field in the auxiliary section of

the Domain Extension are removed from main storage and the

corresponding records are deleted from the SYSDOM system

table. If the superstructures to be dropped are not empty,

all pages containing records in those superstructures are

returned to the free page list. A superstructure will be

empty if the table with which it is associated is empty.

3.5.7 Controlling Access to a Table

3.5.7.1 Granting Access Rights

When a new table is created, the user who created it

becomes its owner. Until the owner of a table grants access

rights To other users, he is the only member of the user com

munity who can access data in the table. To permit other

members of the user community to access the table, the owner

issues a GRANT command. The Grant command must contain three

pieces of information: the access mode or modes for which

rights are being granted, the name of the table on which the

rights are being granted and the individual users or group to

which the rights are being granted.

A table can be accessed in any one of four access modes.

They are: READ, UPDATE, INSERT, DELETE. One or more of the

previous key words denoting the mode of access being permitted

must be included in the GRANT command. If all of the
access

modes are to be permitted, the access mode list in the GRANT

command can be replaced by the key words ALL RIGHTS. Thus,

the rights being granted can be restricted to a specific subset

of the available access modes or can permit full access to
a

table.

The table name specified in the GRANT command identifies

the table for-which access rights are being granted. The

3-31

table must be contained within the data base to which the user

is attached when the command is issued. As stated previously,

the user issuing the GRANT command must be the owner of the table

specified in the command, the owner of the data base containing

,the table or the Data Base Administrator.

The GRANT command must identify, either explicitly or

implicitly, the users to whom the rights are being granted.

Rights can be granted explicitly to individual users by including

their user-ids in the command. Rights can be granted

implicitly to a subset of the user community by specifying the

key word GROUP followed by a previously defined groUp name

in the GRANT command. This will have the effect of granting

the specified access rights to all current members of the

group. Rights can be granted to the entire user community

by specifying the key word PUBLIC instead of a group name or

a list of user-ids. This causes the specified access rights

to be granted to every user of the Integrated Data Base

Management System.

The execution of a GRANT command which includes either a

group name or individual user-ids will cause one or more

authorization records to be inserted or updated in the SYSAUTH

system table. If the group, should a group name be specified,

or an individual user, should user-ids be specified, already

possess some access rights to the table named in the command,

the existing authorization record associated with the group or

user and the table is updated to reflect the newly granted

access rights. If no access rights to the table exist for

the group or individual users, an authorization entry is created

and inserted,-as a record, in the SYSAUTH system table.

The execution of a GRANT command which includes the key

word PUBLIC rather than a group name or individual user-ids,

will cause one or more flags to be set in the Relation Control

3-32

Block associated with the table named in the command. No

authorization records will be inserted or updated in the SYSAUTH

system table. The flags set in the Relation Control Block

will permit any user to access the table in the modes that have

been declared to be PUBLIC without checking the authorizations

associated with that user.

3.5.7.2 Revoking Access Rights

The revocation of existing access rights to a table can be

done only by the user who granted the rights or the Data Base

Administrator. To revoke access rights granted on a table,

the user issues a REVOKE command. The REVOKE command must

contain the access modes for which rights are being revoked

and the name of the table on which they are being revoked.

Additionally,the command can identify the individual users

or group from which the rights are being revoked.

One or more of the access modes can be included in the

REVOKE command or, if rights to all access modes are to be

revoked, the key words ALL RIGHTS can replace the access mode

list. The table named in a command must be a table in the

data base to which the user is attached when the command is

issued. Also, the user issuing the REVOKE command must be

the current owner of the table.

The specification of users, either explicitly or implicitly,

from which access rights are to be revoked, is optional in the

REVOKE command. If no users are identified in the command,

all access rights both public and those granted to groups or

individual users, will be revoked for the
access modes specified

in the command. Thus,, the owner of the table will become the

only member of the user community who can access the table in

those modes. Optionally, the REVOKE command can include

individual user-ids identifying users from which acces6 rights

,i-33

are to be revoked or can specify the key word GROUP followed by

a group name to indicate a group from which access rights are

to be revoked or can include the key word PUBLIC. If the key

word PUBLIC is included in the REVOKE command, general access

to the table by the user community in those modes specified in

the command will be inhibited. The access rights associated

with the table in those modes will revert to those rights that

were previously granted to groups or to individual users and

have not since been revoked.

The execution of a REVOKE command which includes either a

group name or individukl user-ids will cause one or more author

ization records to be deleted from or updated in the SYSAUTH

system table. If the group, should a group name be specified,

or an individual user, should user-ids be specified, possess

access rights to the table named in the command other than

those being revoked, the existing authorization record

associated with the group or user and the table is updated to

reflect the loss of access rights. If no access rights to

the table beyond those being revoked exist for the group or

individual user, the authorization record is deleted from the

SYSAUTH system table.

The execution of a REVOKE command which includes the key

word PUBLIC rather than a group name or individual user-ids

will cause one or more flags to be reset in the Relation

Control Block associated with the table named in the command.

No authorization records will be deleted from or updated in

the SYSAUTH system table. Thus, access to the table in the

modes for which public access has been revoked, will be denied'

to the user community as a whole, but will still be permitted

for users to whom access rights have been granted either

individually or as a member of a group.

The execution of a REVOKE command which does not contain

a clause identifying, either implicitly or explicitly, the

users from which rights are to be revoked may cause one or

more authorization records to be deleted from or updated in

the SYSAUTH system table and one or more flags to be reset in

the Relation Control Block associated with the table named in

the command. Thus, the actions performed are a combination

of those performed when either a group name or individual

user-ids is specified or the key word PUBLIC is used in the

REVOKE command. This permits the revocation of access rights

to the table for the modes specified without requiring the

knowledge of those users to whom access has been granted.

3.5.8 Manipulating Data in a Table

There are several commands available to a user of the

Integrated Data Base Management System to manipulate and

exhibit tabular data. These commands permit users to in

sert new records into a table, delete or update existing

records in a table and retrieve data fields from one or more

tables into a Workspace Table. Additionally, commands

are available which transfer data from tables to a printer

or to a remote terminal for display purposes.

Data manipulation commands can be performed without

restriction by users upon tables of which they are the

current owners. Use of these commands by users other than

the owners is controlled by the owner as described in the

previous subsection. The access modes, INSERT, UPDATE and

DELETE, which can be specified in the GRANT and REVOKE

commands control directly a non-owner's ability to perform

insertions, modifications and deletions, respectively, on

a table. The READ access mode controls a non-owner's ability

to retrieve data from a table for the purpose of storing it

in a Workspace Table or for printing or remote terminal

display. Thus, for example, if a.user who is not the owner

3-35

of a table were granted READ and UPDATE rights to a table,

he could retrieve data from the table into his Wqrkspace

Table or print or display data from the table and, also,

update existing records in the table, but he could not in

sert new records into the table or delete existing records

from the table.

3.5.8.1 Inserting Records into a Table

. To add one or more records to a table, a user issues an

INSERT command. The name of the table to which the record

or records are to be added must be included in the command.

The table must be contained within the data base to which the

user is attached when the command is issued. Additionally,

the user issuing the command must be the owner of the table or

must have been granted the right to insert records into the

table.

The record or records to be inserted can be specified

in one of two ways. Either the data values to be stored

in each data field in a new record can be specified expli

citly in the INSERT command or existing records can be

retrieved from other tables in the data base and inserted

into the table specified in the command. Using either form

of the INSERT command, a null value is stored in each data

field which is not specified in the command.

Each new record is stored in the tabular data storage

area on a physical page that has been allocated to the table

in which the record has been inserted. All superstructures

associated with the table are updated to reflect the ex

istance of the new record.

3.5.8.2 Updating Records in a Table

To modify one or more records in a table, a user issues

3-36

an UPDATE command.' The name of the table containing the

record or records to be modified must be included in the com

mand. The table must be contained within the data base to

which the user is attached when the command is issued.

Additionally, the user issuing the command must be the owner

-of the table or must have been granted the right to update

records in the table.

The UPDATE command selectively modifies data fields

within existing records in a table. Each data field to be

modified and its new value must be specified as an assignment

statement. The new value may be a constant or a function

which can be used to compute the new value (e.g., FREQ=42.7

or FREQ=I.I*FREQ). The records to be updated are identified

in a WHERE clause which specifies the conditions that must

be.met by a record for it to be selected for modification.

Any superstructures associated with the table that are

affected by the modification of one or more records, are

updated to reflect the changes in those records.

3.5.8.3 Deleting Records from a Table

To delete one or more records from a table, a user issues

a DELETE command. The name of the table containing the

record or records to be deleted must be included in the command.

The table must be contained within the data base to which the

user is attached when the command is issued. Additionally,

the user issuing the command must be the owner of the table or

must have been granted the right to delete records from the

table.

The DELETE command removes entire records from a tabie.

The records to be removed are identified in' a WHERE clause

which specifies the conditions that must be met by a record

for it to be deleted. Any superstructures associated with

3-37

the table that are affected by the deletion of a record, are

updated to reflect the removal of that record from the table.

3.5.8.4 Retrieving Records from a Table

Records can be retreived from a table for any one of three

purposes: to create a Workspace Table, to display data fields

from the records at a remote terminal or to print data fields

from the records. No matter what the purpose, the user issu

ing the command must be the owner of any table from which data

is to be retrieved or must have been granted the right to read

each such table. A specific data manipulation command is

associated with each type of retrieval. These commands are

discussed in the following paragraphs.

The SELECT command is an exceptionally powerful re

trieval command which provides the capability of retrieving

data fields-from one or more tables in a data base to create

records in the user's Workspace Table. The SELECT command

must include a list of data fields, referred to as the target

list, which defines the record format for the Workspace Table.

The data field names in the target list may have to be

qualified by a table name if data fields from more than one

table are to be joined in the resulting Workspace Table

(e.g. (TAB1.SC,TAB2.INST,...)). The records to be retrieved

are identified in a WHERE clause which specifies the conditions

that must be met by a record for it to be selected for

retrieval. Only those data fields identified in the target

list are extracted from the records that satisfy the WHERE

clause.

The results of a SELECT command will be zero or more

records contained within a sequential table known as the

Workspace table. The resulting records in the Workspace

Table may contain all or a subset of the data fields from

3-38

a single table or from multiple tables. The records selected

to create the Workspace Table may have been retrieved from

a single table or from multiple tables. In addition, the

contents of a data field in one table can be used to identify

records to be retrieved from another table.
 For example,

consider two tables, Tl and T2, both containing data fields,

SC, whose values are drawn from the domain of all spacecraft

names. The following SELECT command will cause records

to be retrieved from table Tl as
a function of spacecraft

names contained in the data field SC in table T2.

SELECT (TI.SC,Tl.INST,...)

WHERE TI.SC=T2.SC...

The current contents of a user's Workspace Table can be

referenced in a SELECT command in the same manner as
any

other table. The reserved table name, W , is used to refer

to the Workspace Table. After successful execution of a

SELECT command, the previous Workspace Table, if any, will

be replaced by the new Workspace Table.

The DISPLAY command is used to return the contents of
one or more data fields from a single table to a remote

terminal. If
no table is named in the command, the Workspace

Table is assumed. If a table is named, it must be the

Workspace Table or a table contained within the data base

to which the user is attached when the command is issued.

When the list of data fields to be displayed is omitted

from the command, all data fields in the table are
displayed.

Otherwise, only those data fields named in the list
are

displayed.
The data values will be displayed in a predefined

format unless a format specification is included in the

command.

The PRINT command is used to print the contents of one

3-39

http:TI.SC=T2.SC

or more data fields from a single table. The syntax of

the PRINT command is exactly the same as that of the DISPLAY

command except that a title can be specified in the PRINT

command. The title will be printed at the top of the first

page in the printed output.

3.5.9 Removing a Table

An existing table can be removed from the system using

the REMOVE command with the TABLE option. The table to be

removed must be named in the REMOVE TABLE command. The

table must be contained within the data base to which the

user is attached when the command is issued. Additionally,

the user issuing the command must be the owner of the table

being removed, the owner of the data base containing the

table or the Data Base Administrator. After successful

processing of the REMOVE TABLE command, the table and any

associated superstructures will be removed from the system.

The execution of the REMOVE command with the TABLE option

causes the data records in the table, if any, to be deleted

and the pages in the tabular data storage area that contained

them to be returned to the free page list. Also, any super

structure records associated with the table are deleted and

the pages returned to the free page list. The Relation Con

-trol
 Block and Domain Extension associated with the table are

removed from main storage and the corresponding records are

deleted from the SYSREL and SYSDOM system tables, respectivel

Finally, any authorization records corresponding to rights

granted on the table being removed, are deleted from the

SYSAUTH system table.

3.5.10 Removing a Data Field

An existing data field can be removed from the system

using the REMOVE command with the FIELD option. The data

3-40

field to be removed must be named in the REMOVE FIELD

command. The data field must be contained in the Data

Dictionary associated with the data base to which the user

is attached when the command is issued. Additionally, the

user issuing the command must be the owner of the data base

containing the data field or the Data Base Administrator.

Also, a data field can not be removed from a data base if

it is currently being used in a table contained in the data

base. After successful processing of the REMOVE FIELD

command, the description of the data field will be removed

from the Data Dictionary and the data field can not be used

in the definition of any new tables in the data base.

The execution of the REMOVE command with the FIELD

option causes the entry for the specified data field to be

removed from the appropriate Data Dictionary in main storage.

The corresponding Data Dictionary entry record is deleted

from the SYSDD system table.

3.5.11 Removing a Data Base

An existing data base can be removed from-the system

using the REMOVE command with the DATABASE option. The

data base to be removed must be named in the REMOVE DATABASE

command. The user issuing the command must be the owner of

the data base being removed or the Data Base Administrator.

After successful processing of the REMOVE DATABASE command,

the data base and its Data Dictionary, all tables and their

superstructures and all authorizations associated with tables

in the data base will be removed from the system.

The execution of the REMOVE command with the DATABASE

option causes the data records in all tables contained with

in the data base to be deleted and the pages that contained

them to be returned to the free page list. Also, any super

structure records associated with the tables are deleted

3-41

and the pages returned to the free page list. The Data

Base Control Block and the Data Dictionary associated with,

the data base as well as the Relation Control Blocks and

Domain Extensions associated with the tables in the data

base are removed from main storage. The corresponding

records are deleted from the SYSDB, SYSDD, SYSREL and SYSDOM

system tables. Finally, any authorization records corres
ponding to rights granted or any of the tables in the data

base being removed, are deleted from the SYSAUTH system

table.

3.6 Using the Data File Directory

The Data File Directory consists of one or more tables

contained within the Global Data Base and provides the user

community with the capability of locating data files in the

Non-Relational Data Base as a function of their data content.

The Data File Directory has no predefined structure. That

is, it can contain as many tables as are required to reflect

adequately the types of data contained in the Non-Relational Data

Base and each of the tables can be defined so as to best des
scribe the particular data files to which it refers.
 Thus,

new directory tables can be defined as
necessary, existing

directory tables can be expanded and obsolete directory tables

can be removed from the system.

Although each of the tables that constitute the Data File

Directory are independent and can be accessed independently,

the system maintains sufficient information to relate all

directory tables in the Global Data Base such that they can be

referred to collectively. Thus, each directory table has a

name by which it can be accessed directly while the set of all

directory tables can be referred to collectively using the

table name SYSDIR.

3-42

Each record in a directory table contains a data identifier

corresponding to the data file in the Non-Relational Data Base

to which the values of the other data fields in the record

pertain.
 One record in a directory table contains the attributes

(such as spacecraft, date, time, latitude, longitude, etc.)

that describe the data contained in the data file referenced

by the data identifier in the record. Since a single data

file may contain several logical subfiles whose attribute

values differ (e.g., maps measuring different physical variables

such as rainfall rate, cloud cover, etc. in a single data file),

more than one record in a directory table can point to the

same data file (i.e., contain the same data identifier). For

example, consider a data file that contains measurements of

several physical variables. If a directory.table which ref

erences that type of data file has only a single data field

to indicate physical variable type, multiple records pointing

to the data file could be stored in the directory table to

reflect the different physical variables measured in the data

file.

3.6.1 Defining a Directory Table

The definition of a new directory table is essentially the

same as the definition of any new table with some exceptions

noted below. As in the definition of any table, a DEFINE com

mand with the TABLE option is used. However, the key word,

DIRECTORY, must precede the TABLE option when a new directory

table is being defined. Therefore, the command to define a

directory table is DEFINE DIRECTORY TABLE. The command must

include the name of the directory table and the data fields in

the table. The DEFINE DIRECTORY TABLE command is a privileged

command and can be issued only by the Data Base Administrator.

Additionally, this command will be.accepted and processed by

the system only if the Data Base Administrator is attached to

the Global Data Base when it is issued. The table name must

3-43

be unique among table names already in the Global Data Base and

the data fields must have been previously defined within the

context of the Global Data Base. Unlike other tables, one of

the data fields in every directory table must be the data

identifier field, DID. Thus, every record in a directory

table will point to a data file in the Non-Relational Data

Base. Presumably, the other data fields would represent the

attributes associated with the type of data (e.g., NIMBUS-G

SMMR PARM-30 data or LANDSAT image data) for which the directory

table is being created.

After successful processing of the DEFINE DIRECTORY TABLE

command, a new table will be contained in the Global Data Base.

The table will be logically treated by the system as part of

the Data File Directory. It will be accessed, along with the

other tables, whenever the table name SYSDIR is used in a com

mand. Since the DEFINE DIRECTORY TABLE command can be issued

only by the Data Base Administrator, he will be the owner of

the new directory table. Subsequently, the Data Base

Administrator may change the ownership of a directory table to

a member of the user community, thus extending control over

the authorization of access rights to that user. It is expected

that the right to retrieve data from a directory table will be

granted to the entire user community while the right to modify

the table will be restricted to a small subset of the user

community or to the Data Base Administrator alone.

As with any table, a new directory table will be, initially,

a sequential table and will be empty. Superstructures can be

defined for a directory table while it is empty or after records

have been entered into the table in the same manner as any other

table. A directory table can be expanded by its owner with

the added data fields containing null values in any existing

records until those data fields are updated.

3-44

3.6.2 Modifying the Data File Directory

The modification of a directory table is performed by the

same data manipulation commands, INSERT, DELETE and UPDATE,

which are used to modify any table. A directory table could

be modified interactively, via the Batch Command Reader, from

an application program or from any special purpose programs

written to extract information from a data file header to

create one or more directory records describing a new data

file. A directory table can be modified by the Data Base

Administrator, the owner of the directory table if other than

the Data Base Administrator, and any user who has been granted

the appropriate rights.

:New records
can be inserted into individual directory

tables only. That is,
SYSDIR cannot be specified as the

table into which new records are to be stored by an INSERT com
mand. However, the DELETE and UPDATE commands can be used

to modify individual directory tables or the Data File

Directory as a whole.
 If a DELETE or UPDATE operation is to

be restricted to an individual directory table, the name of

that table should be included in the command.
 If the operation

is to be performed over the entire Data File Directory, SYSDIR

should be used as the name of the table to be modified. The

modification of the entire Data File Directory is carried out

on
a table by table basis. For each directory table to be

modified, the system determines whether the user issuing the

command has the right to perform the specified operation.

If not, that directory table is not modified.
 When performing

an UPDATE operation on the entire Data File Directory, the

system determines, for each individual directory table, whether

or not that table contains all of the data fields to be updated.

If not, the system checks the next directory table until all

directory tables have been processed. If a directory table

is encountered which possesses all of the data fields to be

3-45

updated, any records in the table that satisfy the WHERE

clause are updated appropriately. As with the UPDATE command,

a DELETE command which specifies SYSDIR as the table to be-'

modified causes each individual table in the Data File

Directory to be processed. Any record in an individual

directory table which satisfies the WHERE clause will be

deleted.

During the modification of a directory table, the data

field containing the data identifier is treated somewhat dif
ferently from the other data fields.
 The data field contain
ing the data identifier must not contain the null value when

a new record is being inserted into a directory table.

Additionally, the data identifier specified in a new record

must match an existing data identifier in the Data File Catalog

which is the SYSCATL system table.
 During an update operation,

a null value cannot be stored in the data field containing the

data identifier. Also, any new value stored in the data

field containing the data identifier during an UPDATE operation,

will be checked against the Data File'Catalog for validity.

Finally, to ensure consistency between the Data File Directory

and the Data File Catalog, whenever a data file is removed

from the Data File Catalog via the UNCATALOG command, all

records containing the corresponding data identifier will be

deleted from the Data File Directory.

3.6.3 Retrieving Data from the Data File Directory

Retrieving data from a directory table is performed in the

same manner as retrieving data from any other table in the

system. The SELECT command, DISPLAY command and PRINT command

can be used to retrieve data from individual directory tables

or from the entire Data File Directory. As with other tables,

the SELECT command will place the retrieved records in the

user-'s Workspace Table, the DISPLAY command will exhibit the

3-46

retrieved data on the user's'remote terminal and the PRINT'com

mand will print the retrieved data. Data can be retrieved

from individual directory tables by specifying the table name

explicitly in the command.- Data can be retrieved from the

entire Data File Directory by specifying SYSDIR in place of

the individual directory table name. When the table name, SYSDIR,

is specified in a retrieval command, each directory table is

checked to determine if all data fields in the target list are

contained within the table. If not, no data is retrieved from

that table and the system checks the next directory table until

all tables in the directory have been checked. If a directory

table is encountered which contains all of the data fields in

the target list, the data fields are retrieved from the records

that satisfy the WHERE clause specified in the command.

For most users, the retrieval of data from the Data File

Directory will be the initial step in obtaining data for

study purposes. Using one of the retrieval commands, a user

can locate the data files that-possess spacial and temporal as

well as other attributes required for his work. Several

retrievals may be required from the Data File Directory to

locate the required subset of data files in the Non-Relational

Data Base. Once the required data files have been located,

the user may wish to retrieve the records from the Data File

Directory which point to these data files. Using a SELECT

command, the user can retrieve those records and store them in

a table in another data base. In this way,. the user can

create his own directory tables. It should be noted that these

directory tables in user data bases are not maintained by the

system as part of the Data File Directory.

3.7 The Non-Relational Data Base

/

The term "Non-Relational Data Base" refers to. all data

files for which an entry exists in the SYSCATL system table,

3-47

which is the Data File Catalog. As discussed in Section 2,

up to three copies of a data file can exist within the system,

simultaneously. The Data File Catalog can retain the location

of an off-line copy of the data file in its original format, an

on-line copy in one of the 'system standard formats and an off

line copy in the same system standard format. Using the

facilities of the interactive command language, a user can

manipulate data files in several ways. New data files can be

cataloged, making them known to the system, and existing data

files can be uncataloged, thus removing them from the system.

Data files can be loadedon-line, placing them in system standard

format or unloaded off-line in the same system standard format.

Procedures, such as regridding or windowing, can be performed

on data files under user control. Additionally, data files

can be converted to tables for processing by the relational

front-end and tables can be converted to data files.
 Also,

application programs can read one or more data files and

create new data files that become part of the Non-Relational

Data Base. All data file commands, except the COPY command,

can be issued while the user or Data Base Administrator is

attached to any data base. The COPY command must reference

a table in the data base to which the user issuing the command

is attached. Thus, the ability to locate, manipulate and pro

cess this large, sequentially organized, data base provides the

Integrated Data Base Management System with considerable power

and flexibility. The use of all of the facilities for handling

data files within the system is described in the following

subsections.

3.7.1 Adding a Data File to the Non-Relational Data Base

A new data file can be added to the Non-Relational Data

Base in two ways: by an application program or, interactively,

using the CATALOG command. The creation and processing of

data files by an application program is discussed in a subsequent

3-48

subsection. This subsection deals with the use of the CATALOG

command. The CATALOG command logically enters a data file into

the Non-Relational Data Base by creating a Data File Catalog

entry and insert-ing it, as a record, into the SYSCATL system

table. The CATALOG command is a privileged command and can

be issued only by the Data Base Administrator and only while

attached to the Global Data Base which contains the system

tables.

Physically, the new data file must reside on a magnetic

tape and should be placed into the tape library reserved for

the Non-Relational Data Base. The CATALOG command must specify

the physical. location of the data file being added. The

representation of the physical location may be system dependent

but, most likely, will consist of a volume serial number, a

file number and a format code. The format code indicates the

format of the records in the data file and identifies the sub

routine, if one exists, in the system library which is used to

load the data file on-line. if a duplicate volume serial

number, file number and format code already exist in the SYSCATL

system table, the new record is not inserted, but the data

identifier of the matching entry is returned to the user.

Otherwise, the system will assign a unique data identifier to

the data file being added and the new record will be inserted

in the Data File Catalog after which the data file is considered

N

to be contained within the Non-Relational Data Base.

3.7.2 Removing a Data File from the Non-Relational Data Base

An existing data file can be removed from the non-relational

data base only by the UNCATALOG command. The command must

contain the data identifier of the data file to be removed.

The UNCATALOG command is a privileged command and can be issued

only by the Data Base Administrator and only while attached to

the Global Data Base which contains the system tables.

3-49

The execution of the WNCATALOG command causes the record

containing the specified data identifier to be deleted from the

SYSCATL system table.
 Any records in the Data File Directory

in the Global Data Base that contain the data identifier are

deleted from the directory tables. If anon-line copy of the

data file exists, it is deleted and the direct access storage

is freed. Any off-line copies of the data file will continue

to exist but will not be accessible via the Data File Directory

or the Data File Catalog.

3.7.3 Loading a Data File

The action of loading a data.file refers to the transference

of an off-line data file on magnetic tape to a direct access

device. A data file which has been loaded will always be in

one of the system standard formats while the off-line data file

may have been in its original data file format or in the
same

system standard format. Thus, the loading process will always

transform a data file to a system standard format, if necessary.

The term"on-line" will be used to refer to a loaded data file

on a.direct access device. However, the data file is still

sequentially organized and should not be confused with tabular

data.

To transfer an-off-line data file on magnetic tape to an

on-line direct access device, the user issues a LOAD command.

The data identifier of the data file to be loaded must be

specified in the command. The execution of the LOAD command

may require that a format conversion routine be loaded from

the system library. The basic purpose of the routine would be

to convert the original data file format of the off-line data

file to a system standard format. However, other operations

could be performed by the load routine. Further parameters required

to control the operation of the load routine would be dependent

upon the particular routine being used and the content of the

3-50

data file being loaded. For example, if the load routine had

the capability of extracting a single physical variable from a

data file which contained several physical variables, it might

be required that the user indicate if physical variable selection

is desired and, if so, which physical variables were to be

extracted.

If the loading of a data file causes it to be modified,as

described in the example above, a new data identifier will be

assigned to the loaded data file since its content is different

from that of the original data file. A Data File Catalog'

entry will be created for the loaded data file and will be in

serted, as a recorzd, in the SYSCATL system table. If the

content of the loaded data file is the same as that of the

original data file, the record in the SYSCATL system table

corresponding to the original data file is updated to reflect

the existance, location and format of the on-line, loaded

data file.

When a data file is placed on a direct access device via

the LOAD command, the on-line data file is marked as a temporary

file. Temporary data files will be periodically scratched-from

the on-line environment by a utility program. To prevent an

on-line data file from being scratched, a user must issue a KEEP

command. The data identifier of the data file to be marked

as permanent must be included in the command.
The execution of

the KEEP command causes the on-line copy of the data file whose

data identifier is specified in the command to be marked as

permanent. This action does not affect any off-line copies of

the same data file.

There are several reasons why a user might wish to cause a

data file to be loaded on-line. Some data files contain massive

amounts of data and, for these types of data files, the load

operation would perform windowing functions. Thus, by loading

3-51

the data file a user can select only the subset of the data in

which he is interested. Additionally, having a data file on

line will reduce the time required for an application program

to access that data file by eliminating the tape mounting delay.

Many of the procedures which can be invoked via the PERFORM

command will require that input data files be in system standard

format. Therefore, it may be required that a data file be

loaded prior to performing some procedure on it. The PERFORM

command is discussed in a subsequent subsection. Also, prior

to copying a data file to
a table, it may be necessary to load

that data file to either reduce the amount of data placed in

the table or to convert a data file,whose original data file

format is not compatible with the COPY command,into a compatible

system standard format. A discussion of the COPY command is

contained in a subsquent subsection.

3.7.4 Unloading a Data File

The unloading of
a data file refers to the transference

of a data file on
a direct access device to an off-line

magnetic tape. The on-line data file will be in
a system

standard format and no
conversion or modification, such as
windowing, can occur when the off-line data file is created.

Thus, the unloading of a data file produces an off-line copy

of the data file in the same system standard format as the

on-line data file. The data identifier associated with the

data file to be unloaded must be specified in the command.

If an on-line copy of the data file does not exist or an off

line copy in system standard format already exists, the command

will, not be executed. Otherwise, the data file will be copied

to a magnetic tape in the same system standard format as the

on-line data file and the record corresponding to the data

file in the SYSCATL system table will be updated to reflect

the existance and physical location of the off-line copy of the

data file.

3-52

The on-line copy of the data file will not be affected by

the execution of the UNLOAD command.
 It will not be scratched

or modified in any way. However, a user can
cause an-on-line

copy of a data file to be removed from the system at any time

by issuing a SCRATCH command. The data identifier for the

data file whose on-line copy is to be scratched must be included

in the command. If no on-line copy of the data file exists,

no action is taken. Otherwise, the on-line copy of.the speci

fied data file is scratched,whether or not it has been marked

as temporary or permanent. The SCRATCH command has no
effect

on off-line copies of the data file. The execution of the

SCRATCH command frees the direct access space allocated to the

on-line copy of the data file and updates the record correspond

ing to the data file in the SYSCATL system table to indicate

the removal of the on-line copy. If, when the SCRATCH command

is issued, no off-line copy of the data file either in the

original data file format or in
a system standard format,

exists, the command will not be executed since this would cause

the ultimate loss of the data file.
 In this case, the user

should issue an UNCATALOG command to remove the data file, if

that is what is desired.

3.7.5 Invoking Data File Processing Procedures

The interactive display and manipulation of the contents of

data files is an important feature of the Integrated Data Base

Management System. This facility is invoked via the inter

active command, PERFORM. The name of the procedure being

invoked must be included in the command.

The execution of the PERFORM command requires that a sub
routine be loaded from the system library. Any number of

such routines may exist in the system library and
new routines

to perform additional procedures can be added at any time.

Thus, the system supports an open-ended facility for the dis

play and manipulation of data files. Routines could be included

3-53

that display or plot the contents of a data file, perform

regridding operations on a data file, perform windowing,

slicing or splitting operations on a data file or
merge several

data files onto a single grid.

Each of the procedures invoked by the PERFORM
com
mand will use, as input,
one or more data files residing on

a direct access device in
a system standard format. Any new

data files created by the procedure would be stored on a direct

access device in one of the system standard formats. A new

'data identifier would be assigned to the resulting data file

and a Data File Catalog entry would be created for each new

data file and inserted, as a record, in the SYSCATL system

table. Any new data files created.by a performed procedure

would be marked as a temporary file.
 The concept of temporary

data files and their handling is discussed in the previous

subsection entitled Loading a Data File.

3.7.6 Data File/Table Conversion

Although the Integrated Data Base Management System is

based on the division of data into two types or forms, tabular

data and sequentially organized data files, there are times

when it is convenient for a user to have the capability of

converting data from one form to the other.
 To provide this

capability, the interactive command language includes a COPY

command which copies data files to tables and tables to data

files performing the necessary conversion of physical data

structure.

To copy an existing data file to a table, the user issues

a COPY command which includes the data identifier of the

data file to be copied and the name of the table into which

the data is to be copied. The table specified in the command

must already exist in the data base to which the user is

3-54

http:created.by

attached when the command is issued.
 The data file identified

in the command may be in a system standard format or its

original data file format. If a system standard format copy

of the data file exists, it will be used as the source of the

data records. No conversion takes place during the copy opera

tion. Each logical record in the data file is placed in the

tabular data storage area as a record in the specified table.

Thus, data fields in the table should match, in type and length,

those in the data file being copied. Any superstructures defined

on the table are updated as the records are inserted into the

table. The table must have been defined prior to issuing the

COPY command, however, the table need not be empty.
The execu

tion of the COPY command which copies an existing data file to

a table does not affect the data file in any way.

To copy a table to a data file, the user also issues a

COPY command which specifies only the name of the table to be

copied. The table must exist in the data base to which the

user is attached when the command is
issued. The execution

of the COPY command to copy a table to a data file causes the

table to be read sequentially, whether or not any superstructures

exist for it. Only data records in the table, not super

structure records, are copied to the new data file. The data

recoras in the table are written to a new data file on
a

direct access device in a system standard format. The system

assigns a data identifier to the newly created data ffle.

A Data File Catalog entry is created for the data file and is

inserted, as
a record, in the SYSCATL system table. The

execution of a COPY command which copies a table to a data

file does not affect the contents of the table in any way.

3.7.7 Data File Processing by Application Programs

The Application Program Command Language contains commands

that manipulate not only tabular data but data files, as well.

3-55

All application program commands are issued via a CALL state

ment which uses the same subroutine name. For example pur

poses only, we have used IDBMS as the subroutine name. The

first argument will be the application program command to be

executed (e.g., SELECT, OPEN, READ). The remaining arguments

will be a function of the command being issued. Section 5

describes the Application Program Command Language and includes

the argument list for each command.

Several of the interactive commands from the data file

category can be issued from an application program. These

include COPY, LOAD and UNLOAD. However, a number of addi

tional commands are available to an application program for

The processing of data files. These commands permit the open

ing and closing of data files, the reading and writing of data

records in a data file, the reading and writing of header

and processing history records, the searching of a data file

for a particular string and the retrieval of format information

pertaining to the data file from the Data File Catalog. These

commands are discussed briefly below.

The OPEN command logically connects a data file to an

application program. The argument list contains the mode

in which the application program will access the data file.

The available modes are INPUT, OUTPUT and OUTIN. The first

two access modes are self-explanatory. The third, OUTIN,

indicates that the data file will be created by the applica

tion program and then modified by the application program.

If the file is being opened in the INPUT mode, the argument

list must specify the data identifier of the data file to be

opened. If the data file is being opened in the OUTPUT or

OUTIN mode, the system will assign a data identifier to the

data file to be created and will return it to the application

program via the data identifier argument. The OPEN command

will also perform all operating system dependent open

functions for the data file.

3-56

The CLOSE command logically disconnects a data file from

an application program. The argument list must specify the

data identifier of the data file to be closed.
 If the

access mode associated with the data file being closed is

OUTPUT or OUTIN and the data file was written successfully,

a Data File Catalog entry is created and inserted, as a

record, in the SYSCATL system table to reflect the existance

and physical location of the new data file.
 The CLOSE command

also performs all operating system dependent close functions

for the data file.

The READ command retrieves into a work area within an applica
tion program, all or part of a data record from a data file.

The data identifier of the data file to be accessed must be

specified in the argument list. If a portion of the logical

record is to be retrieved, the starting byte location and the

-length of the portion to be retrieved must also be specified

in the argument list. The READ command includes, in its

argument list, a logical record number which allows the data

file to be positioned to a specific logical record for retrieval.

The WRITE command writes a new logical data record into

a data file. The data identifier for the data file must be

included in the argument list.
 As in the READ command, a

logical record number can be included in the argument list of

the WRITE command to position a data file to an existing record

such that it can be overwritten. The overwriting of records

in a data file is permitted only if the file was opened in the

OUTIN access mode and has not been closed in the interim. The

WRITE command permits all or a portion of a logical record to

be written. If a new record is being written and only a

portion of that record is specified in the argument list, the

remainder of the record will contain binary zeros.
 If an

existing record is being overwritten, only the portion of the

record specified in the argument list is overwritten while any

other fields in the existing record are retained.

3-57

The SEARCH command permits the scanning of data files to

locate a particular string of characters. As in the READ and

WRITE commands, a logical record number can be specified to

position the data file prior to beginning the search. The

argument list must contain the start byte and length of the

string to be checked in each logical record. Also, the argu

ment list must contain one of the relational operators, EQ,

NE, LT, LE, GT or GE, indicating the type of comparison to be

made. Finally, the argument list must point to a work area

containing a string which is to be compared with the string

retrieved from each logical record in the data file.
 During

the execution of the SEARCH command, a string of characters

defined by the start byte and the length specified in the

argument list is retrieved from each data record read,and is

compared with the string in the work area using the relational

operator. When the relation condition is true or an
end-of

file is encountered, the execution of the SEARCH command is

terminated. If a match occurs prior to the end-of-file con

dition, the logical record number of the matching record is

returned to the application program. A READ command specify

ing that logical record number can be used to retrieve data

from the record.

The GET command permits an application program to retrieve

records from a table based on the logical ascending sequence

imposed on a table by a B-tree index.
 Each time that an appli

cation program issues a GET command, data fields from the record

containing the next highest key value in the specified B-tree

index are returned to the application program. To facilitate

the traversal of a B-tree index, each such index has a cursor

associated with it. These cursors are maintained by the system

and move independently through their associated B-tree index

whenever a GET command is issued referencing the key field on

which it is created. An additional feature of the GET command

is the ability to specify the starting point in the key sequence

at which retrieval should begin.

3-58

Two other commands are associated with the use of the GET

command.
They are the LOCK and UNLOCK commands. Since the GET

command uses a B-tree index to determine which record in a table

to retrieve, no modifications to that table or the B-tree index

can be permitted. Thus, an application program must issue a

LOCK command for
a table prior to issuing any GET commands refer
encing that table. The LOCK command can also be used at any

time that an application program requires control over a table.

This could occur prior to modifications of the table as well as

prior to issuing GET commands. When issued, the LOCK command

prohibits any interactive user or application program from

modifying the table if the READ mode is specified in the command

or, if the MODIFY mode is specified, it prohibits all
access to

the table. The UNLOCK command simply releases control over a

table which was established by a previous LOCK command.

The FORMAT command permits an application program to

retrieve information from the Data File Catalog concerning

the existance of off-line and on-line copies of a data file

and their associated formats.
The data identifier of the

data file for which the information is to be obtained must be

included in the argument list. The system will return to

the application program an indication of whether or not an

off-line copy of the data file exists in its original data

file format, whether an on-line copy exists in a system

standard format and whether an off-line copy also exists in

system standard format.
 Also, it will indicate in which

system standard format or data file format a copy exists.

Four other commands, GETHEAD, PUTHEAD, GETHIST and PUTHIST,

are
available to read and write header records and processing

history records, respectively, for data files in system standard

format. Each of these commands must include the data

identifier of the data file which is being accessed by the

command. Additionally, the argument list must reference a

work area which contains either the header record dr history

3-59

record to be written for output or a work area into which the

header or history record can be placed for input.

3-60

SECTION 4 - THE INTERACTIVE COMMAND LANGUAGE

4.1 Introduction to the Interactive Command Language

The Integrated Data Base Management System commands avail
able to an interactive user (i.e., commands other than the

operator commands) may be divided into five categories: data

definition commands, data manipulation commands, administrative

commands, utility commands, and file operations. This section

describes the syntax and briefly discusses the function of these

commands on a category-by-category basis.
 While nothing in

the design of the Interactive Data Base Management System would

preclude having every command described in this chapter made

available for use by application programs, consideration of

projected user requirements suggests that certain commands

available for interactive users would be superfluous for applica
tion programs. Therefore, certain commands will be restricted

for interactive use only. Moreover, since certain commands

will be restricted to specific classes of users, the discussion

of the function (or "semantics") of these commands will include

a statement of the restrictions, if any, on the use of these

commands.

It should be emphasized that this is not intended to be
a

substitute for a detailed users' manual, and the discussions

of semantics are correspondingly brief.
 In particular, the

reader will find more detailed discussions of file operations

in Section 7, Data File Processing.

The notation used for describing the syntax of these

interactive commands owes much to the CODASYL Data Base Task

Group Report5
and to the Backus Normal Form notation used to

describe Algol 6028 The following rules apply:

* 	Key words are indicated with capital letters.

* 	Generic terms are indicated by lower case letters and

are included in angled brackets (G,>). deneric terms

4-1

are replaced with appropriate values when the format

is used. The use of subscripts on generic terms is

not meant to imply different generic terms, but rather

that the values used when replacing the generic terms

will normally be different (see example at bottom of

page).

Example: 	 If 'BTSIO0' is a user-id and 'ALPHA' is a password

then ENTER BTS100, ALPHA is an instance of the for

mat ENTER <user-id>,<password>.

* 	 Square brackets (,]) indicate optional alternatives.

At most one, but possibly none, of the alternatives

may be present.

Example: 	 MENU, MENU ON, and MENU OFF are valid instances of

the format ~ ON~

* 	Braces ({,)) indicate mandatory alternatives.

Precisely one alternative must be present.

* 	 Vertical placement and vertical lines are both used to

indicate alternatives.

Example: 	 MENU [ONIOFF] is equivalent to MENU L]

* An ellipsis (...) indicates that repetition is permit

ted. The portion of the format to be repeated is

determined by the open bracket or brace ([or f) which

matches the closed bracket or brace (] or 1) immediately

to 	the left of the ellipsis.

Example: 	 If XYZI, XYZ2, and XYZ3 are data file identifiers

then LOAD XYZI,XYZ2,XYZ3 is an instance of

LOAD <file-idl>[,<file-id2 >]...

4-2

* The special symbol "::="
means "is defined to be". It

is used to break up what would otherwise be a very

complicated definition into simpler and easier to grasp

parts.

o Other punctuation marks such as
commas and asterisks

must be present, as shown.

*
 Key words and generic items must be separated by blanks

or punctuation marks when the command is entered into

the system.

Example: 	 ENTERBTS100,ALPHA is an unacceptable instance of

the format ENTER <user-id>,<password>. However,

both ENTER BTS00,ALPHA and ENTER BTS100, ALPHA are

valid.

4-3

4.2 Utility Commands

Utility commands will perform a variety of necessary

services for interactive users.
 All of these commands will

be available to any interactive user without restriction, and

certain of these commands shall furthermore be available to

application programs as well.
 The seven utility commands

will be:

ENTER - Connect the user to the Integrated Data Base

Management System.

EXIT - Disconnect the user from the system.

ATTACH - Designate a particular data base for informa

tion processing.

DESCRIBE - Display a textual description of data entities,

commands, user authorizations, or group member

ships.

USE - Establish a one-character or two-character alias

for a table.

MENU - Display a menu of interactive commands or

toggle from full menu display mode to menu

suppressed mode or vice versa.

PASSWORD - Change passwords.

4-4

4.2.1 ENTER

A user will connect to the Integrated Data Base Management

System with the ENTER command, whose syntax is described below:

ENTER <user-id>,<password>

where the password must be
correct for the indicated user

before the system will process the command. The password will

be selected by the user, and
-- due to the manner of encipher

ing it when the password is stored internally -- not even the

DBA will be able to learn the password except by communicating

with the user or expending an inordinate amount of time and

effort. This is intended to provide a user with a certain

measure of security.

After successful execution of
an ENTER command the user

will always be attached to the Global data base.

4-5

4.2.2 EXIT

A user will exit from the Integrated Data Base Management

System by keying in the single key word:

EXIT

When the user issues an EXIT command, any alias names established

for tables via USE commands (see Section 4.2.4) will be erased

and the contents of the user's Workspace Table will be

deleted.

4-6

4.2.3 ATTACH

A user may leave one data base and begin processing data

in another data base via the ATTACH command. The syntax of

the ATTACH command will be:

ATTACH [TO] <data base name>

Subsequent commands which refer to tables or fields will be

presumed to reference entities of the specified data base.

However, an ATTACH will be accepted only if the user -- or

some user group to whicb the user belongs -- has access rights

to the specified data base.

Successful execution of an ATTACH command will not change

any alias names established while the user was previously

connected to some other data base. However, the user will

not be permitted to reference those tables until re-attached

to the data'base where the aliases apply. Nor will successful

execution of an ATTACH change the contents of the workspace

table. Therefore, the workspace table can provide a convenient

mechanism for transportation of data between different data

bases.

4-7

4.2.4 USE

The 	syntax of the USE command will be:

USE <alias1>[,<alias2>]... FOR <table name>

where aliases will be one or two alphanumeric characters with

the first character restricted to be alphabetic (e.g., S, SC,

S3, etc.). This command will specify short aliases for

tables, and the user may then substitute the alias for the table

name in any command in which the table name is required.

This will have two benefits:

(.) 	the number of keystrokes required to enter a command

will be reduced, and

(2) 	 at least one alias will be required when a table is

cross referenced against itself in the performance

of a retrieval using the relational calculus syntax*.

A user will be permitted to have more than one alias name

on a single table, and the same alias name may be applied to

different tables provided the tables reside in different data

bases. However, any given alias can be used on at most one

table in any given data base at any time. Thus, if a given

alias is bound to a table in some data base and a user issues

a new USE command binding that alias to a different table in

the same data base, then the old binding will be overwritten

by the new binding.

There will be one important restriction on the use of alias

names. By convention,the name "IV"will always refer to the

user's "Worskpace" Table*. The user will not be required to

make this binding formally (with a USE command) and may not

redefine W.

* See the description of the SELECT command in Section 4.5.1.

4-8

Detaching from a data base will not alter the alias name

bindings established by the user for that data base, and the

same set of alias bindings will be in effect when the user

reattaches to that data base. Upon EXIT from the system,

however, all alias name bindings will be destroyed.

4-9

4.2.5 PASSWORD

Users may wish to alter their passwords for reasons of

security, or the DBA may be called upon to reset the password

of some user. The mechanism for changing passwords will be

the PASSWORD dommand:

PASSWORD [FOR <user-id>]=<password>

Barring a system crash necessitating data.base recovery and

restart, the newpassword for the user will be in effect the

next time the user issues an ENTER command.

Only the DBA will be allowed to use the PASSWORD command

with the FOR clause. The DBA may find it necessary to issue

such a command if a user forgets his password, or if it

becomes necessary to deny access to the system temporarily

for some user and the DBA does not wish to take the drastic

step of issuing a REMOVE on that user.

The PASSWORD command will not be available to applica

tion programs.

4-10

4.2.6 MENU

The syntax of the MENU command will be:

MENU []

When a user enters the Integrated Data Base Management

System through an interactive remote terminal, the system will

inquire whether he or she wishes to work in "full menu dis
play" mode or "menu suppressed" mode, that is, whether the user

wishes to have a menu of interactive commands displayed between

transactions, or whether menu displays are to be inhibited.

If the user is working in full menu display mode then the

only form of the MENU command which the system will accept

will be MENU OFF, which will toggle the user into menu suppres
sed mode. If the user is working in menu suppressed mode,

then he or she can issue a MENU ON command to toggle into full

menu display mode, or the user will be permitted to input

MENU with no qualifier to get a menu listed without switching

out of menu suppressed mode.

4-11

4.2.'7 DESCRIBE

DESCRIBE will be a multipurpose command used to pass

information from the Integrated Data Base Management System

back to a user. The syntax of a DESCRIBE command will be:

DATABASEI[<entity namel>[,<entity name2>]...

TABLE *
FIELD JLWHERE <qualification>

DESCRIBE COMMAND {<command name>ITYPE=<category>}

GROUP <group name>

RIGHTS [FOR <user-id1 >[,<user-id 2>.. .

where the entity name is a data base name (if the command is

DESCRIBE DATABASE), a table name (for DESCRIBE TABLE), or the

name of a field in the Data Dictionary (for DESCRIBE FIELD).

As may be inferred from the above syntactic description, a user

will be able to request information about data bases, tables

within a data base, the contents of a data dictionary, system

commands, and user groups. Also, a user may inquire about

the extent of his or her data access rights. Each of these

six variants are described in greater detail below.

The DESCRIBE command is not available to application

programs.

4.2.7.1 DESCRIBE DATABASE

The DESCRIBE DATABASE command will cause the Integrated

Data Base Management System to output the following information

for each data base specified by the user:

(1) data base name

-(2) data base owner

(3) type (working vs. applications)

4-12

(4) creation date

(5) short textual description.

This is a minimal set of items of information, and the DBA may

elect to define even more fields in a data base control block

and, if so, these fields would surely also be listed. For

example, the DBA may choose to define meaningful classes of

data bases, so that the data base class would be output as

well as the five items specified above.

The user will be able to specify one or more particular

data bases by name, or the user can fetch a listing of all

the data bases managed by the system by using the asterisk

("*") option. A third approach will be to specify a subset

of the data bases through use of a WHERE clause and some qualifica

tion. The syntax of a WHERE clause and qualification are

spelled out in greater detail in the subsection of this report

devoted to the SELECT command but, basically, a qualification

is a Boolean combination of predicates, and in this case the

predicates will attach values to the fore-mentioned items of

information in the data base control block.
For example, a

user may wish to see a description of all working data bases

owned by BTS00, and do so with the command:

DESCRIBE DATABASE WHERE OWNER=BTS100 AND TYPE=WORKING

Other fields which might occur in a qualification predicate

are creation date and class (if defined by the DBA).

It is important to note that a user will not have to be

attached to any particular data base to issue a DESCRIBE

DATABASE command, and that issuing a DESCRIBE DATABASE command

will not transfer the user from his or her current
data

base.

4-13

4.2.7.2 DESCRIBE TABLE

A user will be able to retreive detailed descriptions of

tables and data bases to which he or
she is attached t by

issuing a DESCRIBE TABLE command.
 For each table specified

by the user the system will respond by listing:

(1) table name

(2) table owner

(3) creation date

(4) access control for READ
 (public, private, or restricted)

(5) access control for INSERT (public, private, or restricted)

(6) access control for UPDATE (public, private, or restricted)

(7)
access control for DELETE (public, private, or restricted)

(8) a list of domains by name

(9) for each domain, the field in the data dictionary to

which it corresponds and assertions, if any

(10') a list of search keys and superstructures.

The user will be able to specify a list of tables by name, or

may ask for all tables in the data base with the asterisk option,

or may use a WHERE clause and qualification. Fields available

for use in predicates would include
-- but not be limited to -
owner, creation date, access control status, and the names of

one or more domains.

4.2.7.3 DESCRIBE FIELD

A user can examine the contents of the Data Dictionary for

the data base to which he or she is attached' by means of the

DESCRIBE FIELD command.
 For each field specified by the user

the system would list the following data:

To maintain system security, system tables such as SYSDOM,

SYSUSER, SYSCATL, and others will be invisible to the user

and shall not be described to the user even if the user is

attached to the Global Data Base.

TAgain, certain fields.of the Global Data Dictionary would be

blocked from user knowledge.

4-14

http:fields.of

(1) field name

(2) type

(3) size

(4) units (if present).

Again, the user will be able to specify one or more

particular fields by name, or may cause the entire Data

Dictionary to be listed (with the asterisk option), or may

use a WHERE clause and qualification to specify a subset of the

Data Dictionary implicitly.

4.2.7.4 DESCRIBE COMMAND

The DESCRIBE command with the COMMAND option is similar to

the "HELP" command of other interactive, user-friendly systems.

The DESCRIBE COMMAND command will not be available through the

system's Batch Command Reader.

The user will be able to name a specific command (e.g.,

DESCRIBE COMMAND INDEX) or may request details on all of the

commands in a particular category (e.g., DESCRIBE COMMAND TYPE=

UTILITY). The system will respond by giving the syntax and

a brief description of the function for the command(s) speci

fied by the user. The Integrated Data Base Management.

System will be selective in what it outputs -- there is

obviously no need to tell the user about ENTER, for example,

nor will the user be given any information on commands avail

able for the DBA's use only. Thus, use of the USER clause and

GROUP clause will not be explained if the user asks about

DEFINE or REMOVE, nor will the system inform users about

CATALOG, UNCATALOG, INCLUDE, EXCLUDE, or the GROUP clause for

the DESCRIBE command. If it should happen that a user does

request information about one of these restricted commands,

the system will respond by stating that the command in ques

tion is restricted to use by the DBA only.

4-15

4.2.7.5 DESCRIBE RIGHTS

The RIGHTS clause of the DESCRIBE command will allow a

user to discover what his or her data acess rights are.

The system will respond to the DESCRIBE RIGHTS command by list

ing all the data access rights authorized to that user directly,

then listing all the rights indirectly authorized to the user

by group membership on a group-by-group basis. (A more

thorough discussion of precisely what those rights are may be

found in the subsection devoted to the GRANT command.)

Only the DBA will be permitted to use the DESCRIBE RIGHTS

command with the FOR clause. This variation of the DESCRIBE

RIGHTScommand is designed to give the DBA the ability to

determine the data access rights for users of the system.

4.2.7.6 DESCRIBE GROUP

The DBA will also be able to examine the membership of

and access rights authorized to particular groups by the

DESCRIBE GROUP command. The output will be a listing of the

users belonging to the group, sorted by user-id, and a listing

of the data authorizations granted to the group on the whole,

sorted on table within data base.

4-16

4.3 Data Definition Commands

The six data definition commands will allow interactive

users of the Integrated Data Base Management System to create

and remove data bases, tables, and fields; to alter table lay
outs; to specify data validation tests; and to define access

method superstructures on fields of
a table to facilitate

rapid data retrieval. The Data Base Administrator may also

use data definition commands to introduce new users to the

system, to remove inactive users, and to define user
groups.

The commands will be:

DEFINE - Identify new data bases, new fields, new tables,

new users, new user groups, and data valida

tion tests to the system.

REMOVE - Remove inactive users,-obsolete user groups,

unused fields, tables, or even whole data bases

from the system.

EXPAND - Append one or more columns to an existing table.

INDEX - Establish hierarchical index superstructures

on given fields or combinations of fields in a

table.

INVERT - Create inverted file indices for a given field

or combination of fields.

DROPINDEX - Delete index superstructures (both hierarchical

and inverted) from specified tables.

Most of these commands will be restricted with respect to the

list of users who may apply them in any given situation. These

restrictions will be specified in greater detail in the follow

ing exposition.

4-17

None of these commands will be available through the

Applications Program Interface, although, again, this is a

philosophical point rather than a requirement of the system

design or proposed implementation.

4-18

4.3.1 DEFINE

DEFINE is to be a multipurpose command used to introduce

a variety of entities to the Integrated Data Base Management

System. The syntax of a DEFINE command will be:

/DATABASE
 <data base clause>

[DIRECTORY] TABLE <table clause>

FIELD <field clause>,

DEFINE ASSERTION
 <data validation clause>
(USER <user clause>

GROUP <group clause>

To avoid the confusion which can be caused by overwhelming

detail, each of the six variants is discussed in a separate

subsection, *below.

4.3.1.1 DEFINE DATABASE

The syntax of a DEFINE command with the DATABASE clause

will be:

DEFINE DATABASE <data base name>

where the specified data base name must not duplicate the name

of some already-existing data base.
 Any user will be able to

define a data base, thereby becoming its owner. A user who

issues a DEFINE DATABASE command will implicitly become

attached to the new data base for the purpose of further

processing.

4.3.1.2 DEFINE TABLE

The syntax for a DEFINE command with the TABLE clause will

4-19

be:

DEFINE [DIRECTORY] TABLE <table name>(<field def'nl>[,<field def'n2>]...)

where

.<field name>

<field def'n> ::=I

L<field nameI >=<field name2>

If the field definition is in the first form, a single field

name, then that name must be in the data bases's Data Dictionary.

If the field definition is in the second form then the second

field name (on the right hand side of the equals sign) must.be

in the Data Dictionary while the first field name (on the left

side of the equals sign) should not be in the Data Dictionary.

Field definitions in the second form will allow the user to

attach his or her own names to pre-defined fields (-e.g., X=LON,

Y=LAT). This will be an absolutely necessary feature for the

case when two columns of the table span the same domain of

values and are defined in terms of the same field (e.g.,

START-DATE=DATE, END-DATE=DATE).

Although the order of fields within a table is not significant

for information retrieval purposes, the order in which the

field definitions are listed in the table clause will define

the internal sequence in which they will be stored by the

Integrated Data Base Managements System's Physical Interface.

A user may not DEFINE a new table in a data base unless

attached to that data base. The right to DEFINE tables will

be limited to the DBA, the owner of the data base, and such

users as the data base owner permits (see the GRANT command, in

a later subsection). The user who defines the new table will

become its-owner. To avoid conflict with alias names (see

4-20

Section 4.2.4)
a table name must be three or more characters

long.

Only the DBA may DEFINE a DIRECTORY TABLE, and a DIRECTORY

TABLE can only be created in the Global Data Base. Such

tables will differ from normal tables in that they will auto
matically become a part of the special virtual table, SYSDIR,

which references data files cataloged in the non-relational

portion of the system.

4.3.1.3 DEFINE FIELD

The mechanism for entering data field names into a data

base's Data Dictionary will be the DEFINE command with the

FIELD clause. its syntax will be:

DEFINE FIELD <field name>[TYPE=]<type>,[SIZE=]<size>[,[UNITS=]<units>]

The order of type, size, and units (if present) will not be

significant if the key words TYPE, SIZE, and UNITS, respectively,

are used, but when the key words are not used then they must

be in the sequence specified above. All key words should be

present or none should be used.

The type parameter may take on any one of five values: REAL,
,
ALPHANUMERIC, INTEGER, LOGICAL, or DECIMAL
 (the system will

accept any reasonable abbreviation beginning with R, A, I, L, or

D, respectively). The size parameter will indicate the size

of this field in bytes. An integer field size must not exceed

the number of bytes per word on the machine where this system

is implemented, and a floating point field must be precisely

one or two times the word size. The Integrated Data Base

*Short for "packed decimal" and available only if supported

by the machine on which the Integrated Data Base Management

System is implemented.

4-21

Management System will retain a table of acceptable unit names

and abbreviations; use of a unit name (or abbreviation) for

the units parameter which is not in that table will cause the

command to be rejected.

Only the DBA or the data base's owner will be allowed to

DEFINE fields.

4.3.1.4 DEFINE USER

The Data Base Administrator will introduce new users to

the Integrated Data Base Management System through the DEFINE

command with the USER clause. The syntax is shown below:

DEFINE USER <user-id>,<password>[,GROUPS=<groupl>[,<grouP 2>...]

This will create a new entry in the SYSUSER system table for

a user with the given user-id and password, and will include

the new user in the indicated groups.

4.3.1.5 DEFINE GROUP

One useful feature of the Integrated Data Base Management

System will be the ability of the DBA to establish "user

groups". These groups will exist for purposes of authorizing

data access rights to sets of users engaged in the same or

similar projects without specifically enumerating that list

of users. The mechanism for establishing a group will be

the DEFINE command with the GROUP clause, and its syntax will

be:

DEFINE GROUP <group name>

Note that this command will merely introduce a group to

the system and will not assign any users to that group.

4-22

Users will be included in a group by a DEFINE USER command or

an INCLUDE command (described in a later subsection).

4.3.1.6 DEFINE ASSERTION

An important function of any data base management system

is protection of the quality of the data it manages. The

Integrated Data Base Management System will make provision for

limited, automatic data validation tests to be specified by

authorized users to maintain the semantic integrity of its

data. The normal mechanism in a relational data base manage

ment system for defining and applying these data validation

tests is the "integrity assertion" -- a statement about the

data in a table which is expected to be true unless one or

more records is incorrect. A more thorough discussion of the

theory and use of integrity assertions may be found in Appendix

B. These data validation tests will be established by the

DEFINE command with the ASSERTION clause, and its syntax will

be:

DEFINE [SOFT] ASSERTION <assertion name> ON <table name>:<predicate>

where the predicate will be a true/false test of the form:

/ Il

OLD <field name1>1 (*1 I
<field name2>
<nfaimld1 <re at ons ip~

The ci 's represent arbitrary floating point or integer constants

and the relationship tests will be indicated by the keywords LT,

LE, EQ, GE, GT, and NE, or by the signs <,=, and >. In

other words, a predicate will test the relationship of the

values of a field against a constant (e.g., TEMP>-273.16) or

against a function of another field (e.g., START-DATE LE END-DATE),

4-23

http:TEMP>-273.16

or a function of its former value during an update (e.g.,

AGE GT OLD AGE). The complexity of a function will be limited

to:

(1) the field name itself (preceded by the keyword "OLD"

if the same field as on the left side of the predicate),

(2) 	a field times or divided by a constant,

(3) a field plus or minus a constant, or

(4) a 	field times or divided by one constant and plus or

minus another constant.

A "soft" assertion will not block a transaction from being

processed, but will merely output a warning message when an

update or insertion causes it to be violated. The default

will be to block the particular transaction which violated

the assertion, although the system shall process other updates

.or insertions which are valid. If an update is blocked by a

violated data validation assertion then the system will print

out (1) the (unupdated) record, (2) the field which was to

have been changed, (3) the new value that field would have had,

and (4) the assertion which was violated. When an insertion

is blocked by a violated assertion then the Integrated Data

Base Management System will list (1) the rejected record and

(2) 	the assertion(s) which were violated.

It is anticipated that assertions will normally be defined

for a table at the time the table is defined and before any

data has been inserted. However, the Integrated Data Base

Management System will accept new assertions being established

on nonempty tables. When that happens, the system will list

the records already in the table which violate the assertion

and give the user the choice between keeping the assertion

(and thereby deleting the records) or keeping the records

(and thereby implicitly removing the assertion). If there

are no records already in the table which violate the asser

tion then the assertion will always be accepted.

4-24

The right to establish an assertion will be limited to the

DBA, the data base owner, and the owner of the table on which

the assertion is to be established.

4-25

4. 3.2 REMOVE

Anything which can be identified to the Integrated Data

Base Management System by a DEFINE command may be removed from

the system by a REMOVE command. The syntax of a REMOVE com

mand will be:

DATABASE <data base name>

TABLE <table name>

FIELD <field name>

ASSERTION <assertion name> FROM
 <table name>

USER <user-id>[,<user-id>] ...

GROUP <group name>E,<group name>]...

The ramifications of each of the six variations of the REMOVE

command -- corresponding to the six variations of DEFINE -- are

discussed in greater detail below.

4.3.2.1 REMOVE DATABASE

Only the DBA or the owner of a data base will be allowed

to REMOVE it from the system, and that individual must be

attached to the data base before issuing the command. After

a REMOVE DATABASE has been issued, no new user will be permitted

to access that data base, but users already attached to the

data base will be permitted to complete their information pro

cessing before the data base is destroyed.

4.3.2.2 REMOVE TABLE

A user must be attached to the data base which contains

the table to be removed before a REMOVE TABLE command will be

accepted by the system and, moreover, the user who issues the

REMOVE TABLE command must be either the DBA, the data base

owner, or the owner of the table.

4-2'6

As with the REMOVE DATABASE command, once a REMOVE TABLE

command has been issued and accepted no new users will be

permitted to access the table although transactions-already

accessing the table will be permitted to complete before the

table is destroyed.

4.3.2.3 REMOVE FIELD

A REMOVE FIELD command will delete a field name from a

data base's Data Dictionary. A REMOVE FIELD command will be

accepted only if issued by the DBA or the data base owner

while attached to the appropriate data base, and even then the

system will refuse to execute the command unless no table in

the data base includes that field.

4.3.2.4 REMOVE ASSERTION

Only the individuals who can DEFINE an assertion will be

allowed to REMOVE it (i.e., the DBA, the data base owner, or

the table owner) and they must be attached to the data base

containing the table to do so. Assertion removal is post

poned if there is an insertion or update in progress at the

time a REMOVE ASSERTION command is issued, to prevent anomalies

from arising when some portion of the transaction is rejected

for violating the assertion in question while other portions

of the transaction (executed after the REMOVE ASSERTION has

been issued) are accepted despite violating that data valida

tion check.

4.3.2.5 REMOVE USER

The Data Base Administrator (and only the DBA) will be

able to REMOVE a user from the system with a REMOVE USER com

mand. If the user in question is currently active at the

time the REMOVE USER is issued, then the effect of that com

mand will be delayed until he or she performs an EXIT from

4-27

the system. (In such a case, the DBA will be notified by a

printed message.)

4.3.2.6 REMOVE GROUP

Only the DBA will be allowed to establish a user group,

and only the DBA will be permitted to issue a REMOVE GROUP com

mand.
 It should be noted that the REMOVE GROUP command will

merely dissolve the group(s); it will not cause the removal of

any member of that group from the system.

Performance of a REMOVE GROUP will take place immediately

upon receipt of the command by the system. However, if any

user should be accessing a table at the time the REMOVE GROUP

is issued and that user received the authorization to access

that table or its data base only through membership in the

group being removed, then that transaction will be permitted

to go to completion.

4-28

4.3.3 EXPAND

The EXPAND command will permit a qualified user to add one

or more fields to an existing table. The syntax of an EXPAND

command is shown below:

EXPAND <table name>- [BY] (<field def'nI>[,<field def'n 2>]...)

where the fields are defined as described in the DEFINE TABLE

.subsection. For storage purposes, these new fields will be

added to the end of the table. Only the DBA, the data base

owner, and the owner of the table will have the right to

EXPAND a table, and expansion will be the only alteration to

the layout of a table (other than total removal) supported by

the system.

After an EXPAND is executed on a table, the records already

stored in the table will be treated as having "null" values

for the new fields. Unlike most data base management systems,

however, when the Integrated Data Base Management System per

forms an EXPAND it will not cause any immediate alteration of

existing records. Consequently, an EXPAND will be quite

inexpensive to perform in this system.

4-29

4.3.4 Generating Data Access Superstructures: INDEX and INVERT

Access method superstructures to facilitate rapid and

efficient data retrieval may be placed on tables by the INDEX

and INVERT commands, which have the syntax:

INVERT
 1
INDEX [UNIQUE] <table name> [ON] <keyckey2>J ..

where

[<field name>

<<key name>= (<field nameI> [,<field name 2 >]...

That is, a superstructure key may be a single given field of

the table or may be formed by concatenating more than one

field into a combined key.

The INDEX command will establish hierarchical index struc

tures* on the specified fields or combinations of fields and

INVERT will establish inverted file indices on the specified

fields or combinations of fields. Hierarchical indices are

useful when the values of the search keys are unique, or nearly

unique, and inverted file indices facilitate rapid data access

when a given value of a search key defines a set of records.

Since the type of index superstructures created by INVERT and

INDEX are useful in such different contexts, the system will

not support both a hierarchical and an inverted index on the

same field or on identical combinations of fields.

If a sequence of fields is combined to make a single search

key, then the same index used for that key also facilitates

rapid access of any leading subsequence of fields. For

*specifically, B-trees.

4-30

example, if a table T has the fields A, B, and C, then the

index established by the command

INDEX T ON K=(A,B,C)

will also serve to effect rapid access for A alone or for

A and B combined. Therefore, the Integrated Data Base

Management System will ignore requests for identical types of

indices on leading subsequences of combined field search keys,

although it shall accept requests to establish different types

of indices for leading subsequences and any type of index

request for non-leading subsequences. Hence, the following

commands are compatible with the INDEX command above:

INVERT T ON A,Kl=(A,B)

INDEX T ON B,C,K2=(B,C)

The optional UNIQUE qualifier on the INDEX command will

mean that duplicate values of the specified search key(s) are

not permitted. If a transaction such as an insertion or up

date would cause this requirement to be violated, then that

transaction will be blocked and an appropriate error message

will be output to the user.

Although access method superstructures will normally be

generated at the time the table is created, the Integrated

Data Base Management System will support the establishment of

both types of indices on pre-existing, non-empty tables. In

the case where an INDEX UNIQUE command is issued against a

table with duplicate values for that search key the system

will respond by listing the erroneous records and the user

may elect to delete the duplicates or to rescind the

command.

As with EXPAND, use of the INDEX and INVERT commands will

4-31

be limited to the DBA, the data base owner, and the owner of

the table, and the individual issuing the command must be

attached to the data base which contains the table.

4-32

4.3.5 DROPINDEX

The rapid access suparstructures created through the INDEX

and INVERT commands may be dropped from a table through the

use of the DROPINDEX command. The syntax of a.DROPINDEX com

mand will be:

DROPINDEX <key nameI>[,<key name2>].. .FROM <table name>

where the key names may be single fields or may be the key

names attached to combinations of fields when the index was

created. Since the same field -- or key -- may not have

both a hierarchical superstructure and an inverted file super

structure simultaneously, the DROPINDEX command can be, and

shall be, used to drop both kinds of indices.

Only someone with the authorization to generate a super

structure (i.e., the DBA, the data base owner, and the table

owner) will be allowed to issue a DROPINDEX command, and only

when attached to the appropriate data base.

4-33

4.4 Administrative Commands

The four administrative commands will provide users

in an administrative position (i.e., the DBA and owners of

data bases and tables) with control over the state and/or

accessibility of entities under their purview. The adminis

trative commands will be:

GRANT - Authorize users or user groups the right

to access and/or modify data.

REVOKE - Cancel previously granted rights.

INCLUDE - Add a user to a user group.

EXCLUDE - Remove a user fr6m a user group.

None of these commands will be available to an application

program.

4-34

4.4.1 GRANT

The syntax of the GRANT command is depicted below:

<table rights> ON <table name> <user idI>[,<user-id 2>]. "

GRANT TO GROUP <group name>

<data base rights> PUBLIC

When a new table or data base is-created by a DEFINE command

the right to access its contents will be strictly limited

to its owner (that is, its creator) and to the DBA and (in

the case of the creation of anewtable) the data base owner.

The GRANT command is designed to make it possible for the

DBA or
the owner of the data base or table to make its contents

available to a wider circle of users.
 The authorization

may be extended to all users of the Integrated Data Base

Management System through the key word "PUBLIC", or the

authorization may be restricted to a particular collection

of users, either named explicitly or identified implicitly

through membership in some user group. Since different

key words will be used to distinguish rights associated with

tables from rights associated with data bases, these two

topics are discussed separately below.

4.4.1.1 Granting Rights on Tables

The following key words will be associated with table

rights: READ, INSERT, UPDATE, and DELETE which will have

their obvious interpretations, plus ALL RIGHTS, which will

refer to all four rights simultaneously. It will be pos

sible for the owner of the table or the DBA to GRANT any

combination of the four access rights (listed in any order),

or ALL RIGHTS, to the whole community .of data bases users,

4-35

or any particular user group, or any explicitly-listed

users. Neither the table's owner nor the DBA will need

to GRANT rights to himself since the Integrated Data Base

Management System will always assume that the table owner has

all four access rights on his own table, while the DBA will

always have all rights to everything.

The system will reject a SELECT command from any user

unless that user has READ rights on all tables referenced

by the SELECT. Nor will the system accept an INSERT,

UPDATE, or DELETE command from a user unless he or she

has the appropriate right on the table being edited, plus

READ rights on all other table referenced by the command.

The user may hold these rights explicitly, by having been

named in a GRANT command on that table, or the user may

hold these rights implicitly, by belonging to the approp

riate user group or if the rights are PUBLIC.

Although ownership of a table is a privilege, rather than

a right, the GRANT command may also be used by the DBA to

change the ownership of a table. The syntax for a GRANT of

OWNERSHIP will be:

GRANt OWNERSHIP ON <table name> TO <user-id>

By issuing a GRANT OWNERSHIP command,the DBA will be taking

ownership of the table away from the former owner and assign

ing it to a new owner. One side effect of this command will

be that the former owner will no longer have full access rights

to the data in the table unless (1) he belongs to one or more

groups which have been granted all access rights on the table

or (2) he is or has previously been explicitly granted ALL

RIGHTS on the table. In other words, a former owner of a

table will become just another user as far as that table is

concerned once the privilege of ownership has been removed.

4-36

4.4.1.2 Granting Rights on Data Bases

There will be two rights associated with data bases:

ACCESS and MODIFY. As with tables, it will be possible

for the data base owner or the DBA to issue either right

separately or to issue them jointly with the "ALL RIGHTS"

key word, and these rights may be authorized to the entire

user community, to a specific user group, or explicitly to

individual.users.

A user will not be permitted to ATTACH to a data base

without having ACCESS authorization for that data base.

Once attached, he or she will be forbidden to issue a

DEFINE*, INSERT, UPDATE, or DELETE command unless authorized

the right to MODIFY the contents of the data base. Note

that a user may well have READ rights on some table in the

data base and yet be blocked from retrieving the data in

that table by not having been authorized to ACCESS the data

base. Similarly, some particular user might have, for

example, UPDATE rights on a table in a data base and yet

would not be able to perform an update on the table if

he or she lacks MODIFY rights on the data base itself.

Just as the DBA will be able to transfer the privilege

of ownership of a table, so the DBA will have the ability to

transfer the privilege of ownership of an entire data base to

another user. The syntax for a GRANT of data base ownership

will be:

GRANT OWNERSHIP TO <user-id>

The DBA will be required to be attached to the data base

*Except for DEFINE DATABASE. It should be noted that by

logical extension this also forbids all other commands in

the data definition and administrative categories.

4-37

in question before changing its ownership, and hence the data

base need not be named in the GRANT OWNERSHIP command. Again,

the status of the former owner of the data base will be no

different from the status of any other user after the privilege

of ownership has been granted to the new owner, and the former

owner may not even retain ACCESS or MODIFY rights on the data

base unless implicitly (via group membership) or explicitly

granted those rights. However, the former owner of a data

base will retain ownership of any tables in the data base for

which he or she is the listed owner.

4-38

4.4.2 REVOKE

Access authorizations which have been granted may be

revoked. The syntax for a REVOKE command is:

i(<table rights> ON <table>b PUBLIC)
REVOKES [FROM <user-id1.>[,<user-id2 >]...

<data base rights GROUP <group name> ,

where the table rights are READ, INSERT, UPDATE, and DELETE

and the data base rights are ACCESS and MODIFY (i.e., the

same rights which may be authorized to a user by a GRANT

command). Since ownerless tables and data bases are not

permitted, there is no REVOKE OWNERSHIP command correspond
ing to the GRANT OWNERSHIP command -- the GRANT of OWNERSHIP

implicitly revokes the former owner's ownership.

Rights may only be revoked from users or user groups

which have explicitly been given those rights. For example,

suppose users A, B, and C constitute group X. It is hot

permissible to GRANT rights to users A, B, and C (explicitly)

and then to REVOKE them from Group X or to GRANT to group X and

then REVOKE from A, B, and C (listed explicitly), even though

the collection of users which constitutes group X and the list

of usersA, B, and C are one and the
same. Nor is it permissible

to GRANT some rights to group X and then REVOKE them from user

A unless those rights were explicitly granted to user A, as

well. Similarly, it is not permissible to GRANT some rights

on a table or data base to PUBLIC and then REVOKE those rights

from a specific user unless the rights were granted explicitly

to that user.

If a REVOKE command is issued without specifying from whom

the rights named in the command are to be taken (i.e., no FROM

4-39

clause), then those rights named will revert to "owner only"

status and none but the table owner and the DBA will have

those rights on the'table.

4-40

4.4.3 INCLUDE

It will be the responsibility of the Data Base Admin
istrator to assign users to user groups.
This will be

accomplished by the INCLUDE command, whose syntax will be:

INCLUDE <user-idl>[,<user-id 2>]... IN [GROUP] <group name>

The group named in the INCLUDE command will have to

have been previously created by a DEFINE command with the

GROUP clause. Each of the users included in the group

will be implicitly authorized all data access rights

explicitly authorized to the entire group. A given user

may lie included in more than one user group, but the

system will regard the user's rights granted through the

group membership as belonging to the user and not just to

the group. That is, if group X has READ rights on table

S but not table T and group Y has READ rights on T but not

S , a user belonging to both groups may simultaneously

read both tables, even though neither group's set of rights

are sufficient alone for the transaction.

4-41

4.4.4 EXCLUDE

Users will be removed from user groups by the EXCLUDE

command. The syntax of an EXCLUDE command will be:

EXCLUDE <user-id 1 >[,<user-id 2>].. .FROM [GROUP] <group name>

If it happens that a user being removed from a group is

concurrently accessing some data where his or her authori

zation to access that data comes solely from membership

in the group, then the system will permit the transaction

to complete itself before detaching the user from the group.

4-42

4.5 Data Manipulation Commands

The six commands in the data manipulation category will

provide a user with the ability to retrieve information

from tables, to edit a table, and to view the contents of

tables and the results of data retrievals. This category

of commands, taken together, will constitute the data sub
language (or, in relational data model jargon, the "query

language") for the system.
These data manipulation commands

are:

SELECT - Retrieve data from one or more tables.

INSERT - Add new records to an existing table, updating

indices as needed.

UPDATE - Edit one or more existing records in a given

table, updating indices'as needed.

DELETE - Remove one or more records from a given table,
updating indices as needed.

DISPLAY - List the contents of
a table or the results of

a retrieval on a user's terminal.

PRINT - List the contents of
a table or the results of

a retrieval on a line printer.

None of.these commands will be restricted, except insofaras

the data base to which the user is attached must contain all

tables referenced by his command and the user must have authoriza
tion to perform whatever operation on the tables he or she requests.

All of these commands (except DISPLAY, for obvious reasons)

will be available for use by application programs.

4-43

4.5.1 SELECT

SELECT is perhaps the most important command in the.

entire Integrated Data Base Management System interactive

command language, as it is the mechanism by which data is

retrieved and cross referenced from one or more tables in

a given data base. There will be two syntaxes for the

SELECT command, as depicted below:

([FROM <table list>]<templatel>[;<template2>]...

SELECT
 1
(<target list>) WHERE <qualification>

The first syntax is based on the Query-by-Example retrieval

language of Zloff4 0 and the second is founded on the relational

calculus-based Quel language devised by Stonebraker, et. al.37

The first non-blank character after the keyword "SELECT" will

tell the command interpretor whether to expect the Query-by-

Example syntax (if it is alphabetic) or whether to expect the

relational calculus syntax (if that character is a left (open)

parenthesis). Since a user may be constrained to issue one

or more carriage returns while entering a single SELECT

command into the system, a special character ("") will be

u§ed to terminate the command.

The results of a SELECT retrieval will be placed in

the user's special "workspace table" (always indicated by

its alias, W). Before a SELECT command will be accepted from

a user, he or she must be attached to the appropriate data

base and have READ authorization for every table referenced

by the command. Upon completion of a SELECT command the

system will output the number of records instantiated in W

as a result of the SELECT, plus an explanation of what went

wrong if no records are retrieved., This explanation will be

4-44

in the form of a status word if the SELECT was input from an

application program.

The sample table layouts depicted in Figure 4-1 will be

used to illustrate the concepts and syntax of Query-by-Example

and relational calculus.

Since they merit considerable attention in their own

right, the operation of the Workspace Table and the syntax

of a template, a target list, and a qualification are dealt

with in greater dezail below,

4.5.1.1 Query-by-Example Syntax

Query-by-Example is designed for interactive users working

in a conversational mode. The user requests a table by name,

the system responds by displaying a skeleton of the table (i.e.,

table name, column headings, column outlines), and the user

provides a query "template" by filling in the appropriate rows

of the sample table with an example answer. It is not possible

to describe "templates" for interactive Query-by-Example since

much of what the user enters must be based on interaction with

the system. In-each example response input by the user,

there will be two types of entries:

(1) "example elements", which in this system - will

be preceded by an asteriskt, and

(2) "constant elements", which are nor starred.

The example elements represent hypothetical answers, but the

system will treat them as variable names and it would not

be wrong for the user to input a variable name of his or

her choosing that bears no relationship to a typical data

item in the corresponding field. Example elements for

-A reader who is familiar with Query-by-Example as.published

by Zloof will notice a number of minor differences between that

syntax and this. The changes are in part due to data character
ist.ics and in part designed to accomodate non-graphics terminals.

4-45

IMAGE-DATE (alias: D)

IMAGE-ID DATE TIME I TOP-LAT BOTTOM-LAT LEFT-LON RIGHT-LO

EVENT (alias: E)

NAMECLASSISTART-DATE END-DATE I START-LAT START-LON I END-LAT i END-LO
I I I

Figure 4-1: Sample Tables S

4-46

which the user is interested in seeing the results should

have an "S" for ("SELECT") in front of their asterisk.-

Figure 4-2a shows how a Query-by-Example style query might

be input for names and dates of all hurricanes in the EVENT

table and figure 4-2b illustrates the similar query for

hurricanes which occurred in 1977 (dates will be presumed

to be day, month, and year in DDMMYY form). Note that in

figure 4-2b it is necessary to use comparison operators to

qualify the constant elements.

A user may key in multiple rows (hence the need for

the special end-of-query mark, "#", instead of a carriage

return to terminate a retrieval) to form Boolean sums or

products of simpler queries. Use of the same example elements

in the rows represent an AND and different example elements

represent a Boolean OR. Figure 4-3 illustraTes an alternative

formulation for the query in figure 4-2b, using an AND

operationit. Figure 4-4 shows a retrieval involving an OR.

Not every example element need be selected out of a

table. Another use for example elements is to cross re

ference two tables over fields whose values are derived from

a common domain. Figure 4-5 illustrates this use (note the

use of a semi-colon to inform the system when the user has

completed the input of sample queries for one table).

Finally, Query-by-Example will provide a number of

standard "aggregate functions" whose values are computed

over an entire column of a table. These functions will be

MIN, MAX, AVG, SUM, COUNT, and SDEV (for standard deviation).

They will be preceded by an asterisk and placed after the,

S (if present) but before the example element. The range of

each aggregate function will be the entire column to which

,r Mathematically speaking the two queries are different,

but practically speaking, given the extent of the hurricane

season, they are equivalent.

4-47

QUERY 1:
 Retrieve name and date for all hurricanes.

SELECT FROM E

EVENT

NAME 1...CLASS START-DATE END-DATE ARTLATI

S*AGNES!HURRICANE S*010772 S*010772

Figure 4-2a: Sample Retrieval

QUERY 2: Retrieve names of all hurricanes in 1977.

SELECT FROM E

EVENT

NAME CLASS START-DATE EN-DT iTR-LATISTART-LON IEN D-LATjEND-:

S*AGNESIHURRICANE! >010177 '<311277
'i I ---..... J .

Figure 4-2b: 	 Sample Retrieval Using

Comparison Operators

4-48

QUERY 2 (again): Retrieve names of all hurricanes in 1977.

SELECT FROM E

EVENT

NAME CLASS START-DATE END-DATE START-LAT START-LON END-LAT END-LON

!S*AGNES HURRICANE' >010177

S*AGNES HURRICANE' <311277

Figure 4-3: Sample Retrieval Using AND

QUERY 3: 	 Retrieve names and starting locations of all

hurricanes or tropical storms since 1976

SELECT FROM E

EVENT

NAME CLASS START-DATE I END-DATE JSTART-LAT START-LObN EN-D-L'AT END-LOK
,S*AGNTES HURRICANE >311276 S*Xl S*Yl

,S*BRUCE TROP-STORM >311276 S*X2 S*Y2

Figure 4-4:- Sample Retrieval Using OR

4-49

QUERY 4: 	 Retrieve data file id's for all images which are

likely to show the formation of Hurricane Agnes

SELECT FROM E,D

EVENT

NAME CLASS I START-DATE END-DATE START-LAT START-LON IE-LAT END

'AGNES kURRICANE *010072 	 *X *Y

IMAGE-DATA

DID DATE TTIME TOP-LAT BOTTOM-LAT LEFT-LON RIGHT-LON

S*XYZ !*010772 	 >*X <*X <*Y >*¥

Figure 4-5: 	 Sample Retrieval With

Cross Referencing

4-50

it is applied, counting duplicate values.if necessary. The

user will be able to restrict the function to apply to

unique data items by inserting the qualifier "*UNIQUE" between

the function name and the example element. Figure 4-6

illustrates the use of the COUNT function.

The templates in a Query-by-Example retrieval may be

linearized so that the necessity for system output to the

user may be eliminated. This will be necessary when the

SELECT command is issued via the Batch Command Reader facility

or from an application program, and may be useful when a

very knowledgable user is constrained to work with a slow

terminal or when operating system response time is slow.

The system will expect the linearized Query-by-Example mode

if the first non-blank character after the key word "SELECT"

is alphabetic, but
the key word "FROM" is not present. In

linearized Query-by-Example each template will have the form:

<template>::=<table name>(<rowl>)[<row2>)J...

where each row represents a row the user would have entered in

the interactive Query-by-Example syntax. The syntax of rows

is defined to be:

<row>::=<colurnn entry,>[,<column entry2>]...

<column entry>::=<column name><operator><value>

The value part, of course, will correspond to whatever the

user would have keyed in for that column in the interactive

version of the query, except that column entries with null

value fields should not be present. The relational operator

will normally be an equals sign, unless the ">" or ,,<"1 com

parison operators would have been used in the query.
 Column

entries need not be in order since they are explicitly

4-51

http:values.if

QUERY 5: Count the number of hurricanes in the data base

SELECT FROM E

EVENT

NAME CLASS coo

S*COUNT*AGNES HURRICANES

Figure 4-6: 	 Sample Retrieval Illustrating

the COUNT Function

4-52

identified by name.

Figure 4-7 illustrates sample queries 1 through 5 using

the linearized Query-by-Example notation.

4.5.1.2 Relational Calculus Syntax

As stated earlier, the syntax of a query using the,

relational calculus will be:

SELECT (<target list>) WHERE <qualification> #

The syntax for an entry in the target list is illustrated

below:

[<data field name>

<target list entry>::=

<result field name>=<function>

where the function may be a data field, an aggregate function

of a data field (e.g., MIN, MAX, AVG), or an arithmetic com

bination of data fields and/or aggregate functions. The data

fields named in a target list entry must appear in one or
more

tables in the data base. To avoid possible ambiguity, a data

field name must be qualified by the name (or alias) of the

table to which it belongs. Consequently the syntax of a data

field name used in a relational calculus query will be:

<data field name>::=<table name>.<field name>

The names of result fields need not be in the data base's Data

Dictionary, as they will only exist with respect to the user's

Workspace Table, W. Moreover, the system will compute type,

size, and unit parameters for the result fields named in the

4-53

QUERY 1: 	 Retrieve name and date for all hurricanes.

SELECT E(NAME = S*AGNES, CLASS = HURRICANE,

START-DATE = S*010772, END-DATE = S*010772)#

QUERY 2: 	 Retrieve names of all hurricanes in 1977.

SELECT E(NAME = S*AGNES, CLASS = HURRICANE, START-DATE > 010177)

(NAME = S*AGNES, CLASS = HURRICANE, START-DATE < 311277)#

QUERY 3: 	 Retrieve names and starting locations of all

hurricanes or topical storms since 1976.

SELECT E(NAME = S*AGNES, CLASS = HURRICANE, START-DATE > 311276,

START-LAT = S'X1, START-LON = S*Yl)

(NAME = S*BRUCE, CLASS = TROP-STORM, START-DATE > 311276,

START-LAT = S*X2, START-LON = S*Y2) #

QUERY 4: 	 Retrieve data file id's for all images which are

likely to show the formation of Hurricane Agnes.

SELECT E(CLASS = HURRICANE, NAME = AGNES, START-DATE = *010772,

START-LAT = *X, START-LON = *Y);

D(DATE = *010772, TOP-LAT > *X, BOTTOM-LAT < *X,

LEFT-LON < *Y, RIGHT-LON > *Y) #

QUERY 5: 	 Count the number of hurricanes in the data base.

SELECT E(NAME = S*COUNT*AGNES, CLASS = HURRICANE) '

Figure 4-7: Sample Linearized Retrievals.

4-54

target list based on the data fields and mathematical trans

formations in the functions which define the result fields, so

that there will be no requirement for the user to define these

fields in advance.

The qualification will be a Boolean combination of true/

false predicates, and the syntax of the Boolean expression

will be:

(<Boolean exp>)

<predicate>

<Boolean exp>::= NOT<Boolean exp>

FAND
<Boolean exp> <Boolean exp>

ORJ

while the syntax of a predicate will be:

<predicate>::=<data field name><operator><value>

The valid operators will be the six key words LT, LE, EQ, GE,

GT, and NE, plus the characters >,=, and <. A value may be a

constant of the appropriate type, another data field, or a func

tion of another data field.

Figure 4-8 depicts sample data retrievals using the

relational calculus syntax.

As mentioned above, both the right-hand side of a target

list entry and the right-hand side of a qualification predicate

=
 may include arithmetic functions of fields (e.g., AREA

D.DELTAX*D.DELTAY) and/or library functions. The Integrated

Data Base Management System will provide both aggregate functions

defined on whole columns of a table and non-aggregate functions

defined with respect to single data items. The aggregate

4-55

QUERY 6: 	 Retrieve the names of all tropical
storms

since 1976.

SELECT (E.NAME) WHERE E.START-DATE GE 010177

AND E.CLASS = TROP-STORM #

QUERY 7: 	 Retrieve name and formation date for all hurricanes

or tropical storms formed in the northern hemisphere

since 1976.

SELECT (E.NAME, FORMATION=E.START-DATE)

WHERE (E.CLASS = TROP-STORM OR E.CLASS = HURRICANE)

AND E.START-LAT > 0 #

QUERY 8: 	 Retrieve data file id's for all images which may

cover the formation of hurricane Alice.

SELECT (D.DID) WHERE D.TOP-LAT GE E.START-LAT

AND D.BOTTOM-LAT LE E.START-LAT

AND D.LEFT-LON GE E.START-LON

AND D.RIGHT-LON LE E.START-LON

AND D.DATE = E.START-DATE

AND E.CLASS = HURRICANE

AND E.NAME = ALICE#

Figure 4-8: 	 Sample Retrievals Using Relational

Calculus Syntax

4-56

functions which will be provided are MIN, MAX, SUM, AVG, COUNT,

and SDEV. Aggregate functions may 'not be nested. The non

aggregates shall include the standard Fortran library functions

such as SQRT, SIN, COS, ATAN, ALOG, and EXP (but not MIN, MAX,

AMIN, or AMAX, to avoid confusion). Type-conversion Fortran

functions (e.g., IFIX, FLOAT, DBLE, INT, etc) will not be sup

ported -- any necessary data type conversions will be handled

automatically and transparently by the system itself. In

addition, the system will provide certain specialized non

aggregate functions for unusual cases which can be expected to

recur with some frequency. Typical functions might be SDIST,

for example, to compute the spherical distance between two

points on the earth's surface, and DURATN, to calculate the

difference between two calendar dates. Non-aggregate functions

will be permitted to be nested insi-de each other and inside

aggregate functions. Figure 4-9 illustrates the use of func

tions inside queries. Where applicable, the Boolean expression

in the'qualification can be replaced by an asterisk to indicate

that the data manipulation operation is to be performed on all

records of the referenced table (e.g., WHERE *).

4.5.1.3 The Workspace Table

There will be precisely one Workspace Table, W, associated

with each active user on the system. By convention, W will

be empty when a user signs onto the system, and will be des

troyed when that user issues an EXIT command from the system. W

will have no pre-defined fields and no special access super

structures, nor will W be considered to be a part of any

particular data base. Thus when a user detaches from one

data base and attaches to another the contents of W will

be undisturbed, and therefore W will constitute a mechanism

for the transportation of data from one data base to another.

The contents of W will be generated by a SELECT

4-57

QUERY 9: 	 Determine the average duration of hurricanes occuring

since 1972.

SELECT (AVDUR = AVG(DURATN(E.START-DATE, E.END-DATE)))

WHERE E.CLASS EQ HURRICANE AND E.START-DATE GE 010173W

QUERY 10: 	 Retrieve the data file id's and area of all images

which lie along a line running from 300N latitude

and 750W longitude with an azimuth of 450, terminat

ing at 720W longitude, for October 4, 1976.

(Assume latitudes, longitudes, and azimuths ex

pressed in 	radians and that west longitudes are

negative.)

SELECT (D.DID, AREA = SDIST(D.TOP-LAT,D.LEFT-LON,D.BOTTOM-LAT,D.LEFT-LON)

* SDIST(D.TOP-LAT,D.LEFT-LON,D.TOP-LAT,D.RIGHT-LON))

WHERE D.TOP-LAT GE .5236 + TAN(.7854)*(D.LEFT-LON + 1.309)

AND D.BOTTOM-LAT LE .5236 + TAN(.7854)*(D.RIGHT-LON + 1.309)

AND D.RIGHT-LON LE -1.2566

AND D.DATE = 041076 #

[Note: Retrieval is based on the fact that a line with a

positive slope intersects a rectangle if and only if it lies

between two lines with the same slope which intersect the

rectangle at its uppez left and lower right corners,

respectively.]

Figure 4-9: Relational Calculus Retrievals

Using Functions in the Target

List

4-58

command. As records are retrieved from a data base they

will be entered into W , and the sequence of fields, their
names, and their definitions will be implicitly created by
the system to correspond to the fields in the records being
retrieved. If W should~happen to be non-empty at the time
a new SELECT is issued, then its former contents will be

overwritten and lost, and the previous field definition for

W will be replaced by one which reflects the format of

the new records.
Hence it follows that the workspace table

may have a variety of different field definitions during

a single user session, depending on the number of SELECT

commands issued by the user and the specific data requested

each time.

A particular user's workspace table will be associated

with that user personally, and will be inaccessible to all

other active users-- including the DBA. A user will always

have the right to insert records into or delete records

from his or her workspace table, even if lacking MODIFY

rights on the database to which he or she is attached.

Aside from that, however, the user will be free to treat

his or her workspace table as if it were a part of any

data base to which he or she is attached. That is, re
trievals may be made against W1 itself, and other tables

may be cross referenced against data stored in
W . More
over W
may be used as a source of data for insertions and

deletions on other tables in the data base.
The only

particular restriction of which the user must be aware is

that the system will not permit an INSERT command into W

if IV is empty -- an empty workspace can be filled only by

a SELECT command.

4-59

4.5.1.4 Comparing the Two Approaches

Both the Query-by-Example approach to information retrieval

and the relational calculus have been demonstrated to be

"relationally complete," that is, any relational operation

which can be performed on a relational data base can also be

performed using either of these two approaches. Why then,

have two different methods to do the same thing? The answer

lies in the words "user convenience" as each of these two

approaches provides a user with certain niceties that
are

unavailable in the other.

The major advantage of the relational calculus-based

approach is the ability to put functions of one or more

fields in the target list and on ,the right-hand side of a

qualification predicate. This makes the relational calculus

exceedingly powerful, particularly with respect to a scien

tifically-oriented data base.

Query-by-Example, however, has a variety of advantages

over the relational calculus. In the interactive mode, for

one thing, Query-by-Example is very user friendly. A study

of this point 8has, in fact, demonstrated that Query-by-Example

compares very well with other query languages for relational

data bases, most especially with respect to ease of learning

and user retention. Since one goal of this proposed data base

management system is ease of use for casual, infrequent,

and/or minimially experienced users, this point argues very

strongly for supplying Query-by-Example as a retrieval language.

A second point-, also noted in the study, is that Query-by-Example

is "behaviorally extendable" in the sense that a notice need

only learn a small part of the language to write successful

queries and can build on his or her knowledge as required.

However, from the point of view of an information retrieval

language for a scientific (as opposed to business) data base

4-60

perhaps the most important advantage of Query-by-Example

concerns data units. Consider the example table describing

satellite orbits depicted below

SATELLITE-ORBIT

NAME LAUNCH-DATEITIMEISEMIMAJOR-AXISIECCENTRICITY MEAN-ANOMOLYIINCLINATION

- PERIGEE ASCENSION

and let us suppose that semimajor axis is recorded in kilometers.

But the user may wish to frame his or her request in terms of

earth radii and not know (or be willing to take the time to

calculate) the appropriate conversion factor. By inputting

the query with units attached, as depicted in Figure 4-10a,

the system could perform the conversion itself. Similarly,

as in 4-1Ob, the units could be attached to the example

element for automated conversion on output elements. It is

possible to extend the relational calculus by attaching units

to numerical quantities in the qualification, but it is not

easy-to see how to do the same for entries in the target list.

Granted, nothing prevents suitable conversion functions from

being established for the relational calculus approach, but

the user would be forced to pay a penalty in burden on the

memory and complexity of the resultant retrievals.

4-61

QUERY 11: Retrieve all satellites in high orbit (>4 earth

radii).

SELECT FROM SATELLITE-ORBIT

SATELLITE-ORBIT

LAUNCH-DATE I IESMIMAJOR-AXIS ECCENTRICITY

IS*TIROS >4 RADII

Figure 4-10a: 	 Retrieval with Automatic Units

Conversion

QUERY 12: 	 Retrieve name, launch date, and radius of all

satellites in circular orbit.

SELECT FROM SATELLITE-ORBIT

SATELLITE-ORBIT

NAME LAUNCH-DATE TIME SEMIMAJOR-AXIS I ECCENTRICITY

S*TIROS. 	 S*010475 S*10 RADII 0

___ ___ ___.. 	 . ..

Figure 4-10b: 	 Retrieval with Automatic

Output Units Conversion

4-62

4.5.2 INSERT

Like SELECT, the INSERT command will have two distinct

syntaxes, as shown below:

INSERT[INTO]<(able name> <recordl>)[,(<record2>)]'...

(<target list>) WHERE <qualification>

where:

<record>::=<assignment>[,<assignment>]...

<assignment>::=<field name>=<constant>

One special constant will be the key word NULL, which will

represent a null value for the corresponding field of the table.

Alphanumeric constants, other than the key word NULL, must be

enclosed in apostrophes. A user-- provided he or she has INSERT

rights on the particular table and MODIFY authorization for

the data base which contains that table (see GRANT) -- will

have the option to spell out the new records to be added to

the table, or may generate the new records to be added to the

table by retrieving data from and cross referencing other tables

in the data base*. The latter approach will be equivalent to

a SELECT using relational calculus syntax (see Section 4.5.1.2),

except that the records retrieved will be placed in the speci
fied table, rather than the Workspace Table.

Again, it should be noted that
a special character (I#t)

must terminate this command, as the user may be forced to

input one
or more carriage returns before completion of the

full command input sequence.

* Including the user's Workspace Table.

4-63

The table which receives the records may be the Workspace

Table, W, except that the system will not accept an INSERT into

W unless W is nonempty. Inserting into an empty Workspace

Table can only take place via a SELECT command.

4-64

4.5.3 UPDATE

There will be only one syntax for the UPDATE command,

as depicted below:

UPDATE <table name> (<changeI>[,<change2>J] ...) WHERE <qualification>

where the changes indicate the way fields in records are to

be modified and have the form:

Iee<]functon>
<change>: :=< field name> = {::z:
A constant appearing on the right hand side of a change should

agree with the definition of the field in type, and any function

must, of course, be a function of the field being changed (e.g.,

ALTITUDE=ALTITUDE - 50.3). The syntax of a qualification is

defined in Section 4.5.1.2.

In the case where the qualification consists of an asterisk

rather than a boolean expression, the Integrated Data Base Manage

-mentSystem will apply the changes to all records in the table.
Note that, whether a boolean qualification is input or not, a

special character (l#") must be used to terminate the command.

Again, users must have authorization to UPDATE the particular

table and to MODIFY the data base which contains it before the

system will accept an UPDATE command from them. Moreover, if

the WHERE clause references another table then the user must have

READ rights on that table.

Updates will not be accepted for the Workspace Table.

4-65

4.5.4 DELETE

The syntax of the DELETE command is:

DELETE [FROMI <table name> WHERE <qualification> 4

where the syntax of a qualification is described in Section 4.5.1.2.

Like SELECT, INSERT, and UPDATE, the DELETE command has to be

terminated by a special character ("#") as the entire command

may span multiple lines of input. A null qualification will

cause the entire contents of the table to be deleted, although

the table itself will remain (albeit in an empty state).

A user will have to have been granted DELETE authorization

on the specified table, MODIFY authorization on the data base

which contains it, and READ authorization on any additional

tables referenced in the qualification, except, of course, that

he or she may always DELETE from W if W is nonempty (but the

requirement for READ authorizations on the other tables must

still be observed).

4-66

4.5.5 DISPLAY

The DISPLAY command will be used to list the contents of a

table (including the workspace table) at an interactive user's

terminal. The syntax of a DISPLAY command will be:

DISPLAY [<table name>][(<target list>)][FORMAT=(<format>)]

where the syntax of a target list is described in Section 4.5.1.2

and the syntax of a format will be identical to the format

specifications inside a Fortran format statement.
 That is,

<format>::=<specification 1>[,<specification>]...

and

'<string>'

<integer>Hstring>

X
Xi nteger>1

[<integer>] {I<integer>
<integer>

<specification>::=

A<integer>

T<integer>

The default for output table name will be the workspace table,

W, but the user may specify any table in the data base to which

he or she is currently attached. The user will also be permitted

to specify a target list, so that only certain columns of the

table are shown, and the default will be to list the entire

record for each record in the table. Finally, the Integrated

Data Base Management System will allow the user to input any

valid Fortran output format for listing the table, or else the

user can let the system select its own format specifications,

4-67

based on the type and size of each field to be displayed. The

choice of format specifications for fields will be by table

lookup (a typical table, assuming four bytes per word is

depicted below). Columns will be evenly spaced, with the

spacing chosen to make the output readable. The system will

output blanks for fields which are null.

TYPE SIZE FORMAT

alphanumeric n An

real 4 E12.7

real 8 D16.10

integer 1 14

integer 2 16

integer 3 IS

integer 4 112

logical 1 A5*

TABLE 4-1: System-Generated Formats

Note that a special character will not be needed to

terminate this command, and that a user may specify a table

other than his or her workspace table only if the user has a

READ authorization on that table.

There is one important caveat the user should be aware

that executing a DISPLAY on a table other than the user's work

space table may lock out other users' insertions, updates, and

deletions for a considerable span of wall clock time and thus

this feature should be avoided except on small tables or tables

with low usage.

*Will print 'TRUE' or 'FALSE'.

4-68

4.5.6 PRINT

The Print command is similar to DISPLAY, except that the

output will be directed to a line printer, and not to an inter

active terminal.. The syntax of a PRINT command will be:

TITLE <title>

PRIN [<table name>]E<target list>)][FORMAT=(<format>)J}

where target list is described in Section 4.5.1.2 and format in 4.5.5.

Again, a user will have the option of specifying any table in

the data base to which he or she is attached (and for which he

or she has READ authorization) or - by default having the
-

system list the contents of the user's workspace table. More
over, the user will further retain the option of singling out

.certain columns for listing versus having all columns listed,

and of specifying an output format versus allowing the Inte
grated Data Base Management system to choose its own format.

However, a user vill also be able to
use a PRINT command to

output a title to be placed on
the printer listing. The

system itself will center the title.

4-69

4.6 Data File Commands

Not all of the data managed by the Integrated Data Base

Management System will be stored in tables. Indeed, one of the

most important functions of this system will be to provide its

users with efficient and convenient access to data files main

tained on tape or stored on-line. A more unified treatment of

the way in which the Integrated Data Base Management System

provides access to the data files may be found in Section 7,

Data File Processing. This subsection will merely present the

syntax and function of the eight file operations available to

an'interactive user, which will be:

COPY - Insert records from a data file into a

table or vice versa.

CATALOG - Insert a new data file into the system

catalog.

UNCATALOG - Purge a catalog entry.

LOAD - Create an on-line data file in (a) system

standard format from a data file on tape.

UNLOAD - Create a backup copy on tape of an on-line

data file.

KEEP - Mark a temporary on-line data file for

permanent saving.

SCRATCH - Purge an on-line copy of a data file.

PERFORM - Manipulate the contents of a data file

via loadable library routines.

4-70

The operation of these eight commands is governed by the

following set of principles:

(1) Each data file is identified by a unique data file

identifier (did).

(2) All on-line files will be stored in a self-describing

standard format.

(3) All data files are read-only, and may be purged, but

not edited in place or overwritten.

(4) All data files known to the system will have an entry

in the system catalog.

The CATALOG and UNCATALOG commands will be restricted to the

DBA, and KEEP and SCRATCH will be restricted to the owner of

the on-line copy of the.data file and the DBA.
 All other

commands will be unrestricted, and available to any user.

These file operations will -be viewed by the system as being

functions of the system "back end",
as opposed to commands in

the other groups which will be operations on the "front end".

Hence, the user -- though forced by convention to be attached

to some data base -- need not be attached to any particular data

base to request a file operation, except the COPY operation.

Three of the above commands -- COPY, LOAD, and UNLOAD -

will be available for use by applications programs.

4-71

4.6.1 COPY

The syntax of a COPY command is depicted below:

COPY { <table name> }
<did> TO <table name>

Although the function of this command (copying the contents of

a table into a data file versus copying the contents of a data

file into a table) will be symmetrical, the syntax will not.

This lack of symmetry is explained by the fact that when a

table is copied to a data file the system creates a new on
line file with a new data file identifier to receive the records

from the table, while in the reverse case, when data coming in

from a data file (on- or off-line) the table which receives

those records must have been pre-defined. -

When a COPY command is used to copy records from a table

to a file, the system will display or print* the new data file

id. The primary side effect of this command is that null

fields are replaced with zero (if numeric) or filled with

blanks (if alphabetic).

There are three important conditions which must be met before

the system will accept a COPY command from a file into a table.

The first of these, as expressed above, is that the table which

receives the records must have been predefined. It need not

be empty, however, and the new records will merely be appended

to the end of the table. The second condition is that the

sequence of fields in the table must agree in type, size, and

number with the sequence of fields in a record of the file.

*Depending on whether the command is input from an
interactive

terminal or the Batch Command Reader, respectively.

4-72

Finally, the data file must be recognized as having tabular

like data, as opposed to image data or profile data, for example.

This is due to the fact that the sequence of records in, say,

an image file will bear a relationship to one another based

on their order while, by definition, the order of records in

a table is meaningless. Tabular operations take no cognizance,

then, of the particular order of records in a table, but this

order cannot be ignored for other types of data.

4-73

4.6.2 CATALOG

The DBA can enter tape files into the Integrated Data Base

Management System's Data File Catalog (SYSCATL system table)

with the CATALOG command. The syntax of a CATALOG command

will be:

CATALOG (<file entryl>)[,(<file entry2>]...

where

<file entry>::=<reel number>,<file number>,<format code>

The system will verify that each entry is unique and, if so,

the system will assign the file a unique data file identifier

<did>, make the entry in the catalog, and output the <did> to

the DBA. If, however, the file entry duplicates a previous

entry, then the system will merely return the pre-existing <did>.

The uniqueness of a file entry depends on all three com

ponents of the entry, and not just the reel number and file

number. Therefore, if one physical file contains multiple

logical data files, then the separate logical files may be

indicated with different format codes.

-Only the DBA will have the authority to issue a CATALOG

command. It should be noted that the DBA will also have to

execute one or more INSERT commands into the system directory

tables to reflect the new entries in the catalog.

4-74

4.6.3 UNCATALOG

The DBA may purge catalog entries by using the UNCATALOG

command. The syntax of an UNCATALOG command will be:

UNCATALOG <didI>[,<did 2>]...

Not only will the catalog entry be wiped out for each <did> named

in an UNCATALOG command, but on-line copies of those files

will also be purged and records referencing those <did>'s will

be deleted from the system directory tables. However, the

tape file itself will be untouched, and any records in tables

belonging to local data bases which reference that <did> will

also remain as they were before the UNCATALOG command was

issued.

Only the DBA may issue an UNCATALOG command. With respect

to an on-line file being purged as a side effect of the

UNCATALOG command, the same rules apply as for the SCRATCH

command. That is, if an application program has opened that

file then it will not be erased until it has been closed.

4-75

4.6.4 LOAD

The function of the LOAD command will be to create an on

line data file by copying (and perhaps reformatting) a cataloged

tape file (or portion of a tape file). The syntax of a LOAD

command will be:

LOAD [<operationI>(<parameter listI>)[,<operation2>(<Parameter list 2>)]...]<did>

where the valid operations will be SLICE, WINDOW, and SUBSET,

and the parameters to be specified will depend upon the

operation.

The effect of a LOAD command will be to create an on-line

file in a self-descriptive system standard format. Where no

operation is specified, the entire tape file will be brought

on-line and reformatted, if necessary, to conform with the

appropriate system standard format. In such a case, the

data file id for the on-line copy and the off-line copy will

be the same.

The SLICE operation is designed to create subfiles from

data files representing multi-dimensional grids. Such a file

can have up to five dimensions, corresponding to the standard

horizontal and vertical (x and y) axes on the ground, an

altitude (z) axis, a time (t) axis, and a wavelength axis (A).

The SLICE operation will permit the user to take a 2-D "slice"

along any pair of axes represented in the file. The para

meter list, then, will be the pair of axes through which the

SLICE is to be taken, plus a set of equations fixing the

remaining axes. The BNF syntax description for a parameter

list for SLICE is:

<parameter list>::=<axis.I>,<axis 2>,<eq'n 1>[L<eq'n 2>]...

4-76

where

<eq'n>::=<axis>=<constant>

<axis>::=XFYIZITIL

An error message will be output and the command aborted if any

of the specified axes are not present in the gridded data file

or if an axis is left unspecified..

A WINDOW operation will only be performable on a two

dimensional file (e.g., adigitized image or digitized cartographic

terrain elevation model). The WINDOW operation will
cause a

rectangular subarea to be selected from the specified data

file and copied into an on-line file. The user will have to

specify four parameters: starting'and ending line number and

starting and ending column number, all specified relative to the first

data point in the first record as (1, 1). The pair of line

numbers and pair of column numbers may be in any order,but the

user shall be required to specify both line numbers before

specifying either column number. Zero starting values (line

or column) will be the same as a one, and values greater than

the number of lines or size of a line, respectively, will be

rounded down to the appropriate value. However, starting

values which are greater than the number of lines or size of

a line will cause an error message to be returned and the com
mand to be aborted.

It is anticipated that most data files will contain

observed values for more than one physical variable at each

observation point. By using the SUBSET operation a user will

be able to create an on-line file which contains any non-empty

subset of those variables. The parameter list for a SUBSET

operation will be a list of names of physical variables, and

the size of the list will be permitted to vary from command

4-77

to command. If the user should happen to specify a physical

variable not represented in the specified file, or if the

system fails to recognize one or more of the physical variable

names, then the system will abort the command and return an

error message.

As indicated by the syntax; these three operations may be

combined in any order in a single LOAD command, if the user so

desires. However, the use of one or more operations with a

LOAD command will cause a new data file to be created, so that

the system will have to generate anew data file id and assign it

to the new data file. Whenever an on-line file is created,

whether it is a new data file or a direct copy from tape, the

user issuing the LOAD command will become the owner of the file.

Anyone will be able to access the file, but only the owner (or

the DBA) will be allowed to issue an explicit purge on it.

However, unless marked "permanent" by the DBA or its owner, any

on-line file will be classed by the system as "temporary" and.

automatically purged a specified number of days after its last

access.

4-78

4.6.5 UNLOAD

The syntax of an UNLOAD command will be:

UNLOAD <didl>[,<did 2>]...

The UNLOAD command will create back-up tape copies in system stan

dard format for each on-line data file listed in the command

(unless the Integrated Data Base Management System determines

that a back up,tape file already exists for the specified on
line file). Anyone may UNLOAD an on-line file.

4-79

4.6.6 KEEP

The role of the KEEP command will be to take a temporary

on-line file and mark it permanent. The syntax of a KEEP

command will be:

KEEP <did 1>[,<did 2>]...

Anyone may issue a KEEP command, but with privilege comes

responsibility and hence the user who issues a KEEP command

will become the owner of the kept file.

KEEP commands will apply only to temporary on-line files,

and KEEP commands issued for permanent files will be rejected

by the system.

4-80

4.6.7 SCRATCH

The SCRATCH command will cause on-line files to be purged

from mass storage. The syntax of a SCRATCH command will be:

SCRATCH <didl>[,<did2 >]...

Only the owner of an on-line file or the DBA may SCRATCH that

file, and then only if the file is marked temporary or a tape

version exists. An on-line file shall not be purged if it

has been marked permanent and no back-up tape copy exists -- it

will be necessary for the user to UNLOAD that file before issu

ing the SCRATCH or else an UNCATALOG will have to be used.

'A SCRATCH command will affect only the on-line file unless

the file is temporary and no tape copy exists, in which case the

entire catalog entry will be deleted. In no case will tables

in the front end of the system be affected1 by a SCRATCH command.

4-81

4.6.8 PERFORM

The syntax of a PERFORM command will be:

SLICE

WINDOW

SUBSET (<Parameter list>) [ON] <did>
PERFORM REGRIDI WI

MERGE <didl> I<did2 >

where parameter lists have been defined in Section 4.6.4 or are

described below. Any data files specified in a PERFORM command

must be on-line files in a system standard format, and the

result of executing a PERFORM command will be a new, "temporaryi"

on-line data file, also in system standard format. The system

will display or print the data file id (did) for this new file,

and the owner of the new file will be the user who issued the

PERFORM command. As per system convention, the execution of

a PERFORM command will not cause any change to occur to the in

put file(s) specified in the command sequence.

The SLICE, WINDOW, and SUBSET operations have been des

cribed in the subsection of this report which discusses the

LOAD command. The REGRID operation will map observation points

from one multi-dimensional grid coordinate system onto another

grid coordinate system, interpolating new data values at each

observation point as necessary. The new coordinate system

must be derivable from the old coordinate system strictly by

a translation of origin and a change of scale. For an n

dimensional coordinate system (n>2) there will be 2n para

meters in the parameter list. The first n parameters will

be scaling factors (each strictly greater than zero) by which

the corresponding coordinate axis is to be multiplied to

4-82

-generate new grid spacings, and the second n
 parameters will

be translation parameters which will dictate how the origin

of the original coordinate system is to be shifted along each

axis to generate the new origin.
 There are five possible

coordinate axes:
 x and y (on the ground), z (altitude),

t (time),and X (wavelength). Any subset of two or more
of these might be present in the original file, but the order

of axes will always be presumed to obey the transitive order
ing sequence t before x before y before z before A

The MERGE operation will cause two data files to be merged

into a single data file. A number of preconditions must be

met before the system will accept a PERFORM MERGE command:

(1) The.two coordinate systems must have the same number

and type of coordinates (except for wavelength, as dis

cussed below),

(2) The grid spacing along all axes must be the same for

both grids.

(3) For purposes of a MERGE operation, observations along

each hyperplane defined by a fixed wavelength (A) will

be treated as observations of a single physical variable.

(4) The areal coverage along the x and y axes must

overlap.

(5) If there is a t axis in the files' coordinate system,

then the time periods must also overlap.

If the origin and termination of the axes for both grids are not

the same, the merged data file will contain a grid consisting only

of the overlapping portions of the original grid.
 The observa

tions at
each grid point in the new data file will be formed by

concatenating the observations from the first data file with those

in the second data file.

4-83

The five file operations presented in this subsection con
stitute a minimal and not necessarily complete set of operations.

The Integrated Data Base Management System has been designed to

permit additional operations to be added (e.g., histogramming)

at a future date.

4-84

SECTION'5 - THE APPLICATION PROGRAM COMMAND LANGUAGE

5.1 Introduction to Application Program Command Processing

The Application Program Command Language is the method by

which an application program communicates with the Integrated

Data Base Management System. It permits an application pro

gram to access tabular data as well as data files. The

Application Program Command Language is not a complete language

by itself. It relies on a host language to provide a frame

work for it and to provide the procedural capabilities required

to manipulate data. The command language consists of a set of

CALL statements or its equivalent which are incorporated into

a procedural host language program. The command language may

be used with any host language (e.g., FORTRAN, COBOL, PL-l,

ALC) that supports a CALL statement. A single entry point or

subroutine name is used for all application program commands.

The CALL statement will have a variable length argument list as

a function of the command being issued. The first two argu

ments in every application program are the command itself (e.g.,

'SELECT', 'READ') and an integer variable which, upon return

from the Integrated Data Base Management System, will contain

the status associated with the execution of the command.

To an application program, the Integrated Data Base

Management system appears to be the single subroutine, IDBMS.

To the Integrated Data Base Management System, an application

program will appear to be a special type of user with its own

User Control Block and its own Workspace Table. Between an

application program and the system will be the Application

Program Interface, which will create a Command Control Block

for the application program command and place it on the proper

queue for processing.

The Application Program Command Language contains several

commands which are also included in the Interactive Command

5-1

Language, described in Section 4. However, after analysis of

projected user requirements, several commands from the

Interactive Command Language were omitted from the Application

Program Command Language. These include commands to define

and remove data bases, tables, fields, users and groups and

commands to grant and revoke.access rights as well as others.

It should be noted that nothing in the design of the Integrated

Data Base Management System would preclude those commands

which were omitted from being included in the Application

Program Command Language. The set of commands available to

an application program will include only a subset of the com

mands available to interactive users, as detailed in Table 5-1.

It should be noted that the data file processing operations

such as REGRID, SLICE, etc. initiated interactively via the

PERFORM command are available to application programs directly

as part of the Application Program Command Language. Also,

an application program will have available to it an additional

set of commands which are not available to interactive users.

This section provides an overview of how an application pro

gram interacts with the system, describes the calling sequence

for issuing "interactive" commands through the Application

Program Interface, and describes the calling sequence for and

function of the remaining commands. Since most of these

special commands access data files in the Non-Relational Data

Base, the reader is expected to be familiar with Section 7,

Data File Handling, as well as Section 4, The Interactive

Command Language.

5.2 Issuing "Interactive" Commands from an Application Program

As stated previously, only a subset of the Interactive

Command Language is included in the Application Program

Command Language. Table 5-1 lists the interactive commands

which can be issued by an application program and the follow

ing subsections describe the calling sequence for each of

5-2

UTILITY COMMANDS

ENTER

EXIT

ATTACH

USE

DATA MANIPULATION COMMANDS

SELECT

INSERT

UPDATE

DELETE

DATA FILE COMMANDS

COPY

LOAD.

UNLOAD

DATA FILE PROCESSING OPERATIONS (PERFORM)

SLICE

WINDOW

SUBSET

REGRID

MERGE

Table 5-1: Commands Available to Both Interactive

Users and Application Programs

5-3

these commands as well as additional commands which support

them. The result of issuing any of these commands by an

application program is the same as if they were entered inter

actively. Thus, the description of each of these commands in

Section 4 is applicable and will not be repeated here.

5.2.1 Utility Commands

Interactive commands from the category of Utility Commands

which can be issued by an application program are described

below.

5.2.1.1 The ENTER Command

The ENTER command connects an application program to the

Integrated Data Base Management System. This command must be

issued by an application program prior to issuing any other

command in the Application Program Command Language. It is

coded as follows:

CALL IDBMS('ENTER',<status>,<program-id>.<user-id>,<'assword>)

where:

* <status> is, a binary integer variable which, upon return

from the Integrated Data Base Management System, will

contain an integer value indicating whether or not the

command was executed successfully' A status code of

zero indicates successful execution of the command. A

positive status code indicates unsuccessful execution of

the command. The value of the positive integer defines

the error condition which caused the unsuccessful execu
tion.

a <program-id> is an alphanumeric literal or variable

which uniquely identifies the application program which

is attempting to connect to the Integrated Data Base

Management System. The program-id is analagous to the

user-id associated with each valid user of the system.

5-4

a <user-id> is an alphanumeric literal or variable which

identifies the user running the application program.

During this execution of the application program, -it

will assume the access rights associated with the user

running the program.

o 	<password> is an alphanumeric literal or variable contain
ing.the password of the user identified by the <user-id>
argument.

5.2.1.,2 The EXIT Command

The EXIT command disconnects an application program from

the Integrated Data Base Management System. This command

should be issued by any application program which has connected

to the system via the ENTER command. During EXIT command pro
cessing, the system will close any data files for which no

CLOSE command was issued by the application.program and reset

all locks on tables which have not been explicitly reset by an

UNLOCK command. The EXIT command is coded as
follows:

CALL IDBMS('EXIT',<status>)

where <status> is as previously defined.

5.2.1.3 The ATTACH Command

The ATTACH command indicates the intent of the application

program to access the specified data base. It is coded as

follows:

CALL IDBMS('ATTACH'><status>,<data base name>)

where <status> is as previously defined and:

0 <data base name> is an alphanumeric literal or variable

which contains the name of the data base to which the

application program is to be attached.
 After successful

completion of this command, the specified data base will

5-5

be the application program's primary data base and any

subsequent data manipulation or COPY commands issued by

the application program prior to another ATTACH command

will access that data base.

5.2.1.4 The USE Command

The USE command permits a one or two character alias name

to 	be specified for a table. It is coded as follows:

CALL IDBMS('USE',<status>,<alias name>,<table name>)

where <status> is as previously defined and:

e 	 <alias name> is an alphanumeric literal or variable

which specifies a one or two character alias that can

be used in place of the name of the table specified in

the <table name> argument. The alias name can be used

in subsequent commands wherever the associated table

name can validly be used. The alias name remains until

it is assigned to another table or until the application

program terminates.

e 	<table name> is an alphanumeric literal or variable which

contains the name of the table for which the alias is

being established.

5.2.2 Data Manipulation Commands

Interactive commands from the category of Data Manipulation

Commands are described in this subsection. These commands

permit an application program to manipulate tabular data in much

the same way as an interactive user can. All of the commands

in this category contain one or more arguments in their calling

sequence which is a variable length string. By including

these strings, the calling sequence is simplified considerably

and causes the argument list to resemble the interactive com

mand syntax. To facilitate the use of variable length strings,

each such string must be terminated with the special symbol #.

Some examples of the use of these variable length strings is

5-6

illustrated in a subsequent subsection.

5.2.2.1 The SELECT Command

The SELECT Command retrieves data from one or more tables

and places it in the Workspace Table associated with the applica

tion program. The tables referenced by the SELECT command

must be contained in the data base named in the most recent

ATTACH command issued by the application program. The SELECT

command is coded as follows:

CALL IDBMS('SELECT',<status>,<record no>,<target list string>,

<qualification string>)

where <status> is as previously defined and:

v <record no> is a binary integer variable which, upon

return from the Integrated Data Base Management System,

will contain the number of records which have been placed

in the Workspace Table as a result of the execution of

this SELECT command. This argument may contain zero

upon return, if no records were placed in the Workspace

Table.

* 	<target list string> is an alphanumeric literal or variable

which defines the data fields for which values are to be

retrieved from existing tables. This argument is exactly

the same as the target list specified in the interactive
SELECT command described in Section 4. It defines the
data fields which constitute the Workspace Table con
structed as a result of the execution of the SELECT com
mand. The target list string must be terminated by the
special character #.

o <qualification string> is an alphanumeric literal or

variable which specifies the conditions that must be met

by a record for it to be selected for retrieval. This

argument is exactly the same as the qualification speci
fied in the WHERE clause of the interactive SELECT com
mand described in Section 4 except that application pro
gram variable names can be used as well as constants in

the relation conditions (e.g., X EQ 2 could be replaced

by X EQ Vl where Vl is an applicat'ion program variable

which has been set to 2 by another application program

statement). The concept of using variable names in the

qualification string will be discussed in more detail in

5-7

the description of the BIND command in a subsequent subsec

tion. The qualification string must be terminated by
the special character #.

5.2.2.2 The INSERT Command

The INSERT command adds one or more new records to a table.

There are two forms of the INSERT command: one which permits

a single record to be inserted directly into a table by supply

ing values for the data fields within the argument list and a

second which will operate in a manner similar to the SELECT

command in that data will be retrieved from one or more tables

and the resulting records will be added to the table named in

the argument list rather than being placed in the Workspace

Table. All tables referenced by the INSERT command must be

contained in the data base named in the most recent ATTACH

command issued by the application program.

The implementation of two different types of INSERT com

mands requires that the Application Program.Communication

Module, IDBMS, be capable of recognizing two different argument

lists. The "record" option, where data field values are

specified explicitly in the argument list, requires only a

<record string> argument, whereas the "selection" option requires

both a <target list string> and a <qualification string> argument

There are several techniques for handling this problem and the

choice of one over the other may be operating system dependent.

For example, if each compiler supported by the operating system

marks the last argument in an argument list, the Application

Program Communication Module can detect the shorter argument

list of the "record" option. If the compilers do not mark

the last argument, the <record no> argument could be set to a

negative value by the application program prior to issuing the

INSERT command to indicate the "record" option and a non-nega

tive value to indicate the "selection" option or vice versa.

Alternatively, open and close parentheses could be used in the

5-8

<record string> argument to distinguish it from the

<target list string> argument which would not contain parentheses,

thereby defining the type of INSERT command being issued (e.g.,

'(X=l,Y=2)#'). The description of the arguments below assumes

that the compilers support variable length argument lists by

marking the last argument in the list. The two forms of the

INSERT command are coded as follows:

"record" option

CALL IDBMS('INSERT',<status>,<record no>,<table name>,<record string>)

where <status> is as previously defined and:

" <record no> is a binary integer variable which, upon

return from the Integrated Data Base Management System,

will contain the integer value one if the record defined

in the <record string> argument was successfully added to

the table named in the <table name>. Otherwise, the

integer value zero will be returned.

o <table name> is an alphanumeric literal or variable which

contains the name of the table to which the record is
to

be added.

* <record string> is an alphanumeric literal or variable

which defines the values to be assigned to data fields in

the record to be added. This argument is exactly the

same as
the record which can be specified in the inter
active INSERT command described in Section 4 except that

application program variable names can be used as well as

constants.
 The data fields named in this argument must

be data fields in the table specified in the <table name>

argument.
 Any data fields which are not assigned a

specific value will contain a null value in the added

record. The record string consists of one or more assign
ment statements separated by commas. The record string

must be terminated by the special character #.
 The form

of the assignment statement is:

[<constant>

<assignment statement>::=<data field name>=p

<program variable name>

5-9

where <program variable name> must be a variable defined in

the application program and used in a preceding BIND,

command.

"selection" option

CALL IDBMS('INSERT',<status>,<record no>,<table name>,<target list string>,

<qualification string>)

where <status> is as previously defined and:

" <record no> is a binary integer variable which, upon

return from the Integrated Data Base Management System,

will contain the number of records which have been added

to the table named in the <table name> argument as a

result of the execution of this INSERT command. This

argument may contain zero upon return if no records were

added to the table.

* <table name> is an alphanumeric literal or variable which

contains the name of the table to which the records are

to be added.

" <target list string> is an alphanumeric literal or variable

which defines the data fields in the table specified in

the <table name> argument for which data values are to be

retrieved from the records satisfying the criteria stated

in the <qualification string> argument. This argument

is exactly the same as the target list which can be speci
fied in the interactive INSERT command described in

Section 4. Any data fields in the table specified in the

<table name> argument which are not included in this argu
ment will contain a null value in all added records. The

target list string must be terminated by the special

character #.

* <qualification. string> is an alphanumeric literal or

variable which specifies the conditions that must be met

by a record for it to be retrieved and used to construct

a new record to be added to the table specified in the

<table name> argument. The syntax of the

<qualification string> argument is the same as that for

the SELECT command described in a previous subsection.

5.2.2.3 The UPDATE Command

The UPDATE command modifies one or more data fields in one

5-10

or more records in a table. All tables referenced by the

UPDATE command must be contained in the data base named in the

most recent ATTACH command issued by the application program.

The UPDATE command is coded as follows:

CALL IDBMS('UPDATE',<status>,<record no>,<table name>,<change list string>,

<qualification string>)

where <status> is as previously defined and:

* <record no> is a binary integer variable which, upon

return from the Integrated Data Base Management system,

will contain the number of records which have been modi
fied as a result of the execution of this UPDATE command.

This argument may contain zero upon return if no records

were modified.

e <table name> is an alphanumeric literal or variable which

contains the name of the table in which the records are

to be modified.

* <change list string> is an alphanumeric literal or

variable which defines the data fields to be modified and

the new values which are to be assigned to them. This

argument is exactly the same as the change which can be

specified in the interactive UPDATE command described in

Section 4 except that application program variable names

can be used as well as constants and functions. The

data fields named in this argument must be data fields in

the table specified in the <table name> argument. The

change list string consists of one or more assignment

statements separated by commas. The change list string

must be terminated by the special character #. The

form of the <change list string> argument is:

<change list string>::='<assignment statement >[,<assignment statement2>]...#"

12

{<constant>
 1
<assignment statement>::=<data field name>= <function>

1<program variable name>

5-11

where 	<program variable name> must be a variable defined in

the application program and used in a preceding BIND

command.

* <qualification string> is an alphanumeric literal or

variable which specifies the conditions that must be met

by a record for it to be modified. The syntax of the

<qualification string> argument is the same as that for

the SELECT command described in a previous subsection.

5.2.2.4 The DELETE Command

The DELETE command deletes one or more records from a table.

The table referenced by the DELETE command must be contained in

the data base named in the most recent ATTACH command issued by

The application program. The DELETE command is coded as fol

lows:

CALL IDBMS('DELETE',<status>,<record no>,<table name>,<qualification string>)

where 	<status> is as previously defined and:

o <record no> is a binary integer variable which, upon

return from the Integrated Data Base Management System,

will contain the number of records which have been deleted

as a result of the execution of this DELETE command.

This argument may contain zero upon return if no records

were deleted.

* <table name> is an alphanumeric literal or variable which

contains the name of the table from which the records are

to be deleted.

* <qualification string> is an alphanumeric literal, or

variable which specifies the conditions that must be met

by a record for it to be deleted. The syntax of the

<qualification string> argument is the same as that for

the SELECT command described in a previous subsection.

5-12

5.2.3 Operations which Support "Interactive" Commands

There are several commands which can be issued by an applica

tion program that provide additional tabular data handling or

support capabilities but are not available to interactive users.

These commands are required in an application program because

of the procedural environment in which an application pro

gram operates. Each of these commands is described below.

5.2.3.1 The BIND Command

The BIND command permits the Integrated Data Base

Management System to recognize a program variable name and to

associate that program variable with its proper location in

the main storage allocated to the application program. After

being named in a BIND command, a program variable can be used

in an alphanumeric string argument in an "interactive" type com

mand wherever a constant could be validly used. Thus, program

variables can be used in <qualification string>,<change list string>

and <record string> arguments in the data manipulation commands

described in the preceding subsections. The BIND command is

coded as follows:

CALL IDBMS('BIND',<status>,<program variable name>,<program variable>)

where <status> is as previously defined and:

o <program variable name> is an alphanumeric literal or

variable which contains the name of the program variable

as it will appear in an alphanumeric string argument in

a subsequent command. While the program variable name

will represent the program variable in string type argu
ments in subsequent commands, they need not match (e.g.,

'LATITUDE',LAT where LATITUDE would be used in string

arguments to represent the program variable LAT).

5-13

a 	<program variable> is a variable which is defined and

assigned values within the application program. Whenever

the program variable name specified in the preceding argu
ment is encountered in an alphanumeric string argument,

the Integrated Data Base Management System will substitute

the location of the program variable and will use the

current value stored at that location during its processing.

5.2.3.2 The FETCH Command

The FETCH command retrieves data values from a record in

the Workspace Table and makes them available to the application

program for processing. The data fields named in the command

must be data fields defined for the Workspace Table by the

most recent SELECT command issued by the application program.

The ffrst FETCH command following a SELECT command will cause

values of the specified data fields to be retrieved from the

first record in the Workspace Table and to be placed into the

specified work area within the application program. Subsequent

FETCHcommands will retrieve data from the next record in turn

until all records in the Workspace Table have been accessed.

Each SELECT command issued by an application program will cause

subsequent FETCH commands to begin accessing records in the

Workspace Table at the first record. The FETCH command is

coded as follows:

CALL IDBMS('FETCH',<status>,<target list string>,<work area>)

where:

* 	<status> is a binary integer variable which, upon return

from the Integrated Data Base Management System, will

contain an integer value indicating whether or not the

command was executed successfully. As in the <status>

argument in other commands, a code of zero indicates suc
cessful execution while a positive code indicates unsuc
cessful execution and defines the error condition.

However, for the FETCH command, a negative status code

may be returned indicating an end-of-table condition.

5-14

o <target list string> is an alphanumeric literal or

variable which defines the data fields in the Workspace

Table for which values are to be retrieved and returned

to the application program in the work area.- The data

field names in the <target list string> argument must be

separated by commas. The order of the data field names

will determine the order in which the corresponding data

values will be stored in the work area. The target list

string must be terminated by the special character #.

o <work area> is a variable which defines a contiguous area

of main storage into which data values from the Workspace

Table will be stored. The work area must be large

enough to contain the data values corresponding to the

data fields specified in the <target list string> argument.

5.2.3.3 The LOCK Command

The LOCK command permits an application program to gain

processing control over a table. The table specified in the

LOCK command must be contained in the data base named in the

most recent ATTACH command issued by the application program.

Two modes of processing control are available .to an application

program: read and modify. If an application program specifies

a read mode lock for a table, other application programs and

interactive users can read the contents of the table but can
not

modify them. If an application program specifies a modify

mode lock for a table, no other application programs or inter
active users can access the contents of the table in any way.

Once a lock is set by an application program, it can be reset

only by the UNLOCK command, by the EXIT command or if the applica
tion program terminates abnormally prior to issuing either of

these commands. The LOCK command is coded as follows:

CALL IDBMS('LOCK',<status>,<table name>,<mode>)

where <status> is as previously defined and:

* <table name> is an alphanumeric literal or variable which

contains the name of the table for which the lock is to

be set.

5-15

* 	<mode> is an alphabetic literal or variable which defines the

type of lock to be set. The <mode> argument has only

two valid values: READ and MODIFY. There meanings are

as follows:

READ - the application program intends to read the con
tents of the table. No other user should be

permitted to update the contents of the table

while this lock is active. If another applica
tion program already has set a READ lock on the

table, this READ lock will also be set on the

table. If another application program has set

a MODIFY lock on the table, this READ lock will

be rejected.

MODIFY - the application program intends to modify the
contents of the table. No other user should
be permitted to access the contents of the
table in any way. If another application
program already has set either a READ or MODIFY
lock on the table, this MODIFY lock will be

rejected. If no lock of any kind has been set

on the table, this MODIFY lock will be set
on

the table.

5.2.3.4 The UNLOCK Command

The UNLOCK command releases processing control over a table

which was established by the application program via a previous

LOCK command. The table referenced by the UNLOCK command must

be contained in the data base named in the most recent ATTACH

command issued by the application program. This command resets

both READ and MODIFY locks, whichever type of lock had been

last set for the table by the application program. The UNLOCK

command is coded as follows:

CALL IDBMS('UNLOCK',<status>,<table name>)

where <status> is as previously defined and:

* 	<table name> is an alphanumeric literal or variable

which contains the name of the table for which the lock

is to be reset.

5-16

5.2.3.5 The GET Command

The GET command retrieves data values from a record in
a

table in
a data base and makes them available to the application

program for processing. The table referenced by the GET com
mand must be contained in the data base named in the most recent

ATTACH command issued by the application program. The GET com
mand follows the logical ascending sequence imposed on the table

by a B-tree index to determine which record should be accessed.

The particular B-tree index to be used, should more
than one

exist for a table, is defined by specifying its associated key

name in the argument list of the command. If
no B-iree indices

exist for a table, the GET command can not be used to retrieve

data from that table.

To support the GET command, the Integrated Data Base

Management System maintains a cursor for each B-tree key field

such that access to records in the table through a B-tree index

can be based on the current position of the cursor. A cursor

is a logical pointer which moves through a table following the

logical sequence imposed by the B-tree index with which it
is

associated. A cursor may be set at the record in a table

which is associated with the lowest key value in the B-tree

index or at any other record by specifying the key value

associated with that record in the argument list of the GET

command.
 Each time a GET command is issued, the specified

data values are retrieved from the record containing the next

highest key value and the cursor associated with the B-tree

index being used is logically positioned by the system to the

record accessed.. All cursors associated with B-tree indices

for a table are independent from one another. Thus, a GET

command which causes one cursor to move will not change the posi

tion of any other cursor.

Since the GET command retrieves records from a table based

5-17

on a cursors set on a B-tree index, no updates to the associated

table which might modify the B-tree index can be permitted

while an application program is issuing GET commands. Thus,

before an application program issues a GET command to access a

table, a LOCK command must have been successfully executed by

the 4pplication for that table. The lock mode specified in

the LOCK command can be either READ or MODIFY, but need only

be READ to disallow updates to the table. After all GET com

mands have been issued for the table, the UNLOCK command should

be issued. If a table named in a GET command has not been

locked by the application program issuing it, the GET command

will be rejected.

The GET command is coded as follows:

CALL IDBMS('GET',<status>,<table name>,<key name>,<key area>,

<target list string>,<work area>)

where:

<status> is a binary integer variable which, upon return

from the Integrated Data Base Management System, will

contain an integer value indicating whether or not the

command was executed successfully. As in the <status>

argument in other commands, a code of zero indicates suc
cessful execution while a positive code indicates unsuc
cessful execution and defines the error condition.

However, for the GET command, a negative status code may

be returned indicating an ,end-of-table condition.

Additionally, the <status> argument is used to indicate

that this GET command will set a starting point for

retrieval of records via the B-tree index. When the

status contains a negative value upon issuing the GET

command, the contents of the key area will be used to

set the cursor associated with the B-tree index identi
fied by the <key name>.

* <table name> is an alphanumeric literal or variable Which

contains the name of the table from which data values are

to be retrieved.

o <key name> is an alphanumeric literal or variable which

defines the B-tree index whose cursor is to be used to

5-18

determine from which record the data fields specified in

the <target list string> argument will be retrieved.

The key name must have been previously specified inter
actively in an INDEX command which created a B-tree index

on the table named in the <table name> argument.

a <key area> is a variable which defines a contiguous area

of main storage into which the values associated with the

key field specified in the <key name> argument will be

stored. Should the <key name> argument represent a combina
tion key field, values from each of the fields which con
stitute the combination key field will be stored in the

key area. Additionally, the <key area> argument is used

to establish a starting point for retrieval within the

specified B-tree index. If the <status> argument con
tains a negative value, the contents of the key area will

be used to set the starting point for retrieval, in that

the record accessed will be the one with a matching key

or, if no matching key exists, the one with the next highest

key. The cursor associated with the specified B-tree

index will be logically positioned at the accessed record

and subsequent GET commands will retrieve records with the

next higher key in the B-tree index.

o <target list string> is an alphanumeric literal or variable

which defines the data fields in the table named in the

<table name> argument for which values are to be retrieved

and returned to the application program in the work area.

The data field names in the <target list string> argument

must be separated by commas. The order of the data

fieldnames will determine the order in which the correspond
ing data values will be stored in the work area. The

target list string must be terminated by the special charac
ter #.

<work area> is a variable which defines a contiguous area

of main storage into which data values from the table

specified in the <table name> argument will be stored.

The work area must be large enough to contain the data

values corresponding to the data fields specified in the

<target list string> argument.

5.3 Data File Commands

Interactive commands in this category permit an application

program
to move entire data files from an off-line to an on
line storage device and to create a backup on magnetic tape

of an on-line data file. Additionally, an application program

5-19

4

can transform a table to a data file and a data file to a table.

Each of the commands which can be issued by an application pro

gram are described below.

5.3.1 The COPY Command

The COPY command permits an application program to transform

a table to a data file and a data file to a table. The direction

of 	transformation is controlled by the contents of the <did>

argument. The COPY command is coded as follows:

CALL IDBMS('COPY',<status>,<did>,<table name>)

where <status> is as previously defined and:

<did> is a variable containing either the identifier of the

data file which is to be transformed into a table or spaces

(blanks), which indicate that the table is to be trans
formed into a new data file. If a new data file is to be

created from the contents of the table, upon return from

the Integrated Data Base Management System, the <did>

argument will contain the identifier assigned to the newly

created data file.

* 	<table name> is an alphanumeric literal or variable which

contains the name of the table which will receive the con
tents of the data file or from which the new data file is

to be created.

5.3.2 The LOAD Command

The LOAD command permits an application program to create

an 	on-line data file in system standard format from a data file

on 	magnetic tape. For a discussion of system standard formats,

see Section 7, Data File Handling. If the contents of the on

line data file are exactly the same as that of the off-line

data file, they will have the same data identifier. If the

contents of the two data files are different after loading, a

new data identifier is assigned to the on-line data file.

The LOAD command is coded as follows:

5-20

CALL IDBMS('LOAD',<status>,<old did>,<new did>,<parameter array>)

where <status> is as previously defined and:

* 	 <old did> is a variable containing'the identifier of the off
line data file on magnetic tape which is to be copied

on-line. The data file will be converted to one of the

system standard formats during the loading process, if

necessary.

o 	 <new did> is a variable which, upon return from the

Integrated Data Base Management System, may contain the

data identifier of a new on-line data file in system

standard format if it contains,'in some form, a subfile

of the original off-line data file. If the original data

file is copied on-lane in its entirety, no new data

identifier is assigned to it and the <new did> argument

will- contain spaces (blanks) upon return to the applica
tion program. If some operation is performed during

loading, as defined by the <parameter array> argument,

that causes the contents of the on-line data file to be

different from those of the off-line data file, a new data

identifier will be assigned to the on-line data file by

the system and will be returned in the <new did> argument.

* 	 <parameter array> is a one-dimensional array variable

whose values will be a function of the data file being

copied on-line. The parameter values will control the

loading in that they will permit window and subset opera
tions to be performed as the data file is being loaded.

See Section 4, The Interactive Command Language, for a

more thorough discussion of the parameters required to

control a LOAD operation.

5.3.3 The UNLOAD Command

The 	UNLOAD command permits an application program to

create a backup copy on magnetic tape of an on-line data file.

The 	UNLOAD command is coded as follows:

CALL 	IDBMS('UNLOAD',<status>,<did>)

where <status> and <did> are as previously defined.

5-21

5.4 Data File Processing Operations

There will be (at least) five operations which will

manipulate whole data files. These operations will be avail

able to interactive users via the PERFORM command, but they

will be more directly available to application programs.

These operations will take one or two data files, plus certain

parameters, as input and create a new data file as output.

The input data file(s) must have been loaded on-line before

hand either interactively or by the application program. The

new data file will also be an on-line file in system standard

format. It will be marked as a temporary data file and will be

opened as a side effect of its creation and will be closed

before control is returned to the application program. The

data identifier assigned to the newly created data file will

be returned to the application program. The new data file

can be opened and read by the application program but cannot

be overwritten.

The five operations will be:

SLICE - Create a new data file by taking a two

dimensional slice of a multi-dimensional

gridded file.

WINDOW - Create a new data file by extracting a rect

angular subarea from an image, cartographic,

or two-dimensional gridded file.

SUBSET - Create a new data file by extracting only a

specified subset of physical variables from

the original file.

REGRID - Create a new data file by interpolating the

data from a gridded file in one coordinate

system into a new coordinate system.

MERGE - Form a single file by merging the data from

two other files.

5-22

A precise description of the above operations may be found in

Section 4, The Interactive Command Language.

5.4.1 Performing a SLICE Operation

The slice operation creates a new data file from an exist

ing data file by taking two dimensions from the n-dimensional

grid (n > 2) of the original data file. The two dimensions to be

extracted are defined within the argument list along with the

remaining n - 2 dimensions and an array of constants which, to

gether, define a set of n - 2 equations of the form DIMENSION =

CONSTANT . Each equation defines a hyperplane through one of

the remaining axes, the intersection of which defines the

two-dimensional plane (slice) with the desired set of axes.

The SLICE operation is coded as follows:

CALL IDBMS('SLICE',<status>,<old did>,<new did>,<axis array>,<constant array>)

where <status> is as previously defined and:

" 	<old did> is a variable containing the data identifier assoc
iated with the existing multi-dimensional gridded data file

from which a two dimensional slice is to be extracted.

* 	<new did> is a variable which,upon return from the Integrated

Data Base Management System, will contain the data identifier

of the two-dimensional gridded data file created as a result

of 	the SLICE operation.

* 	<axis array> is a one-dimensional array variable whose

values define the axes of the grid from which the slice

is to be taken. The acceptable values for the elements

are X, Y, Z, T and L which represent the two earth

coordinates, altitude, time and wavelength, respectively.

The first two elements of this array must be the two axes
of the extracted slice while the remaining n - 2 elements
are the remaining axes of the grid. They must match,

one-for-one, the n - 2 constants specified in the

<constant array> argument.

* 	<constant array> is a one-dimensional floating point array

variable whose values must match the axes in the 3rd

through nth elements of the <axis array> argument to form

the equations which define the hyperplanes..

5-23

5.4.2 Performing a WINDOW Operation

The WINDOW operation extracts a rectangular subarea

from an existing data file to create a new data file. The

input data file can be an image file, a cartographic terrain

elevation model or a two-dimensional gridded file. The new

data file created by the WINDOW operation will be of the

same type as the original. For the purpose of performing

a WINDOW operation, a data file appears to contain records

numbered from 1 to N where N is the number of records in the

data file. Each record in the data file appears to contain

fixed length fields (e.g., pixels) numbered from 1 to M

where M is the number of fields in each record. The length

of a field is defined in the header record for all system

standard formatted data files. Thus, the WINDOW operation is

performed by specifying beginning and ending record numbers

and field numbers to define the subarea. In addition to

providing the capability of extracting a contiguous subarea

from an existing data file, the WINDOW operation also permits

sampling of the entire data file or a subarea to create a

new data file. By specifying a record step size, j, which

is greater than one, every jth record can be selected within

any defined subarea. Similarly, by specifying a field step

kth
size, k, which is greater than one, every field can be

extracted from each selected record to create the new data

file. The WINDOW operation is coded as follows:

CALL .IDBMS('WINDOW',<status>,<old did>,<new did>,<ISt record>,<last record>,

<record step size>,<lst field>,<last field>,<field step size>)

where <status>,<old did> and <new did> are as previously

defined and:

* 	<Ist record> is a binary integer variable whose value

indicates the first record from which data fields will

be extracted to form the subarea. If it contains zero,

5-24

the subarea will begin with the first data record in the

data file. If the <1st record> argument contains a

positive integer, i , the subarea will begin with the

ith data record in the data file. If the first record

exceeds the number of records in the data file, the

WINDOW operation will be rejected.

<last record> is a binary integer variable whose value

indicates the last record from which data fields will

be 	extracted to form the subarea. If it contains zero,

the last data record in the data file will be the last

record in the subarea. If the <last record> argument

contains a positive integer, i , the subarea will end
with the ith data record in the data file. If the last

record exceeds the number of records in the data file,

the last data record in the data file will be the last

record in the subarea. If the first record exceeds the

last record, the WINDOW operation will be rejected.

<record step size> is a binary integer variable whose value

indicates the sampling interval to be used for data

records to create the subarea. If it is zero. all records

beginning with the record specified in the <ist record>

argument and ending with the record specified in the

<last record> argument will be used to create the subarea.

If 	the <record step size> contains a positive integer, j,

only every jth record beginning with the record specified

in the <1st record> argument will be used. The last

record used will be the jth record not exceeding the

record specified in the <last record> argument.

* 	<Istfield> is a binary integer variable whose value in
dicates the first field in each data record to be ex
tracted to form the subarea. If it contains zero, the

subarea will begin with the first field in each selected

data record. If the <1st field> argument contains a

positive integer, i , the subarea will begin with the ith

field in each selected data record. If the first field

exceeds the number of fields in the data records, the

WINDOW operation will be rejected.

<last field> is a binary integer variable whose value

indicates the last field in each data record to be ex
tracted to form the subarea. If it contains zero, the

last field in each selected data record will be the

last field -in each record in the subarea. If the

<last field> argument contains a positive integer, i

the ith field in each selected data record will be the

last field in each record in the subarea. If the last

field exceeds the number of fields in the data records,

the last field in each data record will be the last field

in each record in the subarea. If the first field ex
ceeds the last field, the WINDOW operation will be rejected.

5-25

<field step size> is a binary integer variable whose

value indicates the sampling interval to be used for

fields to create the subarea. If it is zero all fields

beginning with the field specified in the <l field>

argument and ending with the field specified in the

<last field> argument will be extracted from the selected

records to create the subarea. If the <field step size>

argument contains a positive integer, k, only every

ktn field will be extracted from every selected record

beginning with the field specified in the <Ist field>

argument. Thp last field used in each selected record

will be the kt n field not exceeding the field specified

in the <last field> argument.

5.4.3 Performing a SUBSET Operation

The SUBSET operation extracts the value of one or more

physickl variables at each point in a data file containing

gridded data to create a new data file.
 The input data file

must contain data on an n-dimensional (n = 2, 3, or 4) grid.

The new data file will contain data on the same grid

as the"original data file. The SUBSET operation permits

specific variables to be extracted from the original data

file based on their relative position in the vector of data

values at each point in the grid. As an example, consider a

three-dimensional gridded data file (the dimensionality of
a

gridded data file is defined in its header record) where the

three dimensions are longitude, latitude and altitude. At

each grid point, a vector exists which contains values of

wind velocity, wind direction, temperature and pressure in

that order. To create a new data file containing only tempera

ture and pressure data at each grid point, the integer array

defined by the <variable array> argument must contain 3 and 4,

indicating that the third and fourth data values in the vector

at each grid point are to be extracted. The resulting data

file will contain the same longitude, latitude and altitude at

each grid point contained in the original file as well as the

temperature and pressure values at each grid point. The SUBSET

operation is coded as follows:

5-26

CALL IDBMS('SUBSET',<status>,<old did>,<new did>,<variable array>)

where <status>,<old did> and <new did> are as previously

defined and:

* <variable array> is a one-dimensional.binary integer
array variable whose values indicate the relative

position in the vector at each grid point from which

variables are to be extracted. The array identified

by the <variable array> argument must be dimensioned

at least one greater than the number of variables to be

extracted at each grid point. Each element of the

array must contain a positive integer indicating the

relative position in the grid point vector of the variable

to be extracted. The element immediately following the

last element in the array which defines the relative

position of variables to be extracted, must contain

zero as an array terminator.

5.4.4 Performing a REGRID Operation

The REGRID operation creates a new gridded data file from

an existing gridded data file. A scale factor and/or a

translation can be applied to the existing grid points to

obtain the new grid points while one of several interpolation

schemes can be used to obtain the values of the variables at

each of the new grid points. Separate scaling factors and

translations can be applied to each axis in the coordinate

system of the original gridded data file. An array is used

in the argument list to contain both the scaling factors and

the translations., The number of entries in each array will

depend upon the number of coordinate axes (not considering

wavelength as an axis) in the grid (the number and type of

axes for a gridded data file are defined in its header record).

The ith entry in each array will correspond to the ith axis of

the multi-dimensional grid, where the order of the axes is

defined by the following total ordering:

T<X<Y<Z

5-27

As 	an example, consider a three-dimensional gridded data file

where the three dimensions, or axes, are time (T), longitude

(X) and latitude (Y). Then the first element in both the

scale factor and translation arrays would contain the scaling

factor and translation, respectively, to be applied to the T

axis (time), the second elements would contain the scaling

factor and translation for the X axis (longitude) while the

third elements would contain the scaling factor and transla

tion for the Y axis (latitude). Note, that no dummy elements

need be supplied for the non-existent Z axis. The REGRID

operation is coded as follows:

CALL IDBMS('REGRID',<status>,<old did>,<new did>,<scale factor array>,

<translation array>,<interpolation indicator>)

where <status>,<old did> and <new did> are as previously

defined and:

" <scale factor array> is a one-dimensional binary floating

point array variable whose values define the scaling

factor for each of the dimensions or axes of the grid.

The scale factor array must contain one scale factor

for each axis of the grid contained in the data file.

Each scale factor must be greater than zero. A scale

factor of one indicates no scaling of the grid points

along the corresponding axis.

" 	<translation array> is a one-dimensional binary floating

point array variable whose values define the offset of

the origin of the new grid from that of the original

grid. The translation array must contain one translation

value for each axis of the grid contained in the data

file. A translation value of zero indicates no trans
lation for the corresponding axis.

* 	<interpolation indicator> is a binary integer variable

whose value indicates the interpolation scheme (e.g.,

linear, cubic spline, etc.) to be used to obtain the values

of the variables at the new grid points.

5.4.5 Performing a MERGE Operation

The MERGE operation combines the contents of two gridded

5-28

data files into a single, new gridded data file. Both of the

input data files must be in system standard format and must be

defined over the same grid. That is, both grids should be

defined with respect to the same set of coordinate axes.

Additionally, the grid spacing for all axes must be the same

for both grids. If the origin and termination of the axes

for both grids do not match, the merged data file will contain

a grid consisting only of the overlapping portions of the

original grids. If no portion of the two input grids overlap,

the MERGE operation will be aborted. The vector of data

values at each grid point in the new data file will be formed

by concatenating the values from the corresponding grid

point in the first data file with those from the correspond

ing grid point in the second data file. The MERGE operation

is coded as follows:

CALL IDBMS('MERGE',<status>,<old did1>,<old did 2>,<new did>)

where <status> and <new did> are as previously defined and:

* <old did1 > is a variable containing the identifier of

one of the input data files which must be a gridded

data file.

* <old did 2 > is a variable containing the identifier of

the second input data file which must be a gridded data

file. The data identifier contained in the <old did2 >

argument must be different from that in the <old didl>

argument.

5.5 Examples of the Use of "Interactive" Commands

As an example of the use of "interactive" commands and

supporting operations in an application program, consider

a table named EVENT with data fields NAME, CLASS, STRTDATE,

ENDDATE, STARTLAT, STARTLON, ENDLAT, ENDLON and STRENGTH

which describes a series of storms under study. The EVENT

table is contained within a data base named STORMS. Also,

5-29

RLAL*B PGMIDgUSERI,DNAME.ALIASTABLE,DID,DATE(2),BLANKS

INTEGER RECNOSTATUS

DATA DBNAME/ISTORMSI/,TABLF/'EVENT'/,ALIAS/,Et/,KEY/,NAME/

*BLANKS/I '/,PGMID/'TEST'/

C READ USER-ID AND PASSWORD OF USER RUNNING PROGRAM AND

C START AND DATES FOR RETRIEVAL

READ(5,10) USERID,PASSWODATE

10 FORMAT(A6, IX.A4 /12A6)

C CONNECT TO THE INTEGRATED DATA BASE MANAGEMENT SYSTEM

CALL IDBMS('ENTER',STTUSPGMIDUSERIDPASSWD)

IF(STATUS.GT.O) GO TO 9000

C eIND START AND END DATE NAMES TO DATE ARRAY FOR USE IN STRINGS
CALL IOBMS('BIND',STATUS,9SDATE '-DATE(1))

IF(STATUS.GT.0) GO TO 9000

CALL IDBMS('BIND'STATUS,'EDATE ',DATE(2))

IF(STATUS.GT.0) GO TO 9000

C ATTACH TO STORMS DATA RASE FOR PROCESSING

CALL IDBMS('ATTACH',SIATUSDBNAME)

IF (STATUS.GT.0) GO TO 9000

C ASSIGN ALIAS NAMEtEt TO EVENT TABIE IN STORMS DATA BASE

CALL IDBMS(fUSEtSTATUSALIASTABLE)

IF(STATUS.GT.o) GO TO 9000

C RETRIEVE DATA FIELDS FRUM EVENT TABLE INTO WORKSPACE TABLE
CALL IDBMS('SELECT',STATUSRECNO,'E.NAME,E.STRENGTH&I,
'E.STRTDATE GT 770531 AND E.ENDDATE LT 77090111)

IF(STATUS.GT.O) GO TO 9u0
C CALL SUBROUTINE TO READ AND PRINT ANY DATA IN WORKSPACE TABLE

IF(RECNO.GT.o) CALL WURKRD
C READ EVENT TABLE SEQUENTIALLY USING INDEX ON NAME FIELD

CALL SECRC(TAELEKEY)
C ADD NEW RECORD TO EVENT TABLE

CALL IDBMS(FINSEPT',STATUSRECNO,TABLE,'NAME=DORACLASS=HURR,
* STRTDATE=SDATEENDDATE=EDATESTARTLAT=20.SENDLAT=41.7,
* 	 STARTLON=300,ENDLON=J09.7n)

IF(STATUS.GT.O) GO TO 9000
C COPY CURRENT CONTENTS OF EVENT TABLE TO A DATA FILE
C SET DATA IDENTIFIER (DIO) TO BLANKS TO INDICATE COPY
C FROM TABLE TO NEW DATA FILE

DID=BLANKS
CALL I0SMS('COPY',STATUS,DIUTABLE)
IF(STATUS.GT.O) GO TO 9000

C DISCONNECT FROM THE INTEGRATED DATA iASE MANAGEMENT SYSTEM
9999 CALL IDBMS('EXIT',STATUS)

IF(STATUS.GT.0) WRITE(6,9010) STATUS
STOP

C ERROR HANDLER
9000 WRITE(6,9010) STATUS
9010 	FORMAT('O',1OX,'IDRMS ERROR - STATUS CODE = '14)

GO TO 9999

END

Figure 5-1: Using the Application Program Command Language

5-30

http:STARTLON=300,ENDLON=J09.7n

SUdROJTINE WORKRU

DIIAENSION NAWE(3)

INTEGER STATUS

LUGICAL*1 WKAPEA(16)

EOUIVALENCE (NAM(i)tKAREA(1)),(STRENWKAREA(13)I

C RETRIEVE DATA FROM WOUKbPACE TABLE

10 CALL IDUMS(IFETCHIsSTATUS,!NAME.STREN;TH1,.WKAPEA)

I&(STATUS) 9999520,9000

6) vV ITE(6,30) NAME.STREil

JO FORMAT('01,sX93A4SK, 4)

GJ TO 10

C ERROR HANDLER

9000 WITE(6s010) STATUS

9010 FURMAT('01t+OXfFETCH ERROR - STATUS CODE =c94)

999q 	RETUPV

E INII

SUBRCLTINE SECPD(TPELEiKEY)

DIMENSION NAME(3)

R~FL*b TABLE,KEY

INTEGER STATUS

LOGICAL%1 WKAREA(20)

EUUIVALENCE (C[_ASS, +KAPEA(l))g(SLAT WKAREA(5))-(EL 4TqKAREA(Q))q

(SLOOJtWKAREA(13))*(ELON,wKAREA(17))

C LOCK EVENT TABLE PRIOR [0 SEQUENTIAL RETRIEVAL

CALL IDBMS(ILOCKF.STATUS.TABLEqvREAD)

IF(STATUS.GT.O) Go TO 9000

C SET KEY RETURN ARGUMENT TO
BINARY ZEROS 4ND STATUS NEGATIVE TO-

C START READING AT RECURD
IN EVENT TABLE CONTAINING LOWEST NAVE

DO 10 "I=1,3

NAME (I)=0

10 CONTINUE

STATUS=-1

C RETRIEVE FIELDS FROM RECORL IN EVENT TABLE WITH NEXT HIGHEST NAME

dO CALL IDBMS('GET',STATUSTABLEKEYsNAME,'CLASSSTARTLATENDLAT,

* 	 STARTLONENDLON#',WKAREA)
IF(STATUS) 9999,30,9000

30 WRITE(6,40) NAME.CLASbgSLATSLONELATELON
40 FORIAAT('O',lOX,3A4,3X,A4i2(5X,2(F6.2,2))I

Gd TO 20
C ERROR HANDLER
9000 WRITE(6,9010) STATUS

9010 FORMAT('O'IOX,'IDHMS ERROR
- STATUS CODE = ',14)

C UNLOCK EVENT TABLE

9999 	CALL IDBMS('UNLOCK',STATUSTABLE)

IF(STATUS.GT.0) WRITE(6,9010) STATUS

RETURN

END

Figure 5-1 (Continued): Using the Application Program Command

Language

5-31

the EVENT table has a B-tree index associated with it which

has been defined on the data field NAME. Excerpts from an

application program which accesses the EVENT table are shown

in Figure 5-1.

5.6 Commands Which Access Data Files

The Application Program Command Language contains several

commands which are available only to application programs (and

not to interactive users). These commands provide an appli

cation program with the ability to access and create data files.

The nine commands in this category are:

OPEN - open an existing data file for input or a new

data file for output.

CLOSE - close a data file.

READ - copy a data record (or portion thereof) into

an indicated work area.

WRITE - output a data record (or portion thereof) from

an indicated work area.

SEARCH - scan a data file record-by-record to locate a

specific character string.

GETHEAD - fetch the header record from a data file in

system standard format.

PUTHEAD - output a header record to a new data file.

GETHIST - fetch a history record from a data file in

system standard format.

PUTHIST - output a history record to a new data file.

The last four commands will not be accepted by the Integrated

Data Base Management System unless the data file referenced by

the operation is known to be in a system standard format. The

following subsections describe each of the commands for handling

data files and gives the calling sequence for each.

5-32

5.6.1 The OPEN Command

The OPEN command logically connects a data file to an

application program for processing. If the <access mode>

argument indicates that a new data file is to be created, the

resultant file will always be' a temporary on-line file, regard

less of the format. The owner of this file will be taken

from the user-id in the ENTER command by which the application

program became connected to the system. If an OPEN is issued

against a data file which has not been loaded on-line and for

which no system standard format version exists then the OPEN

operation shall be aborted. The OPEN command is coded as

follows:

CALL IDBMS('OPEN',<status>,<did>,<format>,<access mode>)

where <status> is as previously defined and:

o 	<did> is a variable which contains the identifier of the

data file (if an existing file) or else will receive the

identifier assigned to the file (if a new file is being

created).

* <format> is an alphanumeric variable whose contents define

the system standard format in which a new data file is to

be written or which receives the format type of an existing

data file which is to be read.

* 	<access mode> is an alphabetic literal or variable which

defines the way in which the application program intends

to access the data file being opened. The <access mode>

argument has three valid values: INPUT, OUTPUT and OUTIN.

Their meanings are as follows:

INPUT - The application program intends to read an
existing data file identified by the data

identifier specified in the <did> argument.

The format of the existing data file will be

returned in the <format> argument.

OUTPUT - The application program intends to create a

new data file. The format in which the new

data file is to be written is defined by the

<format> argument. The data identifier

5-33

assigned to the new data file by the system

will be returned in the <did> argument.

OUTIN - The application program intends to create a new

data file and also modify the new data file.

The <format> and <did> arguments are processed

as described for the OUTPUT mode.

5.6.2 The CLOSE Command

The CLOSE command logically disconnects a data file from

an application program. If the data file being closed is a

new data file, an entry is created for the data file and is

inserted in the Data File Catalog. The CLOSE command is coded

as follows:

CALL IDBMS('CLOSE',<status>,<did>)

where <status> and <did>-are as previously defined.

5.6.3 The GETHEAD Command

The GETHEAD command causes a header record from a data

file in one of the system standard formats to be retrieved

and returned to the application program. The GETHEAD command

can be issued at any time following an OPEN command for the

data file and preceding a CLOSE command. However, if the

GETHEAD command follows one or more GETHIST or READ commands,

the data file is repositioned by the system at the physical

beginning of the data file prior to attempting to read the

header record. The GETHEAD command will be rejected if the

data file is not in one of the system standard formats. The

GETHEAD command is coded as follows:

CALL IDBMS('GETHEAD',<status>,<did>,<work area>)

where <status> and <did are as previously defined and:

5-34

<work area> is a variable which defines a contiguous

area of main storage within the application program

into which the header record w'll be stored. The work

area must be large enough to contain the entire header

record.

5.6.4 The GETHIST Command

The GETHIST command causes a processing history record

from a data file in one of the system standard formats to

be retrieved and returned to the application program. The

initial GETHIST command issued for
a data file will return

the first processing history record, if any exist, to the

application program. Subsequent GETHIST commands will return

succeeding processing history records to the application

program in the order in which they appear in the data file.

If a GETHIST command follows a READ command, the system

will position the data file to the second record before

attempting to retrieve the processing history record. It is

not necessary that any GETHIST commands be issued by an

application program. It is possible for an application pro
gram to open a data file that is in system standard format,

process The data file and close it without ever retrieving a

processing history record. The GETHIST command will be re
jected if the data file is not in one of the system standard

formats. The GETHIST command is coded as
follows:

CALL IDBMS('GETHIST',<status>,<did>,<work area>)

where <did> and <work area> are as previously defined and:

* 	<status> is a binary integer variable which, upon return

from the Integrated Data Base Management System, will

contain an integer value indicating whether or not the

command was executed successfully. As in the <status>

argument for other commands, a code of zero indicates

successful execution while a positive code indicates

unsuccessful execution and defines the error condition.

However, for the GETHIST command, a negative status

5-35

code may be returned indicating the end of the processing

history records has been encountered. A negative status

code value will be returned for the first GETHIST

command issued if the data file contains no processing

history records.

5.6.5 The PUTHEAD Command

The PUTHEAD command causes a header record to be written

on a new data file. A PUTHEAD command must be issued prior

to issuing a PUTHIST or WRITE command for the data file.

Subsequent PUTHEAD commands can be issued by the application

program. They will overwrite the existing header record if

this capability is supported by the operating system for the

peripheral storage device on which the data file is being

written. The PUTHEAD command is coded as
follows:

CALL IDBMS('PUTHEAD',<status>,<did>,<work area>)

where <status> and <did> are as previously defined and:

* <work area>
is a variable which defines a contiguous

area of main storage within the application program.

Prior to issuing the PUTHEAD command, the header record

must be constructed in the work area.

5.6.6 The PUTHIST Command

The PUTHIST command causes a processing history record

to be written on a new data file.
Unlike the PUTHEAD command,

all processing history records must be written before a single

data record is written, and any PUTHIST commands issued after

a WRITE command will be rejected by the system. Each PUTHIST

command will cause precisely one processing history record

to be written on the data file, immediately after the previous

history record. The PUTHIST command is coded as follows:

CALL IDBMS('PUTHIST',<status>,<did>,<work area>)

5-36

where <status> and <did> are as previously defined and:

* 	<work area> is a variable which defines a contiguous

area of main storage within the application program.

Prior to issuing the PUTHIST command, the processing

history record must be constructed by the application

program in the work area. Alternatively, the work area

might 	be one which was specified in a previous GETHIST

command thus causing the transfer of an exsiting pro
cessing history record from an existing data file to a

new data file.

5.6.7 The READ Command

The READ command causes a data record, or portion there

of, from a data file to be retrieved and returned to the

application program. The READ command need not be preceded

by either a GETHEAD or GETHIST command. It can be issued

for data files in one of the system standard formats or in

their original data file format. To an application program,

the data records in a data file appear to be numbered se

quentially froml to N where N is the number of data records

in 	the data file. The data record retrieved by a READ

command is a function of the integer value placed in the

<record no> argument described below. All,or any part,of

the retrieved record can be returned to the application pro

gram. This is controlled by the <start> and <length> argu

ments described below. The READ command is coded as follows:

CALL IDBMS('READ',<status>,<did>,<record no>,<start>,<length>,<work area>)

where <did> is as previously defined and:

* <status> is a binary integer variable which, upon return

from the Integrated Data Base Management System, will

contain an integer value indicating whether or not the

command was executed successfully. As in the <status>

argument in other commands, a code of zero indicates suc
cessful execution while a positive code indicates unsuc
cessful execution and defines the error condition.

5-37

However, for the READ command, a negative status code may

be returned if, in an attempt to position the data file

to the data record specified by the <record no> argument,

the end-of-file is encountered.

* 	 <record no> is a binary integer variable whose value

indicates the relative position of the data record to

be retrieved from the data file. If it contains zero,

the record retrieved will be the data record immediately

following the last data record retrieved, except for the

initial READ command, in which case, the first data record

in the data file will be retrieved. If the <record no>

argument contains a positive integer, the data file

will be positioned, either forward or backward, to that

data record prior to retrieving the data record. A

negative value in the <record no> argument will cause the

READ command to be rejected.

*
 <start> is a binary integer variable which indicates

the first byte in the retrieved data record that is to

be returned to the application program. If the <start>

argument contains zero, the first byte returned in

the work area will be the first byte in the retrieved

record. If it contains a positive integer, i, the

first byte returned in the work area will be the ith

byte in the data record. If the start byte exceeds

the number of bytes in the data record, the READ comm
and will be rejected.

<length> is a binary integer variable which indicates

the number of bytes to be returned to the application

program. If the <length> argument contains zero, the

remainder of the retrieved record, beginning with the

start byte, is returned. If the length plus the start

byte exceeds the length of the data record, the portion

of the data record beginning with the start byte and

going to the end of the record will be returned.

<work area> is a variable which defines a contiguous

area of main storage within the application program

into which the retrieved data record, or portion thereof,

is stored. The portion of the data record returned in

the work area is defined by the <start> and <length>

arguments. The size of the work area must be greater

than or equal to the number of bytes specified by the

<length> argument unless it is zero. In which case,

its size must be greater than or equal to

(record length - <start> + 1).

5-38

5.6.8 The WRITE Command

The WRITE command causes a data record, or portion

thereof, to be written to
a new data file. The initial

WRITE command issued by an application program must be pre
ceded by a PUTHEAD command but need not be preceded by any

PUTHIST commands. However, if any processing history records

are to be placed in the new data file, they must all be

written, using the PUTHIST command, before the first WRITE

command is issued.
As with the READ command, the data

records in
a new data file appear to be numbered sequentially

from 1 to N where N is the number of data records written at any

given time during the execution of the application program.

The placement of the data record to be written is
a function

of the integer value placed in the <record no> argument

described below.
Thus, existing data records can be overwritten

by a WRITE command. However, this
can only occur for-a data

file which is in the process of being created by the appli
cation program and only prior to the first CLOSE command

issued by the application program. All,or any part,of a

data record can be written to a data file. Any portion of

a new data record -which is not provided by the application

program will contain binary zeros when the data record is

placed in the data file.
 Any portion of an existing data

record which is being overwritten and is not provided by the

application program will contain the original contents of the

existing data record. The portion of
a data record trans
ferred from an application program by a WRITE command is

controlled by the <start> and <length> arguments described

below.
The WRITE command is coded as follows:

CALL IDBMS('WRITE',<status>,<did>,<record no>,<start>,<ength>,<work area>)

where <status> and <did> are as previously defined and:

5-39

<record no> is a binary integer variable whose value

indicates the relative position in the data file where

the data recordor portion thereof, is to be written.

If it contains zero, the record written will immedi
ately follow the last command written, except for

the initial WRITE command, in which case, the record

written will immediately follow the header record or

the last processing history record. A zero in the

<record no> argument may cause an existing data record to

be overwritten if a preceding WRITE command positioned

the data file such that sequential writing of data

records would cause existing data records to be over
written. If the <record no> argument contains a positive

integer which is greater than N+l, the WRITE command will

be rejected. If it contains a positive integer less

than or equal to N, the existing data record at that

relative position in the data file will be overwritten.

* 	<start> is a binary integer variable which indicates the

first byte in the data record into which data from the

application program is to be stored. If the <start>

argument contains zero, the first byte in the work area

will be stored in the first byte of the data record.

If it contains a positive integer, i , the first byte

in the work area will be stored in the ith byte of

the data record. If the start byte exceeds the number

of bytes in the data record, the WRITE command will be

rejected.

<length> is a binary integer variable which indicates

the number of bytes to be stored in the data record.

If the <length> argument contains zero, data is stored

in the remainder of the record, beginning with the start

byte. If the length plus the start byte exceeds the

length of the data record, data are stored in that portion

of the record beginning with the start byte and going

to the end of the record.

<work area> is a variable which defines a contiguous area

of main storage within the application program from

which data are transferred to a data record. The portion

of the data record to which the contents of the work area

are transferred is defined by the <start> and <length>

arguments. The data to be transferred must be placed

into the work area by the application program prior to

issuing the WRITE command. The size of the work area

must be greater than or equal to the number of bytes

specified by the <length> argument, unless it is zero.

In which case, its size must be greater than or equal

to (record length - <start> + 1).

5-40

5.6.9 The SEARCH Command

The SEARCH command initiates a record-by-record scan

of a data file, or portion thereof, to locate particular data

values. The SEARCH command need not be preceded by any other

command except an OPEN command for the data file to be searched.

The SEARCH command scans only data records and can be issued

for data files in one of the system standard formats or in

their original data file format. As with the READ and WRITE

commands, the data records in a data file appear to be

numbered sequentially from 1 to N where N is the number of

data records in the data file. The SEARCH operation will

begin with the record immediately following that designated

in the-<record no> argument. Each data record will be

retrieved in turn and the portion of the retrieved record

defined by the <start> and <,length> arguments will be compared,

as defined by the <comparison operator> argument, with the

contents of the work area. When the result of the comparison

is true, the SEARCH operationwill terminate and the record

number of the record satisfying the comparison will be returned

in the <record no> argument. It should be noted that the

same contiguous string of bytes from each data record retrieved

will be used in the comparison, as determined by the <start>

and <length> arguments. For example, if the <start> argumnt

contains 6 and the <length> argument contains 4, then bytes

6, 7, 8 and 9 (and only those bytes) from each record will be

compared with the contents of the work area. The SEARCH

command is coded as follows:

CALL IDBMS('SEARCH',<status>,<did>,<record no>,<start>,<length>,

<comparison operator>,<work area>)

where <did)> is as previously defined and:

5-41

<status> is a binary integer variable which, upon return

from the Integrated Data Base Management System, will

contain an integer value indicating whether or not the

command was executed successfully. As in the <status>

argument in other commands, a code of zero indicates

successful execution while a positive code indicates

unsuccessful execution, and defines the error condition.

However, for the SEARCH command, a negative status code

will be returned if an end-of-file was encountered

before a data record was found for which the comparison

was true.

<record no> is a binary integer variable whose value in
dicates the relative position of the data record after

which the SEARCH operation will begin. If it contains

zero, the SEARCH operation will begin with the first

data record in the data file. If it contains one, the

SEARCH operation will begin with the second record

and so on. If a data record is found for which the

comparison is true, the record number of that record

will be returned in the <record no> argument. Since

the SEARCH operation begins with the data record imme
diately follqwing that specified by the input value of

the <record no> argument, a search can be continued

following a successful comparison by using the value

returned in the <record no> argument as the input value

for the-next SEARCH command. If an end-of-file-is

encountered during the SERACH operation, the contents

of the <record no> argument will not be modified.

" 	 <start> is a binary integer variable which indicates

the first byte in each data record that is to be compared

with the contents of the work area in the application

program. If the <start> argument contains zero, the

comparison will begin with the first byte in each data

record. If it contains a positive integer, i , the first

byte that is compared is the ith byte in each data

record. If the start byte exceeds the number of bytes

in each data record, the SEARCH command will be rejected.

* 	 <length> is a binary integer variable which indicates the

number of bytes in each data record to be compared. If

the <length> argument contains zero the remainder of

each record, beginning with the start byte, is compared

with the contents of the work area. If the length plus

the start byte exceeds the length of each data record,

the portion of each data record beginning with the start

byte and going to the end of the record will be compared.

* 	 <comparison operator> is a two byte alphabetic literal

or variable which defines the comparison operation to

be performed between that poriton of each retrieved

5-42

data record defined by the <start> and <length> arguments

and the contents of the work area in the application program.

The valid comparison operators are EQ, NE, LT, LE, GT

and GE.

9 	<work area> is a variable which defines a contiguous

area of main storage within the application program

whose contents are compared with all or a portion of

the contents of each retrieved data record. The data

to be compared must be placed into the work area by

the application program prior to issuing the SEARCH

command.
The size of the work area must be greater than

or
equal to the number of bytes specified by the <length>

argument, unless it is zero.
 In which case, its size
must be greater than or equal to
(record length - <start> + 1).

5.7 Miscellaneous Commands

Commands in this category do not fit easily into any of

the previous categories of commands. Currently, only one

command is included in this category, the FORMAT command.

However, other commands may be added to this category as

required.

5.7.1 The FORMAT Command

The FORMAT command permits an application program to

determine which copies of a data file currently exist and in

what format. By accessing the Data File Catalog, this

command will indicate whether or not an original off-line

version of the data file exists and, if so, in what format;

whether or not an on-line version exists and, if so, in what

system standard format; and whether or not an off-line, backup

version exists in system standard format. The FORMAT command

is 	coded as follows:

CALL IDBMS('FORMAT',<status>,<did>,<original copy>,<on-line copy>,

<backup copy>)

where <status> and <did> are as previously defined and:

5-43

o 	 <original copy> is a variable which, upon return from
the Integrated Data Base Management System, will contain
an indication of whether or not an original copy of the
data file exists on magnetic tape and, if so, in what

format. If no such copy exists, spaces (blanks) will
be returned. Otherwise, a character string indicating
the original data file format in which the tape file
exists will be returned.

* 	 <on-line copy> is a variable which, upon return from the

Integrated Data Base Management System, will contain

an indication of whether or not a copy of the data file

in system standard format exists on a direct access

device and, if so, in which system standard format. If

no such copy exists, spaces (blanks) will be returned.

Otherwise, a character string indicating the system

standard format (e.g., gridded, image, etc.) in which the

on-line copy exists will be returned.

* 	 <backup copy> is a variable which, upon return from the

Integrated Data Base Management System, will contain an

indication of whether or not a copy of the data file in

system standard format exists on magnetic tape and, if

so, in what format. If no such copy exists, spaces

(blanks) will be returned. Otherwise, a character string

indicating the system standard format in which the backun

copy exists will be returned. If both an on-line copy

and a backup copy exist, the returned contents of this

argument will match that of the <on-line copy> argument,

since both copies must be in the same system standard

format.

5-44

SECTION 6 - THE PHYSICAL STORAGE OF TABULAR DATA

6.1 The Tabular Data Storage Area

All data managed by the "front end" of the Integrated Data

Base Management System will be logically organized into tables.

These tables may have one or more indices associated with them.

All tables and indices maintained by the relational front end

of the system must be stored on one or more direct access

devices (drums, disks, data cells, etc.). All direct access

space which has been allocated and initialized at system

generation time for the storage of tables and their associated

indices is referred to as the tabular data storage area. The

tabular data storage area is subdivided into physical pages

and a page map is constructed at system generation time which

relates physical pages to a specific direct access device.

6.2 Physical Pages

The basic unit of storage for data managed by the "front

end" of the Integrated Data Base Management System will be the

physical page -- a fixed size block of bytes capable of being

rolled into or out of main memory with a single I/O command.

In certain computers (e.g., DEC's PDP-Il) the physical page

size is predetermined by the machine architecture. Where

there are no constraints imposed by the mainframe architecture

itself, the main considerations in choosing a physical page

size are (1) that there should be an integral number of pages

per track on the direct access device and (2) if the direct access

device is such that a track is divided into sectors, there

should be an integral number of sectors per page. Within

these two constraints, the normal desire will be to make the

physical page size as large as possible to cut down I/0

requests during record-at-a-time processing. However, it must

be recognized by the system implementors that when the page

size is too large the number of physical pages which can reside

in main memory simultaneously will be limited and that this

6-1

can lead to thrashing* problems for multiple users. Notice

that the size of the physical page is determined solely by hard
ware considerations and not by data-related considerations,

such as typical record size.

Physical pages will be associated with a unique physical

page id identifying its location on disk. There are two

approaches which can be used:

(1) Assign consecutive numbers to physical page locations

following some order and use an auxiliary table or

system function to map physical page id's into direct

access device addresses (and, incidentally, to do some

checking for validity).

(2) Create a physical page id directly from the address,

for example, by concatenating disk pack number, cylinder

number, track number, and sector number, if used.

A choice between these two alternatives will have to be made

at implementation time. The primary tradeoff will be bezween

number of bytes required to store a physical page id vs. extra

time and core required for page id decoding, and these cannot

be analyzed until machine and on-line mass storage specifica

tions are known.

One physical page id which will not be used is zero. If,

in the humbering scheme, it makes sense to have a "zero-th" page,

that page will be reserved for system-use only and will not be

used to bold data. Hence, a physical page id of zero can be

used as a "null pointer" to indicate the end of a linked list.

6.3 Managing Mass Storage

Depending upon the sophistication of the operating system

on which this system is implemented, it may or may not be

*"Thrashing" describes a condition where throughput has degenerated

due to a higher demand for pages in core than can be accommodated.

6-2

advantageous to make use of the machine's own file handing

system to manage mass storage. By far and away the easiest

approach would be to have each relation implemented as a single

on-line file, where the files are maintained by the machine's

operating system. Such a file would be constrained by the DBMS

software to grow or shrink one physical page at a time, and an

addressing scheme based on physical page id within file would

have to be designed. This in turn would have an impact on the

numbering scheme for selecting physical page id's.

In the absence of precise knowledge as to the operating

system under which the DBMS will be implemented, the conserva

tive decision is to assume that the DBMS will have to handle

its own disk management. The DBMS can view the physical pages

as ,beingof two types: free or in use. Those pages which

are in use are linked to a Relation Control Block and those

which are free are also chained together in a last-in-first

out singly-linked list, as depicted in Figure 6-1. To

reserve a free page, the system simply removes the first page

from the chain, while liberating a given page merely requires

saving a link to the first free page and changing the head

pointer to point to this new page. The system will have to

be initialized during system generation by linking all pages

in the tabular data storage area together.

6.4 Buffers and the Buffer Control Table

The existence of fixed-size physical pages requires fixed

size buffers in main memory to hold these pages. These buf

fers will be managed by a buffer control table. There will

be one entry in the table for each buffer in main memory and

each entry will contain the following fields:

(1) page number - the physical page id of the page in this

buffer.

6-3

FIRST FREE PHYSICAL PAGE

~SECOND FREE
PHYSICALAGE

C

0
LAST FREE PHYSICAL PAGE

Figure 6-1: Linked List of Free Pages

6-4

(2) update flag - indicates,whether the contents of the

page have been altered.

(3) hold flag - indicates whether the user expects to have

further need of this page or not.

(4) LRU counter - used to identify the least-recently used

physical page in main memory.

(5) user id - of the user currently accessing this page.

When an active user wishes to access a physical page, the

system begins by searching the buffer control table to deter

mine whether that page is already in core. If so, then the

user turns on the "hold" flag and begins processing immediately.

If not, then the system must select a buffer and roll the

desired page into that buffer. The first choice for a buffer

is bne which is empty (an unlikely event after the first few

seconds the system is up). If there are no empty buffers,

then the system must select one of the buffers and prepare it

for use. The selection criteria (counting empty buffers
as

a "zero-th" level) is:

(1) hold flag off, update flag off (00)

(2) hold flag off, update flag on (01)

(3) update flag off, hold flag on (10)

(4) both flags on (11)

The buffer which fits into the lowest numerical category is

selected. Where two or more buffers tie as candidates for

swap-out, then the least-recently used among the candidates

is chosen. For example, if there is more than one buffer

in category two but no empty buffers and no buffers in category

one, then the leastl-recently used buffer in category two is

chosen. There is, however, one caveat -- no buffer should be

swapped out if -its user id matches that of the user request

ing a page and its hold flag is on.

6-5

The LRU counter works as follows. The system stores a

master counter. Every time a buffer is accessed,this master

counter is incremented and conied into the LRU counter for that

buffer. Then, the least-recently used page is that page with

the smallest counter.
 If the master counter overflows then

remedial action may be taken, e.g.,
divide all counters, in

cluding the master counter, by two. This would be more rapid

than subtraction (since it
can be done by right shifting each

counter one bit) although counter adjustment will normally occur

about twice as often.

6.5 The Structure of Tables

6.5.1 Storing Records on a Physical Page

There is one basic rule which guides the entire design of

the physical file structure: no record shall be split
across

physical page boundaries. One immediate consequence of this

rule is that a certain amount of space at the end of a physical

page might be wasted -- space left over which is too small to

contain another record and which, therefore, is unusable.

This wasted space is referred to as "internal fragmentation"

and it can be a significant overhead factor when records are

large relative to the size of a physical page. However, an

approach which allowed records to be split across page bound

aries would cause a considerable increase in processing time

(since some records would require two page accesses to be read)

and in the complexity of the software.
 Since the wasted frag
ment must always be smaller than the size of a record, when

records are reasonably small relative to the page size the

gains in decreased complexity and computation time are ample

compensation for the wasted space.

Another corollary of,the above rule is that the physical

page size will impose a systemic upper bound on the size of
a

6-6

record. Records which are too large to fit on a single page

must be redefined by the user to make them fit(this may result

in the user splitting his table into two or more tables).

Notice that this test would be performed by the system at the

time the table is defined and before physical pages are allocated

for record storage or an entry is inserted in the SYSREL table.

The first several bytes in a physical page will be reserved

for pointers, two of which are used to chain all of the data

pages of an on-line file into a doubly-linked list. The RCB

will have the physical page id of the first data page in the

list and the final page in the list, and each data page will

have the physical page id of its predecessor and successor in

the list. The forward pointers facilitate look-ahead buffer
ing when processing the file on a record-by-record basis.

When a data page is brought into core, the system can retrieve

the page id of the next page in the chain from the forward

page pointer, locate a page buffer, and overlap bringing in the

next page with processing the current one.

The records are stored in the remainder of a page following

the pointers. Each record will be preceded by a bit map show
ing which fields in the record are null. The record itself

will be stored beginning at the next byte boundary after the

bit map. Within a bit map a zero will indicate a null field

and a one will indicate a non-null field. Since a string of

n ones represents the integer (2 -l). the test for no null

fields is straightforward.

Figures 6-2a and 6-2b depict record storage within a

physical page and the linked list structure of a table,

respectively.

6-7

. ! Recordl Recoird I Recordl

(unusable)-#'

Figure 6-2a: Storage of Records Within a Physical Page

RCB
Domain

Extension

istPhysicalPage

2nd Physical Page

Last Physical Page

Figure 6-2b: Physical File Structure for Tables

6-8

6.5.2 Holes in a Page

The presence of a bit map associated with each record makes

it an easy matter to delete a record merely by setting the bit

map to all zeros. This creates a "hole" inside a data page,

which can be filled during a later insert operation. To save

time locating these holes they will be chained together in a

linked list within a page, and pages with holes in them will

be placed on a last-in-first-out, doubly-linked list. Note

that the order of pages in the list of pages with holes in them

will not necessarily correspond to the sequence of pages in the

data page list.

The within-page list of holes will be ordered on ascend

ing location within the page. This will permit the system to

collapse adjacent holes into a single large hole using standard

dynamic core allocation algorithms. * Since space within a hole

is not otherwise being used, the first couple of bytes can be use

to hold the size of the hole and a pointer to the next hole in

the chain.

The use of a doubly-linked list makes it relatively easy

to delete a page from the list. This can happen in two ways:

(1) the last hole in the page has been filled by an insertion

or (2) the only record in a page has been deleted.

If we assume that insertions take place only in the first

page in the list of pages with holes in them then the double

linked list is slightly inferior to using a singly-linked list.

However, deleting an empty page from the list can come anywhere

in the list and would be quite expensive without the existence

of a back pointer to the page's predecessor (this is why the

regular list of data pages is also double-linked, since the

empty page must be deleted from that list as well).

Specifically, Algorithms A and' B in section 2.5 of Knuth20 .

6-9

Figure 6-3 depicts the pointer structure within a table.

Note that the RCB needs pointers to both ends of the primary

list of data pages since new pages must be added to the end of

the list, while the list of pages with holes needs only a head

pointer.

6.5.3 Variable-Sized Records

The physical page structure described in this section can

be adapted for use with variable-sized records (provided that

the records are shorter than a physical page). There will be

four major differences:

(1) The size of the wasted fragment at the end of a page

will vary, and will normally wind up being treated as

a hole.

(2) The size of holes will be more variable.

(3) Insertions will often require multiple probes into the

list of pages with holes.

(4) Record size, as well as the bit map, must be stored in

the record header.

However, the main outline of the data structure, algorithms

for maintaining the two lists of pages, and even the algorithms

for maintaining the within-page list of holes can be used

unaltered.

6.6 Access Method Superstructures

6.6.1 B-Trees

6.6.1.1 Description

The use of tree-structured indices with two-way decision

nodes (i.e., binary trees) appears to have been invented in the

6-10

Pointer to

Last Physical

Page

Pointer to 3rd

Page with a

Hole

Pointer to next
to-last Physical

Page with a hole

Figure 6-3:

Domain

Extension

(in core)

t
Pointer to 1s Page

with a Hole

t
Pointer to 1s Physical Page

o0 Ist Physical Page

0

2nd Physical

Page

it
Page

with a hole

03 r d 	Physical Page

s t
Si Page with

a hole

o 	 Last Physical Page

N"-Last Page with a hole

Pointer Structure of a Table

6-11

1950's*. More recently this notion has been generalized to

.
three-way decision nodes and from these to m-way decisions1

An m-way decision tree is called a "B-tree" and it is formally

defined as follows:

(1) 	Every node has m or fewer sons.

(2) 	Every node - except the root and the leaves - has

at least 2 sons.

(3) 	All leaves are on the same level and have no sons.

(4) 	The root has at least 2 sons (unless it is a leaf).

(5) 	 A non-leaf node with k sons has k-l keys.

A node with j+l pointers P P ..' P. and j keys
0' -I1 ' 3
KI < K2 < . . < K. can be depicted as:

Po KIPlK P 2 . Kj3
P0K 1 2
.*K .p.

To search for a key K in the above node, simply test K

against Ki for i = 1, 2, ... , j If K = Ki then we are

done, otherwise if K < K. search for K in the node whose
1

address is Pi-i Finally, if K > K. go search the node

whose address is P * If the above node is a leaf, so that

the pointers are null, then either "K will equal K. for

some i or else K is not in the file.

B-tree indices lend themselves to large paged files where

both the index and the file must be stored on a direct access

device. B-trees are quite efficient for search purposes, since the

number of disk accesses required to locate a key will be less than or

equal to the number of levels in the tree. A worst case

analysis of the maximum number of levels L in an m-ary tree

* 	 21
A history can be found in section 6.2.2 of Knuth

6-12

as a function of the number of records (N) and -m is only

2 1

moderately difficult to compute:

L < 1 + (log2N-1)/(log92m-l)

In other words, with m as small as 32 (=25) it is possible

to locate a single record out of two million with at most

five disk accesses.

Not only are B-trees efficient for searching, they are

also easy to update. Inserting a new key and pointer into a

less than full node is a simple matter of shifting keys and

pointers already in the node to perserve the ordering of the

keys. If the node is full (i.e., the node contains m-1 keys)

then the node must be split to make room for the new key and

pointer. Let K' be the middle key of the m keys (counting

the new one). Then an unused node P' is fetched and all

keys and pointers to the right of K' are moved into P' and

K' and P' are inserted into the father of P . This pro

cedure is illustrated in figure 6-4 for m equal to
seven.

If P has no father (i.e., P is the root), then in order to

accomodate the split node a new root containing P , K' , and

P' must be created (hence the exception to rule 1 described

in rule 4). This adds a level to the tree. It can be shown21

that the likelihood of any split is less than 2/(m-2).

Deletions are only slightly more difficult than insertions.

When a node falls below the minimum size due to a deletion

the first step is to examine the node's right brother. If that

node is above the minimum, then keys and pointers can be taken

from that node to balance the two. If there is no right

brother, or if the right brother is also of minimum size, then

try to take some keys and pointers from the left brother. If

6-13

... .. P

0a
o 1 K2 P2 K3 p3 K4 p4 K5P5K6P

Insert (KnewPnew)

where K 1 <Knew <K2 STEP 1: Split Node

Sp......

Po

0 K1 P1 Knew Pnew K2 P2

F3 K4 P4 K5 P5 K6 P6

SSTEP 2: Insert into Father

A

PK3 P'

P 0 K1 P1 Knew Pnew K P2

P3 K4 P4 K5 P5 K6 P6

Figure 6-4: Splitting a B-Tree Node During Insertion

6-14

that 	also is impossible, then this node and one brother should

be collapsed into a single node and the appropriate key and

pointer deleted from the father.

6.6.1.2 Implementation Within the System

The concept of B-trees as outlined within the preceding

section will be extended for use within the Integrated Data

Base Managemeit System. Specifically, the following conditions

will be added to the five which define B-tree structures:

(6) 	Leaf nodes will contain entries of the form (K,T),

where T is the record identifier for the record

whose key is K . The maximum number of entries in

a leaf may be different from m , though the con

straint that a node must always be at least half

full will be observed. No pointers (except record

id's) will be stored in leaves.

(7) No recordid's will be stored in non-leaf nodes, and

therefore a search cannot terminate until a leaf

is reached.

(8) The keys stored,in non-leaf nodes will be the value

of the largest key on any leaf which is a descendant

of that node.

(9) 	Leaves will be linked together so as to preserve an

ascending key sequence.

Figure 6 -5 depicts a B-tree of order four (i.e., at most three

keys per node), where the leaves (not depicted) hold five keys

apiece and the keys are the integers 1-90. Notice that the

maximum key on each leaf (i.e., every integer between 1 and 90

divisible by 5) is repeated on precisely one non-leaf (or branch)

node with the exception of the maximum key value (90 in this

case). Fetching the recordid for key K is done by walking

down 	the tree following the same search procedure as described

6-15

Pointer to leaf

with keys 1-5

5

Pointer to leaf 115

with keys 16-20
 -2

3
Pointer to leaf

with keys 21-25 J25 F7

Pointer to leaf xo

with keys 31-35

Pointer to leaf

with keys 36-40 j40

45
40

Pointer to leaf

with keys 66-70

Pointer to leaf

with keys 86-90

Figure 6-5: A Sample B-Tree-of Order 4

6-16

previously until the leaf where K
is stored has been located,

then searching the leaf with a binary or sequential search.

Notice that the test for going to node P
 must be changed

from strict inequality to "
<", but that if K is found in

a branch node then its position in the leaf will be known in

advance. This revised B-tree structure is similar to IBM's

VSAM access method
 9 but the two methods are not identical.

The insertion algorithm outlined in the preceeding sub
section must also be modified. The first stage is a search

to locate the leaf node where the key and record id are to be

inserted. If this leaf is full then split it (keep track of

which half the key and recordid belong in), then insert this

new entry. If this key is the largest one on its page, make

the appropriate change in the father.
 If a split occurred

then insert the largest key from the left half and the address

of the right half into the father using the normal insertion

algorithm described previously. Deletion of a key and record

id entry from this modified B-tree structure is almost precisely

identical to the normal deletion procedure, except that an

additional test must be added to handle the case where a leaf

is still sufficiently full after the deletion to not warrant

shifting of entries, but where the entry deleted is the last

one on the leaf. In such a case the copy of that key in the

father (or more remote ancestor) must be altered. This is not

necessarily as complicated as it may seem, since one need

only test for equality of a key match on the way down from

the root, and save the node where the match occurred.

6.6.1.3 Enhancements

There are a number of minor improvements which can be made

to the basic B-tree structure to enhance performance. For

example, some gains could be made by going to
a binary search

on key values (since keys in
a node are in sorted order). An

alternative approach would be to use data compaction schemes.

Consider the set of keys ROBERT, ROBERTS, ROBERTSON, ROBEY,

ROBIN, ROBINETTE, ROBINSON.
With four bytes per pointer and

6-17

nine bytes per key it will require a total of eighty-eight

bytes to store these keys and their eight pointers. But a

number of different compaction schemes can cut this dramatically.

For example, one could use one byte to hold the length of the

preceeding key to be duplicated, another byte to hold the

number of bytes for the remainder of this key, then the remainder

of the key itself. The above seven keys could be compressed into:

0 6 ROBERT - ROBERT

6 1 S (ROBERT)S

7 2 ON (ROBERTS)ON

4 1 Y (ROBE)Y

3 2 IN (ROB)IN

5 4 ETTE (ROBIN)ETTE

5 3 SON (ROBIN)SON

The total storage required would be 33 bytes for the keys plus

32 bytes for the pointers, or 65 bytes all together. Another

possible compaction scheme would place the keys into a tree

form (figure 6-6) and then linearize the tree with parenthesized

notation:

(ROB(E(RT(*)(S(*)(ON)))(Y))(IN(*)(ETTE)(SON)))

I

This scheme would require only 22 bytes for the keys, plus

space for the begin-end subtree marks. Further analysis of

data characteristics would have to be made before specific

recommendations on whether to implement key compaction and, if

so, what scheme(s) to use could be made. Key compaction would

have three major impacts upon "B-tree structure":

(1) 	Binary search could no longer be used.

(2) 	The maximum number of keys per page would no longer

be fixed (i.e., it could vary from page to page).

(3) 	 Extra execution time would be required to unpack the

keys and the software to handle searches and in

sertions would be more complex.

6-18

ON

Figure 6-6: A Prefix Tree Compression for Seven Keys

(Heavy Line Indicates "ROBERTS")

6-19

it has been noted that there is no a priori need for a fixed

value of m -- the same insertion, deletion, and search algo

rithms can be used with the more nebulous rule that each node

(other than the root) in the tree should be at least half

full. The advantages of key compression would be that fewer

pages would be needed to store the same set of keys and this

could quite possibly result in fewer levels in the tree (i-.e.,

fewer disk accesses to locate a specific entry). A simulation

study24addresses the impact of key compaction on an access

method superstructure (VSAM) similar to the one proposed here.

McCreighr 5 also discusses algorithms for handling variable

sized andbr compacted keys.

One particular drawback of B-trees is the possibility that

the root will be very small -- it can, after all. have as few

as two pointers and a single search key. W7hen this happens

an extra disk access can be required just to make a binary

decision. This can be avoided by resisting node splitting

for the root. One method for doing this is a variant of the

B-tree called the B*-tree, which resists node spliztng at

all levels by preferring to balance nodes between brothers

(i.e., passing nodes off to brothers of the overfilled node)

and splitting only when the brothers are full. In B*-trees

the number of sons range between m and 2/3 m, however this does

not necessarily deal with the problems of the root--a node

which by definition has no brothers. Shneiderman35 suggests

allowing the root node to have an overflow page (using Pm To

point to the overflow node). In such a scheme the root would

not split until it had 2m sons. If such a tree has L levels

and the root has m+n sons, then the probability that a search

would require L disk accesses is m while the probability

m+n

that a search would take L+1 disk accesses is n By
n+-n

contrast, if the root had been split after the m+l inser

tion into the root, then all of the searches would take L+l

disk accesses.

6-20

6.6.1.4 Arguments Against B-Trees

A recent article by Stonebraker and Held 1 7. compared B-trees

rather unfavorably to ISAM-like, static tree-structured indices.

It is felt that their analysis is incomplete and that

many of the arguments advanced by Stonebraker and Held simply

do not apply in the anticipated operating environment for the

proposed Integrated Data Base Management System. Specifically,

Stonebraker and Held are supposing that the files (tables) will

have precisely one key and be indexed with precisely one tree

structure.
The system being designed makes no such suppositions,

and needs a file structure capable of handling zero, one, two,

... an arbitrary number of tree-structured keys. Moreover,

Stonebraker and Held further suppose that the records can be

input initially to the system in sorted sequential order

so
that the leaves will have their entries in sorted sequential

order.., By contrast the entries for records in the system

being designed will most certainly not come in initially in

sorted sequential order. This is one of the true beauties of

B-trees. If the leaves are accessed one by one from left-most

leaf to right-most, it will be seen that the entries are
in

sorted sequential order, yet when the entries are inserted it

never takes more than m-2 compares and m-2 physical shifts

of entries. (Moreover, the sum of shifts and compares is m-l).

Another assumption of the Stonebraker and Held article

which will not necessarily hold in the operating environment

of the proposed Integrated Data Base Management System is that

insertions will come into the system at a steady pace after

the initial file creation. Instead,a situation such as depicted

in figure 6-7 can be expected. Stonebraker and Held argue

that even though later insertions must go into overflow areas,

reducing search efficiency, it will be possible to justify

periodic file reorganization. It is not clear that the expected

6-21

0

/ -.

Initial
Creation

TIME

Reads :

Deletes:

Inserts:

Figure 6-7: Projected Pattern of Usage for Typical Tables in the

System (Other than Directories)

6-22

patternof inserts/deletes in the proposed environment will

justify the cost of reorganization.

The presence of overflow pages in the static tree structure

advocated by Stonebraker and Held are its Achilles heel. Their

article compares minimum number of levels for static vs. dynamic

tree-structured indices, but what'should be compared are ex

pected number of disk accesses for the one against the other.

6.6.2 Inverted Indices

6.6.2.1 Description

.Hierarchical data structures (B-trees, binary trees) are

quite useful for efficient retrieval of data where the relation

shin between distinct key values and individual records is 1:1,

6r nearly so. However, when the ratio of distinct key values

to separate records is l:n for n somewhat greater than one,

then a set-oriented data structure is more useful. One of the

most efficient data structures for set-oriented indexing

operations is the inverted file.

An inverted index for a search key of a table consists

of two parts: a domain directory, with one entry for each

distinct value the search key adopts in this particular table

and a set of index tables, one for each entry in the domain

directory. An inverted index is depicted in Figure 6-8.

Each entry in the domain directory consists of a search key

value and a pointer to an index table which contains a list of

record id's of records in the table which have that value for

the specified key. For example, to locate all records with

the value "C" in a specified data field, one locates the entry

corresponding to C in the domain directory and thereby dis

covers the address of a list of all record id's of records which

have the value of C for that data field (i.e., record numbers

2, 7, 8, and 9).

6-23

DOMAIN

DIRECTORY

INDEX

TABLES

FILE

A4

B

DDB

E

1

10

II

15

9
12

19
20

/I
/

A

C

D

A
A.E
E

Cl
C

2 / B

t 8
7 / B1

D

17 E
JA

13

18

C
D

5 B

6

14

16

21

Figure 6-8: An Inverted Index

6-24

Inverted indices are particularly useful for retrieving

records satisfying multiple constraints. Suppose, for

example, records satisfying a combined query for LAT = 50'

AND LON = 90' and SENSOR = MSS were requested, where LAT, LON,

and SENSOR have inverted indices. This can be satisfied by

looking up the value 50 in the domain directory for LAT and

retrieving those record id's, looking up the value 90 in the

domain directory for LON and intersecting that set of record

id's with the first set (i.e., the set of record id's for LAT

= 50), and finally retrieving the record id's where SENSOR -

MSS and intersecting the sets one more time.

6.6.2.2 Logical Pages

it is not difficult to reconcile the concept of a physical

page with the requirements for data record storage and for

tree-structured indices. It is much more difficult to link

the concept of a fixed-size physical page with the highly

variable-sized,domain directories and index tables. A domain

directory might have only three or four entries (e.g., space

craft name and launch date in a table containing information

on active spacecraft) or it might have hundreds of entries.

Similarly, an index table might have only a few record id's

(the minimum is one record id since unused key values are

deleted from the domain directory) or it might have thousands

of record id's. The mechanism to decouple the variable-sized

tables from the fixed physical pages is the logical page. As

its name implies the logical page is a logical, rather than

physical, entity. Logical pages are variable-sized and do

not have a fixed physical address.

Logical pages are accessed through a logical-to-physical

map. A logical-to-physical map is a table whose entries have

the following fields:

6-25

(1) logical page number

(2) physical page number

(3) base address

(4) size

(5) old size

(6) continuation logical page

Given a logical page to locate, one begins by searching the

logical-to-physical map for that page's entry. The location

of the logical page is specified by a base address within a

physical page, where the base address points just ahead of the

page's true location. Thus to reference the ith byte in

logical page, one adds i to the base address in the indicated

physical page.

It may happen that a logical page is larger than a physical

page. In such a case the logical page is split, and the over
flow is assigned to a new logical page whose number is then

stored in the "continuation" slot in the map.

6.6.2.3 Searching an Inverted Index

All of the data structures associated with an inverted index -.

the domain directory and the index tables -- are stored on

separate logical pages. The pointer field for aan entry in

domain extension which has a B-tree index will contain a physical

page number, representing the root node. The pointer field for

an entry in the domain extension which has an inverted index

will be a logical page number, representing the logical page

which contains the domain directory. Each domain extension

must have its own logical-to-physical map, or the overhead

for searching the map will be prohibitive.

Index tables will hold only record id's, in sorted order.

Strictly speaking, there is no need for sorting the index

6-26

tables, but intersecting two sets of record id's will be made

much more efficient if they are known to be sorted. The entries

in a domain directory will be in two parts: a search key value

and a logical page number. Since the size of a field will vary

from field to field, it follows that these entries will vary in

size from domain directory to domain directory. Regardless of

entry size, however, these entries will be sorted on search key

value. At this point it is possible to describe algorithms for

searching an inverted index.

There are two types of searches to consider --
 searches

which locate all records for which a given search key takes on
a

single, specific value, and searches which locate records where

the key falls within a specified range of values. The Integrated

Data Base Management System treats the former type of search

as a special case of the latter, where the upper bound of the

range coincides with the lower bound. The search begins by

locating the .first entry in the domain directory such that the

key value in the index is greater than or equal to the lower

bound of the range and less than or equal to the upper bound of

the range. The corresponding index (logical) page is then

retrieved and its list of record id's is extracted. Since the

domain directory is presumed to be sorted, the search continues

by examining the next. entry in the domain directory and either

(1) terminating the search if the value of that entry exceeds

the upper bound of the range, or (2) retrieving the corresponding

index page, adding those record id's to the set of record id's

already extracted, and then continuing to the next entry

in the domain directory to repeat this cycle.

6.6.2.4 Maintaining Logical Pages

Deleting a record id, T, with search key value, V, from an

inverted index begins with a search for V in the domain direc
tory to retrieve the index page corresponding to V. Either T

is in that page or it is not, and if it is present then it is

6-27

removed, the index page is compacted, and the size of the index

page in the logical-to-physical map is decremented. If T is

the only entry in the index table then the entire entry for

that page in the logical-to-physical map must be deleted and

the entry for V deleted from the domain directory.

Inserting record id T with key value V is slightly more

complex since (1) V may or may not already be in the domain

directory, and (2) inserting T into an index table or V into
a

domain directory may cause overflow past the end of a physical

page or onto another logical page. If V is a new value then

the first step is to create an entry for another logical page

(the index table to correspond to V) in the logical-to-physical

map. If there is enough free space in the physical page that

contains the domain directory to hold both T and V, then the

new logical page will be placed on the same physical page as

the domain directory (to minimize physical page accesses in

later searches). If an overflow occurs then there are three

cases to consider:

(1) 	There is sufficient free space elsewhere in the page

to accomodate the overflow entry, in which case the

logical pages on that physical page are reshuffled

using Garwick'salgorithm (Knuth 20 section 2.2).

(2) The physical page is full, but there are multiple

logical pages on this physical page, in which case

the overflowing logical page is shifted to a new

physical page.

(3) 	The physical page is full and this is the only logical

page thereon, in which case the overflow is passed to

a continuation page, if one exists, or else a contin

uation logical page is begun on a new physical page.

6-28

Special care must be taken if the inserted entry comes at the

end of a logical page that has a continuation page, since

it is important to maintain the relationship that the last

entry in any given page is lower in the collating sequence

than the first entry in the continuation page.

6-29

SECTION 7 - DATA FILE HANDLING

7.1 An Overview of Data File Processing

The Integrated Data Base Management System will main
tain two different classes of data
-- tabular data, stored

in tables set up under user control and managed by what is,

effectively, a relational data base management system, and

"non-tabular" data files managed by a portion of the system

which is, in effect, a file management system. The relational

portion of the Integrated Data Base Management System is

normally referred to as
the "front end" of the system, while

the on-line and off-line data files and the file management

software are collectively referred to
as the "back end."

It is presumed that the off-line data files will contain

remotely-sensed and directly-sensed data about the earth and

its environment. The remotely-sensed weather and climate 1 5

.data shall certainlv include level three data
files and may

well include level two data files.
Nothing in the system's

design precludes the inclusion of level one data files, and a

decision on whether to include level
one and two data files

will have to be made by the Data Base Administrator in accor

dance with the needs of the user community.

Tape files will be introduced to the system by the

CATALOG command, which is an interactive command restricted to

use by the Data Base Administrator only. Each tape file

will be identified by its location (e.g.,
reel number,

physical file number) and by a format code.
 The Integrated

Data Base Management System will respond by examining its

Data File Catalog to determine whether this file duplicates

another cataloged file and, if not, then the system will

assign a unique data file identifier (did) to that file,

output the did to the DBA, and enter the file into the Data

7-1

File Catalog. However, this process will merely make the file

known to the system. Before the system can make the file

known to the user community it will be necessary for the DBA

to make one or more entries for that file in the Data File

Directory in the Global Data Base.

Once the data file has been cataloged and inserted into

the appropriate directory tables by the DBA, a user will have

The ability to retrieve sets of did's representing files of

interest to him or her by querying a particular directory

table or by querying all the directory tables at once.

The latter can be accomplished by querying the special

table name "SYSDIR" which can be imagined to be a single,

comprehensive table implicitly defined to be the union of

all directory tables projected over common columns.* Note

that 'SYSDIRwill be a virtual table and will not physically

exist.

Interactive users will not be allowed to access data

files directly from tape. A necessary intermediate step

will be for the files to be copied on-line with the LOAD

command. The on-line files created by a LOAD command will

always be in one of the system standard formats, which is

a special file format with a fixed-length header, zero or

more fixed-length processing history records, and then the

data records themselves. The header will contain a code

telling the system (and user application programs) how to

interpret the remainder of the header, and the remainder

of the header will inform the system (and user application

programs) how to interpret the remainder of the data. A

user need not LOAD an entire data file if interested in only

a portion of the file. It is proposed that the system support

three types of subfile-creating operations in conjunction

with a LOAD: SLICE, SUBSET and WINDOW. In certain types

*The union and projection operations are defined in Appendix A.

7-2

of files a data observation point can be viewed as a node

in a multi-dimensional grid, where the dimensions include

not only the x and y coordinates on the ground, but

also altitude (z) , time (t), and/or wavelength (X)

The SLICE operation will take a 2-D slice through such a file.

Since each observation point in a data file may contain

observations for more than one physical variable, the

SUBSET operation will exist to permit taking only a subset

of the physical variables recorded in the file. Finally,

the WINDOW operation will cause only a rectangular subarea

of a two dimensional file, such as a sliced grid, an image,

a cartographic terrain elevation model, etc., to be loaded.

If a data file is loaded on-line without manipulation then

it will retain its original identifier, while a new did

must be issued if one or more operations cause a subfile

to be loaded (since the contents of the on-line and off-line

files would be different).

Once a data file is on-line, an interactive user may,

if the contents of the file represent tabular data, COPY

the on-line file into a pre-defined table in the front end

of the system. Alternatively, the user may choose to mani

pulate the files further with a PERFORM command. Present

plans call for five operations to be performable: the

SLICE, SUBSET, and WINDOW operations described above, plus

a REGRID operation to cause the grid system of a multi

dimensional gridded file to be redefined and the data

observations interpolated to fit the new grid, plus a MERGE

operation to merge two data files (provided they are defined

with respect to the same axes and represent overlapping

areas). The result of a successful PERFORM will be a new

on-line data file (in a system standard format) with its

own did. This is in accordance with the principle that

all data files maintained by the system shall be read only.

7-3

As indicated above, certain operations are applicable only to

specific types of data files.
 For example, the MERGE operation

can be performed on gridded data files but not image or carto

graphic data files.

Unless converted to permanent status by a KEEP command,

all on-line files will be classed as temporary and will

be automatically purged from the on-line mass storage by

the system some fixed span of days after the last access.

A temporary on-line data file may be purged sooner than that

with a SCRATCH command, but a SCRATCH will not be permitted

on a permanent data file unless it has been backed up to

tape with an UNLOAD command beforehand. Also, the DBA may

purge all on-line and off-line copies of any file with an

UNCATALOG command.

Except for data files (e.g.,
level two GARP reports

from NOAA1 5) which are reasonable to COPY into tables, an

interactive user will
not be able to access data in data

files directly. Matters will be rather different with an

application program, which will be able to OPEN and CLOSE

data files, READ and WRITE data records, and GET and PUT

header and processing history records, as well as issuing

LOAD, UNLOAD, and COPY commands and performing file mani

pulations. An application program may OPEN a file in

input mode or output mode (in the case of the latter the

system will generate a new did), and also in "direct" mode

or "system standard mode." In system standard mode the

files being opened must be in system standard format, and will

be presumed to have a header record and could have one or more

history records as well, while in direct mode the files
are

expected to not be in system standard format.
 A file opened in

input/system standard mode may be an on-line data file or

a backed-up tape copy of an on-line file (if
the on-line

file has been unloaded and scratched). A file opened in

7-4

New Data Tapes

Off-Line Data Base

O0riginal Data Backup

Tapes Files

\I K'
A\

LO1
\

Directory Tables O

\\D a t a
Data File

. Data .
SY--D-- Catalog

LIRSYSCATL IFiles

ISLET [Fleerations OEN
{RI, PUJ

'

CLOS

1

Application

Programs

Interactive Users

Figure 7-1: Flow of Data Through the System

7-5

input/direct mode will always be read from tape in the

original data file format. Files opened in output/system

standard mode will be on-line files in system standard format

while files opened in output/direct mode will be on-line files

in a'special format* In either case the output file will

be assigned a new data file identifier by the system when

it is opened and the new file will become read-only when

closed.

Figure 7-1 illustrates data paths within the system.

The interactive data file processing commands are described

in greater detail in section 4.6, and file operations

available through the system to an application program are

described in section 5. The remainder of this section will

cover the topics of the Data File Catalog, the Data File

Directory, and system standard formats in greater detail.

7.2 The Data File Catalog

The Data File Catalog will be a system table named

SYSCATL. Like the other system tables (e.g., SYSREL, SYSUSER,

SYSDB) the SYSCATL table will reside in the Global Data

Base and will be invisible to normal users. Records may be

inserted into this table by the DBA using the CATALOG

command or by the system when a user creates a new on-line

file. Records in the catalog will change only in response

to commands such as LOAD, UNLOAD, KEEP, SCRATCH, etc.,

and cannot be edited by the DBA using INSERT, UPDATE, or

DELETE commands. This is because changes may very well

have non-obvious side effects and may require a certain

amount of collateral processing.

The most important field in the SYSCATL table will

be the one which contains the data file identifier. Since

* Described in Section 7.5.4.

7-6

virtually all references against the catalog will be based

on the did, a hierarchical (B-tree) index superstructure

will 	be established on that field, and, moreover, it will

be a 	"unique" index. That is, the software shall be prepared

to test for duplicate entries, and to reject an insertion

which would create a duplicate value for that field. Null

did's will never be accepted.

The remaining fields can be partitioned into three

groups representing data about the original off-line tape

file, data about the on-line version of the file, if any,

and data about the off-line back-up copy of the file, if

any, 	respectively. If any field in a particular group is

null 	then all in that group must be null. Any group, or

even 	any pair of groups may be null at any given time, though

it. will not be possible for all groups to be.empty, since

that 	would mean that the file does not exist at all.

The fields of the group describing the original tape

file will include:

(1) 	reel number, or some means of identifying the

tape on which it resides

(2) 	file number, or some means of identifying which

(physical) file on that tape contains this data

file

(3) 	format code

There may or may not be additional fields in this group,

depending upon the specific characteristics of the tape file

I/0 system of the computer on which this system is implemented.

Since the system will check for duplicate data files when it

inserts a new entry into the catalog it will be useful to

maintain a hierarchical index on a combined key formed by

concatenating the reel number and file number.
This 	index

7-7

need not be unique, however, since a given physical data file

may well contain more than one logical subfile. An example of

this situation would be NIMBUS-G SMMR MAP-LO tapes, where a

single six-day file contains five frames and each frame con

tains two Mercator map matrices. Thus, there are fifteen

logical subfiles of potential interest which could be derived
 ,
from a single physical MAP-LO file The individual logical

files could be distinguished from one another by having dif

ferent format codes.

Note that this group may well be null -- if the data

file in question happened to be created by the LOAD command

with a subfile operation or a PERFORM command or if the

file was created by an application program.

The fields of the group describing the on-line version

of the data file will include:

(1) name or disk address of the on-line copy of the

data file

(2) owner of the on-line copy

(3) temporary/permanent flag

(4) date last accessed

(5) format code

The existence of the name/address.field depends upon imple
mentation details and may, under certain circumstances, be

superfluous. For example, if it is decided to use
an

alphanumeric character string for the did's, and if the

operating system under which the Integrated Data Base Manage
ment System is implemented has a good file management sub

system, then one implementation approach for managing on

line data files would be to create a file name from the

did,
 open a disk file under that name using the operating

* 	 Each Mercator map could be a logical subfile and each frame
could be a logical subfile.

7-8

system, and then copy the tape file into the disk file using

normal operating system utilities.

The owner of an on-line file will be the user who

loaded it
onto disk, unless a KEEP command is later issued,

in which case the user who wants the file kept would assume

ownership of the file.
Only the owner of the file or the

DBA may SCRATCH it, although anyone may access it. If it

appears likely that disk space will become a problem then

it may be useful from the DBA's point of view to invert

the catalog table on the owner field, so that the DBA could

efficiently determine which users were making the heaviest

demands on disk storage.

Finally, the fields describing the back-up tape copy

of the file will duplicate the first group, to some
extent,

(1) reel number, or some means of identifying the

tape on which it resides
(2) file number, or some means of identifying which

file on that tape contains the data

(3) format code

The only difference between the two groups is that the

format code for this version of the file will necessarily

represent a system standard format.
 Notice that this

field is not superfluous since it is possible to imagine a

sequence of operatons which leaves this the only non-null

group of the three (e.g., a PERFORM creating the file, a

later UNLOAD, then a SCRATCH) and it will be more difficult

and time-consuming to access
the header of a tape file in

system standard format than to
access the header of a disk

file.

7-9

7.3 The Data File Directory

The purpose of the Data File Catalog is to provide

the system with the information it needs to respond to

interactive and application program data file processing

commands. It will be the function of the directory tables,

which constitute the Data File Directory, to provide in

formation to the user community about the logical contents

of data files managed by the system. Whereas the Data File

Catalog will be invisible to users (other than the DBA),

the Data File Directory, which is also contained in the

Global Data Base, will be known and visible to all users.

There will be a number of directory tables, perhaps as

many as one directory table for each class of data file

entered into the back end of the system (e.g., one directory

table for SMMR PARM files, one directory table for SMMR

MAP files, one directory table for LAIDSAT images, etc.).

The number, content, and layout of these tables will be

under the control of the DBA, who will be the only user

authorized to issue a DEFINE DIRECTORY TABLE command, the

only user with INSERT, UPDATE, or DELETE rights against

these tables, and, for that matter, the only user with

MODIFY rights against the Global Data Base. It will be

the responsibility of the DBA to tailor the definitions of

the directory tables to suit the needs of the user community.

With one exception, the Integrated Data Base Manage

ment System will treat directory tables just like any other

table maintained and managed by the system. The DBA will

be able to issue EXPAND commands, INDEX commands, INVERT

commands, etc., on directory tables as well as being able

to issue INSERT commands and DELETE commands as necessary

to reflect the changing contents of the Non-Relational Data

Base. The exception to this rule is that all directory

7-10

tables shall implicitly'become a part of the virtual oi erall

directory table, SYSDIR. SYSDIR will be a table which users

will be able to query, but which will not physically exist.

(The term for this type of table in relational data model

jargon is "view.") While updates and deletes can be made

against SYSDIR, causing modifications to be made to the under

lying directory tables, the insertion of new records into the

Data File Directory can only be made by inserting the records

into the underlying, physically existing, directory tables.

Nothing in this section should be construed to imply

that the only legitimate directory tables in the system will

be the ones set up by the DBA in the Global Data Base.

In point of fact, users may -- indeed, users are encouraged

to -- set up their own directory tables in applications or

working data bases. These directory tables may well include

files which are not included in SYSDIR, files which have

been created via PERFORM commands, for example, in response

to specific application requirements. However, such directory

tables will not be part of SYSDIR.

If a file is purged from the system via an UNCATALOG

command, then any record in any directory table which references

that file will automatically be deleted as well. This

feature will be in addition to the ability of the DBA to

issue DELETE commands against the directory tables without

altering the Data File Catalog. However, automatic directory

deletion will not occur as a function of a SCRATCH command

(unless the SCRATCH command results in the file being purged),

nor will this feature be extended to tables which are not

part of SYSDIR. Presumably, the DBA will not be purging files

which are actively in use so that the overhead of testing

all tables in all data bases for references to files being

purged would be wasted effort.

7-11

7.4 	The Data File Identifier

The link between the front end, or relational, portion

of the Integrated Data Base Management System and the back

end will be the data file identifier, or "did." Each did

will uniquely distinguish a data file managed by the

back end of the system, and each reference to a data file

in the front end of the system will be via the did.

There are a number of methods which might be employed

to generate unique did's, and this document will not attempt

to choose between them at this point since "best" almost

certainly will depend to some extent on the characteristics

of.the machine(s) and operating system(s) on which the Inte

grated Data Base Management System is implemented*. However,

three general approaches can be described:

(1) 	use a random number generator to generate a random

number between 0 and 1, then convert this random

number to a string of digits or alphanumerics

(2) 	concatenate the year and (Julian) date to create

the first five characters of an identifier, then

append two or three more digits as a counter (so

that 7819432 is the thirty-second did generated

on July 13, 1978)

(3) 	keep a universal counter and increment it each

time another did was requested by the system for

a new data file

All three of the above approaches have good points and bad

points. The random number generator approach would work well

if the back end was, in fact, implemented on a separate

*The 	reader should bear in mind the fact that the "dual

system" design of the Integrated Data Base Management

System would permit its being implemented on more than one

computer.

7-12

computer. In that case the Data File Catalog table,

SYSCATL, probably would be moved from the Global Data Base

to the data file processing software, thereby allowing the

introduction of scatter storage techniques. That is, it

would be possible to take advantage of the uniqueness of

the did field and the fact that virtually all references to

catalog entries would be via the did to "hash" the catalog

on the did field, thereby reducing the average number of

disk accesses to retrieve an entry in SYSCATL. However,

when the system is implemented on a single computer then the

increased software complexity to support scatter storage

access methods for one specific table would likely outweigh

the search efficiency advantages. A drawback of the random

number approach is that there is no guarantee that the did's

so generated are, in fact, unique. The non-uniqueness of

a given identifier would be detected when the new entry was

inserted into the catalog, and this would necessitate the

generation of another random identifier.

The two counter-based approaches can guarantee unique

ness, and while their ability to function efficiently with

scatter storage techniques would depend upon the effectiveness

of the hash function, these deterministic approaches would

be quite efficient when used with the table storage manage

ment and look-up techniques used in the front end of the

system (see Section 6), particularly when a series of data

files was entered all at once. The main drawback of these

counter-based approaches is that ihe updated counter must

be saved on a non-volatile storage medium every time a

new entry is made in the catalog, or else this approach

would be highly vulnerable to a system crash.

Just as there is more than one reasonable approach

to generating data file identifiers, so there is more

7-13

than one reasonable format for the did's. Should they be

numeric id's, all digits? Or alphanumeric? How many

characters? Again, resolution of this issue must await

actual implementation of the system on some machine, since

most of the tradeoffs cannot be properly evaluated without

knowledge of which machine the system will be implemented

on.

Another consideration in defining the format of an

identifier is the need for detecting mistakes made by users

when entering did's to the system. The most common such

mistake is a transposition of characters, and the standard

defense against this is the check digit. If a did is com
posed of n characters (alphanumeric or digits) then n-l

of them would perform the function of identifying the file

while the nth character would be uniquely determined as

a function of the previous n-l characters and their relative

order. If the check function is well chosen, then the system

can detect erroneous input characters (5 for S, 2 for Z,

1 for I, zero for 0) or the correct characters out of order

by computing the proper check character for the n-i

identifying characters of the given input did and comparing

it with the given check character. If they agree then the

did will be accepted, and if they disagree then the input

did must be wrong. Of course a double error or triple error

may make it past this test, but some double and triple errors

will still be detected and the overhead for detecting all

double and triple errors would be more expensive than the

likely gains.

7.5 System Standard Formats

As described earlier, all data files which are loaded

on-line from tape will be reformatted to conform with the

7-14

relevant system standard format for the type of data con

tained in the file.
 There are a number of advantages to

this convention:

(1) It facilitates the development of software inter

faces between the Integrated Data Base Management

System and other applications systems at Goddard

Space Flight Center.

(2) 	 It facilitates the implementation of data mani

pulation modules internal to the system (e.g.,

the modules which carry out the REGRID or SLICE

operations of the PERFORM command).

(3) 	 It simplifies the task of writing application

programs which will make use of the data files,

particularly if data files of the same type but

from 	different or unknown sources
are to be used.

There will be a number of system standard formats, one

for each major broad category of data file. That is, there

could be one system standard format for image data, one system

standard format for cartographic data, one system standard

format for uniformly gridded data (i.e., where the data ob
servation can be viewed as occurring at a lattice point of

a multi-dimensional network), one system standard format

for chain-coded contour plots, etc. System standard formats

will be alike in that each file in system standard format

will include a fixed-size header record, zero or more fi-xed
size history records, and some number of data records, where

the length and number of data records will depend upon the

data 	itself. Header records will include a code describing

which type of data is contained in the file (i.e., which

system standard format the file is in), and the remainder

of the header will describe how the data records are to be

7-15

interpreted. How the remainder of the header is to be

interpreted will depend upon the format code.

This document shall not attempt to define the number

and layout o'f all system standard formats which will be

included in the final version of .the Integrated Data Base

Management System. Instead, the remainder of this section

shall concentrate on describing what certain, selected

system standard formats might look like. In the final

implementation the fields and/or their type, size (in bytes),

and units (if any) may well change from what is written

here, but any changes will presumably be minimal. Since

the number of bytes needed to store the information in a

header will vary from format type to format type while the

size of a header record shall be fixed, some headers will

have to be padded with blanks. The following format

descriptions will ignore this padding.

7.5.1 A System Standard Format for Image Data

A system standard format for image data must, at a

minimum, be compatible with the data record layout and header

record formats for image files used by systems at the

Goddard Space Flight Center which handle image data such as

AOIPS 2 and SMIPS/VICAR2 7 . Compatibility, as it is used here,

means that the data record format for image data files in

system standard format should agree with the data record

layouts normally handled by AOIPS and SMIPS/VICAR, and that

the fields in an AOIPS header or SMIPS/VICAR label record

should be available in the system standard format header

or else derivable by a software interface routine.

7-16

7.5.1.1 The Header Record in an Image Data File

Table 7-1 illustrates a possible layout for a header

record, based on the fields included in the Image Des

cription portion of an AOIPS image label and a SMIPS/VICAR

label. The order, type, and/or size of the data fields

listed in that table are particularly dependent upon im

plementation details when the system is developed. For

example, the size of a data file identifier (did) is not

yet finalized. All fields are integer unless otherwise

noted.

The first six fields shown in table 7-1 (above the

dashed line) will probably be included in all system standard

formats. The remaining fields of the header are designed to

preserve header information if the image file is entered

into the Non-Relational Data Base from AOIPS and later,

perhaps after some manipulation, is passed back to AOIPS.

Not every AOIPS image description field is duplicated in

an image header, however, since certain fields will be

superfluous given the data storage conventions. For example,

secondary records would not be stored within the image file

but would be saved in some number of history records.

Likewise, by convention, there will be no top edge, bottom

edge, left edge or right edge fill, so that words 35 through

38 of the AOIPS image label will be superfluous.

7.5.1.2 Data Records in an Image Data File

One record of an image file in system standard format

will contain precisely one row (line) of the image matrix.

Each pixel will occupy one or more bytes but will always.

occupy an integral number of bytes. There will be no

"empty" records or lines with non-grey scale data in an

image file in system standard format, although there may

7-17

field

format code

history count

record size

record count

blocking

did

size*

1

1

2

2

2

4

meaning

system standard format code

number of history records

size of a data record in bytes

number of data records

blocking factor

data file id for this image

name 8 user-assigned name of scene (alpha)

parent 8 did or name of parent image (alpha)*

master 16 reel and file id of master image

year 2

month 2

day 2 date and time (alphanumeric)

hours 2

minutes 2

seconds 2
fractions 4 fractions of a second (real)

sensor 4 sensor name (alphanumeric)

generation 1 generation of image (master = 0)

no. images 1 number of images, if multi-image

pixel size 1 number of bytes per pixel

sig. bits 1 number of significant bits per pixel

storage 3 storage code (BSQ,BIL,BIP) (alpha)

orbit no. 4 number of orbit on which image was

recorded

center lat. 4 latitude of frame center

center lon. 4 longitude of frame center

sun el. 4 sun elevation

resolution 4 spatial resolution of each pixel

zoom info. 22 AOIPS image related master/parent

zoom relationship information

Table 7-1: A Possible Layout of the Header Record for Image Data

,

In bytes. All sizes are tentative.

**Field equals zero if no parent (i.e., if this image is a master).

7-18

be some pixels which are only used for padding out a record

if this system is implemented on a word-oriented, rather

than byte-oriented computer.

It would be desirable to standardize pixel storage for a

multi-image data file. The AOIPS and SMIPS/VICAR systems are

oriented towards the band sequential format (BSQ) for multi

images, and it may, therefore, be correct for the Integrated

Data Base Management System to standardize on band sequential

format as well. Other possibilities are band interleaved by

line (BIL), where the record containing the i
th line 6f the jth

band would follow the record containing the ith line of the

j-1st band (for j > 1), and band interleaved by pixel (BIP),

i j follcws the kth
where the kth pixel in line of band

pixel of line i in band j-1. Certain SMIPS/VICAR programs

(e.g., BAYES, KARLOV) can accept line interleaved (BIL) multi

images and both systems have provision for indicating BIL and

BIP formats in their respective image headers. Consequently

it may be useful -- if not in initial versions of the system

then perhaps in later enhancements -- to have the system support

all three formats for multi-image data files-.

7.5.2 A System Standard Format for Gridded Data

Certain level three data files can be viewed as re

presenting multi-dimensibnal grids, where the dimensions

are a subset of the x,y, and z spatial dimensions, plus the

temporal (t) dimension and a wavelength (X) dimension. Such

files are presumed to possess at least two dimensions, and

possibly all five. For purposes of the Integrated Data

Base Management System's internal processing, the observations

taken at a fixed wavelength shall be treated as observations

of a single physical variable. The exception to this rule

will be the SLICE operation, which will treat wavelength as

a fifth dimension.

7-19

For expository purposes, the remaining four dimensions

shall be regarded as having the following ordering: t be

fore x before y before z Therefore, when the conceptual

layout of an n-dimensional grid is described (n = 1,2, 3
th
or 4) the first, second, ... , n dimensions will be uniquely

determined by the above ordering. Thus, if n equals two

and the grid has z and t axes, then the "first dimension"

will be t and the second will be z . Similarly, a three

dimensional grid with x, y, and z axes will have x as

its first dimension, y as its second dimension, and z as

the third (rather than some permutation such as z, x, y or

y, z, x).

7.5.2.1 The Header Record in a Gridded Data File

Table 7-2 shows a possible layout for a header record

for gridded data. The latitude, longitude, altitude, and

date provide the initial y, x, z, and t coordinates,

respectively, for the first lattice point in the first record.

The maximum time coordinate will be the initial date and time

plus (nt-l)At , and, similarly, the maximum altitude will be

the initial altitude plus (nz-l).Az Computation of maximum

latitude and longitude will be rather more complicated since

the azimuth, if any, must be factored in.

Four byte and eight byte fields below the dashed line

will be type real and one byte and two byte fields will be

integer, unless otherwise indicated. Units for At, Ax ,

Ay , and Az will have to be established at implementation

time, as will the reference for altitude. These units will

probably be fixed and will not vary from file to file.

Otherwise, extra fields would be needed in the header to show

which units were used for each delta (A) field.

7-20

http:nz-l).Az

field size* meaning

format code 1 system standard format code

history count 1 number of history records

record size 2 size of a data record in bytes

record count 2 number of data records

blocking 2 blocking factor

did 4 data file id for this file

year 2

month 2 /

day- 2

hours 2 date and time (alphanumeric)

minutes 2

seconds 2

latitude 8 latitude of first observation point in radians

longitude 8 longitude. " "1 "

azimuth 8 azimuth in radians clockwise from North

altitude 4 altitude of first observation in meters

At 4 spacing along t axis

Ax 4 " x

Ay 4 1T It y it

AZ 4 z1 Z I

nt 1 number of observations along t axis

n , I IT T x

n i it" y
nz y
nobS 1 " I T per lattice point

point size 1 size of a lattice point in bytes

X1 4 first wavelength

X2 4 second wavelength

Anobs 4 last wavelength

Table 7-2: A Possible Layout of the Header Record for Gridded Data

*In bytes. All sizes tentative.

7-21

7.5.2.2 Data Records in a Gridded Data File

When n equals two, the grid can be visualized as a

rectangular area as depicted in figure 7-2a, and each

lattice point will have four neighbors (except for those

on the boundary of the area). Each lattice point will be

assumed to have observations for one or more physical variables,

and the same set of physical variables are measured at

each lattice point. When such a grid is stored in a system

standard format file, each record will contain the observa

tions for a fixed value of the first dimension, and for

each given value of the first dimension (for which there is

data) there will be precisely one record in the file. In

other words, each record in the file will correspond to One

column of the grid. Within the file the records will be

ordered on increasing value for the first dimension, and

within a record all observation for a given lattice point

will be stored together and the lattice points will be

ordered on increasing value of the second dimension.

Three-dimensional files may be viewed as a parallele

piped with rectangular sides, as depicted in figure 7-2b.

To visualize the way in which lattice points from a three

dimensional grid are mapped into records, imagine the grid

being sliced into-a stack of two-dimensional grids along

the first dimension. The resulting two-dimensional grids

are then handled as described above. Thus, any pair of

lattice points in a record from a three dimensional gridded

file have the same values for the coordinates of their first

two dimensions, and they vary only according to their.third

dimension.

Four dimensions are hard to visualize, but since the

four dimensions in this case must be t, x, y, and z then

one way to view a four dimensional grid is as a time-ordered

7-22

2nd

Dimension

1st Dimension

Figure 7-2a: Conceptual Layout of a Two Dimensional File

3 rd
Dimension

Dimension

Dst
Dimension

Figure 7-2b: Conceptual Layout of a Three Dimensional File

4th Dimension (time)

tigure 7-2c: Conceptual Layout of a Four Dimensional File

7-23

sequence of three dimensional grids, as depicted in figure

7-2c. This suggests the way in which the data can be

mapped into records, namely, all lattice points in a given

record fixed with respect to t, x, and y coordinates,

and records ordered on ascending values of y within x

within t . Figure 7-3 illustrates the process for con

verting the storage problems of an n-dimensional grid into

n-l dimensions for n=4, 3, 2, and figure 7-3 depicts the

layout of records in a file for n=4.

Note that this arrangement is consistent with the

view of wavelength as a fifth dimension, provided the

observations stored at a lattice point are ordered in

increasing value of A

Finally, there is the special case when n=l In

that- case there would be one observation point per record,

unless the size of an observation point was very small, in

which case there would be one record in the file.

7.5.3 A System Standard Format for Cartographic Data

Digitized terrain elevation models may be viewed as

two-dimensional grids, with a ground elevation value at

each lattice point. This suggests that the data for such

a file could be stored as if it were a conventional two

dimensional gridded file, that is, each record will have

the elevation data for a fixed x coordinate and ascending

values of the y coordinate. However, it would not be

sufficient to treat a cartographic data file as a conventional

gridded data file since the cartographic data may be any

one of a variety of map projections and this information

must be present in the header. On the other hand, barring a

natural or manmade catastrophe, the elevation value for a

7-24

/ /

time

:1_ --- ---

Figure 7-3: 	 Stages for Mapping a Four Dimensional

Grid into Records in a File

7-25

given location on the earth's surface is likely to be

constant with respect to time (at least for spans of time

less than a century) and thus the date fields would be

superfluous.

Table 7-3 shows one way in which a header could be

established for a cartographic data file. The header

establishes the coordinates of the first point in the

first record (lower left corner), but how these coordinates

are established (and hence how the fields of the header

are to be interpreted) will depend upon the projection code.

If the data is in a tangent plane projection then the

coordinates will be specified as an x offset and y offset

in meters on the ground relative to a Cartesian coordinate

system whose origin is at the point of tangency and whose

y axis is aligned with some specified azimuth . For a

tangent plane projection, the "zone" field would be ignored,

the latitude and longitude fields would'be the coordinates

of the point of tangency, the azimuth would specify the

azimuth of theCartesian coordinate system for the file,

and the lower left x and lower left y are the x-offset

and y-offset of the lower left corner of the file from the

point of tangency. If the data is in the normal Mercator projection

then rows will be lines of constant latitude and columns

(records) will be lines of constant longitude. Here the

zone, azimuth, lower left x and lower left y fields

would all be zero, and latitude and longitude would represent

the latitude and longitude of the lower left corner.

In a Universal Transverse Mercator (UTM) projection, the

coordinates of the lower left corner are specified by the UTM

zone and UTM easting and northing. For a UTM projection, the

latitude, longitude, and azimuth would all be zero and the

easting and northing would be stored in lower left x and

lower left y. Finally, for a Lambert projection only lower

left x and lower left y would be used. The units for

*

Except, of course, if the latitude is + 900, in which case

(a) longitude and azimuth are superfluous and (b) the projec
tion must be a polar stereographic projection.

7-9r

field size*

format code 1

history count 1

record size 2

record count 2

blocking 2

did 4

meaning

system standard format code

number of history records

size of a data record in bytes

number of data records

blocking factor

data file id for this file

projection code 1 map projection for this file

zone 1 UTM zone (if UTM projection)

latitude 8 latitude of file in radians N

latitude

longitude 8 longitude of file in radians E

longitude

azimuth 8 azimuth of file's coordinate system

lower left x 4coordinates of file's lower left

lower left y 4 corner

Ax 4 spacing between columns

Ay 4 spacing between rows

z-offset 4 offset applied to each data point**

Table 7-3: A Possible Layout of the Header Record

for Cartographic Data

*In bytes. All sizes are tentative.

** Permits elevation data to be positive. The z-offset

will be subtracted from each elevation value in the

file.

7-27

Ax and Ay will also depend upon the projection.

All fields after "zone" in Table 7-3 will be type real.

7.5.4 "Format X"

There will be one special "system standard format"

which will not be descriptive of the logical contents of

the file. This format, provisionally designated "Format X",

will 	be used in the following two circumstances:

(1) 	The system does not know the format of the

tape file or knows the format of the tape file

but does not know how to translate the file

into a system standard format (i.e., a LOAD routine

has not been written to handle files in that

format).

(2) 	An application program is creating a file in

"direct" mode (i.e., not in a system standard

format).

Basically, Format X consists of a header record, followed

by a 	record-by-record copy of the tape file.* The header

itself will be quite minimal, and will contain only the

first six fields (twelve bytes) common to all system

standard header records. If the record size field in a

Format X header is zero, then the records in the data file

will 	be variable length.

7.6 	 The LOAD and UNLOAD Commands

The data tapes to be managed by the "back end" of the

Integrated Data Base Management System will exist in a

variety of different tape formats, but, fortunately, not

an infinite variety of tape formats. That is, the format

*Nothing would prevent a user from writing history records to

a data file in Format X, but analysis of user requirements

suggests that such will be rare.

W7 00

specifications for the data tapes entered into the Non-

Relational Data Base will be known in advance and presumably

have been formally documented. Each such tape format will

be mapped into a unique system standard format during a

LOAD, although the mapping will not be one-to-one and there

will be somewhat fewer system standard formats than tape

formats.

The foregoing analysis permits the function of the

LOAD command to be specified as follows:

(1) 	Given the data file identifier of the tape file

to be loaded, look up that file in the Data File

Catalog and determine whether it is already on-line

or whether it is backed up in a system standard

format*.

(2) If not on-line and not backed up then retrieve

reel number, file number, and format code.
(3) Open the file and simultaneously determine the -

system standard format into which the

file is to be translated.

(4) Create the on-line file record by record. Con

struct the header record while so doing.

(5) After all records in the data file have been

written to direct access storage, write the header

record over a dummy header record written prior

to writing the first data record.

Rather than attempt to write one large LOAD module

to handle all possible tape formats, there will be a

number of LOAD routines, each routine handling a small

number of different tape formats (possibly one tape format

per routine). Each of these separate conversion routines

will probably be implemented as a co-routine and would

therefore operate independently of the rest of the system

* 	 If backed up in Format X then it will be necessary to de
termine whether a conversion routine has been added to the
system since the most recent LOAD.

7-29

until completion of the LOAD. Benefits of a co-routine

approach would include the following:

(1) 	Memory requirements for I/O buffers would not

impinge upon memory requirements for the re

mainder of the system. Hence, the number of

LOAD commands which could 'be processed con

currently would not be limited by the main storage

allocated to the data base managenent system.

(2) 	The co-routines could take over I/O message

handling with interactive users, relieving the

system of message traffic overhead.

Of course, a co-routine approach to implementation of the

LOAD command depends upon whether the operating system of the

host computer supports co-routines.

In contrast to the LOAD command, the UNLOAD command

can be implemented with a single, reasonably simple and

straightforward, subroutine. The special point to note is

that an UNLOAD command will be rejected if the Data File

Catalog indicates that a backed up copy of the file already

exists. The exception to this rule is that an UNLOAD will

be accepted if the backed up copy is in Format X and the

current on-line copy is not in Format X. This can happen

if a conversion routine is added to the system between

the first LOAD and UNLOAD of the file and the most recent

LOAD.

7-30

SECTION 8 - SYSTEM INTERNALS

8.1 Control Structure Concepts

This section describes the control structures around which

the internal architecture of the Integrated Data Base Management

System is designed. The control structures consist of control

blocks, control block extensions, dictionaries, lists and

queues. All control structures are transient in nature.

That is, main storage is allocated for a control structure

when it is to be used and freed when the control structure is

no longer required to support processing. The control struc

tures have been categorized as a function of their usage within

the system and are described below.

8.2 Communications Control Structures

The category of communications control structures includes

the Remote Terminal Communications list and the Application

Program Communications list. These two lists provide logical

entries or ports into the Integrated Data Base Management System

for remote terminal users and application programs, respectively.

8.2.1 The Remote Terminal Communications List

The Remote Terminal Communications List performs the func

tion of -associating a remote terminal, an interactive user and

a command being processed. It consists of one entry for each

remote terminal connected to the Integrated Data Base Management

System. The Remote Terminal Communications List can be

implemented in several different ways, one of which is a two

way linked list of remote terminal entries ordered in ascending

logical sequence by terminal-id. Each entry in the Remote

Terminal Communications List will contain at least the follow

ing information: the terminal-id of the remote terminal for

which the entry was created; a pointer to the User Control

Block for the user who connected to the system via the remote

8-1

terminal; a pointer to the Command Control Block for any cur
rently active command that was received from the remote terminal;

a continuation flag that indicates whether or not a continua
tion message is expected for the last command received from the

remote terminal and a message routing flag that indicates

whether or not the next message received from the remote terminal

is to be passed directly to an active procedure where it will be

processed.

Initially, the Remote Terminal Communications List will be

empty.
 When a message is received from a remote terminal, the

entries, if any, in the Remote Terminal Communications List are

searched to determine whether an entry exists for the remote

terminal. The terminal-id of the remote terminal from which

the message was received is compared with the terminal-id in

each entry in the Remote Terminal Communications List. If a

match occurs, the message is processed. If no match occurs,

an entry containing the terminal-id of the remote terminal from

which the message was received is created and the message is

processed.
 If the message cbntains a valid command connecting

a user to the Integrated Data Base Management System, the entry

is completed with the necessary pointers and is inserted in the

Remote Terminal Communications List so as to preserve the

ascending logical sequence by terminal-id. Otherwise, the new

entry is discarded since the only valid command for initiating

an interactive session is the one which connects a user to the

system.

When subsequent messages are received from a remote terminal,

the Remote Terminal Communications List is searched to locate

the entry corresponding to the remote terminal.
 Since a pointer

to a User Control Block is contained within the entry, the user

issuing the command can be identified. When a command is

received disconnecting a user from the Integrated Data Base

Management System, the entry associated with the remote

8-2

terminal from which the message was received is deleted from

the Remote Terminal Communications List.

8.2.2 The Application Program Communications List

The Application Program Communications List is analgous to

the Remote Terminal Communications List and performs the func
tion of associating
a region in main storage, an application

program and a command being processed. It consists of one

entry for each application program connected to the Integrated

Data Base Management System.
 As for the Remote Terminal

Communications List,
the Application Program Communications

List can be implemented as
a two-way linked list of application

program entries ordered in ascending logical sequence by program

id. The choice of a program-id probably will be operating

system dependent. It
must uniquely identify a particular applica
tion program executing in a particular region of main storage

since the same application program may be executing in different

regions of main storage at the same time. Each entry in the

Application Program Communications List will contain at
least

the following information: the program-id of the application

program for which the entry was
created, a pointer to the User

Control Block for the application program and a pointer to the

Command Control Block for any currently active command that was

received from the application program.

Initially, the Application Program Communications List will

be empty. When a CALL statement is executed in an application

program transferring control to the Integrated Data Base

Management System, the entries, if any, in the Application

Program Communications List,
are searched to determine whether

an entry exists for the application program. The program-ia

of the application program executing the CALL statement is

compared with the program-id in each entry in the Application

Program Communications List. If a match occurs, the request

8-3

is processed. If no match occurs, an entry containing the

program-id of the application program executing the CALL state
ment is created and the request is processed. If the request

contains a valid command connecting the application program to

the Integrated Data Base Management System, the entry is
com

pleted with the necessary pointers and is inserted in the

Application Program Communications List so as to preserve the

ascending logical sequence by program-id. Otherwise, the new

entry is discarded and an error code is returned to the applica

tion program since the only valid command for initiating applica

tion program activity is the one which connects an application

program to the system.

When subsequent requests are received from an application

program, the Application Program Communications List is searched

to locate the entry corresponding to the application program.

Since
a pointer to the User Control Block is contained within

the entry, the application program making the request can be

identified. When a command is received disconnecting an

application program from the Integrated Data Base Management

System or, if the application program abnormally terminates

execution, the entry associated with the application program

is deleted from the Application Program Communications List.

8.3 The Command Control Block

The Command Control Block is the primary repository of

information for the processing of a command. is created
It

for each interactive command and application program command

that enters the Integrated Data Base Management System. The

main storage required for a Command Control Block is allocated

dynamically when the command enters the system.
 Although the

contents of
a Command Control Block created for an interactive

command and one created for an application program command

will differ somewhat in content, the basic format of a Command

8-4

Control Block will be the same so
that the software processes

that use the Command Control Block can operate on
them in the

same manner when necessary.

The Command Control Block is the primary control structure

for command processing. It is passed between software processes

by means of queues which are discussed below. Each Command

Control Block will contain an indication of which command it

represents, an indication of whether the command was received

from a remote terminal or an application program, a pointer to

the User Control Block of the user or application program

responsible for the command, a pointer to the communications

list entry associated with the command and several other data

fields, flags, pointers and storage areas required for command

processing. The Command Control Block exists until the proces
sing of the command that it represents is terminated by the

Integrated Data Base Management System or, in the case of an

interactive command, is aborted by the remote terminal user.

When the processing of a command has been completed, the main

storage used for its Command Control Block is freed.

8.4 System Control Structures

The category of system control structures includes the

control blocks, control block extensions and dictionaries that

.are stored in system tables. As stored in system tables,

these control structures represent the current information

state of the Integrated Data Base Management System. As resi
dent in main storage, these control structures represent the

current processing state of the system. Permanent changes to

the information state of the system, such as the creation of a

new data base, are reflected by updating the system tables.

Temporary changes to the processing state of the system, such

as the attaching of
a user to a data base for processing, are

reflected within the control structures resident in main storage

8-5

but do not affect the system tables. System control struc

tures are loaded from system tables as required to support the

processing state of the system.

8.4.1 User Control Blocks

A User Control Block exists for each individual who has

been defined to the Integrated Data Base Management System as

a valid user by the Data Base Administrator. Likewise, a

User Control Block exists for each application program that

has been authorized access to the system by the Data Base

Administrator. User Control Blocks are stored, as records,

in the SYSUSER system table. Each User Control Block will

contain the user-id of the individual user or application pro
gram which it represents as well as a password, in the case of

an individual user, and other data fields, flags and pointers.

AlUser Control Block is created when the Data Base

Administrator issues a command to define a new user or
applica

tion program to the system. Main storage is allocated for

the new User Control Block, after which it is initialized and in

serted in the SYSUSER table. Data fields in a User Control Bloci

can be updated at any time by the Data Base Administrator.

However, only the password data field in the User Control Block

for an individual user can be changed by that user.

When an interactive user connects to the Integrated Data

Base Management System, the User Control Block for the user is

retrieved from the SYSUSER table and placed on a two-way chain

of User Control Blocks for users and application programs cur
rently connected to the system. This chain is maintained in

main storage in-ascending logical sequence by user-id. If a

User Control Block containing the user-id already exists on

the chain, the user is not permitted to connect to the system.

Thus, in the current system design only one interactive user

8-6

can be connected to the system under the same user-id at-any

one time. Each User Control Block may have both an Authorization

Extension and a Group Extension associated with it in main

storage.

When an application program connects to the Integrated

Data Base Management System, it must supply not only its own

user-id, but the user-id and password of the individual user

who initiated execution of the application program. The User

Control Block associated with the application program is re

trieved from the SYSUSER table and placed on the User Control

Block chain in main storage. If a User Control Block contain

ing the user-id of the application program already exists on

the chain, a character string is appended to the application

program user-id so that it is unique. Thus, multiple copies

of the same application program can gain access to the system

simultaneously. The User Control Block associated with the

user running the program is retrieved from the SYSUSER table

and the password supplied by the application program is verified.

The Authorization Extension and the Group Extension which are

associated with the User Control Block for the application pro
gram will be those of the user running the application program.

Thus, the access rights associated with this execution of the

application program are those that have been granted to the user

who is running the program.

When a command is received from either a remote terminal

or an application program, it is always associated with a

User Control Block via one of the communication lists described

previously. Thus, the system can identify, in effect, the

user issuing the command and, thereby, control access to

information and regulate the definition, modification, and

removal of control structures (i.e., users, access rights, data

bases, data fields and tables). Also, since the User Control

Block contains pointers to both the Data Base Control Block

8-7

for the data-base to which the user or application program is

currently attached and the Data Base Control Block for the

previously attached data base, processing can be directed to

the proper data base via the User Control Block. When a user

or an application program disconnects from the Integrated Data

Base Management System, the corresponding User Control Block

is removed from the User Control Block chain and the main stor

age allocated for the User Control Block is freed.

Existing users or application programs can be denied access

to the system by the Data Base Administrator. If the Data

Base Administrator removes the User Control Block for a user

or an application program from the SYSUSER table, that user

or application program can no longer gain access to the

integrated Data Base Management System.

8.4.2 Group Extensions

A Group Extension is always associated in main storage

with a User Control Block. It defines the groups to which

the user belongs for the purpose of sharing common access

rights to tables. If the user does not belong to any groups,

no Group Extension to the User Control Block will exist. A

Group Extension contains one entry for each group to which the

user belongs. Each entry in a Group Extension is stored in

the SYSGROUP system table. Each Group Extension entry con
tains the name of a group to which the user belongs and a

pointer to the Authorization Extension which defines the

access rights of that group. If the group has not been granted

any access rights, no Authorization Extension will exist for

the group so the pointer will be null. During the processing

of commands, the access rights of the group are treated

logically as if they had been granted directly to the user.

A Group Extension entry is created when the Data Base

Administrator includes a user in an existing group so that the

8-8

user can share the access rights assigned to that group. The

new Group Extension entry is inserted into the SYSGROUP table.

It will be included in the Group Extension constructed when

the user next connects to the system.

When auser or an application program connects to the

Integrated Data Base Management System, the amount of main

storage required for the Group Extension is computed. The

number of entries in the user's Group Extension is stored in

the User Control Block. After allocating the main storage

necessary to contain the Group Extension, the Group Extension

records are retrieved from the SYSGROUP table and are stored

in the Group Extension. Whenever it becomes necessary, dur

ing the processing of a command, to determine a user's right

to access a table, the Authorization Extension attached to

the User Control Block is searched. If the required authoriza

tion is not contained therein, each entry in the Group

Extension attached to the User Control Block is used to locate

the Authorization Extension associated with the group specified

within the entry. Each Authorization Extension for a group

to which the user belongs is searched until the required authoriza

tion is located or until all Authorization Extensions have been

searched. When a user or an application program disconnects

from the Integrated Data Base Management System, the main storage

allocated for the corresponding Group Extension is freed. The

main storage allocated for each of the Authorization Extensions

for groups to which the user belongs, will be freed only if no

other members of the various groups are connected to the system.

At any time, the Data Base Administrator can remove a user

from a group or remove a group from the system. In either

case, one or more records will be deleted from the SYSGROUP

table and the change will be reflected by the absence of the

corresponding entry in the Group Extension for the affected

user or users when they next connect to the system.

8-9

8.4.3 Authorization Extensions

An Authorization Extension may be associated in main stor

age with a User Control Block if it contains rights granted

directly to the user or an Authorization Extension may be

associated with entries in one or more Group Extensions if it

contains rights granted to a group. If a user has not been

explicitly granted any access rights, no Authorization Extension

to the User Control Block will exist. However, if a user is

a member of one or more groups, he will assume any access

rights contained in the Authorization Extensions for those

groups. Additionally, the user can access tables on which

PUBLIC rights have been granted and tables of which he is the

owner. An Authorization Extension contains one entry for

each table on which the user or group has been explicitly

granted one or more operational rights (READ, INSERT, UPDATE,

DELETE) by the table's owner. Each entry in an Authorization

Extension is stored as a record in the SYSAUTH system table.

Each Authorization Extension entry contains the name of the

table on which the rights were granted, the name of the data

base containing the table, flags that indicate which access

rights were explicitly granted, the user-id of the owner of

the table and flags indicating which rights were granted by

the owner of the table and which were granted by the Data Base

Administrator.

An Authorization Extension entry is created when the

owner of a table or the Data Base Administrator issues a com

mand to grant one or more operational rights on the table to

an individual user or a group. The new Authorization Extension

entry is inserted into the SYSAUTH table. If the entry

represents an access right granted to an individual user, it

will be included in the Authorization Extension constructed

for that user when he next connects to the system. If the

entry represents an access right granted to a group, it will

8-10

be included in the Authorization Extension constructed for

that group when any member of the group next connects to the

system.

When a user or an application program connects to the

Integrated Data Base Management System, the amount of main

storage required for the Authorization Extension is computed-.

The number of entries in a user's Authorization Extension is

stored in the User Control Block. After allocating the

main storage necessary to contain the Authorization Extension,

the authorization records are retrieved from the SYSAUTH table

and are stored in the Authorization Extension. If the user

is a member of one or more groups, the system determines whether

the Authorization Extension associated with each of the groups

is resident in main storage. If the Authorization Extension

for a group is already resident in main storage, a pointer to

it is stored in the corresponding entry in the user's Group

Extension. If not, the record containing the group-name and

a blank user-id is retrieved from the SYSGROUP table. This

record contains the number of entries in the group's Authorization

Extension. After allocating the main storage necessary to

contain the Authorization Extension, the authorization records

for the group are retrieved from the SYSAUTH table and are

stored in its Authorization Extension. Whenever a user

attempts to access data in a table which is owned by another

user or the Data Base Administrator, the user's right to

access the table must be determined. If access rights have

not been granted to the PUBLIC but have been granted to in

dividual users, the Authorization Extension associated with

the user is searched to determine whether or not the user

has been granted the right to perform the attempted data

manipulation operation on the table. When a user or an

application program disconnects from the Integrated Data Base

Management System, the main storage allocated for the correspond

ing Authorization Extension is freed. Main storage allocated

8-11

for Authorization Extensions for any groups to which the

user belongs may be freed if the user is the only member of the

group who is connected to the system.

Access rights granted on a table can be revoked at any

time. If one or more access rights granted to a user or

group are revoked by the owner of the table or the Data Base

Administrator, the corresponding authorization record in the

SYSAUTH table is updated to reflect the new rights of the user

or group. If the revocation of rights is such that the
user

or group retains no access rights to the table, the correspond

ing authorization record is deleted from the SYSAUTH table.

8.4.4 Data Base Control Blocks

A Data Base Control Block exists for each data base main

tained by the Integrated Data Base Management System.
 Data

Base Control Blocks are stored, as records, in the SYSDB

system table. Each Data Base Control Block will contain the

data base name, the user-id of the owner of the data base, a

description of the data base, the data base classification,

the date on which the data base was created and other data

fields, flags and pointers.

A Data Base Control Block is created when a user issues
a

command to define a new data base to the system.
Main storage

is allocated for the new Data Base Control Block after which it

is initialized and inserted in the SYSDB table.
Data fields in a

Data Base Control Block can be updated at any time by the Data

Base Administrator.

When a user or an application program connected to the

Integrated Data Base Management System attaches to a data base

for processing, the Data Base Control Block for the data base

is retrieved from the SYSDB table and placed on a two-way chain

8-12

of Data Base Control Blocks for data bases to which one or more

users are attached. This chain is maintained in main storage

in ascending logical sequence by data-base-name. If a Data

Base Control Block for the data base to which a user is attach
ing already exists on the chain, there is no
need to access

the SYSDB table to retrieve the Data Base Control Block. A

pointer to the Data Base Control Block for the data base to

which a user is attached is stored in the User Control Block.

When a command is received that references the data base

to which the user or application program issuing the command

is attached, the corresponding Data Base Control Block is

located using the attached data base pointer in the User Control

Block.
 Since the Data Base Control Block contains a pointer

to the Data Dictionary associated with the data base and a

pointer to the chain of Relation Control Blocks for tables in

the data base, it
can be used to locate other
control structures

required to execute
a command. Also
the user-id of the owner

of the data base,which is contained within the Data Base Control

Block,is used to assign either
a temporary or permanent status

to new data fields and tables defined for the data base. When

there are no longer any users attached to
a data base, its

Data Base Control Block is removed from the Data Base Control

Block chain and the main storage allocated for the Data Base

Control Block is freed.

An existing data base can be removed from the system by

its owner or
by the Data Base Administrator.
 When a data base

is removed from the Integrated Data Base Management System, the

record containing the corresponding Data Base Control Block

is deleted from the SYSDB table.
 This may cause records to be

deleted from other system tables,
as well.
 All data contained

in tables in the data base are
deleted from the system, also.

8-13

8.4.5 Data Dictionaries

A Data Dictionary is always associated in main storage with

a Data Base Control Block. It contains a description of each

data field contained in the corresponding data base. The Data

Dictionary contains one entry for each data field defined for

the data base. Each entry in a Data Dictionary is stored, as

a record, in the SYSDD system table. Each Data Dictionary

entry contains the name of the data field, the length of the

data field, the storage format of the data field, the user-id

of its owner and an indication of the units, if any, that are

associated with the data field. The Data Dictionary will

contain only one entry for each data field, no matter how many

tables-that data field is used in.

A Data Dictionary entry is created when a user issues a

command to define a new data field for the data base to which

the user is currently attached. Thelnew Data Dictionary entry

is placed in the existing Data Dictionary in main storage and

is inserted into the SYSDD table. It will be marked as a

permanent entry if the user defining it is the owner of the

data base. Otherwise, it will be marked as a temporary entry

and will be deleted from the SYSDD table when the user is no

longer attached to the data base.

When the control structures associated with a data base

are being loaded into main storage, the amount of main storage

required for the Data Dictionary is 'computed. The number of

entries in the Data Dictionary is stored in the Data Base Control

Block. After allocating the main storage necessary to contain

the Data Dictionary, the Data Dictionary entry records are

retrieved from the SYSDD table and stored in the Data

Dictionary. Whenever a user defines a new table in the data

base or expands an existing table, the Data Dictionary associated

8-14

with the data base is searched to insure that all data fields

in the table have been previously defined. When there are no

longer any users attached to
a data base, the main storage

allocated for the corresponding Data Dictionary is
freed.

An existing data field can be removed from a data base by

its owner, the owner of
the data base, or the Data Base

Administrator, only if the data field is not
currently being

used within a table in the data base.
 When a data field is

removed from a data base, the corresponding entry in the Data

Dictionary is removed from main storage and the corresponding

Data Dictionary entry record is deleted from the SYSDD table.

8.4.6 Relation Control Blocks

A Relation Control Block exists for each table maintained

by the Integrated Data Base Management System.
 Relation

Control Blocks are stored, as records, in the SYSREL system

table. Each Relation Control Block will contain the table

name, the user-id of the owner of the table, a description of

the table, the temporary/permanent status of the table, the

date on which the table was
created and other data fields,

flags and pointers.

A Relation Control Block is created when a user issues a

command to define
a new table to the system. Main storage

is allocated for the new Relation Control Block after which it

is initialized and inserted in the SYSDD table.
 It is also

inserted in the chain of Relation Control Blocks pointed to

by the Data Base Control Block for the data base containing the

new table. Data fields in
a Relation Control Block can be

updated at
any time by the Data Base Administrator.

When the control structures associated with the data base

are being loaded into main storage, the Relation Control Blocks

8-15

for tables within the data base are retrieved from the SYSREL

table and placed on a two-way chain originating at the Data Base

Control Block. This chain is maintained in main storage in

ascending logical sequence by table name. When a command is

received that references a particular table in the data base

to which the user or application program issuing the command

is attached, the corresponding Relation Control Block is

located by searching the chain of Relation Control Blocks

emanating from the Data Base Control Block. Access to all

data contained in a table is controlled through the Relation

Control Block. When there are no longer any users attached

to a data base, the main storage allocated for the Relation

Control Blocks is freed.

An existing table can be removed from a data base by its

owner, -the owner of the data base or the Data Base Administrator.

When a table is removed from a data base, the Relation Control

Block is removed from the Relation Control Block chain, the

main storage allocated for the Relation Control Block is freed

and the record containing the corresponding Relation Control

Block is deleted from the SYSREL table. This may cause records to

be deleted from other system tables, as well. All data contained

in the table and all superstructures created for the table are

deleted from the system, also.

8.4.7 Domain Extensions

A Domain Extension is always associated in main storage

with a Relation Control Block. It contains information about

the data fields in the corresponding table. The Domain Extension

consists of two sections; a primary section which contains one

entry for each data field in the table and an auxiliary section

which contains one entry for each data field used in a combina

tion B-tree or inverted key field associated with the table.

8-16

Each entry in a Domain Extension is stored, as a record, in the

SYSDOM system table. Each Domain Extension entry in the primary

section contains the data field name, the column number of the

data field in the table, the dimensionality of the data field,

the starting location of the data field in each record, the

length of the data field, a flag indicating whether or not an

index exists on the data field and, if so, what type of index

and, if an index does exist, a pointer to an index page.

Domain Extension entries in the auxiliary section contain,

essentially, the same information as those in the primary sec

tion except that they also include the key name.

Domain Extension entries are created when a user issues

a command to define a new table, when new data fields are added

-to an existing table and when a new B-tree or inverted index

is created on a combination of data fields in the table.

When a new table is created, main storage is obtained for the

Domain Extension. An entry is created for each data field

in the table and stored in the Domain Extension. It is in

serted in the SYSDOM table, also. When an existing table is

expanded by adding one or more data fields, an entry is

created for each data field. It is placed in the primary

section of the existing Domain Extension and inserted in the

SYSDOM table. When a B-tree or inverted index is defined on

a combination of data fields in a table, an entry is created

for each data field specified as part of the key field. They

are placed in the auxiliary section of the Domain Extension

and inserted in the SYSDOM table.

When the control structures associated with a data base

are being loaded into main storage, the Domain Extension

entries associated with each table in the data base are

retrieved and placed in the appropriate Domain Extension.

Each Domain Extension is linked to the corresponding Relation

Control Block in main storage by a pointer in the Relation

8-17

Control Block. When a data manipulation command accesses

data in a table, the Domain Extension is used to validate

that the data fields or key fields specified in the command

exist in the table, to select the access path which minimizes

the number of records 'which must be accessed to satisfy the

command and to locate the referenced data fields within the

retrieved records. When the Relation Control Block which

points to the Domain Extension is removed from main storage,

the main storage allocated for the Domain Extension is freed.

When a table is removed from a data base, the main storage

allocated for the Domain Extension to the Relation Control Block

is freed and all records containing the corresponding Domain

Extension entries are deleted from the SYSDOM table.

8.5 Queues

A queue is a two-way chain of Command Control Blocks.
 A

-queue is empty when it contains no Command Control Blocks.

Some queues are used to transfer Command Control Blocks from

one asynchronous process to another. Other queues are used

to hold Command Control Blocks for commands that are awaiting

the completion of an event.

8.5.1 The Command Queue

The Command Queue contains Command Control Blocks associated

with interactive and application program commands which have

been syntax checked. Command Control Blocks for interactive

commands are placed on the Command Queue by the Interactive

Command Processor. Command Control Blocks for applicatiQn

program commands are placed on the Command Queue by the

Application Program Interface. When a Command Control Block

is added to the Command Queue, it is placed at the end of the

chain of Command Control Blocks already on the queue. Also, a

8-18

flag is set which activates the Monitor, if it is not already

active.

When activated, the Monitor determines whether or not the

tables required by the command whose Command Control Block has

just been added to the Command Queue can be allocated to the

command. If so, the Command Control Block for the command is

removed from the Command Queue and the command is initiated.

If not, it remains on the Command Queue until the necessary

tables can be allocated to the command. Whenever a table

becomes available, the Monitor is activated. The Monitor

scans the Command Queue to determine if any command can be

initiated.

8.5.2 The Initiator Queue

The Initiator Queue contains Command Control Blocks associa

ted with commands for which execution can be started. That

is, all tables required for execution of the commands can be

allocated to them in the required mode. Command Control

Blocks are placed on the Initiator Queue by the Monitor. When

a Command Control Block is added to the Initiator Queue, it is

placed at the end of the chain of Command Control Blocks already

on the queue. Also, a flag is set which activates the Logical

Interface, if it is not already active.

When activated, the Logical Interface attempts to select a

command for execution from the Wait Queue, described below.

Failing that, the Logical Interface selects the command whose

Command Control Block is the first one in the Initiator Queue

to be started.
 When a command is selected for execution from

the Initiator Queue, its Command Control Block is removed from

the Initiator Queue and the command becomes the executing com

mand.

8-19

8.5.3 The Wait Queue

The Wait Queue contains Command Control Blocks associated

with commands for which execution has been started but are now

awaiting the completion of a I/O event. Command Control Blocks

are placed on the Wait Queue by the Physical Interface when an

I/O operation is started for the command.
 When a Command

Control Block is added to the Wait Queue, it is placed at
the

end of the chain of Command Control Blocks already on the queue.

Then, control is returned to the Logical interface.

The Logical Interface scans the Wait Queue to determine if

any of the commands therein can continue execution. A command

whose Command Control Block is on the Wait Queue can continue

execution when the I/O operation on which it is waiting com
pletes. Since the Wait Queue is a first in
- first out queue,

the scan always begins with the first Command Control Block in

the queue. When a command is encountered that can continue

execution, its Command Control Block is removed from the Wait

Queue and that command becomes the executing command. If no

command on the Wait Queue can continue execution, the Logical

Interface starts the execution of the command whose Command

Control Block is first in t-he Initiator Queue.

8.5.4 The Output Message Queue

The Output Message Queue contains Message Request Blocks

associated with output messages that are
to be transmitted

from the Integrated Data Base Management System to remote

terminals. Message Request Blocks can be placed on the Output

Message Queue by any software process that handles interactive

commands. Each Message Request Block contains-an indication

of the message to be transmitted and the remote terminal to

which it is to be sent. When a Message Request Block is added

to the Output Message Queue, it is placed at the end of the

8-20

chain of Message Request Blocks already on the queue.
 Also,

a flag is set which activates the Output Message Processor if

it is not already active.

When activated, the Ouput Message Processor removes the

first Message Request Block from the Output Message Queue and

transmits the corresponding message to the specified terminal.

8.5.5 The Interactive Terminator Oueue

The Interactive Terminator Queue contains Command Control

Blocks associated with interactive commands for which execution

has completed or has been aborted.
Command Control Blocks for in
zeraczive commands which have completed normally are placed on The
Interactive Terminator Queue by the Logical Interface.
 Command

Control Blocks for interactive commands which have been aborted

may be placed on the Interactive Terminator Queue by any soft
ware process that handles interactive commands.
 When a Command

Control Block is added to the Interactive Terminator Queue, it

is placed at the end of the chain of Command Control Blocks

already on the queue. Also,
a flag is set which activates

the Interactive Command Terminator, if
it is not already

active.
 When activated, the Interactive Command Terminator

removes
the first Command Control Block from the Interactive

Terminator Queue and performs the required processing to

terminate the associated command.

8.5.6 The Application Terminator Queue

The Application Terminator Queue contains Command Control

Blocks associated with application program commands for which

execution has been completed. Command Control Blocks for

application program commands which completed normally
are

placed on the Application Terminator Queue by the Logical

Interface. Application Program Commands which contain syntax

8-21

errors are terminated abnormally. Their Command Control

Blocks are placed on the Application Terminator Queue by the

Application Program Interface. When a Command Control Block

is added to the Application Terminator Queue, it is placed at

the end of the chain of Command Control Blocks already -n the

queue. Also, a flag is set which activates the Application

Program Terminator, if it is not already active. When

activated, the Application Program Terminator removes the first

Command'Control Block from the Application Terminator Queue and

performs the required processing to terminate the associated

application program command.

8-22

SECTION 9 - SYSTEM SOFTWARE

9.1 System Architecture

This section describes the architecture of the Integrated

Data Base Management System. The software has been divided

into several asynchronous processes based on the functions

which must be performed as a command proceeds through the

system. Each of the processes are event driven.
 That is,

a software process is executing in a "run" state only when an

event occurs which indicates the software process must perform

some function. Otherwise, the process is in a dormant or

"wait" state. This software architecture, coupled with the

use of the queues which are described in Section 8, permits

several commands to be in
different stages of processing with

a minimum of delay.

The following subsections describe briefly each of the soft
ware processes that constitute the Integrated Data Base Management

System. Certain programs, such as the System Generation

Program and utility programs, are separate from the software

which supports user processing. Also, there will exist a set

of routines which will be stored in
a library managed by the

Integrated Data Base Management System.
 These routines will

be loaded into main storage only when needed to support
a user

processing requirement.
 Figure 9-1 shows the software proces
ses which constitute the system and the command flow through

the system via the queues.

9.2 The System Generation Program

The System Generation Prodgram is a stand-alone program

which, except under extraordinary circumstances, is run only

once
to initialize the Integrated Data Base Management System.

When invoked, the System Generation Program reads a set of in
put parameters specified by the Data Base Administrator which

9-1

Integrated Data Base Management System

Software Processes and Command Flow

FRONT END BACK END

IED El

BATCHl

COMMANDS

.IBATCH APPLICATION

PROGRAM '
TERMINATOR

ATQ

LOGICALlATTADASL

NON-RELATIONALDATA BASE

""

O Co
A

T

TERMINATOR

COMMANDRINTOCESSOR
LOGI CAL L

-

DA A F L I E

REMOTERINTERATVEDT

A

CONTROL

PROGRAM

C

j

control the system initialization process.
 The input para
meters include the initial password for the Data Base

Administrator, the page size for the tabular data storage

area and a list of online storage devices which can be mapped

into the tabular data storage area.

After accepting and checking the input parameters, the

modules which constitute the nucleus of the Integrated Data

Base Management System are loaded. This code is used to

perform most of the output during the initialization of the

system. The online storage
area which will contain tabular

data is initialized by writing empty pages throughout the

area.
 The System Generation Program will contain within it,

the control structures associated with the Global Data Base,

as well as
the User Control Block for the Data Base Administrator.

The control structures include the Data Base Control Block

for the Global Data Base, its Data Dictionary, the chain of

Relation Control Blocks for all system tables in the Global

Data Base and their Domain Extensions.
 The control structures

will reflect an empty Global Data Base.
 The System Generation

Program will insert the control structure records representing

the Data Base Administrator and the Global Data Base into the

appropriate system tables.
 The order of processing of the

various control structures is significant since the proces
sing of one control structure may affect the contents of

another.

After completing the output of the control structure records,

the System Generation Program will output
a block of control

information to be used each time the program load operation is

performed for the Integrated Data Base Management System.
The

control information will include a map to be used in
convert
ing page pointers in the tabular data storage area to online

device addresses, a page pointer to the first free page in

the tabular data storage area, page pointers to the pages con
taining the control
structures which constitute the Global Data

9-3

Base and any other information which must be retained from

One program load operation to the next. The control informa
tion may be stored in a specific location on a system resident

pack so that the block can be loaded by the System Control Program

when the Integrated Data Base Management System is started.

9.3 The System Control Program

The System Control Program provides the operator with con
trol over the execution of the Integrated Data Base Management

System. All operator comm.unication with the system is via the

System Control Program using a set of operator commands.

Operator commands are accepted, checked and executed by the

System Control Program. The operator commands allow the

operator to start the system, obtain information concerning

the operation of the system, stop the system and restart the
system after a major malfunction.

During the program load operation which starts the system,

the System Control Program loads the control information block,

attaches all of the asynchronous processes and initializes all

queues to an empty state. When an operator command is received

which requests information, the System Control Program collects

the required information and transmits it
to the operator.

When the operator stops execution of the system, the System

Control'Program performs the required procedures to terminate

the processing of any commands in progress and stop the system.

When the operator requests a system restart, the System Control

Program performs the required restdre operations such.that the

system can be restarted.

9.4 The Interactive Command Processor

The Interactive Command Processor actually consists of two

asynchronous software processes;
 the Interactive Command Input

9-4

,Processor and the Interactive Command Termination Processor.

Each of these software processes is described briefly below.

9.4.1 The Interactive Command Input Processor

The Interactive Command Input Processor accepts interactive

commands from either the telecommunications message handler

or the Batch Command Reader. Messages received from the

telecommuncations message handler were entered via a remote

terminal while messages received from the batch command reader

were entered via a card reader. Each message contains an

identifier indicating its point of origin; either a particular

remote terminal or the card reader.

After receiving a message the Remote Terminal Communications

List is searched to determine if an entry already exists con
taining the identifier. If not, a new entry is created con
tainifig the identifier and the message is associated with that

an
entry. if entry already exists, the message is associated

with the existing entry in the list. If the message is not

a continuation of a previously received message, the Interactive

Command Processor constructs a Command Control Block for the

message. The message is parsed and the syntax is checked.

If, after parsing the message, the system expects a continua
tion message, a flag is set in the corresponding entry in the

Remote Terminal Communications List and the next message is

accepted. If no continuation is expected and a syntax error

occurs, a Message Request Block is placed on the Output

Message Queue which will cause a diagnostic message to be

transmitted to the terminal from which the message originated

or, if the message entered via the batch command reader, the

diagnostic message is printed.
 If a syntax error is encountered

while processing a command, the command is terminated by

placing its Command Control Block on the Interactive Terminator

Queue. If no errors are found in the command, the command

9-5

is introduced to the monitor by placing its Command Control

Block on the Command Queue.

A command entered through a remote terminal can be aborted

by sending a special "break" character in a message. When a

message is received containing the special character, the com
mand being processed from that terminal, if any, is immediately
terminated no matter what stage of processing it may be in.

The termination may require some amount of restoration of in
formation to remove the effects of the command on the system.

The Command Control Block is placed on the Interactive

Terminator Queue so that iV
may be purged from the system.

9.4.2 The Interactive Command Terminator

The Interactive Command Terminator is
an asynchronous soft
ware process which performs all actions necessary to complete

the processing of an interactive command.
 The Command Control

Blocks for the interactive commands to be terminated are

obtained from the Interactive Terminator Queue.
 When a Command

Control Block is placed on the Interactive Terminator Queue by

another software process, a flag is
set placing the Interactive

Command Terminator into the run
state, if it is not already

executing. The Interactive Command Terminator removes the

first Command Control Block from the Interactive Terminator

Queue.
 The entry in the Remote Terminal Communications List

with which the command is associated is modified to remove all

reference to the command being terminated. The main storage

allocated for the Command Control Block is freed and all other

processing required to purge the command from the system is

performed.

9.5 The Application Program Interface

The Application Program Interface consists of two modules

9-6

which provide the facilities by which an application program

in one region of main storage can communicate with the

Integrated Data Base Management System in another region and

two asynchronous software processes: the Application Program

Command Processor and the Application Program Command Terminator.

Each of the communication modules and the software processes

are described briefly below.

9.5.1 The Communication Modules

Two modules are used to provide communication betweef an

application program and the Integrated Data Base Management

System. They are the Application Program Communication

Module and the Cross-Boundary System Routine.

A copy of the Application Program Communication Module

must be included in the load module for each application pro

gram which issues commands to the Integrated Data Base

Management System. The Application Program Communication Module is

entered when a CALL to the Integrated Data Base Management

System is executed in the application program. It creates an

Application Program Request Block containing the address of each

argument in the command and invokes the Cross-Boundary System

Routine.

The Cross-Boundary System Routine places the Application

Program Request Block on the Application Program Request Queue

and sets a flag to place the Application Program Command

Processor in the run ptate,if it is not already executing.

Control is returned to the Application Program Communication

Module where the application program is placed in a non-executing

wait state. When the Integrated Data Base Management System

completes the processing of a command, control is returned to

the Cross-Boundary System Routine where argument values
are

transferred to the application program and the application

program is placed in the run state again.

9-7

9.5.2 The Application Program Command Processor

The Application Program Command Processor is
an asynchronous

software process which accepts commands from application pro
grams. When an Application Program Request Block is placed

on theApplication Program Request Queue by the Cross-Boundary

System Routine, a flag is
set placing the Application Program

Command Processor into the run state,if it is not
already

executing. The Application Program Command Processor removes

the first Application Program Request Block from the Application

Program Request Queue and searches the Application Program

Communication List to determine if
an entry already exists for

the application program that issued the command.
 If not, a

new entry is created for the application program and the

Application Program Request Block is associated with that
entry.

If an entry already exists, the Application Program Request

Block is associated with the existing entry in the list.

A command Control Block is constructed for the command and

the contents of the argument list associated with the command

are checked. If an error is detected in the argument list,

the command is terminated by placing its Command Control Block

on the Application Terminator Queue.
 If no errors are found

in the argument list, the command is introduced to the Monitor

by placing its Command Control Block on the Command Queue.

9.5.3 The Application Program Command Terminator

The Application Program Command Terminator 'is an
asynchronous

software process which performs all actions necessary to com
plete the processing of an appliiation program command. The

Comm-and Control Blocks for the commands to be terminated are

obtained from the Application Terminator Queue.
 When a

Command Control Block is placed on the Application Terminator

Queue by another Software Process, a flag is set placing the

9-8

Application Program Command Terminator into the
run state if

it is not already executing. The Application Program Command

Terminator removes the first Command Control Block from the

Application Terminator Queue.
 The entry in the Application

Program Communications List with which the command is associated

is modified to remove all reference to the command being termin
ated. The main storage allocated for the Command Control Block

is freed and all other processing required to purge the command

from the system is performed. Finally, the Cross-Boundary

System Routine is invoked to transfer argument values to the

application using addresses in the Application Program Request

Block and to place the application program back into the run

state.

9.6 The Monitor

The Monitor is an asynchronous software process which

handles resource allocation for commands and dispatches com
mands
to the Logical Interface for execution. The Command

Control Blocks for the commands to be dispatched by the

Monitor are obtained from the Command Queue.
 When a Command

Control Block is placed on the Command Queue by either the

Interactive Command Input Processor or
the Application Program

Command Processor, a flag is set placing the Monitor into the

run state, if it is not already executing. Whenever a Command

Control Block is placed on the Command Queue, the Monitor

determines whether or
not the command can be dispatched immediately.

A command can be dispatched if all tables which it
requires for

processing can be allocated to the command in the proper mode.

If the command can be dispatched by the Monitor, its Command

Control Block is removed from the Command Queue and placed on

the Initiator Queue for processing by the Logical Interface.

If the command cannot be dispatched immediately by the Monitor,

its Command Control Block remains at the end of the Command

Queue.

9-9

Whenever the status of a table in the system changes, a flag

is set. This flag causes the Monitor to enter the run state,

if it is not already executing. When the status of one or

more tables changes, the Monitor scans the Command Queue to

determine whether or not any command on the queue can be dis

patched. If so, the Command Control Block for the command to

be dispatched is removed from the Command Queue and placed on

the Initiator Queue for processing by the Logical Interface.

If no command on the Command Queue can be dispatched, the

Monitor is placed in the wait state until either a new command

is placed on the Command Queue or the status of a table within

the system changes.

9.7 The Logical Interface

The Logical Interface, along with the Physical Interface

and the Data File Processor, forms a single asynchronous pro

cess which performs the command dependent processing. The

Command Control Blocks for commands to be processed by the

Logical Interface are obtained from the Initiator Queue.

When a Command Control Block is placed on the Initiator Queue

by the Monitor, a flag is set placing the Logical Interface

into the run state, if it is not already executing. The

Logical Interface removes the first Command Control Block from

the Initiator Queue and begins the command dependent processing

for that command. When the command that is currently being

processed by the Logical Interface performs an Input/Output

operation or requires the loading of a library routine, its

Command Control Block is placed on the Wait Queue and the

execution of that command is suspended.

After placing a Command Control Block on the Wait Queue,

the Logical Interface scans the Wait Queue to determine

whether or not any of the Input/Output or library load opera

tions on which the commands are waiting have completed. If

9-10

so, the corresponding Command Control Block is removed from

the Wait Queue and execution of the command continues. If no

command on the Wait Queue can continue execution, the Logical

Interface removes the first Command Control Block from the

Initiator Queue and starts the execution of that command.

If the Initiator Queue is empty, the Logical Interface is

placed in the wait state until a command is placed on the

Initiator Queue or a command on the Wait Queue can
continue

execution.

When a command completes execution or is aborted, the

Logical Interface places its Command Control Block on either

the Interactive Terminator Queue or the Application Terminator

Queue, depending upon the source of the command.
 A flag is

set to place the corresponding terminator into the
run state,

if it is not already executing.

9.8 The Physical Interface

The Physical Interface consists of subroutines which

support Input/Output operations for tabular data.
 The sub
routines are entered from the Logical Interface via a CALL.

The Physical Interface provides the buffer control facilities

for transferring pages between main storage and the tabular

data storage area on direct access devices. It also maintains

the superstructures associated with tabular data.
 The

Physical Interface controls the logging of page images and

provides the capability of dynamically restoring data bases

should a command terminate abnormally. Also, the Physical

Interface is responsible for the logging of transactions to

provide an
audit trail and record images to allow recovery

should a malfunction cause system failure.

9-11

Of course, the primary function of the Physical Interface

is the transfer of tabular data into and out of main storage.

When an Input/Output operation is to be performed, the Input/

Output subroutine is entered. This routine starts the data

transfer and then places the Command Control Block for the

command which initiated the data transfer on the Wait Queue.

After placing the Command Control Block on the Wait Queue,

the Input/Output subroutine returns control to the Logical

Interface which selects the next command to be executed.

9.9 The Data File Processor

The Data File Processor consists of a set of subroutines

which supports Input/Output operations for sequential data

files. It is entered from the Logical Interface via a CALL.

The Data File Processor is responsible for locating an exist

ing data file for an input operation and, if necessary, issu

ing device mounting instructions to the operator. For an out

put operation, the Data File Processor assigns a unique data

identifier to a new data file, locates direct access space for

storage of the data file, if necessary, and updates the SYSCATL

system table to reflect the existence of a new data file or

another copy of an existing data file.

The Data File Processor supports the loading of library

routines to perform special processing on data files. -,This

includes functions such as regridding, windowing and plotting.

These routines will be resident in the system library until
a

command is issued which specifies one of the functions per

formed by a library routine. The Data File Processor will

cause the proper module to be loaded from the library and

pass control to the routine after it has been loaded. When

the routine has completed its processing, control is returned

to the Data File Processor.

9-12

The Data File Processor uses.several system standard

formats for the internal handling of data files. Data files

in their original format are converted to one of the system

standard formats automatically by the Data File Processor

using library routines. Thus, when an off-line copy of a

data file in its original format is loaded onto a direct access

device, the Data File Processor uses information contained in

the corresponding record in the SYSCATL table to locate and load

the proper format conversion routine from the system library.

The format conversion routines read a data file in its

original format and write either a copy of the data file or

a new data file, which is a subset of the original, in one of

the system standard formats.

The technique of using loadable routines to perform opera

tions on data files and to perform format conversion provides

an open-ended facility for data file processing. New routines

can be added to the system library to perform new functions on

data files. Also, new format conversion routines can be

added to convert new original formats into system standard

formats. . Naturally, there will be certain programming

conventions that must be adhered to when creating the new

routines and it is expected that the Data Base Administrator

will control the addition of new routines to the system

library.

The Data File Processor supports the processing of data

files by application programs. It provides the capability

of positioning a data file to a particular logical record

based upon data values in each record or based upon a relative

record number in the data file. It also provides for the

deblocking of physical records into logical records during

input and the blocking of logical records into physical

records during output.

9-13

9.10 The Output Message Processor

The Output Message Processor is an asynchronous software

process which constructs and transmits messages to either

remote terminals or a line printer. The Message Request

Blocks for the messages to be transmitted by the Output

Message Processor are obtained from the Output Message Queue.

When a Message Request Block is placed on the Output Message

Queue by another software process, a flag is set placing the

Output Message Processor into the run state, if it is not

already executing. The Output Message Processor removes the

first Message Request Block from the Output Message Queue.

The message identified in the Message Request Block is con

structed and transmitted to the remote terminal specified in

the Message Request Block or to the line printer. After

transmitting the message, the main storage allocated for the

message request block is freed and the next Message Request

Block is obtained from the Output Message Queue. If the

Output Message Queue is empty, the Output Message Processor is

placed into the wait state until a Message Request Block is

placed on the Output Message Queue.

9-14

APPENDIX A - THE RELATIONAL MODEL OF DATA

A.l Description and Definition

"Data model" is the technical term used to describe a

user's conceptual view of the contents and logical structure of

a data base. The relational data model is, at the same time,

one of the conceptually simplest models, yet one of the most

sophisticated. To begin with, within the relational data

model all information is contained in one or more flat tables.

Certainly, this is a common enough approach to data organiza

tion; human beings have been tabulating data and looking up

information in tables for as long as there have been writing

,materials and some sort of script to write in.* Given the

ubiquity of tables of information in our daily lives, it may

come as something of a surprise that the relational model of

data is founded on a rigorous mathematical base. Moreover,

it can be mathematically demonstrated that any data relation

ship which can be represented in a competing data model (hier

archical, network) is representable in the relational model of

data, while the converse is not always true.

The term "relation" has a rigorous mathematical defini

tion. Given sets D1, D2, .. ., Dn (not necessarily distinct),

R is a relation on those sets if it is a set of n-tuples

<dl, d2 , ..., d n > such that d is from D1 , d2 is from D2,

and, in general, di is from D, for i = 1, 2, ... , n.

To be mathematically consise, R is a relation on the sets

DI, D2, ... , Dn if it is a subset of the Cartesian cross pro

duct D 1 x D2 x ... x D

*See, for example, Knuth, D. E., "Ancient Babylonian Algorithms",

Communications of the ACM, vol. 15, No. 7 (July 1972) or Boyer,

C.B., A History of Mathematics, Wiley & Sons, (1968).

A-1

This mathematical definition gives rise to much of the

nomenclature used in the relational data model. The sets

Dl D2, etc., are called domains and n is called the degree

of the relation. When n = 1 the relation is called "unary",

when n = 2 it is called "binary" (and the n-tuples are cal

led "ordered pairs"), when n = 3, the relation is called

"ternary", and for larger values of n (or when n is unknown)

the term "n-ary" is generally used. In the standard nomen

clature the term n-tuple is usually shortened to tuple, and

it is a property of the above formal definition of relations

that the tuples are assumed to be in random order.

One term which requires careful definition is "attribute".

An attribute is a name assigned to a domain set reflecting its

usage within the relation. Whereas the domains are not dis

tinct, the attributes of a relation must be distinct. To see

.the difference between domains and attributes consider a rela

tion describing a group of tropical storms. One attribute

would be the name-of the storm and two others might be the date

it formed and the date it broke up. Both of these latter two

attributes are from the same domain - the set of all calendar

days covered by the study - but the meaning of the elements of

that domain when used in the "start date" attribute is dif

ferent from the meaning of dates used in the "end date" attribute.

At this point, it is worthwhile to stop to examine the

correspondences between tabular nomenclature and relational

nomenclature. An n-ary relation is equivalent to a flat table

with n columns. The attributes are equivalent to the columns

and the tuples represent the rows of the table. It is also pos
sible to relate entities in the relational data model to terms

and concepts used in standard data processing, but this requires

a caveat or two. For example, it is possible to think of a

tuple as a record and an attribute as the name of a field, but

a file is a physical entity, as well as a logical entity, while

A-2

tables and relations are abstract concepts. Depending upon

the implementation details, a single physical file may hold

more than one relation, or a single relation may span

multiple physical files.
 The table below, summarizes

the correspondences between tabular, relational,
and data proces
sing nomenclature.

Relational Tabular Data Processing
relation table (logical) file
attribute column field name

tuple row record
degree No. of columns No. of fields

Table A-1: Terminology Correspondences

Two terms have been borrowed from data processing nomen
clature which do not have a common name in tabular terminology.

One of these is data item*, which refers to the contents of a

single field of a record, and which, by extension, is used to

refer to the value of a particular attribute in a given tuple.

The other term is key, which refers to an attribute or collec
tion of attributes whose values uniquely determine the tuples

they belong to.
 If there are multiple keys (i.e., "candidate

keys"), then one of them is usually designated as a primary

key. In business-oriented implementations, it is not unusual

to see the tuples stored in sorted order on
the primary key,

but this is an implementation detail of specific systems and

is not a property of the relational model per se.

For the balance of this appendix, the terms "column"

and "attribute" will be used interchangeably and, likewise,

for "table" and "relation". The terms "row", "tuple", and

"record" will also
be treated as synonyms.

*The term "component" is sometimes used for "data item" in

relational terminology.

A-3

A.2 Normalization

A.2.1 First Normal Form

Except for very trivial examples, there will not be a

single, unique way to represent a collection of data (i.e., a

data base) as a group of relations. Some table layouts are

easier to work with than others and, particularly when the data

base is dynamic, careless structuring of the data base can

lead to problems. Fortunately, it is possible to define

"normal forms" for table layouts based on data dependencies

which will circumvent most of these problems.

One type of problem occurs when an attribute can be

decomposed into sub-data items which may be of interest to
a

user. For example, it is possible to store a date as a six

character alphanumeric string representing day, month, and

year or year, month, day or some such combination. In this

form "date" can be a single attribute. However, if this is

done it becomes impossible,within the relational framework to

handle a request such as "fetch all table entries where the

year is 1977". Since year is not an attribute of the rela

tion, it is necessary to rephrase the request in the more awk

ward form "fetch all table entries where date is between 1

January 1977 and 31 December 1977". Similarly, a location on

the earth's surface can be a single attribute (named, perhaps,

"location") or expressed as a pair of attributes
- latitude

and longitude. The former approach, using the single attribute

"location", would make it impossible to retrieve tuples based

on latitude value even though the information is implicitly

present, because "latitude" would not be an attribute of the

relation in that formulation.

A related problem can be illustrated by the following

example. Suppose we wish to set up
a data base for presiden

tial elections. One table might have election year, (primary

A-4

key), winner, winning party, winner's electoral votes, loser,

losing party, and loser's electoral votes as its set of attributes.

(Note, by the way, that winner and loser are defined over the

same domain, the set of all presidential candidates and, like

wise, the two "party" attributes are defined over a common

domain. Also, both "electoral vote" attributes are defined

over the set of all nonnegative integers.) However, while we

are accustomed to thinking of the United States as having a two

party system, in many years there have been more than two major

party candidates (in the election of 1860, Lincoln ran in a

four candidate field) and, of course, George Washington ran

unopposed. Thus, while most tuples would have single values

for the attributes loser, losing party, and loser's electoral

votes, some tuples would have two values for each of this set

of attributes, some would have three values, a couple of tuples

would have none. As awkward as this is from an implementation

standpoint, it is even more awkward for a user to work with.

The solution is to split this table into two tables, -one

(keyed on election year) with the attributes "election year",

"winner", "winning party", and "electoral votes", while the

other (keyed on election year and loser, together) would have

"election year", "loser", "losing party", and "electoral votes"

as its attributes, with unique values of each attribute of

each tuple.

These considerations lead to the concept of a first

normal form. First normal form has a rigorous mathematical

definition, but it can be easily summarized as follows:

A relation is in first normal form if each attribute

is single-valued and nondecomposable.

In order for a relational data base management system to work

properly, all relations must be in first normal form.

A-5

A.2.2 Anomalies and Higher Normal Forms

A relational data base can exhibit three kinds of mis

behavior, called "anomalies" in the literature, even when all

of its relations are in first normal form. The first of these

is called the update anomaly. Consider again the "election"

relation with the attributes election year, winner, winning

party, and electoral votes. Suppose we have the two tuples:

<1968, Nixon, Democrat, 301>

<1972, Nixon, Democrat, 520>

If we discover this mistake while processing the 1972 tuple,

for example, we must be careful to change Nixon's party in

both tuples. Moreover, we must check the "election losers"

relation to look for tuples containing Nixon to correct his

party affiliation there as well, or else the data in this hypo

thetical data base would have inconsistent facts about Nixon.

Since one of the most important goals of a data base manage

ment system is to maintain data consistency, this is perhaps

the most serious of the three anomalies.

The second type of anomaly is called the insertion

anomaly. If the relations are not well chosen, it may be

impossible to represent certain facts in the data base. For

example, it is not possible to represent the fact that Ronald

Reagan is a Republican or that Scoop Jackson is a Democrat in

this data base since these men were not their party's candidate

in 1976. More seriously, between August, 1974,and November,

1976, it was not possible to represent the fact that Gerald

Ford is a Republican in the hypothetical data base, since he

was not a candidate for either the presidency or vice presidency

until the 1976 election. This could be a serious problem if

the point of the data base was to supply data about presidents.

The final anomaly, the deletion anomaly, is harder to

A-6

illustrate. Suppose that
a data base exists to support a

manufacturing or wholesaling activity, with a relation having

the name "item reorder" and attributes "item number", "supplier",

"supplier address", and "minimum reorder qty". Suppose fur
ther that supplier XYZ is a supplier for item W, and that W is

the only item XYZ supplies. If the firm decides not to order

any more of item IVand deletes this tuple then, since the ruple

has the only occurrence of supplier XYZ in the entire relation,

we also lose XYZ's address. If the firm ever intends to deal

with XYZ in the future, this loss of information will be an

unwanted side effect.

Second and third normal forms were developed as tools

to help data base designers select good sets of relations,

relations which avoid the three anomalies described above.

Second normal form is primarily of historical interest, as a

step towards development of third normal form. Let A and B

be two attributes in a relation R. If knowledge of the value

of A uniquely determines the value of B, (e.g., "supplier"

determines "supplier address" and "winner" determines "winning

party") then we can call A a determinant. R will be in third

normal form if it is in first normal form and every determinant

is a candidate key.

Recently a fourth normal form has been defined to handle

yet another type of problem. If an attribute A determines a

set of values for attribute B, then the relation is in fourth

normal form if A is a determinant of all remaining attributes

in the relation. There is no specific anomaly associated

with relations in third but not fourth normal form, but such

relations are not
as easy to maintain properly as fourth normal

form relations.

These higher normal forms are simply formal ways to
structure sets of relations so that each relation expresses a

A-7

single concept. It should be emphasized that these higher

normal forms are not required for a relational data base to

function.
 For that, only first normal form is required.

Rather, these normal forms should be considered by a data base

designer to be guidelines for selecting sets of tables and

table layouts that
are easy to work with and easy to maintain..

In particular, the design of the Integrated Data Base Manage

ment System will allow it to function quite well without

necessarily having the data in any normal form higher than first

normal form. The features which permit this are:

(1) Use of higher level data sublanguages,

(2) Allowance for null attributes in tuples, and

(3) Non-necessity for keys and random ordering for

stored tuples in data files.

Higher level languages are particularly useful for finessing

the update anomaly. Instead of looking up the 1968 and 1972

tuples in the hypothetical "elections" relation to change

Nixon's party affiliation to Republican, a command in our

system's query language would say:

UPDATE ELECTIONS

(WINNING PARTY = REPUBLICAN)

WHERE ELECTIONS.WINNER EQ NIXON#

(This would still require looking for Nixon in the "losers"

relation.)

Since keys are not an integral part of the storage and

retrieval operations in the system's physical interface, and

since null values are permitted for any attribute of a tuple

(the latter feature is not possible without the former), it is

possible to store facts in a relation maintained by this system

even though a tuple cannot properly be defined for the fact.

A-8

For example, tuples such as < -, Reagan, Republican, - > and

< -, Jackson, Democrat, - > could be added to the "losers"

relation described earlier. While this does not provide a

complete solution to the insertion and deletion anomalies, it

does partially mitigate their effect.

A.3 Relational Operations and Query Languages

There were three views of relations offered previously

and each of these views suggests a series of basic opera

tions which ought to be applicable to relations in a relational

data base.

One of-the views was mathematical, the perception of

the relations as sets of n-tuples. Hence, it follows that

the common set operations such as union, intersection, and

difference should be performable on relations provided, of

course, that the two sets to be operated on are compatable

(i.e., that the two relations are defined over the same set of

domains taken in the same sequence).

The.view of a relation as a table implies that table

look-up operations are applicable to relations. A basic set

of tabular operations can be defined: select a column or set

of columns ("project"), select a row or set of rows based on

some logical criterion ("restrict"), and create a new, larger

table by cross-referencing two tables of lower degree over a

common domain ("join"). Just as the set theoretic operators

take two sets as input and yield a single set as output, these

tabular operations take one or two (in the case of "join")

tables as input and produce a new table as output. Finally,

the view of a relation as a file of records suggests that

data manipulation commands such as insert, delete, and update

shoula be supported (data retrieval, of course, is equivalent

to a restriction, or a restriction followed by a projection

A-9

over the desired attributes). These nine operations con
stitute a relational algebra for manipulating relations, and

this relational algebra provides the foundation for query

languages to support information handling in a relational data

base. We say that a data sublanguage is relationally com
plete if it is possible to perform all relational operations

in the relational algebra using that language.

A rather different point of view is adopted by query

languages based on relational calculus. It is possible to view

a relation as a proposition in the first order predicate

calculus, and to view the individual n-tuples as "axioms."

.In languages based on relational calculus a user formulates

his or her query as a statement in the first order predicate

calculus defining a new relation, where that statement may

well include universal and existential quantifiers (V, "for

all," and 3, "there exists", respectively). Codd8 was the

first to propose the relational calculus, and he went on to

demonstrate that the relational calculus is relationally complete.

The advantage of relational calculus over relational algebra

is nonprocedurality, that is, the user formulates a query by

defining the results of the retrieval and not as a series of

processing steps. It
is left for the system to interpret

the query statement and to formulate its own retrieval procedures.

Nonetheless, the unfamiliar and highly mathematical notation used

by the relational calculus appears to have been an
impediment

to its widespread acceptance. Recently, however, a relational

calculus-based language named QUEL has been developed by

Stonebraker, et. al.3 7 ,which dispenses with the need for the

quantifiers and which makes heavy use of English key words.

Such a language would presumably have a higher degree of
user

-acceptance.

A-10

Another approach to a nonprocedural query language

made palatable to casual users by use of English key words

is embodied in IBM's experimental SEQUEL language4, which is

based on the concept of "mapping." In a mapping, known

quantities -- specified in a Boolean predicate
-- are mapped

into an unknown quantity -- the data items to be retrieved

by means of the relations in the data base, much as mathe
matical functions may be viewed as mapping sets into other

sets.
 In SEQUEL,mappings may be nested inside other mappings.

This feature gives SEQUEL its power and yet its most

significant drawback; although the language is purportedly

"directed at the nonprogramming professional,",3 examples in

4 10Chamberlin and Date suggest that formulating queries in

SEQUEL would be difficult for users not trained in recursive

programming languages such as Algol.

A fill-in-the blanks language call Query-by-Example

40
has been developed by Zloof4 . The user enters the names

of the relations against which a query is to be made on
a

graphics CRT terminal and the system responds by drawing in

a skeleton table with columns and headings. At that point

the user fills in one or more rows with examples of the desired

result. The known values are keyed in directly while unknowns

are represented by arbitrarily-chosen sample values which are

flagged in some way. Psychological studies of user interact

ions with Query-by-Example3 8 demonstrate that Query-by-Example

is easy to use, particularly for the casual or novice user;

has a high degree of retention for infrequent users; and is

"behaviorly extendable," that is,
a user can start by learning

just enough of the language to get by and add to his or her

knowledge as necessary. However, although a "linearized"

version of Query-by-Example exists for use with batch input

or non-graphics terminals, that form of
the language is more

bulky to use and not nearly as convenient.

A-11

Finally, there has been much interest in the use of

natural language (specifically English) as a very high level

query language. In particular, there has been much research

on the part of artificial intelligence theorists on develop
ment of a natural language interface for relational data base

management systems (the consensus among researchers is that

the relational data model facilitates natural language inter
face development to such a degree that if a natural language

front end cannot be developed for a relational system, then

it cannot be developed for a data base management system at

all).
 There has also been much work done on automatic trans
lation of questions into first order predicate calculus,
so

that & relational calculus-based system may yet be commercially

feasible.
 But a true natural language interface is still a

long way off.

A.4 History

The late 1960's saw the development of several arti
ficial intelligence-oriented systems based on the storage of

data as a set of binary relations (such as MOTHER-OF<JACK,MARY>).

However, textbooks on data base management systems (e.g., Date 10

Martin2) and survey articles (Chamberlin3) are unanimous in

pointing to the 1970 article by E. F. Codd 6
as the seminal

paper providing the impetus for the theoretical and practical

development of the relational model of data.
 A subsequent

series of articles by Codd continued to develop the theoretical

foundations of the.relational data model, including definition

of a "relational algebra" and specification of prototype data

sublanguages based on
first order predicate calculus and on

the relational algebra8 , development of the theory of normaliza
tion7 , and conceptual design of
an English language interface

between a casual user and a relational data base management

system99 . It is rare in any science for a single individual

to provide nearly all of the theoretical basis for a major new

A-12

branch of technology, and rarer still in computer science.

Nonetheless, it is clear that Codd is the founding father of

the relational model of data.

Curiously enough, Codd does not appear to have made a

direct contribution to the implementation of any working proto

type relational data base management system. Most prototype

systems have been constructed in a university environment or

in IBM research laboratories (for a list and description of

3
these systems and the following two see Chamberlin or Datel0).

General Motors implemented a system called RDMS in 1972 (not

to be confused with MIT's system of the same name) and RISS

was
built for Forest Hospital in Des Plaines, Illinois. Two

of these systems - RISS and INGRES - are commercially available

for use on DEC PDP-ll's. The vast bulk of research on

relational data base management systems has been conducted

under IBM auspices (all of the people mentioned in this sec

tion. Chamberlin, Codd, Date, and Martin, are IBMers, as is Zloof

the person who developed Query-by-Example). However, IBM has

been careful to label all of its work on the relational data

model as "experimental", and it is not likely that an IBM pro

duct in this area will soon be forthcoming.

A.5 The Advantages of the Relational Model of Data

There are two competitive data models, the "hierarchical"

model typified by IBM's IMS system and the "network" model

.
devised by the Data Base Task Group of the CODASYL committee5

It is sufficient, however, to compare the relational data

model to the CODASYL model since the hierarchical data model

is not general - there are data relationships which can be

represented in the relational data model and in the CODASYL

model which cannot be represented in the hierarchical model.

A-13

The primary advantage of the relational data model viz
a-viz the CODASYL model is data independence. There are two

forms of data independence - physical independence and logical

independence. Physical independence means that the user

should be shielded from details of the physical storage of the

data, including character representation methods, byte size,

record blocking, physical access method, etc.
 The relational

model functions quite well in this respect,
since the user

sees only the tables and attributes and sees nothing of the

underlying physical implementation. In the CODASYL model,

the files may be envisioned as labeled vertices of a directed

graph with labeled arcs, where the labels on
the arcs define

relationships between the entities of
one file and the entities

of another.
 Typically, a CODASYL model is implemented with

pointers from one record in a file pointing to
a record or

linked list of records in another file, and so
the user must

often be aware of decisions made by the Data Base Administrator

concerning physical record placement and access paths.
 In the

CODASYL model,both structural and nonstructural features,

e.g., details of storage structure and access szrategy,.are

interwoven with the logical structure. Physical structure

changes which would be transparent to a user of a relational

data base would not be transparent to the user of a CODASYL

data base.

Logical independence is generally defined to mean

that, within reason, application programs which operated prop
erly before a change to the logical structure of the data base

should continue to work after the change.
 Here, again, the

relational model has a major advantage over the CODASYL model.

Changes such as
adding a column cause no problem to the user,

although small changes in information can cause the data to

be unnormalized and require major restructuring of the data

base.
 However, it is equally possible that small changes,

for example changing a one-to-one relationship to a one-to

A-14

many or, especially, a one-to-many relationship to a many-to
many, can also cause nontrivial restructuring of a CODASYL

data base. Consequently, it is generally conceded that the

CODASYL data model has considerably less logical independence

than the relational data model.

Another major advantage of the relational data model

over the CODASYL model is its flexibility, although it is not

so much that the relational model is flexible as that the

CODASYL model is inflexible. Recall that relationships and

access paths must be formally specified in the CODASYL data

definition schema, and if the data base administrator should

happen to overlook some relationship between records in a

pair of files, then users of the system will be unable to re
spond to a query which requires that (missing) access path.

Two interwined issues are complexity and clarity and,

here again, the relational data model has the advantage. The

CODASYL model has no fewer than six data constructs, any of

which can bear information which could not otherwise be

derived. In the relational model there is precisely one

such data construct (the n-ary relation). Moreover the set

construct, which supports one-to-many relationships, performs

three roles:

(1) It carries information,

(2) It defines access paths, and

(3) It provides a mechanism for integrity constraints.

The multiplicity of information-bearing constructs and the

multiplicity of roles make it hard to present the contents and

interrelationships in a CODASYL data base consisely.
 This is

reflected in Martin's statemen& 3 that "a badly drawn schema

can confuse rather than clarify, and one often sees badly

drawn schemas" (pg. 83).

A-15

The simplicity and clarity of the relational data

model contribute to ease of use, particularly for the untrained,

nontechnical, and/or casual user. This is a point conceded

by even the most outspoken advocates of the CODASYL model.

The reader might well ask why, if there are all of

these fore-mentioned advantages of the relational model over

the CODASYL model, there should be any advocates of the CODASYL

data model at all. One reason may be that the CODASYL data

model provides the user with highly visible navigation routes or

access paths through the data base and, consequently, the data

sublanguages for manipulating data in a CODASYL data base tend to

be procedural in nature. That is, a query is input to a CODASYL

data-base management system as a series of steps to be taken

which will derive the intended answer. While this will hold

back the untrained or trained but casual user, direct control

of data access provides a feeling of intimacy with the system

which can be very important to some classes of user.

Associated with this is the generally-accepted (though

not backed up by hard proof) point of view that CODASYL data

base management systems are more efficient than relational

systems. The CODASYL data model trades off data independence

for efficiency's sake and, in some implementations, the quest

for machine efficiency has been taken to the point where a

user may be accessing a record while it-is being updated to

save the overhead involved in testing, setting, and releasing con

currency control locks. However, there are perils in evaluating

system efficiency without consideration of whether the users

are capable of making the most efficient use of their own

time. Everyone understands that there is a tradeoff between

main memory and execution time in designing a system, but fewer

people seem prepared to grasp the fact that there is a tradeoff

between system efficiency and user efficiency. The latter is,

granted, hard to quantify since it includes not only the time

a user must spend devising and inputting his query, but~also

A-16

hidden costs in demands on the Data Base Administrator's time

and ingenuity, training time to teach new users how to use the

system, etc. However, problems with user efficiency can cause

a system to be under-utilized and, oftentimes, abandoned (see

Lucas 2 2). It is believed that this system will be competitive

with existing commercial CODASYL data base management systems

in terms of system efficiency, and that the many user-oriented

advantages offered by the relational data model will help the

user and system together achieve their fullest potential.

A-17

--

APPENDIX B - ADDITIONAL TOPICS

B.l Dynamic Memory Allocation

B.l.1 Approaches to Dynamic Memory Allocation

In order to maintain the User Control Blocks, Relation

Control Blocks, the command queues,buffers for processing

large tape files and on-line data files, etc., with any

degree of efficiency it might be necessary for the Integrated

Data Base Management System to hold a large, contiguous block

of memory and to allocate and deallocate portions of this

"free space" for control blocks, buffers, and so forth as

needed. There are three basic approaches to managing this

free-space: fixed-size pages, variable-sized allocation

with a free space list, and "buddy" methods. Each of these

methods is discussed below. Whether or not one of these

techniques will be included as part of the Integrated Data

Base Management System will depend upon the operating system

on which it is implemented.

Paging is the easiest approach to implement and its

memory overhead -- a single bit map with one bit per page

.is quite low. However, even when the system supports more

than one page size there will normally be a certain amount

of wasted space within a page where the space required is

less than the size of the page. This wasted space is called

"internal fragmentation", and it can be a serious problem

leading to system degradation.

A very different approach is to allocate precisely as

much memory as is required to service any given request.

-Such an approach results in the free space being checker
boarded into blocks or areas which are in use
and blocks

which are available for allocation, where it is rare for

any pair-of blocks to be the same size. Typically the

B-1

available blocks are chained together on some sort of linked

20

list. Knuth2,Section 2.5 describes algorithms for maintain

ing free space lists and allocation strategies for selecting

which available block to allocate to a given request for

memory. This class of dynamic memory management schemes

has only negligible internal fragmentation, but it suffers

from the more subtle problem of external fragmentation.

External fragmentation describes a situation where the free

space becomes choked with tiny available blocks, each too

small to satisfy a typical request for memory. External

fragmentation not only raises the cost of searching the

free list of available blocks, but in the limit it can re

sult in a system blockage where no pending request for

space can be satisfied, even though sufficient free space

exists to satisfy them, because the avail-able memory is

scattered in pieces too small to be of use.

The "buddy" methods represent a compromise between the

above two approaches. In the binary buddy method all

blocks -- allocated or available -- are of size 2 k for some

integral value of k . If a request for a block of size

comes in,then the system would determine the smallest j

such that 23 ; x If there is a block of that size

available,then it would be allocated immediately. If not,

then the system locates the smallest available block larger

than x and splits it in half (repeatedly, if necessary)

until a block of size 2 results. Since each allocated

block in the system must have been created by splitting a

larger block in half, when a block is released the system

checks to see whether the other member of the pair -- the

buddy -- is also free. If so then the two are combined to

reconstitute the original, larger, block and then the system

looks for that block's buddy to rebuild even larger free

blocks.

B-2

x

Intuitively, the buddy method approach should be worse
than the other two, since it is susceptible to both in
ternal and external fragmentation. Moreover, it is quite

possible to have a large, contiguous block of unallocated

memory which cannot be used in its entirety because it is

composed of two smaller blocks which, though available, are

not buddies and cannot be coalesced. Nonetheless, theoretical

calculations and simulation studies 20,26suggest that buddy

methods do, in fact, outperform the variable-sized allocation

method both from the point of view of total fragmentation and from the

point of view of efficiency of the allocation and dealloca
tion operations.
A recent study by Nielsen29 suggests that

the fragmentation problems of the binary buddy method are

too severe when used in simulation systems, but that study

confirmed the execution efficiency of the buddy methods

noted by KnuthM.

B.1.2 The Fibonacci Buddy Method

A variation on the binary buddy method proposed by

Hirschberg uses the Fibonacci numbers instead of powers of

two.
 Table B-1 shows the Fibonacci sequence, where each i
nfimber in the sequence (after the second) is the sum of the

previous two. The binary buddy method is based on
the

equality 2 k = 2 k-1 + 2 k-l
while the Fibonacci buddy method

is based on the equality Fk
= Fk 1 + Fk- 2 , where Fk is
the kth Fibonacci number. Table B-2 shows the most

important advantage of the Fibonacci approach over the

binary approach, namely, that the Fibonacci method presents

the user with a greater variety of block'sizes for a given

limit -- particularly at
the low end of the spectrum.

B-3

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

Table B-i: The Fibonacci Numbers

Range Fibonacci Binary

I - 100 10 7

100 - 1100 5 4

1100 - 12000 5 3

Table B-2: Count of Numbers in Various Ranges

For a while, the Fibonacci method was an academic curious

ity. Hirschberg's calculations and his simulation study

(using the data of Minker, et. al. 26) demonstrated that the

Fibonacci buddy method outperformed the binary buddy method,

but he was not able to produce an efficient algorithm for

implementing it. Then Thomas and Cranston 9 came up with an

.efficient method for implementing the Fibonacci scheme that

they were able to prove was within one bit of the absolute

minimum storage overhead needed to implement any buddy method.

Each block -- freed or in use -- wastes one word (or one byte,

for an eight-bit byte-oriented machine). This overhead word

(byte) has four fields: a one-bit "A" ("allocated") field, a

one-bit "B" field, a one-bit "M" field, and a "k-value"

(indicating that the block is of size Fk' the kt h Fibonacci

number). The B bit tells whether this is a left buddy or a

right buddy, and the M bit saves half of the original block's

B and M byte. If B = 0 , then the M bit is the original

block's B bit and if B = 1 , the M bit is the original

block's M bit.

B-4

The Fibonacci sequence is stored in an array (starting

with 2 and 3 to generate the sequence) and associated with

each number is a pointer to a linked list where free blocks

of that size are chained together. If a block of size x

is requested, then the array is searched to find the smallest

block size (strictly) larger than x. If that list is empty,

then the array is searched to find a larger block which can

be split (and resplit, if necessary) to create a block of the

appropriate size. When a block is freed, the B bit, its size,

and its address are used to compute the address of the buddy.

If the buddy's A bit shows that it, too, is free, then the

two are combined to reconstitute the original block, and then

the address of the original block's buddy is computed and the

process repeats itself.

Not only does the Fibonacci method have the considerable

advantage of permitting a variety of block sizes, but it lends

itself to generalization and extension to permit a system designer

to fine tune for a specific purpose. One approach to general
ization is to define Fk = Fk_ 1 + ii , where the first i

numbers in the sequence are specified. Such a sequence is even

denser than the usual Fibonacci sequence, as shown in Table B-3.

Clearly, the more different block sizes that are available,

the smaller the internal fragmentation will be. Another

extension of this technique is to use different generating

sequences. There is no particular reason why the sequence
should begin 1, 2; 3, 5, ... and not 2, 4, 6, 10, ... or 3, 7,

10, 17, ... Therefore, if a system designer knows in

advance that requests of certain particular sizes will be very

frequent in the system he can try different values of i and

different starting sequences to optimize for those sizes.

Note that i = 1 and F1 = 1 defines the binary buddy approach.

B-5

There is further evidence, beyond Hirschberg's own calcula
tions and simulation to support the suggestion that a Fibonacci

buddy method is likely to be the best choice for a dynamic memor

allocation algorithm. This expectation is reinforced by

Nielsen's study 29 although Nielsen did not test the Fibonacci

buddy method directly, since the Fibonacci buddy method com

bines the best features of the top-rated "multiple free list"

algorithm and the high-razed binary buddy method. Moreover,

the efficacy of the Fibonacci buddy method in the face of an

unknown distribution of request sizes and durations is supported

.
by the conclusions of Peterson and Norma 0

Range i =1 i = 2 i = 3 1i = 4

2-100 7 10 12 14

100 - 1100 4 5 6 7

1100 - 12000 3 5 6 8

Table B-3: 	 Count of Numbers in Various Ranges

for Fk =F + F

k k-i k-i

B.2 Data Integrity, Consistency, and Quality

B.2.1 Sources of Erroneous Data

Sibley and Fry 3have identified five sources of poor quality

data in a data base. The data might be incorrect because it

was:

(1) never any good (garbage in equals garbage out)
(2) altered by human error

(3) altered by a program bug

Generated by first i numbers in the sequence 1, 2, 3, 4.

B-6

(4) altered by a machine error

(5) destroyed by a major system catastrophe.

In addition to these five problems, one can add problems relat

ing to data consistency. Consider the effect of a system

crash during an update. It is seldom possible to restart the

update procedure at precisely the instant where the system

malfunctioned, and simply restarting the update without some

mechanism to recreate the data as it was before the crash will

not often give the required results. For example, suppose

the machine crashes while processing an update to give all

systems analysts a 10% raise. If the update is simply

restarted after the system comes back up without restoring the

data base to its initial state, some systems analysts will get

a 21% raise. A second source of consistency problems occurs

when two users update the same table simultaneously. These

problems will be addressed at greater length in another section

dealing with user concurrency.

Ensuring data quality and consistency requires both the

ability to detect erroneous data and the ability to restore

affected portions of the data base to a previous state. To

-aid in the detection of erroneous data, there will be provision

for user-input data validation rules through an integrity sub

system and procedures for automatic backout and recovery.

B.2.2 Backup and Restoration

B.2.2.1 Audit Trails

An audit trail (also called a "journal" or "log file")

is a tape file which records:

(1) Beginning and end of all commands

(2) User-id for each command

(3) "Before" and "after" images of all changed records

B-7

(plus) images of inserted and deleted records

(4) Time and command identifier for each change.

The audit trail plays three roles. First, an audit trail is

convenient for a quality audit of the data base, to detect

data which is erroneous, but semantically plausible. Second,

an audit trail helps detect the source of errors (whether

discovered during a formal quality audit or detected informally

by a human user). Finally, and probably most important,

is the role of the audit trail in recovery from a system

crash. The entries in the tape file can determine which

commands have been initiated but not completed prior to the

crash, and backout procedures can be initiated to recover the

contents of those tables to their state prior to the initia

tion of the incomplete command. Moreover, if the data base

has been checkpointed then the audit trail can help roll for

ward from that checkpoint to recover from major system mal

functions.

B.2.2.2 Internal Backout Provisions

It is very important that the system be able to undo any

-changes made to a table for two reasons: (1) the command

may be blocked from completion by an I/O error or a semantic

error, or (2) the system may crash during the course of execut

ing a transaction. The latter can be handled by resorting to

the audit trail, but there may be a more efficient method for

restoring a table.

There are a variety of techniques in current use for pro

viding backup and restore capabilities. The simplest but least

efficient approach is to create and maintain a second copy of

the original state of the file. This makes restoration an easy

/

matter, but it is expensive and time-consuming. Differential

files have been espoused as a means of getting around the dump

ing of entire files to provide backup copies. "After" images

B-8

of all changed records are kept in a separate file -- the

differential file -- and record accesses begin by searching for

the required record in the differential file, using the original

file only if searching the differential file comes up empty.

Then only the somewhat smaller differential file must be copied

before a change transaction begins. Differential files have

their drawbacks, most notably-with respect to restoring deletions

and due to the two-pass record access requirements. Severance

and Lohman33describe a method for alleviating some of the latter

difficulties, but deletions would still be a problem.

An approach with some similarities to differential files

is taken in this system. This approach makes use of a linked

list in the tabular data storage area of "before" images of

chahged physical pages and another linked list in main storage

that is attached to a Command Control Block and which contains

the page id of each page for which a "before" image has been

recorded during processing of the associated command. While

a physical page is being rolled in prior to being changed, the

system scans the list of page ids to see whether this page is

recorded on it. If not, then the first order of business

once this page is in core is to select an empty page slot,

create an entry in the list which records the physical id for

the page to be changed and the page id for the empty slot, and

then, before doing any further processing, copy the page in

core into the slot. After the page is updated, it can go

back into its proper location on the disk. Backing out the

effects of a command and restoring a table to its state before

initiation of the command is simple enough. The system

merely scans down the list connected to the Command Control

Block, entry by entry, and for each entry in the list it rolls

in the before image of the physical page and writes it back to

its proper location. Notice that this scheme preserves the

pointer mechanism for the linked list of physical pages. If

the command goes through to completion with no problems (hope

fully the normal casel) then the entire list of "before" images

B-9

in the tabular data storage area can be freed up with no

noticeable overhead providing they themselves are maintained

in a linked list.

It will be necessary to record the new free page head

pointer and backup page pointer in the audit trail when a free

page is selected for copying.

B.2.3 The Integrity Subsystem

B.2.3.1 Integrity Assertions

When data base management systems designers and computer

scientists refer to the "iTtegrity" of data in a data base, they

usually are referring to semantic correctness. Examples of

semantically incorrect data would be a temperature less than

°
-273.16' Celsius, a latitude greater than 90 , an employee

record where the first name is "William" and the sex is "'F".

etc. In the days when data management systems consisted of a

room full of filing cabinets and several clerks, the human be
ings responsible for data entry could catch most such errors

with no perceptible overhead. In modern, computerized, data

base management systems certain errors become very difficult

to catch (e.g., "female" employees with obviously masculine

names) and any data validation software included in the system

must exact overhead penalties in the form of extra time to

perform the tests and extra space to store the knowledge base

and the code itself. Designing a space and time-efficient

structure for the knowledge base, and resolution of the

trade-offs between the expense of performing the tests and

the utility of catching the errors, are major problems which

confront the designer of a data base management system.

The normal approach to data validation in a relational

data base management system is the "integrity assertion" (also

B-10

called an "integrity constraint"). An integrity assertion

is a true/false predicate whose value will be "true" if and

only if the records of the updated table are semantically cor
rect. Suppose SPACECRAFT-DATA and EMPLOYEE are tables con

taining satellite data and personnel records, respectively.

Then typical assertions might be defined as:

DEFINE ASSERTION Al ON SPACECRAFT-DATA: TEMP > -273.16

DEFINE ASSERTION A2 ON SPACECRAFT-DATA: LAT < 1.5708.

DEFINE ASSERTION A3 ON EMPLOYEE: AVG(SALARY) < 30000

(where temperatures are stored in degrees Celsius and latitudes

in radians north latitude). Eswaran and Chamberlin 2identify

five ways to classify integrity assertions:

(1) record vs. set

(2) state vs. transition

(3) immediate vs. delayed

(4) invoked on all changes vs. invoked only for

specific types of changes (e.g., deletions only)

(5) hard vs. "soft"

Not all of the thirty-two (= 25) combinations of these labels

are likely to be useful, and some of these are expensive to

support. The Integrated Data Base Management System will sup

port precisely the following combinations, with "hard" and

"soft" variations
on each:

(1) imnediate-record-state-update only

(2) immediate-record-transition-update only

(3) immediate-record-state-insert only

(4) immediate-record-state-both insert and update

What is to be performed by the above assertion classes can be

determined by the description below.

B-1l

Immediate-type assertions are tested each time a data

item is changed. Delayed assertions are tested at the end of

a command or sequence of commands. The value of delayed

assertions is that a proper and correct sequence of updates

can cause a temporarily invalid state of the data base to occur.

For example, consider a personnel data base with an assertion

that the "number of employees" data field in a record of the

"department" table must equal the sum of the number of records

in the "employee" table with that department number. Adding

or
deleting a record in the "employee" table would cause this

assertion to be violated until the appropriate data field in

the "department" table was
also updated. Delayed assertions

are not necessarily expensive to implement, but analysis of

projected user requirements suggests that their utility in
a

scientific environment, no matter how useful they are in
a

business environment, would not be worth the cost of implementing

and supporting such a feature.

Set-type integrity assertions are distinguished from record

assertions in having predicates which are
functions of the

entire table (e.g., assertion A3, above).
 These are expensive

to perform since every record must be accessed when any tuple

is changed. For that reason the Integrated Data Base

Management System shall not support set assertions. It is

not clear whether there would be any benefit to allowing the

owner of a table to
specify that certain assertions be tested

only on insertion or only on
update of a record, although this

is simple enough to support and will be, in fact, supported by

the system. One type of assertion which applies only to up
dates and which may be useful is the transition assertion, which

relates allowable values of a data field in an updated record

to the former
 value (e.g., DEFINE ASSERTION A4 ON EMPLOYEE:
AGE > OLD AGE). Again this would be simple enough to
implement and inexpensive to perform, and it will be implemented

within the system.

B-12

One enhancement whose value is clear is the "soft" asser

tion. Unlike "hard" assertions, which abort commands when

semantic errors are detected, a soft assertion would merely

issue a warning.

One final consideration is the allowable complexity of

predicates for immediate assertions. Clearly, the simpler

the predicates are, the easier it will be to store, decode,

and apply them. If we assume that predicates have the form:

<predicate>:: =<field name> <comp> <value>

where <field name> is the name of a data field in the table

and <comp> is a comparison operator (i.e., , <, >, LT, LE,

EQ, GE, GT, or NE), then the allowable forms for <value> are

(1) 	a constant

(2) 	another data field

(3) 	a data field plus or minus a constant

(4) 	a data times or divided by a constant

(5) 	a data field times or divided by a constant .plus

or minus a constant

The "field name" will be either another data field of the same

table or (if transition assertions are supported) the
same

field name as on the left side of the predicate, preceeded by

the word "OLD". Some examples are:

DEFINE ASSERTION A5 ON EMPLOYEE: AGE = OLD AGE + 1

DEFINE ASSERTION A6 ON SPACECRAFT-DATA: START-DATE > END-DATE

By restricting the complexity of the predicates and the

scope of the assertions it is possible to support immediate

integrity assertions by a fairly simple table, attached to the

Relation Control Block in main storage much as the Domain

B-13

Extension. The fields of this table would include;

(1) assertion name

(2) data field name (left side of comparison)

(3) applicability code (insertion only, update only,

both)

(4) comparison operator

(5) constant

(6) data field name (right side of comparison)

(7) multiply/divide flag

(8) constant

(9) add/subtract flag

By a suitable choice of null entries, this set of fields is

sufficient to describe all valid predicates.

B.3 A Locking Mechanism to Support Concurrency

B.3.1 Problems Introduced by Concurrent Updates

One major objective of a data base management system is

to provide for the quality and integrity of the data. There

fore, it makes sense that the system should not itself introduce

inconsistencies into the data. One source of system-induced

inconsistencies are problems which can arise from permitting

concurrent processing of the same files (tables) of data by

two or more users.

There are two broad categories of problems which can arise

due to concurrent processing. The first of these is called the

"lost update", and it is a consequence of the fact that data in

a data base management system is stored on external media (disk,

drum) but must be copied into main memory before being read and/

or edited. Suppose that user 1 initiates process 1 to update

Record R, and suppose that user 2 simultaneously initiates pro

cess 2 to edit the same record. A possible sequence of events

B-14

is:

(1) Process 1 copies R into main memory and begins

to update the record.

(2) Process 2 copies R into main memory and begins

its own update.

(3) Process 1 finishes and copies R back to disk.

(4) Process 2 finishes and copies R back to disk.

Thus, the results of the first user's efforts are overwritten,

hence the name "lost update". Fortunately, the design of the

proposed Integrated Data Base Management System (which uses a

common buffer pool and begins any data retrieval by searching

for the required physical page in the buffer pool before initiat

ing'any disk I/O request) will alleviate the lost update problem

to some extent. However, the case of a "pipelined CPU" or

multi-CPU environment would still pose difficulties.

A more insidious problem is the so-called "phantom

record". Suppose that user 1 is increasing the salary field

of some set of records in a personnel file (e.g., giving all

systems analysts a 10% raise) while user 2 is listing all

records in the personnel file where the salary is above a

certain threshold. If these two processes run concurrently,

then depending upon the relative order in which the records

were accessed some systems analysts whose salaries were in

creased above the threshold might be listed and some might not -
these are the phantom records. Note that this type of problem

is not a loss of data integrity, but a loss of process integrity.

One feels, intuitively, that the second process' results should

list all the systems analysts where salary changed from below

the threshold to above the threshold, or else none should be

listed -- anything else is inconsistent.

The standard approach to retaining data consistency with

B-15

concurrent users is through the use of some sort of locking

The basic rule is that data consistency
mechanism on the data.

can be maintained if and only if the results of two concurrent

processes are indistinguishable from the results of the same

some order. Considering
two processes run sequentially in

again the example used to describe the phantom record problem,

it is acceptable to have all of the systems analysts whose

salaries were lifted over the threshold included in the listing,

since this is equivalent to executing process 1, followed by

process 2. It. is equally acceptable to have none of the systems

analysts included, as that is equivalent to executing process

2, followed by process 1. As that exhausts the possibilities,

nothing else is acceptable. Notice that the rule is always

satisfied if the two processes in question only read the data

and do not change it. However, if a process wishes to change

some piece of data, it will be necessary to wait until all other

processes operating on that piece of data finish, then that

process must have sole access to the data. Normally, this is

-- a
accomplished by means of two different types of locks

"share" lock for processes which do not intend to change the

Processes
data, and an "exclusive" lock for processes which do.

which request a piece of data are allowed to proceed only if (a)

no other process has a lock on that data, or (b) this process

wishes to lock the data in shared mode and the data has

already been locked in a shared mode (depending upon system

strategy, the request may have to check for pending exclusive

use requests). If neither criterion is satisfied then the

request must be placed in some sort of "pending" queue.

B.3.2 High Level vs. Low Level Locking

There are two issues -- not entirely separable -- which must

be clarified in the description of any locking mechanism. The

first of these is whether the locks shall be set by some sort

or
of high-level logical mechanism (e.g., predicate locks)

B-16

whether the locks should be physically attached to single, in
divisible, units of data.
The high-level approach to locking

in a relational system is seductive.
 In the command language

of most relational systems, the set of records to be accessed

is implicitly defined by a logicai predicate (the "WHERE clause"

of SEQUEL and QUEL). The predicate of the incoming request

and the predicates for active requests are combined into a

Boolean expression (usually in disjunctive normal form) and

tested for satisfiability.
 An expression is satisfiable if

there exists some consistent assignment of "true"
or "false"

to each term in the expression which makes the whole expression

true.
 Consider the following pair of requests against a personnel

file:

(1) NAME = SMITH AND SALARY > 20000

(2) TITLE = MGR OR SALARY < 19000

The resultant expression is:

(NAME = SMITH AND SALARY > 20000 AND TITLE =
MGR)

OR (NAME = SMITH AND SALARY > 20000 AND SALARY < 19000)

The second parenthesized subexpression is always false, since

a salary cannot simultaneously be greater than $20,000 and less

than $19,000.
 However, the entire expression is satisfiable

since the first subexpression is satisfiable if there is
a

manager named Smith making more than twenty thousand dollars.

Therefore, the two requests conflict and one must be blocked.

Note that this says nothing about whether there is such a record

in the personnel file -- satisfiability does not guarantee that

a conflict exists, only that there is
a potential for problems.

Rather, it is the unsatisfiability which is desirable, since

it guarantees that conflict will not exist.

Certainly the high level logical locking approach is mathe
matically elegant.
However, at a higher mathematical level it

B-17

is known that satisfiability is an NP-complete problem. Barring

a major mathematical break-through of unprecedented proportions,

there exists no efficient means for testing for satisfiability.

Testing for satisfiability with r transactions and an
average

of n terms per predicate must take time proportional to

n
r'2 . (In fact, r. 2n is a lower bound.) Stonebraker, one

of the designers of the INGRES system, has proposed a similar

approach3 6 .
 It is easy enough to show that if the incoming

predicate passes Stonebrakerts test, than the resultant Boolean

expression must be unsatisfiable, and in fact the test may be

more restrictive than is necessary to detect potentially non

conflicting requests. Moreover, it is not clear whether there

exist efficient procedures to perform the tests required for

Stonebraker's algorithm.

B.3.3 Granularity

Granularity refers to the size of a lockable unit, and

once the decision is made to use physical locks, the size of the

data "granules" to be locked must be specified. Should the

locks be set at the record level?
 Lower still, at the data field

level? Or higher -- at the physical page or even data base

level?

Gray, et al.,16 have proposed a scheme which allows the

user to place locks at a variety of different granule sizes,

depending upon the needs of the particular transaction. This

approach viewsthe structure of a data base, conceptually, as

a directed acyclic graph structure (see FigureB-1). The system

may place explicit locks at any vertex in the graph, and an explicit

lock at a vertex implicitly locks all descendants in the

graph. These implicit locks do not have to be formally specified

anywhere -- to prevent possible lock conflicts between an ex

plicitly-set lock at
a lower vertex in the graph from conflict

ing with an implicitly-set lock created by an explicit lock on

B-18

,Data Base

Table

Indices

Record

Data Field

Figure B-I: Hierarchy of Lockable Units in a Data Base

B-19

--

an ancestor vertex, all lock requests are required to begin by

walking down the graph from the top vertex placing "intention"

locks at every ancestor of the vertex to be locked. This

permits.conflicts to be detected at the very highest level.

The advantage of being able to select a fine granularity

is that it permits the maximum possible concurrency. If the

system places locks on units of data which are larger than

necessary, then there is the danger of blocking a second request

which needs the unused portion of the locked data, but which

request.
otherwise does not conflict with the original

The disadvantage of using a fine granularity is clear, however

the more granules which can be locked, the more overhead to

test, set, and maintain these locks will be required. In an

effort to examine the tradeoffs, Stonebraker and Ries performed

simulation study to explore the desirable size
of a,"granule".32

a

Their study can be critiqued on the grounds that it assumes that

the transactions are uncorrelated, and thus it ignores the

"80-20" law.* The study demonstrated that splitting the data

base in ten equal-sized granules performed surprisingly well,

particularly when transactions requested large portions of the

data or when the number of I/0 channels was restricted. Using

fifty granules appeared to do best for multiple I/0 paths (and

it performed as well as ten granules for a single I/O path) and

for requests for small portions of the data base.

B.3.4 A Physical Locking Mechanism

The results of Ries and Stonebraker's study suggest that

the table should be the basic lock granule. Several factors

have influenced this choice, most notably the fact that it is

easy to determine which tables are needed for a command in

advance of executing that command -- something not known for

The 80-20 law for commercial data processing applications states

that 80% of the transactionsagainst a file deal with at most 20%

of the records in the file, and the same applies to this 20%.

Therefore, when the 80-20 law holds, a miniscule 4% of the records

account for approximately 64% of the transactions.

B-20

http:a,"granule".32

records or physical pages -- and the Relation Control Block is

always in core, making it easy to keep the list of pending

requests queued at
the RCB (again, not possible for records or

physical pages).

Figure B-2
depicts the basic system elements included

in the locking scheme. The monitor selects Command Control

Blocks from the Command Queue and passes them to the Logical

Interface for execution. The Monitor is an asynchronous process

which is awakened by
one of three sources, the Application

Program Interface, the Interactive Command Processor, and the

Logical Interface, depending upon circumstances. Although the

Relation Control Blocks (RCB) are the "property" of the Logical

interface, they are
also used by both the Monitor and Physical

Interface.

Both the Application Program Interface and the Interactive

Command Processor can activate the Monitor by passing it
a

Command Control Block (CCB).
 The Monitor examines the CCB to

determine what action to take.
The Monitor determines which

tables the'command will access
and the type of'lock needed to

support that access
(shared for reads, exclusive for insertions,

updated, and deletes) (note that any CCB will need at most one

exclusive lock).
 For each table needed by the CCB, the Monitor

will locate the RCB and save a pointer to it. The Monitor can

pass this CCB to the Logical Interface only if:

(1) 	Each RCB needed has an empty "pending" queue, and

(2) 	Either the RCB is unlocked or else it is locked in

shared mode and the requested lock is also shared

mode.

If any table fails either test then the CCB will not
be

placed on the Initiator Queue for execution and each lock re
quest will also be enqueued at the RCB.
The CCB will be given

a copy of the list of pointers to RCB's.

B-21

From Applications

Program Interface

From

Interactive

Command

Processor

0 T
NT EL0 GI

AEC

ROB' s

Figure B-2: Concurrency Support Substructure

B-22

To support this locking mechanism the RCB must have

three fields: a bit indicator for lock mode (0= shared,

1 = exclusive), a counter for the number of CCB's using this

table (equals zero when the table is unlocked), and a

pointer to a queue of pending requests. The queue will be a

circularly-linked list, so that front and rear are
equally

accessible (since FRONT = LINK (REAR)). Entries in the queue

will consist of the mode of the pending lock request plus a

pointer to the CCB which is waiting for that table.

Accepted lock requests are handled by setting the lock mode bit

to the appropriate value and incrementing the counter. Rejected

requests cause the system to create a queue entry and to
add it

to the queue.

When the Logical Interface completes the execution of a

command, it decrements the count fields of each RCB referenced

by the command (this may happen incrementally, while the command

is executing, as the system finishes using each RCB). If the

count field on any RCB goes to zero during this step and the

queue of pending lock requests is not empty then the Logical

Interface will wake the Monitor and pass it the CCB address

-for the first entry in the queue.

When the Monitor is awakened by the Logical Interface, it will

begin by examining the RCB's needed by that CCB. The require
ments for activating the CCB are slightly different. First,

each RCB needed must be unlocked or else locked in shared mode

and the pending CCB's lock request must also be shared mode.

Second, the CCB's queue entry must be at the head of the queue,

or else the lock request must be for a shared lock and all lock

requests ahead of it in the queue must also be for shared locks.

If the above requirements are met then the queue entry is d6
leted for each RCB, following which the CCB is deleted from the

Command Queue and placed on the Initiator Queue for processing

by the Logical Interface.

B-23

Whether or not the CCB is activated at this point, all

remaining CCB's which follow it in the Command Queue are tested

to see whether they, too, can now be activated. Note that

nothing ahead of the CCB whose address was passed back to the

Monitor to initiate this procedure need be considered.

It is important to note that the proposed approach re

quires the Monitor to do no more work than the minimal amount

necessary since the Monitor is only activated at points when

there is a possibility of changing the contents of the Command

Queue.

B.3.5 Scheduling Strategies

There are two approaches to scheduling which can be used.

One approach is to initiate any new command which can be in

itiated, even if this siezes a table needed by a pending

command in the Command Queue. This increases total system

throughput, but it has the potential to leave one transaction

stranded in the Command Queue while commands entered later get

processed sooner. The second strategy, which is the strategy

embedded in the previous section's procedure, maintains a

strict first in, first out discipline. As a result, no single

command will spend an inordinate amount of time in the Command

Queue, but total system throughput may suffer. If the

test for an empty "request pending" queue when the Monitor is

activated by the Interactive Command Processor or the Applications

Program Interface and the similar test for queue entry at the

head of the queue when the Monitor is activated by the Logical

Interface are deleted this will result in the initial strategy

described in this section being employed, rather than the second

strategy. As these are easy changes to make, it is possible that

the Data Base Administrator could experiment with both strategies

over a period of time and use whichever ,seems best. The DBA

could also adapt the strategy to changing system requirements.

B-24

It should be pointed out that some sort of hybrid

approach, following the first strategy of letting commands

begin when relations were available regardless of pending

requests, but preempting an active command if any CCB waits

too long in the queue, would be expensive to implement. The

preempted command would have to be backed out (cheap enough

for a read, but otherwise expensive) and the work done to

.that point would be nullified. Moreover, the Monitor would

have to start keeping track of the length of time each CCB spent

in the Command Queue.

B.3.6 Deadlock

Deadlock is a condition where two or more processes

permanently block each other. The simplest example is when

command C has an exclusive lock on table R1 but cannot

do any further processing without accessing table R2

Meanwhile, command C2 has an exclusive lock on R2 but cannot

go on without accessing R1 * Obviously, both are blocked and

neither command can proceed unless one or the other is preempted.

.It can be demonstrated that deadlock can occur only if

all of the following conditions are met:

(1) 	Concurrency - two or more processes can run at the

same time.

(2) 	Locking - a process can have exclusive access to

some data.

(3) 	No Preemption - no data can be taken from a process

which has locked that data.

(4) 	Expansion - a process may request additional locks

without relinquishing locks already held.

If any of the above conditions are disallowed then deadlock

B-25

can occur, except that allowing preemption is insufficient by

itself and must be used in conjunction with some algorithm

for detecting a circular chain of blocked processes and a

strategy for choosing the process to be preempted. The pro

cedure outlined in the previous section prevents deadlock by

disallowing expansion. No command is permitted to begin until

it has available all tables which will be needed by that command.

B.4 Data Compatibility

B.4.1 The Scope of the Problem

One problem which is perhaps unique to scientifically

oriented data bases is the question of data units. If a data

item representing a distance is stored,in some table, that

distance may be expressed in angstroms, microns, millimeters,

centimeters, inches, feet, yards, meters, rods, kilometers,

miles, earth radii, astronomical units, or light years. The

problems with weight are even worse, as there are two different

kinds of ounces and three different tons -- not to mention the

difference between pounds as weight, pounds as mass and pounds

as force. If two items in different tables, both represent

ing the same measured quantity (e.g., distance, time, mass,

area, volume) are to be compared or mathematically combined,

it is imperative that they have the same units attached or be

converted to equivalent units. This should be handled automat

ically by the data base management system.

A related problem occurs when data items representing dif

ferent measured quantities are to be combined to produce a

third quantity, as for example, if a mass is to be divided by

a volume to produce a density. In such cases, it is important

that the units all be part of the same system of measurements

(cgs,kms, English), and the data base management system should

see to it that they are.

B-26

B.4.2 An Approach to Data Compatibility

The problems outlined in the preceding section can be

handled within the system with the aid of the following pair

of tables:

(1) 	 a system table, indicating the measurement system

(cgs, kms, English) to which the units belong, and

(2) 	 a conversion table, listing pairs of commensurate

units and the conversion factor.

These two tables might be laid out as depicted in Figure B-3.

If the Integrated Data Base Management System is called upon

to compare the values of two data items or to add or
subtract

them, it will begin by examining the definition of these items

in the appropriate Data Dictionary. If the data items are

alphanumeric, then comparison will be allowed, but
not addition

or subtraction. If the data items are
numeric, then comparison

operations, additions, and subtractions will be allowed if and

only if the data items have the same units or can be converted

to the same units. If the units do not agree, then the system

will try to retrieve a conversion factor from the conversion

table and the operation will be aborted if no conversion factor

can be retrieved. It an
should be noted that internal data

type conversion may also be necessary (integer to real, real

to double precision), as well as a numeric conversion with the

conversion factor.
 It should also be noted that retrieving

the conversion factor would use standard search and access

software. It is equivalent to the following retrieval command:

USE 	C FOR CONVERSION

SELECT (C. FACTOR)

WHERE C.GIVEN-UNITS unitsl

AND 	C.TARGET-UNITS = units2

B-27

CONVERSION

GIVEN-UNITS TARGET-UNITS FACTOR

INCHES CM 2154

CM INCHES 0.3937

YARDS INCHES 36.0

MILES FEET 5280.0

SEC DAYS .0000198

UNITS-SYSTEM

UNITS SYSTEM QTY

FEET - ENG DISTANCE

FPS ENG SPEED

KG KMS MASS

Figure B-3: Tables To Support Data Compatibility

B-28

--

The system table would be used to support multiplication

and division. Multiplication and division would be permitted

only if the two data items agreed as to measurement system.

If the system does not agree (e.g., mass measured in grams but

volume in cubic meters when computing a density) then the

system will have to convert one or both data items until they

agree as to measurement system. Again, standard system

software could be used to handle the search and access, which

would be equivalent to the following query:

USE C FOR CONVERSION

USE S, X, Y FOR UNITS-SYSTEM

SELECT (X.UNITS)

WHERE S.UNITS = unitsl

AND X.QTY = S.QTY

AND Y.UNITS = units2

AND X.SYSTEM = Y.SYSTEM

SELECT (C.FACTOR)

WHERE C.GIVEN-UNITS = unitsl

AND C.TARGET-UNITS = W.UNITS

Again, care must be taken to make certain that the data types

data units.
agree, as well as

The above approach will not handle all possible data con
versions -- one type of conversion which cannot be handled by

a multiplicative scale factor is temperature.
 It is possible

to convert Centigrade to Kelvin (or back), Centigrade to

Farenheit, or Farenheit to degrees Rankine.
 If desired,

temperatures could be handled as
a special case.

A third table -- relating abbreviations to unit names

might also be useful for purposes of parsing queries (includ

ing DEFINE commands).

B-29

B.5 System Security

One goal of a data base management system is prevention of

the dissemination of data to unauthorized recipients. Within

a data base management system this requires three steps:

identification of the user accessing the data base, authentica

tion of that user, and validation of each operation requested

by the user subsequent to logging on to the system. In the

Integrated Data Base Management System, the identification and

authentication steps will be handled by the ENTER command and

the validation step will be embedded within the affected com

mands (e.g., ATTACH, DEFINE, SELECT, INSERT, etc.). Provided

the user remains within the system, the weakest link in the

system's security is the identification/authentication step

since the system will only be capable of determining whether

the password input as part of the ENTER command agrees with the.

specified user-id, and not whether the user logging on with

the ENTER is, in fact, the user identified by the user-id.

The onus will be on the user community to protect their pass

words from becoming known by other users and to change them

with some frequency.

If an unauthorized user bypasses the system, then the

situation will be much more difficult. Since no known operat

ing system can be guaranteed to prevent a knowledgeable and

determined user from reading files which he or she is not

authorized to access, it behooves the system to provide pro

tection against this possibility. One important piece of

information which must be protected is the list of user-ids

and passwords in the SYSUSER table. The key to providing

such protection is the one-way "trapdoor" encoding functions

of the public key encryption systems discovered by Hellman and

Diffie1 1 . Public key encryption systems are such a fundamental

and important advance that the topic has begun to receive

attention outside scholarly circles in popular scientific

14

journals such as Scientific American and from there into

B-30

news media such as TIME " and The Washington Post6L. Such

/

systems rely on "one-way", or "trapdoor", encoding functions,
where the mathematical manipulations which encipher the data

are so very different from the mathematical manipulations that

decipher the data that knowledge of the enciphered data and

the key used to encipher it is insufficient to decode the

data. Thus, the system could store the user-id for each user

(unencoded), the user's password (encoded), and the encoding

key (assigned by the system) in SYSUSER, and yet if an unauthorized

user should break the operating system's security and read

the SYSUSER table he would not be able to determine the pass

words ,of any users on the system. Since all the system has

To do to authenticate the user is to encode the input password

using the stored key and match the result against the encoded

password stored in the SYSUSER table, the scheme is not only

fail-safe but efficient.

The problem of encrypting the data stored in other tables,

including user-created tables as well as other system tables,

poses more difficulties since the system will have to decode

the data before using it (or presenting it to the user). Thus,

the decoding keys will have to be stored somewhere and they, them

selves, must be secured. One public key encryption scheme which

might be used is the one proposed by Rivest32 , where the encipher

ing and deciphering keys are based on two secretly chosen prime

numbers p and q The decoding key is a pair of integers

(d,n), where n = p-q and d satisfies cerzain conditions

based on p and q Finally, the encoding key is a pair

of integers (e,n), where e-d satisfies certain criteria in

volving p and q. Since e and n are always known, this

encryption method can only be compromised if d is discovered

or, with some extra effort, if p and q can be deduced.

The system could avoid the latter by selecting m triples

(e,d,n) in advance and saving the (e,n) pairs in one table

T1 and the d's in another table T2' where the order of the

d's in T2 is different from the order of their corresponding

B-31

encoding keys in T and where the size of T2 is much

greater than the size of T (i.e., many "red herrings" are

scattered through T2). The system would employ a hash

function h, such that h(e,n) would be the address in T2

where the decoding d for that particular encoding key can

be found. Since p and q are never stored in the system,

they are safe unless an intruder, upon discovering n, can

find the prime factors of n -- a process which can always

be done but which is computationally infeasible for large

values of n. The alternative is to discover d, which is

stored in the system. If the encoding key for a secure

table is stored with that table's entry in SYSREL, then an

unauthorized intruder would have to copy not only the data in

the table, but also SYSREL and T2 to compromise the table's

security. Even that would not be enough without either know

ing the hashing function or else trying all entries in T. until

one is found which provides an inverse function for the encoding

key. For that matter, SYSREL and TO could themselves be encrypte

using a secret key embedded in the software of the system.

Unless the physical security of the tape files could be

guaranteed, there would be no point in encrypting the on-line

data files also maintained by the system.

Encryption of tabular data is not a necessity for an

initial implementation of the Integrated Data Base Management

System, given the proposed uses to which it is expected to be

put. But it is not improbable that some time in the future

there will be a need to protect the security of certain data

maintained by the system, and this subsection provides an

indication of how that might be done. One issue which must

be resolved before this scheme could be implemented is the

status of Rivest's patent application on his method.

B-32

B.6 The Macro Command Facility

The Macro Command Facility would permit an interactive

user to enter a sequence of commands, specify a name for the

sequence and, subsequently, execute the sequence by simply

specifying its name. While this feature is not a necessity,

it would provide users with a method of executing often used

command sequences with a minimum of effort. To implement

this feature, two additional commands, END and EXECUTE, would

have to be added to the Interactive Command Language and the

DEFINE and REMOVE commands would have to be extended with a

SEQUENCE option. Each of these commands is described briefly

below.

The DEFINE command with the SEQUENCE option would intro

duce the command sequence and place the Integrated Data ,Base

Management System into macro mode. The name to be assigned

to the command sequence would be included in the DEFINE

SEQUENCE command. The syntax for the DEFINE SEQUENCE command

would be as follows.

DEFINE SEQUENCE <sequence name>

The sequence name specified in the CREATE command must

be unique among command sequence names already known to the

system. If it duplicates an existing command sequence name,

the command will be rejected. The DEFINE SEQUENCE command

could be issued by an interactive user at any time.

Additionally, it could be used in the input stream for the

Batch Command Reader, thus permitting command sequences .to

be created via the Batch Command Reader facility.

The END command would terminate the sequence of commands

initiated by the last DEFINE SEQUENCE %ommand issued by the

user. If no previous DEFINE SEQUENCE command issued by the

user is active, the END command would be rejected. The syntax for

B-33

the END command is as follows.

END

All commands issued following a DEFINE SEQUENCE command

and preceeding its matching END command would be included in

the command sequence named in the DEFINE SEQUENCE command.

If no interactive commands were issued between the DEFINE

SEQUENCE and END commands, no command sequence would be

created and an error message would be displayed.

As stated previously, the DEFINE SEQUENCE command would

place the system in macro mode. While in this mode, all

commands received from the user issuing the DEFINE SEQUENCE

command would be parsed and syntax checked but would not be

executed. Each error free command entered while in the

macro mode would be stored in the Macro Library. Any comman(

containing an error would be rejected, but the user could

immediately reenter the command. The Macro Library might be

implemented as a new system table with an inverted index

created on the sequence name field in each record of the tabl

The REMOVE command with the SEQUENCE option would remove

an existing command sequence from the system. The command

sequence name would have to be included in the REMOVE

SEQUENCE command. The syntax for the REMOVE SEQUENCE command

would be as follows.

REMOVE SEQUENCE <sequence name>

This command would remove all records associated with

the command sequence named in it from the Marco Library. If

no such sequence exists, the command would be rejected.

The EXECUTE command would cause an existing command

sequence to be retrieved from the Marco Library and to be

B-34

executed as if entered interactively by the user. The sequence

name of the command sequence must be included in the EXECUTE

command. If no such command sequence exists in the Macro

Library, the EXECUTE command will be rejected. The syntax

for the EXECUTE command is as follows.

EXECUTE <sequence name>

The EXECUTE command would cause each record containing

the sequence name specified in the command to be retrieved

from the Command Library. Each record might contain a command

or partial command in the command sequence as it was originally

entered when the sequence was created. It would be displayed

on the remote terminal of the interactive user and executed

by the system. An alternative approach might be to save the

Command Control Block for each command in the sequence in the

Macro Library instead of an image of each command as it was

originally entered. This would be possible since a Command
Control Block is created when a command is parsed. This

approach would alleviate the need for parsing the command

sequence each time that it was executed. In either case,

execution of the command would be carried out in exactly the

same mamner
as if the command had been entered interactively

from the remote terminal. The EXECUTE command could also be

included in the input stream processed by the Batch Command

Reader. Thus, command sequences could be initiated via the

Batch Command Reader facility.

-VItmight also be possible to permit EXECUTE commands to

be included in newly defined command sequences. Thus, exist
ing command sequences could be easily incorporated into other

command sequences.

B-35

BIBLIOGRAPHY

(1) 	Bayer, R., and McCreight, E., "Organization and

Maintenance of Large Ordered Indices," Proceedings

of the 1970 ACM-SIGFIDET Workshop on Data Description

and Access, Houston, Texas, pg. 107-141 (November 1970).

(2) 	Bracken, P.A., Dalton, J.T., Billingsley, J.B., and

Quann, J.J., Atmospheric and Oceanographic Information

Processing System (AOIPS) System Description, Document

X-933-77-148, Goddard Space Flight Center, Greenbelt,

Maryland (March 1977).

(3) 	 Chamberlin, D.D., "Relational Data-Base Management

Systems," ACM Computing Surveys, vol. 8, no. 1, pg.

43-66 (March 1976).

(4) 	 Chamberlin, D.D., et. al., "SEQUEL 2: A Unified

Approach to Data Definition, Manipulation, and Con

trol," IBM Journal of Research and Development, vol.

20, no. 6, pg.560-575 (November 1976).

(5) 	CODASYL Data Base Task Group, April 1971 Report.

(available from Association for Computing Machinery,

-Inc., 	1133 Avenue of the Americas, New York, New York

10036).

(6) 	Codd, E.F., "A Relational Model of Data for Large

Shared Data Banks," Communications of the ACM, vol. 13,

no. 6, pg. 377-387 (June 1970).

(7) 	Codd, E.F., "Further Normalization of the Data Base

Relational Model" in Data Base Systems, Courant Com

puter Science Symposia Series, vol. 6, pg. 33-64,

Prentice-Hall, Inc., Englewood Cliffs, Jew Jersey (1972)

1

(8) 	Codd, E.F., "Relational Completeness of Data Base Sub
languages," in Data Base System, Courant Computer Science

Symposia Series, vol. 6, pg. 65-98, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey (1972).

(9) Codd, E.F., "Seven Steps to RENDEZVOUS with the Casual

User," Proceedings of the IFIP TC-2 Working Conference

on Data Base Management Systems, North-Holland Publish

ing Company, Amsterdam, the Netherlands (April 1974).

(10) 	 Date, C.J., An Introduction to Database Systems (2nd

ed.), Addison-Wesley Publishing Company, Reading,

Massachusetts (1977).

(11) 	 Diffie, IV., and Hellman, M.E., "New Directions in

Cryptography," IEEE Transactions on Information Theory,

vol. 	IT-22, no. 6, pg. 633-654 _(November 1976)..

(12) 	 Eswaran, K.P., and Chamberlin, D.D., "Functional Speci

fications of a Subsystem for Data Base Integrity,"

Proceedings of the 1975 Conference on Very Large Data

Bases; Framingham, Massachusetts, pg. 38-68 (September

1975).

(13) 	 Fry, J.P., and Sibley, E.H., "Evolution of Data-Base

Management Systems,, ACM Computing Surveys, vol. 8,

no. 1, pg. 7-42 (March 1976).

(14) 	 Gardner, M., "A New Kind of Cipher that would take

Millions of Years to Break," Scientific American,

vol. 237, no. 2, .pg. 120-124 (August 1977).

(15) 	 Gary, J.P., AOIPS Data Base Management System Support

for GARP Data Sets, NASA Technical Memorandum 78042,

Goddard Space Flight Center, Greenbelt, Maryland

(October 1977).

2

(16) 	 Gray, J.N., Lorie, R.A., and Putzolu, G.R., "Granularity

of Locks in a Shared Data Base," Proceedings of the

1975 Conference on Very Large Data Bases, Framingham,

Massachusetts, pg. 428-451 (September 1975).

(17) 	 Held, G., and Stonebracker, M., "B-Trees Re-examined,"

Communications of the ACM, -vol. 21, no. 2, pg. 139

143 (February 1978).

(18) 	 Hirschberg, D.S., "A Class of Dynamic Memory Allocation

Algorithms," Communications of the ACM, vol. 16, no. 10,

pg. 615-618 (October 1973).

(19) 	 Keehn, D.G., and Lacy, J.0., "VSAM Design Set Para

meters," IBM Systems Journal, vol. 13, no. 3, pg.

186-212 (March 1974).

t(20) Knurh,'D.E., The Art of Computer Programming, vol. 1,

"Fundamental Algorithms" (2nd ed.), Addison-Wesley

Publishing Company, Reading, Massachusetts (1973).

(21) 	 Knuth, D.E., The Art of Computer Programming,-vol. 3,

"Sorting and Searching," Addison-Wesley Publishing

Compnay, Reading, Massachusetts (1972).

(22) 	 Lucas, H.C. Jr., Why Information Systems Fail,

Columbia University Press, New York (1975).

(23) 	 Martin,,J., Principles of Data-Base Management,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1976).

(24) 	 Maruyama, K., and Smith, S.E., "Analysis of Design

Alternatives for Virtual Memory Indices," Communications

of the ACM, vol. 20, no. 4, pg. 245-254 (April 1977).

3

(25) 	 McCreight, E.M., "Pagination of B*-Trees with Variable-

Length Records," Communications of the ACM, vol. 20,

no. 9, pg. 670-674 (September 1977).

(26) 	 Minker, J., Crooke, S., and Yeh, J., "Analysis of Data

Processing Systems," Computer Science Center Technical

Report TR 69-99, University of Maryland, College Park,

Maryland (December 1969).

(27) 	Moik, J.G., Users Guide for Batch Operation of the

SMIPS/VICAR Image Processing System, Document X-933-76-114,

Goddard Space Flight Center, Greenbelt, Maryland (May 1976)

(28) 	 Nauer, P., et. al., "Revised Report on the Algorithmic --

Language Algol 60," Communications of the ACM, vol. 6,

no. 1, pg. 1-17 (January 1963).

(29) 	 Nielsen, N.R., "Dynamic Memory Allocation in Computer

Simulation," Communications of the ACM, vol. 20. no. 11,

pg. 864-873 (November 1977).

(30) 	 Peterson, J.L., and Norma, T.A., "Buddy Systems,"

Communications of the ACM, vol. 20, no. 6, pg. 421-433

(June 1977).

(31) 	 Ries, D.R., and Stonebraker, M., "A Study of the Effects

of Locking Granularity in a Data Base Management System,"

Proceedings of the 1977 ACM-SIGMOD Conference on Manage

ment of Data, Toronto, Canada, pg. 10-25 (August 1977).

(32) 	 Rivset, R.L., Shamir, A., and Adleman, L., "A Method

for Obtaining Digital Signatures and Public Key

Cryptosystems," Communications of the ACM, vol. 21,

no. 2, pg. 120-126 (February 1978).

4

(33) 	 Severance, D.G., and Lohman, G.M., "Differential

Files: Their Application to the Maintenance of

Large Data Bases," ACM Transactions on Database Systems,

vol. 1, no. 3; pg. 256-267 (September 1976).

(34) 	 Shapley, D., "The New Unbreakable Codes: Wili They

Put NSA Out of Business?", The Washington Post, pg. B-i,

July 9, 1978.

(35) 	 Shneiderman, B., Department of Information Systems

Management, University of Maryland, College Park,

Maryland (personal communication).

(36) 	 Stonebraker, M., "High Level Integrity Assurance in

Relational Data Base Management Systems," Electronics

Research Laboratory Memorandum ERL-M473, College of

Engineering, University of California, Berkeley,

California (August 1974).

(37) 	 Stonebraker, M., Wong, E., Kreps, P., and Held, G.,

"The Design and Implementation of INGRES," ACM Trans

actions on Database Systems, vol. 1, no. 3, pg. 189

222 (September 1976).

(38) 	 Thomas, J.C., and Gould, J.D., "A Psychological Study

of Query by Example," Proceedings of the National

Computer Conference, vol. 44, pg. 439-445 (May 1975).

(39) 	 Thomas, R., and Cranston, B., "A Simplified Recombination

Scheme for the Fibonacci Buddy System," Communications

of the ACM, vol. 18, no. 6, pg. 331-332 (June 1975).

(40) 	Zloff , M. M. , "Query by Example," IBM Research Report

RC 4917, IBM Thomas J. Watson Research Center, Yorktown

Heights, New York (July 1974).

5

(41) "An Unbreakable Code?", TIME, vol. 112, no. 1, pg.

55-56 (July 3, 1978).

6

BUSINESS AND TECHNOLOGIcAL SYsTEMVNC.
10210 GREENBELT ROAD o SEABROOK 9 MARYLAND 20801

301/794-8800

