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FOREWORD
 

This report was prepared by Business and Technological
 

Systems, Inc. under Contract No. NAS 5-24360 for the
 
NASA/Goddard Space Flight Center. 
The report describes
 

a conceptual design for a data base management system
 
to support a wide variety o.f 
scientific applications and
 
research activities. Because of the 
ever increasing
 
volume of 
data from science and applications satellites,
 
both launched and proposed for the 1980's, Goddard Space
 
Flight Center is entering an era in its data analysis
 
activities when it becomes necessary to locate, integrate
 
and process various remotely sensed data in a timely
 
fashion to achieve their maximum utilization and obtain
 
their maximum benefit. It is imperative that state-of
the-art techniques in data management be applied to the
 
problem of providing these data to the end user as quickly
 
and as easily as possible. To that end, this study was
 
initiated to design an integrated data base management
 
system which addresses these problems and others.
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SECTION I - INTRODUCTION
 

1.1 Study Requirements
 

This report presents the results of a study to produce
 

a conceptual design of an Integrated Data Base Management
 

System to support a variety of applications research activities.
 

The design was developed so as to be independent of any specific
 

computer or operating system. Initially, the system would be
 

required to support applications investigations in weather and
 

climate. Ultimately, it is anticipated that the technology
 

developed during this study and presented herein will be used
 

to support applications investigations in hydrology, agriculture
 

and relatedlearth resources disciplines. Prior to entering into
 

the actual design phase, a sample of the requirements of po

tential users of this system were analyzed. These users included
 

scientists performing studies in the above named areas as well
 

as programmers developing applications software in those areas.
 

Several factors affecting the design of the system were
 

brought to light during the evaluation of the user requirements.
 

Foremost among these was the need for the system to maintain
 

information about a large quantity of data stored mostly on
 

magnetic tape in a variety of formats. This information must
 

be maintained by the system in a form such that users can easily
 

determine what data is available and locate and retrieve sub

sets of that data without regard for format or physical location.
 

Because of the research environment in which this system would
 

operate, users must have the ability, not only to locate a
 

desired subset of data, but to be able to retrieve that subset
 

and structure it into a data base to meet their needs.
 

Once a user has located and retrieved the required data, the
 

system must provide capabilities such that the data can be
 

manipulated in numerous ways to obtain the desired results.
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These data manipulation operations must provide users with
 

the ability to access and update data in on-line data bases
 

organized for random access as well as the ability to perform
 

meaningful operations on subsets of the sequentially organized
 

data in the off-line data base on magnetic tape. Thus, it be

came evident that significant flexibility in accessing, structur

ing, relating and processing data within the system was necessary
 

to support the user requirements.
 

1.2 'The Applicability of Existing Data Base Management Systems
 

Since there are currently several data base management
 

systems available for a number of computers, the possibility
 

.that one of these systems might satisfy the requirements
 

of the user community must be considered. The existing
 

systems represent what might be referred to as the first
 

generation of data base management systems. Some of these
 
systems have been available for several years with relatively
 

little change. Others have appeared in the past few years.
 

However, all of these systems share the first generation
 

characteristics of a centralized data base with centralized
 

definition and control of that data base. While these
 

characteristics are desirable under certain circumstances and
 

can be realized with the system proposed herein, they would
 

severely hinder users working in the environment described in the
 

previous subsection. Thus, the system described in this report,
 

which we feel is representative of the new generation of
 

data base management systems., stresses a more flexible approach
 

to data base management wherein the user has considerably more
 
control over the organization and processing of his information.
 

As an example of the operational restrictions of the
 

current generation of data base management systems, consider
 

a typical scenario for developing a data base. Initially,
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the data base itself must be designed. This is, very often,
 

a lengthy process in which an individual with extensive know
ledge of the data base management system, often referred to
 

as the Data Base Administrator, and several of the potential
 

users are involved. An attempt is made by this group to
 
define all of the current requirements for system usage that
 

might affect data base content and. structure and to foresee
 

future requirements so that they can be included in the data
 

base when it is initially designed. The reason for this is
 

that in most systems it is difficult to restructure or extend
 

a data base once it has been constructed.
 

Once the data base has been designed, the Data Base
 

Administrator must code a description of the data base,referred
 

to in some systems as a schema. This description is coded in
 

a language, usually unique to the data base management system
 

being used, referred to as the Data Description Language.
 

After coding the data base description, it is compiled by a
 

program which is a part of the data base management system,
 

referred to as the Data Description Language Compiler or Schema
 

Compiler. Often, subschemas must be defined which describe
 

various subsets of the entire data base for use by specific
 

users or applications. These too must be compiled. Thus, in
 

most of the current generation of data base management systems,
 

users access the same 
central data base via different subschemas.
 

Very often, the addition of files, data fields or new
 

relationships within an existing data base requires the inter

vention of the Data Base Administrator. Usually, the Data Base
 
Administrator must modify the data base description or 
an exist

ing description of a subset of the data base or create 
a new
 

description of a subset of the data base; all of which will
 

require some sort of recompilation. Additionally, the Data
 

Base Administrator might be required to run a utility program
 

to perform the necessary restructuring or to unload the data
 

base and then reload it to make the required modifications. All
 

of this is often a time-consuming and error-prone process.
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It was felt that the procedures outlined in the scenario
 

above were intolerable in the environment in which this system
 

would operate and that some new concepts must be applied to
 

the design of a system which would be responsive to the needs
 

of the user community. It should also be noted that none of
 

the existing data base management systems satisfactorily
 

address the problem of supporting a large off-line data base
 

consisting of sequential data files.
 

1.3 The Conceptual Basis for a New System
 

Because of the need for flexibility and ease of use,
 

the relational data model was chosen over the network and
 

hierarchical data models to represent data stored in on-line
 

random access data bases. A data model is simply the way in
 

which a user logically views data. A more thorough discussion
 

of the relational model as well as the other data models is
 

provided in Appendix A of this document. Briefly, the
 

relational data model permits users to logically view a
 

data base as if it contained one or more flat, two-dimensional
 

tables. The rows of a table are analogous to records in a
 

file while the columns are analogous to data fields in those
 

records. Additionally, the user does not explicitly define
 

relationships within a relational data base since the system
 

maintains these relationships based on the contents of the
 

tables. Thus, the relational data model provides considerable
 

data independence between the way in which a user logically
 

views data and the way in which that data is actually stored
 

and manipulated by the system. Therefore, the relational data
 

model can provide the basis for a much more user friendly
 

inte-rface to the system and can also be the basis for future
 

research and development into a near-natural language interface
 

to the system. For these reasons, it was felt that the relational data
 

model would provide the flexibility necessary to support the
 

way in which a scientific user community would use the system.
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In addition to the use of the relational data model,
 
the design employs the concept of dynamic data definition.
 
That is, relational data bases and the tables that constitute
 
them can be created and destroyed dynamically via interactive
 
commands. Additionally, existing tables can be dynamically
 
expanded by the addition of data fields and special indices
 

can be created which facilitate access to data stored in
 
tables.
 

I While the relational data model provides a basis for the
 
description of random access data bases stored on-line, it
 
does not address the problem of managing a large number of
 
sequential files on magnetic tape and, perhaps, direct access
 
devices. To accomplish this, it was felt that a file manage
ment system was needed. Thus, a dual system concept was evolved
 
with a relational data base management system as a "front end"
 
to provide the necessary flexibility and ease of access to
 
on-line data bases and a file management system as a "back end"
 
to provide access to sequential files in the large non-relational
 
data base. Additionally, techniques are defined whereby infor
mation can be transferred between the front and back end of
 
the dual system. It should be noted that although the approach
 
defined heroin is somewhat unique, each concept is based upon
 
work currently being done in the field of data base management
 
or on techniques that have been applied successfully in data
 

processing for many years.
 

1.4 Advantages of the Design
 

By employing the relational data model to describe on-line
 
data, the user is freed from the necessity of defining
 

relationships through which data can be accessed. 
 In essence,
 
the user need not know how the data is physically stored to
 
access it. The concept of dynamic data definition permits
 

a user to create on-line random access relational data bases
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as necessary to support his requirements. Thus, the time
consuming processes of. data base definition and, perhaps,
 
restructuring are all but eliminated.
 

By employing a file management system to support access
 
to sequential data files in the off-line, non-relational
 
data base, the advantages of sequential processing can be
 
realized when necessary.
 

Two concepts within the design provide the logical inter
face between the relational data base management system and
 
the file management system. These are the concepts of a
 
data file catalog and a data file directory. The Data File
 
Catalog is an on-line random access table maintained by
 

the relational data base management system. It provides
 
a one -to-one correspondence between a unique file identifier
 
assigned by the system and the physical location of a data
 
file. Each time a new sequential data file is added to the
 
off-line non-relational data base,,a record is inserted in
 
the Data File Catalog which contains the unique identifier
 
assigned to the new data file and its physical location.
 
Thus, at any time, given the unique identifier, the system
 
can locate the corresponding sequential file in the off-line
 

data base.
 

While the Data File Catalog provides the system, and
 
the users, with knowledge of the physical location of a
 
data file, it does not provide an indication of the contents
 
of the file. This information is provided by the Data File
 
Directory. The Data File Directory consists of one or more
 

random access on-line tables maintained by the relational
 
data base management system. Each record in a directory
 
table contains the data file identifier of a single sequential
 
file in the off-line non-relational data base. Additionally,
 

the record will contain values for attributes which are
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descriptive of the type of data contained in the data file.
 
Thus, a record in a directory table describes the contents
 
of 
a file but not its physical location. Rather than attempt
 
to 
define a static directory structure which might be applicable
 
to all types of data maintained in the off-line data base, a
 
dynamic structure was chosen whereby additional directory
 
tables 
can be added to the Data File Directory as a function of
 
new data types entered into the off-line data base. By inter
actively querying the Data File Directory, a user can locate the
 
data in the off-line non-relational data base which might be
 
required to perform a particular study.
 

One other advantage of providing file management capa
bilities is that data from existing systems sdch as 
AOIPS
 
and Smips/VICAR can be processed by users of this system.
 
Naturally, this is important because of the investment already
 
made in software systems development and data processing.
 

At this point, it may be helpful to provide some scenarios,
 
similar to the one above, which illustrate the use of the pro
posed system. The first scenario illustrates the use of the
 
relational data base management system while the second illus
trates the interactive processing capabilities of the file
 
management system.
 

As in the previous scenario, a data base must be designed
 
before it is created. However, the design 
can be performed
 
by the user who will create the data base since it will be
 
tailored to the user's requirements. Since the relational
 
data base management system supports the dynamic expansion of a
 
data base by adding tables and the expansion of tables by adding
 
data fields, the user need not try to foresee future requirements;
 
thus, reducing the time required in the design phase. 
After
 
the design of the data base has been completed, the user
 
interactively defines his 
 new data base and the. tables contained
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therein. At this point, data may be entered into the tables
 

in the new data base. If, at some later time, new tables
 

must be defined or existing tables must be expanded or removed,
 

this can be accomplished very simply with interactive
 

commands.
 

If the data to be placed in the newly defined data base
 

is located in the off-line data base, the user could query
 

the Data File Directory to locate the required data. This data
 

could then be extracted from the off-line data base using the
 

interactive commands and placed into the new relational data
 

base. As indicated previously, this can be done by the
 

user interactively with no intervention by the Data Base
 

Administrator. If data are required that are contained in
 

other on-line relational data bases, t'he user can extract
 

that data from those data bases and transfer it to his own
 

data base using a powerful set of interactive data manipulation
 

commands.
 

An alternate scenario can be envisioned if the data
 

to be processed by the user is contained in the off-line
 

data base and is noX in a form which can be easily manipulated
 

interactively in a tabular form via the relational data base
 

management system (e.g., image data). To process such data,
 

the user could still locate the data required using the
 

Data File Directory. However, it would not be placed on-line
 
in tabular form to be accessed randomly but would be loaded on
 
a direct access device in sequential form and, in the process,
 

converted to one of several system standard formats. These for

ma-tsare discussed briefly below and in more detail in Section 7
 

of this document. The data can then be processed via
 

interactive commands in its sequential form. For example,
 

functions which can be performed include the regridding of
 

a gridded data file, the removal of a two-dimensional slice
 

from a multi-dimensional gridded data file, the overlaying
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of two or more gridded data files, the extraction of a
 

subset of parameters from a gridded data file or the
 

extraction of a rectangular window from an image or gridded
 

data file. Additional functions can be added to those defined
 

above since this facility is implemented via library sub

routines. The result of processing a sequential data file
 

with any of these functions is the creation of a new
 

sequential data file for which an entry is made in the Data
 

File Catalog..
 

The preceding scenarios illustrate a powerful interactive
 

capabilityifor processing on-line,random access data in tables
 

as well as data in sequential files. However, the system des
f/ 

cription also includes an extensive Application Program Command
 

Language which provides facilities for manipulating data in tables
 

as well as data in sequential files by application programs.
 

Extended file manipulation commands for sequential files are
 

included in the Application Program Command Language which per

mit the searching of data files, the standard reading and writing
 

of data files as well as a re-read capability and a re-write
 

capability. Thus, the Application Program Command Language
 

extends the capability of an application program to process
 

sequential files.
 

1.5 Data Formats
 

As part of the study, the use of a standard format or
 

formats for sequential data files was investigated. Since
 

existing data to be included in the off-line data base were
 

already in such diverse formats and since new data in unknown
 

formats must be supported in the future, it was determined that
 

it would not be feasible to define a single format to encompass all
 

data. Additionally, it was felt that it would -not be practical to
 

require that all data entered into the off-line non-relational
 

data base be reformatted prior to inclusion. However, it was
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felt that the use of standard formats for internal processing
 

of sequential data by the system would simplify that processing.
 

Thus, several types of standard formats have been defined;
 

one for each type of data managed by the system (e.g.,
 

gridded, image, etc.). New standard formats can be defined
 

as new data types are introduced into the system. Methods
 

have been defined within this document by which sequential
 

data files in their original format can be converted into
 

the proper system standard format.
 

1.6 Contents of the Design Document
 

The remainder of this document contains the conceptual
 

description of the system introduced in this section. The
 

description is detailed and somewhat technical in nature.
 

It was intended to provide a working basis for the develop

ment of a data base management system. Sections 2 and 3
 

provide an overview of the system and its capabilities.
 

Section 2 provides a system overview from the internals
 

standpoint, while Section 3 discusses the use of the
 

system. Section 4 describes, in some detail, the proposed
 

Interactive Command Language. Both the relational calculus
 

based language and a Query-By-Example type language are
 

discussed. It is intended that whatever interactive
 

command language would be implemented for the system, it
 

would be user friendly in that.it would carry on a dialogue
 

with the user to assist him in entering commands.
 

Section 5 contains a description of the Application Program
 

Command Language. This includes a proposed calling
 

sequence for each command and a brief description of each of
 

the arguments. Section 6 describes an approach to storing
 

tabular data maintained by the-relational data base manage

ment system. Section 7 discusses the handling of data files
 

and the use of system standard formats. While this document
 

does not attempt to define in detail all system standard
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formats, it does include examples of some possible standard
 
formats. Section 8 discusses the system internals which in
clude the various control structures required to support the
 
internal architecture of the system. 
These control structures
 
consist of control blocks, control block extensions, dictionaries,
 
lists and queues. Section 9 describes the actual system archi
tecture including the various modules needed to implement 
a
 
system as conceived of in this document.
 

Two appendices are included to provide additional infor
mation, mostly of a theoretical nature, to the reader.
 
Appendix A describes the concepts on which the relational
 
data model is based. Appendix B covers additional topics
 
whicli 
are associated with the design and development of such
 
a system. 
These include data integrity, consistency and
 
quality, as well as a discussion of backup and recovery
 
techniques and provisions for supporting concurrent access
 
to data within the system.
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SECTION 2 - SYSTEM OVERVIEW
 

2.1 Conceptual Description
 

This section describes the architecture of the Integrated
 

Data Base Management System. This system is designed to pro
vide multi-user access to structured and unstructured data.
 
Structured data is stored in tabular form while unstructured
 
data is stored in the standard sequential form. Data stored
 
in tabular form resides 
on direct access devices and can have
 

various types of indices associated with it to facilitate
 
retrieval. Data stored in sequential form are treated as
 
standard sequential data files and can reside on 
any device
 
which supports the sequential organization of information.
 

The indices which are associated with tables are constructed
 
as 
a function of the data contained in the tables and are
 
referred to generically as "superstructures". Superstructures
 

provide rapid access to data in tables and 
a logical ordering
 

to records in tables.
 

2.1.1 The Dual System Concept
 

To support this dichotomy of data structure, a dual system
 
concept has been employed. The dual system is comprised of
 
a "front-end" relational data base management system which
 
manages information in tabular form and a "back-end" data file
 
processor which manages sequentially organized files. This
 

design philosophy not only provides the capability of proces
sing tabular and sequential data but forms the basis for the
 
development of a distributed data base system. Naturally,
 

the entire system can be implemented on a single computer.
 
However, the back-end data file processor could be implemented
 
on one or more physically separate computers from the 
one on
 
which the front end relational data base management system is
 
implemented. This would allow the user to 
locate and access
 

data which are stored at installations that are remote from
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the central computing facility on which the front-end relational
 

system is implemented. Figure 2-1 depicts graphically the
 

dual system architecture of the Integrated Data Base Management
 

System.
 

2.1.1.1 The Front End
 

The front-end will consist of a relational data base
 
management system with interfaces which support concurrent
 

access by multiple interactive users and multiple application
 

programs. The relational'system supports a tabular representa

tion of data. Logically, data can be viewed as 
one or more
 

tables with the data fields as columns and the records as
 
rows. New rows may be added to 
the table and existing rows
 

may be deleted. Likewise, new columns may be added to the
 

table and existing columns'may be updated. In the relational
 
system, one or more tables can be organized into a data base.
 
Each data base maintained by the relational system is indepen

dent; however, data may be transferred between data bases.
 

The definition and removal of data bases and tables is 
a
 

dynamic process and is under complete control of the users.
 
Relationships among data in the tables of 
a data base are
 

based entirely on data values. No predefinition of data base
 
structure or access paths is necessary. Thus, data bases can
 

be created and new tables added dynamically as a function of
 

the users' requirements.
 

The data required to control the processing of the rela
tional system is, itself, stored in'tables. Thus, tables
 

exist which contain information about the users of the system,
 

the data bases currently maintained by the system, the tables
 

contained in each of the data bases, the data fields within
 
each of the data bases and the rights to perform certain opera

tions on the tables. The system tables are contained in a
 
system data base referred to as the Global Data Base. The
 

Global Data Base also contains one or more tables which
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constitute the Data File Directory. The Data File Directory
 

is the vehicle by which users can locate sequential data files,
 

maintained by the back-end data file processor, as a function
 

of their data content. Any number of tables can be created
 

and included as part of the Data File Directory. The format
 

of a directory table is not predefined. Normally, a directory
 

table will contain data fields which represent attributes of
 

the data files which it cross references.
 

Another concept of importance is that of ownership.
 

Ownership of data bases and tables is of primary importance
 

in determining who is allowed to remove data bases or tables
 

and who can grant specific access rights to tables. The
 

Globai Data Base is owned by the Data Base Administrator.
 

Thus, the Data Base Administrator has complete access to all
 

information in the Global Data Base. All other data bases
 

maintained by the relational system are owned by users,within
 

the user community. Tables within data bases may be owned by
 

the owner of the data base or other users. Only the owner'of
 

a table can grant access rights to that table. Thus, the
 

owner of a table -can grant operational rights to read, update,
 

insert, and delete records within a table to the entire user
 

community or various subsets thereof. Likewise, the owner
 

of a table may revoke any of those granted rights.
 

2.1.1.2 The Back-End
 

The back-end will consist of software, referred to as the
 

Data File Processor, which manages a large non-relational data
 

base consisting of sequential data files. Each data file is
 

assigned a unique data identifier by the system when it is
 

created. All references to data files in the front-end
 

relational system are via a data identifier.
 

When a new data file is entered into the Non-Relational
 

2-4
 



Data Base, an entry is inserted into a system table, referred
 

to as the Data File Catalog, which contains, among other
 

things, the data identifier and the physical location of the
 

data file. The data file may be physically stored on magnetic
 

tape or a direct access device which supports the sequential
 

data organization.
 

There are several methods which might be employed to
 

generate the data identifier. This document does not attempt
 

to select the best approach, however, two techniques are
 

mentioned briefly below. The first technique involves the
 

generation of a random number containing some fixed number of
 

decimal digits. The number would be converted into the
 

internal alphanumeric code of the machine on which the system
 

is implemented (e.g., ASCII, EBCDIC). The converted string
 

of digits would become the data identifier for the new data
 

file. This technique would probably require that an attempt
 

be made to retrieve a record from the Data File Catalog to
 

verify that the new data identifier is, indeed, unique.
 

Another technique would be to use the last two digits of the
 

current year and the three digit day number as the first five
 

characters of the data identifier. Two or three other
 

digits, generated using a counter, could be appended to obtain
 

the entire data identifier. Thus, each day the counter would
 

be reset to zero and would be incremented each time a new data
 

file were added to the Non-Relational Data Base. While this
 

technique does not require access to the Data File Catalog,
 

it does require that the system maintain a counter which is
 

not destroyed should the system terminate abnormally and it
 

places an upper limit on the number of data files that could
 

be added in a one day period. A variation of this technique
 

would simply use an n-digit counter without including date
 

information.
 

A data file may exist in two different formats: its
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original data file format and a system standard format. It
 

is anticipated that the Integrated Data Base Management
 

System will support several system standard formats. For
 

example, system standard formats might be defined for gridded
 

data, image data and other data. New system standard formats
 

can be defined as required by adding new-format conversion
 

routines to the system library to convert data files from their
 

original data file format into the new system standard format.
 

Data file formats are discussed in a subsequent subsection,
 

but no attempt is made in the document to define in detail a
 

working set of system standard formats.
 

To facilitate the manipulation of data files, several
 

interactive commands are provided which permit users to con

trol the content and format of the Non-Relational Data Base
 

and to transform data files into relational tables and
 

relational tables into data files. Thus, a user could trans

form a data file into a table, manipulate the data in the
 

table, combine the data with that of other tables and trans

form the resulting table into a new data file. Also, a user
 

could load an off-line copy of a data file on magnetic tape
 

onto a direct access device or unload an on-line copy to an
 

off-line magnetic tape. Additionally, a user can invoke
 

library procedures to perform operations, such as regridding,
 

on a data file or display or plot the contents of a data file.
 

Additional facilities exist whereby data fifes can be
 

accessed or created by application programs. Using applica

tion program commands, an application program can open and
 

close data files, read all or a portion of a data file record,
 

write records into new data files, search a data file record

by-record for a particular value, rewrite records in a newly
 

created data file and process any header and history records
 

which may be associated with a data file.
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2.1.2 The System Environment
 

The structure of the Integrated Data Base Management
 

System Software described herein can be divided into several
 

independent tasks that can be performed in an asynchronous
 

manner. Implementation of this software structure requires
 

a multi-programming operating system that can support this
 

form of subtasking. If the system is implemented on a com

puter whose operating system does not support these features,
 

some modifications must be made to the internal software
 

structure. The asynchronous tasks communicate with each
 

other through information queues. Each task will be in a
 

run state only while it has information to process. At all
 

other times, it will be in a wait state. Thus, several com

mands in various states of completion can be within the system
 

at any one time. Two other features which facilitate this
 

software structure are the dynamic allocation of main memory
 

and operating system facilities which support reentrant coding.
 

Neither of these features is mandatory to the implementation
 

of the system, as described in this document, since both can
 

be implemented as part of the software system.
 

2.2 The Organization of Information
 

Information managed by the Integrated Data Base
 

Management System can be viewed at two levels: the logical
 

level and the physical level. At the logical level, informa

tion is viewed as data bases, tables and data files. At the
 

physical level, information is viewed as physical pages con

taining tabular data, keys and pointers and sequential files
 

containing data records.
 

2.2.1 The Logical View of Data
 

The logical view of data is content oriented. That is,
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it is not concerned with storage structures, access methods
 

or access paths but represents the way in which the users view
 
data. It is important that the user have the ability to
 

logically structure information in a natural manner.
 
Certainly, it is desirable that the system impose as few
 

restrictions on the logical view of data as possible. To
 

that end, the Integrated Data Base Management System permits
 
users to logically structure data into one or more tables of
 

user defined format and to organize tables into one or more
 

data bases to satisfy the user's requirements. Additionally,
 
large volumes of data can be stored in data files.
 

2.2.1.1 Data Bases
 

A data base is a collection of tables. New data bases
 

can be created at any time. Each data base has a name
 

associated with it whiph must be unique among data base names
 

known to the system. The creator of a data base becomes its
 

owner. Within a data base, tables can be created and removed
 
as necessary. Each data base has a Data Dictionary associated
 

with it. The Data Dictionary contains the description of each
 

data item in the data base. New data items can be defined as
 
needed to support the creation of new tables in the data base.
 

Each data base maintained by the system is independent from
 
all other data bases. Every interactive user or application
 

program can be logically attached for processing purposes to one
 

and only~one data base at any given time. Data can be trans

ferred between data bases via a Workspace Table; however, a
 

user attached to one data base cannot access the contents of
 

another data base.
 

The system will support a classification scheme for data
 
bases. When a data base is created, the system classifies
 

it as a working data base. The classification of a data
 

base can be changed at any time by the owner of the data base
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or the Data Base Administrator. Besides the working data
 
base class, the Data Base Administrator can define any data
 
base classification scheme that is meaningful to the user
 

community.
 

A special data base, referred to as the Global Data Base,
 
is maintained by the system. 
 The Global Data Base is owned
 
by the Data Base Administrator. It contains the system tables,
 
all directory tables and any other tables that the Data Base
 
Administrator determines to be of 
use to the user community.
 

2.2.1.2 Tables
 

A table is a logical view of stored data. 
New tables can
 
be created at any time. 
 A new table belongs to the data base
 
to which the user is attached when the table is created.
 
Each table has a name associated with it which must be unique
 
among table names 
in the data base to which it belongs. The
 

creator of a table becomes its owner. 
 Tables contain zero
 
or more records which can be visualized as 
rows in the table.
 
Each record contains one 
or more data fields which can be
 
visualized as columns in the table.
 

Columns or combinations of columns 
can have superstructures
 
defined on them. As currently defined, the system supports
 
hierarchical indices, referred to 
as B-trees, and inverted
 
indices. Superstructures dan be defined when a table is
 
created or 
after data values have been loaded into it.
 
Superstructures may be dropped at 
any time. Rows or records
 
within a table can be added or 
deleted. Columns or data
 
fields can be updated or added. 
 A column can not be physically
 
deleted but 
can be set to a null value in all rows. The
 
retrieval of data from a table is based entirely on 
data values
 
in the table. Retrieval can be restricted to specific rows
 
or columns. 
 Data from several tables can be retrieved jointly
 
into a special table referred to as the Workspace Table.
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A Workspace Table is associated with each user connected
 

to the system. The Workspace Table is used to contain the
 

rows and columns that are retrieved from one or more tables as
 

a'result of a data base query operation. The Workspace Table
 

associated with each user is not contained in any data base.
 

Since it is not contained in any data base, the Workspace
 

Table can be used to transport data from one data base to
 

another. The contents of a Workspace Table can be accessed
 

only by the user with whom it is associated.
 

When a table is created, access to it is limited to its
 

owner and the Data Base Administrator. Either the owner or
 

the Data Base Administrator can grant rights to perform the
 

following operations on the table: read, update, insert and
 

delete. The operational rights can be granted to individual
 

users, to groups or to the entire user community. Likewise,
 

only the Data Base Administrator or the owner of a table can
 

revoke rights that have been granted on the table. Certain
 

other functions, such as the addition of columns to a table
 

or the removal of the table from a data base, are limited to
 

the Data Base Administrator, the owner of the data base contain

ing the table or the owner of the table.
 

2.2.1.3 Data Files
 

A data file is a collection of records which is treated1
 

as an entity by the system. Each data file has a unique
 

identifier, referred to as the data identifier, assigned to
 

it when it is entered into the system. The data identifier
 

is used to reference the data file as an entity. Data files
 

can be stored on any on-line device which supports the sequen

tial organization of data. However, the primary function of
 

data files is the storing of large quantities of data in an
 

off-line mode on magnetic tape.
 

The collection of all data files known to the system is
 

referred to as the Non-Relational Data Base. The system
 

2-10
 



maintains a catalog of all data files in the Non-Relational
 

Data Base. Existing data files may be added to the Non-


Relational Data Base by simply inserting a new entry into the
 

Data File Catalog. Likewise, a data file in the Non-


Relational Data Base can be removed by deleting its correspond

ing entry in the Data File Catalog. When a data file is
 

entered into the Non-Relational Data Base, it is assigned a
 

read-only status so that the data file can not be overwritten.
 

Data files in the Non-Relational Data Base can be accessed
 

on a record by record basis by application programs.
 

Application program facilities exist to read or search data
 

files and to write new data files. Using the Interactive
 

Command language, a data file can be copied from an off-line
 

device to an on-line device and from an on-line device to an
 

off-line device. Also, a data file can be transformed inzo
 

a table and a table can be transformed into a data file.
 

2.2.2 The Physical View of Data
 

The physical view of data involves the actual storage
 

mechanisms employed in the system to support the logical view.
 

Because of the dual system concept on which the logical design
 

is based, the physical storage facilities must support both
 

tabular data stored in relational data bases and sequential
 

data files stored in the Non-Relational Data Base. Thus,
 

the information space managed by the Integrated Data Base
 

Management System is partitioned into an area of on-line
 

storage where tabular data are stored and an area of storage
 

consisting, for the most part, of magnetic tapes on which
 

sequential data files are stored.
 

2.2.2.1 The Storage of Tables
 

The area in which tabular data are stored must be on-line
 

and can span multiple packs and multiple direct access devices.
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The mapping of the tabular data storage area to the physical
 

storage media occurs at system generation time. At any other
 

time, a utility program can be used to extend this area.
 

The area in which tables are stored is subdivided into
 

pages. A page is the basic unit of storage for tabular data
 

and consists of a fixed size block of data which is transferred
 

between peripheral storage and main memory by a single I/O
 

operation. The size of a page is defined at system generation
 

time and cannot be changed. A page may contain data records
 

from a table or superstructure records associated with a table
 

or the page may be part of the free pool of unused pages.
 

Some portion of the tabular storage area will contain "before"
 

images-of pages that have been modified by commands in pro

gress. These "before" images facilitate dynamic restoration
 

of data bases when a command that was performing an update
 

operation is aborted by the user or terminated prematurely due
 

to an-1/0 error. A more detailed discussion of "before"
 

images and dynamic recovery techniques is contained in the
 

subsection entitled Backup and Recovery in this section.
 

Some area of main memory is allocated for page buffers.
 

The size of a single page buffer is the same size as a page
 

of data in the tabular data storage area. A default value
 

is specified for the number of page buffers at system genera

tion time. However, a different value can be specified each
 

time the system is started. The transfer of pages between
 

peripheral storage and the page buffers in main memory is
 

controlled by the Integrated Data Base Management System on
 

an as needed basis. An algorithm for buffer usage ,control
 

is defined in Section 6.
 

The actualcontent and format of a page in the tabular
 

data storage area depends upon the table to which the page has
 

been assigned and the function of the page. Each page
 

assigned to a table will contain either data records, records
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from a hierarchical B-tree index or records from an inverted
 

index. Each page will contain a prologue which specifies the.
 

characteristics of the information stored on that page. Each
 

data record on a data page will, itself, have a prologue con

taining one bit for each data field in the record. A bit
 

will have a particular setting to indicate that the correspond

ing data field contains a data value and the opposite setting
 

to indicate that the data field contains a null value. A
 

data field will contain a null value if no value was specified
 

for it when the data record was inserted into the table. No
 

pointers to other records are stored within pages containing
 

data records from a table. Therefore, superstructures can
 

be added to or dropped from a table without affecting the
 

data pages of a table.
 

2.2.2.1.1 Sequential Tables
 

Atable which has no superstructures associated with it
 

is referred to as a sequential table. Data records in a
 

sequential table have the same physical storage structure as
 

those in tables for which superstructures exist; however,
 

there are some differences in their processing. Since no
 

superstructures exist to facilitate access to a sequential
 

table, the retrieval, update and deletion of records requires
 

the sequential searching of the data records and, in some
 

cases, requires the accessing of every record in the table.
 

Also, the holes in data pages caused by the deletion of data
 

records are not reused. All new records inserted in a
 

sequential table are stored at the logical end of the table.
 

At any time, a user can create hierarchical B-tree or
 

inverted indices on a sequential table. When this occurs, the
 

table ceases to be processed as a sequential table. Whenever pos

sible, the superstructures are used to facilitate access to data
 

records in the table and any existing holes in data pages
 

become available for the insertion of new -data records. If
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all superstructures are dropped from a table, the table becomes
 

a sequential table and is processed as such. Any existing
 

holes in the data pages of the table become unavailable for
 

the insertion of new records.
 

Sequential tables are useful in cases where the contents
 

of a table are static, all or almost all data records are
 

retrieved whenever the table is read and the ordering of records
 

is immaterial or the data records must be retrieved in the
 

order in which they were inserted. Also, if the number of
 

data records in a sequential table is such that they can all
 

be stored on one or two data pages, it may be more efficient
 

to treat the table as a sequential table rather than create
 

superstructures for it.
 

2.2.2.1.2 Superstructures on Tables
 

The term superstructure is used generically to refer to
 
any type of indexing scheme for tabular data which is supported
 

by the Integrated Data Base Management System. Superstructures
 

are used to reduce the time required to access data records in
 

a table or to provide a logical ordering of data records in a
 

table.- The system, as described in this document, supports
 

two types of indexing for tabular data: the hierarchical B

tree index and the inverted index.
 

Superstructures can be created on single data fields or
 

multiple data fields in a table. Any data field in a table
 

can have either a B-tree or inverted index created on it, but
 

not both. Both B-tree indices and inverted indices can be
 

created on multiple data fields. A data field or combination
 

of data fields on which a superstructure has been created is
 

referred to as a key field.
 

Superstructures created for tables are stored on separate
 

pages from the data records in the table. Superstructures
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can be created for tables and dropped from tables dynamically
 

under user control. The creation and dropping of superstructures
 

does not affect the data pages of a table. Whenever a table
 

for which one or more superstructures have been created has a
 

data record inserted, deleted or updated, all of its super

structures are modified to reflect the new contents of the
 

table.
 

2.2.2.1.2.1 B-Tree Indices
 

A B-tree index can exist for any data field or combination
 

of data fields in a table. A single data field for which a B

tree index exists can not have an inverted index created for it.
 
However, a data field which forms part of a combination B-tree
 
key field can, itself, have either a B-tree or inverted index
 

created for it. Thus, by specifying a single data field as a
 
combination B-tree key field, the data field can have, in effect,
 

both a-B-tree and an inverted index created for it.
 

When a B-tree index is defined for a data field or combina

tion of data fields, a uniqueness condition can be specified
 

indicating that no duplicate key values are permitted. If
 

the insertion or modification of a data record in a table
 
would cause a duplicate key value to be added to a B-tree
/ 
index for which the uniqueness condition has been specified,
 

the operation will be aborted. If the uniqueness condition
 

is not specified for a B-tree index, duplicate key values will
 

be permitted.
 

Each B-tree index consists of one or more index pages
 

organized in an hierarchical structure sometimes referred to
 

as a tree structure. Each index page contains one or more
 

key field values and their associated pointers to lower level
 

pages in the tree. Pages in the lowest level of the index
 

contain key values in ascending order and associated pointers
 

to the data records containing the key values.
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A B-tree index should be created for data fields that
 

will contain unique or nearly unique values since there is a
 

one-to-one correspondence between a key value/pointer pair in
 

the lowest level of the index and a data record in the table.
 

The advantage of a B-tree index is that one record or a group
 

of records can be located in a large table with very few I/O
 

operations. Also, a B-tree index, as described in this docu

ment, causes the data records in a table to be logically
 

ordered on a data field or combination of data fields that
 

have been specified as a B-tree key field. Thus, data
 

records can be retrieved from a table in the ascending sequence
 

of data values in a B-tree key field.
 

2.2.2.1.2.2 Inverted Indices
 

An inverted index can exist for any data field or combination
 

of data fields in a table. A data field for which an inverted
 

index exists can not have a B-tree index created for it; how

ever, it can be part of a combination B-tree key fielA
 

Each inverted index consists of two parts: a domain
 

directory and a set of pointer lists. The domain directory
 

contains one entry for each distinct value found in the data
 

field on which the inverted index was created. Each entry
 

in the domain directory consists of a data value and a pointer
 

to the corresponding pointer list. There is one pointer list
 

associated with each domain directory entry in an inverted
 

index. Each pointer list contains one or more pointers to
 

data records in the table which contain the data value in the
 

associated domain directory entry.
 

An inverted index should be created for data fields where
 

the same value will be repeated in several records so that
 

there is a one-to-many correspondence between a data value in
 

a domain directory entry and the pointers in the associated
 

pointer list. The advantage of an inverted index is that a
 

set of data records that contain a specific value can be
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located rapidly without accessing the data records themselves.
 
Also, boolean operations can be performed easily on data fields
 

for which an inverted index exists. After locating the domain
 

directory entries containing the data values of data fields
 

specified in a boolean expression, the boolean operations 
are
 
performed on the associated pointer lists yielding a resulting
 

pointer list containing pointers to all data records satisfy

ing the boolean expression.
 

2.2.2.2 The Storage of Data Files
 

A data file is a collection of records organized for
 

sequential access and terminated by an end-of-file mark. A
 

data file can contain either data in its internal binary
 

representation or 
data which has been converted to some
 

external code such as ASCII or EBCDIC. 
 Up to three copies
 
of a data file can exist simultaneously and be referenced by
 

the same data identifier. These include an off-line copy on
 
magnetic tape in its original data file format, an on-line copy
 
on 
 a direct access device in one of the system standard for

mats and an off-line copy on magnetic tape in the same system
 

standard format. Any one or a combination of these forms of
 
a data file can 
exist and their physical location be maintained
 

by the system in the Data File Catalog.
 

While it will not be a requirement of the system that
 

data files be put into a system standard format prior to being
 
entered into the Non-Relational Data Base, the use of system
 

standard formats will be encouraged so as to facilitate the
 

sharing of data among the Integrated Data Base Management
 

System and other information processing systems. All data
 

files created by application programs using the facilities of
 

the Integrated Data Base Management System will be in one of
 
the system standard formats. Also, the loading of a data file
 

to a direct access device by the system will cause it to be
 

converted to one of the system standard formats unless it 
is
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already in such a format. It is anticipated that all data
 

file processing procedures invoked through the Integrated
 

Data Base Management System will read and write data files in
 

a system standard format. The general structure of a data
 

file in a system standard format includes a header record
 

which has a fixed format and describes the format of the data 
records in the data file, zero or more processing history
 

records in a free format and one or more data records whose
 

format is a function of the type of data contained therein
 

(e.g., gridded, image, text, etc.).
 

An indication of the format of each copy of a data file
 

is stored along with its physical location in the Data File
 

Catalog. During the loading of a data file from magnetic
 

tape to a direct access device, the format indicator is used
 

to locate a module, residing in the Integrated Data Base
 

Management System library, that can be loaded and used to
 

access the data file. If the off-line copy of a data file
 

to be loaded is already in one of the system standard formats,
 

the corresponding input module will perform no format conver

sion but may perform windowing on the data file causing a data
 

file with a different data identifier to be created. If the
 

off-line copy is in its original data file format, it can be
 

loaded on-line only if an input module corresponding to the
 

data file format has been placed in the library. If an in

put module exists for the data file format, any data files
 

in that format that are loaded on-line will be converted, by
 

the input module, to a predefined system standard format.
 

Thus, existing data files can be entered into the Non-


Relational Data Base without first being put into a system
 

standard format.
 

Data files can reside on magnetic tapes or direct access
 

devices. One magnetic tape can contain more than one data
 

file and a data file can span more than one magnetic tape.
 

Data files created by application programs or internal
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procedures will be stored, initially, on a direct access device
 

in one of the system standard formats. If required, the data
 

file can be unloaded to magnetic tape in the same system stan

dard format by an application program or interactively.
 

Data files residing on a direct access device may be stored
 

in a non-contiguous manner if this facility is supported by
 

the operating system of the computer on which the Integrated
 

Data Base Management System is implemented. That is, the
 

data file may be physically fragmented on the direct access
 

device but will be treated logically by the system as an
 

entity. If this facility is not supported by the operating
 

system, an alternative approach would be to write new data
 

files created by application programs or internal procedures
 

directly to magnetic tape since it would be difficult for the
 

system to anticipate the amount -of direct access space required
 

to store a new data file so that contiguous space could be
 

preallocated. Another option is to have the user specify
 

the amount of direct access space required for storage of a
 

new data file. While this might be feasible for certain types
 

of data, such as image data, the requirement of preallocating
 

contiguous direct access space for a data file would lead, in
 

general, to inefficient use of the space available for the
 

storage of data files and should be avoided, if possible.
 

2.3 The Global Data Base
 

The Global Data Base is a relational data base which is
 

automatically defined at system generation time by the System
 

Generation Program. The Data Base Administrator is the
 

owner of the Global Data Base. The Global Data Base con

tains the system tables which control much of the processing
 

within the system. The tables which constitute the system
 

Data File Directory also reside in the Global Data Base.
 

At any time, the Data Base Administrator can create new
 

tables in the Global Data Base which are neither system tables
 

2-19
 



nor directory tables. Presumably, these tables would contain
 

information of general interest to the user community. The
 

Global Data Base is structured in the same way as any other
 

data base within the system. Any operations that can be per

formed on user defined data bases can be performed on the
 

Global Data Base. However, access rights which would allow
 

the tables in the Global Data Base to be modified will be
 

restricted or controlled by special commands. Also, access
 

rights which would allow retrieval of certain information
 

from the system tables may be restricted or controlled by
 

special commands. Thus, the purpose of the Global Data Base
 

is to contain system information in a form that is consistent
 

with that of other information, to provide a repository for
 

information that is of interest to the entire user community
 

and to permit the Data Base Administrator to control access
 

to this information.
 

2.3.1 System Tables
 

All system tables are contained within the Global Data
 

Base. They are automatically defined at system generation
 

time by the System Generation Program. The systemtablesare
 

used to store system control blocks and other system related
 

information. Special commands are available to the user
 

community to define and remove data bases, data fields, and
 

tables and to grant and revoke access rights to tables.
 

Additional privilaged commands are available to the Data Base
 

Administrator to define and remove users from the system,
 

define and remove user groups and to catalog and uncatalog
 

data files. These commands ultimately cause one or more
 

system tables to be modified. Only the Data Base Administrator
 

is permitted to use the full complement of data manipulation
 

commands on the system tables. System tables are stored and
 

accessed in the same way as all other tabular data. Super

structures are defined for the system tables by the System
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Generation Program to facilitate the storage and retrieval of
 

data records by the Integrated Data Base Management System
 

software. As the owner of the system tables, the Data Base
 

Administrator can create additional superstructures on them
 

to support any additional processing requirements. However,
 

the Data Base Administrator can not drop any superstructure
 

defined on a system table by the System Generation Program.
 

The following subsections describe briefly the contents and
 

structure of each of the system tables.
 

2.3.1.1 SYSUSER Table
 

The SYSUSER table contains one record for each valid user
 

of the system, including the Data Base Administrator. Each
 

record in the SYSUSER table contains a User.Control Block.
 

The User Control Block contains user descriptive information
 

and is described in Section 8.
 

When a new user is defined to the Integrated Data Base
 

Management System by the Data Base Administrator, a User
 

Control Block is created for the user and is inserted, as a
 

record, into the SYSUSER table. If an attempt is made-to
 

add a new user to the system whose user-id will duplicate that
 

of an existing user, the new user will be rejected because a
 

unique B-tree index exists on the user-id field of the SYSUSER
 

table. The B-tree index on the user-id field also provides
 

a logical ordering by user-id of the records in the SYSUSER
 

table.
 

When a user connects to the Integrated Data Base
 

Management System, the record containing the user's User
 

Control Block is retrieved from the SYSUSER table. The
 

record is located using the unique B-tree index created on the
 

user-id field. When a user is removed from the Integrated
 

Data Base Management System by the Data Base Administrator,
 

the record containing the User Control Block for the user is
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located via the B-tree index on the user-id field and the
 

record is deleted from the SYSUSER table.
 

2.3.1.2 SYSGROUP Table
 

The Data Base Administrator can define a group for the
 

purpose of granting common access rights to all users belong

ing to the group. The concept of group access rights is
 

discussed in Section 3. The SYSGROUP table contains one
 

record for each group defined within the Integrated Data Base
 

Management System and one record for each user in each group.
 

Thus, the SYSGROUP table contains two types of records: one
 

record which defines the existence of a group and zero or
 

more records which specify the users who belong to that group.
 

The collection of all records that specify to which groups a
 

user belongs constitute the Group Extension for that user.
 

The Group Extension is described in Section 8.
 

When a new group is defined to the Integrated Data Base
 

Management System by the Data Base Administrator, a record
 

containing the name of the group and a blank user-id field is
 

inserted into the SYSGROUP table. This record indicates the
 

existence of the group and is used for verification purposes
 

whenever a user is included in the group. When a user is
 

included in a group by the Data Base Administrator, a Group
 

Extension entry is created for the user and is inserted, as a
 

record, into the SYSGROUP table. If an attempt is made to
 

add a new group to the system whose group name will duplicate
 

that of an existing group or an attempt is made to include a
 

user in a!group to which he already belongs, the request will
 

be rejected because a unique B-tree index exists on a combina

tion of the user-id and group-name fields in the SYSGROUP
 

table. The B-tree index on the combination of user-id and
 

group-name also provides both a logical grouping by user-id
 

and a logical ordering by user-id and group-name to the records
 

in the SYSGROUP table.
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When a user connects to the Integrated Data Base
 
Management System, any Group Extension records associated with
 
the user are retrieved from the SYSGROUP table to form the
 
user's Group Extension to the User Control Block. The
 
records are located using an inverted index created on the
 
user-id field. Each entry in the Group Extension will point
 
to an Authorization Extension in main storage which specifies
 
the access rights granted to the group represented by the
 
entry. For the purpose of determining the user's right to
 
access tables, these group access rights will be treated as
 
if they had been granted to the individual user.
 

When the Data Base Administrator removes a user from a
 
group, the record corresponding to the specified user and
 
group is deleted from the SYSGROUP table. The record to be
 
deleted is located via the unique B-tree index on the combina
tion of user-id-and group-name fields. When the Data Base
 
Administrator removes a group from the system, all records
 

containing the specified group-name are deleted. This includes
 
the record containing a blank user-id field which defines the
 
existence of the group and any other records which contain the
 
user-id of users belonging to the group. The records to be
 
deleted are located via an inverted index on the group name
 

field.
 

2.3.1.3 SYSDB Table
 

The SYSDB table contains one record for each data base
 
defined within the Integrated Data Base Management System,
 
including the Global Data Base. Each record in the SYSDB
 
table contains a Data Base Control Block. 
 The Data Base
 
Control Block contains information pertaining to the data base
 

and is described in Section 8.
 

When a new data base is defined to the Integrated Data
 
Base Management System by a user, a Data Base Control Block
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is created for the data base and is inserted, as a record,
 

into the SYSDB table. If an attempt is made to define a new
 

data base with a data base name which duplicates that of an
 

existing data base, the new data base will be rejected because
 

a unique B-tree index exists on the data-base-name field of
 

the SYSDB table. The B7 tree index on the data-base-name
 

field also provides a logical ordering by data base name of
 

the records in the SYSDB table.
 

If a user connected to the Integrated Data Base
 

Management System indicates an intent to process information
 

in a data base whose Data Base Control Block is not resident
 

in main storage, the record containing the Data Base Control
 

Block for the data base is retrieved from the SYSDB table.
 

The record is located using the unique B-tree index created
 

on the data-base-name field. Additional records associated
 

with the data base may be loaded from other system tables at
 

that time. When a data base is removed from the Integrated
 

Data Base Management System by a user, the record containing
 

the Data Base Control Block for the data base is located via
 

the B-tree index on the data-base-name field and the record
 

is deleted from the SYSDB table.
 

Additional superstructures are created on the SYSDB
 

table by the System Generation Program to facilitate the
 

retrieval of information about data bases using the DESCRIBE
 

command which is available to the user community. Inverted
 

indices are created on the data base classification field,
 

the date created field and the field containing the user-id
 

of the owner of the data base. Thus, the DESCRIBE command
 

can retrieve information about data bases maintained by the
 

Integrated Data Base Management System as a function of the
 

data base classification, date created or owner of the data
 

base.
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2.3.1.4 SYSDD Table
 

The SYSDD table contains one record for each data field
 
in each data base defined within the Integrated Data Base
 
Management System, including the Global Data Base. 
 Each
 
record in the SYSDD table contains a Data Dictionary entry
 
which describes the attributes of the data field which it
 
defines. The collection of all records that define data
 
fields in a data base constitutes the Data Dictionary for that
 
data base. The Data Dictionary is described in Section 8.
 

When a new data field is defined by a user for an exist
ing data base, a Data Dictionary entry is created for the
 
data field and is inserted, as a record,'into the SYSDD table.
 
If an attempt is made to define a new data field with a field
 
name which will duplicate that of an existing data field in
 
the same data base, the new data field will be rejected
 
because a unique B-tree index exists on a combination of the
 
data-base-name and field-name fields in the SYSDD table.
 
The B-tree index on the combination of data-base-name and
 
field-name also provides both a logical grouping by data base
 
and a logical ordering by data base name and field name to the
 

records in the SYSDD table.
 

When a user indicates an intent to process information
 
in 
a data base whose Data Base Control Block is not resident
 
in main storage, all Data Dictionary entry records associated
 
with the data base are retrieved from the SYSDD table to form
 

the Data Dictionary for the data base. The records are
 
located using an inverted index created on the data-base-name
 
field. Additional records are loaded from other system
 
tables at that time. 
 When a data field is removed from a
 
data base by a user, the record containing the corresponding
 
Data Dictionary entry is located via the B-tree index on the
 
combination of data-base-name and field-name and the record
 

is deleted from the SYSDD table.
 

2-25
 



2.3.1.5 SYSREL Table
 

The SYSREL table contains one record for each table in
 
each data base defined within the Integrated Data Base
 
Management System including the system tables in the Global
 
Data Base. 
 Each record in the SYSREL table contains a
 
Relational Control Block. 
 The Relation Control Block contains
 
information pertaining to the table and is described in
 

Section 8.
 

When a new table is defined by a user for an existing
 
data base, a Relation Control Block is created for the table
 
and is inserted, as a record, into the SYSREL table. 
 If an
 
attempt is made to define 
a new table with a table name that
 
will duplicate that of an existing table in the same data
 
base, tie new table will be rejected because a unique B-tree
 
index exists on 
a combination of the data-base-name and table
name fields in the SYSREL table. The B-tree index on the
 
combination of data-base-name and table-name fields also
 
provides both a logical grouping by data base and a logical
 
ordering by data-base-name and table-name of the records in
 

the SYSREL table.
 

When a user indicates an intent to process information
 
in a data base whose Data Base Control Block is not resident
 
in main storage, all records containing Relation Control
 
Blocks for tables in the data base are read fromthe SYSREL
 
table. The records are located using the unique B-tree
 
index created on the data-base-name and table-name fields.
 
When a table is removed from a data base by a user, the record
 
containing the Relation Control Block for the table is 
located
 
via the B-tree index on the combination of data-base-name and
 
table-name fields and the record is deleted from the SYSREL
 

table.
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2.3.1.6 SYSDOM Table
 

The SYSDOM table contains one record for each data field
 

in each table in each data base defined within the Integrated
 
Data Base Management System, including system tables in the
 

Global Data Base. 
 Each record in the SYSDOM table contains
 
a Domain Extension entry. Whereas, a Data Dictionary entry
 

describes the general attributes of a data field, a Domain
 

Extension entry contains information pertaining to a data
 

field as it is used in a particular table. The collection
 
of all records in the SYSDOM table that describe data fields
 

in a particular table constitutes the Domain Extension for
 
that table. The Domain Extension for a table is described in
 

Secti6n 8.
 

When a new table is defined by a user, the data fields
 
which make up the table are specified. A Domain Extension
 

entry is created for each of the data fields in the table and
 
is inserted, as a record, into the SYSDOM table. A unique
 

B-tree index exists on a combination of the data-base-name,
 

table-name and field-name fields in the SYSDOM table. The
 

B-tree index provides both a logical grouping by data base
 

and table and a logical ordering by data-base-name, table-name
 
and field-name to the records in the SYSDOM table.
 

When a user indicates an intent to process information
 

in a data base whose Data Base Control Block is not resident
 

in main storage, all Domain Extension entry records associated
 
with tables in the data base are retrieved from the SYSDOM
 
table to form the Domain Extensions for each of the tables in
 

the data base. The records are located using the unique
 

B-tree index created on the combination of data-base-name,
 
table-name and field-name fields. Additional records are
 
loaded from other system tables at that time. When a table
 

is removed from a data base, the Domain Extension entry records
 
associated with the table are removed from the SYSDOM table.
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The records containing the Domain Extension entries are
 

located via the B-tree index on the combination of data-base

name, table-name and field-name fields and the records are
 

deleted from the SYSDOM table.
 

2.3.1.7 SYSAUTH Table
 

The SYSAUTH table contains one record for each user or
 

group who has been explicitly authorized by the owner of a
 

table to perform one or more data manipulation operations on
 

the table. Records in the SYSAUTH table are used to control
 

access to tables maintained by the Integrated Data Base
 

Management System. Each record in the SYSAUTH table contains
 

an Authorization Extension entry that indicates which of the
 

operational rights (READ, INSERT, UPDATE, DELETE) have been
 

explic ly granted to the user or group on the table identified
 

in the record. The collection of all records that define
 

explicit operational rights granted to an individual user or
 

group constitutes the Authorization Extension for that user
 

or group. The Authorization Extension is described in Section
 

8.
 

When the owner of a table grants one or more operational
 

rights to an individual user or group,- the Authorization
 

Extension associated with that user or group is checked to
 

determine if the user or group has been granted rights
 

previously on the same table. If so, the existing Authorizatio:
 

Extension entry is modified and the corresponding authorization
 

record in the SYSAUTH table is updated to reflect the new
 

authorizations. If no authorizations exist for the specified
 

user or group on the table, an Authorization Extension entry
 

is created and is inserted, as a record, into the SYSAUTH
 

table. A unique B-tree index exists on a combination of the
 

user-id of the user or group-name of the group, the data

base-name of the data base containing the table and the table
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name fields in the SYSAUTH table. 
 The B-tree index provides
 
both a logical grouping by data base and table and a logical
 
ordering by user-id or group-name, data-base-name and table
name of the records in the SYSAUTH table.
 

When a user connects to the Integrated Data Base Management..
 
System, any authorization records associated with the user
 
are retrieved from the SYSAUTH table to form the Authorization
 
Extension to the User Control Block. 
 The records are located
 

using an inverted index created on the userid field.
 
Additional authorization records might be retrieved from the
 
SYSAUTH table to form Authorization Extensions for groups to
 
which the user belongs; if such Authorization Extensions are
 
not already resident in main storage. 
 When the owner of a
 
table revokes one or more operational rights from a user or
 
group, the authorization record corresponding to thefbser or
 
group and the table is retrieved and checked to determine if
 
the user or group will retain any operational rights on the
 
table. If so, the authorization record is updated to reflect
 
the reduced authorizations. If no authorizations remain for
 
the user or group on the table, the corresponding authorization
 

record is deleted from the SYSAUTH table.
 

Additional superstructures are created on the SYSAUTH
 
table by the System Generation Program to facilitate the
 
deletion of authorization records. Inverted indices are
 
created on the user-id/group-name field, the data-base-name
 

field and the table-name field. 
 Thus, all authorization
 
records associated with an individual user or group can be
 

located and deleted if the user or group is removed from the sys
tem by the Data Base Administrator. If a database is removed,
 
all authorization records associated with tables in the data
 
base can be located and deleted. Likewise, if a table is
 
removed from a data base, all authorization records for the
 

table can be located and deleted.
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2.3.1.8 SYSCATL Table
 

The SYSCATL table contains one record for each data file
 

maintained by the Integrated Data Base Management System in the
 

Non-Relational Data Base. The physical location and format
 

of up to three copies of each data file can be contained in a
 

single record. Each copy is referenced using the same data
 

identifier and, while they may not be in the same format,
 

*their data content will be exactly the same. The three copies
 

which can exist for a data file include: an off-line copy on
 

magnetic tape in the original data file format, an on-line
 

copy on a direct access device in one -of the system standard
 

formats and an off-line copy on magnetic tape in the same
 

system standard format. Each record in the SYSCATL table
 

will contain a unique data identifier and the physical loca

tion and..format of each existing copy of the data file. The
 

form -in which the physical location of each copy is specified
 

may depend -upon the operating system requirements for sequen

tial file handling. Additionally, each record'in the SYSCATL
 

table will contain the date on which each copy was created or entered
 

into the Non-Relational Data-Base, the date on which each copy was
 

last accessed,.the user-id of the user who created the on-line copy
 

and a temporary/permanent indicator associated with the on-line
 

copy. The SYSCATL table is referred to as the Data File Catalog.
 

When a new data file is entered into the Non-Relational
 

Data Base, a catalog entry is created for the data file and is
 

inserted, as a record, into the SYSCATL table. The record
 

will contain the physical location and format of the initial
 

copy of the data file being cataloged, as well as any other
 

pertinent .information. The initial copy of the data file
 

being cataloged may be on-line if it was created by an.
 

application program or internal procedure or off-line if it is
 

an existing data file on magnetic tape. A unique data
 

identifier is created by the Integrated Data Base Management
 

System for each new data file and a unique B-tree index is
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created on the data identifier field in the SYSCATL table.
 

When a data file is to be processed, the data identifier
 

must be specified. The record containing the catalog entry
 

corresponding to the data identifier is retrieved from the
 

SYSCATL table using the unique B-tree index created on the
 

data identifier field. The physical location of the data
 

file is obtained from the retrieved catalog entry so that the
 

data file can be accessed. When commands are issued which
 

cause a new copy of an existing data file to be created, the
 

appropriate record in the SYSCATL table is updated with the
 

physical location and format of the newly created copy of the
 

data file. When at on-line copy of a data file is created,
 

it is given a temporary status in its catalog entry and the
 

user-id of the user creating it is retained. That user or
 

the Data Base Administrator may issue a command to change the
 

status of the on-line copy to permanent, in which case the
 

appropriate record is updated in the SYSCATL table to reflect
 

the change in status. If the user who created the on-line
 

copy of a data file or the Data Base Administrator issues a
 

command to scratch the on-line copy from the system, the
 

appropriate record is updated in SYSCATL table to reflect the
 

removal of the on-line copy. When a data file is removed
 

from the Non-Relational Data Base, the record containing the
 

catalog entry for the data file is located via the B-tree
 

index on the data identifier field and the record is deleted
 

from the SYSCATL table.
 

Additional superstructures are created on the SYSCATL
 

table by the System Generation Program to facilitate the
 

retrieval of information about data files. Inverted indices
 

are created on several of the data fields in the SYSCATL table.
 

Thus, information pertaining to data files in the Non-Relational
 

Data Base can be retrieved as a function of one or more of the
 

physical attributes of the data file.
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2.3.2 The Data File Directory
 

The Data File Directory consists of one or more tables in
 

the Global Data Base which provide the user community with a
 

content based directory to data files in the Non-Relational
 

Data Base. Unlike the Data File Catalog which maintains a
 

,one-to-one relationship with the data files and contains the
 

physical attributes of each data file, the Data File Directory
 

supports a many-to-one relationship with the data files and
 

contains attribute values of data contained within each data
 

file. Thus, using the Data File Directory, a data file can
 

be located as a function of its information content. The
 

addition of new directory tables to the Data File Directory
 

is under complete control of the Data Base Aministrator, as is
 

the format of each directory table. Thus, with no predefined
 

structure or format,-the Data File Directory can evolve to
 

meet the changing requirements of the user community and the
 

varying contents of the Non-Relational Data Base.
 

.The tables which constitute the Data File Directory can be
 

referred to collectively as if they were a single table using
 

the name SYSDIR. Therefore, the retrieving, updating and
 

deleting of records in the Data File Directory can be per

formed on an individual directory table by specifying the
 

directory table name in the appropriate command or on the
 

collection of all directory tables specifying the table name SYSDIR
 

All data records must be inserted into a specific directory table.
 

Since all directory tables are contained in the Global Data
 

Base, each new directory table must be defined by the Data
 

Base Administrator, thereby making the Data Base Administrator
 

the owner of the directory tables. Presumably, a new directory
 

table would be defined to support each type of data maintained
 

in the Non-Relational Data Base. Since it is likely that
 

specific groups of users may be more cognizant than the Data
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Base Administrator of the handling required for different types
 

of data files, the Data Base Administrator might wish to
 

designate an individual user from each such group as a Data
I 

File Administrator. The Data File Administrator, as well as
 

the Data Base Administrator, would have the power to grant and
 

revoke access rights to the directory table. To accomplish
 

this, the Data Base Administrator would transfer ownership of
 

the directory table for a particular type of data to the user
 

designated as the Data File Administrator for that data. It
 

should be noted that the access rights to the collection of-all
 

directory tables, referred to as SYSDIR, are the same as the
 

access rights to the individual directory tables. For example,
 

if a user were granted the right to delete records in one
 

directory table but no others, the deletion of records by that
 

user via SYSDIR could cause the deletion of records only from
 

the directory table for which the user had been granted the
 

right to delete records.
 

When a new directory table is defined, one of the data
 

fields in the table must be the data identifier. The other
 

data fields should represent the attributes of the information
 

contained in the data files for which the directory table is
 

being created. When a record is inserted into a directory
 

table, it must contain a non-null value in the data identifier
 

data field. Other data fields can contain the null value.
 

The data identifier is verified using the B-tree index on the
 

data identifier field in The SYSCATL table, which is the Data
 

File Catalog. Thus, an entry can be made in a directory table
 

only for a data file for which an entry already exists in the
 

Data File Catalog.
 

Because some data files in the Non-Relational Data Base
 

can contain several types of data, a directory table can con

tain more than one record with the same data identifier. In
 

fact, different directory tables can contain records with the
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same data.identifier; thereby allowing multiple descriptions
 

of the same data file to exist in the Data File Directory
 

simultaneously. When a record is deleted from the SYSCATL
 

table, indicating that the corresponding .data file is being
 

removed from the Non-Relational Data Base, any records in the
 

Data File Directory containing the data identifier of the data
 

file are deleted from the directory tables. Thus, no references
 

to data files that no longer reside in the Non-Relational Data
 

Base will exist in the Data File Directory.
 

2.4 System Design Concepts
 

The system design described in this document relies on a
 

set of control structures for intrasystem communication and
 

the management of system processes. The term "'system internals"
 

is used herein to.refer generically to control blocks, control
 

block extensions, dictionaries, lists and queues and their
 

relationship to one another. The various control structures
 

'havebeen divided into categories as a function of their usage
 

within the system and are described in detail in Section 8.
 

All control structures are transient in nature. Transient
 

control structures may exist only while a command is being
 

processed or while-a user is connected to the system or while
 

a particular data base is being accessed. The control
 

structures resident in main storage are dependent, for the
 

most part, on interactive user and application program activity,
 

thus reducing the main storage requirements of the system. The
 

main storage required for the transient control structures is
 

allocated dynamically, as required, and freed when no longer
 

needed.
 

The Integrated Data Base Management System-software, as
 

described in Section 9, consists of several asynchronous pro

cesses or tasks. Thus, the software design assumes the
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availability of a multitasking operating system with subtask

ing for implementation. The software processes are essen

tially event driven. That is, each software process is in a
 

non-executing or "wait" state until one or more events 
on
 

which it is waiting occurs. At that time, the process beings
 

executing and continues in the executing or "run"'state until
 

no more work remains for it; at which time, it places itself
 

into the wait state'again. Communication among the various
 

asynchronous processes is via the queues which were mentioned
 

previously.
 

The division of the software into separate asynchronous
 

processes is based on the various functions which must be per

formed on a command as it proceeds through the system. Thus,
 

several commands can be in different stages of processing at
 
any one time without delaying each other. When a delay does
 
occur, the-commands are held in queues to await further proces

sing.
 

2.5 Backup and Recovery
 

The backup and recovery features of the Integrated Data
 
Base Management System provide facilities for "backing out" the
 

effects of a command which terminates prematurely or is aborted
 

and for recovering the system to a consistent state after a
 

malfunction. The mechanism for providing both types of back

up and recovery is considerably different. The backup facili

ties and the recovery technique for each are described below.
 

2.5.1 Command Recovery Facilities
 

The command recovery facility provides the capability of
 

removing the effects of a command which has not 
completed
 

successfully. Only commands which cause the tabular data
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storage area to be modified will activate the command recovery
 

facilities. These include commands that modify superstructures
 
and system tables as well as those that modify user defined
 

tables. Commands which only retrieve information from the
 

tabular data storage area do not invoke the command recovery
 

facilities since no recovery is required should these commands
 

fail. The command recovery facilities are designed to provide
 

protection from intermitent command failure, not from a malfunc
tion which causes the Integrated Data Base Management System or
 

the operating system to terminate. Thus, this type of backup
 

and recovery procedure is controlled by the Integrated Data
 

Base Management System and is transparent to the user and to the
 

computer operator. The command recovery facilities consist of
 

two phases. The first phase is the backup phase and occurs
 

during command processing. The second phase is the recovery
 

phase and occurs during command termination.
 

During command processing, an image is written of each page
 
in the tabular data storage area that is modified. The image,
 

referred to as a "before" image, is simply a copy of the page
 

prior to modification. When, during the processing of a com

mand, a page is about to be modified, a before image is written
 

into the tabular data storage area on the first free page on the
 

chain of free pages. The page on which the before image was
 

written is removed from the free page chain and is placed on a
 

chain of backup pages associated with the command causing the
 

modification. A page pointer to the first page on the backup
 

chain for a command is contained in its Command Control Block.
 
Each new before image page is placed at the beginning of the
 

backup chain so that the backup chain will be in inverse
 

chronological order.
 

When a command which has modified the tabular data storage
 

area is terminated abnormally or is aborted, the effects of
 

that command on the tabular data storage area must be removed.
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A command can be terminated abnormally due to an Input/Output
 

error or a hardware or software error. 
 During command termina

tion, the Application Program Command Terminator or the Inter
active Command Terminator determines whether or not the com

mand being terminated completed successfully. If not and the
 
command has modified the tabular data storage area, the recovery
 

procedure of the command recovery facilities are invoked. The
 
recovery procedure uses the page pointer in the Command Control
 

Block to locate the first before image page in the backup
 

chain for the command. Each before image page contains the
 

page number of the page of which it is an image. Using that
 

page number, the recovery procedure can replace the existing
 

page with its before image. If the same page were modified
 

more than once by the same command, it may be replaced more
 

than once during the recovery procedure; however, the recovery
 

procedure follows the backup chain from the Command Control
 

Block replacing pages with their before images as they are
 

encountered on the chain. 
 Since the chain is in inverse
 
chronological order, all pages will be recovered in the reverse
 

order to that in which the modifications were made; thus,
 

leaving all modified pages with their contents prior to execu

tion of the command. Since tables which are being modified
 

by a command cannot be accessed by any other command until the
 

table is released by the terminator, no other command can be
 

affected by the recovery procedure.
 

2.5.2 System Recovery Facilities
 

The system recovery facility provides the capability of
 

restoring the information in the system to a consistent state
 

prior to restarting the Integrated Data Base Management System
 

following a malfunction which terminates execution. 
 As in
 
the command recovery facility, the system recovery facility
 

consists. of two phases. The first phase involves the genera

tion of a log file. The second phase involves the recovery
 

of the system to a consistent state using the Log File.
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The generation of a Log File is a continuous process which
 

occurs during the execution of the Integrated Data Base
 

Management System. The log file will be written as a sequential
 

data set. Normally, the Log File will be written on a magnetic
 

tape but it can be written on any device which supports the
 

sequential organization of data. The Log File contains
 

before images of all records in the tabular data storage area
 

that have been added, deleted, or updated; begin-command and
 

end-command records; both application program and system check

point records and any other information which might provide a
 

useful audit trail of system activity. Whenever an interactive
 

or application program command enters the system, a begin

com.and record is written on the Log File. If, during processing,
 

a command modifies the tabular data storage area, a before
 

image of the record involved is written on the Log File.
 

Whenever a new data file is created by the Data File Processor,
 

a data file creation record is written on the Log File. hen
 

a command terminates, an. end-command record is written on the,
 

Log File.
 

When a malfunction causes the execution of the Integrated
 

Data Base Management System to be terminated, the Log File
 

must be used to recover the system. During the restart pro

cedure, the operator must identify the Log File to be used.
 

The Integrated Data Base Management System will position the
 

Log File at the end of the data set and read it in a backward
 

mode during the recovery procedure. If a backward read fea

ture is not supported by the operating system, the Log File
 

will be read in a forward mode, sorted in descending order by
 

time or a counter and written to a new data set prior to enter

ing the recovery phase. The recovery procedure will retrieve
 

before images of records from the Log File and restore the
 

tabular data storage area using these before images. Using
 

the begin-command and end-command records, a list will be
 

generated of all commands that have been backed out during the
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recovery procedure and must be reissued. 
 When the recovery
 
procedure encounters a system checkpoint record on the Log File,
 
the operator is notified. The operator may terminate the
 
recovery of the system at 
that point or he may specify that the
 
recovery procedure should continue to the next system checkpoint
 
record. 
 When the system has been recovered, it can be restarted
 
and users may then access the system.
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SECTION 3 - USING THE INTEGRATED DATA BASE MANAGEMENT SYSTEM
 

3.1 Operator Control
 

The Integrated Data Base Management System is envisioned
 

as being a single copy, multi-user system which operates con

tinuously in its own region of main storage. The starting and
 

stopping of the system will be under the control of the computer
 

operator, using a set of special operator commands which can be
 

entered only through the operator's console. Besides being able
 

to start and stop the Integrated Data Base Management System,
 

the operator can monitor the system activity and perform a system
 

recovery operation using other operator commands.
 

Under normal operating conditions, the Integrated Data Base
 

Management System will be started at the beginning of each opera

tional day by the operator. Parameters may be entered when the
 

system .is started to control page buffer allocation, the system
 

checkpoint interval, and other such functions. Occasionally,
 

the operator may request information on the Integrated Data Base
 

Management System activity. At the end of each operational day,
 

the system will be stopped by the operator. Normally, the stopping
 

of the system will be preceded by a message to all interactive
 

users to disconnect from the Integrated Data Base Management
 

System. When the operator issues the command which stops the
 

system, no more users will be allowed to connect to the Integrated
 

Data Base Management System. All active users will be allowed to
 

disconnect from the system before execution is stopped. Under
 

unusual circumstances, the operator has the capability of aborting
 

execution of the Integrated Data Base Management System. When
 

system execution is aborted, no new commands are accepted and all
 

commands in progress are aborted, thus removing the effects of
 

the executing commands from the system. The appropriate records
 

are written to the Log File and the Log File is closed.
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When the Integrated Data Base Management System terminates
 

during execution due to a hardware or software failure, the
 

operator must perform a system recovery operation. To do so,
 

the operator issues a command to initiate the recovery operation
 

and identifies the Log File to be used. The Integrated Data Base
 

Management System uses the Log File to restore the system,
 

stopping at each system checkpoint to allow the operator to
 

terminate the recovery operation. When the recovery operation
 

has been completed, the Integrated Data Base Management System
 

is restarted.
 

3.1.1 Operator Commands
 

Operator commands are processed by the System Control
 

Program and are not available to the Data Base Administrator
 

or the user community. These commands can be issued only by
 

the computer operator and allow the computer operator to control
 

the execution of the Integrated Data Base Management System as
 

described above.
 

The operator commands include:
 

START - Start the Integrated Data Base Management 
System 

STOP - Stop the Integrated Data Base Management 
System. Allow all active users to disconnect 
from the system. Do not allow any new users 
to connect to the system. 

ABORT - Stop the Integrated Data Base Management 
System immediately. Write back modified 
buffers to the data bases. Write necessary 
checkpoint records to the log file. Do not 
accept any new commands. 

USERS - Display the user-id and processing status 
of all active users of the Integrated Data 
Base Management System. 

3-2
 



STATS - Display a predefined set of usage statistics
 
representing current activity of the
 
Integrated Data Base Management System.
 

RECOVER -
Perform a system recovery operation using
 
a specified Log File and restart the
 
Integrated Data Base Management System.
 

3.2 Accessing the System
 

The Integrated Data Base Management System is designed to
 
be a multi-user, multi-access system. 
 Thus, the system can
 
support concurrent 
access by several users and provide multiple
 
modes of access to the users. 
 The system is capable of accept
ing and processing, concurrently, interactive commands from
 
several remote terminals, interactive commands from a system
 
card reader and application program commands from several applica
tion programs. The following subsections describe the concept
 

of a Workspace Table to support retrieval and the three modes
 
of access available to a user of the Integrated Data Base
 

Management System.
 

3.2.1 The Workspace Table
 

One Workspace Table is associated with each interactive
 
user and application program connected to 
the Integrated Data
 
Base Management System. A Workspace Table is not contained
 

within any data base, but is associated directly with the user
 
or application program. A Relation Control Block for the Work
space Table is created in main storage when a user or application
 
program connects to the system and a pointer to the Relation
 
Control Block is stored in the User Control Block. 
No Domain
 
Extension is created for the Workspace Table at the time that
 
the user or application program connects to the system. 
The
 
Workspace Table ceases to exist when the user or application
 
program with which 
it is associated disconnects from the
 

Integrated Data Base Management System.
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At any given time, a Workspace Table is in one of three
 

states. The state of a Workspace Table is a function of the
 

previous operations performed by the user or application pro

gram. The state indicator is contained in the User Control
 

Block for the user with which the Workspace Table is associated.
 

The Workspace Table states are as follows:
 

(1) 	The Workspace Table is empty.
 

(2) 	The Workspace Table is not empty and contains data
 

from the data base to which the user is currently
 

attached.
 

(3) 	The Workspace Table is not empty and contains data
 

from the data base to which the user was previously
 

attached.
 

Data are placed into the Workspace Table as a result of a
 

SELECT command. The SELECT command can be issued by an inter

active user or an application program and retrieves data from
 

one or more tables. The SELECT command is discussed in subse

quent sections. When a SELECT command is issued, a Domain Ex

tension is created in main storage for the user's Workspace Table
 

and is linked to the Relation Control Block. The entries in the
 

Domain Extension correspond to the data fields specified in the
 

SELECT command. Each data field must exist in the Data Dictionary
 

associated with the data base to which the user or application
 

program is attached when the SELECT command is issued.
 

As a result of the execution of a SELECT command, records
 

are retrieved which meet the conditions stated in the WHERE
 

clause, or its application program equivalent, and are stored
 

in the Workspace Table. The records will contain only the
 

data fields specified in the SELECT command. The resulting
 

Workspace Table is a sequential table. Thus, there are no super

structures associated with it. The contents of the Workspace
 

Table may be displayed or inserted in a permanent table or,
 

in the case of an application program, retrieved sequentially.
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The,Workspace Table may be referenced in subsequent SELECT
 
commands. Any Workspace Table which exists when a SELECT command
 

is executed is always replaced by the new Workspace Table.
 

If a Workspace Table is created by a user or application
 
program while attached to one data base, data base A, and
 
the user or application program attaches to another data base,
 
data base B, the Workspace Table created from data base A con
tinues to exist and is accessible to the user or application
 
program. Therefore, the Workspace Table can be used to transfer
 
data from one data base to another.
 

3.2:2 
 Access from a Remote Terminal
 

A remote terminal can be any remote transmitting and receiv

ing device which is supported by the telecommunications monitor
 
that performs the message handling for the Integrated Data
 
Base Management System. Remote terminal access to the system
 
is via a simple, yet powerful, interactive command language.
 
Commands in the interactive command language are logically
 
grouped into five categories which reflect the functions per
formed by the commands therein. Each command is identified
 

by a key word usually followed by one or more clauses.
 

When processing interactive commands, the system will treat
 
each line entered from a remote terminal, as a message. If,
 
during the syntactic analysis of a message, the system deter
mines that the message does not contain a complete command, the
 
system will suspend processing of the command and await 
a con
tinuation in the next message received from the terminal. If
 

the next message received from the terminal is not the expected
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continuation but is a new command, the partially processed com

mand will be aborted and the new command will not be processed.
 

A diagnostic message will be returned to the originating terminal
 

notifying the user of the action taken.
 

The five categories of commands are described briefly below.
 

A brief description of the function performed by each command
 

is included. A more extensive description of each command,
 

including command syntax, is contained in Section 4.
 

3.2.2.1 Utility Commands
 

Utility commands provide the user with general support
 

functions which include connecting to and disconnecting from
 

the Integrated Data Base Management System, designating a
 

data base for processing, browsing through data bases,
 

specifying alias names for tables, changing passwords and
 

using the menu feature. These commands are available to the
 

user community without restriction.
 

The utility commands include:
 

ENTER - Connect a user to the Integrated Data 
Base Management System. 

EXIT - Disconnect a user from the Integrated Data 
Base Management System. 

DESCRIBE - Display a textual description of the con
tents of data bases, tables and fields. 

ATTACH - Indicate a user's intent to process informa
tion in a particular data base. 

USE - Establish a one character alias name for 

a table. 

PASSWORD - Change a password. 

MENU - Display a list of the available interactive
 
commands or specify the mode of interactive
 
processing to be used.
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3.2.2.2 Data Definition Commands
 

Data definition commands provide the user with the capa
bility of dynamically defining and altering the structure of
 
data bases, tables and fields managed by the Integrated Data
 
Base Management System. 
 Also, the user can dynamically con
trol the superstructures imposed on tables within a data base
 
that facilitate rapid access to information. Use of these
 
commands is restricted to the owner of the data base, table or
 
field being referenced.
 

The data definition commands include:
 

DEFINE - Identify a new data base, table, field, 
user or group to the Integrated Data Base 
Management System. 

REMOVE - Remove a data base, table, field, user or group from the Integrated Data Base Manage
ment System. 

EXPAND - Add new data fields to an existing table.
 
INVERT - Create the required indices such that
 

an inverted superstructure is placed on
 
specified fields in a table.
 

INDEX - Create a hierarchical B-tree superstructure
 
on specified fields in a table.
 

DROPINDEX - Remove both hierarchical B-tree and in
verted superstructures from specified
 
fields in a table.
 

3.2.2.3 Administrative Commands
 

Administrative commands provide the user with control over
 
the state and accessibility of data bases under his purview.
 
Using administrative commands, users can be added to or removed
 
from groups and authorization for users to perform certain
 
operations on data can be granted or revoked. 
Use of these
 
commands is restricted to the owner of the data referenced
 
by the command or the Data Base Administrator.
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The administrative commands include:
 

GRANT - Authorize individual users, groups or
 
the entire user community the right to perform
 
data manipulation operations on tables.
 

REVOKE - Cancel previously granted authorizations.
 

INCLUDE - Add a user to a group
 

EXCLUDE - Remove a user from a group
 

3.2.2.4 Data Manipulation Commands
 

Data manipulation commands provide the user with access to
 
records within the relational tables managed by the Integrated
 
Data Base Management System. Using data manipulation commands,
 

data can be retrieved from tables based on field values within
 
each record, new records can be inserted in tables, records
 
can be deleted from tables, fields within records can be
 
modified and data can be displayed or printed. Use of
 
these commands can be restricted by the owner of each table to
 
a specified subset of the user community.
 

The data manipulation commands include:
 

SELECT - Locate records in one or more tables which
 
satisfy a specified set of conditions.
 

INSERT - Add one or more records to a table.
 

DELETE - Remove one or more records from a table.
 
UPDATE - Modify fields in one or more records in a
 

table.
 
DISPLAY - Display fields from selected records at a
 

remote terminal.
 
PRINT - Print fields from selected records on a
 

hardcopy device.
 

3.2.2.5 Data File Commands
 

Data file commands provide the user with the capability
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of controlling the Non-Relational Data Base. Using data file
 

commands, new data files can be entered into the Non-Relational
 

Data Base and existing data files can be removed from it. Data
 

Files that reside off-line on magnetic tape can be copied to an
 

on-line file on a direct access device. Likewise, data files
 

residing on-line can be copied to an off-line file. Use of
 

these commands may be restricted to the Data Base Administrator.
 

The data file commands include:
 

CATALOG - Enter a data file into the Non-Relational
 
Data Base.
 

UNCATALOG - Remove a data file from the Non-Relational
 
Data Base.
 

LOAD - Copy an off-line data file to an on-line
 
direct access device and convert the data
 
file to a system standard format, if
 
necessary.
 

UNLOAD - Copy an on-line data file to an off-line
 
-magnetic tape.
 

COPY - Transform non-relational data files to
 
tabular form and relational tables to
 
data file format.
 

PERFORM - Invoke a procedure from the Integrated
 
Data Base Management System library to
 
process data files.
 

KEEP - Mark a temporary on-line copy of a data
 
file as permanent..
 

SCRATCH - Purge an on-line copy of a data file.
 

3.2.3 Access Via the Batch Command Reader
 

The Batch Command Reader refers to a reader task which places
 

card images read from a system card reader into a data set for 
re

trieval by the Interactive Command Input Processor. Commands from
 

the Batch Command Reader will be treated similarly to those from a remote
 

terminal. The Remote Terminal Communications List will contain an en

try for commands entered via the Batch Command Reader. 
All interactive
 

commands,except the MENU command which is described in Section 4,are
 

valid for entry via the Batch Command Reader. Syntax checking of commands
 

from the Batch Command Reader is the same as that for commands entered 
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interactively from a remote terminal. Any output resulting from
 

the processing of a command entered through the system card reader
 

is directed to a line printer.
 

Although any interactive command can be entered on cards
 

via the Batch Command Reader, the primary use of card input
 

will, most probably, be the entry of commands whose processing
 

time exceeds that which a user would want to spend at a remote
 

terminal. These commands might include the COPY command where
 

the data file or table being copied is large, the INVERT or
 

INDEX command to create superstructures on existing tables
 

containing a large number of records and the LOAD or UNLOAD
 

Using
commands where the data file being moved is also large. 


the Batch Command Reader facility, the user can punch the
 

commands on cards in the same format as they would be entered
 

on a remote terminal. The first card in the command input
 

stream must be an ENTER command just as in an interactive
 

session. The command input stream should be terminated with
 

an EXIT command; however, an end-of-file card will cause an
 

EXIT command to be placed on the data set being created if one
 

was not present in the card deck.
 

The implementation of the Batch Command Reader facility
 

will be operating system dependent. Some operating systems
 

may provide this capability with little or no additional de

velopment. Others may require special software to be written.
 

On some systems, it may be impossible to implement this feature.
 

Thus, the operating system on which the Integrated Data Base
 

Management System is implemented will determine the feasibility
 

of including the Batch Command Reader facility.
 

3.2.4 Access from an Application Program
 

The Integrated Data Base Management System is accessed from
 

an application program using the Application Program Command
 

Language. The Application Program Command Language is a language
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which the 	programmer uses to cause information .to be trans
ferred between an application program and the Integrated Data
 
Base Management System. The command language is not a complete
 

language by itself. It relies on a host language to provide a
 

framework 	for it and to provide the procedural capabilities re

required to manipulate data.
 

The Application Program Command Language consists of a set
 
of CALL statements or its equivalent which are incorporated into
 

a procedural host language program. 
The command language may be
 

used with any host language (e.g., FORTRAN, COBOL, PL--l, assembler
 

language)-that supports a CALL statement. 
 The subroutine name
 

used in each CALL statement which accesses the Integrated Data
 

Base Management System will be the same. The command to be ex

ecuted will be defined by the first argument in the CALL state

ment argument list. For example:
 

CALL IDBMS('DELETE',...)
 

where: 	 IDBMS is the common subroutine name
 

DELETE is the command to be executed.
 

The execution of the CALL to the subroutine, IDBMS, will cause
 

control to be transferred to the Application Program Communication
 

Module, described in Section 9. The remainder of the argument
 
list will contain parameters which are relevant to the command
 

to be executed.
 

The Application Program Command Language contains a set
 

of commands for performing operations on tables and.a set of
 

commands for performing operations on data files.. The appli
cation program commands that reference tabular data can in

clude those commands that were specified for interactive users.
 

It may be desirable to omit certain interactive commands from
 

the Application Program Command Language, such 
as those in
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the data definition category and, perhaps, some others; thus
 

preventing application programs from creating and removing
 

data bases, tables and fields and, perhaps, granting and
 

revoking access rights. However, nothing in the system design
 

would prevent these commands from being included in the
 

Application Program Command Language.
 

As in the interactive command language, a SELECT command
 

can be issued by an application program. The SELECT command
 

will cause records to be placed in the Workspace Table associated
 

with the application program, but it will not cause records to
 

be transferred to the application program. An additional command,
 

FETCH, is available to retrieve records serially from the Workspace
 

table. If the Workspace Table is empty when the workspace
 

retrieval command is issued, a status code so indicating will
 

be returned to the application program. Otherwise, the system
 

maintains a logical pointer, referred to as a cursor, which
 

moves through the Workspace Table as records are accessed.
 

The execution of a SELECT command causes the cursor to be 
set
 

to the first record in the Workspace Table. The initial
 

occurrence of the workspace retrieval command causes 
data to be
 

retrieved from the first record in the Workspace Table and the
 

cursor to be moved to the next record in the table. Each sub

sequent occurrence of the workspace retrieval command causes
 

data to be retrieved from the record to which the cursor points
 

and the cursor to be moved to the next record. When the
 

last record in the Workspace Table is accessed, the cursor is
 

set to indicate that the end of the table has been encountered.
 

When the next workspace retrieval command is issued, a status
 

code will be returned indicating an end-of-table condition
 

has occurred.
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3.2.4.1 Data Independence Within An Application Program
 

One of the important concepts for application programs
 

is that of data independence. That is, the separation of the
 

description of data maintained by the Integrated Data Base
 

Management System from the application programs that process
 

the data. This allows an application program to be insulated
 

to a certain extent from changes to the data structure. Data
 

independence within an application program is established at
 

the data field level for tabular data. A data field represents
 

a column within a table. Each command in an application program
 

which initiates data transfer must specify, by name, the data
 

fields to be transferred. The order of transfer is inferred
 

from the order of the data field names in the argument
 

list in the application program command. During retrieval, the
 

data field names- are used to extract data field values from
 

records in tables. During update, the data field names
 

are used to place data into records.
 

When accessing tabular data, an application program does
 

not concern itself with record formats. The system uses
 

information from the appropriate control structures to de

termine where the data fields specified in the data field
 

name list are located in a record. Thus, the order of data
 

fields in a table is immaterial to an application program.
 

Therefore, data fields can be repositioned in a table or data
 

fields not used by an application program can be added or de

leted from a table without modifying or recompiling the
 

application program. Also, data fields can be transferred
 

between an application program and a table in any sequence
 

without regard to their relative position within the actual
 

table.
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3.3 The Data Base Administrator
 

The administration of the Integrated Data Base Management
 

System is an important function if the advantages of data base
 

technology are to be fully exploited. The Data Base
 

Administrator provides the coordination, perspective and
 

administration of the system by exercising specific responsi

bilities. These responsibilities include the definition of
 

system parameters, controlling the user community, controlling
 

access to tables in the Global Data Base, the definition of
 

directory tables, the definition of new tables in the Global
 

Data Base and user education and assistance.
 

The Data Base Administrator will be responsible for specify

ing system parameters which are submitted to the System
 

Generation Program during the initial system generation. Also,
 

the Data Base Administrator would have the responsibility for
 

providing guidelines to computer operators for the daily opera

tion of the system. These would include any system parameters
 

to be specified when the system is started each day and recovery
 

procedures to be followed should the Integrated Data Base
 

Management System malfunction in some manner or terminate pro

cessing altogether.
 

The responsibility for entering and removing users from
 

the system rests solely with the Data Base Administrator. To
 

control the user community, two privileged commands are avail

able only to the Data Base Administrator. it is envisioned
 

that a user wishing to gain access to the facilities of the
 

Integrated Data Base Management System would submit a request
 

to the Data Base Administrator who, upon approval of the request,
 

would enter the new user into the system using the privileged
 

command, DEFINE USER. A user-id and password would be speci

fied for the new user in the command. To delete a user from the
 

system, the Data Base Administrator would use the privileged
 

command, REMOVE USER, specifying the appropriate user-id.
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The Data Base Administrator, in conjunction with cognizant
 

users, will define the format of new directory tables to be
 

entered into the System Directory in the Global Data Base.
 

Once the format has been defined, the Data Base Administrator
 

will create the new directory table using the DEFINE DIRECTORY
 

TABLE command. Since the DIRECTORY option of the DEFINE
 

TABLE command is valid only for tables being added to the
 

Global Data Base and since only the Data Base Administrator
 

can add new tables to the Global Data Base, only the Data Base
 

Administrator can add new directory tables to the System
 

Directory. In addition to directory tables, other, non-direc

tory, tables may be added to the Global Data Base by the Data Base
 

Administrator at any time. These tables would probably contain
 

information that is of general interest to the user community.
 

Since the Date Base Administrator is the owner of the tables con

tained within the Global Data Base, access to these Tables is con

.trolledby the Data Base Administrator. As with tables in any data
 

base maintained by the system, the GRANT and REVOKE commands
 

must be used by the Data Base Administrator to control access
 

to tables in the Global Data Base, including directory tables.
 

One of the primary responsibilities of the Data Base
 

Administrator is to provide education and assistance to the
 

users of the Integrated Data Base Management System. While
 

it is difficult to specify, at this time, the manner in which
 

these responsibilities should be carried out, some comments
 

can be made. The Data Base Administrator or members of his
 

staff could provide educational seminars for the user com

munity. These could range from introductory seminars for new
 

or potential users to seminars covering advanced concepts for
 

more knowledeable users. The Data Base Administrator-might
 

distribute, periodically, a newsletter containing timely
 

information of interest to the user community. Another area
 

in which the Data Base Administrator must play a key role
 

involves assisting users in entering new types of data into
 

the Non-Relational Data Base. This requires the definition
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of one or more directory tables for the new data type, as
 

described above, and either writing or assisting a user in
 

writing a data file input module to process the new data type.
 

3.4 The User Community
 

The term "user community" refers to all valid users of the
 

Integrated Data Base Management System except the Data Base
 

Administrator. A valid user of the system is one for which
 

a record exists in the SYSUSER system table. A unique user

id and a password, which is not necessarily unique, are
 

associated with each user. Additionally, a user may be
 

included in a named group of users who share common access
 

rights. Certain privileged commands, which are specified in
 

the following subsections, allow the Data Base Administrator to
 

control the user community by inserting and deleting records in
 

the SYSUSER table.
 

3.4.1 Defining a New User to the System
 

A potential user cannot connect to the Integrated Data
 

Base Management System until that user has been defined to the
 

system by the Data Base Administrator. Prior to defining the
 

new user to the system, a unique user-id must be assigned to
 

the user by the Data Base Administrator. A password, which
 

does not have to be unique, must be selected by the user or
 

the Data Base Administrator. After assigning the user-id
 

and password to the new user, the Data Base Administrator uses
 

the DEFINE command with the USER option to identify the new
 

user to the system. This command is a privileged command and
 

will be accepted only from the Data Base Administrator.
 

Additionally, the DEFINE USER command may specify one or more
 

groups in which the new user is to be included for the purpose
 

of sharing common access rights with other users. The concept
 

of group access rights is described in the following subsection.
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The execution of the DEFINE command with the USER option
 

causes a record to be inserted into the SYSUSER system table.
 

If one or more groups in which the user is to be included has
 

been specified in the command, corresponding records will be
 

inserted into the SYSGROUP system table. After the DEFINE
 

USER command has been successfully processed, the new user
 

can connect immediately to the Integrated Data Base Management
 

System.
 

3.4.2 Defining a New Group to the System
 

Users can be grouped together for the purpose of sharing
 

common access rights. Before a user can be included in a
 

group, the group must be identified to the system. This is
 

accomplished using a DEFINE command with the GROUP option.
 

The DEFINE GROUP command specifies the name of the group, which
 

must be unique among group names already known to the system.
 

This command is a privileged command and can be issued only by
 

the Data Base Administrator.
 

The execution of the DEFINE command with the GROUP option
 
causes a record to be inserted into the SYSGROUP system table.
 

At that time, the group will be empty; that is, the group will
 

contain no users. Even though the group is empty, access rights
 

can be granted to the group as described in a subsequent sub

section. After successful completion of a DEFINE GROUP command,
 

new or existing users can be included in the group as described
 

in the following subsection.
 

3.4.3 Controlling Group Membership
 

Essentially, groups are formed to facilitate the granting
 

and revoking of access rights to tables. As stated previously,
 
all users in a group have common access rights to a specific
 

set of tables. Users within a group may have additional
 

access rights which have been granted to them individually.
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Also-, a user may not be a member of any group or may be a
 

member of several groups.
 

A user can be included in a group in two ways. A new
 

user can be included in one or more groups via the DEFINE
 

USER command when he is initially defined to the system. An
 

existing user can be included in one or more groups via the
 

INCLUDE command. The INCLUDE command is a privileged command
 

and can be issued only by the Data Base Administrator. When
 

a user is included in a group, a record is inserted in the
 

SYSGROUP system table.
 

A user can be removed from one or more groups of which he
 

is a member via the EXCLUDE command. Like the INCLUDE command,
 

the EXCLUDE command is a privileged command and can be issued
 

only by the Data Base Administrator. When a user is removed
 

from a group, a record is deleted from-the SYSGROUP system
 

table.
 

3.4.4 Removing a Group from the System
 

An existing group can be removed from the system using
 

the REMOVE command with the GROUP option. The group to be
 

removed must be named in the REMOVE GROUP command. This com

mand does not remove users within the group from the system,
 

but simply removes any access rights granted to users as a
 

result of their membership in the group. The group may be
 

empty or it may contain one or more users as members. Also,
 

the group may have zero or more authorization records,
 

representing access rights granted to the group, stored in the
 

SYSAUTH system table. The granting and revoking of access
 

rights to groups and to individual users is discussed in a
 

subsequent subsection.
 

The execution of the REMOVE command with the GROUP option
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causes all records corresponding to members of the group to
 
be deleted from the SYSGROUP system table. Additionally,
 

all authorization records that are associated with the group
 
being removed are deleted from the SYSAUTH system table.
 

3.4.5 Removing a User from the System
 

An existing user can be removed from the system using the
 
REMOVE command with the USER option. This command is a
 
privileged command and can be issued only by the Data Base
 
Administrator. 
 The user-id of the user to be removed must
 

be specified in the command. 
 After removal, the user can no
 
longer connect to the Integrated Data Base Management System.
 
Also, the user will be removed from any groups of which he is
 
a member and any authorizations granted to the user, as 
an
 
individual, will be revoked. 
 All data bases owned by the
 
user will remain intact. They may be removed or their
 

ownership transferred to another user by the Data Base
 

Administrator.
 

The execution of the REMOVE command with the USER option
 
causes the record corresponding to the user being removed to
 
be deleted'from the SYSUSER system table. 
 All records con
taining the user-id of the user are deleted from the SYSGROUP
 

system table. Also, all authorization records associated
 
directly with the user are deleted from the SYSAUTH system
 

table.
 

3.4.6 Connecting to and Disconnecting from the System
 

3.4.6.1 An Interactive User
 

The first action an interactive user of the Integrated
 
Data Base Management System must take is to connect to the system
 
using the ENTER command. A user-id and password must be
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specified in the ENTER command. Only one user can be connected
 

interactively to the system under a given user-id at any one
 

time. Thus, if a user is already connected to the system under
 

the same user-id as is specified in an ENTER command, the command
 

will be rejected and the user will not be connected to the
 

system. The same action is taken by the system if the pass

word is not valid for the user-id specified in the ENTER
 

command. No other commands can be issued by a user until
 

a valid ENTER command has been processed for that user.
 

When an ENTER command is received, a check is made to determine
 

whether or not a user is already connected interactively to the
 

system under the user-id specified in the command. If not,
 

the user-id and password are verified. To accomplish this,
 

an attempt is made to retrieve a record, which is a User
 

Control Block, from the SYSUSER system table that contains the
 

user-id specified in the command. If such a record is located

it is read into main storage and the password contained in
 

the User Control Block is compared with the password specified
 

in the command. If they are the same, all authorization
 

records associated with the individual user are retrieved from
 

the SYSAUTH system table and are stored in the Authorization
 

Extension to the User Control Block in main storage. All
 

group records for groups of which the user is a member, if
 

any, are retrieved from the SYSGROUP system table and are
 

stored in the Group Extension to the User Control Block in
 

main storage. Finally, all authorization records for groups
 

to which the user belongs are retrieved from the SYSAUTH system
 

table and are stored in the group Authorization Extension in
 

main storage unless they are already resident therein. Then
 

control is returned to the user and he is now connected to the
 

system and attached to the Global Data Base. The concept of
 

being attached to a data base for processing is discussed in
 

a subsequent subsection.
 

When a user has completed an interactive session and wishes
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to disconnect from the system, he must 
issue an EXIT command.
 
During the execution of the EXIT command, all operations are
 
performed to terminate processing for the user issuing the
 
command. 
 Main storage used for control structures which are
 

associated only with the user being disconnected, such as the
 

User Control Block, Authorization Extension and Group Extension,
 
is freed. Additional control structures may be removed from
 
main storage if they are not required to support other users
 
connected to the system. 
 Any data contained in the user's
 

Workspace Table when he disconnects from the system will be
 

lost.
 

3.4.6.2 An Application Program
 

Every application program that uses the services of the
 
Integrated Data Base Management System must have the
 
Application Program Communication Module linked to it. The
 
Application Program Communication Module has a single entry
 
point and is entered each time that entry point is referenced
 

in a CALL statement in the application program. The command
 

to be executed is identified by the first argument in the
 
calling sequence. The Application Program Communication Module
 
performs the initial processing of commands prior to invoking
 
the Cross-Boundary System Routine to communicate with the
 

Integrated Data Base Management System.
 

Prior to executing any other CALL statement referencing
 

the Application Program Communication Module, a CALL statement
 
must be issued to the Application Program Communication Module
 

containing the ENTER command as 
its first argument.
 
Additional arguments in the calling sequence must contain the
 

user-id and password of the user running the application
 

program. 
 This causes the access rights associated with this
 
execution of the application program to be those of the user
 
running it. The system places no restrictions on the number
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of application programs that can be run simultaneously by a
 

single user and a user can be connected to the system inter

actively while one or more of his application programs are
 

executing. Any commands issued by an application program to
 

access the Integrated Data Base Management System that are
 
issued prior to a successful ENTER command will be rejected
 

with the appropriate status code returned to the application
 

program.
 

When an ENTER command is received from an application
 

program, an attempt is made to retrieve a record, which is a
 
User Control Block, from the SYSUSER system table that contains
 

the user-id specified in the calling sequence. If such a
 
record is located, it is read into main storage and the pass
word contained in the User Control Block is compared with the
 

password specified in the calling sequence. If they are the
 
same, the authorization records, group records, if any, and
 

their associated authorization records are processed as des
cribed above for an interactive user. Finally, a character
 

is appended to the user-id in the User Control Block such that
 
the user-id is unique among those of both interactive users
 
and application programs currently connected to the system,
 

thereby permitting simultaneous access by the same user both.
 
interactively and via one or more application programs.
 

3.5 Relational Data Base Control
 

Using the Integrated Data Base Management System, a user
 

can dynamically construct, extend, manipulate and destroy
 
relational data bases to meet his changing requirements.
 
Also, a user has complete control over which users in the
 
user community can access his data bases and in what mode.
 
The following subsections discuss the commands available to
 

manage relational data bases. There is nothing inherent in
 
the system design which would prevent all of these commands
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from being issued by an interactive user or an application
 

program. However, if desired, certain commands could be
 
limited to interactive or application program usage, only.
 

3.5.1 Defining a Data Base
 

To define a new relational data base, a user simply issues
 
a DEFINE command with the DATABASE option. The name of the
 
new data base must be included in the command and must be unique
 
among data base names already known to the system. After
 

successful processing of the DEFINE DATABASE command, a new
relational data base will exist that is owned by the user
 

issuing the command. However, the data base will be empty;
 

that is, it will contain no tables. 
 The user will be attached
 

to the newly defined data'base.
 

The execution of the DEFINE command with the DATABASE option
 
causes a Data Base Control Block to be constructed for the new
 

data base. 
 The Data Base Control Block is inserted, as a
 

record, in the SYSDB system table.
 

3.5.2 Specifying a Data Base for Processing
 

Every interactive user and application program connected
 

to the Integrated Data Base Management System always has a
 
relational data base to which any data manipulation command
 

or other data related command will be directed. This data
 
base is referred to as the user's primary data base and the
 
user is said to be attached to his primary data base. More
 

than one user can be attached to the same data base simultaneously.
 

As stated previously, when a user connects to the system,
 

he is automatically attached to the Global Data Base. When an
 
interactive user issues a DEFINE DATABASE command, he becomes
 
attached to the newly created data base. 
During the course of an
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interactive session or 
the execution of an application program,
 

it may become necessary to access an existing data base
 

other than the Global Data Base. To accomplish this, the user
 

simply issues an ATTACH command specifying the name of an exist

ing data base, which may be the Global Data Base. After
 

processing of the ATTACH command, the data base named in 
the
 
command becomes the user's primary data base. 
All subsequent
 
data base related commands will reference that data base until
 
the user issues another ATTACH command. If no other users were
 
attached to the data base, the system will load all control
 
blocks and extensions associated with the data base from the
 

system tables.
 

At times,it is necessary for a user to transfer data from
 
one data base to another. Two facilities within the system
 

support this requirement. The first is the existance of a
 
user's Workspace Table which has been discussed previously.
 

The second is the concept of a secondary data base. A user's
 
secondary data base is simply the data base to which the user
 
was attached prior to attaching to his primary data base.
 

The system always retains the identity of each user's secondary
 
data base. If the user's Workspace Table contains data from
 
his primary data base and he issues an ATTACH command, the
 
contents of his Workspace Table remain intact. 
The Workspace
 
Table will contain data from what is then the user's secondary
 
data base. The contents of the Workspace Table can be placed
 
in the primary data base, thus allowing the transfer of data
 

from the secondary data base to the primary data base. 
 If
 
the user's Workspace Table contains data from his secondary
 

data base and he issues an ATTACH command, the contents of the
 
Workspace Table will be lost. 
 Figure 3-1 illustrates the use
 

of the ATTACH command, the concepts of primary and secondary
 

data bases and the handling of the contents of a user's
 

Workspace Table.
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3.5.3 Defining a Data Field
 

Each data field to be used within a table must be defined
 
prior to its first appearance in a table definition or expansion
 
command. A data field will be local to 
the data base to which
 

the user is attached when the 'data field is defined. A data
 
field can appear in zero or more tables in the data base with
 
which it is associated.
 

To define a new data field, a user issues a DEFINE command
 
with the FIELD option. The name of the new data field must
 
be included in the command and must be unique among data field
 
names already defined for the data base with which it 
is
 
associated. Additionally, a description of the data field
 
consisting of the data type, field length where not implied by
 
the data type and units, where applicable, must be included
 
in the command. After successful processing of the DEFINE
 
FIELDcommand, a new data field will exist in the data base
 

to which the user was attached when issuing the command. The
 
new data field can now be used in the definition of new tables
 

or expansion of existing tables in the data base.
 

The execution of the DEFINE command with the FIELD option
 

causes 
a Data Dictionary entry to be constructed for the new
 
data field. The Data Dictionary entry is stored in the Data
 

Dictionary in main storage that is associated with the data
 
base in which the -new 
data field is contained. Also, the
 
Data Dictionary entry is inserted, as a record, in the SYSDD
 

system table.
 

3.5.4- Defining a Table
 

To define a new table, a user issues a DEFINE command with
 
the TABLE option. 
 The name of the table and the data fields
 
which constitute the table must be included in the command.
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The table name must be unique among table names already in the
 

data base in which the table is contained. The data fields
 
must have been previously defined within the context of the
 
data base to which the table is being added. That is, the
 
Data Dictionary associated with the data base must contain an
 
entry corresponding to each of the data fields. 
 After success
ful processing of the DEFINE TABLE command, a new table will
 
be contained in the data base to which the user was attached
 
when the command was issued. 
 A new table can be added to an
 
empty data 
base or one which already contains one or more
 
tables. 
 The user issuing the DEFINE TABLE command will be
 
the owner of the new table. The table will be a sequential
 
table in that.no superstructures will exist for it. 
 The
 
creation of superstructures is discussed in a subsequent sub
section. The new table will be empty; 
 that is, it will
 
contain no records.
 

The execution of the DEFINE command with the TABLE option
 
causes a Relation Control Block to be constructed for the
 
new table. Also, a Domain Extension containing one entry for
 
each data field in the table is constructed and linked to the
 
Relational Control Block. 
 The Relation Control Block is
 
placed on the chain of Relation Control Blocks for tables con
tained in the data base. 
 The Relation Control Block is inserted,
 
as a record, in the SYSREL system table. 
 Each of the Domain
 
Extension entries are inserted, as records, in the SYSDOM
 
system table.
 

3.5.5 Expanding a Table
 

To append data fields to an existing table, a user simply
 
issues an EXPAND command. The name-of the table to be expanded
 
and the new data fields to be added to the table must be
 
included in the command. The table specified in the EXPAND
 
command must already exist in the data base to which the user
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is attached when the command is issued. The data fields
 
must have been previously defined within the context of the
 

data base containing the table. That is, the Data Dictionary
 
associated with the data base must contain an entry corresponding
 

to each of the data fields. After successful processing of
 

the EXPAND command, the added data fields will be logically
 

appended to the right side of the table in the order specified
 

in the command. Superstructures can be created for the added
 

data fields either individually or in combination with original
 

data fields or other expansion data fields.
 

The execution of the EXPAND command causes a Domain
 

Extension entry to be created for each of the added data
 

fields. The Domain Extension entries are stored in the
 

Domain Extension in main storage that is associated with the
 

expanded table. Each of the new Domain Extension entries is
 

stored, as a record, in the SYSDOM system table. Existing
 

records, if-any, in the expanded table are not modified.
 

A null value will be supplied by the system whenever one of the
 
added data fields is retrieved from a record that existed
 

prior to the table expansion, unless an actual value has been
 

stored in the added data field during an update operation:
 

Added data fields will be physically present in records
 

updated or inserted subsequent to the table expansion.
 

3.5.6 Creating and Dropping Superstructures for Tables
 

As stated previously, a newly defined table is considered
 

to be a sequential table. It will remain as a sequential
 

table until one or more indices, referred to as superstructures,
 

are created for it. Superstructures may be created when a
 

table is empty or after it contains records. The creation of
 

superstructures is more efficient when the table is empty since
 

the system need modify only the table's Relation Control Block
 

and Domain Extension. The creation of superstructures after
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records have been inserted into a table requires not only the
 
modification of the Relation Control Block and Domain Extension,
 
but the reading of eah record in the table and the writing
 
of records which constitute the specified superstructure.-


Two types of superstructures can be created for a table:
 
an inverted index and a B-tree index. 
Both types can exist
 
for a single table. To create a superstructure for a table
 
a user issues an IhVERT or an INDEX command. An INVERT
 
command creates an inverted 
 index, while an INDEX command 
creates a B-tree index. Both commands require the name of
 
the table for which the superstructure is being created and
 
one 
or more key fields to be specified. The table named in
 
the command must already exist in the data base to which the
 
user is attached when the command is issued. 
Each key field
 
must contain the name of 
one or more data fields from the
 
table and represents an entity for which values will be main
tained in the appropriate type of superstructure.
 

If a key field consists of a combination of two or'more
 
data fields, the key field must be given a unique name.
 
A combination key field is specified in the form:
 
key-name=(field-name-l,field-name-2[,field-namen] 
.. ).
 
The key name must not duplicate any data field name in the
 
table for which the superstructure is being created nor any
 
other key name already defined for that table. 
 The data
 
fields which constitute a combination key field need not be
 
contiguous in the table nor do they have to be specified in
 
the same order in the key field as in the table. A data field
 
which has a superstructure created for it 
can be used in a
 
combination key field. Also, 
a data field may be used in more
 
than one combination key field. If 
a key field consists of
 
only one data field, no key name is required and the data
 
field name is used directly in the command. A single data
 
field can not have both a B-tree index and an inverted index
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created for it, but it can participate in a combination key
 
field for both types of superstructures.
 

The execution of the INVERT and INDEX commands causes
 

similar actions to take place. For any single data fields
 
which are declared to be key fields, the corresponding
 

Domain Extension entries are modified in main storage and
 

are updated in the SYSDOM system table to reflect the
 
existence of the specified superstructure. For any combination
 

key fields, new entries are created in an auxiliary section
 

of the Domain Extension in main storage and each new entry
 

is inserted, as a record, in the SYSDOM system table. If
 

the table for which the superstructures are being created
 

is not empty, each record in the table is retrieved and the
 

proper superstructure is created for each of the key fields.
 

To remove existing superstructures from a table, the user
 

simply issues the DROPINDEX command. The name of the table
 

with which the superstructures are associated and the names
 

of.the key fields which identify the particular superstructures
 

to be dropped must be included in the command. The DROPINDEX
 

command removes both B-tree and Inverted indices from a table
 

for the key fields specified in the command. No ambiguities
 

arrise since the key-name assigned to a combination key field
 

is unique within a table and is associated with either a
 
B-tree or Inverted index and a single data field can have only
 

one type of superstructure created on it.
 

The execution of a DROPINDEX command causes the follow

ing action to be taken. For any single data field specified
 

in the command, the corresponding entry in the primary section
 

of the Domain Extension is modified to reflect the removal
 

of the superstructure from that data field and the associated
 

record in the SYSDOM system table is updated. For any
 

combination key fields specified in the command, the entries
 

3-30
 



associated with that key-field in the auxiliary section of
 
the Domain Extension are removed from main storage and the
 

corresponding records are deleted from the SYSDOM system
 

table. If the superstructures to be dropped are not empty,
 

all pages containing records in those superstructures are
 

returned to the free page list. A superstructure will be
 

empty if the table with which it is associated is empty.
 

3.5.7 Controlling Access to a Table
 

3.5.7.1 Granting Access Rights
 

When a new table is created, the user who created it
 

becomes its owner. Until the owner of a table grants access
 

rights To other users, he is the only member of the user com

munity who can access data in the table. To permit other
 

members of the user community to access the table, the owner
 

issues a GRANT command. The Grant command must contain three
 

pieces of information: the access mode or modes for which

rights are being granted, the name of the table on which the
 
rights are being granted and the individual users or group to
 

which the rights are being granted.
 

A table can be accessed in any one of four access modes.
 

They are: READ, UPDATE, INSERT, DELETE. One or more of the
 

previous key words denoting the mode of access being permitted
 

must be included in the GRANT command. If all of the 
access
 

modes are to be permitted, the access mode list in the GRANT
 

command can be replaced by the key words ALL RIGHTS. Thus,
 

the rights being granted can be restricted to a specific subset
 

of the available access modes or can permit full access to 
a
 

table.
 

The table name specified in the GRANT command identifies
 

the table for-which access rights are being granted. The
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table must be contained within the data base to which the user
 

is attached when the command is issued. As stated previously,
 

the user issuing the GRANT command must be the owner of the table
 

specified in the command, the owner of the data base containing
 

,the table or the Data Base Administrator.
 

The GRANT command must identify, either explicitly or
 

implicitly, the users to whom the rights are being granted.
 

Rights can be granted explicitly to individual users by including
 

their user-ids in the command. Rights can be granted
 

implicitly to a subset of the user community by specifying the
 

key word GROUP followed by a previously defined groUp name
 

in the GRANT command. This will have the effect of granting
 

the specified access rights to all current members of the
 

group. Rights can be granted to the entire user community
 

by specifying the key word PUBLIC instead of a group name or
 

a list of user-ids. This causes the specified access rights
 

to be granted to every user of the Integrated Data Base
 

Management System.
 

The execution of a GRANT command which includes either a
 

group name or individual user-ids will cause one or more
 

authorization records to be inserted or updated in the SYSAUTH
 

system table. If the group, should a group name be specified,
 

or an individual user, should user-ids be specified, already
 

possess some access rights to the table named in the command,
 

the existing authorization record associated with the group or
 

user and the table is updated to reflect the newly granted
 

access rights. If no access rights to the table exist for
 

the group or individual users, an authorization entry is created
 

and inserted,-as a record, in the SYSAUTH system table.
 

The execution of a GRANT command which includes the key
 

word PUBLIC rather than a group name or individual user-ids,
 

will cause one or more flags to be set in the Relation Control
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Block associated with the table named in the command. No
 

authorization records will be inserted or updated in the SYSAUTH
 

system table. The flags set in the Relation Control Block
 
will permit any user to access the table in the modes that have
 

been declared to be PUBLIC without checking the authorizations
 

associated with that user.
 

3.5.7.2 Revoking Access Rights
 

The revocation of existing access rights to a table can be
 

done only by the user who granted the rights or the Data Base
 
Administrator. To revoke access rights granted on a table,
 

the user issues a REVOKE command. The REVOKE command must
 
contain the access modes for which rights are being revoked
 

and the name of the table on which they are being revoked.
 

Additionally,the command can identify the individual users
 

or group from which the rights are being revoked.
 

One or more of the access modes can be included in the
 
REVOKE command or, if rights to all access modes are to be
 
revoked, the key words ALL RIGHTS can replace the access mode
 
list. The table named in a command must be a table in the
 
data base to which the user is attached when the command is
 
issued. Also, the user issuing the REVOKE command must be
 

the current owner of the table.
 

The specification of users, either explicitly or implicitly,
 
from which access rights are to be revoked, is optional in the
 

REVOKE command. If no users are identified in the command,
 
all access rights both public and those granted to groups or
 
individual users, will be revoked for the 
access modes specified
 
in the command. Thus,, the owner of the table will become the
 

only member of the user community who can access the table in
 
those modes. Optionally, the REVOKE command can include
 

individual user-ids identifying users from which acces6 rights
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are to be revoked or can specify the key word GROUP followed by
 

a group name to indicate a group from which access rights are
 

to be revoked or can include the key word PUBLIC. If the key
 

word PUBLIC is included in the REVOKE command, general access
 

to the table by the user community in those modes specified in
 

the command will be inhibited. The access rights associated
 

with the table in those modes will revert to those rights that
 

were previously granted to groups or to individual users and
 

have not since been revoked.
 

The execution of a REVOKE command which includes either a
 

group name or individukl user-ids will cause one or more author

ization records to be deleted from or updated in the SYSAUTH
 

system table. If the group, should a group name be specified,
 

or an individual user, should user-ids be specified, possess
 

access rights to the table named in the command other than
 

those being revoked, the existing authorization record
 

associated with the group or user and the table is updated to
 

reflect the loss of access rights. If no access rights to
 

the table beyond those being revoked exist for the group or
 

individual user, the authorization record is deleted from the
 

SYSAUTH system table.
 

The execution of a REVOKE command which includes the key
 

word PUBLIC rather than a group name or individual user-ids
 

will cause one or more flags to be reset in the Relation
 

Control Block associated with the table named in the command.
 

No authorization records will be deleted from or updated in
 

the SYSAUTH system table. Thus, access to the table in the
 

modes for which public access has been revoked, will be denied'
 

to the user community as a whole, but will still be permitted
 

for users to whom access rights have been granted either
 

individually or as a member of a group.
 

The execution of a REVOKE command which does not contain
 



a clause identifying, either implicitly or explicitly, the
 

users from which rights are to be revoked may cause one or
 

more authorization records to be deleted from or updated in
 

the SYSAUTH system table and one or more flags to be reset in
 

the Relation Control Block associated with the table named in
 

the command. Thus, the actions performed are a combination
 

of those performed when either a group name or individual
 

user-ids is specified or the key word PUBLIC is used in the
 

REVOKE command. This permits the revocation of access rights
 

to the table for the modes specified without requiring the
 

knowledge of those users to whom access has been granted.
 

3.5.8 Manipulating Data in a Table
 

There are several commands available to a user of the
 

Integrated Data Base Management System to manipulate and
 

exhibit tabular data. These commands permit users to in

sert new records into a table, delete or update existing
 

records in a table and retrieve data fields from one or more
 

tables into a Workspace Table. Additionally, commands
 

are available which transfer data from tables to a printer
 

or to a remote terminal for display purposes.
 

Data manipulation commands can be performed without
 

restriction by users upon tables of which they are the
 

current owners. Use of these commands by users other than
 

the owners is controlled by the owner as described in the
 

previous subsection. The access modes, INSERT, UPDATE and
 

DELETE, which can be specified in the GRANT and REVOKE
 

commands control directly a non-owner's ability to perform
 

insertions, modifications and deletions, respectively, on
 

a table. The READ access mode controls a non-owner's ability
 

to retrieve data from a table for the purpose of storing it
 

in a Workspace Table or for printing or remote terminal
 

display. Thus, for example, if a.user who is not the owner
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of a table were granted READ and UPDATE rights to a table,
 

he could retrieve data from the table into his Wqrkspace
 

Table or print or display data from the table and, also,
 

update existing records in the table, but he could not in

sert new records into the table or delete existing records
 

from the table.
 

3.5.8.1 Inserting Records into a Table
 

. To add one or more records to a table, a user issues an
 

INSERT command. The name of the table to which the record
 

or records are to be added must be included in the command.
 

The table must be contained within the data base to which the
 

user is attached when the command is issued. Additionally,
 

the user issuing the command must be the owner of the table or
 

must have been granted the right to insert records into the
 

table.
 

The record or records to be inserted can be specified
 

in one of two ways. Either the data values to be stored
 

in each data field in a new record can be specified expli

citly in the INSERT command or existing records can be
 

retrieved from other tables in the data base and inserted
 

into the table specified in the command. Using either form
 

of the INSERT command, a null value is stored in each data
 

field which is not specified in the command.
 

Each new record is stored in the tabular data storage
 

area on a physical page that has been allocated to the table
 

in which the record has been inserted. All superstructures
 

associated with the table are updated to reflect the ex

istance of the new record.
 

3.5.8.2 Updating Records in a Table
 

To modify one or more records in a table, a user issues
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an UPDATE command.' The name of the table containing the
 

record or records to be modified must be included in the com

mand. The table must be contained within the data base to
 

which the user is attached when the command is issued.
 

Additionally, the user issuing the command must be the owner
 

-of the table or must have been granted the right to update
 

records in the table.
 

The UPDATE command selectively modifies data fields
 

within existing records in a table. Each data field to be 

modified and its new value must be specified as an assignment
 

statement. The new value may be a constant or a function
 

which can be used to compute the new value (e.g., FREQ=42.7
 

or FREQ=I.I*FREQ ). The records to be updated are identified 

in a WHERE clause which specifies the conditions that must
 

be.met by a record for it to be selected for modification.
 

Any superstructures associated with the table that are
 

affected by the modification of one or more records, are
 

updated to reflect the changes in those records.
 

3.5.8.3 Deleting Records from a Table
 

To delete one or more records from a table, a user issues
 

a DELETE command. The name of the table containing the
 

record or records to be deleted must be included in the command.
 

The table must be contained within the data base to which the
 

user is attached when the command is issued. Additionally,
 

the user issuing the command must be the owner of the table or
 

must have been granted the right to delete records from the
 

table.
 

The DELETE command removes entire records from a tabie.
 

The records to be removed are identified in' a WHERE clause
 

which specifies the conditions that must be met by a record
 

for it to be deleted. Any superstructures associated with
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the table that are affected by the deletion of a record, are
 

updated to reflect the removal of that record from the table.
 

3.5.8.4 Retrieving Records from a Table
 

Records can be retreived from a table for any one of three
 

purposes: to create a Workspace Table, to display data fields
 

from the records at a remote terminal or to print data fields
 

from the records. No matter what the purpose, the user issu

ing the command must be the owner of any table from which data
 

is to be retrieved or must have been granted the right to read
 

each such table. A specific data manipulation command is
 

associated with each type of retrieval. These commands are
 

discussed in the following paragraphs.
 

The SELECT command is an exceptionally powerful re

trieval command which provides the capability of retrieving
 

data fields-from one or more tables in a data base to create
 

records in the user's Workspace Table. The SELECT command
 

must include a list of data fields, referred to as the target
 

list, which defines the record format for the Workspace Table.
 

The data field names in the target list may have to be
 

qualified by a table name if data fields from more than one
 

table are to be joined in the resulting Workspace Table
 

(e.g. (TAB1.SC,TAB2.INST,...)). The records to be retrieved
 

are identified in a WHERE clause which specifies the conditions
 

that must be met by a record for it to be selected for
 

retrieval. Only those data fields identified in the target
 

list are extracted from the records that satisfy the WHERE
 

clause.
 

The results of a SELECT command will be zero or more
 

records contained within a sequential table known as the
 

Workspace table. The resulting records in the Workspace
 

Table may contain all or a subset of the data fields from
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a single table or from multiple tables. The records selected
 
to create the Workspace Table may have been retrieved from
 
a single table or from multiple tables. In addition, the
 
contents of a data field in one table can be used to identify
 
records to be retrieved from another table. 
 For example,
 
consider two tables, Tl and T2, both containing data fields,
 
SC, whose values are drawn from the domain of all spacecraft
 
names. The following SELECT command will cause records
 
to be retrieved from table Tl as 
a function of spacecraft
 
names contained in the data field SC in table T2.
 

SELECT (TI.SC,Tl.INST,...)
 

WHERE TI.SC=T2.SC...
 

The current contents of a user's Workspace Table can be
 
referenced in a SELECT command in the same manner as 
any
 
other table. The reserved table name, W , is used to refer
 
to the Workspace Table. After successful execution of a
 
SELECT command, the previous Workspace Table, if any, will
 
be replaced by the new Workspace Table.
 

The DISPLAY command is used to return the contents of
one or more data fields from a single table to a remote
 
terminal. If 
no table is named in the command, the Workspace
 
Table is assumed. If a table is named, it must be the
 
Workspace Table or a table contained within the data base
 
to which the user is attached when the command is issued.
 
When the list of data fields to be displayed is omitted
 
from the command, all data fields in the table are 
displayed.
 
Otherwise, only those data fields named in the list 
are
 
displayed. 
The data values will be displayed in a predefined
 
format unless a format specification is included in the
 

command.
 

The PRINT command is used to print the contents of one
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or more data fields from a single table. The syntax of
 

the PRINT command is exactly the same as that of the DISPLAY
 

command except that a title can be specified in the PRINT
 

command. The title will be printed at the top of the first
 

page in the printed output.
 

3.5.9 Removing a Table
 

An existing table can be removed from the system using
 

the REMOVE command with the TABLE option. The table to be
 

removed must be named in the REMOVE TABLE command. The
 

table must be contained within the data base to which the
 

user is attached when the command is issued. Additionally,
 

the user issuing the command must be the owner of the table
 

being removed, the owner of the data base containing the
 

table or the Data Base Administrator. After successful
 

processing of the REMOVE TABLE command, the table and any
 

associated superstructures will be removed from the system.
 

The execution of the REMOVE command with the TABLE option
 

causes the data records in the table, if any, to be deleted
 

and the pages in the tabular data storage area that contained
 

them to be returned to the free page list. Also, any super

structure records associated with the table are deleted and
 

the pages returned to the free page list. The Relation Con

-trol 
 Block and Domain Extension associated with the table are
 

removed from main storage and the corresponding records are
 

deleted from the SYSREL and SYSDOM system tables, respectivel
 

Finally, any authorization records corresponding to rights
 

granted on the table being removed, are deleted from the
 

SYSAUTH system table.
 

3.5.10 Removing a Data Field
 

An existing data field can be removed from the system
 

using the REMOVE command with the FIELD option. The data
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field to be removed must be named in the REMOVE FIELD
 

command. The data field must be contained in the Data
 

Dictionary associated with the data base to which the user
 

is attached when the command is issued. Additionally, the
 

user issuing the command must be the owner of the data base
 

containing the data field or the Data Base Administrator.
 

Also, a data field can not be removed from a data base if
 

it is currently being used in a table contained in the data
 

base. After successful processing of the REMOVE FIELD
 

command, the description of the data field will be removed
 

from the Data Dictionary and the data field can not be used
 

in the definition of any new tables in the data base.
 

The execution of the REMOVE command with the FIELD
 

option causes the entry for the specified data field to be
 

removed from the appropriate Data Dictionary in main storage.
 

The corresponding Data Dictionary entry record is deleted
 

from the SYSDD system table.
 

3.5.11 Removing a Data Base
 

An existing data base can be removed from-the system
 

using the REMOVE command with the DATABASE option. The
 

data base to be removed must be named in the REMOVE DATABASE
 

command. The user issuing the command must be the owner of
 

the data base being removed or the Data Base Administrator.
 

After successful processing of the REMOVE DATABASE command,
 

the data base and its Data Dictionary, all tables and their
 

superstructures and all authorizations associated with tables
 

in the data base will be removed from the system.
 

The execution of the REMOVE command with the DATABASE
 

option causes the data records in all tables contained with

in the data base to be deleted and the pages that contained
 

them to be returned to the free page list. Also, any super

structure records associated with the tables are deleted
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and the pages returned to the free page list. The Data
 
Base Control Block and the Data Dictionary associated with,
 
the data base as well as the Relation Control Blocks and
 
Domain Extensions associated with the tables in the data
 
base are removed from main storage. The corresponding
 
records are deleted from the SYSDB, SYSDD, SYSREL and SYSDOM
 
system tables. Finally, any authorization records corres
ponding to rights granted or any of the tables in the data
 
base being removed, are deleted from the SYSAUTH system
 

table.
 

3.6 Using the Data File Directory
 

The Data File Directory consists of one or more tables
 
contained within the Global Data Base and provides the user
 
community with the capability of locating data files in the
 
Non-Relational Data Base as a function of their data content.
 
The Data File Directory has no predefined structure. That
 
is, it can contain as many tables as are required to reflect
 
adequately the types of data contained in the Non-Relational Data
 
Base and each of the tables can be defined so as to best des
scribe the particular data files to which it refers. 
 Thus,
 
new directory tables can be defined as 
necessary, existing
 
directory tables can be expanded and obsolete directory tables
 
can be removed from the system.
 

Although each of the tables that constitute the Data File
 
Directory are independent and can be accessed independently,
 
the system maintains sufficient information to relate all
 
directory tables in the Global Data Base such that they can be
 
referred to collectively. Thus, each directory table has a
 
name by which it can be accessed directly while the set of all
 
directory tables can be referred to collectively using the
 
table name SYSDIR.
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Each record in a directory table contains a data identifier
 
corresponding to the data file in the Non-Relational Data Base
 

to which the values of the other data fields in the record
 
pertain. 
 One record in a directory table contains the attributes
 

(such as spacecraft, date, time, latitude, longitude, etc.)
 

that describe the data contained in the data file referenced
 

by the data identifier in the record. Since a single data
 

file may contain several logical subfiles whose attribute
 

values differ (e.g., maps measuring different physical variables
 

such as rainfall rate, cloud cover, etc. in a single data file),
 
more than one record in a directory table can point to the
 

same data file (i.e., contain the same data identifier). For
 
example, consider a data file that contains measurements of
 
several physical variables. If a directory.table which ref

erences that type of data file has only a single data field
 

to indicate physical variable type, multiple records pointing
 

to the data file could be stored in the directory table to
 
reflect the different physical variables measured in the data
 

file.
 

3.6.1 Defining a Directory Table
 

The definition of a new directory table is essentially the
 
same as the definition of any new table with some exceptions
 

noted below. As in the definition of any table, a DEFINE com

mand with the TABLE option is used. However, the key word,
 
DIRECTORY, must precede the TABLE option when a new directory
 

table is being defined. Therefore, the command to define a
 

directory table is DEFINE DIRECTORY TABLE. The command must
 
include the name of the directory table and the data fields in
 

the table. The DEFINE DIRECTORY TABLE command is a privileged
 
command and can be issued only by the Data Base Administrator.
 

Additionally, this command will be.accepted and processed by
 

the system only if the Data Base Administrator is attached to
 

the Global Data Base when it is issued. The table name must
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be unique among table names already in the Global Data Base and
 

the data fields must have been previously defined within the
 

context of the Global Data Base. Unlike other tables, one of
 

the data fields in every directory table must be the data
 

identifier field, DID. Thus, every record in a directory
 

table will point to a data file in the Non-Relational Data
 

Base. Presumably, the other data fields would represent the
 

attributes associated with the type of data (e.g., NIMBUS-G
 
SMMR PARM-30 data or LANDSAT image data) for which the directory
 

table is being created.
 

After successful processing of the DEFINE DIRECTORY TABLE
 
command, a new table will be contained in the Global Data Base.
 

The table will be logically treated by the system as part of
 

the Data File Directory. It will be accessed, along with the
 

other tables, whenever the table name SYSDIR is used in a com

mand. Since the DEFINE DIRECTORY TABLE command can be issued
 

only by the Data Base Administrator, he will be the owner of
 

the new directory table. Subsequently, the Data Base
 

Administrator may change the ownership of a directory table to
 

a member of the user community, thus extending control over
 

the authorization of access rights to that user. It is expected
 

that the right to retrieve data from a directory table will be
 

granted to the entire user community while the right to modify
 
the table will be restricted to a small subset of the user
 

community or to the Data Base Administrator alone.
 

As with any table, a new directory table will be, initially,
 

a sequential table and will be empty. Superstructures can be
 

defined for a directory table while it is empty or after records
 

have been entered into the table in the same manner as any other
 

table. A directory table can be expanded by its owner with
 

the added data fields containing null values in any existing
 

records until those data fields are updated.
 

3-44
 



3.6.2 Modifying the Data File Directory
 

The modification of a directory table is performed by the
 
same data manipulation commands, INSERT, DELETE and UPDATE,
 
which are used to modify any table. A directory table could
 
be modified interactively, via the Batch Command Reader, from
 
an application program or from any special purpose programs
 
written to extract information from a data file header to
 
create one or more directory records describing a new data
 
file. A directory table can be modified by the Data Base
 
Administrator, the owner of the directory table if other than
 
the Data Base Administrator, and any user who has been granted
 
the appropriate rights.
 

:New records 
can be inserted into individual directory
 

tables only. That is, 
SYSDIR cannot be specified as the
 
table into which new records are to be stored by an INSERT com
mand. However, the DELETE and UPDATE commands can be used
 
to modify individual directory tables or the Data File
 
Directory as a whole. 
 If a DELETE or UPDATE operation is to
 
be restricted to an individual directory table, the name of
 
that table should be included in the command. 
 If the operation
 
is to be performed over the entire Data File Directory, SYSDIR
 
should be used as the name of the table to be modified. The
 
modification of the entire Data File Directory is carried out
 
on 
a table by table basis. For each directory table to be
 
modified, the system determines whether the user issuing the
 
command has the right to perform the specified operation.
 
If not, that directory table is not modified. 
 When performing
 
an UPDATE operation on the entire Data File Directory, the
 
system determines, for each individual directory table, whether
 
or not that table contains all of the data fields to be updated.
 
If not, the system checks the next directory table until all
 
directory tables have been processed. If a directory table
 
is encountered which possesses all of the data fields to be
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updated, any records in the table that satisfy the WHERE
 
clause are updated appropriately. As with the UPDATE command,
 
a DELETE command which specifies SYSDIR as the table to be-'
 
modified causes each individual table in the Data File
 
Directory to be processed. Any record in an individual
 
directory table which satisfies the WHERE clause will be
 

deleted.
 

During the modification of a directory table, the data
 
field containing the data identifier is treated somewhat dif
ferently from the other data fields. 
 The data field contain
ing the data identifier must not contain the null value when
 
a new record is being inserted into a directory table.
 
Additionally, the data identifier specified in a new record
 
must match an existing data identifier in the Data File Catalog
 
which is the SYSCATL system table. 
 During an update operation,
 
a null value cannot be stored in the data field containing the
 
data identifier. Also, any new value stored in the data
 
field containing the data identifier during an UPDATE operation,
 
will be checked against the Data File'Catalog for validity.
 
Finally, to ensure consistency between the Data File Directory
 
and the Data File Catalog, whenever a data file is removed
 
from the Data File Catalog via the UNCATALOG command, all
 
records containing the corresponding data identifier will be
 

deleted from the Data File Directory.
 

3.6.3 Retrieving Data from the Data File Directory
 

Retrieving data from a directory table is performed in the
 
same manner as retrieving data from any other table in the
 
system. The SELECT command, DISPLAY command and PRINT command
 
can be used to retrieve data from individual directory tables
 
or from the entire Data File Directory. As with other tables,
 
the SELECT command will place the retrieved records in the
 
user-'s Workspace Table, the DISPLAY command will exhibit the
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retrieved data on the user's'remote terminal and the PRINT'com

mand will print the retrieved data. Data can be retrieved
 

from individual directory tables by specifying the table name
 

explicitly in the command.- Data can be retrieved from the
 

entire Data File Directory by specifying SYSDIR in place of
 

the individual directory table name. When the table name, SYSDIR,
 

is specified in a retrieval command, each directory table is
 

checked to determine if all data fields in the target list are
 

contained within the table. If not, no data is retrieved from
 

that table and the system checks the next directory table until
 

all tables in the directory have been checked. If a directory
 

table is encountered which contains all of the data fields in
 

the target list, the data fields are retrieved from the records
 

that satisfy the WHERE clause specified in the command.
 

For most users, the retrieval of data from the Data File
 

Directory will be the initial step in obtaining data for
 

study purposes. Using one of the retrieval commands, a user
 

can locate the data files that-possess spacial and temporal as
 

well as other attributes required for his work. Several
 

retrievals may be required from the Data File Directory to
 

locate the required subset of data files in the Non-Relational
 

Data Base. Once the required data files have been located,
 

the user may wish to retrieve the records from the Data File
 

Directory which point to these data files. Using a SELECT
 

command, the user can retrieve those records and store them in
 

a table in another data base. In this way,. the user can
 

create his own directory tables. It should be noted that these
 

directory tables in user data bases are not maintained by the
 

system as part of the Data File Directory.
 

3.7 The Non-Relational Data Base
 

/ 

The term "Non-Relational Data Base" refers to. all data
 

files for which an entry exists in the SYSCATL system table,
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which is the Data File Catalog. As discussed in Section 2,
 

up to three copies of a data file can exist within the system,
 
simultaneously. The Data File Catalog can retain the location
 

of an off-line copy of the data file in its original format, an
 

on-line copy in one of the 'system standard formats and an off

line copy in the same system standard format. Using the
 

facilities of the interactive command language, a user can
 

manipulate data files in several ways. New data files can be
 

cataloged, making them known to the system, and existing data
 

files can be uncataloged, thus removing them from the system.
 

Data files can be loadedon-line, placing them in system standard
 

format or unloaded off-line in the same system standard format.
 

Procedures, such as regridding or windowing, can be performed
 

on data files under user control. Additionally, data files
 

can be converted to tables for processing by the relational
 

front-end and tables can be converted to data files. 
 Also,
 

application programs can read one or more data files and
 

create new data files that become part of the Non-Relational
 

Data Base. All data file commands, except the COPY command,
 

can be issued while the user or Data Base Administrator is
 

attached to any data base. The COPY command must reference
 

a table in the data base to which the user issuing the command
 

is attached. Thus, the ability to locate, manipulate and pro

cess this large, sequentially organized, data base provides the
 

Integrated Data Base Management System with considerable power
 

and flexibility. The use of all of the facilities for handling
 

data files within the system is described in the following
 

subsections.
 

3.7.1 Adding a Data File to the Non-Relational Data Base
 

A new data file can be added to the Non-Relational Data
 

Base in two ways: by an application program or, interactively,
 

using the CATALOG command. The creation and processing of
 

data files by an application program is discussed in a subsequent
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subsection. This subsection deals with the use of the CATALOG
 
command. The CATALOG command logically enters a data file into
 
the Non-Relational Data Base by creating a Data File Catalog
 

entry and insert-ing it, as a record, into the SYSCATL system
 

table. The CATALOG command is a privileged command and can
 

be issued only by the Data Base Administrator and only while
 

attached to the Global Data Base which contains the system
 

tables.
 

Physically, the new data file must reside on a magnetic
 

tape and should be placed into the tape library reserved for
 

the Non-Relational Data Base. The CATALOG command must specify
 

the physical. location of the data file being added. The
 

representation of the physical location may be system dependent
 

but, most likely, will consist of a volume serial number, a
 

file number and a format code. The format code indicates the
 

format of the records in the data file and identifies the sub

routine, if one exists, in the system library which is used to
 

load the data file on-line. if a duplicate volume serial
 

number, file number and format code already exist in the SYSCATL
 

system table, the new record is not inserted, but the data
 

identifier of the matching entry is returned to the user.
 

Otherwise, the system will assign a unique data identifier to
 

the data file being added and the new record will be inserted
 

in the Data File Catalog after which the data file is considered

N 

to be contained within the Non-Relational Data Base.
 

3.7.2 Removing a Data File from the Non-Relational Data Base
 

An existing data file can be removed from the non-relational
 

data base only by the UNCATALOG command. The command must
 

contain the data identifier of the data file to be removed.
 

The UNCATALOG command is a privileged command and can be issued
 

only by the Data Base Administrator and only while attached to
 

the Global Data Base which contains the system tables.
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The execution of the WNCATALOG command causes the record
 
containing the specified data identifier to be deleted from the
 
SYSCATL system table. 
 Any records in the Data File Directory
 
in the Global Data Base that contain the data identifier are
 
deleted from the directory tables. If anon-line copy of the
 
data file exists, it is deleted and the direct access storage
 
is freed. Any off-line copies of the data file will continue
 
to exist but will not be accessible via the Data File Directory
 
or the Data File Catalog.
 

3.7.3 Loading a Data File
 

The action of loading a data.file refers to the transference
 
of an off-line data file on magnetic tape to a direct access
 
device. A data file which has been loaded will always be in
 
one of the system standard formats while the off-line data file
 
may have been in its original data file format or in the 
same
 
system standard format. Thus, the loading process will always
 
transform a data file to a system standard format, if necessary.
 
The term"on-line" will be used to refer to a loaded data file
 
on a.direct access device. However, the data file is still
 
sequentially organized and should not be confused with tabular
 

data.
 

To transfer an-off-line data file on magnetic tape to an
 
on-line direct access device, the user issues a LOAD command.
 
The data identifier of the data file to be loaded must be
 
specified in the command. The execution of the LOAD command
 
may require that a format conversion routine be loaded from
 
the system library. The basic purpose of the routine would be
 
to convert the original data file format of the off-line data
 
file to a system standard format. However, other operations
 
could be performed by the load routine. Further parameters required
 
to control the operation of the load routine would be dependent
 
upon the particular routine being used and the content of the
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data file being loaded. For example, if the load routine had
 

the capability of extracting a single physical variable from a
 

data file which contained several physical variables, it might
 

be required that the user indicate if physical variable selection
 

is desired and, if so, which physical variables were to be
 

extracted.
 

If the loading of a data file causes it to be modified,as
 

described in the example above, a new data identifier will be
 

assigned to the loaded data file since its content is different
 

from that of the original data file. A Data File Catalog'
 

entry will be created for the loaded data file and will be in

serted, as a recorzd, in the SYSCATL system table. If the
 

content of the loaded data file is the same as that of the
 

original data file, the record in the SYSCATL system table
 

corresponding to the original data file is updated to reflect
 

the existance, location and format of the on-line, loaded
 

data file.
 

When a data file is placed on a direct access device via
 

the LOAD command, the on-line data file is marked as a temporary
 

file. Temporary data files will be periodically scratched-from
 

the on-line environment by a utility program. To prevent an
 

on-line data file from being scratched, a user must issue a KEEP
 

command. The data identifier of the data file to be marked
 

as permanent must be included in the command. 
The execution of
 

the KEEP command causes the on-line copy of the data file whose
 

data identifier is specified in the command to be marked as
 

permanent. This action does not affect any off-line copies of
 

the same data file.
 

There are several reasons why a user might wish to cause a
 

data file to be loaded on-line. Some data files contain massive
 

amounts of data and, for these types of data files, the load
 

operation would perform windowing functions. Thus, by loading
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the data file a user can select only the subset of the data in
 
which he is interested. Additionally, having a data file on

line will reduce the time required for an application program
 

to access that data file by eliminating the tape mounting delay.
 
Many of the procedures which can be invoked via the PERFORM
 

command will require that input data files be in system standard
 
format. Therefore, it may be required that a data file be
 

loaded prior to performing some procedure on it. The PERFORM
 
command is discussed in a subsequent subsection. Also, prior
 
to copying a data file to 
a table, it may be necessary to load
 
that data file to either reduce the amount of data placed in
 

the table or to convert a data file,whose original data file
 
format is not compatible with the COPY command,into a compatible
 

system standard format. A discussion of the COPY command is
 

contained in a subsquent subsection.
 

3.7.4 Unloading a Data File
 

The unloading of 
a data file refers to the transference
 

of a data file on 
a direct access device to an off-line
 

magnetic tape. The on-line data file will be in 
a system
 

standard format and no 
conversion or modification, such as
windowing, can occur when the off-line data file is created.
 
Thus, the unloading of a data file produces an off-line copy
 

of the data file in the same system standard format as the
 

on-line data file. The data identifier associated with the
 
data file to be unloaded must be specified in the command.
 

If an on-line copy of the data file does not exist or an off

line copy in system standard format already exists, the command
 
will, not be executed. Otherwise, the data file will be copied
 

to a magnetic tape in the same system standard format as the
 
on-line data file and the record corresponding to the data
 

file in the SYSCATL system table will be updated to reflect
 
the existance and physical location of the off-line copy of the
 

data file.
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The on-line copy of the data file will not be affected by
 

the execution of the UNLOAD command. 
 It will not be scratched
 

or modified in any way. However, a user can 
cause an-on-line
 

copy of a data file to be removed from the system at any time
 

by issuing a SCRATCH command. The data identifier for the
 
data file whose on-line copy is to be scratched must be included
 
in the command. If no on-line copy of the data file exists,
 

no action is taken. Otherwise, the on-line copy of.the speci

fied data file is scratched,whether or not it has been marked
 

as temporary or permanent. The SCRATCH command has no 
effect
 

on off-line copies of the data file. The execution of the
 
SCRATCH command frees the direct access space allocated to the
 

on-line copy of the data file and updates the record correspond

ing to the data file in the SYSCATL system table to indicate
 

the removal of the on-line copy. If, when the SCRATCH command
 

is issued, no off-line copy of the data file either in the
 
original data file format or in 
a system standard format,
 

exists, the command will not be executed since this would cause
 

the ultimate loss of the data file. 
 In this case, the user
 
should issue an UNCATALOG command to remove the data file, if
 

that is what is desired.
 

3.7.5 Invoking Data File Processing Procedures
 

The interactive display and manipulation of the contents of
 
data files is an important feature of the Integrated Data Base
 
Management System. This facility is invoked via the inter

active command, PERFORM. The name of the procedure being
 

invoked must be included in the command.
 

The execution of the PERFORM command requires that a sub
routine be loaded from the system library. Any number of
 

such routines may exist in the system library and 
new routines
 

to perform additional procedures can be added at any time.
 

Thus, the system supports an open-ended facility for the dis

play and manipulation of data files. Routines could be included
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that display or plot the contents of a data file, perform
 
regridding operations on a data file, perform windowing,
 
slicing or splitting operations on a data file or 
merge several
 
data files onto a single grid.
 

Each of the procedures invoked by the PERFORM 
com
mand will use, as input, 
one or more data files residing on
 
a direct access device in 
a system standard format. Any new
 
data files created by the procedure would be stored on a direct
 
access device in one of the system standard formats. A new
 
'data identifier would be assigned to the resulting data file
 
and a Data File Catalog entry would be created for each new
 
data file and inserted, as a record, in the SYSCATL system
 
table. Any new data files created.by a performed procedure
 
would be marked as a temporary file. 
 The concept of temporary
 
data files and their handling is discussed in the previous
 
subsection entitled Loading a Data File.
 

3.7.6 Data File/Table Conversion
 

Although the Integrated Data Base Management System is
 
based on the division of data into two types or forms, tabular
 
data and sequentially organized data files, there are times
 
when it is convenient for a user to have the capability of
 
converting data from one form to the other. 
 To provide this
 
capability, the interactive command language includes a COPY
 
command which copies data files to tables and tables to data
 
files performing the necessary conversion of physical data
 
structure.
 

To copy an existing data file to a table, the user issues
 
a COPY command which includes the data identifier of the
 
data file to be copied and the name of the table into which
 
the data is to be copied. The table specified in the command
 
must already exist in the data base to which the user is
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attached when the command is issued. 
 The data file identified
 

in the command may be in a system standard format or its
 

original data file format. If a system standard format copy
 
of the data file exists, it will be used as the source of the
 
data records. No conversion takes place during the copy opera

tion. Each logical record in the data file is placed in the
 
tabular data storage area as a record in the specified table.
 

Thus, data fields in the table should match, in type and length,
 
those in the data file being copied. Any superstructures defined
 

on the table are updated as the records are inserted into the
 

table. The table must have been defined prior to issuing the
 
COPY command, however, the table need not be empty. 
The execu

tion of the COPY command which copies an existing data file to
 
a table does not affect the data file in any way.
 

To copy a table to a data file, the user also issues a
 

COPY command which specifies only the name of the table to be
 
copied. The table must exist in the data base to which the
 
user is attached when the command is 
issued. The execution
 

of the COPY command to copy a table to a data file causes the
 
table to be read sequentially, whether or not any superstructures
 

exist for it. Only data records in the table, not super

structure records, are copied to the new data file. The data
 
recoras in the table are written to a new data file on 
a
 

direct access device in a system standard format. The system
 
assigns a data identifier to the newly created data ffle.
 
A Data File Catalog entry is created for the data file and is
 

inserted, as 
a record, in the SYSCATL system table. The
 

execution of a COPY command which copies a table to a data
 

file does not affect the contents of the table in any way.
 

3.7.7 Data File Processing by Application Programs
 

The Application Program Command Language contains commands
 

that manipulate not only tabular data but data files, as well.
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All application program commands are issued via a CALL state

ment which uses the same subroutine name. For example pur

poses only, we have used IDBMS as the subroutine name. The
 

first argument will be the application program command to be
 

executed (e.g., SELECT, OPEN, READ). The remaining arguments
 

will be a function of the command being issued. Section 5
 

describes the Application Program Command Language and includes
 

the argument list for each command.
 

Several of the interactive commands from the data file
 

category can be issued from an application program. These
 

include COPY, LOAD and UNLOAD. However, a number of addi

tional commands are available to an application program for
 

The processing of data files. These commands permit the open

ing and closing of data files, the reading and writing of data
 

records in a data file, the reading and writing of header
 

and processing history records, the searching of a data file
 

for a particular string and the retrieval of format information
 

pertaining to the data file from the Data File Catalog. These
 

commands are discussed briefly below.
 

The OPEN command logically connects a data file to an
 

application program. The argument list contains the mode
 

in which the application program will access the data file.
 

The available modes are INPUT, OUTPUT and OUTIN. The first
 

two access modes are self-explanatory. The third, OUTIN,
 

indicates that the data file will be created by the applica

tion program and then modified by the application program.
 

If the file is being opened in the INPUT mode, the argument
 

list must specify the data identifier of the data file to be
 

opened. If the data file is being opened in the OUTPUT or
 

OUTIN mode, the system will assign a data identifier to the
 

data file to be created and will return it to the application
 

program via the data identifier argument. The OPEN command
 

will also perform all operating system dependent open
 

functions for the data file.
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The CLOSE command logically disconnects a data file from
 
an application program. The argument list must specify the
 
data identifier of the data file to be closed. 
 If the
 
access mode associated with the data file being closed is
 
OUTPUT or OUTIN and the data file was written successfully,
 
a Data File Catalog entry is created and inserted, as a
 
record, in the SYSCATL system table to reflect the existance
 
and physical location of the new data file. 
 The CLOSE command
 
also performs all operating system dependent close functions
 

for the data file.
 

The READ command retrieves into a work area within an applica
tion program, all or part of a data record from a data file.
 
The data identifier of the data file to be accessed must be
 
specified in the argument list. If a portion of the logical
 
record is to be retrieved, the starting byte location and the
 
-length of the portion to be retrieved must also be specified
 
in the argument list. The READ command includes, in its
 

argument list, a logical record number which allows the data
 
file to be positioned to a specific logical record for retrieval.
 

The WRITE command writes a new logical data record into
 
a data file. The data identifier for the data file must be
 
included in the argument list. 
 As in the READ command, a
 
logical record number can be included in the argument list of
 
the WRITE command to position a data file to an existing record
 
such that it can be overwritten. The overwriting of records
 
in a data file is permitted only if the file was opened in the
 

OUTIN access mode and has not been closed in the interim. The
 
WRITE command permits all or a portion of a logical record to
 
be written. If a new record is being written and only a
 
portion of that record is specified in the argument list, the
 
remainder of the record will contain binary zeros. 
 If an
 
existing record is being overwritten, only the portion of the
 
record specified in the argument list is overwritten while any
 
other fields in the existing record are retained.
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The SEARCH command permits the scanning of data files to
 

locate a particular string of characters. As in the READ and
 

WRITE commands, a logical record number can be specified to
 

position the data file prior to beginning the search. The
 

argument list must contain the start byte and length of the
 

string to be checked in each logical record. Also, the argu

ment list must contain one of the relational operators, EQ,
 
NE, LT, LE, GT or GE, indicating the type of comparison to be
 

made. Finally, the argument list must point to a work area
 

containing a string which is to be compared with the string
 

retrieved from each logical record in the data file. 
 During
 

the execution of the SEARCH command, a string of characters
 

defined by the start byte and the length specified in the
 

argument list is retrieved from each data record read,and is
 

compared with the string in the work area using the relational
 

operator. When the relation condition is true or an 
end-of

file is encountered, the execution of the SEARCH command is
 

terminated. If a match occurs prior to the end-of-file con

dition, the logical record number of the matching record is
 

returned to the application program. A READ command specify

ing that logical record number can be used to retrieve data
 

from the record.
 

The GET command permits an application program to retrieve
 

records from a table based on the logical ascending sequence
 

imposed on a table by a B-tree index. 
 Each time that an appli

cation program issues a GET command, data fields from the record
 

containing the next highest key value in the specified B-tree
 
index are returned to the application program. To facilitate
 

the traversal of a B-tree index, each such index has a cursor
 
associated with it. These cursors are maintained by the system
 

and move independently through their associated B-tree index
 

whenever a GET command is issued referencing the key field on
 

which it is created. An additional feature of the GET command
 
is the ability to specify the starting point in the key sequence
 

at which retrieval should begin.
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Two other commands are associated with the use of the GET
 
command. 
They are the LOCK and UNLOCK commands. Since the GET
 
command uses a B-tree index to determine which record in a table
 
to retrieve, no modifications to that table or the B-tree index
 
can be permitted. Thus, an application program must issue a
 
LOCK command for 
a table prior to issuing any GET commands refer
encing that table. The LOCK command can also be used at any
 
time that an application program requires control over a table.
 
This could occur prior to modifications of the table as well as
 
prior to issuing GET commands. When issued, the LOCK command
 
prohibits any interactive user or application program from
 
modifying the table if the READ mode is specified in the command
 
or, if the MODIFY mode is specified, it prohibits all 
access to
 
the table. The UNLOCK command simply releases control over a
 
table which was established by a previous LOCK command.
 

The FORMAT command permits an application program to
 
retrieve information from the Data File Catalog concerning
 
the existance of off-line and on-line copies of a data file
 
and their associated formats. 
The data identifier of the
 
data file for which the information is to be obtained must be
 
included in the argument list. The system will return to
 
the application program an indication of whether or not an
 
off-line copy of the data file exists in its original data
 
file format, whether an on-line copy exists in a system
 
standard format and whether an off-line copy also exists in
 
system standard format. 
 Also, it will indicate in which
 

system standard format or data file format a copy exists.
 

Four other commands, GETHEAD, PUTHEAD, GETHIST and PUTHIST,
 
are 
available to read and write header records and processing
 
history records, respectively, for data files in system standard
 
format. Each of these commands must include the data
 
identifier of the data file which is being accessed by the
 
command. Additionally, the argument list must reference a
 
work area which contains either the header record dr history
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record to be written for output or a work area into which the
 
header or history record can be placed for input.
 

3-60
 



SECTION 4 - THE INTERACTIVE COMMAND LANGUAGE
 

4.1 Introduction to the Interactive Command Language
 

The Integrated Data Base Management System commands avail
able to an interactive user (i.e., commands other than the
 
operator commands) may be divided into five categories: data
 
definition commands, data manipulation commands, administrative
 
commands, utility commands, and file operations. This section
 
describes the syntax and briefly discusses the function of these
 
commands on a category-by-category basis. 
 While nothing in
 
the design of the Interactive Data Base Management System would
 
preclude having every command described in this chapter made
 
available for use by application programs, consideration of
 
projected user requirements suggests that certain commands
 
available for interactive users would be superfluous for applica
tion programs. Therefore, certain commands will be restricted
 
for interactive use only. Moreover, since certain commands
 
will be restricted to specific classes of users, the discussion
 
of the function (or "semantics") of these commands will include
 
a statement of the restrictions, if any, on the use of these
 

commands.
 

It should be emphasized that this is not intended to be 
a
 
substitute for a detailed users' manual, and the discussions
 
of semantics are correspondingly brief. 
 In particular, the
 
reader will find more detailed discussions of file operations
 
in Section 7, Data File Processing.
 

The notation used for describing the syntax of these
 
interactive commands owes much to the CODASYL Data Base Task
 
Group Report5 
and to the Backus Normal Form notation used to
 
describe Algol 6028 The following rules apply:
 

* 	Key words are indicated with capital letters.
 
* 	Generic terms are indicated by lower case letters and
 

are included in angled brackets (G,>). deneric terms
 

4-1
 



are replaced with appropriate values when the format
 

is used. The use of subscripts on generic terms is
 

not meant to imply different generic terms, but rather
 

that the values used when replacing the generic terms
 

will normally be different (see example at bottom of
 

page).
 

Example: 	 If 'BTSIO0' is a user-id and 'ALPHA' is a password
 

then ENTER BTS100, ALPHA is an instance of the for

mat ENTER <user-id>,<password>.
 

* 	 Square brackets (,]) indicate optional alternatives.
 

At most one, but possibly none, of the alternatives
 

may be present.
 

Example: 	 MENU, MENU ON, and MENU OFF are valid instances of
 

the format ~ ON~ 

* 	Braces ({,)) indicate mandatory alternatives.
 

Precisely one alternative must be present.
 

* 	 Vertical placement and vertical lines are both used to
 

indicate alternatives.
 

Example: 	 MENU [ONIOFF ] is equivalent to MENU L] 

* An ellipsis (...) indicates that repetition is permit

ted. The portion of the format to be repeated is
 

determined by the open bracket or brace ([ or f) which
 

matches the closed bracket or brace (] or 1) immediately
 

to 	the left of the ellipsis.
 

Example: 	 If XYZI, XYZ2, and XYZ3 are data file identifiers
 

then LOAD XYZI,XYZ2,XYZ3 is an instance of
 

LOAD <file-idl>[,<file-id2 >]...
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* The special symbol "::=" 
means "is defined to be". It
 
is used to break up what would otherwise be a very
 
complicated definition into simpler and easier to grasp
 

parts.
 

o Other punctuation marks such as 
commas and asterisks
 

must be present, as shown.
 
* 
 Key words and generic items must be separated by blanks
 

or punctuation marks when the command is entered into
 

the system.
 

Example: 	 ENTERBTS100,ALPHA is an unacceptable instance of
 
the format ENTER <user-id>,<password>. However,
 

both ENTER BTS00,ALPHA and ENTER BTS100, ALPHA are
 

valid.
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4.2 Utility Commands
 

Utility commands will perform a variety of necessary
 
services for interactive users. 
 All of these commands will
 
be available to any interactive user without restriction, and
 
certain of these commands shall furthermore be available to
 
application programs as well. 
 The seven utility commands
 

will be:
 

ENTER - Connect the user to the Integrated Data Base
 

Management System.
 

EXIT - Disconnect the user from the system.
 

ATTACH - Designate a particular data base for informa

tion processing.
 

DESCRIBE - Display a textual description of data entities,
 
commands, user authorizations, or group member

ships.
 

USE - Establish a one-character or two-character alias
 

for a table.
 

MENU - Display a menu of interactive commands or
 
toggle from full menu display mode to menu
 

suppressed mode or vice versa.
 

PASSWORD - Change passwords.
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4.2.1 ENTER
 

A user will connect to the Integrated Data Base Management
 
System with the ENTER command, whose syntax is described below:
 

ENTER <user-id>,<password>
 

where the password must be 
correct for the indicated user
 
before the system will process the command. The password will
 
be selected by the user, and 
-- due to the manner of encipher

ing it when the password is stored internally -- not even the
 
DBA will be able to learn the password except by communicating
 

with the user or expending an inordinate amount of time and
 
effort. This is intended to provide a user with a certain
 

measure of security.
 

After successful execution of 
an ENTER command the user
 
will always be attached to the Global data base.
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4.2.2 EXIT
 

A user will exit from the Integrated Data Base Management
 

System by keying in the single key word:
 

EXIT
 

When the user issues an EXIT command, any alias names established
 

for tables via USE commands (see Section 4.2.4) will be erased
 

and the contents of the user's Workspace Table will be
 

deleted.
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4.2.3 ATTACH
 

A user may leave one data base and begin processing data
 

in another data base via the ATTACH command. The syntax of
 

the ATTACH command will be:
 

ATTACH [TO] <data base name>
 

Subsequent commands which refer to tables or fields will be
 

presumed to reference entities of the specified data base.
 

However, an ATTACH will be accepted only if the user -- or
 

some user group to whicb the user belongs -- has access rights
 

to the specified data base.
 

Successful execution of an ATTACH command will not change
 

any alias names established while the user was previously
 

connected to some other data base. However, the user will
 

not be permitted to reference those tables until re-attached
 

to the data'base where the aliases apply. Nor will successful
 

execution of an ATTACH change the contents of the workspace
 

table. Therefore, the workspace table can provide a convenient
 

mechanism for transportation of data between different data
 

bases.
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4.2.4 USE
 

The 	syntax of the USE command will be:
 

USE <alias1>[,<alias2>]... FOR <table name>
 

where aliases will be one or two alphanumeric characters with
 

the first character restricted to be alphabetic (e.g., S, SC,
 

S3, etc.). This command will specify short aliases for
 

tables, and the user may then substitute the alias for the table
 

name in any command in which the table name is required.
 

This will have two benefits:
 

(.) 	the number of keystrokes required to enter a command
 

will be reduced, and
 

(2) 	 at least one alias will be required when a table is
 

cross referenced against itself in the performance
 

of a retrieval using the relational calculus syntax*.
 

A user will be permitted to have more than one alias name
 

on a single table, and the same alias name may be applied to
 

different tables provided the tables reside in different data
 

bases. However, any given alias can be used on at most one
 

table in any given data base at any time. Thus, if a given
 

alias is bound to a table in some data base and a user issues
 

a new USE command binding that alias to a different table in
 

the same data base, then the old binding will be overwritten
 

by the new binding.
 

There will be one important restriction on the use of alias
 

names. By convention,the name "IV"will always refer to the
 

user's "Worskpace" Table*. The user will not be required to
 

make this binding formally (with a USE command) and may not
 

redefine W.
 

* See the description of the SELECT command in Section 4.5.1. 
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Detaching from a data base will not alter the alias name
 

bindings established by the user for that data base, and the
 

same set of alias bindings will be in effect when the user
 

reattaches to that data base. Upon EXIT from the system,
 

however, all alias name bindings will be destroyed.
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4.2.5 PASSWORD
 

Users may wish to alter their passwords for reasons of
 

security, or the DBA may be called upon to reset the password
 

of some user. The mechanism for changing passwords will be
 

the PASSWORD dommand:
 

PASSWORD [FOR <user-id>]=<password>
 

Barring a system crash necessitating data.base recovery and
 

restart, the newpassword for the user will be in effect the
 

next time the user issues an ENTER command.
 

Only the DBA will be allowed to use the PASSWORD command
 

with the FOR clause. The DBA may find it necessary to issue
 

such a command if a user forgets his password, or if it
 

becomes necessary to deny access to the system temporarily
 

for some user and the DBA does not wish to take the drastic
 

step of issuing a REMOVE on that user.
 

The PASSWORD command will not be available to applica

tion programs.
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4.2.6 MENU 

The syntax of the MENU command will be:
 

MENU [ ]
 
When a user enters the Integrated Data Base Management
 

System through an interactive remote terminal, the system will
 
inquire whether he or she wishes to work in "full menu dis
play" mode or "menu suppressed" mode, that is, whether the user
 
wishes to have a menu of interactive commands displayed between
 
transactions, or whether menu displays are to be inhibited.
 

If the user is working in full menu display mode then the
 
only form of the MENU command which the system will accept
 
will be MENU OFF, which will toggle the user into menu suppres
sed mode. If the user is working in menu suppressed mode,
 
then he or she can issue a MENU ON command to toggle into full
 
menu display mode, or the user will be permitted to input
 
MENU with no qualifier to get a menu listed without switching
 
out of menu suppressed mode.
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4.2.'7 DESCRIBE
 

DESCRIBE will be a multipurpose command used to pass
 

information from the Integrated Data Base Management System
 

back to a user. The syntax of a DESCRIBE command will be:
 

DATABASEI[<entity namel>[,<entity name2>]...
 

TABLE * 
FIELD JLWHERE <qualification>
 

DESCRIBE COMMAND {<command name>ITYPE=<category>}
 

GROUP <group name>
 

RIGHTS [FOR <user-id1 >[,<user-id 2>.. .
 

where the entity name is a data base name (if the command is
 

DESCRIBE DATABASE), a table name (for DESCRIBE TABLE), or the
 

name of a field in the Data Dictionary (for DESCRIBE FIELD).
 

As may be inferred from the above syntactic description, a user
 

will be able to request information about data bases, tables
 

within a data base, the contents of a data dictionary, system
 

commands, and user groups. Also, a user may inquire about
 

the extent of his or her data access rights. Each of these
 

six variants are described in greater detail below.
 

The DESCRIBE command is not available to application
 

programs.
 

4.2.7.1 DESCRIBE DATABASE
 

The DESCRIBE DATABASE command will cause the Integrated
 

Data Base Management System to output the following information
 

for each data base specified by the user:
 

(1) data base name
 

-(2) data base owner
 

(3) type (working vs. applications)
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(4) creation date
 

(5) short textual description.
 

This is a minimal set of items of information, and the DBA may
 
elect to define even more fields in a data base control block
 

and, if so, these fields would surely also be listed. For
 

example, the DBA may choose to define meaningful classes of
 

data bases, so that the data base class would be output as
 

well as the five items specified above.
 

The user will be able to specify one or more particular
 

data bases by name, or the user can fetch a listing of all
 

the data bases managed by the system by using the asterisk
 
("*") option. A third approach will be to specify a subset 

of the data bases through use of a WHERE clause and some qualifica

tion. The syntax of a WHERE clause and qualification are
 

spelled out in greater detail in the subsection of this report
 

devoted to the SELECT command but, basically, a qualification
 

is a Boolean combination of predicates, and in this case the
 

predicates will attach values to the fore-mentioned items of
 

information in the data base control block. 
For example, a
 

user may wish to see a description of all working data bases
 

owned by BTS00, and do so with the command:
 

DESCRIBE DATABASE WHERE OWNER=BTS100 AND TYPE=WORKING
 

Other fields which might occur in a qualification predicate
 

are creation date and class (if defined by the DBA).
 

It is important to note that a user will not have to be
 

attached to any particular data base to issue a DESCRIBE
 

DATABASE command, and that issuing a DESCRIBE DATABASE command
 

will not transfer the user from his or her current 
data
 

base.
 

4-13
 



4.2.7.2 DESCRIBE TABLE
 

A user will be able to retreive detailed descriptions of
 
tables and data bases to which he or 
she is attached t by
 
issuing a DESCRIBE TABLE command. 
 For each table specified
 

by the user the system will respond by listing:
 

(1) table name
 

(2) table owner
 

(3) creation date
 
(4) access control for READ 
 (public, private, or restricted)
 
(5) access control for INSERT (public, private, or restricted)
 
(6) access control for UPDATE (public, private, or restricted)
 
(7) 
access control for DELETE (public, private, or restricted)
 

(8) a list of domains by name
 
(9) for each domain, the field in the data dictionary to
 

which it corresponds and assertions, if any
 
(10') a list of search keys and superstructures.
 

The user will be able to specify a list of tables by name, or
 
may ask for all tables in the data base with the asterisk option,
 
or may use a WHERE clause and qualification. Fields available
 
for use in predicates would include 
-- but not be limited to -
owner, creation date, access control status, and the names of
 
one or more domains.
 

4.2.7.3 DESCRIBE FIELD
 

A user can examine the contents of the Data Dictionary for
 
the data base to which he or she is attached' by means of the
 
DESCRIBE FIELD command. 
 For each field specified by the user
 

the system would list the following data:
 

To maintain system security, system tables such as SYSDOM,

SYSUSER, SYSCATL, and others will be invisible to the user
 
and shall not be described to the user even if the user is
 
attached to the Global Data Base.
 

TAgain, certain fields.of the Global Data Dictionary would be
 

blocked from user knowledge.
 

4-14
 

http:fields.of


(1) field name
 

(2) type
 

(3) size
 

(4) units (if present).
 

Again, the user will be able to specify one or more
 

particular fields by name, or may cause the entire Data
 

Dictionary to be listed (with the asterisk option), or may
 

use a WHERE clause and qualification to specify a subset of the
 

Data Dictionary implicitly.
 

4.2.7.4 DESCRIBE COMMAND
 

The DESCRIBE command with the COMMAND option is similar to
 

the "HELP" command of other interactive, user-friendly systems.
 

The DESCRIBE COMMAND command will not be available through the
 

system's Batch Command Reader.
 

The user will be able to name a specific command (e.g.,
 

DESCRIBE COMMAND INDEX) or may request details on all of the
 

commands in a particular category (e.g., DESCRIBE COMMAND TYPE=
 

UTILITY). The system will respond by giving the syntax and
 

a brief description of the function for the command(s) speci

fied by the user. The Integrated Data Base Management. 

System will be selective in what it outputs -- there is 

obviously no need to tell the user about ENTER, for example,
 

nor will the user be given any information on commands avail

able for the DBA's use only. Thus, use of the USER clause and
 

GROUP clause will not be explained if the user asks about
 

DEFINE or REMOVE, nor will the system inform users about
 

CATALOG, UNCATALOG, INCLUDE, EXCLUDE, or the GROUP clause for
 

the DESCRIBE command. If it should happen that a user does
 

request information about one of these restricted commands,
 

the system will respond by stating that the command in ques

tion is restricted to use by the DBA only.
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4.2.7.5 DESCRIBE RIGHTS
 

The RIGHTS clause of the DESCRIBE command will allow a
 

user to discover what his or her data acess rights are.
 

The system will respond to the DESCRIBE RIGHTS command by list

ing all the data access rights authorized to that user directly,
 

then listing all the rights indirectly authorized to the user
 

by group membership on a group-by-group basis. (A more
 

thorough discussion of precisely what those rights are may be
 

found in the subsection devoted to the GRANT command.)
 

Only the DBA will be permitted to use the DESCRIBE RIGHTS
 

command with the FOR clause. This variation of the DESCRIBE
 

RIGHTScommand is designed to give the DBA the ability to
 

determine the data access rights for users of the system.
 

4.2.7.6 DESCRIBE GROUP
 

The DBA will also be able to examine the membership of
 

and access rights authorized to particular groups by the
 

DESCRIBE GROUP command. The output will be a listing of the
 

users belonging to the group, sorted by user-id, and a listing
 

of the data authorizations granted to the group on the whole,
 

sorted on table within data base.
 

4-16
 



4.3 Data Definition Commands
 

The six data definition commands will allow interactive
 
users of the Integrated Data Base Management System to create
 
and remove data bases, tables, and fields; to alter table lay
outs; to specify data validation tests; and to define access
 
method superstructures on fields of 
a table to facilitate
 

rapid data retrieval. The Data Base Administrator may also
 
use data definition commands to introduce new users to the
 
system, to remove inactive users, and to define user 
groups.
 

The commands will be:
 

DEFINE - Identify new data bases, new fields, new tables,
 

new users, new user groups, and data valida

tion tests to the system.
 

REMOVE - Remove inactive users,-obsolete user groups,
 

unused fields, tables, or even whole data bases
 

from the system.
 

EXPAND - Append one or more columns to an existing table. 

INDEX - Establish hierarchical index superstructures
 
on given fields or combinations of fields in a
 

table.
 

INVERT - Create inverted file indices for a given field
 

or combination of fields.
 

DROPINDEX - Delete index superstructures (both hierarchical
 

and inverted) from specified tables.
 

Most of these commands will be restricted with respect to the
 
list of users who may apply them in any given situation. These
 
restrictions will be specified in greater detail in the follow

ing exposition.
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None of these commands will be available through the
 

Applications Program Interface, although, again, this is a
 

philosophical point rather than a requirement of the system
 

design or proposed implementation.
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4.3.1 DEFINE
 

DEFINE is to be a multipurpose command used to introduce
 
a variety of entities to the Integrated Data Base Management
 

System. The syntax of a DEFINE command will be:
 

/DATABASE 
 <data base clause>
 

[DIRECTORY] TABLE <table clause>
 
FIELD <field clause>,
 

DEFINE ASSERTION 
 <data validation clause>
( USER <user clause> 

GROUP <group clause> 

To avoid the confusion which can be caused by overwhelming
 
detail, each of the six variants is discussed in a separate
 

subsection, *below.
 

4.3.1.1 DEFINE DATABASE
 

The syntax of a DEFINE command with the DATABASE clause
 
will be:
 

DEFINE DATABASE <data base name>
 

where the specified data base name must not duplicate the name
 
of some already-existing data base. 
 Any user will be able to
 
define a data base, thereby becoming its owner. A user who
 
issues a DEFINE DATABASE command will implicitly become
 
attached to the new data base for the purpose of further
 

processing.
 

4.3.1.2 DEFINE TABLE
 

The syntax for a DEFINE command with the TABLE clause will
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be:
 

DEFINE [DIRECTORY] TABLE <table name>(<field def'nl>[,<field def'n2>]...)
 

where
 

.<field name>
 

<field def'n> ::=I
 
L<field nameI >=<field name2>
 

If the field definition is in the first form, a single field
 
name, then that name must be in the data bases's Data Dictionary.
 
If the field definition is in the second form then the second
 
field name (on the right hand side of the equals sign) must.be
 
in the Data Dictionary while the first field name (on the left
 
side of the equals sign) should not be in the Data Dictionary.
 

Field definitions in the second form will allow the user to
 
attach his or her own names to pre-defined fields (-e.g., X=LON,
 
Y=LAT). This will be an absolutely necessary feature for the
 
case when two columns of the table span the same domain of
 

values and are defined in terms of the same field (e.g.,
 
START-DATE=DATE, END-DATE=DATE).
 

Although the order of fields within a table is not significant
 

for information retrieval purposes, the order in which the
 
field definitions are listed in the table clause will define
 
the internal sequence in which they will be stored by the
 
Integrated Data Base Managements System's Physical Interface.
 

A user may not DEFINE a new table in a data base unless
 
attached to that data base. The right to DEFINE tables will
 

be limited to the DBA, the owner of the data base, and such
 
users as the data base owner permits (see the GRANT command, in
 
a later subsection). The user who defines the new table will
 
become its-owner. To avoid conflict with alias names (see
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Section 4.2.4) 
a table name must be three or more characters
 

long.
 

Only the DBA may DEFINE a DIRECTORY TABLE, and a DIRECTORY
 
TABLE can only be created in the Global Data Base. Such
 
tables will differ from normal tables in that they will auto
matically become a part of the special virtual table, SYSDIR,
 
which references data files cataloged in the non-relational
 

portion of the system.
 

4.3.1.3 DEFINE FIELD
 

The mechanism for entering data field names into a data
 
base's Data Dictionary will be the DEFINE command with the
 
FIELD clause. its syntax will be:
 

DEFINE FIELD <field name>[TYPE=]<type>,[SIZE=]<size>[,[UNITS=]<units>]
 

The order of type, size, and units (if present) will not be
 
significant if the key words TYPE, SIZE, and UNITS, respectively,
 
are used, but when the key words are not used then they must
 
be in the sequence specified above. All key words should be
 
present or none should be used.
 

The type parameter may take on any one of five values: REAL,
, 
ALPHANUMERIC, INTEGER, LOGICAL, or DECIMAL 
 (the system will
 
accept any reasonable abbreviation beginning with R, A, I, L, or
 
D, respectively). The size parameter will indicate the size
 
of this field in bytes. An integer field size must not exceed
 
the number of bytes per word on the machine where this system
 
is implemented, and a floating point field must be precisely
 
one or two times the word size. The Integrated Data Base
 

*Short for "packed decimal" and available only if supported
 
by the machine on which the Integrated Data Base Management
 
System is implemented.
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Management System will retain a table of acceptable unit names
 

and abbreviations; use of a unit name (or abbreviation) for
 

the units parameter which is not in that table will cause the
 

command to be rejected.
 

Only the DBA or the data base's owner will be allowed to
 

DEFINE fields.
 

4.3.1.4 DEFINE USER
 

The Data Base Administrator will introduce new users to
 

the Integrated Data Base Management System through the DEFINE
 

command with the USER clause. The syntax is shown below:
 

DEFINE USER <user-id>,<password>[,GROUPS=<groupl>[,<grouP 2>...]
 

This will create a new entry in the SYSUSER system table for
 

a user with the given user-id and password, and will include
 

the new user in the indicated groups.
 

4.3.1.5 DEFINE GROUP
 

One useful feature of the Integrated Data Base Management
 

System will be the ability of the DBA to establish "user
 

groups". These groups will exist for purposes of authorizing
 

data access rights to sets of users engaged in the same or
 

similar projects without specifically enumerating that list
 

of users. The mechanism for establishing a group will be
 

the DEFINE command with the GROUP clause, and its syntax will
 

be:
 

DEFINE GROUP <group name>
 

Note that this command will merely introduce a group to
 

the system and will not assign any users to that group.
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Users will be included in a group by a DEFINE USER command or
 

an INCLUDE command (described in a later subsection).
 

4.3.1.6 DEFINE ASSERTION
 

An important function of any data base management system
 

is protection of the quality of the data it manages. The
 

Integrated Data Base Management System will make provision for
 

limited, automatic data validation tests to be specified by
 

authorized users to maintain the semantic integrity of its
 

data. The normal mechanism in a relational data base manage

ment system for defining and applying these data validation
 

tests is the "integrity assertion" -- a statement about the
 

data in a table which is expected to be true unless one or
 

more records is incorrect. A more thorough discussion of the
 

theory and use of integrity assertions may be found in Appendix
 

B. These data validation tests will be established by the
 

DEFINE command with the ASSERTION clause, and its syntax will
 

be:
 

DEFINE [SOFT] ASSERTION <assertion name> ON <table name>:<predicate>
 

where the predicate will be a true/false test of the form:
 

/ Il 

OLD <field name1>1 (*1 I 
<field name2>
<nfaimld1 <re at ons ip~ 

The ci 's represent arbitrary floating point or integer constants
 

and the relationship tests will be indicated by the keywords LT,
 

LE, EQ, GE, GT, and NE, or by the signs <,=, and >. In
 

other words, a predicate will test the relationship of the
 

values of a field against a constant (e.g., TEMP>-273.16) or
 

against a function of another field (e.g., START-DATE LE END-DATE),
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or a function of its former value during an update (e.g.,
 

AGE GT OLD AGE). The complexity of a function will be limited
 

to:
 

(1) the field name itself (preceded by the keyword "OLD"
 

if the same field as on the left side of the predicate),
 

(2) 	a field times or divided by a constant,
 

(3) a field plus or minus a constant, or
 

(4) a 	field times or divided by one constant and plus or
 

minus another constant.
 

A "soft" assertion will not block a transaction from being
 

processed, but will merely output a warning message when an
 

update or insertion causes it to be violated. The default
 

will be to block the particular transaction which violated
 

the assertion, although the system shall process other updates
 

.or insertions which are valid. If an update is blocked by a
 

violated data validation assertion then the system will print
 

out (1) the (unupdated) record, (2) the field which was to
 

have been changed, (3) the new value that field would have had,
 

and (4) the assertion which was violated. When an insertion
 

is blocked by a violated assertion then the Integrated Data
 

Base Management System will list (1) the rejected record and
 

(2) 	the assertion(s) which were violated.
 

It is anticipated that assertions will normally be defined
 

for a table at the time the table is defined and before any
 

data has been inserted. However, the Integrated Data Base
 

Management System will accept new assertions being established
 

on nonempty tables. When that happens, the system will list
 

the records already in the table which violate the assertion
 

and give the user the choice between keeping the assertion
 

(and thereby deleting the records) or keeping the records
 

(and thereby implicitly removing the assertion). If there
 

are no records already in the table which violate the asser

tion then the assertion will always be accepted.
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The right to establish an assertion will be limited to the
 

DBA, the data base owner, and the owner of the table on which
 

the assertion is to be established.
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4. 3.2 REMOVE
 

Anything which can be identified to the Integrated Data
 

Base Management System by a DEFINE command may be removed from
 

the system by a REMOVE command. The syntax of a REMOVE com

mand will be:
 

DATABASE <data base name>
 

TABLE <table name>
 

FIELD <field name>
 
ASSERTION <assertion name> FROM 
 <table name>
 

USER <user-id>[,<user-id>] ...
 

GROUP <group name>E,<group name>]...
 

The ramifications of each of the six variations of the REMOVE
 

command -- corresponding to the six variations of DEFINE -- are
 

discussed in greater detail below.
 

4.3.2.1 REMOVE DATABASE
 

Only the DBA or the owner of a data base will be allowed
 

to REMOVE it from the system, and that individual must be
 

attached to the data base before issuing the command. After
 

a REMOVE DATABASE has been issued, no new user will be permitted
 

to access that data base, but users already attached to the
 

data base will be permitted to complete their information pro

cessing before the data base is destroyed.
 

4.3.2.2 REMOVE TABLE
 

A user must be attached to the data base which contains
 

the table to be removed before a REMOVE TABLE command will be
 

accepted by the system and, moreover, the user who issues the
 

REMOVE TABLE command must be either the DBA, the data base
 

owner, or the owner of the table.
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As with the REMOVE DATABASE command, once a REMOVE TABLE
 

command has been issued and accepted no new users will be
 

permitted to access the table although transactions-already
 

accessing the table will be permitted to complete before the
 

table is destroyed.
 

4.3.2.3 REMOVE FIELD
 

A REMOVE FIELD command will delete a field name from a
 
data base's Data Dictionary. A REMOVE FIELD command will be
 

accepted only if issued by the DBA or the data base owner
 

while attached to the appropriate data base, and even then the
 

system will refuse to execute the command unless no table in
 

the data base includes that field.
 

4.3.2.4 REMOVE ASSERTION
 

Only the individuals who can DEFINE an assertion will be
 

allowed to REMOVE it (i.e., the DBA, the data base owner, or
 

the table owner) and they must be attached to the data base
 

containing the table to do so. Assertion removal is post

poned if there is an insertion or update in progress at the
 

time a REMOVE ASSERTION command is issued, to prevent anomalies
 

from arising when some portion of the transaction is rejected
 

for violating the assertion in question while other portions
 

of the transaction (executed after the REMOVE ASSERTION has
 

been issued) are accepted despite violating that data valida

tion check.
 

4.3.2.5 REMOVE USER
 

The Data Base Administrator (and only the DBA) will be
 

able to REMOVE a user from the system with a REMOVE USER com

mand. If the user in question is currently active at the
 

time the REMOVE USER is issued, then the effect of that com

mand will be delayed until he or she performs an EXIT from
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the system. (In such a case, the DBA will be notified by a
 

printed message.)
 

4.3.2.6 REMOVE GROUP
 

Only the DBA will be allowed to establish a user group,
 
and only the DBA will be permitted to issue a REMOVE GROUP com

mand. 
 It should be noted that the REMOVE GROUP command will
 

merely dissolve the group(s); it will not cause the removal of
 

any member of that group from the system.
 

Performance of a REMOVE GROUP will take place immediately
 

upon receipt of the command by the system. However, if any
 

user should be accessing a table at the time the REMOVE GROUP
 

is issued and that user received the authorization to access
 

that table or its data base only through membership in the
 

group being removed, then that transaction will be permitted
 

to go to completion.
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4.3.3 EXPAND
 

The EXPAND command will permit a qualified user to add one
 

or more fields to an existing table. The syntax of an EXPAND
 

command is shown below:
 

EXPAND <table name>- [BY] (<field def'nI>[,<field def'n 2>]...)
 

where the fields are defined as described in the DEFINE TABLE
 

.subsection. For storage purposes, these new fields will be
 

added to the end of the table. Only the DBA, the data base
 
owner, and the owner of the table will have the right to
 

EXPAND a table, and expansion will be the only alteration to
 

the layout of a table (other than total removal) supported by
 

the system.
 

After an EXPAND is executed on a table, the records already
 

stored in the table will be treated as having "null" values
 

for the new fields. Unlike most data base management systems,
 

however, when the Integrated Data Base Management System per

forms an EXPAND it will not cause any immediate alteration of
 

existing records. Consequently, an EXPAND will be quite
 

inexpensive to perform in this system.
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4.3.4 Generating Data Access Superstructures: INDEX and INVERT
 

Access method superstructures to facilitate rapid and
 

efficient data retrieval may be placed on tables by the INDEX
 

and INVERT commands, which have the syntax:
 

INVERT 
 1 
INDEX [UNIQUE] <table name> [ON] <keyckey2>J ..
 

where
 

[<field name>
 

<<key name>= (<field nameI> [,<field name 2 >]... 

That is, a superstructure key may be a single given field of
 

the table or may be formed by concatenating more than one
 

field into a combined key.
 

The INDEX command will establish hierarchical index struc

tures* on the specified fields or combinations of fields and
 

INVERT will establish inverted file indices on the specified
 

fields or combinations of fields. Hierarchical indices are
 

useful when the values of the search keys are unique, or nearly
 

unique, and inverted file indices facilitate rapid data access
 

when a given value of a search key defines a set of records.
 

Since the type of index superstructures created by INVERT and
 

INDEX are useful in such different contexts, the system will
 

not support both a hierarchical and an inverted index on the
 

same field or on identical combinations of fields.
 

If a sequence of fields is combined to make a single search
 

key, then the same index used for that key also facilitates
 

rapid access of any leading subsequence of fields. For
 

*specifically, B-trees.
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example, if a table T has the fields A, B, and C, then the
 

index established by the command
 

INDEX T ON K=(A,B,C)
 

will also serve to effect rapid access for A alone or for
 

A and B combined. Therefore, the Integrated Data Base
 

Management System will ignore requests for identical types of
 

indices on leading subsequences of combined field search keys,
 

although it shall accept requests to establish different types
 

of indices for leading subsequences and any type of index
 

request for non-leading subsequences. Hence, the following
 

commands are compatible with the INDEX command above:
 

INVERT T ON A,Kl=(A,B)
 

INDEX T ON B,C,K2=(B,C)
 

The optional UNIQUE qualifier on the INDEX command will
 

mean that duplicate values of the specified search key(s) are
 

not permitted. If a transaction such as an insertion or up

date would cause this requirement to be violated, then that
 

transaction will be blocked and an appropriate error message
 

will be output to the user.
 

Although access method superstructures will normally be
 

generated at the time the table is created, the Integrated
 

Data Base Management System will support the establishment of
 

both types of indices on pre-existing, non-empty tables. In
 

the case where an INDEX UNIQUE command is issued against a
 

table with duplicate values for that search key the system
 

will respond by listing the erroneous records and the user
 

may elect to delete the duplicates or to rescind the
 

command.
 

As with EXPAND, use of the INDEX and INVERT commands will
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be limited to the DBA, the data base owner, and the owner of
 

the table, and the individual issuing the command must be
 
attached to the data base which contains the table.
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4.3.5 DROPINDEX
 

The rapid access suparstructures created through the INDEX
 

and INVERT commands may be dropped from a table through the
 

use of the DROPINDEX command. The syntax of a.DROPINDEX com

mand will be:
 

DROPINDEX <key nameI>[,<key name2>].. .FROM <table name>
 

where the key names may be single fields or may be the key
 

names attached to combinations of fields when the index was
 

created. Since the same field -- or key -- may not have
 

both a hierarchical superstructure and an inverted file super

structure simultaneously, the DROPINDEX command can be, and
 

shall be, used to drop both kinds of indices.
 

Only someone with the authorization to generate a super

structure (i.e., the DBA, the data base owner, and the table
 

owner) will be allowed to issue a DROPINDEX command, and only
 

when attached to the appropriate data base.
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4.4 Administrative Commands
 

The four administrative commands will provide users
 

in an administrative position (i.e., the DBA and owners of
 

data bases and tables) with control over the state and/or
 

accessibility of entities under their purview. The adminis

trative commands will be:
 

GRANT - Authorize users or user groups the right 

to access and/or modify data. 

REVOKE - Cancel previously granted rights. 

INCLUDE - Add a user to a user group. 

EXCLUDE - Remove a user fr6m a user group. 

None of these commands will be available to an application
 

program.
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4.4.1 GRANT
 

The syntax of the GRANT command is depicted below:
 

<table rights> ON <table name> <user idI>[,<user-id 2>]. "
 

GRANT TO GROUP <group name>
 

<data base rights> PUBLIC
 

When a new table or data base is-created by a DEFINE command
 

the right to access its contents will be strictly limited
 

to its owner (that is, its creator) and to the DBA and (in
 
the case of the creation of anewtable) the data base owner.
 

The GRANT command is designed to make it possible for the
 

DBA or 
the owner of the data base or table to make its contents
 
available to a wider circle of users. 
 The authorization
 

may be extended to all users of the Integrated Data Base
 

Management System through the key word "PUBLIC", or the
 

authorization may be restricted to a particular collection
 

of users, either named explicitly or identified implicitly
 

through membership in some user group. Since different
 

key words will be used to distinguish rights associated with
 

tables from rights associated with data bases, these two
 

topics are discussed separately below.
 

4.4.1.1 Granting Rights on Tables
 

The following key words will be associated with table
 

rights: READ, INSERT, UPDATE, and DELETE which will have
 

their obvious interpretations, plus ALL RIGHTS, which will
 

refer to all four rights simultaneously. It will be pos

sible for the owner of the table or the DBA to GRANT any
 

combination of the four access rights (listed in any order),
 

or ALL RIGHTS, to the whole community .of data bases users,
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or any particular user group, or any explicitly-listed
 

users. Neither the table's owner nor the DBA will need
 

to GRANT rights to himself since the Integrated Data Base
 

Management System will always assume that the table owner has
 

all four access rights on his own table, while the DBA will
 

always have all rights to everything.
 

The system will reject a SELECT command from any user
 

unless that user has READ rights on all tables referenced
 

by the SELECT. Nor will the system accept an INSERT,
 

UPDATE, or DELETE command from a user unless he or she
 

has the appropriate right on the table being edited, plus
 

READ rights on all other table referenced by the command.
 

The user may hold these rights explicitly, by having been
 

named in a GRANT command on that table, or the user may
 

hold these rights implicitly, by belonging to the approp

riate user group or if the rights are PUBLIC.
 

Although ownership of a table is a privilege, rather than
 

a right, the GRANT command may also be used by the DBA to
 

change the ownership of a table. The syntax for a GRANT of
 

OWNERSHIP will be:
 

GRANt OWNERSHIP ON <table name> TO <user-id>
 

By issuing a GRANT OWNERSHIP command,the DBA will be taking
 

ownership of the table away from the former owner and assign

ing it to a new owner. One side effect of this command will
 

be that the former owner will no longer have full access rights
 

to the data in the table unless (1) he belongs to one or more
 

groups which have been granted all access rights on the table
 

or (2) he is or has previously been explicitly granted ALL
 

RIGHTS on the table. In other words, a former owner of a
 

table will become just another user as far as that table is
 

concerned once the privilege of ownership has been removed.
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4.4.1.2 Granting Rights on Data Bases
 

There will be two rights associated with data bases:
 

ACCESS and MODIFY. As with tables, it will be possible
 

for the data base owner or the DBA to issue either right
 

separately or to issue them jointly with the "ALL RIGHTS"
 

key word, and these rights may be authorized to the entire
 

user community, to a specific user group, or explicitly to
 

individual.users.
 

A user will not be permitted to ATTACH to a data base
 

without having ACCESS authorization for that data base.
 

Once attached, he or she will be forbidden to issue a
 

DEFINE*, INSERT, UPDATE, or DELETE command unless authorized
 

the right to MODIFY the contents of the data base. Note
 

that a user may well have READ rights on some table in the
 

data base and yet be blocked from retrieving the data in
 

that table by not having been authorized to ACCESS the data
 

base. Similarly, some particular user might have, for
 

example, UPDATE rights on a table in a data base and yet
 

would not be able to perform an update on the table if
 

he or she lacks MODIFY rights on the data base itself.
 

Just as the DBA will be able to transfer the privilege
 

of ownership of a table, so the DBA will have the ability to
 

transfer the privilege of ownership of an entire data base to
 

another user. The syntax for a GRANT of data base ownership
 

will be:
 

GRANT OWNERSHIP TO <user-id>
 

The DBA will be required to be attached to the data base
 

*Except for DEFINE DATABASE. It should be noted that by
 
logical extension this also forbids all other commands in
 
the data definition and administrative categories.
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in question before changing its ownership, and hence the data
 

base need not be named in the GRANT OWNERSHIP command. Again,
 

the status of the former owner of the data base will be no
 

different from the status of any other user after the privilege
 

of ownership has been granted to the new owner, and the former
 

owner may not even retain ACCESS or MODIFY rights on the data
 

base unless implicitly (via group membership) or explicitly
 

granted those rights. However, the former owner of a data
 

base will retain ownership of any tables in the data base for
 

which he or she is the listed owner.
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4.4.2 REVOKE
 

Access authorizations which have been granted may be
 
revoked. The syntax for a REVOKE command is:
 

i(<table rights> ON <table>b PUBLIC ) 
REVOKES [FROM <user-id1.>[,<user-id2 >]...
 

<data base rights GROUP <group name> ,
 

where the table rights are READ, INSERT, UPDATE, and DELETE
 
and the data base rights are ACCESS and MODIFY (i.e., the
 
same rights which may be authorized to a user by a GRANT
 
command). Since ownerless tables and data bases are not
 
permitted, there is no REVOKE OWNERSHIP command correspond
ing to the GRANT OWNERSHIP command -- the GRANT of OWNERSHIP
 
implicitly revokes the former owner's ownership.
 

Rights may only be revoked from users or user groups
 
which have explicitly been given those rights. For example,
 

suppose users A, B, and C constitute group X. It is hot
 
permissible to GRANT rights to users A, B, and C (explicitly)
 
and then to REVOKE them from Group X or to GRANT to group X and
 
then REVOKE from A, B, and C (listed explicitly), even though
 
the collection of users which constitutes group X and the list
 
of usersA, B, and C are one and the 
same. Nor is it permissible
 
to GRANT some rights to group X and then REVOKE them from user
 
A unless those rights were explicitly granted to user A, as
 
well. Similarly, it is not permissible to GRANT some rights
 
on a table or data base to PUBLIC and then REVOKE those rights
 
from a specific user unless the rights were granted explicitly
 

to that user.
 

If a REVOKE command is issued without specifying from whom
 
the rights named in the command are to be taken (i.e., no FROM
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clause), then those rights named will revert to "owner only"
 

status and none but the table owner and the DBA will have
 

those rights on the'table.
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4.4.3 INCLUDE
 

It will be the responsibility of the Data Base Admin
istrator to assign users to user groups. 
This will be
 
accomplished by the INCLUDE command, whose syntax will be:
 

INCLUDE <user-idl>[,<user-id 2>]... IN [GROUP] <group name>
 

The group named in the INCLUDE command will have to
 

have been previously created by a DEFINE command with the
 
GROUP clause. Each of the users included in the group
 

will be implicitly authorized all data access rights
 

explicitly authorized to the entire group. A given user
 

may lie included in more than one user group, but the
 

system will regard the user's rights granted through the
 

group membership as belonging to the user and not just to
 

the group. That is, if group X has READ rights on table
 

S but not table T and group Y has READ rights on T but not
 

S , a user belonging to both groups may simultaneously
 

read both tables, even though neither group's set of rights
 

are sufficient alone for the transaction.
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4.4.4 EXCLUDE
 

Users will be removed from user groups by the EXCLUDE
 

command. The syntax of an EXCLUDE command will be:
 

EXCLUDE <user-id 1 >[,<user-id 2>].. .FROM [GROUP] <group name>
 

If it happens that a user being removed from a group is
 

concurrently accessing some data where his or her authori

zation to access that data comes solely from membership
 

in the group, then the system will permit the transaction
 

to complete itself before detaching the user from the group.
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4.5 Data Manipulation Commands
 

The six commands in the data manipulation category will
 
provide a user with the ability to retrieve information
 
from tables, to edit a table, and to view the contents of
 
tables and the results of data retrievals. This category
 
of commands, taken together, will constitute the data sub
language (or, in relational data model jargon, the "query
 
language") for the system. 
These data manipulation commands
 

are:
 

SELECT - Retrieve data from one or more tables.
 

INSERT - Add new records to an existing table, updating
 

indices as needed.
 

UPDATE - Edit one or more existing records in a given
 

table, updating indices'as needed.
 

DELETE - Remove one or more records from a given table, 
updating indices as needed. 

DISPLAY - List the contents of 
a table or the results of
 
a retrieval on a user's terminal.
 

PRINT - List the contents of 
a table or the results of
 
a retrieval on a line printer.
 

None of.these commands will be restricted, except insofaras
 
the data base to which the user is attached must contain all
 
tables referenced by his command and the user must have authoriza
tion to perform whatever operation on the tables he or she requests.
 
All of these commands (except DISPLAY, for obvious reasons)
 
will be available for use by application programs.
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4.5.1 SELECT
 

SELECT is perhaps the most important command in the.
 

entire Integrated Data Base Management System interactive
 

command language, as it is the mechanism by which data is
 

retrieved and cross referenced from one or more tables in
 

a given data base. There will be two syntaxes for the
 

SELECT command, as depicted below:
 

([FROM <table list>]<templatel>[;<template2>]...
 

SELECT 
 1 
(<target list>) WHERE <qualification>
 

The first syntax is based on the Query-by-Example retrieval
 

language of Zloff4 0 and the second is founded on the relational
 

calculus-based Quel language devised by Stonebraker, et. al.37
 

The first non-blank character after the keyword "SELECT" will
 

tell the command interpretor whether to expect the Query-by-


Example syntax (if it is alphabetic) or whether to expect the
 

relational calculus syntax (if that character is a left (open)
 

parenthesis). Since a user may be constrained to issue one
 

or more carriage returns while entering a single SELECT
 

command into the system, a special character ("") will be
 

u§ed to terminate the command.
 

The results of a SELECT retrieval will be placed in
 

the user's special "workspace table" (always indicated by
 

its alias, W ). Before a SELECT command will be accepted from
 

a user, he or she must be attached to the appropriate data
 

base and have READ authorization for every table referenced
 

by the command. Upon completion of a SELECT command the
 

system will output the number of records instantiated in W
 

as a result of the SELECT, plus an explanation of what went
 

wrong if no records are retrieved., This explanation will be
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in the form of a status word if the SELECT was input from an
 

application program.
 

The sample table layouts depicted in Figure 4-1 will be
 

used to illustrate the concepts and syntax of Query-by-Example
 

and relational calculus.
 

Since they merit considerable attention in their own
 

right, the operation of the Workspace Table and the syntax 

of a template, a target list, and a qualification are dealt
 

with in greater dezail below,
 

4.5.1.1 Query-by-Example Syntax
 

Query-by-Example is designed for interactive users working
 

in a conversational mode. The user requests a table by name,
 

the system responds by displaying a skeleton of the table (i.e.,
 

table name, column headings, column outlines), and the user
 

provides a query "template" by filling in the appropriate rows
 

of the sample table with an example answer. It is not possible
 

to describe "templates" for interactive Query-by-Example since
 

much of what the user enters must be based on interaction with
 

the system. In-each example response input by the user,
 

there will be two types of entries:
 

(1) "example elements", which in this system - will 

be preceded by an asteriskt, and 

(2) "constant elements", which are nor starred. 

The example elements represent hypothetical answers, but the
 

system will treat them as variable names and it would not
 

be wrong for the user to input a variable name of his or
 

her choosing that bears no relationship to a typical data
 

item in the corresponding field. Example elements for
 

-A reader who is familiar with Query-by-Example as.published
 
by Zloof will notice a number of minor differences between that
 
syntax and this. The changes are in part due to data character
ist.ics and in part designed to accomodate non-graphics terminals.
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IMAGE-DATE (alias: D)
 

IMAGE-ID DATE TIME I TOP-LAT BOTTOM-LAT LEFT-LON RIGHT-LO 

EVENT (alias: E)
 

NAMECLASSISTART-DATE END-DATE I START-LAT START-LON I END-LAT i END-LO 
I I I
 

Figure 4-1: Sample Tables S 
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which the user is interested in seeing the results should
 

have an "S" for ( "SELECT") in front of their asterisk.-


Figure 4-2a shows how a Query-by-Example style query might
 

be input for names and dates of all hurricanes in the EVENT
 

table and figure 4-2b illustrates the similar query for
 

hurricanes which occurred in 1977 (dates will be presumed
 

to be day, month, and year in DDMMYY form). Note that in
 

figure 4-2b it is necessary to use comparison operators to
 

qualify the constant elements.
 

A user may key in multiple rows (hence the need for 

the special end-of-query mark, "#", instead of a carriage 

return to terminate a retrieval) to form Boolean sums or 

products of simpler queries. Use of the same example elements 

in the rows represent an AND and different example elements 

represent a Boolean OR. Figure 4-3 illustraTes an alternative 

formulation for the query in figure 4-2b, using an AND 

operationit. Figure 4-4 shows a retrieval involving an OR. 

Not every example element need be selected out of a
 

table. Another use for example elements is to cross re

ference two tables over fields whose values are derived from
 

a common domain. Figure 4-5 illustrates this use (note the
 

use of a semi-colon to inform the system when the user has
 

completed the input of sample queries for one table).
 

Finally, Query-by-Example will provide a number of
 

standard "aggregate functions" whose values are computed
 

over an entire column of a table. These functions will be
 

MIN, MAX, AVG, SUM, COUNT, and SDEV (for standard deviation).
 

They will be preceded by an asterisk and placed after the,
 

S (if present) but before the example element. The range of
 

each aggregate function will be the entire column to which
 

,r Mathematically speaking the two queries are different,
 
but practically speaking, given the extent of the hurricane
 
season, they are equivalent.
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QUERY 1: 
 Retrieve name and date for all hurricanes.
 

SELECT FROM E
 

EVENT
 
NAME 1...CLASS START-DATE END-DATE ARTLATI 

S*AGNES!HURRICANE S*010772 S*010772
 

Figure 4-2a: Sample Retrieval
 

QUERY 2: Retrieve names of all hurricanes in 1977.
 

SELECT FROM E
 

EVENT
 

NAME CLASS START-DATE EN-DT iTR-LATISTART-LON IEN D-LATjEND-: 

S*AGNESIHURRICANE! >010177 '<311277 
'i I ---..... J . 

Figure 4-2b: 	 Sample Retrieval Using
 
Comparison Operators
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QUERY 2 (again): Retrieve names of all hurricanes in 1977.
 

SELECT FROM E
 

EVENT 

NAME CLASS START-DATE END-DATE START-LAT START-LON END-LAT END-LON 

!S*AGNES HURRICANE' >010177 

S*AGNES HURRICANE' <311277 

Figure 4-3: Sample Retrieval Using AND
 

QUERY 3: 	 Retrieve names and starting locations of all
 

hurricanes or tropical storms since 1976
 

SELECT FROM E
 

EVENT
 

NAME CLASS START-DATE I END-DATE JSTART-LAT START-LObN EN-D-L'AT END-LOK 
,S*AGNTES HURRICANE >311276 S*Xl S*Yl
 

,S*BRUCE TROP-STORM >311276 S*X2 S*Y2
 

Figure 4-4:- Sample Retrieval Using OR
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QUERY 4: 	 Retrieve data file id's for all images which are
 

likely to show the formation of Hurricane Agnes
 

SELECT FROM E,D
 

EVENT 

NAME CLASS I START-DATE END-DATE START-LAT START-LON IE-LAT END

'AGNES kURRICANE *010072 	 *X *Y
 

IMAGE-DATA 

DID DATE TTIME TOP-LAT BOTTOM-LAT LEFT-LON RIGHT-LON 

S*XYZ !*010772 	 >*X <*X <*Y >*¥
 

Figure 4-5: 	 Sample Retrieval With
 

Cross Referencing
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it is applied, counting duplicate values.if necessary. The
 
user will be able to restrict the function to apply to
 
unique data items by inserting the qualifier "*UNIQUE" between
 

the function name and the example element. Figure 4-6
 

illustrates the use of the COUNT function.
 

The templates in a Query-by-Example retrieval may be
 
linearized so that the necessity for system output to the
 
user may be eliminated. This will be necessary when the
 
SELECT command is issued via the Batch Command Reader facility
 

or from an application program, and may be useful when a
 
very knowledgable user is constrained to work with a slow
 
terminal or when operating system response time is slow.
 

The system will expect the linearized Query-by-Example mode
 
if the first non-blank character after the key word "SELECT"
 

is alphabetic, but 
the key word "FROM" is not present. In
 
linearized Query-by-Example each template will have the form:
 

<template>::=<table name>(<rowl>)[<row2>)J...
 

where each row represents a row the user would have entered in
 
the interactive Query-by-Example syntax. The syntax of rows
 

is defined to be:
 

<row>::=<colurnn entry,>[,<column entry2>]...
 

<column entry>::=<column name><operator><value>
 

The value part, of course, will correspond to whatever the
 

user would have keyed in for that column in the interactive
 

version of the query, except that column entries with null
 
value fields should not be present. The relational operator
 
will normally be an equals sign, unless the ">" or ,,<"1 com

parison operators would have been used in the query. 
 Column
 
entries need not be in order since they are explicitly
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QUERY 5: Count the number of hurricanes in the data base
 

SELECT FROM E
 

EVENT
 

NAME CLASS coo 

S*COUNT*AGNES HURRICANES 

Figure 4-6: 	 Sample Retrieval Illustrating
 

the COUNT Function
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identified by name.
 

Figure 4-7 illustrates sample queries 1 through 5 using
 

the linearized Query-by-Example notation.
 

4.5.1.2 Relational Calculus Syntax
 

As stated earlier, the syntax of a query using the,
 

relational calculus will be:
 

SELECT (<target list>) WHERE <qualification> #
 

The syntax for an entry in the target list is illustrated
 

below:

[<data field name>
 

<target list entry>::=
 
<result field name>=<function>
 

where the function may be a data field, an aggregate function
 

of a data field (e.g., MIN, MAX, AVG), or an arithmetic com

bination of data fields and/or aggregate functions. The data
 

fields named in a target list entry must appear in one or 
more
 

tables in the data base. To avoid possible ambiguity, a data
 

field name must be qualified by the name (or alias) of the
 

table to which it belongs. Consequently the syntax of a data
 

field name used in a relational calculus query will be:
 

<data field name>::=<table name>.<field name>
 

The names of result fields need not be in the data base's Data
 

Dictionary, as they will only exist with respect to the user's
 

Workspace Table, W. Moreover, the system will compute type,
 

size, and unit parameters for the result fields named in the
 

4-53
 



QUERY 1: 	 Retrieve name and date for all hurricanes.
 

SELECT E(NAME = S*AGNES, CLASS = HURRICANE,
 

START-DATE = S*010772, END-DATE = S*010772)#
 

QUERY 2: 	 Retrieve names of all hurricanes in 1977.
 

SELECT E(NAME = S*AGNES, CLASS = HURRICANE, START-DATE > 010177)
 

(NAME = S*AGNES, CLASS = HURRICANE, START-DATE < 311277)#
 

QUERY 3: 	 Retrieve names and starting locations of all
 

hurricanes or topical storms since 1976.
 

SELECT E(NAME = S*AGNES, CLASS = HURRICANE, START-DATE > 311276, 

START-LAT = S'X1, START-LON = S*Yl) 

(NAME = S*BRUCE, CLASS = TROP-STORM, START-DATE > 311276, 

START-LAT = S*X2, START-LON = S*Y2) # 

QUERY 4: 	 Retrieve data file id's for all images which are
 

likely to show the formation of Hurricane Agnes.
 

SELECT E(CLASS = HURRICANE, NAME = AGNES, START-DATE = *010772, 

START-LAT = *X, START-LON = *Y); 

D(DATE = *010772, TOP-LAT > *X, BOTTOM-LAT < *X, 

LEFT-LON < *Y, RIGHT-LON > *Y) # 

QUERY 5: 	 Count the number of hurricanes in the data base.
 

SELECT E(NAME = S*COUNT*AGNES, CLASS = HURRICANE) '
 

Figure 4-7: Sample Linearized Retrievals.
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target list based on the data fields and mathematical trans

formations in the functions which define the result fields, so
 

that there will be no requirement for the user to define these
 

fields in advance.
 

The qualification will be a Boolean combination of true/
 

false predicates, and the syntax of the Boolean expression
 

will be:
 

(<Boolean exp>)
 

<predicate>
 

<Boolean exp>::= NOT<Boolean exp>
 

FAND 
<Boolean exp> <Boolean exp>
 

ORJ
 

while the syntax of a predicate will be:
 

<predicate>::=<data field name><operator><value>
 

The valid operators will be the six key words LT, LE, EQ, GE,
 

GT, and NE, plus the characters >,=, and <. A value may be a
 

constant of the appropriate type, another data field, or a func

tion of another data field.
 

Figure 4-8 depicts sample data retrievals using the
 

relational calculus syntax.
 

As mentioned above, both the right-hand side of a target
 

list entry and the right-hand side of a qualification predicate
 
=
 may include arithmetic functions of fields (e.g., AREA


D.DELTAX*D.DELTAY) and/or library functions. The Integrated
 

Data Base Management System will provide both aggregate functions
 

defined on whole columns of a table and non-aggregate functions
 

defined with respect to single data items. The aggregate
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QUERY 6: 	 Retrieve the names of all tropical 
storms
 

since 1976.
 

SELECT (E.NAME) WHERE E.START-DATE GE 010177
 

AND E.CLASS = TROP-STORM #
 

QUERY 7: 	 Retrieve name and formation date for all hurricanes
 
or tropical storms formed in the northern hemisphere
 

since 1976.
 

SELECT (E.NAME, FORMATION=E.START-DATE)
 

WHERE (E.CLASS = TROP-STORM OR E.CLASS = HURRICANE)
 

AND E.START-LAT > 0 #
 

QUERY 8: 	 Retrieve data file id's for all images which may
 

cover the formation of hurricane Alice.
 

SELECT (D.DID) WHERE D.TOP-LAT GE E.START-LAT
 

AND D.BOTTOM-LAT LE E.START-LAT
 

AND D.LEFT-LON GE E.START-LON
 

AND D.RIGHT-LON LE E.START-LON
 

AND D.DATE = E.START-DATE 

AND E.CLASS = HURRICANE 

AND E.NAME = ALICE# 

Figure 4-8: 	 Sample Retrievals Using Relational
 

Calculus Syntax
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functions which will be provided are MIN, MAX, SUM, AVG, COUNT,
 

and SDEV. Aggregate functions may 'not be nested. The non

aggregates shall include the standard Fortran library functions
 

such as SQRT, SIN, COS, ATAN, ALOG, and EXP (but not MIN, MAX,
 

AMIN, or AMAX, to avoid confusion). Type-conversion Fortran
 

functions (e.g., IFIX, FLOAT, DBLE, INT, etc) will not be sup

ported -- any necessary data type conversions will be handled
 

automatically and transparently by the system itself. In
 

addition, the system will provide certain specialized non

aggregate functions for unusual cases which can be expected to
 

recur with some frequency. Typical functions might be SDIST,
 

for example, to compute the spherical distance between two
 

points on the earth's surface, and DURATN, to calculate the
 

difference between two calendar dates. Non-aggregate functions
 

will be permitted to be nested insi-de each other and inside
 

aggregate functions. Figure 4-9 illustrates the use of func

tions inside queries. Where applicable, the Boolean expression
 

in the'qualification can be replaced by an asterisk to indicate
 

that the data manipulation operation is to be performed on all
 

records of the referenced table (e.g., WHERE *). 

4.5.1.3 The Workspace Table
 

There will be precisely one Workspace Table, W, associated
 

with each active user on the system. By convention, W will
 

be empty when a user signs onto the system, and will be des

troyed when that user issues an EXIT command from the system. W
 

will have no pre-defined fields and no special access super

structures, nor will W be considered to be a part of any
 

particular data base. Thus when a user detaches from one
 

data base and attaches to another the contents of W will
 

be undisturbed, and therefore W will constitute a mechanism
 

for the transportation of data from one data base to another.
 

The contents of W will be generated by a SELECT
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QUERY 9: 	 Determine the average duration of hurricanes occuring
 

since 1972.
 

SELECT (AVDUR = AVG(DURATN(E.START-DATE, E.END-DATE)))
 

WHERE E.CLASS EQ HURRICANE AND E.START-DATE GE 010173W
 

QUERY 10: 	 Retrieve the data file id's and area of all images
 

which lie along a line running from 300N latitude
 

and 750W longitude with an azimuth of 450, terminat

ing at 720W longitude, for October 4, 1976.
 

(Assume latitudes, longitudes, and azimuths ex

pressed in 	radians and that west longitudes are
 

negative.)
 

SELECT (D.DID, AREA = SDIST(D.TOP-LAT,D.LEFT-LON,D.BOTTOM-LAT,D.LEFT-LON)
 
* SDIST(D.TOP-LAT,D.LEFT-LON,D.TOP-LAT,D.RIGHT-LON))
 

WHERE D.TOP-LAT GE .5236 + TAN(.7854)*(D.LEFT-LON + 1.309)
 

AND D.BOTTOM-LAT LE .5236 + TAN(.7854)*(D.RIGHT-LON + 1.309)
 

AND D.RIGHT-LON LE -1.2566
 

AND D.DATE = 041076 #
 

[Note: Retrieval is based on the fact that a line with a
 

positive slope intersects a rectangle if and only if it lies
 

between two lines with the same slope which intersect the
 

rectangle at its uppez left and lower right corners,
 

respectively.]
 

Figure 4-9: Relational Calculus Retrievals
 

Using Functions in the Target
 

List
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command. As records are retrieved from a data base they
 
will be entered into W , and the sequence of fields, their 
names, and their definitions will be implicitly created by 
the system to correspond to the fields in the records being 
retrieved. If W should~happen to be non-empty at the time 
a new SELECT is issued, then its former contents will be 

overwritten and lost, and the previous field definition for
 
W will be replaced by one which reflects the format of
 
the new records. 
Hence it follows that the workspace table
 
may have a variety of different field definitions during
 
a single user session, depending on the number of SELECT
 
commands issued by the user and the specific data requested
 

each time.
 

A particular user's workspace table will be associated
 
with that user personally, and will be inaccessible to all
 
other active users-- including the DBA. A user will always
 
have the right to insert records into or delete records
 
from his or her workspace table, even if lacking MODIFY
 
rights on the database to which he or she is attached.
 
Aside from that, however, the user will be free to treat
 
his or her workspace table as if it were a part of any
 
data base to which he or she is attached. That is, re
trievals may be made against W1 itself, and other tables
 
may be cross referenced against data stored in 
W . More
over W 
may be used as a source of data for insertions and
 
deletions on other tables in the data base. 
The only
 
particular restriction of which the user must be aware is
 
that the system will not permit an INSERT command into W
 
if IV is empty -- an empty workspace can be filled only by
 

a SELECT command.
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4.5.1.4 Comparing the Two Approaches
 

Both the Query-by-Example approach to information retrieval
 
and the relational calculus have been demonstrated to be
 

"relationally complete," that is, any relational operation
 

which can be performed on a relational data base can also be
 
performed using either of these two approaches. Why then,
 
have two different methods to do the same thing? The answer
 
lies in the words "user convenience" as each of these two
 
approaches provides a user with certain niceties that 
are
 
unavailable in the other.
 

The major advantage of the relational calculus-based
 
approach is the ability to put functions of one or more
 
fields in the target list and on ,the right-hand side of a
 
qualification predicate. This makes the relational calculus
 
exceedingly powerful, particularly with respect to a scien

tifically-oriented data base.
 

Query-by-Example, however, has a variety of advantages
 
over the relational calculus. In the interactive mode, for
 
one thing, Query-by-Example is very user friendly. A study
 
of this point 8has, in fact, demonstrated that Query-by-Example
 

compares very well with other query languages for relational
 
data bases, most especially with respect to ease of learning
 
and user retention. Since one goal of this proposed data base
 
management system is ease of use for casual, infrequent,
 
and/or minimially experienced users, this point argues very
 

strongly for supplying Query-by-Example as a retrieval language.
 
A second point-, also noted in the study, is that Query-by-Example
 

is "behaviorally extendable" in the sense that a notice need
 
only learn a small part of the language to write successful
 
queries and can build on his or her knowledge as required.
 
However, from the point of view of an information retrieval
 
language for a scientific (as opposed to business) data base
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perhaps the most important advantage of Query-by-Example
 

concerns data units. Consider the example table describing
 

satellite orbits depicted below
 

SATELLITE-ORBIT
 

NAME LAUNCH-DATEITIMEISEMIMAJOR-AXISIECCENTRICITY MEAN-ANOMOLYIINCLINATION
 

- PERIGEE ASCENSION 

and let us suppose that semimajor axis is recorded in kilometers.
 
But the user may wish to frame his or her request in terms of
 
earth radii and not know (or be willing to take the time to
 
calculate) the appropriate conversion factor. By inputting
 
the query with units attached, as depicted in Figure 4-10a,
 
the system could perform the conversion itself. Similarly,
 
as in 4-1Ob, the units could be attached to the example
 
element for automated conversion on output elements. It is
 
possible to extend the relational calculus by attaching units
 

to numerical quantities in the qualification, but it is not
 
easy-to see how to do the same for entries in the target list.
 
Granted, nothing prevents suitable conversion functions from
 
being established for the relational calculus approach, but
 
the user would be forced to pay a penalty in burden on the
 
memory and complexity of the resultant retrievals.
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QUERY 11: Retrieve all satellites in high orbit (>4 earth
 

radii).
 

SELECT FROM SATELLITE-ORBIT
 

SATELLITE-ORBIT 

LAUNCH-DATE I IESMIMAJOR-AXIS ECCENTRICITY 

IS*TIROS >4 RADII 

Figure 4-10a: 	 Retrieval with Automatic Units
 

Conversion
 

QUERY 12: 	 Retrieve name, launch date, and radius of all
 

satellites in circular orbit.
 

SELECT FROM SATELLITE-ORBIT
 

SATELLITE-ORBIT
 

NAME LAUNCH-DATE TIME SEMIMAJOR-AXIS I ECCENTRICITY
 

S*TIROS. 	 S*010475 S*10 RADII 0
 

___ ___ ___.. 	 . .. 

Figure 4-10b: 	 Retrieval with Automatic
 

Output Units Conversion
 

4-62
 



4.5.2 INSERT
 

Like SELECT, the INSERT command will have two distinct
 

syntaxes, as shown below:
 

INSERT[INTO]<(able name> <recordl>)[,(<record2>)]'...
 

(<target list>) WHERE <qualification>
 

where:
 

<record>::=<assignment>[,<assignment>]...
 

<assignment>::=<field name>=<constant>
 

One special constant will be the key word NULL, which will
 
represent a null value for the corresponding field of the table.
 
Alphanumeric constants, other than the key word NULL, must be
 
enclosed in apostrophes. A user-- provided he or she has INSERT
 
rights on the particular table and MODIFY authorization for
 
the data base which contains that table (see GRANT) -- will
 
have the option to spell out the new records to be added to
 
the table, or may generate the new records to be added to the
 
table by retrieving data from and cross referencing other tables
 
in the data base*. The latter approach will be equivalent to
 
a SELECT using relational calculus syntax (see Section 4.5.1.2),
 
except that the records retrieved will be placed in the speci
fied table, rather than the Workspace Table.
 

Again, it should be noted that 
a special character (I#t)
 

must terminate this command, as the user may be forced to
 
input one 
or more carriage returns before completion of the
 

full command input sequence.
 

* Including the user's Workspace Table. 
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The table which receives the records may be the Workspace
 

Table, W, except that the system will not accept an INSERT into
 

W unless W is nonempty. Inserting into an empty Workspace
 

Table can only take place via a SELECT command.
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4.5.3 UPDATE
 

There will be only one syntax for the UPDATE command,
 

as depicted below:
 

UPDATE <table name> (<changeI>[,<change2>J] ...) WHERE <qualification>
 

where the changes indicate the way fields in records are to
 

be modified and have the form:
 

Iee<]functon>
<change>: :=< field name> = {::z:
A constant appearing on the right hand side of a change should
 

agree with the definition of the field in type, and any function
 

must, of course, be a function of the field being changed (e.g.,
 

ALTITUDE=ALTITUDE - 50.3). The syntax of a qualification is
 

defined in Section 4.5.1.2.
 

In the case where the qualification consists of an asterisk 

rather than a boolean expression, the Integrated Data Base Manage

-mentSystem will apply the changes to all records in the table. 
Note that, whether a boolean qualification is input or not, a 

special character (l#") must be used to terminate the command. 

Again, users must have authorization to UPDATE the particular
 

table and to MODIFY the data base which contains it before the
 

system will accept an UPDATE command from them. Moreover, if
 

the WHERE clause references another table then the user must have
 

READ rights on that table.
 

Updates will not be accepted for the Workspace Table.
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4.5.4 DELETE
 

The syntax of the DELETE command is:
 

DELETE [FROMI <table name> WHERE <qualification> 4
 

where the syntax of a qualification is described in Section 4.5.1.2.
 

Like SELECT, INSERT, and UPDATE, the DELETE command has to be
 

terminated by a special character ("#") as the entire command
 

may span multiple lines of input. A null qualification will
 

cause the entire contents of the table to be deleted, although
 

the table itself will remain (albeit in an empty state).
 

A user will have to have been granted DELETE authorization
 

on the specified table, MODIFY authorization on the data base
 

which contains it, and READ authorization on any additional
 

tables referenced in the qualification, except, of course, that
 

he or she may always DELETE from W if W is nonempty (but the
 

requirement for READ authorizations on the other tables must
 

still be observed).
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4.5.5 DISPLAY
 

The DISPLAY command will be used to list the contents of a
 

table (including the workspace table) at an interactive user's
 

terminal. The syntax of a DISPLAY command will be:
 

DISPLAY [<table name>][(<target list>)][FORMAT=(<format>)]
 

where the syntax of a target list is described in Section 4.5.1.2
 

and the syntax of a format will be identical to the format
 

specifications inside a Fortran format statement. 
 That is,
 

<format>::=<specification 1>[,<specification>]...
 

and
 

'<string>'
 

<integer>Hstring>
 
X
Xi nteger>1
 

[<integer>] {I<integer> 
<integer>
 

<specification>::= 


A<integer>
 

T<integer>
 

The default for output table name will be the workspace table,
 

W, but the user may specify any table in the data base to which
 

he or she is currently attached. The user will also be permitted
 

to specify a target list, so that only certain columns of the
 

table are shown, and the default will be to list the entire
 

record for each record in the table. Finally, the Integrated
 

Data Base Management System will allow the user to input any
 

valid Fortran output format for listing the table, or else the
 

user can let the system select its own format specifications,
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based on the type and size of each field to be displayed. The
 

choice of format specifications for fields will be by table
 

lookup (a typical table, assuming four bytes per word is
 

depicted below). Columns will be evenly spaced, with the
 

spacing chosen to make the output readable. The system will
 

output blanks for fields which are null.
 

TYPE SIZE FORMAT 

alphanumeric n An 

real 4 E12.7 

real 8 D16.10 

integer 1 14 

integer 2 16 

integer 3 IS 

integer 4 112 

logical 1 A5* 

TABLE 4-1: System-Generated Formats
 

Note that a special character will not be needed to
 

terminate this command, and that a user may specify a table
 

other than his or her workspace table only if the user has a
 

READ authorization on that table.
 

There is one important caveat the user should be aware
 

that executing a DISPLAY on a table other than the user's work

space table may lock out other users' insertions, updates, and
 

deletions for a considerable span of wall clock time and thus
 

this feature should be avoided except on small tables or tables
 

with low usage.
 

*Will print 'TRUE' or 'FALSE'.
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4.5.6 PRINT
 

The Print command is similar to DISPLAY, except that the
 

output will be directed to a line printer, and not to an inter

active terminal.. The syntax of a PRINT command will be:
 

TITLE <title>
 

PRIN [<table name>]E<target list>)][FORMAT=(<format>)J}
 

where target list is described in Section 4.5.1.2 and format in 4.5.5.
 

Again, a user will have the option of specifying any table in
 

the data base to which he or she is attached (and for which he
 
or she has READ authorization) or - by default having the
-

system list the contents of the user's workspace table. More
over, the user will further retain the option of singling out
 

.certain columns for listing versus having all columns listed,
 

and of specifying an output format versus allowing the Inte
grated Data Base Management system to choose its own format.
 

However, a user vill also be able to 
use a PRINT command to
 

output a title to be placed on 
the printer listing. The
 

system itself will center the title.
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4.6 Data File Commands
 

Not all of the data managed by the Integrated Data Base
 

Management System will be stored in tables. Indeed, one of the
 

most important functions of this system will be to provide its
 

users with efficient and convenient access to data files main

tained on tape or stored on-line. A more unified treatment of
 

the way in which the Integrated Data Base Management System
 

provides access to the data files may be found in Section 7,
 

Data File Processing. This subsection will merely present the
 

syntax and function of the eight file operations available to
 

an'interactive user, which will be:
 

COPY - Insert records from a data file into a
 

table or vice versa.
 

CATALOG - Insert a new data file into the system
 

catalog.
 

UNCATALOG - Purge a catalog entry.
 

LOAD - Create an on-line data file in (a) system
 

standard format from a data file on tape.
 

UNLOAD - Create a backup copy on tape of an on-line
 

data file.
 

KEEP - Mark a temporary on-line data file for
 

permanent saving.
 

SCRATCH - Purge an on-line copy of a data file.
 

PERFORM - Manipulate the contents of a data file 

via loadable library routines. 
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The operation of these eight commands is governed by the
 

following set of principles:
 

(1) Each data file is identified by a unique data file
 

identifier (did).
 

(2) All on-line files will be stored in a self-describing
 

standard format.
 

(3) All data files are read-only, and may be purged, but
 

not edited in place or overwritten.
 

(4) All data files known to the system will have an entry
 

in the system catalog.
 

The CATALOG and UNCATALOG commands will be restricted to the
 
DBA, and KEEP and SCRATCH will be restricted to the owner of
 

the on-line copy of the.data file and the DBA. 
 All other
 
commands will be unrestricted, and available to any user.
 

These file operations will -be viewed by the system as being
 

functions of the system "back end", 
as opposed to commands in
 

the other groups which will be operations on the "front end".
 
Hence, the user -- though forced by convention to be attached
 

to some data base -- need not be attached to any particular data
 

base to request a file operation, except the COPY operation.
 

Three of the above commands -- COPY, LOAD, and UNLOAD -

will be available for use by applications programs. 
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4.6.1 COPY
 

The syntax of a COPY command is depicted below:
 

COPY { <table name> } 
<did> TO <table name> 

Although the function of this command (copying the contents of
 
a table into a data file versus copying the contents of a data
 
file into a table) will be symmetrical, the syntax will not.
 
This lack of symmetry is explained by the fact that when a
 
table is copied to a data file the system creates a new on
line file with a new data file identifier to receive the records
 
from the table, while in the reverse case, when data coming in
 
from a data file (on- or off-line) the table which receives
 
those records must have been pre-defined. -

When a COPY command is used to copy records from a table
 
to a file, the system will display or print* the new data file
 
id. The primary side effect of this command is that null
 
fields are replaced with zero (if numeric) or filled with
 
blanks (if alphabetic).
 

There are three important conditions which must be met before
 
the system will accept a COPY command from a file into a table.
 
The first of these, as expressed above, is that the table which
 
receives the records must have been predefined. It need not
 
be empty, however, and the new records will merely be appended
 
to the end of the table. The second condition is that the
 
sequence of fields in the table must agree in type, size, and
 
number with the sequence of fields in a record of the file.
 

*Depending on whether the command is input from an 
interactive
 
terminal or the Batch Command Reader, respectively.
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Finally, the data file must be recognized as having tabular

like data, as opposed to image data or profile data, for example.
 

This is due to the fact that the sequence of records in, say,
 

an image file will bear a relationship to one another based
 

on their order while, by definition, the order of records in
 

a table is meaningless. Tabular operations take no cognizance,
 

then, of the particular order of records in a table, but this
 

order cannot be ignored for other types of data.
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4.6.2 CATALOG
 

The DBA can enter tape files into the Integrated Data Base
 

Management System's Data File Catalog (SYSCATL system table)
 

with the CATALOG command. The syntax of a CATALOG command
 

will be:
 

CATALOG (<file entryl>)[,(<file entry2>]...
 

where
 

<file entry>::=<reel number>,<file number>,<format code>
 

The system will verify that each entry is unique and, if so,
 

the system will assign the file a unique data file identifier
 

<did>, make the entry in the catalog, and output the <did> to
 

the DBA. If, however, the file entry duplicates a previous
 

entry, then the system will merely return the pre-existing <did>.
 

The uniqueness of a file entry depends on all three com

ponents of the entry, and not just the reel number and file
 

number. Therefore, if one physical file contains multiple
 

logical data files, then the separate logical files may be
 

indicated with different format codes.
 

-Only the DBA will have the authority to issue a CATALOG
 

command. It should be noted that the DBA will also have to
 

execute one or more INSERT commands into the system directory
 

tables to reflect the new entries in the catalog.
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4.6.3 UNCATALOG
 

The DBA may purge catalog entries by using the UNCATALOG
 

command. The syntax of an UNCATALOG command will be:
 

UNCATALOG <didI>[,<did 2>]...
 

Not only will the catalog entry be wiped out for each <did> named
 

in an UNCATALOG command, but on-line copies of those files
 

will also be purged and records referencing those <did>'s will
 

be deleted from the system directory tables. However, the
 

tape file itself will be untouched, and any records in tables
 

belonging to local data bases which reference that <did> will
 

also remain as they were before the UNCATALOG command was
 

issued.
 

Only the DBA may issue an UNCATALOG command. With respect
 

to an on-line file being purged as a side effect of the
 

UNCATALOG command, the same rules apply as for the SCRATCH
 

command. That is, if an application program has opened that
 

file then it will not be erased until it has been closed.
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4.6.4 LOAD
 

The function of the LOAD command will be to create an on

line data file by copying (and perhaps reformatting) a cataloged
 

tape file (or portion of a tape file). The syntax of a LOAD
 

command will be:
 

LOAD [<operationI>(<parameter listI>)[,<operation2>(<Parameter list 2>)]...]<did>
 

where the valid operations will be SLICE, WINDOW, and SUBSET,
 

and the parameters to be specified will depend upon the
 

operation.
 

The effect of a LOAD command will be to create an on-line
 

file in a self-descriptive system standard format. Where no
 

operation is specified, the entire tape file will be brought
 

on-line and reformatted, if necessary, to conform with the
 

appropriate system standard format. In such a case, the
 

data file id for the on-line copy and the off-line copy will
 

be the same.
 

The SLICE operation is designed to create subfiles from
 

data files representing multi-dimensional grids. Such a file
 

can have up to five dimensions, corresponding to the standard
 

horizontal and vertical (x and y) axes on the ground, an
 

altitude (z) axis, a time (t) axis, and a wavelength axis (A).
 

The SLICE operation will permit the user to take a 2-D "slice"
 

along any pair of axes represented in the file. The para

meter list, then, will be the pair of axes through which the
 

SLICE is to be taken, plus a set of equations fixing the
 

remaining axes. The BNF syntax description for a parameter
 

list for SLICE is:
 

<parameter list>::=<axis.I>,<axis 2>,<eq'n 1>[L<eq'n 2>]...
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where
 

<eq'n>::=<axis>=<constant>
 

<axis>::=XFYIZITIL
 

An error message will be output and the command aborted if any
 
of the specified axes are not present in the gridded data file
 

or if an axis is left unspecified..
 

A WINDOW operation will only be performable on a two
 

dimensional file (e.g., adigitized image or digitized cartographic
 
terrain elevation model). The WINDOW operation will 
cause a
 
rectangular subarea to be selected from the specified data
 
file and copied into an on-line file. The user will have to
 
specify four parameters: starting'and ending line number and
 
starting and ending column number, all specified relative to the first
 

data point in the first record as (1, 1). The pair of line
 
numbers and pair of column numbers may be in any order,but the
 
user shall be required to specify both line numbers before
 
specifying either column number. Zero starting values (line
 
or column) will be the same as a one, and values greater than
 
the number of lines or size of a line, respectively, will be
 
rounded down to the appropriate value. However, starting
 

values which are greater than the number of lines or size of
 
a line will cause an error message to be returned and the com
mand to be aborted.
 

It is anticipated that most data files will contain
 
observed values for more than one physical variable at each
 
observation point. By using the SUBSET operation a user will
 
be able to create an on-line file which contains any non-empty
 
subset of those variables. The parameter list for a SUBSET
 
operation will be a list of names of physical variables, and
 
the size of the list will be permitted to vary from command
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to command. If the user should happen to specify a physical
 

variable not represented in the specified file, or if the
 

system fails to recognize one or more of the physical variable
 

names, then the system will abort the command and return an
 

error message.
 

As indicated by the syntax; these three operations may be
 

combined in any order in a single LOAD command, if the user so
 

desires. However, the use of one or more operations with a
 

LOAD command will cause a new data file to be created, so that
 

the system will have to generate anew data file id and assign it
 

to the new data file. Whenever an on-line file is created,
 

whether it is a new data file or a direct copy from tape, the
 

user issuing the LOAD command will become the owner of the file.
 

Anyone will be able to access the file, but only the owner (or
 

the DBA) will be allowed to issue an explicit purge on it.
 

However, unless marked "permanent" by the DBA or its owner, any
 

on-line file will be classed by the system as "temporary" and.
 

automatically purged a specified number of days after its last
 

access.
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4.6.5 UNLOAD
 

The syntax of an UNLOAD command will be:
 

UNLOAD <didl>[,<did 2>]...
 

The UNLOAD command will create back-up tape copies in system stan

dard format for each on-line data file listed in the command
 
(unless the Integrated Data Base Management System determines
 
that a back up,tape file already exists for the specified on
line file). Anyone may UNLOAD an on-line file.
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4.6.6 KEEP
 

The role of the KEEP command will be to take a temporary
 

on-line file and mark it permanent. The syntax of a KEEP
 

command will be:
 

KEEP <did 1>[,<did 2>]...
 

Anyone may issue a KEEP command, but with privilege comes
 

responsibility and hence the user who issues a KEEP command
 

will become the owner of the kept file.
 

KEEP commands will apply only to temporary on-line files,
 
and KEEP commands issued for permanent files will be rejected
 

by the system.
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4.6.7 SCRATCH
 

The SCRATCH command will cause on-line files to be purged
 

from mass storage. The syntax of a SCRATCH command will be:
 

SCRATCH <didl>[,<did2 >]...
 

Only the owner of an on-line file or the DBA may SCRATCH that
 

file, and then only if the file is marked temporary or a tape
 

version exists. An on-line file shall not be purged if it
 

has been marked permanent and no back-up tape copy exists -- it
 

will be necessary for the user to UNLOAD that file before issu

ing the SCRATCH or else an UNCATALOG will have to be used.
 

'A SCRATCH command will affect only the on-line file unless
 

the file is temporary and no tape copy exists, in which case the
 

entire catalog entry will be deleted. In no case will tables
 

in the front end of the system be affected1 by a SCRATCH command.
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4.6.8 PERFORM
 

The syntax of a PERFORM command will be:
 

SLICE
 

WINDOW
 

SUBSET (<Parameter list>) [ON] <did>
PERFORM REGRIDI WI
 
MERGE <didl> I<did2 >
 

where parameter lists have been defined in Section 4.6.4 or are
 

described below. Any data files specified in a PERFORM command
 

must be on-line files in a system standard format, and the
 

result of executing a PERFORM command will be a new, "temporaryi"
 

on-line data file, also in system standard format. The system
 

will display or print the data file id (did) for this new file,
 

and the owner of the new file will be the user who issued the
 

PERFORM command. As per system convention, the execution of
 

a PERFORM command will not cause any change to occur to the in

put file(s) specified in the command sequence.
 

The SLICE, WINDOW, and SUBSET operations have been des

cribed in the subsection of this report which discusses the
 

LOAD command. The REGRID operation will map observation points
 

from one multi-dimensional grid coordinate system onto another
 

grid coordinate system, interpolating new data values at each
 

observation point as necessary. The new coordinate system
 

must be derivable from the old coordinate system strictly by
 

a translation of origin and a change of scale. For an n

dimensional coordinate system (n>2) there will be 2n para

meters in the parameter list. The first n parameters will
 

be scaling factors (each strictly greater than zero) by which
 

the corresponding coordinate axis is to be multiplied to
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-generate new grid spacings, and the second n 
 parameters will
 
be translation parameters which will dictate how the origin
 

of the original coordinate system is to be shifted along each
 
axis to generate the new origin. 
 There are five possible
 
coordinate axes: 
 x and y (on the ground), z (altitude),
 

t (time),and X (wavelength). Any subset of two or more 
of these might be present in the original file, but the order
 
of axes will always be presumed to obey the transitive order
ing sequence t before x before y before z before A
 

The MERGE operation will cause two data files to be merged
 

into a single data file. A number of preconditions must be
 
met before the system will accept a PERFORM MERGE command:
 

(1) The.two coordinate systems must have the same number
 

and type of coordinates (except for wavelength, as dis

cussed below),
 

(2) The grid spacing along all axes must be the same for
 

both grids.
 

(3) For purposes of a MERGE operation, observations along
 
each hyperplane defined by a fixed wavelength (A) will
 

be treated as observations of a single physical variable.
 

(4) The areal coverage along the x and y axes must
 

overlap.
 

(5) If there is a t axis in the files' coordinate system,
 

then the time periods must also overlap.
 

If the origin and termination of the axes for both grids are not
 
the same, the merged data file will contain a grid consisting only
 
of the overlapping portions of the original grid. 
 The observa

tions at 
each grid point in the new data file will be formed by
 
concatenating the observations from the first data file with those
 

in the second data file.
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The five file operations presented in this subsection con
stitute a minimal and not necessarily complete set of operations.
 
The Integrated Data Base Management System has been designed to
 
permit additional operations to be added (e.g., histogramming)
 

at a future date.
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SECTION'5 - THE APPLICATION PROGRAM COMMAND LANGUAGE
 

5.1 Introduction to Application Program Command Processing
 

The Application Program Command Language is the method by
 

which an application program communicates with the Integrated
 

Data Base Management System. It permits an application pro

gram to access tabular data as well as data files. The
 

Application Program Command Language is not a complete language
 

by itself. It relies on a host language to provide a frame

work for it and to provide the procedural capabilities required
 

to manipulate data. The command language consists of a set of
 

CALL statements or its equivalent which are incorporated into
 

a procedural host language program. The command language may
 

be used with any host language (e.g., FORTRAN, COBOL, PL-l,
 

ALC) that supports a CALL statement. A single entry point or
 

subroutine name is used for all application program commands.
 

The CALL statement will have a variable length argument list as
 

a function of the command being issued. The first two argu

ments in every application program are the command itself (e.g.,
 

'SELECT', 'READ') and an integer variable which, upon return
 

from the Integrated Data Base Management System, will contain
 

the status associated with the execution of the command.
 

To an application program, the Integrated Data Base
 

Management system appears to be the single subroutine, IDBMS.
 

To the Integrated Data Base Management System, an application
 

program will appear to be a special type of user with its own
 

User Control Block and its own Workspace Table. Between an
 

application program and the system will be the Application
 

Program Interface, which will create a Command Control Block
 

for the application program command and place it on the proper
 

queue for processing.
 

The Application Program Command Language contains several
 

commands which are also included in the Interactive Command
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Language, described in Section 4. However, after analysis of
 

projected user requirements, several commands from the
 

Interactive Command Language were omitted from the Application
 

Program Command Language. These include commands to define
 

and remove data bases, tables, fields, users and groups and
 

commands to grant and revoke.access rights as well as others.
 

It should be noted that nothing in the design of the Integrated
 

Data Base Management System would preclude those commands
 

which were omitted from being included in the Application
 

Program Command Language. The set of commands available to
 

an application program will include only a subset of the com

mands available to interactive users, as detailed in Table 5-1.
 

It should be noted that the data file processing operations
 

such as REGRID, SLICE, etc. initiated interactively via the
 

PERFORM command are available to application programs directly
 

as part of the Application Program Command Language. Also,
 

an application program will have available to it an additional
 

set of commands which are not available to interactive users.
 

This section provides an overview of how an application pro

gram interacts with the system, describes the calling sequence
 

for issuing "interactive" commands through the Application
 

Program Interface, and describes the calling sequence for and
 

function of the remaining commands. Since most of these
 

special commands access data files in the Non-Relational Data
 

Base, the reader is expected to be familiar with Section 7,
 

Data File Handling, as well as Section 4, The Interactive
 

Command Language.
 

5.2 Issuing "Interactive" Commands from an Application Program
 

As stated previously, only a subset of the Interactive
 

Command Language is included in the Application Program
 

Command Language. Table 5-1 lists the interactive commands
 

which can be issued by an application program and the follow

ing subsections describe the calling sequence for each of
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UTILITY COMMANDS
 

ENTER
 

EXIT
 

ATTACH
 

USE
 

DATA MANIPULATION COMMANDS
 

SELECT
 
INSERT
 

UPDATE
 

DELETE
 

DATA FILE COMMANDS
 

COPY
 

LOAD.
 

UNLOAD
 

DATA FILE PROCESSING OPERATIONS (PERFORM)
 

SLICE
 

WINDOW
 

SUBSET
 

REGRID
 

MERGE
 

Table 5-1: Commands Available to Both Interactive
 

Users and Application Programs
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these commands as well as additional commands which support
 

them. The result of issuing any of these commands by an
 
application program is the same as if they were entered inter

actively. Thus, the description of each of these commands in
 

Section 4 is applicable and will not be repeated here.
 

5.2.1 Utility Commands
 

Interactive commands from the category of Utility Commands
 

which can be issued by an application program are described
 

below.
 

5.2.1.1 The ENTER Command
 

The ENTER command connects an application program to the
 
Integrated Data Base Management System. This command must be
 
issued by an application program prior to issuing any other
 
command in the Application Program Command Language. It is
 

coded as follows:
 

CALL IDBMS('ENTER',<status>,<program-id>.<user-id>,<'assword>)
 

where:
 

* <status> is, a binary integer variable which, upon return
 
from the Integrated Data Base Management System, will
 
contain an integer value indicating whether or not the
 
command was executed successfully' A status code of
 
zero indicates successful execution of the command. A
 
positive status code indicates unsuccessful execution of
 
the command. The value of the positive integer defines
 
the error condition which caused the unsuccessful execu
tion.
 

a <program-id> is an alphanumeric literal or variable
 
which uniquely identifies the application program which
 
is attempting to connect to the Integrated Data Base
 
Management System. The program-id is analagous to the
 
user-id associated with each valid user of the system.
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a <user-id> is an alphanumeric literal or variable which
 
identifies the user running the application program.
 
During this execution of the application program, -it
 
will assume the access rights associated with the user
 
running the program.
 

o 	<password> is an alphanumeric literal or variable contain
ing.the password of the user identified by the <user-id>
argument.
 

5.2.1.,2 The EXIT Command
 

The EXIT command disconnects an application program from
 
the Integrated Data Base Management System. This command
 
should be issued by any application program which has connected
 

to the system via the ENTER command. During EXIT command pro
cessing, the system will close any data files for which no
 
CLOSE command was issued by the application.program and reset
 
all locks on tables which have not been explicitly reset by an
 
UNLOCK command. The EXIT command is coded as 
follows:
 

CALL IDBMS('EXIT',<status>)
 

where <status> is as previously defined.
 

5.2.1.3 The ATTACH Command
 

The ATTACH command indicates the intent of the application
 
program to access the specified data base. It is coded as
 

follows:
 

CALL IDBMS('ATTACH'><status>,<data base name>)
 

where <status> is as previously defined and:
 

0 <data base name> is an alphanumeric literal or variable
 
which contains the name of the data base to which the
 
application program is to be attached. 
 After successful
 
completion of this command, the specified data base will
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be the application program's primary data base and any
 
subsequent data manipulation or COPY commands issued by
 
the application program prior to another ATTACH command
 
will access that data base.
 

5.2.1.4 The USE Command
 

The USE command permits a one or two character alias name
 

to 	be specified for a table. It is coded as follows:
 

CALL IDBMS('USE',<status>,<alias name>,<table name>)
 

where <status> is as previously defined and:
 

e 	 <alias name> is an alphanumeric literal or variable
 
which specifies a one or two character alias that can
 
be used in place of the name of the table specified in
 
the <table name> argument. The alias name can be used
 
in subsequent commands wherever the associated table
 
name can validly be used. The alias name remains until
 
it is assigned to another table or until the application
 
program terminates.
 

e 	<table name> is an alphanumeric literal or variable which
 
contains the name of the table for which the alias is
 
being established.
 

5.2.2 Data Manipulation Commands
 

Interactive commands from the category of Data Manipulation
 

Commands are described in this subsection. These commands
 

permit an application program to manipulate tabular data in much
 

the same way as an interactive user can. All of the commands
 

in this category contain one or more arguments in their calling
 

sequence which is a variable length string. By including
 

these strings, the calling sequence is simplified considerably
 

and causes the argument list to resemble the interactive com

mand syntax. To facilitate the use of variable length strings,
 

each such string must be terminated with the special symbol #.
 

Some examples of the use of these variable length strings is
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illustrated in a subsequent subsection.
 

5.2.2.1 The SELECT Command
 

The SELECT Command retrieves data from one or more tables
 

and places it in the Workspace Table associated with the applica

tion program. The tables referenced by the SELECT command
 

must be contained in the data base named in the most recent
 

ATTACH command issued by the application program. The SELECT
 

command is coded as follows:
 

CALL IDBMS('SELECT',<status>,<record no>,<target list string>,
 

<qualification string>)
 

where <status> is as previously defined and:
 

v <record no> is a binary integer variable which, upon
 
return from the Integrated Data Base Management System,
 
will contain the number of records which have been placed
 
in the Workspace Table as a result of the execution of
 
this SELECT command. This argument may contain zero
 
upon return, if no records were placed in the Workspace
 
Table.
 

* 	<target list string> is an alphanumeric literal or variable
 
which defines the data fields for which values are to be
 
retrieved from existing tables. This argument is exactly
 
the same as the target list specified in the interactive 
SELECT command described in Section 4. It defines the 
data fields which constitute the Workspace Table con
structed as a result of the execution of the SELECT com
mand. The target list string must be terminated by the 
special character #. 

o <qualification string> is an alphanumeric literal or
 
variable which specifies the conditions that must be met
 
by a record for it to be selected for retrieval. This
 
argument is exactly the same as the qualification speci
fied in the WHERE clause of the interactive SELECT com
mand described in Section 4 except that application pro
gram variable names can be used as well as constants in
 
the relation conditions (e.g., X EQ 2 could be replaced
 
by X EQ Vl where Vl is an applicat'ion program variable
 
which has been set to 2 by another application program
 
statement). The concept of using variable names in the
 
qualification string will be discussed in more detail in
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the description of the BIND command in a subsequent subsec

tion. The qualification string must be terminated by 
the special character #. 

5.2.2.2 The INSERT Command
 

The INSERT command adds one or more new records to a table.
 

There are two forms of the INSERT command: one which permits
 

a single record to be inserted directly into a table by supply

ing values for the data fields within the argument list and a
 

second which will operate in a manner similar to the SELECT
 

command in that data will be retrieved from one or more tables
 

and the resulting records will be added to the table named in
 

the argument list rather than being placed in the Workspace
 

Table. All tables referenced by the INSERT command must be
 

contained in the data base named in the most recent ATTACH
 

command issued by the application program.
 

The implementation of two different types of INSERT com

mands requires that the Application Program.Communication
 

Module, IDBMS, be capable of recognizing two different argument
 

lists. The "record" option, where data field values are
 

specified explicitly in the argument list, requires only a
 

<record string> argument, whereas the "selection" option requires
 

both a <target list string> and a <qualification string> argument
 

There are several techniques for handling this problem and the
 

choice of one over the other may be operating system dependent.
 

For example, if each compiler supported by the operating system
 

marks the last argument in an argument list, the Application
 

Program Communication Module can detect the shorter argument
 

list of the "record" option. If the compilers do not mark
 

the last argument, the <record no> argument could be set to a
 

negative value by the application program prior to issuing the
 

INSERT command to indicate the "record" option and a non-nega

tive value to indicate the "selection" option or vice versa.
 

Alternatively, open and close parentheses could be used in the
 

5-8
 



<record string> argument to distinguish it from the
 
<target list string> argument which would not contain parentheses,
 
thereby defining the type of INSERT command being issued (e.g.,
 
'(X=l,Y=2)#'). The description of the arguments below assumes
 
that the compilers support variable length argument lists by
 
marking the last argument in the list. The two forms of the
 
INSERT command are coded as follows:
 

"record" option
 

CALL IDBMS('INSERT',<status>,<record no>,<table name>,<record string>)
 

where <status> is as previously defined and:
 

" <record no> is a binary integer variable which, upon
 
return from the Integrated Data Base Management System,

will contain the integer value one if the record defined
 
in the <record string> argument was successfully added to
 
the table named in the <table name>. Otherwise, the
 
integer value zero will be returned.
 

o <table name> is an alphanumeric literal or variable which
 
contains the name of the table to which the record is 
to
 
be added.
 

* <record string> is an alphanumeric literal or variable
 
which defines the values to be assigned to data fields in
 
the record to be added. This argument is exactly the
 
same as 
the record which can be specified in the inter
active INSERT command described in Section 4 except that
 
application program variable names can be used as well as
 
constants. 
 The data fields named in this argument must
 
be data fields in the table specified in the <table name>
 
argument. 
 Any data fields which are not assigned a
 
specific value will contain a null value in the added
 
record. The record string consists of one or more assign
ment statements separated by commas. The record string

must be terminated by the special character #. 
 The form
 
of the assignment statement is:
 

[<constant>

<assignment statement>::=<data field name>=p
 

<program variable name>
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where <program variable name> must be a variable defined in
 
the application program and used in a preceding BIND,
 
command.
 

"selection" option
 

CALL IDBMS('INSERT',<status>,<record no>,<table name>,<target list string>,
 

<qualification string>)
 

where <status> is as previously defined and:
 

" <record no> is a binary integer variable which, upon
 
return from the Integrated Data Base Management System,
 
will contain the number of records which have been added
 
to the table named in the <table name> argument as a
 
result of the execution of this INSERT command. This
 
argument may contain zero upon return if no records were
 
added to the table.
 

* <table name> is an alphanumeric literal or variable which
 
contains the name of the table to which the records are
 
to be added.
 

" <target list string> is an alphanumeric literal or variable
 
which defines the data fields in the table specified in
 
the <table name> argument for which data values are to be
 
retrieved from the records satisfying the criteria stated
 
in the <qualification string> argument. This argument
 
is exactly the same as the target list which can be speci
fied in the interactive INSERT command described in
 
Section 4. Any data fields in the table specified in the
 
<table name> argument which are not included in this argu
ment will contain a null value in all added records. The
 
target list string must be terminated by the special
 
character #.
 

* <qualification. string> is an alphanumeric literal or
 
variable which specifies the conditions that must be met
 
by a record for it to be retrieved and used to construct
 
a new record to be added to the table specified in the
 
<table name> argument. The syntax of the
 
<qualification string> argument is the same as that for
 
the SELECT command described in a previous subsection.
 

5.2.2.3 The UPDATE Command
 

The UPDATE command modifies one or more data fields in one
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or more records in a table. All tables referenced by the
 

UPDATE command must be contained in the data base named in the
 

most recent ATTACH command issued by the application program.
 

The UPDATE command is coded as follows:
 

CALL IDBMS('UPDATE',<status>,<record no>,<table name>,<change list string>,
 

<qualification string>)
 

where <status> is as previously defined and:
 

* <record no> is a binary integer variable which, upon
 
return from the Integrated Data Base Management system,
 
will contain the number of records which have been modi
fied as a result of the execution of this UPDATE command.
 
This argument may contain zero upon return if no records
 
were modified.
 

e <table name> is an alphanumeric literal or variable which
 
contains the name of the table in which the records are
 
to be modified.
 

* <change list string> is an alphanumeric literal or
 
variable which defines the data fields to be modified and
 
the new values which are to be assigned to them. This
 
argument is exactly the same as the change which can be
 
specified in the interactive UPDATE command described in
 
Section 4 except that application program variable names
 
can be used as well as constants and functions. The
 
data fields named in this argument must be data fields in
 
the table specified in the <table name> argument. The
 
change list string consists of one or more assignment
 
statements separated by commas. The change list string
 
must be terminated by the special character #. The
 
form of the <change list string> argument is:
 

<change list string>::='<assignment statement >[,<assignment statement2>]...#"
 

12
 

{<constant> 
 1 
<assignment statement>::=<data field name>= <function>
 

1<program variable name>
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where 	<program variable name> must be a variable defined in
 
the application program and used in a preceding BIND
 
command.
 

* <qualification string> is an alphanumeric literal or
 
variable which specifies the conditions that must be met
 
by a record for it to be modified. The syntax of the
 
<qualification string> argument is the same as that for
 
the SELECT command described in a previous subsection.
 

5.2.2.4 The DELETE Command
 

The DELETE command deletes one or more records from a table.
 

The table referenced by the DELETE command must be contained in
 

the data base named in the most recent ATTACH command issued by
 

The application program. The DELETE command is coded as fol

lows:
 

CALL IDBMS('DELETE',<status>,<record no>,<table name>,<qualification string>)
 

where 	<status> is as previously defined and:
 

o <record no> is a binary integer variable which, upon
 
return from the Integrated Data Base Management System,
 
will contain the number of records which have been deleted
 
as a result of the execution of this DELETE command.
 
This argument may contain zero upon return if no records
 
were deleted.
 

* <table name> is an alphanumeric literal or variable which
 
contains the name of the table from which the records are
 
to be deleted.
 

* <qualification string> is an alphanumeric literal, or
 
variable which specifies the conditions that must be met
 
by a record for it to be deleted. The syntax of the
 
<qualification string> argument is the same as that for
 
the SELECT command described in a previous subsection.
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5.2.3 Operations which Support "Interactive" Commands
 

There are several commands which can be issued by an applica

tion program that provide additional tabular data handling or
 
support capabilities but are not available to interactive users.
 

These commands are required in an application program because
 

of the procedural environment in which an application pro

gram operates. Each of these commands is described below.
 

5.2.3.1 The BIND Command
 

The BIND command permits the Integrated Data Base
 

Management System to recognize a program variable name and to
 

associate that program variable with its proper location in
 

the main storage allocated to the application program. After
 

being named in a BIND command, a program variable can be used
 

in an alphanumeric string argument in an "interactive" type com

mand wherever a constant could be validly used. Thus, program
 

variables can be used in <qualification string>,<change list string>
 

and <record string> arguments in the data manipulation commands
 

described in the preceding subsections. The BIND command is
 

coded as follows:
 

CALL IDBMS('BIND',<status>,<program variable name>,<program variable>)
 

where <status> is as previously defined and:
 

o <program variable name> is an alphanumeric literal or
 
variable which contains the name of the program variable
 
as it will appear in an alphanumeric string argument in
 
a subsequent command. While the program variable name
 
will represent the program variable in string type argu
ments in subsequent commands, they need not match (e.g.,
 
'LATITUDE',LAT where LATITUDE would be used in string
 
arguments to represent the program variable LAT).
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a 	<program variable> is a variable which is defined and
 
assigned values within the application program. Whenever
 
the program variable name specified in the preceding argu
ment is encountered in an alphanumeric string argument,
 
the Integrated Data Base Management System will substitute
 
the location of the program variable and will use the
 
current value stored at that location during its processing.
 

5.2.3.2 The FETCH Command
 

The FETCH command retrieves data values from a record in
 

the Workspace Table and makes them available to the application
 

program for processing. The data fields named in the command
 

must be data fields defined for the Workspace Table by the
 

most recent SELECT command issued by the application program.
 

The ffrst FETCH command following a SELECT command will cause
 

values of the specified data fields to be retrieved from the
 

first record in the Workspace Table and to be placed into the
 

specified work area within the application program. Subsequent
 

FETCHcommands will retrieve data from the next record in turn
 

until all records in the Workspace Table have been accessed.
 

Each SELECT command issued by an application program will cause
 

subsequent FETCH commands to begin accessing records in the
 

Workspace Table at the first record. The FETCH command is
 

coded as follows:
 

CALL IDBMS('FETCH',<status>,<target list string>,<work area>)
 

where:
 

* 	<status> is a binary integer variable which, upon return
 
from the Integrated Data Base Management System, will
 
contain an integer value indicating whether or not the
 
command was executed successfully. As in the <status>
 
argument in other commands, a code of zero indicates suc
cessful execution while a positive code indicates unsuc
cessful execution and defines the error condition.
 
However, for the FETCH command, a negative status code
 
may be returned indicating an end-of-table condition.
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o <target list string> is an alphanumeric literal or
 
variable which defines the data fields in the Workspace

Table for which values are to be retrieved and returned
 
to the application program in the work area.- The data
 
field names in the <target list string> argument must be
 
separated by commas. The order of the data field names
 
will determine the order in which the corresponding data
 
values will be stored in the work area. The target list
 
string must be terminated by the special character #. 

o <work area> is a variable which defines a contiguous area
 
of main storage into which data values from the Workspace

Table will be stored. The work area must be large

enough to contain the data values corresponding to the
 
data fields specified in the <target list string> argument.
 

5.2.3.3 The LOCK Command
 

The LOCK command permits an application program to gain
 
processing control over a table. The table specified in the
 
LOCK command must be contained in the data base named in the
 
most recent ATTACH command issued by the application program.
 

Two modes of processing control are available .to an application
 
program: read and modify. If an application program specifies
 
a read mode lock for a table, other application programs and
 
interactive users can read the contents of the table but can 
not
 
modify them. If an application program specifies a modify
 
mode lock for a table, no other application programs or inter
active users can access the contents of the table in any way.
 

Once a lock is set by an application program, it can be reset
 
only by the UNLOCK command, by the EXIT command or if the applica
tion program terminates abnormally prior to issuing either of
 
these commands. The LOCK command is coded as follows:
 

CALL IDBMS('LOCK',<status>,<table name>,<mode>)
 

where <status> is as previously defined and:
 

* <table name> is an alphanumeric literal or variable which
 
contains the name of the table for which the lock is to
 
be set.
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* 	<mode> is an alphabetic literal or variable which defines the
 
type of lock to be set. The <mode> argument has only
 
two valid values: READ and MODIFY. There meanings are
 
as follows:
 

READ - the application program intends to read the con
tents of the table. No other user should be
 
permitted to update the contents of the table
 
while this lock is active. If another applica
tion program already has set a READ lock on the
 
table, this READ lock will also be set on the
 
table. If another application program has set
 
a MODIFY lock on the table, this READ lock will
 
be rejected.
 

MODIFY - the application program intends to modify the 
contents of the table. No other user should 
be permitted to access the contents of the 
table in any way. If another application 
program already has set either a READ or MODIFY 
lock on the table, this MODIFY lock will be
 
rejected. If no lock of any kind has been set
 
on the table, this MODIFY lock will be set 
on
 
the table.
 

5.2.3.4 The UNLOCK Command
 

The UNLOCK command releases processing control over a table
 

which was established by the application program via a previous
 

LOCK command. The table referenced by the UNLOCK command must
 

be contained in the data base named in the most recent ATTACH
 

command issued by the application program. This command resets
 

both READ and MODIFY locks, whichever type of lock had been
 

last set for the table by the application program. The UNLOCK
 

command is coded as follows:
 

CALL IDBMS('UNLOCK',<status>,<table name>)
 

where <status> is as previously defined and:
 

* 	<table name> is an alphanumeric literal or variable
 
which contains the name of the table for which the lock
 
is to be reset.
 

5-16
 



5.2.3.5 The GET Command
 

The GET command retrieves data values from a record in 
a
 
table in 
a data base and makes them available to the application
 

program for processing. The table referenced by the GET com
mand must be contained in the data base named in the most recent
 
ATTACH command issued by the application program. The GET com
mand follows the logical ascending sequence imposed on the table
 

by a B-tree index to determine which record should be accessed.
 
The particular B-tree index to be used, should more 
than one
 
exist for a table, is defined by specifying its associated key
 

name in the argument list of the command. If 
no B-iree indices
 
exist for a table, the GET command can not be used to retrieve
 

data from that table.
 

To support the GET command, the Integrated Data Base
 

Management System maintains a cursor for each B-tree key field
 

such that access to records in the table through a B-tree index
 

can be based on the current position of the cursor. A cursor
 
is a logical pointer which moves through a table following the
 
logical sequence imposed by the B-tree index with which it 
is
 
associated. A cursor may be set at the record in a table
 

which is associated with the lowest key value in the B-tree
 

index or at any other record by specifying the key value
 
associated with that record in the argument list of the GET
 

command. 
 Each time a GET command is issued, the specified
 
data values are retrieved from the record containing the next
 
highest key value and the cursor associated with the B-tree
 

index being used is logically positioned by the system to the
 

record accessed.. All cursors associated with B-tree indices
 

for a table are independent from one another. Thus, a GET
 

command which causes one cursor to move will not change the posi

tion of any other cursor.
 

Since the GET command retrieves records from a table based
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on a cursors set on a B-tree index, no updates to the associated
 

table which might modify the B-tree index can be permitted
 

while an application program is issuing GET commands. Thus,
 

before an application program issues a GET command to access a
 

table, a LOCK command must have been successfully executed by
 

the 4pplication for that table. The lock mode specified in
 

the LOCK command can be either READ or MODIFY, but need only
 

be READ to disallow updates to the table. After all GET com

mands have been issued for the table, the UNLOCK command should
 

be issued. If a table named in a GET command has not been
 

locked by the application program issuing it, the GET command
 

will be rejected.
 

The GET command is coded as follows:
 

CALL IDBMS('GET',<status>,<table name>,<key name>,<key area>,
 

<target list string>,<work area>)
 

where:
 

<status> is a binary integer variable which, upon return
 
from the Integrated Data Base Management System, will
 
contain an integer value indicating whether or not the
 
command was executed successfully. As in the <status>
 
argument in other commands, a code of zero indicates suc
cessful execution while a positive code indicates unsuc
cessful execution and defines the error condition.
 
However, for the GET command, a negative status code may
 
be returned indicating an ,end-of-table condition.
 
Additionally, the <status> argument is used to indicate
 
that this GET command will set a starting point for
 
retrieval of records via the B-tree index. When the
 
status contains a negative value upon issuing the GET
 
command, the contents of the key area will be used to
 
set the cursor associated with the B-tree index identi
fied by the <key name>.
 

* <table name> is an alphanumeric literal or variable Which
 
contains the name of the table from which data values are
 
to be retrieved.
 

o <key name> is an alphanumeric literal or variable which
 
defines the B-tree index whose cursor is to be used to
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determine from which record the data fields specified in
 
the <target list string> argument will be retrieved.
 
The key name must have been previously specified inter
actively in an INDEX command which created a B-tree index
 
on the table named in the <table name> argument.
 

a <key area> is a variable which defines a contiguous area
 
of main storage into which the values associated with the
 
key field specified in the <key name> argument will be
 
stored. Should the <key name> argument represent a combina
tion key field, values from each of the fields which con
stitute the combination key field will be stored in the
 
key area. Additionally, the <key area> argument is used
 
to establish a starting point for retrieval within the
 
specified B-tree index. If the <status> argument con
tains a negative value, the contents of the key area will
 
be used to set the starting point for retrieval, in that
 
the record accessed will be the one with a matching key
 
or, if no matching key exists, the one with the next highest

key. The cursor associated with the specified B-tree
 
index will be logically positioned at the accessed record
 
and subsequent GET commands will retrieve records with the
 
next higher key in the B-tree index.
 

o <target list string> is an alphanumeric literal or variable
 
which defines the data fields in the table named in the
 
<table name> argument for which values are to be retrieved
 
and returned to the application program in the work area.
 
The data field names in the <target list string> argument

must be separated by commas. The order of the data
 
fieldnames will determine the order in which the correspond
ing data values will be stored in the work area. The
 
target list string must be terminated by the special charac
ter #. 

# <work area> is a variable which defines a contiguous area
 
of main storage into which data values from the table
 
specified in the <table name> argument will be stored.
 
The work area must be large enough to contain the data
 
values corresponding to the data fields specified in the
 
<target list string> argument.
 

5.3 Data File Commands
 

Interactive commands in this category permit an application
 
program 
to move entire data files from an off-line to an on
line storage device and to create a backup on magnetic tape
 
of an on-line data file. Additionally, an application program
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4 

can transform a table to a data file and a data file to a table.
 

Each of the commands which can be issued by an application pro

gram are described below.
 

5.3.1 The COPY Command
 

The COPY command permits an application program to transform
 

a table to a data file and a data file to a table. The direction
 

of 	transformation is controlled by the contents of the <did>
 

argument. The COPY command is coded as follows:
 

CALL IDBMS('COPY',<status>,<did>,<table name>)
 

where <status> is as previously defined and:
 

<did> is a variable containing either the identifier of the
 
data file which is to be transformed into a table or spaces
 
(blanks), which indicate that the table is to be trans
formed into a new data file. If a new data file is to be
 
created from the contents of the table, upon return from
 
the Integrated Data Base Management System, the <did>
 
argument will contain the identifier assigned to the newly
 
created data file.
 

* 	<table name> is an alphanumeric literal or variable which
 
contains the name of the table which will receive the con
tents of the data file or from which the new data file is
 
to be created.
 

5.3.2 The LOAD Command
 

The LOAD command permits an application program to create
 

an 	on-line data file in system standard format from a data file
 

on 	magnetic tape. For a discussion of system standard formats,
 

see Section 7, Data File Handling. If the contents of the on

line data file are exactly the same as that of the off-line
 

data file, they will have the same data identifier. If the
 

contents of the two data files are different after loading, a
 

new data identifier is assigned to the on-line data file.
 

The LOAD command is coded as follows:
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CALL IDBMS('LOAD',<status>,<old did>,<new did>,<parameter array>)
 

where <status> is as previously defined and:
 

* 	 <old did> is a variable containing'the identifier of the off
line data file on magnetic tape which is to be copied
 
on-line. The data file will be converted to one of the
 
system standard formats during the loading process, if
 
necessary.
 

o 	 <new did> is a variable which, upon return from the
 
Integrated Data Base Management System, may contain the
 
data identifier of a new on-line data file in system
 
standard format if it contains,'in some form, a subfile
 
of the original off-line data file. If the original data
 
file is copied on-lane in its entirety, no new data
 
identifier is assigned to it and the <new did> argument
 
will- contain spaces (blanks) upon return to the applica
tion program. If some operation is performed during

loading, as defined by the <parameter array> argument,
 
that causes the contents of the on-line data file to be
 
different from those of the off-line data file, a new data
 
identifier will be assigned to the on-line data file by

the system and will be returned in the <new did> argument.
 

* 	 <parameter array> is a one-dimensional array variable
 
whose values will be a function of the data file being
 
copied on-line. The parameter values will control the
 
loading in that they will permit window and subset opera
tions to be performed as the data file is being loaded.
 
See Section 4, The Interactive Command Language, for a
 
more thorough discussion of the parameters required to
 
control a LOAD operation.
 

5.3.3 The UNLOAD Command
 

The 	UNLOAD command permits an application program to
 

create a backup copy on magnetic tape of an on-line data file.
 

The 	UNLOAD command is coded as follows:
 

CALL 	IDBMS('UNLOAD',<status>,<did>)
 

where <status> and <did> are as previously defined.
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5.4 Data File Processing Operations
 

There will be (at least) five operations which will
 

manipulate whole data files. These operations will be avail

able to interactive users via the PERFORM command, but they
 

will be more directly available to application programs.
 

These operations will take one or two data files, plus certain
 

parameters, as input and create a new data file as output.
 

The input data file(s) must have been loaded on-line before

hand either interactively or by the application program. The
 

new data file will also be an on-line file in system standard
 

format. It will be marked as a temporary data file and will be
 

opened as a side effect of its creation and will be closed
 

before control is returned to the application program. The
 

data identifier assigned to the newly created data file will
 

be returned to the application program. The new data file
 

can be opened and read by the application program but cannot
 

be overwritten.
 

The five operations will be:
 

SLICE - Create a new data file by taking a two

dimensional slice of a multi-dimensional 

gridded file. 

WINDOW - Create a new data file by extracting a rect

angular subarea from an image, cartographic,
 

or two-dimensional gridded file.
 

SUBSET - Create a new data file by extracting only a 

specified subset of physical variables from 

the original file. 

REGRID - Create a new data file by interpolating the 

data from a gridded file in one coordinate 

system into a new coordinate system. 

MERGE - Form a single file by merging the data from 

two other files. 
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A precise description of the above operations may be found in
 

Section 4, The Interactive Command Language.
 

5.4.1 Performing a SLICE Operation
 

The slice operation creates a new data file from an exist

ing data file by taking two dimensions from the n-dimensional
 

grid (n > 2) of the original data file. The two dimensions to be
 

extracted are defined within the argument list along with the 

remaining n - 2 dimensions and an array of constants which, to

gether, define a set of n - 2 equations of the form DIMENSION = 

CONSTANT . Each equation defines a hyperplane through one of 

the remaining axes, the intersection of which defines the
 

two-dimensional plane (slice) with the desired set of axes.
 

The SLICE operation is coded as follows:
 

CALL IDBMS('SLICE',<status>,<old did>,<new did>,<axis array>,<constant array>)
 

where <status> is as previously defined and:
 

" 	<old did> is a variable containing the data identifier assoc
iated with the existing multi-dimensional gridded data file
 
from which a two dimensional slice is to be extracted.
 

* 	<new did> is a variable which,upon return from the Integrated
 
Data Base Management System, will contain the data identifier
 
of the two-dimensional gridded data file created as a result
 
of 	the SLICE operation.
 

* 	<axis array> is a one-dimensional array variable whose
 
values define the axes of the grid from which the slice
 
is to be taken. The acceptable values for the elements
 
are X, Y, Z, T and L which represent the two earth
 
coordinates, altitude, time and wavelength, respectively.
 
The first two elements of this array must be the two axes 
of the extracted slice while the remaining n - 2 elements 
are the remaining axes of the grid. They must match,
 
one-for-one, the n - 2 constants specified in the
 
<constant array> argument.
 

* 	<constant array> is a one-dimensional floating point array
 
variable whose values must match the axes in the 3rd
 

through nth elements of the <axis array> argument to form
 
the equations which define the hyperplanes..
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5.4.2 Performing a WINDOW Operation
 

The WINDOW operation extracts a rectangular subarea
 

from an existing data file to create a new data file. The
 

input data file can be an image file, a cartographic terrain
 

elevation model or a two-dimensional gridded file. The new
 

data file created by the WINDOW operation will be of the
 

same type as the original. For the purpose of performing
 

a WINDOW operation, a data file appears to contain records
 

numbered from 1 to N where N is the number of records in the
 

data file. Each record in the data file appears to contain
 

fixed length fields (e.g., pixels) numbered from 1 to M
 

where M is the number of fields in each record. The length
 

of a field is defined in the header record for all system
 

standard formatted data files. Thus, the WINDOW operation is
 

performed by specifying beginning and ending record numbers
 

and field numbers to define the subarea. In addition to
 

providing the capability of extracting a contiguous subarea
 

from an existing data file, the WINDOW operation also permits
 

sampling of the entire data file or a subarea to create a
 

new data file. By specifying a record step size, j, which
 

is greater than one, every jth record can be selected within
 

any defined subarea. Similarly, by specifying a field step
 

kth 
size, k, which is greater than one, every field can be
 

extracted from each selected record to create the new data
 

file. The WINDOW operation is coded as follows:
 

CALL .IDBMS('WINDOW',<status>,<old did>,<new did>,<ISt record>,<last record>,
 

<record step size>,<lst field>,<last field>,<field step size>)
 

where <status>,<old did> and <new did> are as previously
 

defined and:
 

* 	<Ist record> is a binary integer variable whose value
 
indicates the first record from which data fields will
 
be extracted to form the subarea. If it contains zero,
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the subarea will begin with the first data record in the
 
data file. If the <1st record> argument contains a
 
positive integer, i , the subarea will begin with the
 
ith data record in the data file. If the first record
 
exceeds the number of records in the data file, the
 
WINDOW operation will be rejected.
 

<last record> is a binary integer variable whose value
 
indicates the last record from which data fields will
 
be 	extracted to form the subarea. If it contains zero,
 
the last data record in the data file will be the last
 
record in the subarea. If the <last record> argument

contains a positive integer, i , the subarea will end 
with the ith data record in the data file. If the last
 
record exceeds the number of records in the data file,
 
the last data record in the data file will be the last
 
record in the subarea. If the first record exceeds the
 
last record, the WINDOW operation will be rejected.
 

<record step size> is a binary integer variable whose value
 
indicates the sampling interval to be used for data
 
records to create the subarea. If it is zero. all records
 
beginning with the record specified in the <ist record>
 
argument and ending with the record specified in the
 
<last record> argument will be used to create the subarea.
 
If 	the <record step size> contains a positive integer, j,

only every jth record beginning with the record specified

in the <1st record> argument will be used. The last
 
record used will be the jth record not exceeding the
 
record specified in the <last record> argument.
 

* 	<Istfield> is a binary integer variable whose value in
dicates the first field in each data record to be ex
tracted to form the subarea. If it contains zero, the
 
subarea will begin with the first field in each selected
 
data record. If the <1st field> argument contains a
 
positive integer, i , the subarea will begin with the ith
 
field in each selected data record. If the first field
 
exceeds the number of fields in the data records, the
 
WINDOW operation will be rejected.
 

<last field> is a binary integer variable whose value
 
indicates the last field in each data record to be ex
tracted to form the subarea. If it contains zero, the
 
last field in each selected data record will be the
 
last field -in each record in the subarea. If the
 
<last field> argument contains a positive integer, i
 
the ith field in each selected data record will be the
 
last field in each record in the subarea. If the last
 
field exceeds the number of fields in the data records,
 
the last field in each data record will be the last field
 
in each record in the subarea. If the first field ex
ceeds the last field, the WINDOW operation will be rejected.
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<field step size> is a binary integer variable whose
 
value indicates the sampling interval to be used for
 
fields to create the subarea. If it is zero all fields
 
beginning with the field specified in the <l field>
 
argument and ending with the field specified in the
 
<last field> argument will be extracted from the selected
 
records to create the subarea. If the <field step size>
 
argument contains a positive integer, k, only every
 
ktn field will be extracted from every selected record
 
beginning with the field specified in the <Ist field>
 
argument. Thp last field used in each selected record
 
will be the kt n field not exceeding the field specified

in the <last field> argument.
 

5.4.3 Performing a SUBSET Operation
 

The SUBSET operation extracts the value of one or more
 

physickl variables at each point in a data file containing
 

gridded data to create a new data file. 
 The input data file
 

must contain data on an n-dimensional (n = 2, 3, or 4) grid.
 

The new data file will contain data on the same grid
 

as the"original data file. The SUBSET operation permits
 

specific variables to be extracted from the original data
 
file based on their relative position in the vector of data
 

values at each point in the grid. As an example, consider a
 

three-dimensional gridded data file (the dimensionality of 
a
 
gridded data file is defined in its header record) where the
 

three dimensions are longitude, latitude and altitude. At
 

each grid point, a vector exists which contains values of
 

wind velocity, wind direction, temperature and pressure in
 
that order. To create a new data file containing only tempera

ture and pressure data at each grid point, the integer array
 

defined by the <variable array> argument must contain 3 and 4,
 

indicating that the third and fourth data values in the vector
 

at each grid point are to be extracted. The resulting data
 

file will contain the same longitude, latitude and altitude at
 

each grid point contained in the original file as well as the
 

temperature and pressure values at each grid point. The SUBSET
 

operation is coded as follows:
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CALL IDBMS('SUBSET',<status>,<old did>,<new did>,<variable array>)
 

where <status>,<old did> and <new did> are as previously
 

defined and:
 

* <variable array> is a one-dimensional.binary integer 
array variable whose values indicate the relative
 
position in the vector at each grid point from which
 
variables are to be extracted. The array identified
 
by the <variable array> argument must be dimensioned
 
at least one greater than the number of variables to be
 
extracted at each grid point. Each element of the
 
array must contain a positive integer indicating the
 
relative position in the grid point vector of the variable
 
to be extracted. The element immediately following the
 
last element in the array which defines the relative
 
position of variables to be extracted, must contain
 
zero as an array terminator.
 

5.4.4 Performing a REGRID Operation
 

The REGRID operation creates a new gridded data file from
 

an existing gridded data file. A scale factor and/or a
 
translation can be applied to the existing grid points to
 
obtain the new grid points while one of several interpolation
 

schemes can be used to obtain the values of the variables at
 
each of the new grid points. Separate scaling factors and
 
translations can be applied to each axis in the coordinate
 
system of the original gridded data file. An array is used
 

in the argument list to contain both the scaling factors and
 
the translations., The number of entries in each array will
 
depend upon the number of coordinate axes (not considering
 

wavelength as an axis) in the grid (the number and type of
 
axes for a gridded data file are defined in its header record).
 
The ith entry in each array will correspond to the ith axis of
 
the multi-dimensional grid, where the order of the axes is
 

defined by the following total ordering:
 

T<X<Y<Z 
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As 	an example, consider a three-dimensional gridded data file
 

where the three dimensions, or axes, are time (T), longitude
 

(X) and latitude (Y). Then the first element in both the
 

scale factor and translation arrays would contain the scaling
 

factor and translation, respectively, to be applied to the T
 

axis (time), the second elements would contain the scaling
 

factor and translation for the X axis (longitude) while the
 

third elements would contain the scaling factor and transla

tion for the Y axis (latitude). Note, that no dummy elements
 

need be supplied for the non-existent Z axis. The REGRID
 

operation is coded as follows:
 

CALL IDBMS('REGRID',<status>,<old did>,<new did>,<scale factor array>,
 

<translation array>,<interpolation indicator>)
 

where <status>,<old did> and <new did> are as previously
 

defined and:
 

" <scale factor array> is a one-dimensional binary floating
 
point array variable whose values define the scaling
 
factor for each of the dimensions or axes of the grid.
 
The scale factor array must contain one scale factor
 
for each axis of the grid contained in the data file.
 
Each scale factor must be greater than zero. A scale
 
factor of one indicates no scaling of the grid points
 
along the corresponding axis.
 

" 	<translation array> is a one-dimensional binary floating
 
point array variable whose values define the offset of
 
the origin of the new grid from that of the original
 
grid. The translation array must contain one translation
 
value for each axis of the grid contained in the data
 
file. A translation value of zero indicates no trans
lation for the corresponding axis.
 

* 	<interpolation indicator> is a binary integer variable
 
whose value indicates the interpolation scheme (e.g.,
 
linear, cubic spline, etc.) to be used to obtain the values
 
of the variables at the new grid points.
 

5.4.5 Performing a MERGE Operation
 

The MERGE operation combines the contents of two gridded
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data files into a single, new gridded data file. Both of the
 

input data files must be in system standard format and must be
 
defined over the same grid. That is, both grids should be
 

defined with respect to the same set of coordinate axes.
 

Additionally, the grid spacing for all axes must be the same
 

for both grids. If the origin and termination of the axes
 

for both grids do not match, the merged data file will contain
 

a grid consisting only of the overlapping portions of the
 

original grids. If no portion of the two input grids overlap,
 

the MERGE operation will be aborted. The vector of data
 

values at each grid point in the new data file will be formed
 

by concatenating the values from the corresponding grid
 

point in the first data file with those from the correspond

ing grid point in the second data file. The MERGE operation
 

is coded as follows:
 

CALL IDBMS('MERGE',<status>,<old did1>,<old did 2>,<new did>)
 

where <status> and <new did> are as previously defined and:
 

* <old did1 > is a variable containing the identifier of
 
one of the input data files which must be a gridded
 
data file.
 

* <old did 2 > is a variable containing the identifier of
 
the second input data file which must be a gridded data
 
file. The data identifier contained in the <old did2 >
 
argument must be different from that in the <old didl>
 
argument.
 

5.5 Examples of the Use of "Interactive" Commands
 

As an example of the use of "interactive" commands and
 

supporting operations in an application program, consider
 
a table named EVENT with data fields NAME, CLASS, STRTDATE,
 

ENDDATE, STARTLAT, STARTLON, ENDLAT, ENDLON and STRENGTH
 
which describes a series of storms under study. The EVENT
 

table is contained within a data base named STORMS. Also,
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RLAL*B PGMIDgUSERI,DNAME.ALIASTABLE,DID,DATE(2),BLANKS
 
INTEGER RECNOSTATUS
 
DATA DBNAME/ISTORMSI/,TABLF/'EVENT'/,ALIAS/,Et/,KEY/,NAME/


*BLANKS/I '/,PGMID/'TEST'/
 
C READ USER-ID AND PASSWORD OF USER RUNNING PROGRAM AND
 
C START AND DATES FOR RETRIEVAL
 

READ(5,10) USERID,PASSWODATE
 
10 FORMAT(A6, IX.A4 /12A6)
 

C CONNECT TO THE INTEGRATED DATA BASE MANAGEMENT SYSTEM
 
CALL IDBMS('ENTER',STTUSPGMIDUSERIDPASSWD)
 
IF(STATUS.GT.O) GO TO 9000
 

C eIND START AND END DATE NAMES TO DATE ARRAY FOR USE IN STRINGS 
CALL IOBMS('BIND',STATUS,9SDATE '-DATE(1))
 
IF(STATUS.GT.0) GO TO 9000
 
CALL IDBMS('BIND'STATUS,'EDATE ',DATE(2))
 
IF(STATUS.GT.0) GO TO 9000
 

C ATTACH TO STORMS DATA RASE FOR PROCESSING
 
CALL IDBMS('ATTACH',SIATUSDBNAME)
 
IF (STATUS.GT.0) GO TO 9000
 

C ASSIGN ALIAS NAMEtEt TO EVENT TABIE IN STORMS DATA BASE
 
CALL IDBMS(fUSEtSTATUSALIASTABLE)
 
IF(STATUS.GT.o) GO TO 9000
 

C RETRIEVE DATA FIELDS FRUM EVENT TABLE INTO WORKSPACE TABLE 
CALL IDBMS('SELECT',STATUSRECNO,'E.NAME,E.STRENGTH&I, 
'E.STRTDATE GT 770531 AND E.ENDDATE LT 77090111) 

IF(STATUS.GT.O) GO TO 9u0 
C CALL SUBROUTINE TO READ AND PRINT ANY DATA IN WORKSPACE TABLE 

IF(RECNO.GT.o) CALL WURKRD 
C READ EVENT TABLE SEQUENTIALLY USING INDEX ON NAME FIELD 

CALL SECRC(TAELEKEY) 
C ADD NEW RECORD TO EVENT TABLE 

CALL IDBMS(FINSEPT',STATUSRECNO,TABLE,'NAME=DORACLASS=HURR, 
* STRTDATE=SDATEENDDATE=EDATESTARTLAT=20.SENDLAT=41.7, 
* 	 STARTLON=300,ENDLON=J09.7n) 

IF(STATUS.GT.O) GO TO 9000 
C COPY CURRENT CONTENTS OF EVENT TABLE TO A DATA FILE 
C SET DATA IDENTIFIER (DIO) TO BLANKS TO INDICATE COPY 
C FROM TABLE TO NEW DATA FILE 

DID=BLANKS 
CALL I0SMS('COPY',STATUS,DIUTABLE) 
IF(STATUS.GT.O) GO TO 9000 

C DISCONNECT FROM THE INTEGRATED DATA iASE MANAGEMENT SYSTEM 
9999 CALL IDBMS('EXIT',STATUS) 

IF(STATUS.GT.0) WRITE(6,9010) STATUS 
STOP 

C ERROR HANDLER 
9000 WRITE(6,9010) STATUS 
9010 	FORMAT('O',1OX,'IDRMS ERROR - STATUS CODE = '14)
 

GO TO 9999
 
END 

Figure 5-1: Using the Application Program Command Language
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http:STARTLON=300,ENDLON=J09.7n


SUdROJTINE WORKRU
 
DIIAENSION NAWE(3)
 
INTEGER STATUS
 
LUGICAL*1 WKAPEA(16)
 
EOUIVALENCE (NAM(i)tKAREA(1)),(STRENWKAREA(13)I
 

C RETRIEVE DATA FROM WOUKbPACE TABLE
 
10 CALL IDUMS(IFETCHIsSTATUS,!NAME.STREN;TH1,.WKAPEA)
 

I&(STATUS) 9999520,9000
 
6) vV ITE(6,30) NAME.STREil
 
JO FORMAT('01,sX93A4SK, 4)
 

GJ TO 10
 
C ERROR HANDLER
 
9000 WITE(6s010) STATUS
 
9010 FURMAT('01t+OXfFETCH ERROR - STATUS CODE =c94)
 
999q 	RETUPV
 

E INII 

SUBRCLTINE SECPD(TPELEiKEY)
 
DIMENSION NAME(3)
 
R~FL*b TABLE,KEY
 
INTEGER STATUS
 
LOGICAL%1 WKAREA(20)
 
EUUIVALENCE (C[_ASS, +KAPEA(l))g(SLAT WKAREA(5))-(EL 4TqKAREA(Q))q
 
(SLOOJtWKAREA(13))*(ELON,wKAREA(17))


C LOCK EVENT TABLE PRIOR [0 SEQUENTIAL RETRIEVAL
 
CALL IDBMS(ILOCKF.STATUS.TABLEqvREAD)
 
IF(STATUS.GT.O) Go TO 9000
 

C SET KEY RETURN ARGUMENT TO 
BINARY ZEROS 4ND STATUS NEGATIVE TO-

C START READING AT RECURD 
IN EVENT TABLE CONTAINING LOWEST NAVE
 

DO 10 "I=1,3
 
NAME (I)=0
 

10 CONTINUE
 
STATUS=-1
 

C RETRIEVE FIELDS FROM RECORL IN EVENT TABLE WITH NEXT HIGHEST NAME
 
dO CALL IDBMS('GET',STATUSTABLEKEYsNAME,'CLASSSTARTLATENDLAT,
 

* 	 STARTLONENDLON#',WKAREA) 
IF(STATUS) 9999,30,9000 

30 WRITE(6,40) NAME.CLASbgSLATSLONELATELON 
40 FORIAAT('O',lOX,3A4,3X,A4i2(5X,2(F6.2,2))I 

Gd TO 20 
C ERROR HANDLER 
9000 WRITE(6,9010) STATUS
 
9010 FORMAT('O'IOX,'IDHMS ERROR 
- STATUS CODE = ',14)
 

C UNLOCK EVENT TABLE
 
9999 	CALL IDBMS('UNLOCK',STATUSTABLE)
 

IF(STATUS.GT.0) WRITE(6,9010) STATUS
 
RETURN
 
END
 

Figure 5-1 (Continued): Using the Application Program Command
 

Language
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the EVENT table has a B-tree index associated with it which
 

has been defined on the data field NAME. Excerpts from an
 

application program which accesses the EVENT table are shown
 

in Figure 5-1.
 

5.6 Commands Which Access Data Files
 

The Application Program Command Language contains several
 

commands which are available only to application programs (and
 

not to interactive users). These commands provide an appli

cation program with the ability to access and create data files.
 

The nine commands in this category are:
 

OPEN - open an existing data file for input or a new
 

data file for output.
 

CLOSE - close a data file.
 

READ - copy a data record (or portion thereof) into
 

an indicated work area.
 

WRITE - output a data record (or portion thereof) from
 

an indicated work area.
 

SEARCH - scan a data file record-by-record to locate a
 

specific character string.
 

GETHEAD - fetch the header record from a data file in
 

system standard format.
 

PUTHEAD - output a header record to a new data file.
 

GETHIST - fetch a history record from a data file in
 

system standard format.
 

PUTHIST - output a history record to a new data file.
 

The last four commands will not be accepted by the Integrated
 

Data Base Management System unless the data file referenced by
 

the operation is known to be in a system standard format. The
 

following subsections describe each of the commands for handling
 

data files and gives the calling sequence for each.
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5.6.1 The OPEN Command
 

The OPEN command logically connects a data file to an
 

application program for processing. If the <access mode>
 

argument indicates that a new data file is to be created, the
 
resultant file will always be' a temporary on-line file, regard

less of the format. The owner of this file will be taken
 
from the user-id in the ENTER command by which the application
 

program became connected to the system. If an OPEN is issued
 
against a data file which has not been loaded on-line and for
 

which no system standard format version exists then the OPEN
 

operation shall be aborted. The OPEN command is coded as
 

follows:
 

CALL IDBMS('OPEN',<status>,<did>,<format>,<access mode>)
 

where <status> is as previously defined and:
 

o 	<did> is a variable which contains the identifier of the
 
data file (if an existing file) or else will receive the
 
identifier assigned to the file (if a new file is being
 
created).
 

* <format> is an alphanumeric variable whose contents define
 
the system standard format in which a new data file is to
 
be written or which receives the format type of an existing
 
data file which is to be read.
 

* 	<access mode> is an alphabetic literal or variable which
 
defines the way in which the application program intends
 
to access the data file being opened. The <access mode>
 
argument has three valid values: INPUT, OUTPUT and OUTIN.
 
Their meanings are as follows:
 

INPUT - The application program intends to read an 
existing data file identified by the data
 
identifier specified in the <did> argument.
 
The format of the existing data file will be
 
returned in the <format> argument.
 

OUTPUT - The application program intends to create a
 
new data file. The format in which the new
 
data file is to be written is defined by the
 
<format> argument. The data identifier
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assigned to the new data file by the system
 
will be returned in the <did> argument.
 

OUTIN - The application program intends to create a new
 
data file and also modify the new data file.
 
The <format> and <did> arguments are processed
 
as described for the OUTPUT mode.
 

5.6.2 The CLOSE Command
 

The CLOSE command logically disconnects a data file from
 

an application program. If the data file being closed is a
 

new data file, an entry is created for the data file and is
 

inserted in the Data File Catalog. The CLOSE command is coded
 

as follows:
 

CALL IDBMS('CLOSE',<status>,<did>)
 

where <status> and <did>-are as previously defined.
 

5.6.3 The GETHEAD Command
 

The GETHEAD command causes a header record from a data
 

file in one of the system standard formats to be retrieved
 

and returned to the application program. The GETHEAD command
 

can be issued at any time following an OPEN command for the
 

data file and preceding a CLOSE command. However, if the
 

GETHEAD command follows one or more GETHIST or READ commands,
 

the data file is repositioned by the system at the physical
 

beginning of the data file prior to attempting to read the
 

header record. The GETHEAD command will be rejected if the
 

data file is not in one of the system standard formats. The
 

GETHEAD command is coded as follows:
 

CALL IDBMS('GETHEAD',<status>,<did>,<work area>)
 

where <status> and <did are as previously defined and:
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<work area> is a variable which defines a contiguous
 
area of main storage within the application program

into which the header record w'll be stored. The work
 
area must be large enough to contain the entire header
 
record.
 

5.6.4 The GETHIST Command
 

The GETHIST command causes a processing history record
 
from a data file in one of the system standard formats to
 
be retrieved and returned to the application program. The
 
initial GETHIST command issued for 
a data file will return
 
the first processing history record, if any exist, to the
 
application program. Subsequent GETHIST commands will return
 
succeeding processing history records to the application
 
program in the order in which they appear in the data file.
 
If a GETHIST command follows a READ command, the system
 
will position the data file to the second record before
 
attempting to retrieve the processing history record. It is
 
not necessary that any GETHIST commands be issued by an
 
application program. It is possible for an application pro
gram to open a data file that is in system standard format,
 
process The data file and close it without ever retrieving a
 
processing history record. The GETHIST command will be re
jected if the data file is not in one of the system standard
 
formats. The GETHIST command is coded as 
follows:
 

CALL IDBMS('GETHIST',<status>,<did>,<work area>)
 

where <did> and <work area> are as previously defined and:
 

* 	<status> is a binary integer variable which, upon return
 
from the Integrated Data Base Management System, will
 
contain an integer value indicating whether or not the
 
command was executed successfully. As in the <status>
 
argument for other commands, a code of zero indicates
 
successful execution while a positive code indicates
 
unsuccessful execution and defines the error condition.
 
However, for the GETHIST command, a negative status
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code may be returned indicating the end of the processing

history records has been encountered. A negative status
 
code value will be returned for the first GETHIST
 
command issued if the data file contains no processing

history records.
 

5.6.5 The PUTHEAD Command
 

The PUTHEAD command causes a header record to be written
 
on a new data file. A PUTHEAD command must be issued prior
 
to issuing a PUTHIST or WRITE command for the data file.
 
Subsequent PUTHEAD commands can be issued by the application
 
program. They will overwrite the existing header record if
 
this capability is supported by the operating system for the
 
peripheral storage device on which the data file is being
 
written. The PUTHEAD command is coded as 
follows:
 

CALL IDBMS('PUTHEAD',<status>,<did>,<work area>)
 

where <status> and <did> are as previously defined and:
 

* <work area> 
is a variable which defines a contiguous
 
area of main storage within the application program.

Prior to issuing the PUTHEAD command, the header record
 
must be constructed in the work area.
 

5.6.6 The PUTHIST Command
 

The PUTHIST command causes a processing history record
 
to be written on a new data file. 
Unlike the PUTHEAD command,
 
all processing history records must be written before a single
 
data record is written, and any PUTHIST commands issued after
 
a WRITE command will be rejected by the system. Each PUTHIST
 
command will cause precisely one processing history record
 
to be written on the data file, immediately after the previous
 
history record. The PUTHIST command is coded as follows:
 

CALL IDBMS('PUTHIST',<status>,<did>,<work area>)
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where <status> and <did> are as previously defined and:
 

* 	<work area> is a variable which defines a contiguous
 
area of main storage within the application program.
 
Prior to issuing the PUTHIST command, the processing
 
history record must be constructed by the application
 
program in the work area. Alternatively, the work area
 
might 	be one which was specified in a previous GETHIST
 
command thus causing the transfer of an exsiting pro
cessing history record from an existing data file to a
 
new data file.
 

5.6.7 The READ Command
 

The READ command causes a data record, or portion there

of, from a data file to be retrieved and returned to the
 

application program. The READ command need not be preceded
 

by either a GETHEAD or GETHIST command. It can be issued
 

for data files in one of the system standard formats or in
 

their original data file format. To an application program,
 

the data records in a data file appear to be numbered se

quentially froml to N where N is the number of data records
 

in 	the data file. The data record retrieved by a READ
 

command is a function of the integer value placed in the
 

<record no> argument described below. All,or any part,of
 

the retrieved record can be returned to the application pro

gram. This is controlled by the <start> and <length> argu

ments described below. The READ command is coded as follows:
 

CALL IDBMS('READ',<status>,<did>,<record no>,<start>,<length>,<work area>)
 

where <did> is as previously defined and:
 

* <status> is a binary integer variable which, upon return
 
from the Integrated Data Base Management System, will
 
contain an integer value indicating whether or not the
 
command was executed successfully. As in the <status>
 
argument in other commands, a code of zero indicates suc
cessful execution while a positive code indicates unsuc
cessful execution and defines the error condition.
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However, for the READ command, a negative status code may

be returned if, in an attempt to position the data file
 
to the data record specified by the <record no> argument,
 
the end-of-file is encountered.
 

* 	 <record no> is a binary integer variable whose value
 
indicates the relative position of the data record to
 
be retrieved from the data file. If it contains zero,
 
the record retrieved will be the data record immediately
 
following the last data record retrieved, except for the
 
initial READ command, in which case, the first data record
 
in the data file will be retrieved. If the <record no>
 
argument contains a positive integer, the data file
 
will be positioned, either forward or backward, to that
 
data record prior to retrieving the data record. A
 
negative value in the <record no> argument will cause the
 
READ command to be rejected.
 

* 
 <start> is a binary integer variable which indicates
 
the first byte in the retrieved data record that is to
 
be returned to the application program. If the <start>
 
argument contains zero, the first byte returned in
 
the work area will be the first byte in the retrieved
 
record. If it contains a positive integer, i, the
 
first byte returned in the work area will be the ith
 
byte in the data record. If the start byte exceeds
 
the number of bytes in the data record, the READ comm
and will be rejected.
 

<length> is a binary integer variable which indicates
 
the number of bytes to be returned to the application
 
program. If the <length> argument contains zero, the
 
remainder of the retrieved record, beginning with the
 
start byte, is returned. If the length plus the start
 
byte exceeds the length of the data record, the portion
 
of the data record beginning with the start byte and
 
going to the end of the record will be returned.
 

<work area> is a variable which defines a contiguous
 
area of main storage within the application program
 
into which the retrieved data record, or portion thereof,
 
is stored. The portion of the data record returned in
 
the work area is defined by the <start> and <length>
 
arguments. The size of the work area must be greater
 
than or equal to the number of bytes specified by the
 
<length> argument unless it is zero. In which case,
 
its size must be greater than or equal to
 
(record length - <start> + 1).
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5.6.8 The WRITE Command
 

The WRITE command causes a data record, or portion
 
thereof, to be written to 
a new data file. The initial
 
WRITE command issued by an application program must be pre
ceded by a PUTHEAD command but need not be preceded by any
 
PUTHIST commands. However, if any processing history records
 
are to be placed in the new data file, they must all be
 
written, using the PUTHIST command, before the first WRITE
 
command is issued. 
As with the READ command, the data
 
records in 
a new data file appear to be numbered sequentially
 
from 1 to N where N is the number of data records written at any
 
given time during the execution of the application program.
 
The placement of the data record to be written is 
a function
 
of the integer value placed in the <record no> argument
 
described below. 
Thus, existing data records can be overwritten
 
by a WRITE command. However, this 
can only occur for-a data
 
file which is in the process of being created by the appli
cation program and only prior to the first CLOSE command
 
issued by the application program. All,or any part,of a
 
data record can be written to a data file. Any portion of
 
a new data record -which is not provided by the application
 
program will contain binary zeros when the data record is
 
placed in the data file. 
 Any portion of an existing data
 
record which is being overwritten and is not provided by the
 
application program will contain the original contents of the
 
existing data record. The portion of 
a data record trans
ferred from an application program by a WRITE command is
 
controlled by the <start> and <length> arguments described
 
below. 
The WRITE command is coded as follows:
 

CALL IDBMS('WRITE',<status>,<did>,<record no>,<start>,<ength>,<work area>)
 

where <status> and <did> are as previously defined and:
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<record no> is a binary integer variable whose value
 
indicates the relative position in the data file where
 
the data recordor portion thereof, is to be written.
 
If it contains zero, the record written will immedi
ately follow the last command written, except for
 
the initial WRITE command, in which case, the record
 
written will immediately follow the header record or
 
the last processing history record. A zero in the
 
<record no> argument may cause an existing data record to
 
be overwritten if a preceding WRITE command positioned

the data file such that sequential writing of data
 
records would cause existing data records to be over
written. If the <record no> argument contains a positive
 
integer which is greater than N+l, the WRITE command will
 
be rejected. If it contains a positive integer less
 
than or equal to N, the existing data record at that
 
relative position in the data file will be overwritten.
 

* 	<start> is a binary integer variable which indicates the
 
first byte in the data record into which data from the
 
application program is to be stored. If the <start>
 
argument contains zero, the first byte in the work area
 
will be stored in the first byte of the data record.
 
If it contains a positive integer, i , the first byte
 
in the work area will be stored in the ith byte of
 
the data record. If the start byte exceeds the number
 
of bytes in the data record, the WRITE command will be
 
rejected.
 

<length> is a binary integer variable which indicates
 
the number of bytes to be stored in the data record.
 
If the <length> argument contains zero, data is stored
 
in the remainder of the record, beginning with the start
 
byte. If the length plus the start byte exceeds the
 
length of the data record, data are stored in that portion
 
of the record beginning with the start byte and going
 
to the end of the record.
 

<work area> is a variable which defines a contiguous area
 
of main storage within the application program from
 
which data are transferred to a data record. The portion
 
of the data record to which the contents of the work area
 
are transferred is defined by the <start> and <length>
 
arguments. The data to be transferred must be placed
 
into the work area by the application program prior to
 
issuing the WRITE command. The size of the work area
 
must be greater than or equal to the number of bytes
 
specified by the <length> argument, unless it is zero.
 
In which case, its size must be greater than or equal
 
to (record length - <start> + 1).
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5.6.9 The SEARCH Command
 

The SEARCH command initiates a record-by-record scan
 

of a data file, or portion thereof, to locate particular data
 

values. The SEARCH command need not be preceded by any other
 

command except an OPEN command for the data file to be searched.
 

The SEARCH command scans only data records and can be issued
 

for data files in one of the system standard formats or in
 

their original data file format. As with the READ and WRITE
 

commands, the data records in a data file appear to be
 

numbered sequentially from 1 to N where N is the number of
 

data records in the data file. The SEARCH operation will
 

begin with the record immediately following that designated
 

in the-<record no> argument. Each data record will be
 

retrieved in turn and the portion of the retrieved record
 

defined by the <start> and <,length> arguments will be compared,
 

as defined by the <comparison operator> argument, with the
 

contents of the work area. When the result of the comparison
 

is true, the SEARCH operationwill terminate and the record
 

number of the record satisfying the comparison will be returned
 

in the <record no> argument. It should be noted that the
 

same contiguous string of bytes from each data record retrieved
 

will be used in the comparison, as determined by the <start>
 

and <length> arguments. For example, if the <start> argumnt
 

contains 6 and the <length> argument contains 4, then bytes
 

6, 7, 8 and 9 (and only those bytes) from each record will be
 

compared with the contents of the work area. The SEARCH
 

command is coded as follows:
 

CALL IDBMS('SEARCH',<status>,<did>,<record no>,<start>,<length>,
 

<comparison operator>,<work area>)
 

where <did)> is as previously defined and:
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<status> is a binary integer variable which, upon return
 
from the Integrated Data Base Management System, will
 
contain an integer value indicating whether or not the
 
command was executed successfully. As in the <status>
 
argument in other commands, a code of zero indicates
 
successful execution while a positive code indicates
 
unsuccessful execution, and defines the error condition.
 
However, for the SEARCH command, a negative status code
 
will be returned if an end-of-file was encountered
 
before a data record was found for which the comparison
 
was true.
 

<record no> is a binary integer variable whose value in
dicates the relative position of the data record after
 
which the SEARCH operation will begin. If it contains
 
zero, the SEARCH operation will begin with the first
 
data record in the data file. If it contains one, the
 
SEARCH operation will begin with the second record
 
and so on. If a data record is found for which the
 
comparison is true, the record number of that record
 
will be returned in the <record no> argument. Since
 
the SEARCH operation begins with the data record imme
diately follqwing that specified by the input value of
 
the <record no> argument, a search can be continued
 
following a successful comparison by using the value
 
returned in the <record no> argument as the input value
 
for the-next SEARCH command. If an end-of-file-is
 
encountered during the SERACH operation, the contents
 
of the <record no> argument will not be modified.
 

" 	 <start> is a binary integer variable which indicates
 
the first byte in each data record that is to be compared
 
with the contents of the work area in the application
 
program. If the <start> argument contains zero, the
 
comparison will begin with the first byte in each data
 
record. If it contains a positive integer, i , the first
 
byte that is compared is the ith byte in each data
 
record. If the start byte exceeds the number of bytes
 
in each data record, the SEARCH command will be rejected.
 

* 	 <length> is a binary integer variable which indicates the
 
number of bytes in each data record to be compared. If
 
the <length> argument contains zero the remainder of
 
each record, beginning with the start byte, is compared
 
with the contents of the work area. If the length plus
 
the start byte exceeds the length of each data record,
 
the portion of each data record beginning with the start
 
byte and going to the end of the record will be compared.
 

* 	 <comparison operator> is a two byte alphabetic literal
 
or variable which defines the comparison operation to
 
be performed between that poriton of each retrieved
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data record defined by the <start> and <length> arguments

and the contents of the work area in the application program.

The valid comparison operators are EQ, NE, LT, LE, GT
 
and GE.
 

9 	<work area> is a variable which defines a contiguous
 
area of main storage within the application program

whose contents are compared with all or a portion of
 
the contents of each retrieved data record. The data
 
to be compared must be placed into the work area by

the application program prior to issuing the SEARCH
 
command. 
The size of the work area must be greater than
 
or 
equal to the number of bytes specified by the <length>

argument, unless it is zero. 
 In which case, its size 
must be greater than or equal to 
(record length - <start> + 1). 

5.7 Miscellaneous Commands
 

Commands in this category do not fit easily into any of
 
the previous categories of commands. Currently, only one
 
command is included in this category, the FORMAT command.
 
However, other commands may be added to this category as
 

required.
 

5.7.1 The FORMAT Command
 

The FORMAT command permits an application program to
 
determine which copies of a data file currently exist and in
 
what format. By accessing the Data File Catalog, this
 
command will indicate whether or not an original off-line
 
version of the data file exists and, if so, in what format;
 
whether or not an on-line version exists and, if so, in what
 
system standard format; and whether or not an off-line, backup
 
version exists in system standard format. The FORMAT command
 
is 	coded as follows:
 

CALL IDBMS('FORMAT',<status>,<did>,<original copy>,<on-line copy>,
 

<backup copy>)
 

where <status> and <did> are as previously defined and:
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o 	 <original copy> is a variable which, upon return from 
the Integrated Data Base Management System, will contain 
an indication of whether or not an original copy of the 
data file exists on magnetic tape and, if so, in what 

format. If no such copy exists, spaces (blanks) will 
be returned. Otherwise, a character string indicating 
the original data file format in which the tape file 
exists will be returned. 

* 	 <on-line copy> is a variable which, upon return from the
 
Integrated Data Base Management System, will contain
 
an indication of whether or not a copy of the data file
 
in system standard format exists on a direct access
 
device and, if so, in which system standard format. If
 
no such copy exists, spaces (blanks) will be returned.
 
Otherwise, a character string indicating the system
 
standard format (e.g., gridded, image, etc.) in which the
 
on-line copy exists will be returned.
 

* 	 <backup copy> is a variable which, upon return from the
 
Integrated Data Base Management System, will contain an
 
indication of whether or not a copy of the data file in
 
system standard format exists on magnetic tape and, if
 
so, in what format. If no such copy exists, spaces
 
(blanks) will be returned. Otherwise, a character string
 
indicating the system standard format in which the backun
 
copy exists will be returned. If both an on-line copy
 
and a backup copy exist, the returned contents of this
 
argument will match that of the <on-line copy> argument,
 
since both copies must be in the same system standard
 
format.
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SECTION 6 - THE PHYSICAL STORAGE OF TABULAR DATA
 

6.1 The Tabular Data Storage Area
 

All data managed by the "front end" of the Integrated Data
 

Base Management System will be logically organized into tables.
 

These tables may have one or more indices associated with them.
 

All tables and indices maintained by the relational front end
 

of the system must be stored on one or more direct access
 

devices (drums, disks, data cells, etc.). All direct access
 

space which has been allocated and initialized at system
 

generation time for the storage of tables and their associated
 

indices is referred to as the tabular data storage area. The
 

tabular data storage area is subdivided into physical pages
 

and a page map is constructed at system generation time which
 

relates physical pages to a specific direct access device.
 

6.2 Physical Pages
 

The basic unit of storage for data managed by the "front
 

end" of the Integrated Data Base Management System will be the
 

physical page -- a fixed size block of bytes capable of being
 

rolled into or out of main memory with a single I/O command.
 

In certain computers (e.g., DEC's PDP-Il) the physical page
 

size is predetermined by the machine architecture. Where
 

there are no constraints imposed by the mainframe architecture
 

itself, the main considerations in choosing a physical page
 

size are (1) that there should be an integral number of pages
 

per track on the direct access device and (2) if the direct access
 

device is such that a track is divided into sectors, there
 

should be an integral number of sectors per page. Within
 

these two constraints, the normal desire will be to make the
 

physical page size as large as possible to cut down I/0
 

requests during record-at-a-time processing. However, it must
 

be recognized by the system implementors that when the page
 

size is too large the number of physical pages which can reside
 

in main memory simultaneously will be limited and that this
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can lead to thrashing* problems for multiple users. Notice
 

that the size of the physical page is determined solely by hard
ware considerations and not by data-related considerations,
 

such as typical record size.
 

Physical pages will be associated with a unique physical
 
page id identifying its location on disk. There are two
 

approaches which can be used:
 

(1) Assign consecutive numbers to physical page locations
 

following some order and use an auxiliary table or
 

system function to map physical page id's into direct
 

access device addresses (and, incidentally, to do some
 

checking for validity).
 

(2) Create a physical page id directly from the address,
 

for example, by concatenating disk pack number, cylinder
 

number, track number, and sector number, if used.
 

A choice between these two alternatives will have to be made
 

at implementation time. The primary tradeoff will be bezween
 

number of bytes required to store a physical page id vs. extra
 

time and core required for page id decoding, and these cannot
 

be analyzed until machine and on-line mass storage specifica

tions are known.
 

One physical page id which will not be used is zero. If,
 

in the humbering scheme, it makes sense to have a "zero-th" page,
 

that page will be reserved for system-use only and will not be
 

used to bold data. Hence, a physical page id of zero can be
 
used as a "null pointer" to indicate the end of a linked list.
 

6.3 Managing Mass Storage
 

Depending upon the sophistication of the operating system
 
on which this system is implemented, it may or may not be
 

*"Thrashing" describes a condition where throughput has degenerated
 
due to a higher demand for pages in core than can be accommodated.
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advantageous to make use of the machine's own file handing
 

system to manage mass storage. By far and away the easiest
 

approach would be to have each relation implemented as a single
 

on-line file, where the files are maintained by the machine's
 

operating system. Such a file would be constrained by the DBMS
 

software to grow or shrink one physical page at a time, and an
 

addressing scheme based on physical page id within file would
 

have to be designed. This in turn would have an impact on the
 

numbering scheme for selecting physical page id's.
 

In the absence of precise knowledge as to the operating
 

system under which the DBMS will be implemented, the conserva

tive decision is to assume that the DBMS will have to handle
 

its own disk management. The DBMS can view the physical pages
 

as ,beingof two types: free or in use. Those pages which
 

are in use are linked to a Relation Control Block and those
 

which are free are also chained together in a last-in-first

out singly-linked list, as depicted in Figure 6-1. To
 

reserve a free page, the system simply removes the first page
 

from the chain, while liberating a given page merely requires
 

saving a link to the first free page and changing the head
 

pointer to point to this new page. The system will have to
 

be initialized during system generation by linking all pages
 

in the tabular data storage area together.
 

6.4 Buffers and the Buffer Control Table
 

The existence of fixed-size physical pages requires fixed

size buffers in main memory to hold these pages. These buf

fers will be managed by a buffer control table. There will
 

be one entry in the table for each buffer in main memory and
 

each entry will contain the following fields:
 

(1) page number - the physical page id of the page in this
 

buffer.
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Figure 6-1: Linked List of Free Pages 
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(2) update flag - indicates,whether the contents of the
 

page have been altered.
 

(3) hold flag - indicates whether the user expects to have
 

further need of this page or not.
 

(4) LRU counter - used to identify the least-recently used
 

physical page in main memory.
 

(5) user id - of the user currently accessing this page.
 

When an active user wishes to access a physical page, the
 

system begins by searching the buffer control table to deter

mine whether that page is already in core. If so, then the
 

user turns on the "hold" flag and begins processing immediately.
 

If not, then the system must select a buffer and roll the
 

desired page into that buffer. The first choice for a buffer
 

is bne which is empty (an unlikely event after the first few
 

seconds the system is up). If there are no empty buffers,
 

then the system must select one of the buffers and prepare it
 

for use. The selection criteria (counting empty buffers 
as
 

a "zero-th" level) is:
 

(1) hold flag off, update flag off (00)
 

(2) hold flag off, update flag on (01)
 

(3) update flag off, hold flag on (10)
 

(4) both flags on (11)
 

The buffer which fits into the lowest numerical category is
 

selected. Where two or more buffers tie as candidates for
 

swap-out, then the least-recently used among the candidates
 

is chosen. For example, if there is more than one buffer
 

in category two but no empty buffers and no buffers in category
 

one, then the leastl-recently used buffer in category two is
 

chosen. There is, however, one caveat -- no buffer should be
 

swapped out if -its user id matches that of the user request

ing a page and its hold flag is on.
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The LRU counter works as follows. The system stores a
 
master counter. Every time a buffer is accessed,this master
 

counter is incremented and conied into the LRU counter for that
 

buffer. Then, the least-recently used page is that page with
 
the smallest counter. 
 If the master counter overflows then
 
remedial action may be taken, e.g., 
divide all counters, in

cluding the master counter, by two. This would be more rapid
 
than subtraction (since it 
can be done by right shifting each
 

counter one bit) although counter adjustment will normally occur
 

about twice as often.
 

6.5 The Structure of Tables
 

6.5.1 Storing Records on a Physical Page
 

There is one basic rule which guides the entire design of
 
the physical file structure: no record shall be split 
across
 
physical page boundaries. One immediate consequence of this
 
rule is that a certain amount of space at the end of a physical
 

page might be wasted -- space left over which is too small to
 
contain another record and which, therefore, is unusable.
 
This wasted space is referred to as "internal fragmentation"
 

and it can be a significant overhead factor when records are
 

large relative to the size of a physical page. However, an
 
approach which allowed records to be split across page bound

aries would cause a considerable increase in processing time
 

(since some records would require two page accesses to be read)
 
and in the complexity of the software. 
 Since the wasted frag
ment must always be smaller than the size of a record, when
 

records are reasonably small relative to the page size the
 
gains in decreased complexity and computation time are ample
 

compensation for the wasted space.
 

Another corollary of,the above rule is that the physical
 
page size will impose a systemic upper bound on the size of 
a
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record. Records which are too large to fit on a single page
 
must be redefined by the user to make them fit(this may result
 
in the user splitting his table into two or more tables).
 

Notice that this test would be performed by the system at the
 
time the table is defined and before physical pages are allocated
 
for record storage or an entry is inserted in the SYSREL table.
 

The first several bytes in a physical page will be reserved
 

for pointers, two of which are used to chain all of the data
 
pages of an on-line file into a doubly-linked list. The RCB
 

will have the physical page id of the first data page in the
 
list and the final page in the list, and each data page will
 

have the physical page id of its predecessor and successor in
 

the list. The forward pointers facilitate look-ahead buffer
ing when processing the file on a record-by-record basis.
 

When a data page is brought into core, the system can retrieve
 

the page id of the next page in the chain from the forward
 
page pointer, locate a page buffer, and overlap bringing in the
 

next page with processing the current one.
 

The records are stored in the remainder of a page following
 

the pointers. Each record will be preceded by a bit map show
ing which fields in the record are null. The record itself
 
will be stored beginning at the next byte boundary after the
 

bit map. Within a bit map a zero will indicate a null field
 
and a one will indicate a non-null field. Since a string of
 

n ones represents the integer (2 -l). the test for no null
 
fields is straightforward.
 

Figures 6-2a and 6-2b depict record storage within a
 

physical page and the linked list structure of a table,
 

respectively.
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Figure 6-2b: Physical File Structure for Tables
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6.5.2 Holes in a Page
 

The presence of a bit map associated with each record makes
 

it an easy matter to delete a record merely by setting the bit
 

map to all zeros. This creates a "hole" inside a data page,
 

which can be filled during a later insert operation. To save
 

time locating these holes they will be chained together in a
 

linked list within a page, and pages with holes in them will
 

be placed on a last-in-first-out, doubly-linked list. Note
 

that the order of pages in the list of pages with holes in them
 

will not necessarily correspond to the sequence of pages in the
 

data page list.
 

The within-page list of holes will be ordered on ascend

ing location within the page. This will permit the system to
 

collapse adjacent holes into a single large hole using standard
 

dynamic core allocation algorithms. * Since space within a hole
 

is not otherwise being used, the first couple of bytes can be use
 

to hold the size of the hole and a pointer to the next hole in
 

the chain.
 

The use of a doubly-linked list makes it relatively easy
 

to delete a page from the list. This can happen in two ways:
 

(1) the last hole in the page has been filled by an insertion
 

or (2) the only record in a page has been deleted.
 

If we assume that insertions take place only in the first
 

page in the list of pages with holes in them then the double

linked list is slightly inferior to using a singly-linked list.
 

However, deleting an empty page from the list can come anywhere
 

in the list and would be quite expensive without the existence
 

of a back pointer to the page's predecessor (this is why the
 

regular list of data pages is also double-linked, since the
 

empty page must be deleted from that list as well).
 

Specifically, Algorithms A and' B in section 2.5 of Knuth20 .
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Figure 6-3 depicts the pointer structure within a table.
 

Note that the RCB needs pointers to both ends of the primary
 

list of data pages since new pages must be added to the end of
 

the list, while the list of pages with holes needs only a head
 

pointer.
 

6.5.3 Variable-Sized Records
 

The physical page structure described in this section can
 

be adapted for use with variable-sized records (provided that
 

the records are shorter than a physical page). There will be
 

four major differences:
 

(1) The size of the wasted fragment at the end of a page
 

will vary, and will normally wind up being treated as
 

a hole.
 

(2) The size of holes will be more variable.
 

(3) Insertions will often require multiple probes into the
 

list of pages with holes.
 

(4) Record size, as well as the bit map, must be stored in
 

the record header.
 

However, the main outline of the data structure, algorithms
 

for maintaining the two lists of pages, and even the algorithms
 

for maintaining the within-page list of holes can be used
 

unaltered.
 

6.6 Access Method Superstructures
 

6.6.1 B-Trees
 

6.6.1.1 Description
 

The use of tree-structured indices with two-way decision
 

nodes (i.e., binary trees) appears to have been invented in the
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1950's*. More recently this notion has been generalized to
 

.
three-way decision nodes and from these to m-way decisions1
 

An m-way decision tree is called a "B-tree" and it is formally
 

defined as follows:
 

(1) 	Every node has m or fewer sons.
 

(2) 	Every node - except the root and the leaves - has
 

at least 2 sons.
 

(3) 	All leaves are on the same level and have no sons.
 

(4) 	The root has at least 2 sons (unless it is a leaf).
 

(5) 	 A non-leaf node with k sons has k-l keys.
 

A node with j+l pointers P P ..' P. and j keys
0' -I1 ' 3 
KI < K2 < . . < K. can be depicted as: 

Po KIPlK P 2 . Kj3
P0K 1 2 
.*K .p.
 

To search for a key K in the above node, simply test K
 

against Ki for i = 1, 2, ... , j If K = Ki then we are
 

done, otherwise if K < K. search for K in the node whose
1
 

address is Pi-i Finally, if K > K. go search the node
 

whose address is P * If the above node is a leaf, so that
 

the pointers are null, then either "K will equal K. for
 
some i or else K is not in the file.
 

B-tree indices lend themselves to large paged files where
 

both the index and the file must be stored on a direct access
 

device. B-trees are quite efficient for search purposes, since the
 

number of disk accesses required to locate a key will be less than or
 

equal to the number of levels in the tree. A worst case
 

analysis of the maximum number of levels L in an m-ary tree
 

* 	 21
A history can be found in section 6.2.2 of Knuth
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as a function of the number of records (N) and -m is only
 
2 1
 

moderately difficult to compute:


L < 1 + (log2N-1)/(log92m-l)
 

In other words, with m as small as 32 (=25) it is possible
 

to locate a single record out of two million with at most
 

five disk accesses.
 

Not only are B-trees efficient for searching, they are
 

also easy to update. Inserting a new key and pointer into a
 

less than full node is a simple matter of shifting keys and
 

pointers already in the node to perserve the ordering of the
 

keys. If the node is full (i.e., the node contains m-1 keys)
 

then the node must be split to make room for the new key and
 

pointer. Let K' be the middle key of the m keys (counting
 

the new one). Then an unused node P' is fetched and all
 

keys and pointers to the right of K' are moved into P' and
 

K' and P' are inserted into the father of P . This pro

cedure is illustrated in figure 6-4 for m equal to 
seven.
 

If P has no father (i.e., P is the root), then in order to
 

accomodate the split node a new root containing P , K' , and
 

P' must be created (hence the exception to rule 1 described
 

in rule 4). This adds a level to the tree. It can be shown21
 

that the likelihood of any split is less than 2/(m-2).
 

Deletions are only slightly more difficult than insertions.
 

When a node falls below the minimum size due to a deletion
 

the first step is to examine the node's right brother. If that
 

node is above the minimum, then keys and pointers can be taken
 

from that node to balance the two. If there is no right
 

brother, or if the right brother is also of minimum size, then
 

try to take some keys and pointers from the left brother. If
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that 	also is impossible, then this node and one brother should
 
be collapsed into a single node and the appropriate key and
 

pointer deleted from the father.
 

6.6.1.2 Implementation Within the System
 

The concept of B-trees as outlined within the preceding
 
section will be extended for use within the Integrated Data
 
Base Managemeit System. Specifically, the following conditions
 
will be added to the five which define B-tree structures:
 

(6) 	Leaf nodes will contain entries of the form (K,T),
 
where T is the record identifier for the record
 
whose key is K . The maximum number of entries in
 
a leaf may be different from m , though the con

straint that a node must always be at least half
 
full will be observed. No pointers (except record
 

id's) will be stored in leaves.
 
(7) No recordid's will be stored in non-leaf nodes, and
 

therefore a search cannot terminate until a leaf
 

is reached.
 

(8) The keys stored,in non-leaf nodes will be the value
 
of the largest key on any leaf which is a descendant
 

of that node.
 
(9) 	Leaves will be linked together so as to preserve an
 

ascending key sequence.
 

Figure 6 -5 depicts a B-tree of order four (i.e., at most three
 
keys per node), where the leaves (not depicted) hold five keys
 
apiece and the keys are the integers 1-90. Notice that the
 
maximum key on each leaf (i.e., every integer between 1 and 90
 
divisible by 5) is repeated on precisely one non-leaf (or branch)
 
node with the exception of the maximum key value (90 in this
 
case). Fetching the recordid for key K is done by walking
 
down 	the tree following the same search procedure as described
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previously until the leaf where K 
is stored has been located,
 
then searching the leaf with a binary or sequential search.
 

Notice that the test for going to node P 
 must be changed
 
from strict inequality to " 
<", but that if K is found in
 
a branch node then its position in the leaf will be known in
 
advance. This revised B-tree structure is similar to IBM's
 
VSAM access method
 9 but the two methods are not identical.
 

The insertion algorithm outlined in the preceeding sub
section must also be modified. The first stage is a search
 
to locate the leaf node where the key and record id are to be
 
inserted. If this leaf is full then split it (keep track of
 
which half the key and recordid belong in), then insert this
 
new entry. If this key is the largest one on its page, make
 
the appropriate change in the father. 
 If a split occurred
 
then insert the largest key from the left half and the address
 
of the right half into the father using the normal insertion
 
algorithm described previously. Deletion of a key and record
 
id entry from this modified B-tree structure is almost precisely
 
identical to the normal deletion procedure, except that an
 
additional test must be added to handle the case where a leaf
 
is still sufficiently full after the deletion to not warrant
 
shifting of entries, but where the entry deleted is the last
 
one on the leaf. In such a case the copy of that key in the
 
father (or more remote ancestor) must be altered. This is not
 
necessarily as complicated as it may seem, since one need
 
only test for equality of a key match on the way down from
 
the root, and save the node where the match occurred.
 

6.6.1.3 Enhancements
 

There are a number of minor improvements which can be made
 
to the basic B-tree structure to enhance performance. For
 
example, some gains could be made by going to 
a binary search
 
on key values (since keys in 
a node are in sorted order). An
 
alternative approach would be to use data compaction schemes.
 
Consider the set of keys ROBERT, ROBERTS, ROBERTSON, ROBEY,
 
ROBIN, ROBINETTE, ROBINSON. 
With four bytes per pointer and
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nine bytes per key it will require a total of eighty-eight
 

bytes to store these keys and their eight pointers. But a
 

number of different compaction schemes can cut this dramatically.
 

For example, one could use one byte to hold the length of the
 

preceeding key to be duplicated, another byte to hold the
 

number of bytes for the remainder of this key, then the remainder
 
of the key itself. The above seven keys could be compressed into:
 

0 6 ROBERT - ROBERT 

6 1 S (ROBERT)S 

7 2 ON (ROBERTS)ON 

4 1 Y (ROBE)Y 

3 2 IN (ROB)IN 

5 4 ETTE (ROBIN)ETTE 

5 3 SON (ROBIN)SON 

The total storage required would be 33 bytes for the keys plus
 

32 bytes for the pointers, or 65 bytes all together. Another
 

possible compaction scheme would place the keys into a tree
 
form (figure 6-6) and then linearize the tree with parenthesized
 

notation:
 

(ROB(E(RT(*)(S(*)(ON)))(Y))(IN(*)(ETTE)(SON)))
 
I 

This scheme would require only 22 bytes for the keys, plus
 

space for the begin-end subtree marks. Further analysis of
 

data characteristics would have to be made before specific
 

recommendations on whether to implement key compaction and, if
 

so, what scheme(s) to use could be made. Key compaction would
 

have three major impacts upon "B-tree structure":
 

(1) 	Binary search could no longer be used.
 

(2) 	The maximum number of keys per page would no longer
 

be fixed (i.e., it could vary from page to page).
 

(3) 	 Extra execution time would be required to unpack the
 

keys and the software to handle searches and in

sertions would be more complex.
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it has been noted that there is no a priori need for a fixed
 

value of m -- the same insertion, deletion, and search algo

rithms can be used with the more nebulous rule that each node
 

(other than the root) in the tree should be at least half
 

full. The advantages of key compression would be that fewer
 

pages would be needed to store the same set of keys and this
 

could quite possibly result in fewer levels in the tree (i-.e.,
 

fewer disk accesses to locate a specific entry). A simulation
 

study24addresses the impact of key compaction on an access
 

method superstructure (VSAM) similar to the one proposed here.
 

McCreighr 5 also discusses algorithms for handling variable

sized andbr compacted keys.
 

One particular drawback of B-trees is the possibility that
 

the root will be very small -- it can, after all. have as few
 

as two pointers and a single search key. W7hen this happens
 

an extra disk access can be required just to make a binary
 

decision. This can be avoided by resisting node splitting
 

for the root. One method for doing this is a variant of the
 

B-tree called the B*-tree, which resists node spliztng at
 

all levels by preferring to balance nodes between brothers
 

(i.e., passing nodes off to brothers of the overfilled node)
 

and splitting only when the brothers are full. In B*-trees
 

the number of sons range between m and 2/3 m, however this does
 

not necessarily deal with the problems of the root--a node
 

which by definition has no brothers. Shneiderman35 suggests
 

allowing the root node to have an overflow page (using Pm To
 

point to the overflow node). In such a scheme the root would
 

not split until it had 2m sons. If such a tree has L levels
 

and the root has m+n sons, then the probability that a search
 

would require L disk accesses is m while the probability

m+n
 

that a search would take L+1 disk accesses is n By
n+-n
 
contrast, if the root had been split after the m+l inser

tion into the root, then all of the searches would take L+l
 

disk accesses.
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6.6.1.4 Arguments Against B-Trees
 

A recent article by Stonebraker and Held 1 7. compared B-trees
 

rather unfavorably to ISAM-like, static tree-structured indices.
 

It is felt that their analysis is incomplete and that
 
many of the arguments advanced by Stonebraker and Held simply
 

do not apply in the anticipated operating environment for the
 

proposed Integrated Data Base Management System. Specifically,
 

Stonebraker and Held are supposing that the files (tables) will
 

have precisely one key and be indexed with precisely one tree
 

structure. 
The system being designed makes no such suppositions,
 

and needs a file structure capable of handling zero, one, two,
 

... an arbitrary number of tree-structured keys. Moreover,
 

Stonebraker and Held further suppose that the records can be
 

input initially to the system in sorted sequential order
 

so 
that the leaves will have their entries in sorted sequential
 

order.., By contrast the entries for records in the system
 

being designed will most certainly not come in initially in
 

sorted sequential order. This is one of the true beauties of
 

B-trees. If the leaves are accessed one by one from left-most
 

leaf to right-most, it will be seen that the entries are 
in
 

sorted sequential order, yet when the entries are inserted it
 

never takes more than m-2 compares and m-2 physical shifts 

of entries. (Moreover, the sum of shifts and compares is m-l ). 

Another assumption of the Stonebraker and Held article
 

which will not necessarily hold in the operating environment
 

of the proposed Integrated Data Base Management System is that
 

insertions will come into the system at a steady pace after
 

the initial file creation. Instead,a situation such as depicted
 

in figure 6-7 can be expected. Stonebraker and Held argue
 

that even though later insertions must go into overflow areas,
 

reducing search efficiency, it will be possible to justify
 

periodic file reorganization. It is not clear that the expected
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patternof inserts/deletes in the proposed environment will
 

justify the cost of reorganization.
 

The presence of overflow pages in the static tree structure
 

advocated by Stonebraker and Held are its Achilles heel. Their
 

article compares minimum number of levels for static vs. dynamic
 

tree-structured indices, but what'should be compared are ex

pected number of disk accesses for the one against the other.
 

6.6.2 Inverted Indices
 

6.6.2.1 Description
 

.Hierarchical data structures (B-trees, binary trees) are
 

quite useful for efficient retrieval of data where the relation

shin between distinct key values and individual records is 1:1,
 

6r nearly so. However, when the ratio of distinct key values
 

to separate records is l:n for n somewhat greater than one,
 

then a set-oriented data structure is more useful. One of the
 

most efficient data structures for set-oriented indexing
 

operations is the inverted file.
 

An inverted index for a search key of a table consists
 

of two parts: a domain directory, with one entry for each
 

distinct value the search key adopts in this particular table
 

and a set of index tables, one for each entry in the domain
 

directory. An inverted index is depicted in Figure 6-8.
 

Each entry in the domain directory consists of a search key
 

value and a pointer to an index table which contains a list of
 

record id's of records in the table which have that value for
 

the specified key. For example, to locate all records with
 

the value "C" in a specified data field, one locates the entry
 

corresponding to C in the domain directory and thereby dis

covers the address of a list of all record id's of records which
 

have the value of C for that data field (i.e., record numbers
 

2, 7, 8, and 9).
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Inverted indices are particularly useful for retrieving 

records satisfying multiple constraints. Suppose, for 

example, records satisfying a combined query for LAT = 50' 

AND LON = 90' and SENSOR = MSS were requested, where LAT, LON, 

and SENSOR have inverted indices. This can be satisfied by 

looking up the value 50 in the domain directory for LAT and 

retrieving those record id's, looking up the value 90 in the 

domain directory for LON and intersecting that set of record 

id's with the first set (i.e., the set of record id's for LAT 

= 50), and finally retrieving the record id's where SENSOR -

MSS and intersecting the sets one more time. 

6.6.2.2 Logical Pages
 

it is not difficult to reconcile the concept of a physical
 

page with the requirements for data record storage and for
 

tree-structured indices. It is much more difficult to link
 

the concept of a fixed-size physical page with the highly
 

variable-sized,domain directories and index tables. A domain
 

directory might have only three or four entries (e.g., space

craft name and launch date in a table containing information
 

on active spacecraft) or it might have hundreds of entries.
 

Similarly, an index table might have only a few record id's
 

(the minimum is one record id since unused key values are
 

deleted from the domain directory) or it might have thousands
 

of record id's. The mechanism to decouple the variable-sized
 

tables from the fixed physical pages is the logical page. As
 

its name implies the logical page is a logical, rather than
 

physical, entity. Logical pages are variable-sized and do
 

not have a fixed physical address.
 

Logical pages are accessed through a logical-to-physical
 

map. A logical-to-physical map is a table whose entries have
 

the following fields:
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(1) logical page number 

(2) physical page number 

(3) base address 

(4) size 

(5) old size 

(6) continuation logical page 

Given a logical page to locate, one begins by searching the
 
logical-to-physical map for that page's entry. The location
 
of the logical page is specified by a base address within a
 
physical page, where the base address points just ahead of the
 
page's true location. Thus to reference the ith byte in
 
logical page, one adds i to the base address in the indicated
 

physical page.
 

It may happen that a logical page is larger than a physical
 
page. In such a case the logical page is split, and the over
flow is assigned to a new logical page whose number is then
 
stored in the "continuation" slot in the map.
 

6.6.2.3 Searching an Inverted Index
 

All of the data structures associated with an inverted index -. 

the domain directory and the index tables -- are stored on 

separate logical pages. The pointer field for aan entry in 


domain extension which has a B-tree index will contain a physical
 
page number, representing the root node. The pointer field for
 
an entry in the domain extension which has an inverted index
 
will be a logical page number, representing the logical page
 
which contains the domain directory. Each domain extension
 

must have its own logical-to-physical map, or the overhead
 
for searching the map will be prohibitive.
 

Index tables will hold only record id's, in sorted order.
 

Strictly speaking, there is no need for sorting the index
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tables, but intersecting two sets of record id's will be made
 
much more efficient if they are known to be sorted. The entries
 
in a domain directory will be in two parts: a search key value
 
and a logical page number. Since the size of a field will vary
 
from field to field, it follows that these entries will vary in
 
size from domain directory to domain directory. Regardless of
 
entry size, however, these entries will be sorted on search key
 
value. At this point it is possible to describe algorithms for
 

searching an inverted index.
 

There are two types of searches to consider --
 searches
 

which locate all records for which a given search key takes on 
a
 
single, specific value, and searches which locate records where
 
the key falls within a specified range of values. The Integrated
 
Data Base Management System treats the former type of search
 
as a special case of the latter, where the upper bound of the
 
range coincides with the lower bound. The search begins by
 
locating the .first entry in the domain directory such that the
 
key value in the index is greater than or equal to the lower
 
bound of the range and less than or equal to the upper bound of
 
the range. The corresponding index (logical) page is then
 
retrieved and its list of record id's is extracted. Since the
 
domain directory is presumed to be sorted, the search continues
 
by examining the next. entry in the domain directory and either
 
(1) terminating the search if the value of that entry exceeds
 

the upper bound of the range, or (2) retrieving the corresponding
 
index page, adding those record id's to the set of record id's
 
already extracted, and then continuing to the next entry
 

in the domain directory to repeat this cycle.
 

6.6.2.4 Maintaining Logical Pages
 

Deleting a record id, T, with search key value, V, from an
 
inverted index begins with a search for V in the domain direc
tory to retrieve the index page corresponding to V. Either T
 
is in that page or it is not, and if it is present then it is
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removed, the index page is compacted, and the size of the index
 

page in the logical-to-physical map is decremented. If T is
 
the only entry in the index table then the entire entry for
 

that page in the logical-to-physical map must be deleted and
 
the entry for V deleted from the domain directory.
 

Inserting record id T with key value V is slightly more
 

complex since (1) V may or may not already be in the domain
 
directory, and (2) inserting T into an index table or V into 
a
 

domain directory may cause overflow past the end of a physical
 
page or onto another logical page. If V is a new value then
 

the first step is to create an entry for another logical page
 

(the index table to correspond to V) in the logical-to-physical
 

map. If there is enough free space in the physical page that
 

contains the domain directory to hold both T and V, then the
 

new logical page will be placed on the same physical page as
 

the domain directory (to minimize physical page accesses in
 
later searches). If an overflow occurs then there are three
 

cases to consider:
 

(1) 	There is sufficient free space elsewhere in the page
 

to accomodate the overflow entry, in which case the
 

logical pages on that physical page are reshuffled
 

using Garwick'salgorithm (Knuth 20 section 2.2).
 

(2) The physical page is full, but there are multiple
 

logical pages on this physical page, in which case
 
the overflowing logical page is shifted to a new
 

physical page.
 

(3) 	The physical page is full and this is the only logical
 

page thereon, in which case the overflow is passed to
 

a continuation page, if one exists, or else a contin

uation logical page is begun on a new physical page.
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Special care must be taken if the inserted entry comes at the
 

end of a logical page that has a continuation page, since
 

it is important to maintain the relationship that the last
 

entry in any given page is lower in the collating sequence
 

than the first entry in the continuation page.
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SECTION 7 - DATA FILE HANDLING
 

7.1 An Overview of Data File Processing
 

The Integrated Data Base Management System will main
tain two different classes of data 
-- tabular data, stored
 
in tables set up under user control and managed by what is,
 

effectively, a relational data base management system, and
 

"non-tabular" data files managed by a portion of the system
 
which is, in effect, a file management system. The relational
 
portion of the Integrated Data Base Management System is
 
normally referred to as 
the "front end" of the system, while
 
the on-line and off-line data files and the file management
 
software are collectively referred to 
as the "back end."
 

It is presumed that the off-line data files will contain
 
remotely-sensed and directly-sensed data about the earth and
 
its environment. The remotely-sensed weather and climate 1 5
 

.data shall certainlv include level three data 
files and may
 
well include level two data files. 
Nothing in the system's
 
design precludes the inclusion of level one data files, and a
 
decision on whether to include level 
one and two data files
 
will have to be made by the Data Base Administrator in accor

dance with the needs of the user community.
 

Tape files will be introduced to the system by the
 
CATALOG command, which is an interactive command restricted to
 
use by the Data Base Administrator only. Each tape file
 

will be identified by its location (e.g., 
reel number,
 
physical file number) and by a format code. 
 The Integrated
 
Data Base Management System will respond by examining its
 
Data File Catalog to determine whether this file duplicates
 
another cataloged file and, if not, then the system will
 

assign a unique data file identifier (did) to that file,
 
output the did to the DBA, and enter the file into the Data
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File Catalog. However, this process will merely make the file
 

known to the system. Before the system can make the file
 

known to the user community it will be necessary for the DBA
 

to make one or more entries for that file in the Data File
 
Directory in the Global Data Base.
 

Once the data file has been cataloged and inserted into
 

the appropriate directory tables by the DBA, a user will have
 

The ability to retrieve sets of did's representing files of
 

interest to him or her by querying a particular directory
 

table or by querying all the directory tables at once.
 

The latter can be accomplished by querying the special
 

table name "SYSDIR" which can be imagined to be a single,
 

comprehensive table implicitly defined to be the union of
 

all directory tables projected over common columns.* Note
 

that 'SYSDIRwill be a virtual table and will not physically
 

exist.
 

Interactive users will not be allowed to access data
 

files directly from tape. A necessary intermediate step
 

will be for the files to be copied on-line with the LOAD
 

command. The on-line files created by a LOAD command will
 

always be in one of the system standard formats, which is
 

a special file format with a fixed-length header, zero or
 

more fixed-length processing history records, and then the
 

data records themselves. The header will contain a code
 

telling the system (and user application programs) how to
 

interpret the remainder of the header, and the remainder
 

of the header will inform the system (and user application
 

programs) how to interpret the remainder of the data. A
 

user need not LOAD an entire data file if interested in only
 

a portion of the file. It is proposed that the system support
 

three types of subfile-creating operations in conjunction
 

with a LOAD: SLICE, SUBSET and WINDOW. In certain types
 

*The union and projection operations are defined in Appendix A.
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of files a data observation point can be viewed as a node
 

in a multi-dimensional grid, where the dimensions include
 

not only the x and y coordinates on the ground, but
 

also altitude (z) , time (t), and/or wavelength (X)
 

The SLICE operation will take a 2-D slice through such a file.
 

Since each observation point in a data file may contain
 

observations for more than one physical variable, the
 

SUBSET operation will exist to permit taking only a subset
 

of the physical variables recorded in the file. Finally,
 

the WINDOW operation will cause only a rectangular subarea
 

of a two dimensional file, such as a sliced grid, an image,
 

a cartographic terrain elevation model, etc., to be loaded.
 

If a data file is loaded on-line without manipulation then
 

it will retain its original identifier, while a new did
 

must be issued if one or more operations cause a subfile
 

to be loaded (since the contents of the on-line and off-line
 

files would be different).
 

Once a data file is on-line, an interactive user may,
 

if the contents of the file represent tabular data, COPY
 

the on-line file into a pre-defined table in the front end
 

of the system. Alternatively, the user may choose to mani

pulate the files further with a PERFORM command. Present
 

plans call for five operations to be performable: the
 

SLICE, SUBSET, and WINDOW operations described above, plus
 

a REGRID operation to cause the grid system of a multi

dimensional gridded file to be redefined and the data
 

observations interpolated to fit the new grid, plus a MERGE
 

operation to merge two data files (provided they are defined
 

with respect to the same axes and represent overlapping
 

areas). The result of a successful PERFORM will be a new
 

on-line data file (in a system standard format) with its
 

own did. This is in accordance with the principle that
 

all data files maintained by the system shall be read only.
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As indicated above, certain operations are applicable only to
 

specific types of data files. 
 For example, the MERGE operation
 

can be performed on gridded data files but not image or carto

graphic data files.
 

Unless converted to permanent status by a KEEP command,
 
all on-line files will be classed as temporary and will
 

be automatically purged from the on-line mass storage by
 

the system some fixed span of days after the last access.
 
A temporary on-line data file may be purged sooner than that
 

with a SCRATCH command, but a SCRATCH will not be permitted
 

on a permanent data file unless it has been backed up to
 
tape with an UNLOAD command beforehand. Also, the DBA may
 

purge all on-line and off-line copies of any file with an
 

UNCATALOG command.
 

Except for data files (e.g., 
level two GARP reports
 

from NOAA1 5 ) which are reasonable to COPY into tables, an
 
interactive user will 
not be able to access data in data
 
files directly. Matters will be rather different with an
 

application program, which will be able to OPEN and CLOSE
 

data files, READ and WRITE data records, and GET and PUT
 

header and processing history records, as well as issuing
 
LOAD, UNLOAD, and COPY commands and performing file mani

pulations. An application program may OPEN a file in
 
input mode or output mode (in the case of the latter the
 

system will generate a new did), and also in "direct" mode
 
or "system standard mode." In system standard mode the
 
files being opened must be in system standard format, and will
 

be presumed to have a header record and could have one or more
 

history records as well, while in direct mode the files 
are
 
expected to not be in system standard format. 
 A file opened in
 
input/system standard mode may be an on-line data file or
 
a backed-up tape copy of an on-line file (if 
the on-line
 

file has been unloaded and scratched). A file opened in
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input/direct mode will always be read from tape in the
 

original data file format. Files opened in output/system
 

standard mode will be on-line files in system standard format
 

while files opened in output/direct mode will be on-line files
 

in a'special format* In either case the output file will
 

be assigned a new data file identifier by the system when
 

it is opened and the new file will become read-only when
 

closed.
 

Figure 7-1 illustrates data paths within the system.
 
The interactive data file processing commands are described
 

in greater detail in section 4.6, and file operations
 

available through the system to an application program are
 
described in section 5. The remainder of this section will
 

cover the topics of the Data File Catalog, the Data File
 
Directory, and system standard formats in greater detail.
 

7.2 The Data File Catalog
 

The Data File Catalog will be a system table named
 

SYSCATL. Like the other system tables (e.g., SYSREL, SYSUSER,
 

SYSDB) the SYSCATL table will reside in the Global Data
 
Base and will be invisible to normal users. Records may be
 
inserted into this table by the DBA using the CATALOG
 

command or by the system when a user creates a new on-line
 
file. Records in the catalog will change only in response
 

to commands such as LOAD, UNLOAD, KEEP, SCRATCH, etc.,
 

and cannot be edited by the DBA using INSERT, UPDATE, or
 
DELETE commands. This is because changes may very well
 

have non-obvious side effects and may require a certain
 

amount of collateral processing.
 

The most important field in the SYSCATL table will
 
be the one which contains the data file identifier. Since
 

* Described in Section 7.5.4. 
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virtually all references against the catalog will be based
 
on the did, a hierarchical (B-tree) index superstructure
 
will 	be established on that field, and, moreover, it will
 
be a 	"unique" index. That is, the software shall be prepared
 
to test for duplicate entries, and to reject an insertion
 
which would create a duplicate value for that field. Null
 

did's will never be accepted.
 

The remaining fields can be partitioned into three
 
groups representing data about the original off-line tape
 
file, data about the on-line version of the file, if any,
 
and data about the off-line back-up copy of the file, if
 
any, 	respectively. If any field in a particular group is
 
null 	then all in that group must be null. Any group, or
 
even 	any pair of groups may be null at any given time, though
 
it. will not be possible for all groups to be.empty, since
 
that 	would mean that the file does not exist at all.
 

The fields of the group describing the original tape
 

file will include:
 

(1) 	reel number, or some means of identifying the
 

tape on which it resides
 
(2) 	file number, or some means of identifying which
 

(physical) file on that tape contains this data
 

file
 

(3) 	format code
 

There may or may not be additional fields in this group,
 
depending upon the specific characteristics of the tape file
 
I/0 system of the computer on which this system is implemented.
 
Since the system will check for duplicate data files when it
 
inserts a new entry into the catalog it will be useful to
 
maintain a hierarchical index on a combined key formed by
 
concatenating the reel number and file number. 
This 	index
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need not be unique, however, since a given physical data file
 
may well contain more than one logical subfile. An example of
 
this situation would be NIMBUS-G SMMR MAP-LO tapes, where a
 
single six-day file contains five frames and each frame con

tains two Mercator map matrices. Thus, there are fifteen
 
logical subfiles of potential interest which could be derived
 , 
from a single physical MAP-LO file The individual logical
 

files could be distinguished from one another by having dif

ferent format codes.
 

Note that this group may well be null -- if the data
 

file in question happened to be created by the LOAD command
 

with a subfile operation or a PERFORM command or if the
 

file was created by an application program.
 

The fields of the group describing the on-line version
 

of the data file will include:
 

(1) name or disk address of the on-line copy of the 

data file 

(2) owner of the on-line copy 

(3) temporary/permanent flag 

(4) date last accessed 

(5) format code 

The existence of the name/address.field depends upon imple
mentation details and may, under certain circumstances, be
 

superfluous. For example, if it is decided to use 
an
 

alphanumeric character string for the did's, and if the
 

operating system under which the Integrated Data Base Manage
ment System is implemented has a good file management sub

system, then one implementation approach for managing on

line data files would be to create a file name from the
 
did, 
 open a disk file under that name using the operating
 

* 	 Each Mercator map could be a logical subfile and each frame 
could be a logical subfile. 
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system, and then copy the tape file into the disk file using
 
normal operating system utilities.
 

The owner of an on-line file will be the user who
 
loaded it 
onto disk, unless a KEEP command is later issued,
 
in which case the user who wants the file kept would assume
 
ownership of the file. 
Only the owner of the file or the
 
DBA may SCRATCH it, although anyone may access it. If it
 
appears likely that disk space will become a problem then
 
it may be useful from the DBA's point of view to invert
 
the catalog table on the owner field, so that the DBA could
 
efficiently determine which users were making the heaviest
 
demands on disk storage.
 

Finally, the fields describing the back-up tape copy
 
of the file will duplicate the first group, to some 
extent,
 

(1) reel number, or some means of identifying the 

tape on which it resides 
(2) file number, or some means of identifying which 

file on that tape contains the data 

(3) format code 

The only difference between the two groups is that the
 
format code for this version of the file will necessarily
 
represent a system standard format. 
 Notice that this
 
field is not superfluous since it is possible to imagine a
 
sequence of operatons which leaves this the only non-null
 
group of the three (e.g., a PERFORM creating the file, a
 
later UNLOAD, then a SCRATCH) and it will be more difficult
 
and time-consuming to access 
the header of a tape file in
 
system standard format than to 
access the header of a disk
 

file.
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7.3 The Data File Directory
 

The purpose of the Data File Catalog is to provide
 

the system with the information it needs to respond to
 
interactive and application program data file processing
 

commands. It will be the function of the directory tables,
 

which constitute the Data File Directory, to provide in

formation to the user community about the logical contents
 

of data files managed by the system. Whereas the Data File
 

Catalog will be invisible to users (other than the DBA),
 

the Data File Directory, which is also contained in the
 

Global Data Base, will be known and visible to all users.
 

There will be a number of directory tables, perhaps as
 

many as one directory table for each class of data file
 

entered into the back end of the system (e.g., one directory
 

table for SMMR PARM files, one directory table for SMMR
 
MAP files, one directory table for LAIDSAT images, etc.).
 

The number, content, and layout of these tables will be
 

under the control of the DBA, who will be the only user
 

authorized to issue a DEFINE DIRECTORY TABLE command, the
 

only user with INSERT, UPDATE, or DELETE rights against
 

these tables, and, for that matter, the only user with
 
MODIFY rights against the Global Data Base. It will be
 

the responsibility of the DBA to tailor the definitions of
 

the directory tables to suit the needs of the user community.
 

With one exception, the Integrated Data Base Manage

ment System will treat directory tables just like any other
 

table maintained and managed by the system. The DBA will
 

be able to issue EXPAND commands, INDEX commands, INVERT
 

commands, etc., on directory tables as well as being able
 
to issue INSERT commands and DELETE commands as necessary
 

to reflect the changing contents of the Non-Relational Data
 

Base. The exception to this rule is that all directory
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tables shall implicitly'become a part of the virtual oi erall
 

directory table, SYSDIR. SYSDIR will be a table which users
 
will be able to query, but which will not physically exist.
 

(The term for this type of table in relational data model
 

jargon is "view.") While updates and deletes can be made
 

against SYSDIR, causing modifications to be made to the under

lying directory tables, the insertion of new records into the
 
Data File Directory can only be made by inserting the records
 

into the underlying, physically existing, directory tables.
 

Nothing in this section should be construed to imply
 

that the only legitimate directory tables in the system will
 

be the ones set up by the DBA in the Global Data Base.
 
In point of fact, users may -- indeed, users are encouraged 

to -- set up their own directory tables in applications or
 

working data bases. These directory tables may well include
 

files which are not included in SYSDIR, files which have
 

been created via PERFORM commands, for example, in response
 

to specific application requirements. However, such directory
 

tables will not be part of SYSDIR.
 

If a file is purged from the system via an UNCATALOG
 
command, then any record in any directory table which references
 

that file will automatically be deleted as well. This
 

feature will be in addition to the ability of the DBA to
 

issue DELETE commands against the directory tables without
 

altering the Data File Catalog. However, automatic directory
 

deletion will not occur as a function of a SCRATCH command
 

(unless the SCRATCH command results in the file being purged),
 

nor will this feature be extended to tables which are not
 

part of SYSDIR. Presumably, the DBA will not be purging files
 

which are actively in use so that the overhead of testing
 

all tables in all data bases for references to files being
 

purged would be wasted effort.
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7.4 	The Data File Identifier
 

The link between the front end, or relational, portion
 

of the Integrated Data Base Management System and the back
 

end will be the data file identifier, or "did." Each did
 

will uniquely distinguish a data file managed by the
 

back end of the system, and each reference to a data file
 

in the front end of the system will be via the did.
 

There are a number of methods which might be employed
 

to generate unique did's, and this document will not attempt
 

to choose between them at this point since "best" almost
 

certainly will depend to some extent on the characteristics
 

of.the machine(s) and operating system(s) on which the Inte

grated Data Base Management System is implemented*. However,
 

three general approaches can be described:
 

(1) 	use a random number generator to generate a random
 

number between 0 and 1, then convert this random
 

number to a string of digits or alphanumerics
 

(2) 	concatenate the year and (Julian) date to create
 

the first five characters of an identifier, then
 

append two or three more digits as a counter (so
 

that 7819432 is the thirty-second did generated
 

on July 13, 1978)
 

(3) 	keep a universal counter and increment it each
 

time another did was requested by the system for
 

a new data file
 

All three of the above approaches have good points and bad
 

points. The random number generator approach would work well
 

if the back end was, in fact, implemented on a separate
 

*The 	reader should bear in mind the fact that the "dual
 
system" design of the Integrated Data Base Management
 
System would permit its being implemented on more than one
 
computer.
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computer. In that case the Data File Catalog table,
 

SYSCATL, probably would be moved from the Global Data Base
 

to the data file processing software, thereby allowing the
 
introduction of scatter storage techniques. That is, it
 

would be possible to take advantage of the uniqueness of
 

the did field and the fact that virtually all references to
 

catalog entries would be via the did to "hash" the catalog
 

on the did field, thereby reducing the average number of
 

disk accesses to retrieve an entry in SYSCATL. However,
 

when the system is implemented on a single computer then the
 

increased software complexity to support scatter storage
 

access methods for one specific table would likely outweigh
 

the search efficiency advantages. A drawback of the random
 

number approach is that there is no guarantee that the did's
 

so generated are, in fact, unique. The non-uniqueness of
 
a given identifier would be detected when the new entry was
 

inserted into the catalog, and this would necessitate the
 

generation of another random identifier.
 

The two counter-based approaches can guarantee unique

ness, and while their ability to function efficiently with
 

scatter storage techniques would depend upon the effectiveness
 

of the hash function, these deterministic approaches would
 

be quite efficient when used with the table storage manage

ment and look-up techniques used in the front end of the
 

system (see Section 6), particularly when a series of data
 

files was entered all at once. The main drawback of these
 

counter-based approaches is that ihe updated counter must
 

be saved on a non-volatile storage medium every time a
 

new entry is made in the catalog, or else this approach
 

would be highly vulnerable to a system crash.
 

Just as there is more than one reasonable approach
 

to generating data file identifiers, so there is more
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than one reasonable format for the did's. Should they be
 

numeric id's, all digits? Or alphanumeric? How many
 
characters? Again, resolution of this issue must await
 

actual implementation of the system on some machine, since
 
most of the tradeoffs cannot be properly evaluated without
 

knowledge of which machine the system will be implemented
 

on.
 

Another consideration in defining the format of an
 
identifier is the need for detecting mistakes made by users
 

when entering did's to the system. The most common such
 
mistake is a transposition of characters, and the standard
 

defense against this is the check digit. If a did is com
posed of n characters (alphanumeric or digits) then n-l
 

of them would perform the function of identifying the file
 
while the nth character would be uniquely determined as
 
a function of the previous n-l characters and their relative
 

order. If the check function is well chosen, then the system
 
can detect erroneous input characters (5 for S, 2 for Z,
 
1 for I, zero for 0) or the correct characters out of order
 

by computing the proper check character for the n-i
 
identifying characters of the given input did and comparing
 

it with the given check character. If they agree then the
 
did will be accepted, and if they disagree then the input
 
did must be wrong. Of course a double error or triple error
 
may make it past this test, but some double and triple errors
 

will still be detected and the overhead for detecting all
 
double and triple errors would be more expensive than the
 

likely gains.
 

7.5 System Standard Formats
 

As described earlier, all data files which are loaded
 
on-line from tape will be reformatted to conform with the
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relevant system standard format for the type of data con

tained in the file. 
 There are a number of advantages to
 

this convention:
 

(1) It facilitates the development of software inter

faces between the Integrated Data Base Management
 

System and other applications systems at Goddard
 

Space Flight Center.
 

(2) 	 It facilitates the implementation of data mani

pulation modules internal to the system (e.g.,
 

the modules which carry out the REGRID or SLICE
 

operations of the PERFORM command).
 

(3) 	 It simplifies the task of writing application
 

programs which will make use of the data files,
 

particularly if data files of the same type but
 
from 	different or unknown sources 
are to be used.
 

There will be a number of system standard formats, one
 

for each major broad category of data file. That is, there
 

could be one system standard format for image data, one system
 
standard format for cartographic data, one system standard
 

format for uniformly gridded data (i.e., where the data ob
servation can be viewed as occurring at a lattice point of
 
a multi-dimensional network), one system standard format
 

for chain-coded contour plots, etc. System standard formats
 

will be alike in that each file in system standard format
 

will include a fixed-size header record, zero or more fi-xed
size history records, and some number of data records, where
 

the length and number of data records will depend upon the
 

data 	itself. Header records will include a code describing
 

which type of data is contained in the file (i.e., which
 
system standard format the file is in), and the remainder
 

of the header will describe how the data records are to be
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interpreted. How the remainder of the header is to be
 

interpreted will depend upon the format code.
 

This document shall not attempt to define the number
 

and layout o'f all system standard formats which will be
 

included in the final version of .the Integrated Data Base
 

Management System. Instead, the remainder of this section
 

shall concentrate on describing what certain, selected
 

system standard formats might look like. In the final
 

implementation the fields and/or their type, size (in bytes),
 

and units (if any) may well change from what is written
 

here, but any changes will presumably be minimal. Since
 

the number of bytes needed to store the information in a
 

header will vary from format type to format type while the
 

size of a header record shall be fixed, some headers will
 

have to be padded with blanks. The following format
 

descriptions will ignore this padding.
 

7.5.1 A System Standard Format for Image Data
 

A system standard format for image data must, at a
 

minimum, be compatible with the data record layout and header
 

record formats for image files used by systems at the
 

Goddard Space Flight Center which handle image data such as
 

AOIPS 2 and SMIPS/VICAR2 7 . Compatibility, as it is used here,
 

means that the data record format for image data files in
 

system standard format should agree with the data record
 

layouts normally handled by AOIPS and SMIPS/VICAR, and that
 

the fields in an AOIPS header or SMIPS/VICAR label record
 

should be available in the system standard format header
 

or else derivable by a software interface routine.
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7.5.1.1 The Header Record in an Image Data File
 

Table 7-1 illustrates a possible layout for a header
 

record, based on the fields included in the Image Des

cription portion of an AOIPS image label and a SMIPS/VICAR
 

label. The order, type, and/or size of the data fields
 

listed in that table are particularly dependent upon im

plementation details when the system is developed. For
 

example, the size of a data file identifier (did) is not
 

yet finalized. All fields are integer unless otherwise
 

noted.
 

The first six fields shown in table 7-1 (above the
 

dashed line) will probably be included in all system standard
 

formats. The remaining fields of the header are designed to
 

preserve header information if the image file is entered
 

into the Non-Relational Data Base from AOIPS and later,
 

perhaps after some manipulation, is passed back to AOIPS.
 

Not every AOIPS image description field is duplicated in
 

an image header, however, since certain fields will be
 

superfluous given the data storage conventions. For example,
 

secondary records would not be stored within the image file
 

but would be saved in some number of history records.
 

Likewise, by convention, there will be no top edge, bottom
 

edge, left edge or right edge fill, so that words 35 through
 

38 of the AOIPS image label will be superfluous.
 

7.5.1.2 Data Records in an Image Data File
 

One record of an image file in system standard format
 

will contain precisely one row (line) of the image matrix.
 

Each pixel will occupy one or more bytes but will always.
 

occupy an integral number of bytes. There will be no
 
"empty" records or lines with non-grey scale data in an
 

image file in system standard format, although there may
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-----------------------------------------------------------

field 


format code 


history count 


record size 


record count 


blocking 


did 


size* 


1 


1 


2 


2 


2 


4 


meaning
 

system standard format code
 

number of history records
 

size of a data record in bytes
 

number of data records
 

blocking factor
 

data file id for this image
 

name 8 user-assigned name of scene (alpha) 

parent 8 did or name of parent image (alpha)* 

master 16 reel and file id of master image 

year 2 

month 2 

day 2 date and time (alphanumeric) 

hours 2 

minutes 2 

seconds 2 
fractions 4 fractions of a second (real) 

sensor 4 sensor name (alphanumeric) 

generation 1 generation of image (master = 0) 

no. images 1 number of images, if multi-image 

pixel size 1 number of bytes per pixel 

sig. bits 1 number of significant bits per pixel 

storage 3 storage code (BSQ,BIL,BIP) (alpha) 

orbit no. 4 number of orbit on which image was 

recorded 

center lat. 4 latitude of frame center 

center lon. 4 longitude of frame center 

sun el. 4 sun elevation 

resolution 4 spatial resolution of each pixel 

zoom info. 22 AOIPS image related master/parent 

zoom relationship information 

Table 7-1: A Possible Layout of the Header Record for Image Data
 

,
 
In bytes. All sizes are tentative.
 

**Field equals zero if no parent (i.e., if this image is a master).
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be some pixels which are only used for padding out a record
 

if this system is implemented on a word-oriented, rather
 

than byte-oriented computer.
 

It would be desirable to standardize pixel storage for a
 

multi-image data file. The AOIPS and SMIPS/VICAR systems are
 

oriented towards the band sequential format (BSQ) for multi

images, and it may, therefore, be correct for the Integrated
 

Data Base Management System to standardize on band sequential
 

format as well. Other possibilities are band interleaved by
 

line (BIL), where the record containing the i
th line 6f the jth
 

band would follow the record containing the ith line of the
 

j-1st band (for j > 1), and band interleaved by pixel (BIP),
 
i j follcws the kth
where the kth pixel in line of band 


pixel of line i in band j-1. Certain SMIPS/VICAR programs
 

(e.g., BAYES, KARLOV) can accept line interleaved (BIL) multi

images and both systems have provision for indicating BIL and
 

BIP formats in their respective image headers. Consequently
 

it may be useful -- if not in initial versions of the system
 

then perhaps in later enhancements -- to have the system support
 

all three formats for multi-image data files-.
 

7.5.2 A System Standard Format for Gridded Data
 

Certain level three data files can be viewed as re

presenting multi-dimensibnal grids, where the dimensions
 

are a subset of the x,y, and z spatial dimensions, plus the
 

temporal (t) dimension and a wavelength (X) dimension. Such
 

files are presumed to possess at least two dimensions, and
 

possibly all five. For purposes of the Integrated Data
 

Base Management System's internal processing, the observations
 

taken at a fixed wavelength shall be treated as observations
 

of a single physical variable. The exception to this rule
 

will be the SLICE operation, which will treat wavelength as
 

a fifth dimension.
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For expository purposes, the remaining four dimensions
 

shall be regarded as having the following ordering: t be

fore x before y before z Therefore, when the conceptual
 

layout of an n-dimensional grid is described ( n = 1,2, 3
th 
or 4) the first, second, ... , n dimensions will be uniquely 

determined by the above ordering. Thus, if n equals two 

and the grid has z and t axes, then the "first dimension" 

will be t and the second will be z . Similarly, a three 

dimensional grid with x, y, and z axes will have x as 

its first dimension, y as its second dimension, and z as 

the third (rather than some permutation such as z, x, y or 

y, z, x). 

7.5.2.1 The Header Record in a Gridded Data File
 

Table 7-2 shows a possible layout for a header record
 

for gridded data. The latitude, longitude, altitude, and
 

date provide the initial y, x, z, and t coordinates,
 

respectively, for the first lattice point in the first record.
 

The maximum time coordinate will be the initial date and time
 

plus (nt-l)At , and, similarly, the maximum altitude will be
 

the initial altitude plus (nz-l).Az Computation of maximum
 

latitude and longitude will be rather more complicated since
 

the azimuth, if any, must be factored in.
 

Four byte and eight byte fields below the dashed line
 

will be type real and one byte and two byte fields will be
 

integer, unless otherwise indicated. Units for At, Ax ,
 

Ay , and Az will have to be established at implementation
 

time, as will the reference for altitude. These units will
 

probably be fixed and will not vary from file to file.
 

Otherwise, extra fields would be needed in the header to show
 

which units were used for each delta (A) field.
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field size* meaning 

format code 1 system standard format code 

history count 1 number of history records 

record size 2 size of a data record in bytes 

record count 2 number of data records 

blocking 2 blocking factor 

did 4 data file id for this file 

year 2 

month 2 / 

day- 2 

hours 2 date and time (alphanumeric) 

minutes 2 

seconds 2 

latitude 8 latitude of first observation point in radians 

longitude 8 longitude. " "1 " 

azimuth 8 azimuth in radians clockwise from North 

altitude 4 altitude of first observation in meters 

At 4 spacing along t axis 

Ax 4 " x 

Ay 4 1T It y it 

AZ 4 z1 Z I 

nt 1 number of observations along t axis 

n , I IT T x 

n i it" y 
nz y 
nobS 1 " I T per lattice point 

point size 1 size of a lattice point in bytes 

X1 4 first wavelength 

X2 4 second wavelength 

Anobs 4 last wavelength 

Table 7-2: A Possible Layout of the Header Record for Gridded Data
 

*In bytes. All sizes tentative.
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7.5.2.2 Data Records in a Gridded Data File
 

When n equals two, the grid can be visualized as a
 

rectangular area as depicted in figure 7-2a, and each
 

lattice point will have four neighbors (except for those
 

on the boundary of the area). Each lattice point will be
 

assumed to have observations for one or more physical variables,
 

and the same set of physical variables are measured at
 

each lattice point. When such a grid is stored in a system
 

standard format file, each record will contain the observa

tions for a fixed value of the first dimension, and for
 

each given value of the first dimension (for which there is
 

data) there will be precisely one record in the file. In
 

other words, each record in the file will correspond to One
 

column of the grid. Within the file the records will be
 

ordered on increasing value for the first dimension, and
 

within a record all observation for a given lattice point
 

will be stored together and the lattice points will be
 

ordered on increasing value of the second dimension.
 

Three-dimensional files may be viewed as a parallele

piped with rectangular sides, as depicted in figure 7-2b.
 

To visualize the way in which lattice points from a three

dimensional grid are mapped into records, imagine the grid
 

being sliced into-a stack of two-dimensional grids along
 

the first dimension. The resulting two-dimensional grids
 

are then handled as described above. Thus, any pair of
 

lattice points in a record from a three dimensional gridded
 

file have the same values for the coordinates of their first
 

two dimensions, and they vary only according to their.third
 

dimension.
 

Four dimensions are hard to visualize, but since the
 

four dimensions in this case must be t, x, y, and z then
 

one way to view a four dimensional grid is as a time-ordered
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sequence of three dimensional grids, as depicted in figure
 

7-2c. This suggests the way in which the data can be
 

mapped into records, namely, all lattice points in a given
 

record fixed with respect to t, x, and y coordinates, 

and records ordered on ascending values of y within x 

within t . Figure 7-3 illustrates the process for con

verting the storage problems of an n-dimensional grid into
 

n-l dimensions for n=4, 3, 2, and figure 7-3 depicts the
 

layout of records in a file for n=4.
 

Note that this arrangement is consistent with the
 

view of wavelength as a fifth dimension, provided the
 

observations stored at a lattice point are ordered in
 

increasing value of A
 

Finally, there is the special case when n=l In
 

that- case there would be one observation point per record,
 

unless the size of an observation point was very small, in
 

which case there would be one record in the file.
 

7.5.3 A System Standard Format for Cartographic Data
 

Digitized terrain elevation models may be viewed as
 

two-dimensional grids, with a ground elevation value at
 

each lattice point. This suggests that the data for such
 

a file could be stored as if it were a conventional two

dimensional gridded file, that is, each record will have
 

the elevation data for a fixed x coordinate and ascending
 

values of the y coordinate. However, it would not be
 

sufficient to treat a cartographic data file as a conventional
 

gridded data file since the cartographic data may be any
 

one of a variety of map projections and this information
 

must be present in the header. On the other hand, barring a
 

natural or manmade catastrophe, the elevation value for a
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given location on the earth's surface is likely to be
 

constant with respect to time (at least for spans of time
 
less than a century) and thus the date fields would be
 

superfluous.
 

Table 7-3 shows one way in which a header could be
 

established for a cartographic data file. The header
 

establishes the coordinates of the first point in the
 

first record (lower left corner), but how these coordinates
 
are established (and hence how the fields of the header
 

are to be interpreted) will depend upon the projection code.
 

If the data is in a tangent plane projection then the
 

coordinates will be specified as an x offset and y offset
 
in meters on the ground relative to a Cartesian coordinate
 

system whose origin is at the point of tangency and whose
 

y axis is aligned with some specified azimuth . For a
 
tangent plane projection, the "zone" field would be ignored,
 

the latitude and longitude fields would'be the coordinates
 

of the point of tangency, the azimuth would specify the
 
azimuth of theCartesian coordinate system for the file,
 

and the lower left x and lower left y are the x-offset
 
and y-offset of the lower left corner of the file from the
 
point of tangency. If the data is in the normal Mercator projection
 

then rows will be lines of constant latitude and columns
 

(records) will be lines of constant longitude. Here the
 

zone, azimuth, lower left x and lower left y fields
 

would all be zero, and latitude and longitude would represent
 

the latitude and longitude of the lower left corner.
 

In a Universal Transverse Mercator (UTM) projection, the
 

coordinates of the lower left corner are specified by the UTM
 
zone and UTM easting and northing. For a UTM projection, the
 

latitude, longitude, and azimuth would all be zero and the
 
easting and northing would be stored in lower left x and
 

lower left y. Finally, for a Lambert projection only lower
 

left x and lower left y would be used. The units for
 

*
 
Except, of course, if the latitude is + 900, in which case
 
(a) longitude and azimuth are superfluous and (b) the projec
tion must be a polar stereographic projection.
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-----------------------------------------------------------------

field size* 

format code 1 

history count 1 

record size 2 

record count 2 

blocking 2 

did 4 

meaning
 

system standard format code
 

number of history records
 

size of a data record in bytes
 

number of data records
 

blocking factor
 

data file id for this file
 

projection code 1 map projection for this file
 
zone 1 UTM zone (if UTM projection)
 
latitude 8 latitude of file in radians N
 

latitude
 
longitude 8 longitude of file in radians E
 

longitude
 
azimuth 8 azimuth of file's coordinate system
 
lower left x 4coordinates of file's lower left
 
lower left y 4 corner
 

Ax 4 spacing between columns
 

Ay 4 spacing between rows
 
z-offset 4 offset applied to each data point**
 

Table 7-3: A Possible Layout of the Header Record
 

for Cartographic Data
 

*In bytes. All sizes are tentative.
 

** Permits elevation data to be positive. The z-offset
 
will be subtracted from each elevation value in the
 
file.
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Ax and Ay will also depend upon the projection.
 

All fields after "zone" in Table 7-3 will be type real.
 

7.5.4 "Format X" 

There will be one special "system standard format" 

which will not be descriptive of the logical contents of 

the file. This format, provisionally designated "Format X", 

will 	be used in the following two circumstances:
 

(1) 	The system does not know the format of the
 

tape file or knows the format of the tape file
 

but does not know how to translate the file
 

into a system standard format (i.e., a LOAD routine
 

has not been written to handle files in that
 

format).
 

(2) 	An application program is creating a file in
 

"direct" mode (i.e., not in a system standard
 

format).
 

Basically, Format X consists of a header record, followed
 

by a 	record-by-record copy of the tape file.* The header
 

itself will be quite minimal, and will contain only the
 

first six fields (twelve bytes) common to all system
 

standard header records. If the record size field in a
 

Format X header is zero, then the records in the data file
 

will 	be variable length.
 

7.6 	 The LOAD and UNLOAD Commands
 

The data tapes to be managed by the "back end" of the
 

Integrated Data Base Management System will exist in a
 

variety of different tape formats, but, fortunately, not
 

an infinite variety of tape formats. That is, the format
 

*Nothing would prevent a user from writing history records to
 

a data file in Format X, but analysis of user requirements
 
suggests that such will be rare.
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specifications for the data tapes entered into the Non-

Relational Data Base will be known in advance and presumably
 

have been formally documented. Each such tape format will
 

be mapped into a unique system standard format during a
 

LOAD, although the mapping will not be one-to-one and there
 
will be somewhat fewer system standard formats than tape
 

formats.
 

The foregoing analysis permits the function of the
 

LOAD command to be specified as follows:
 

(1) 	Given the data file identifier of the tape file
 

to be loaded, look up that file in the Data File
 
Catalog and determine whether it is already on-line
 

or whether it is backed up in a system standard 

format*. 

(2) If not on-line and not backed up then retrieve 

reel number, file number, and format code. 
(3) Open the file and simultaneously determine the -

system standard format into which the 

file is to be translated. 

(4) Create the on-line file record by record. Con

struct the header record while so doing. 

(5) After all records in the data file have been 

written to direct access storage, write the header
 

record over a dummy header record written prior
 

to writing the first data record.
 

Rather than attempt to write one large LOAD module
 

to handle all possible tape formats, there will be a
 

number of LOAD routines, each routine handling a small
 

number of different tape formats (possibly one tape format
 

per routine). Each of these separate conversion routines
 
will probably be implemented as a co-routine and would
 

therefore operate independently of the rest of the system
 

* 	 If backed up in Format X then it will be necessary to de
termine whether a conversion routine has been added to the 
system since the most recent LOAD. 
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until completion of the LOAD. Benefits of a co-routine
 

approach would include the following:
 

(1) 	Memory requirements for I/O buffers would not
 

impinge upon memory requirements for the re

mainder of the system. Hence, the number of
 

LOAD commands which could 'be processed con

currently would not be limited by the main storage
 

allocated to the data base managenent system.
 
(2) 	The co-routines could take over I/O message
 

handling with interactive users, relieving the
 

system of message traffic overhead.
 

Of course, a co-routine approach to implementation of the
 

LOAD command depends upon whether the operating system of the
 

host computer supports co-routines.
 

In contrast to the LOAD command, the UNLOAD command
 

can be implemented with a single, reasonably simple and
 

straightforward, subroutine. The special point to note is
 

that an UNLOAD command will be rejected if the Data File
 

Catalog indicates that a backed up copy of the file already
 

exists. The exception to this rule is that an UNLOAD will
 

be accepted if the backed up copy is in Format X and the
 

current on-line copy is not in Format X. This can happen
 

if a conversion routine is added to the system between
 

the first LOAD and UNLOAD of the file and the most recent
 

LOAD.
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SECTION 8 - SYSTEM INTERNALS
 

8.1 Control Structure Concepts
 

This section describes the control structures around which
 

the internal architecture of the Integrated Data Base Management
 

System is designed. The control structures consist of control
 

blocks, control block extensions, dictionaries, lists and
 

queues. All control structures are transient in nature.
 

That is, main storage is allocated for a control structure
 

when it is to be used and freed when the control structure is
 

no longer required to support processing. The control struc

tures have been categorized as a function of their usage within
 

the system and are described below.
 

8.2 Communications Control Structures
 

The category of communications control structures includes
 

the Remote Terminal Communications list and the Application
 

Program Communications list. These two lists provide logical
 

entries or ports into the Integrated Data Base Management System
 

for remote terminal users and application programs, respectively.
 

8.2.1 The Remote Terminal Communications List
 

The Remote Terminal Communications List performs the func

tion of -associating a remote terminal, an interactive user and
 

a command being processed. It consists of one entry for each
 

remote terminal connected to the Integrated Data Base Management
 

System. The Remote Terminal Communications List can be
 

implemented in several different ways, one of which is a two

way linked list of remote terminal entries ordered in ascending
 

logical sequence by terminal-id. Each entry in the Remote
 

Terminal Communications List will contain at least the follow

ing information: the terminal-id of the remote terminal for
 

which the entry was created; a pointer to the User Control
 

Block for the user who connected to the system via the remote
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terminal; a pointer to the Command Control Block for any cur
rently active command that was received from the remote terminal;
 
a continuation flag that indicates whether or not a continua
tion message is expected for the last command received from the
 
remote terminal and a message routing flag that indicates
 
whether or not the next message received from the remote terminal
 
is to be passed directly to an active procedure where it will be
 
processed.
 

Initially, the Remote Terminal Communications List will be
 
empty. 
 When a message is received from a remote terminal, the
 
entries, if any, in the Remote Terminal Communications List are
 
searched to determine whether an entry exists for the remote
 
terminal. The terminal-id of the remote terminal from which
 
the message was received is compared with the terminal-id in
 
each entry in the Remote Terminal Communications List. If a
 
match occurs, the message is processed. If no match occurs,
 

an entry containing the terminal-id of the remote terminal from
 
which the message was received is created and the message is
 
processed. 
 If the message cbntains a valid command connecting
 
a user to the Integrated Data Base Management System, the entry
 
is completed with the necessary pointers and is inserted in the
 
Remote Terminal Communications List so as to preserve the
 
ascending logical sequence by terminal-id. Otherwise, the new
 
entry is discarded since the only valid command for initiating
 
an interactive session is the one which connects a user to the
 

system.
 

When subsequent messages are received from a remote terminal,
 
the Remote Terminal Communications List is searched to locate
 
the entry corresponding to the remote terminal. 
 Since a pointer
 
to a User Control Block is contained within the entry, the user
 
issuing the command can be identified. When a command is
 
received disconnecting a user from the Integrated Data Base
 
Management System, the entry associated with the remote
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terminal from which the message was received is deleted from
 

the Remote Terminal Communications List.
 

8.2.2 The Application Program Communications List
 

The Application Program Communications List is analgous to
 
the Remote Terminal Communications List and performs the func
tion of associating 
a region in main storage, an application
 
program and a command being processed. It consists of one
 
entry for each application program connected to the Integrated
 
Data Base Management System. 
 As for the Remote Terminal
 
Communications List, 
the Application Program Communications
 
List can be implemented as 
a two-way linked list of application
 
program entries ordered in ascending logical sequence by program

id. The choice of a program-id probably will be operating
 
system dependent. It 
must uniquely identify a particular applica
tion program executing in a particular region of main storage
 
since the same application program may be executing in different
 
regions of main storage at the same time. Each entry in the
 

Application Program Communications List will contain at 
least
 
the following information: the program-id of the application
 
program for which the entry was 
created, a pointer to the User
 
Control Block for the application program and a pointer to the
 
Command Control Block for any currently active command that was
 

received from the application program.
 

Initially, the Application Program Communications List will
 
be empty. When a CALL statement is executed in an application
 
program transferring control to the Integrated Data Base
 
Management System, the entries, if any, in the Application
 

Program Communications List, 
are searched to determine whether
 
an entry exists for the application program. The program-ia
 
of the application program executing the CALL statement is
 

compared with the program-id in each entry in the Application
 
Program Communications List. If a match occurs, the request
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is processed. If no match occurs, an entry containing the
 

program-id of the application program executing the CALL state
ment is created and the request is processed. If the request
 

contains a valid command connecting the application program to
 

the Integrated Data Base Management System, the entry is 
com

pleted with the necessary pointers and is inserted in the
 

Application Program Communications List so as to preserve the
 

ascending logical sequence by program-id. Otherwise, the new
 
entry is discarded and an error code is returned to the applica

tion program since the only valid command for initiating applica
 
tion program activity is the one which connects an application
 

program to the system.
 

When subsequent requests are received from an application
 
program, the Application Program Communications List is searched
 

to locate the entry corresponding to the application program.
 

Since 
a pointer to the User Control Block is contained within
 

the entry, the application program making the request can be
 
identified. When a command is received disconnecting an
 

application program from the Integrated Data Base Management
 

System or, if the application program abnormally terminates
 

execution, the entry associated with the application program
 

is deleted from the Application Program Communications List.
 

8.3 The Command Control Block
 

The Command Control Block is the primary repository of
 
information for the processing of a command. is created
It 


for each interactive command and application program command
 

that enters the Integrated Data Base Management System. The
 

main storage required for a Command Control Block is allocated
 

dynamically when the command enters the system. 
 Although the
 

contents of 
a Command Control Block created for an interactive
 

command and one created for an application program command
 

will differ somewhat in content, the basic format of a Command
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Control Block will be the same so 
that the software processes
 
that use the Command Control Block can operate on 
them in the
 
same manner when necessary.
 

The Command Control Block is the primary control structure
 
for command processing. It is passed between software processes
 

by means of queues which are discussed below. Each Command
 
Control Block will contain an indication of which command it
 
represents, an indication of whether the command was received
 
from a remote terminal or an application program, a pointer to
 
the User Control Block of the user or application program
 
responsible for the command, a pointer to the communications
 
list entry associated with the command and several other data
 
fields, flags, pointers and storage areas required for command
 
processing. The Command Control Block exists until the proces
sing of the command that it represents is terminated by the
 
Integrated Data Base Management System or, in the case of an
 
interactive command, is aborted by the remote terminal user.
 
When the processing of a command has been completed, the main
 
storage used for its Command Control Block is freed.
 

8.4 System Control Structures
 

The category of system control structures includes the
 
control blocks, control block extensions and dictionaries that
 
.are stored in system tables. As stored in system tables,
 
these control structures represent the current information
 
state of the Integrated Data Base Management System. As resi
dent in main storage, these control structures represent the
 
current processing state of the system. Permanent changes to
 
the information state of the system, such as the creation of a
 
new data base, are reflected by updating the system tables.
 
Temporary changes to the processing state of the system, such
 
as the attaching of 
a user to a data base for processing, are
 

reflected within the control structures resident in main storage
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but do not affect the system tables. System control struc

tures are loaded from system tables as required to support the
 

processing state of the system.
 

8.4.1 User Control Blocks
 

A User Control Block exists for each individual who has
 
been defined to the Integrated Data Base Management System as
 
a valid user by the Data Base Administrator. Likewise, a
 
User Control Block exists for each application program that
 
has been authorized access to the system by the Data Base
 

Administrator. User Control Blocks are stored, as records,
 
in the SYSUSER system table. Each User Control Block will
 

contain the user-id of the individual user or application pro
gram which it represents as well as a password, in the case of
 
an individual user, and other data fields, flags and pointers.
 

AlUser Control Block is created when the Data Base
 
Administrator issues a command to define a new user or 
applica

tion program to the system. Main storage is allocated for
 
the new User Control Block, after which it is initialized and in

serted in the SYSUSER table. Data fields in a User Control Bloci
 
can be updated at any time by the Data Base Administrator.
 

However, only the password data field in the User Control Block
 

for an individual user can be changed by that user.
 

When an interactive user connects to the Integrated Data
 

Base Management System, the User Control Block for the user is
 

retrieved from the SYSUSER table and placed on a two-way chain
 
of User Control Blocks for users and application programs cur
rently connected to the system. This chain is maintained in
 

main storage in-ascending logical sequence by user-id. If a
 
User Control Block containing the user-id already exists on
 

the chain, the user is not permitted to connect to the system.
 
Thus, in the current system design only one interactive user
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can be connected to the system under the same user-id at-any
 

one time. Each User Control Block may have both an Authorization
 

Extension and a Group Extension associated with it in main
 

storage.
 

When an application program connects to the Integrated
 

Data Base Management System, it must supply not only its own
 
user-id, but the user-id and password of the individual user
 

who initiated execution of the application program. The User
 

Control Block associated with the application program is re

trieved from the SYSUSER table and placed on the User Control
 

Block chain in main storage. If a User Control Block contain

ing the user-id of the application program already exists on
 

the chain, a character string is appended to the application
 

program user-id so that it is unique. Thus, multiple copies
 

of the same application program can gain access to the system
 

simultaneously. The User Control Block associated with the
 

user running the program is retrieved from the SYSUSER table
 
and the password supplied by the application program is verified.
 

The Authorization Extension and the Group Extension which are
 

associated with the User Control Block for the application pro
gram will be those of the user running the application program.
 

Thus, the access rights associated with this execution of the
 

application program are those that have been granted to the user
 

who is running the program.
 

When a command is received from either a remote terminal
 

or an application program, it is always associated with a
 

User Control Block via one of the communication lists described
 

previously. Thus, the system can identify, in effect, the
 

user issuing the command and, thereby, control access to
 

information and regulate the definition, modification, and
 

removal of control structures (i.e., users, access rights, data
 

bases, data fields and tables). Also, since the User Control
 

Block contains pointers to both the Data Base Control Block
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for the data-base to which the user or application program is
 
currently attached and the Data Base Control Block for the
 

previously attached data base, processing can be directed to
 
the proper data base via the User Control Block. When a user
 

or an application program disconnects from the Integrated Data
 
Base Management System, the corresponding User Control Block
 
is removed from the User Control Block chain and the main stor

age allocated for the User Control Block is freed.
 

Existing users or application programs can be denied access
 
to the system by the Data Base Administrator. If the Data
 
Base Administrator removes the User Control Block for a user
 

or an application program from the SYSUSER table, that user
 
or application program can no longer gain access to the
 

integrated Data Base Management System.
 

8.4.2 Group Extensions
 

A Group Extension is always associated in main storage
 

with a User Control Block. It defines the groups to which
 

the user belongs for the purpose of sharing common access
 
rights to tables. If the user does not belong to any groups,
 
no Group Extension to the User Control Block will exist. A
 
Group Extension contains one entry for each group to which the
 
user belongs. Each entry in a Group Extension is stored in
 

the SYSGROUP system table. Each Group Extension entry con
tains the name of a group to which the user belongs and a
 
pointer to the Authorization Extension which defines the
 
access rights of that group. If the group has not been granted
 
any access rights, no Authorization Extension will exist for
 
the group so the pointer will be null. During the processing
 

of commands, the access rights of the group are treated
 

logically as if they had been granted directly to the user.
 

A Group Extension entry is created when the Data Base
 
Administrator includes a user in an existing group so that the
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user can share the access rights assigned to that group. The
 

new Group Extension entry is inserted into the SYSGROUP table.
 

It will be included in the Group Extension constructed when
 

the user next connects to the system.
 

When auser or an application program connects to the
 

Integrated Data Base Management System, the amount of main
 

storage required for the Group Extension is computed. The
 

number of entries in the user's Group Extension is stored in
 

the User Control Block. After allocating the main storage
 

necessary to contain the Group Extension, the Group Extension
 

records are retrieved from the SYSGROUP table and are stored
 

in the Group Extension. Whenever it becomes necessary, dur

ing the processing of a command, to determine a user's right
 

to access a table, the Authorization Extension attached to
 

the User Control Block is searched. If the required authoriza

tion is not contained therein, each entry in the Group
 

Extension attached to the User Control Block is used to locate
 

the Authorization Extension associated with the group specified
 

within the entry. Each Authorization Extension for a group
 

to which the user belongs is searched until the required authoriza

tion is located or until all Authorization Extensions have been
 

searched. When a user or an application program disconnects
 

from the Integrated Data Base Management System, the main storage
 

allocated for the corresponding Group Extension is freed. The
 

main storage allocated for each of the Authorization Extensions
 

for groups to which the user belongs, will be freed only if no
 

other members of the various groups are connected to the system.
 

At any time, the Data Base Administrator can remove a user
 

from a group or remove a group from the system. In either
 

case, one or more records will be deleted from the SYSGROUP
 

table and the change will be reflected by the absence of the
 

corresponding entry in the Group Extension for the affected
 

user or users when they next connect to the system.
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8.4.3 Authorization Extensions
 

An Authorization Extension may be associated in main stor

age with a User Control Block if it contains rights granted
 

directly to the user or an Authorization Extension may be
 

associated with entries in one or more Group Extensions if it
 

contains rights granted to a group. If a user has not been
 

explicitly granted any access rights, no Authorization Extension
 

to the User Control Block will exist. However, if a user is
 

a member of one or more groups, he will assume any access
 

rights contained in the Authorization Extensions for those
 

groups. Additionally, the user can access tables on which
 

PUBLIC rights have been granted and tables of which he is the
 

owner. An Authorization Extension contains one entry for
 

each table on which the user or group has been explicitly
 

granted one or more operational rights (READ, INSERT, UPDATE,
 

DELETE) by the table's owner. Each entry in an Authorization
 

Extension is stored as a record in the SYSAUTH system table.
 

Each Authorization Extension entry contains the name of the
 

table on which the rights were granted, the name of the data
 

base containing the table, flags that indicate which access
 

rights were explicitly granted, the user-id of the owner of
 

the table and flags indicating which rights were granted by
 

the owner of the table and which were granted by the Data Base
 

Administrator.
 

An Authorization Extension entry is created when the
 

owner of a table or the Data Base Administrator issues a com

mand to grant one or more operational rights on the table to
 

an individual user or a group. The new Authorization Extension
 

entry is inserted into the SYSAUTH table. If the entry
 

represents an access right granted to an individual user, it
 

will be included in the Authorization Extension constructed
 

for that user when he next connects to the system. If the
 

entry represents an access right granted to a group, it will
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be included in the Authorization Extension constructed for
 

that group when any member of the group next connects to the
 

system.
 

When a user or an application program connects to the
 

Integrated Data Base Management System, the amount of main
 

storage required for the Authorization Extension is computed-.
 

The number of entries in a user's Authorization Extension is
 

stored in the User Control Block. After allocating the
 

main storage necessary to contain the Authorization Extension,
 

the authorization records are retrieved from the SYSAUTH table
 

and are stored in the Authorization Extension. If the user
 

is a member of one or more groups, the system determines whether
 

the Authorization Extension associated with each of the groups
 

is resident in main storage. If the Authorization Extension
 

for a group is already resident in main storage, a pointer to
 

it is stored in the corresponding entry in the user's Group
 

Extension. If not, the record containing the group-name and
 

a blank user-id is retrieved from the SYSGROUP table. This
 

record contains the number of entries in the group's Authorization
 

Extension. After allocating the main storage necessary to
 

contain the Authorization Extension, the authorization records
 

for the group are retrieved from the SYSAUTH table and are
 

stored in its Authorization Extension. Whenever a user
 

attempts to access data in a table which is owned by another
 

user or the Data Base Administrator, the user's right to
 

access the table must be determined. If access rights have
 

not been granted to the PUBLIC but have been granted to in

dividual users, the Authorization Extension associated with
 

the user is searched to determine whether or not the user
 

has been granted the right to perform the attempted data
 

manipulation operation on the table. When a user or an
 

application program disconnects from the Integrated Data Base
 

Management System, the main storage allocated for the correspond

ing Authorization Extension is freed. Main storage allocated
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for Authorization Extensions for any groups to which the
 
user belongs may be freed if the user is the only member of the
 

group who is connected to the system.
 

Access rights granted on a table can be revoked at any
 

time. If one or more access rights granted to a user or
 
group are revoked by the owner of the table or the Data Base
 

Administrator, the corresponding authorization record in the
 

SYSAUTH table is updated to reflect the new rights of the user
 

or group. If the revocation of rights is such that the 
user
 

or group retains no access rights to the table, the correspond

ing authorization record is deleted from the SYSAUTH table.
 

8.4.4 Data Base Control Blocks
 

A Data Base Control Block exists for each data base main

tained by the Integrated Data Base Management System. 
 Data
 

Base Control Blocks are stored, as records, in the SYSDB
 

system table. Each Data Base Control Block will contain the
 

data base name, the user-id of the owner of the data base, a
 

description of the data base, the data base classification,
 

the date on which the data base was created and other data
 

fields, flags and pointers.
 

A Data Base Control Block is created when a user issues 
a
 
command to define a new data base to the system. 
Main storage
 

is allocated for the new Data Base Control Block after which it
 

is initialized and inserted in the SYSDB table. 
Data fields in a
 
Data Base Control Block can be updated at any time by the Data
 

Base Administrator.
 

When a user or an application program connected to the
 
Integrated Data Base Management System attaches to a data base
 

for processing, the Data Base Control Block for the data base
 

is retrieved from the SYSDB table and placed on a two-way chain
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of Data Base Control Blocks for data bases to which one or more
 
users are attached. This chain is maintained in main storage
 
in ascending logical sequence by data-base-name. If a Data
 
Base Control Block for the data base to which a user is attach
ing already exists on the chain, there is no 
need to access
 
the SYSDB table to retrieve the Data Base Control Block. A
 
pointer to the Data Base Control Block for the data base to
 
which a user is attached is stored in the User Control Block.
 

When a command is received that references the data base
 
to which the user or application program issuing the command
 
is attached, the corresponding Data Base Control Block is
 
located using the attached data base pointer in the User Control
 
Block. 
 Since the Data Base Control Block contains a pointer
 
to the Data Dictionary associated with the data base and a
 
pointer to the chain of Relation Control Blocks for tables in
 
the data base, it 
can be used to locate other 
control structures
 
required to execute 
a command. Also 
the user-id of the owner
 
of the data base,which is contained within the Data Base Control
 
Block,is used to assign either 
a temporary or permanent status
 
to new data fields and tables defined for the data base. When
 
there are no longer any users attached to 
a data base, its
 
Data Base Control Block is removed from the Data Base Control
 
Block chain and the main storage allocated for the Data Base
 
Control Block is freed.
 

An existing data base can be removed from the system by
 
its owner or 
by the Data Base Administrator. 
 When a data base
 
is removed from the Integrated Data Base Management System, the
 
record containing the corresponding Data Base Control Block
 
is deleted from the SYSDB table. 
 This may cause records to be
 
deleted from other system tables, 
as well. 
 All data contained
 
in tables in the data base are 
deleted from the system, also.
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8.4.5 Data Dictionaries
 

A Data Dictionary is always associated in main storage with
 
a Data Base Control Block. It contains a description of each
 

data field contained in the corresponding data base. The Data
 
Dictionary contains one entry for each data field defined for
 

the data base. Each entry in a Data Dictionary is stored, as
 
a record, in the SYSDD system table. Each Data Dictionary
 

entry contains the name of the data field, the length of the
 
data field, the storage format of the data field, the user-id
 
of its owner and an indication of the units, if any, that are
 
associated with the data field. The Data Dictionary will
 

contain only one entry for each data field, no matter how many
 

tables-that data field is used in.
 

A Data Dictionary entry is created when a user issues a
 

command to define a new data field for the data base to which
 
the user is currently attached. Thelnew Data Dictionary entry
 

is placed in the existing Data Dictionary in main storage and
 
is inserted into the SYSDD table. It will be marked as a
 
permanent entry if the user defining it is the owner of the
 
data base. Otherwise, it will be marked as a temporary entry
 

and will be deleted from the SYSDD table when the user is no
 

longer attached to the data base.
 

When the control structures associated with a data base
 

are being loaded into main storage, the amount of main storage
 
required for the Data Dictionary is 'computed. The number of
 
entries in the Data Dictionary is stored in the Data Base Control
 

Block. After allocating the main storage necessary to contain
 
the Data Dictionary, the Data Dictionary entry records are
 
retrieved from the SYSDD table and stored in the Data
 

Dictionary. Whenever a user defines a new table in the data
 

base or expands an existing table, the Data Dictionary associated
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with the data base is searched to insure that all data fields
 
in the table have been previously defined. When there are no
 
longer any users attached to 
a data base, the main storage
 
allocated for the corresponding Data Dictionary is 
freed.
 

An existing data field can be removed from a data base by
 
its owner, the owner of 
the data base, or the Data Base
 
Administrator, only if the data field is not 
currently being
 
used within a table in the data base. 
 When a data field is
 
removed from a data base, the corresponding entry in the Data
 
Dictionary is removed from main storage and the corresponding
 
Data Dictionary entry record is deleted from the SYSDD table.
 

8.4.6 Relation Control Blocks
 

A Relation Control Block exists for each table maintained
 
by the Integrated Data Base Management System. 
 Relation
 
Control Blocks are stored, as records, in the SYSREL system
 
table. Each Relation Control Block will contain the table
 
name, the user-id of the owner of the table, a description of
 
the table, the temporary/permanent status of the table, the
 
date on which the table was 
created and other data fields,
 

flags and pointers.
 

A Relation Control Block is created when a user issues a
 
command to define 
a new table to the system. Main storage
 
is allocated for the new Relation Control Block after which it
 

is initialized and inserted in the SYSDD table. 
 It is also
 
inserted in the chain of Relation Control Blocks pointed to
 
by the Data Base Control Block for the data base containing the
 
new table. Data fields in 
a Relation Control Block can be
 
updated at 
any time by the Data Base Administrator.
 

When the control structures associated with the data base
 
are being loaded into main storage, the Relation Control Blocks
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for tables within the data base are retrieved from the SYSREL
 

table and placed on a two-way chain originating at the Data Base
 

Control Block. This chain is maintained in main storage in
 

ascending logical sequence by table name. When a command is
 

received that references a particular table in the data base
 

to which the user or application program issuing the command
 

is attached, the corresponding Relation Control Block is
 

located by searching the chain of Relation Control Blocks
 

emanating from the Data Base Control Block. Access to all
 

data contained in a table is controlled through the Relation
 

Control Block. When there are no longer any users attached
 

to a data base, the main storage allocated for the Relation
 

Control Blocks is freed.
 

An existing table can be removed from a data base by its
 

owner, -the owner of the data base or the Data Base Administrator.
 

When a table is removed from a data base, the Relation Control
 

Block is removed from the Relation Control Block chain, the
 

main storage allocated for the Relation Control Block is freed
 

and the record containing the corresponding Relation Control
 

Block is deleted from the SYSREL table. This may cause records to
 

be deleted from other system tables, as well. All data contained
 

in the table and all superstructures created for the table are
 

deleted from the system, also.
 

8.4.7 Domain Extensions
 

A Domain Extension is always associated in main storage
 

with a Relation Control Block. It contains information about
 

the data fields in the corresponding table. The Domain Extension
 

consists of two sections; a primary section which contains one
 

entry for each data field in the table and an auxiliary section
 

which contains one entry for each data field used in a combina

tion B-tree or inverted key field associated with the table.
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Each entry in a Domain Extension is stored, as a record, in the
 

SYSDOM system table. Each Domain Extension entry in the primary
 

section contains the data field name, the column number of the
 

data field in the table, the dimensionality of the data field,
 

the starting location of the data field in each record, the
 

length of the data field, a flag indicating whether or not an
 

index exists on the data field and, if so, what type of index
 

and, if an index does exist, a pointer to an index page.
 

Domain Extension entries in the auxiliary section contain,
 

essentially, the same information as those in the primary sec

tion except that they also include the key name.
 

Domain Extension entries are created when a user issues
 

a command to define a new table, when new data fields are added
 

-to an existing table and when a new B-tree or inverted index
 

is created on a combination of data fields in the table.
 

When a new table is created, main storage is obtained for the
 

Domain Extension. An entry is created for each data field
 

in the table and stored in the Domain Extension. It is in

serted in the SYSDOM table, also. When an existing table is
 

expanded by adding one or more data fields, an entry is
 

created for each data field. It is placed in the primary
 

section of the existing Domain Extension and inserted in the
 

SYSDOM table. When a B-tree or inverted index is defined on
 

a combination of data fields in a table, an entry is created
 

for each data field specified as part of the key field. They
 

are placed in the auxiliary section of the Domain Extension
 

and inserted in the SYSDOM table.
 

When the control structures associated with a data base
 

are being loaded into main storage, the Domain Extension
 

entries associated with each table in the data base are
 

retrieved and placed in the appropriate Domain Extension.
 

Each Domain Extension is linked to the corresponding Relation
 

Control Block in main storage by a pointer in the Relation
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Control Block. When a data manipulation command accesses
 

data in a table, the Domain Extension is used to validate
 

that the data fields or key fields specified in the command
 

exist in the table, to select the access path which minimizes
 

the number of records 'which must be accessed to satisfy the
 

command and to locate the referenced data fields within the
 

retrieved records. When the Relation Control Block which
 

points to the Domain Extension is removed from main storage,
 
the main storage allocated for the Domain Extension is freed.
 

When a table is removed from a data base, the main storage
 
allocated for the Domain Extension to the Relation Control Block
 

is freed and all records containing the corresponding Domain
 

Extension entries are deleted from the SYSDOM table.
 

8.5 Queues
 

A queue is a two-way chain of Command Control Blocks. 
 A
 

-queue is empty when it contains no Command Control Blocks.
 
Some queues are used to transfer Command Control Blocks from
 

one asynchronous process to another. Other queues are used
 

to hold Command Control Blocks for commands that are awaiting
 

the completion of an event.
 

8.5.1 The Command Queue
 

The Command Queue contains Command Control Blocks associated
 
with interactive and application program commands which have
 

been syntax checked. Command Control Blocks for interactive
 

commands are placed on the Command Queue by the Interactive
 

Command Processor. Command Control Blocks for applicatiQn
 

program commands are placed on the Command Queue by the
 
Application Program Interface. When a Command Control Block
 

is added to the Command Queue, it is placed at the end of the
 

chain of Command Control Blocks already on the queue. Also, a
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flag is set which activates the Monitor, if it is not already
 

active.
 

When activated, the Monitor determines whether or not the
 

tables required by the command whose Command Control Block has
 

just been added to the Command Queue can be allocated to the
 

command. If so, the Command Control Block for the command is
 

removed from the Command Queue and the command is initiated.
 

If not, it remains on the Command Queue until the necessary
 

tables can be allocated to the command. Whenever a table
 

becomes available, the Monitor is activated. The Monitor
 
scans the Command Queue to determine if any command can be
 

initiated.
 

8.5.2 The Initiator Queue
 

The Initiator Queue contains Command Control Blocks associa

ted with commands for which execution can be started. That
 

is, all tables required for execution of the commands can be
 

allocated to them in the required mode. Command Control
 

Blocks are placed on the Initiator Queue by the Monitor. When
 
a Command Control Block is added to the Initiator Queue, it is
 

placed at the end of the chain of Command Control Blocks already
 
on the queue. Also, a flag is set which activates the Logical
 

Interface, if it is not already active.
 

When activated, the Logical Interface attempts to select a
 
command for execution from the Wait Queue, described below.
 

Failing that, the Logical Interface selects the command whose
 

Command Control Block is the first one in the Initiator Queue
 

to be started. 
 When a command is selected for execution from
 

the Initiator Queue, its Command Control Block is removed from
 

the Initiator Queue and the command becomes the executing com

mand.
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8.5.3 The Wait Queue
 

The Wait Queue contains Command Control Blocks associated
 
with commands for which execution has been started but are now
 
awaiting the completion of a I/O event. Command Control Blocks
 
are placed on the Wait Queue by the Physical Interface when an
 
I/O operation is started for the command. 
 When a Command
 
Control Block is added to the Wait Queue, it is placed at 
the
 
end of the chain of Command Control Blocks already on the queue.
 
Then, control is returned to the Logical interface.
 

The Logical Interface scans the Wait Queue to determine if
 
any of the commands therein can continue execution. A command
 
whose Command Control Block is on the Wait Queue can continue
 
execution when the I/O operation on which it is waiting com
pletes. Since the Wait Queue is a first in 
- first out queue,
 
the scan always begins with the first Command Control Block in
 
the queue. When a command is encountered that can continue
 
execution, its Command Control Block is removed from the Wait
 
Queue and that command becomes the executing command. If no
 
command on the Wait Queue can continue execution, the Logical
 
Interface starts the execution of the command whose Command
 

Control Block is first in t-he Initiator Queue.
 

8.5.4 The Output Message Queue
 

The Output Message Queue contains Message Request Blocks
 
associated with output messages that are 
to be transmitted
 
from the Integrated Data Base Management System to remote
 
terminals. Message Request Blocks can be placed on the Output
 
Message Queue by any software process that handles interactive
 
commands. Each Message Request Block contains-an indication
 

of the message to be transmitted and the remote terminal to
 
which it is to be sent. When a Message Request Block is added
 
to the Output Message Queue, it is placed at the end of the
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chain of Message Request Blocks already on the queue. 
 Also,
 
a flag is set which activates the Output Message Processor if
 
it is not already active.
 

When activated, the Ouput Message Processor removes the
 
first Message Request Block from the Output Message Queue and
 
transmits the corresponding message to the specified terminal.
 

8.5.5 The Interactive Terminator Oueue
 

The Interactive Terminator Queue contains Command Control
 
Blocks associated with interactive commands for which execution
 
has completed or has been aborted. 
Command Control Blocks for in
zeraczive commands which have completed normally are placed on The 
Interactive Terminator Queue by the Logical Interface. 
 Command
 
Control Blocks for interactive commands which have been aborted
 
may be placed on the Interactive Terminator Queue by any soft
ware process that handles interactive commands. 
 When a Command
 
Control Block is added to the Interactive Terminator Queue, it
 
is placed at the end of the chain of Command Control Blocks
 
already on the queue. Also, 
a flag is set which activates
 
the Interactive Command Terminator, if 
it is not already
 
active. 
 When activated, the Interactive Command Terminator
 

removes 
the first Command Control Block from the Interactive
 
Terminator Queue and performs the required processing to
 
terminate the associated command.
 

8.5.6 The Application Terminator Queue
 

The Application Terminator Queue contains Command Control
 
Blocks associated with application program commands for which
 
execution has been completed. Command Control Blocks for
 
application program commands which completed normally 
are
 
placed on the Application Terminator Queue by the Logical
 
Interface. Application Program Commands which contain syntax
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errors are terminated abnormally. Their Command Control
 

Blocks are placed on the Application Terminator Queue by the
 
Application Program Interface. When a Command Control Block
 

is added to the Application Terminator Queue, it is placed at
 
the end of the chain of Command Control Blocks already -n the
 

queue. Also, a flag is set which activates the Application
 

Program Terminator, if it is not already active. When
 
activated, the Application Program Terminator removes the first
 

Command'Control Block from the Application Terminator Queue and
 
performs the required processing to terminate the associated
 

application program command.
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SECTION 9 - SYSTEM SOFTWARE
 

9.1 System Architecture
 

This section describes the architecture of the Integrated
 
Data Base Management System. The software has been divided
 

into several asynchronous processes based on the functions
 
which must be performed as a command proceeds through the
 
system. Each of the processes are event driven. 
 That is,
 
a software process is executing in a "run" state only when an
 
event occurs which indicates the software process must perform
 
some function. Otherwise, the process is in a dormant or
 
"wait" state. This software architecture, coupled with the
 
use of the queues which are described in Section 8, permits
 
several commands to be in 
different stages of processing with
 
a minimum of delay.
 

The following subsections describe briefly each of the soft
ware processes that constitute the Integrated Data Base Management
 
System. Certain programs, such as the System Generation
 
Program and utility programs, are separate from the software
 
which supports user processing. Also, there will exist a set
 
of routines which will be stored in 
a library managed by the
 
Integrated Data Base Management System. 
 These routines will
 
be loaded into main storage only when needed to support 
a user
 
processing requirement. 
 Figure 9-1 shows the software proces
ses which constitute the system and the command flow through
 

the system via the queues.
 

9.2 The System Generation Program
 

The System Generation Prodgram is a stand-alone program
 
which, except under extraordinary circumstances, is run only
 
once 
to initialize the Integrated Data Base Management System.
 
When invoked, the System Generation Program reads a set of in
put parameters specified by the Data Base Administrator which
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control the system initialization process. 
 The input para
meters include the initial password for the Data Base
 
Administrator, the page size for the tabular data storage
 
area and a list of online storage devices which can be mapped
 
into the tabular data storage area.
 

After accepting and checking the input parameters, the
 
modules which constitute the nucleus of the Integrated Data
 
Base Management System are loaded. This code is used to
 
perform most of the output during the initialization of the
 
system. The online storage 
area which will contain tabular
 
data is initialized by writing empty pages throughout the
 
area. 
 The System Generation Program will contain within it,
 
the control structures associated with the Global Data Base,
 
as well as 
the User Control Block for the Data Base Administrator.
 
The control structures include the Data Base Control Block
 
for the Global Data Base, its Data Dictionary, the chain of
 
Relation Control Blocks for all system tables in the Global
 
Data Base and their Domain Extensions. 
 The control structures
 
will reflect an empty Global Data Base. 
 The System Generation
 
Program will insert the control structure records representing
 
the Data Base Administrator and the Global Data Base into the
 
appropriate system tables. 
 The order of processing of the
 
various control structures is significant since the proces
sing of one control structure may affect the contents of
 
another.
 

After completing the output of the control structure records,
 
the System Generation Program will output 
a block of control
 
information to be used each time the program load operation is
 
performed for the Integrated Data Base Management System. 
The
 
control information will include a map to be used in 
convert
ing page pointers in the tabular data storage area to online
 
device addresses, a page pointer to the first free page in
 
the tabular data storage area, page pointers to the pages con
taining the control 
structures which constitute the Global Data
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Base and any other information which must be retained from
 

One program load operation to the next. The control informa
tion may be stored in a specific location on a system resident
 
pack so that the block can be loaded by the System Control Program
 
when the Integrated Data Base Management System is started.
 

9.3 The System Control Program
 

The System Control Program provides the operator with con
trol over the execution of the Integrated Data Base Management
 

System. All operator comm.unication with the system is via the
 
System Control Program using a set of operator commands.
 

Operator commands are accepted, checked and executed by the
 
System Control Program. The operator commands allow the
 
operator to start the system, obtain information concerning
 

the operation of the system, stop the system and restart the 
system after a major malfunction.
 

During the program load operation which starts the system,
 
the System Control Program loads the control information block,
 
attaches all of the asynchronous processes and initializes all
 

queues to an empty state. When an operator command is received
 
which requests information, the System Control Program collects
 

the required information and transmits it 
to the operator.
 

When the operator stops execution of the system, the System
 

Control'Program performs the required procedures to terminate
 

the processing of any commands in progress and stop the system.
 
When the operator requests a system restart, the System Control
 
Program performs the required restdre operations such.that the
 
system can be restarted.
 

9.4 The Interactive Command Processor
 

The Interactive Command Processor actually consists of two
 

asynchronous software processes; 
 the Interactive Command Input
 

9-4
 



,Processor and the Interactive Command Termination Processor.
 
Each of these software processes is described briefly below.
 

9.4.1 The Interactive Command Input Processor
 

The Interactive Command Input Processor accepts interactive
 
commands from either the telecommunications message handler
 
or the Batch Command Reader. Messages received from the
 

telecommuncations message handler were entered via a remote
 
terminal while messages received from the batch command reader
 
were entered via a card reader. Each message contains an
 
identifier indicating its point of origin; either a particular
 
remote terminal or the card reader.
 

After receiving a message the Remote Terminal Communications
 
List is searched to determine if an entry already exists con
taining the identifier. If not, a new entry is created con
tainifig the identifier and the message is associated with that
 

an
entry. if entry already exists, the message is associated
 
with the existing entry in the list. If the message is not
 
a continuation of a previously received message, the Interactive
 
Command Processor constructs a Command Control Block for the
 
message. The message is parsed and the syntax is checked.
 
If, after parsing the message, the system expects a continua
tion message, a flag is set in the corresponding entry in the
 
Remote Terminal Communications List and the next message is
 
accepted. If no continuation is expected and a syntax error
 
occurs, a Message Request Block is placed on the Output
 
Message Queue which will cause a diagnostic message to be
 

transmitted to the terminal from which the message originated
 

or, if the message entered via the batch command reader, the
 
diagnostic message is printed. 
 If a syntax error is encountered
 
while processing a command, the command is terminated by
 
placing its Command Control Block on the Interactive Terminator
 
Queue. If no errors are found in the command, the command
 

9-5
 



is introduced to the monitor by placing its Command Control
 
Block on the Command Queue.
 

A command entered through a remote terminal can be aborted
 
by sending a special "break" character in a message. When a
 
message is received containing the special character, the com
mand being processed from that terminal, if any, is immediately 
terminated no matter what stage of processing it may be in.
 
The termination may require some amount of restoration of in
formation to remove the effects of the command on the system.
 
The Command Control Block is placed on the Interactive
 
Terminator Queue so that iV 
may be purged from the system.
 

9.4.2 The Interactive Command Terminator
 

The Interactive Command Terminator is 
an asynchronous soft
ware process which performs all actions necessary to complete
 
the processing of an interactive command. 
 The Command Control
 
Blocks for the interactive commands to be terminated are
 
obtained from the Interactive Terminator Queue. 
 When a Command
 
Control Block is placed on the Interactive Terminator Queue by
 
another software process, a flag is 
set placing the Interactive
 
Command Terminator into the run 
state, if it is not already
 
executing. The Interactive Command Terminator removes the
 
first Command Control Block from the Interactive Terminator
 
Queue. 
 The entry in the Remote Terminal Communications List
 
with which the command is associated is modified to remove all
 
reference to the command being terminated. The main storage
 
allocated for the Command Control Block is freed and all other
 
processing required to purge the command from the system is
 

performed.
 

9.5 The Application Program Interface
 

The Application Program Interface consists of two modules
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which provide the facilities by which an application program
 

in one region of main storage can communicate with the
 

Integrated Data Base Management System in another region and
 

two asynchronous software processes: the Application Program
 

Command Processor and the Application Program Command Terminator.
 

Each of the communication modules and the software processes
 

are described briefly below.
 

9.5.1 The Communication Modules
 

Two modules are used to provide communication betweef an
 

application program and the Integrated Data Base Management
 

System. They are the Application Program Communication
 

Module and the Cross-Boundary System Routine.
 

A copy of the Application Program Communication Module
 

must be included in the load module for each application pro

gram which issues commands to the Integrated Data Base
 

Management System. The Application Program Communication Module is
 

entered when a CALL to the Integrated Data Base Management
 

System is executed in the application program. It creates an
 

Application Program Request Block containing the address of each
 

argument in the command and invokes the Cross-Boundary System
 

Routine.
 

The Cross-Boundary System Routine places the Application
 

Program Request Block on the Application Program Request Queue
 

and sets a flag to place the Application Program Command
 

Processor in the run ptate,if it is not already executing.
 

Control is returned to the Application Program Communication
 

Module where the application program is placed in a non-executing
 

wait state. When the Integrated Data Base Management System
 

completes the processing of a command, control is returned to
 

the Cross-Boundary System Routine where argument values 
are
 

transferred to the application program and the application
 

program is placed in the run state again.
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9.5.2 The Application Program Command Processor
 

The Application Program Command Processor is 
an asynchronous
 
software process which accepts commands from application pro
grams. When an Application Program Request Block is placed
 
on theApplication Program Request Queue by the Cross-Boundary
 
System Routine, a flag is 
set placing the Application Program
 
Command Processor into the run state,if it is not 
already
 
executing. The Application Program Command Processor removes
 
the first Application Program Request Block from the Application
 
Program Request Queue and searches the Application Program
 
Communication List to determine if 
an entry already exists for
 
the application program that issued the command. 
 If not, a
 
new entry is created for the application program and the
 
Application Program Request Block is associated with that 
entry.
 
If an entry already exists, the Application Program Request
 
Block is associated with the existing entry in the list.
 

A command Control Block is constructed for the command and
 
the contents of the argument list associated with the command
 
are checked. If an error is detected in the argument list,
 
the command is terminated by placing its Command Control Block
 
on the Application Terminator Queue. 
 If no errors are found
 
in the argument list, the command is introduced to the Monitor
 
by placing its Command Control Block on the Command Queue.
 

9.5.3 The Application Program Command Terminator
 

The Application Program Command Terminator 'is an 
asynchronous
 
software process which performs all actions necessary to com
plete the processing of an appliiation program command. The
 
Comm-and Control Blocks for the commands to be terminated are
 
obtained from the Application Terminator Queue. 
 When a
 
Command Control Block is placed on the Application Terminator
 
Queue by another Software Process, a flag is set placing the
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Application Program Command Terminator into the 
run state if
 
it is not already executing. The Application Program Command
 
Terminator removes the first Command Control Block from the
 
Application Terminator Queue. 
 The entry in the Application
 
Program Communications List with which the command is associated
 
is modified to remove all reference to the command being termin
ated. The main storage allocated for the Command Control Block
 
is freed and all other processing required to purge the command
 
from the system is performed. Finally, the Cross-Boundary
 
System Routine is invoked to transfer argument values to the
 
application using addresses in the Application Program Request
 
Block and to place the application program back into the run
 

state.
 

9.6 The Monitor
 

The Monitor is an asynchronous software process which
 
handles resource allocation for commands and dispatches com
mands 
to the Logical Interface for execution. The Command
 

Control Blocks for the commands to be dispatched by the
 
Monitor are obtained from the Command Queue. 
 When a Command
 
Control Block is placed on the Command Queue by either the
 
Interactive Command Input Processor or 
the Application Program
 
Command Processor, a flag is set placing the Monitor into the
 
run state, if it is not already executing. Whenever a Command
 
Control Block is placed on the Command Queue, the Monitor
 
determines whether or 
not the command can be dispatched immediately.
 
A command can be dispatched if all tables which it 
requires for
 
processing can be allocated to the command in the proper mode.
 
If the command can be dispatched by the Monitor, its Command
 
Control Block is removed from the Command Queue and placed on
 
the Initiator Queue for processing by the Logical Interface.
 
If the command cannot be dispatched immediately by the Monitor,
 
its Command Control Block remains at the end of the Command
 

Queue.
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Whenever the status of a table in the system changes, a flag
 

is set. This flag causes the Monitor to enter the run state,
 

if it is not already executing. When the status of one or
 

more tables changes, the Monitor scans the Command Queue to
 

determine whether or not any command on the queue can be dis

patched. If so, the Command Control Block for the command to
 

be dispatched is removed from the Command Queue and placed on
 

the Initiator Queue for processing by the Logical Interface.
 

If no command on the Command Queue can be dispatched, the
 

Monitor is placed in the wait state until either a new command
 

is placed on the Command Queue or the status of a table within
 

the system changes.
 

9.7 The Logical Interface
 

The Logical Interface, along with the Physical Interface
 

and the Data File Processor, forms a single asynchronous pro

cess which performs the command dependent processing. The
 

Command Control Blocks for commands to be processed by the
 

Logical Interface are obtained from the Initiator Queue.
 

When a Command Control Block is placed on the Initiator Queue
 

by the Monitor, a flag is set placing the Logical Interface
 

into the run state, if it is not already executing. The
 

Logical Interface removes the first Command Control Block from
 

the Initiator Queue and begins the command dependent processing
 

for that command. When the command that is currently being
 

processed by the Logical Interface performs an Input/Output
 

operation or requires the loading of a library routine, its
 

Command Control Block is placed on the Wait Queue and the
 

execution of that command is suspended.
 

After placing a Command Control Block on the Wait Queue,
 

the Logical Interface scans the Wait Queue to determine
 

whether or not any of the Input/Output or library load opera

tions on which the commands are waiting have completed. If
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so, the corresponding Command Control Block is removed from
 
the Wait Queue and execution of the command continues. If no
 
command on the Wait Queue can continue execution, the Logical
 
Interface removes the first Command Control Block from the
 
Initiator Queue and starts the execution of that command.
 
If the Initiator Queue is empty, the Logical Interface is
 
placed in the wait state until a command is placed on the
 
Initiator Queue or a command on the Wait Queue can 
continue
 

execution.
 

When a command completes execution or is aborted, the
 
Logical Interface places its Command Control Block on either
 
the Interactive Terminator Queue or the Application Terminator
 
Queue, depending upon the source of the command. 
 A flag is
 
set to place the corresponding terminator into the 
run state,
 
if it is not already executing.
 

9.8 The Physical Interface
 

The Physical Interface consists of subroutines which
 
support Input/Output operations for tabular data. 
 The sub
routines are entered from the Logical Interface via a CALL.
 
The Physical Interface provides the buffer control facilities
 
for transferring pages between main storage and the tabular
 
data storage area on direct access devices. It also maintains
 
the superstructures associated with tabular data. 
 The
 
Physical Interface controls the logging of page images and
 
provides the capability of dynamically restoring data bases
 
should a command terminate abnormally. Also, the Physical
 
Interface is responsible for the logging of transactions to
 
provide an 
audit trail and record images to allow recovery
 
should a malfunction cause system failure.
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Of course, the primary function of the Physical Interface
 

is the transfer of tabular data into and out of main storage.
 

When an Input/Output operation is to be performed, the Input/
 

Output subroutine is entered. This routine starts the data
 

transfer and then places the Command Control Block for the
 

command which initiated the data transfer on the Wait Queue.
 

After placing the Command Control Block on the Wait Queue,
 

the Input/Output subroutine returns control to the Logical
 

Interface which selects the next command to be executed.
 

9.9 The Data File Processor
 

The Data File Processor consists of a set of subroutines
 

which supports Input/Output operations for sequential data
 

files. It is entered from the Logical Interface via a CALL.
 

The Data File Processor is responsible for locating an exist

ing data file for an input operation and, if necessary, issu

ing device mounting instructions to the operator. For an out

put operation, the Data File Processor assigns a unique data
 

identifier to a new data file, locates direct access space for
 

storage of the data file, if necessary, and updates the SYSCATL
 

system table to reflect the existence of a new data file or
 

another copy of an existing data file.
 

The Data File Processor supports the loading of library
 

routines to perform special processing on data files. -,This
 

includes functions such as regridding, windowing and plotting.
 

These routines will be resident in the system library until 
a
 

command is issued which specifies one of the functions per

formed by a library routine. The Data File Processor will
 

cause the proper module to be loaded from the library and
 

pass control to the routine after it has been loaded. When
 

the routine has completed its processing, control is returned
 

to the Data File Processor.
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The Data File Processor uses.several system standard
 

formats for the internal handling of data files. Data files
 

in their original format are converted to one of the system
 

standard formats automatically by the Data File Processor
 

using library routines. Thus, when an off-line copy of a
 

data file in its original format is loaded onto a direct access
 

device, the Data File Processor uses information contained in
 

the corresponding record in the SYSCATL table to locate and load 

the proper format conversion routine from the system library.
 

The format conversion routines read a data file in its
 

original format and write either a copy of the data file or
 

a new data file, which is a subset of the original, in one of
 

the system standard formats.
 

The technique of using loadable routines to perform opera

tions on data files and to perform format conversion provides
 

an open-ended facility for data file processing. New routines
 

can be added to the system library to perform new functions on
 

data files. Also, new format conversion routines can be
 

added to convert new original formats into system standard
 

formats. . Naturally, there will be certain programming
 

conventions that must be adhered to when creating the new
 

routines and it is expected that the Data Base Administrator
 

will control the addition of new routines to the system
 

library.
 

The Data File Processor supports the processing of data
 

files by application programs. It provides the capability
 

of positioning a data file to a particular logical record
 

based upon data values in each record or based upon a relative
 

record number in the data file. It also provides for the
 

deblocking of physical records into logical records during
 

input and the blocking of logical records into physical
 

records during output.
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9.10 The Output Message Processor
 

The Output Message Processor is an asynchronous software
 

process which constructs and transmits messages to either
 

remote terminals or a line printer. The Message Request
 

Blocks for the messages to be transmitted by the Output
 

Message Processor are obtained from the Output Message Queue.
 

When a Message Request Block is placed on the Output Message
 

Queue by another software process, a flag is set placing the
 

Output Message Processor into the run state, if it is not
 

already executing. The Output Message Processor removes the
 

first Message Request Block from the Output Message Queue.
 

The message identified in the Message Request Block is con

structed and transmitted to the remote terminal specified in
 

the Message Request Block or to the line printer. After
 

transmitting the message, the main storage allocated for the
 

message request block is freed and the next Message Request
 

Block is obtained from the Output Message Queue. If the
 

Output Message Queue is empty, the Output Message Processor is
 

placed into the wait state until a Message Request Block is
 

placed on the Output Message Queue.
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APPENDIX A - THE RELATIONAL MODEL OF DATA
 

A.l Description and Definition
 

"Data model" is the technical term used to describe a
 

user's conceptual view of the contents and logical structure of
 

a data base. The relational data model is, at the same time,
 

one of the conceptually simplest models, yet one of the most
 

sophisticated. To begin with, within the relational data
 

model all information is contained in one or more flat tables.
 

Certainly, this is a common enough approach to data organiza

tion; human beings have been tabulating data and looking up
 

information in tables for as long as there have been writing
 

,materials and some sort of script to write in.* Given the
 

ubiquity of tables of information in our daily lives, it may
 

come as something of a surprise that the relational model of
 

data is founded on a rigorous mathematical base. Moreover,
 

it can be mathematically demonstrated that any data relation

ship which can be represented in a competing data model (hier

archical, network) is representable in the relational model of
 

data, while the converse is not always true.
 

The term "relation" has a rigorous mathematical defini

tion. Given sets D1, D2, .. ., Dn (not necessarily distinct),
 

R is a relation on those sets if it is a set of n-tuples
 

<dl, d2 , ..., d n > such that d is from D1 , d2 is from D2,
 

and, in general, di is from D, for i = 1, 2, ... , n.
 

To be mathematically consise, R is a relation on the sets
 
DI, D2, ... , Dn if it is a subset of the Cartesian cross pro

duct D 1 x D2 x ... x D
 

*See, for example, Knuth, D. E., "Ancient Babylonian Algorithms",
 
Communications of the ACM, vol. 15, No. 7 (July 1972) or Boyer,
 
C.B., A History of Mathematics, Wiley & Sons, (1968).
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This mathematical definition gives rise to much of the
 

nomenclature used in the relational data model. The sets
 

Dl D2, etc., are called domains and n is called the degree
 

of the relation. When n = 1 the relation is called "unary",
 
when n = 2 it is called "binary" (and the n-tuples are cal

led "ordered pairs"), when n = 3, the relation is called
 

"ternary", and for larger values of n (or when n is unknown)
 

the term "n-ary" is generally used. In the standard nomen

clature the term n-tuple is usually shortened to tuple, and
 
it is a property of the above formal definition of relations
 

that the tuples are assumed to be in random order.
 

One term which requires careful definition is "attribute".
 
An attribute is a name assigned to a domain set reflecting its
 

usage within the relation. Whereas the domains are not dis

tinct, the attributes of a relation must be distinct. To see
 
.the difference between domains and attributes consider a rela

tion describing a group of tropical storms. One attribute
 
would be the name-of the storm and two others might be the date
 

it formed and the date it broke up. Both of these latter two
 
attributes are from the same domain - the set of all calendar
 

days covered by the study - but the meaning of the elements of
 

that domain when used in the "start date" attribute is dif

ferent from the meaning of dates used in the "end date" attribute.
 

At this point, it is worthwhile to stop to examine the
 

correspondences between tabular nomenclature and relational
 

nomenclature. An n-ary relation is equivalent to a flat table
 
with n columns. The attributes are equivalent to the columns
 

and the tuples represent the rows of the table. It is also pos
sible to relate entities in the relational data model to terms
 
and concepts used in standard data processing, but this requires
 

a caveat or two. For example, it is possible to think of a
 
tuple as a record and an attribute as the name of a field, but
 
a file is a physical entity, as well as a logical entity, while
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tables and relations are abstract concepts. Depending upon
 
the implementation details, a single physical file may hold
 
more than one relation, or a single relation may span
 

multiple physical files. 
 The table below, summarizes
 
the correspondences between tabular, relational, 
and data proces
sing nomenclature.
 

Relational Tabular Data Processing 
relation table (logical) file 
attribute column field name 

tuple row record 
degree No. of columns No. of fields 

Table A-1: Terminology Correspondences
 

Two terms have been borrowed from data processing nomen
clature which do not have a common name in tabular terminology.
 
One of these is data item*, which refers to the contents of a
 
single field of a record, and which, by extension, is used to
 
refer to the value of a particular attribute in a given tuple.
 
The other term is key, which refers to an attribute or collec
tion of attributes whose values uniquely determine the tuples
 
they belong to. 
 If there are multiple keys (i.e., "candidate
 
keys"), then one of them is usually designated as a primary
 
key. In business-oriented implementations, it is not unusual
 
to see the tuples stored in sorted order on 
the primary key,
 
but this is an implementation detail of specific systems and
 
is not a property of the relational model per se.
 

For the balance of this appendix, the terms "column"
 
and "attribute" will be used interchangeably and, likewise,
 
for "table" and "relation". The terms "row", "tuple", and
 
"record" will also 
be treated as synonyms.
 

*The term "component" is sometimes used for "data item" in
 
relational terminology.
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A.2 Normalization
 

A.2.1 First Normal Form
 

Except for very trivial examples, there will not be a
 
single, unique way to represent a collection of data (i.e., a
 

data base) as a group of relations. Some table layouts are
 

easier to work with than others and, particularly when the data
 

base is dynamic, careless structuring of the data base can
 

lead to problems. Fortunately, it is possible to define
 
"normal forms" for table layouts based on data dependencies
 

which will circumvent most of these problems.
 

One type of problem occurs when an attribute can be
 

decomposed into sub-data items which may be of interest to 
a
 

user. For example, it is possible to store a date as a six
 

character alphanumeric string representing day, month, and
 

year or year, month, day or some such combination. In this
 

form "date" can be a single attribute. However, if this is
 
done it becomes impossible,within the relational framework to
 

handle a request such as "fetch all table entries where the
 

year is 1977". Since year is not an attribute of the rela

tion, it is necessary to rephrase the request in the more awk

ward form "fetch all table entries where date is between 1
 

January 1977 and 31 December 1977". Similarly, a location on
 
the earth's surface can be a single attribute (named, perhaps,
 

"location") or expressed as a pair of attributes 
- latitude
 
and longitude. The former approach, using the single attribute
 
"location", would make it impossible to retrieve tuples based
 

on latitude value even though the information is implicitly
 

present, because "latitude" would not be an attribute of the
 

relation in that formulation.
 

A related problem can be illustrated by the following
 

example. Suppose we wish to set up 
a data base for presiden

tial elections. One table might have election year, (primary
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key), winner, winning party, winner's electoral votes, loser,
 

losing party, and loser's electoral votes as its set of attributes.
 

(Note, by the way, that winner and loser are defined over the
 

same domain, the set of all presidential candidates and, like

wise, the two "party" attributes are defined over a common
 

domain. Also, both "electoral vote" attributes are defined
 

over the set of all nonnegative integers.) However, while we
 

are accustomed to thinking of the United States as having a two
 

party system, in many years there have been more than two major
 

party candidates (in the election of 1860, Lincoln ran in a
 

four candidate field) and, of course, George Washington ran
 

unopposed. Thus, while most tuples would have single values
 

for the attributes loser, losing party, and loser's electoral
 

votes, some tuples would have two values for each of this set
 

of attributes, some would have three values, a couple of tuples
 

would have none. As awkward as this is from an implementation
 

standpoint, it is even more awkward for a user to work with.
 

The solution is to split this table into two tables, -one
 

(keyed on election year) with the attributes "election year",
 

"winner", "winning party", and "electoral votes", while the
 

other (keyed on election year and loser, together) would have
 

"election year", "loser", "losing party", and "electoral votes" 

as its attributes, with unique values of each attribute of
 

each tuple.
 

These considerations lead to the concept of a first
 

normal form. First normal form has a rigorous mathematical
 

definition, but it can be easily summarized as follows:
 

A relation is in first normal form if each attribute
 

is single-valued and nondecomposable.
 

In order for a relational data base management system to work
 

properly, all relations must be in first normal form.
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A.2.2 Anomalies and Higher Normal Forms
 

A relational data base can exhibit three kinds of mis

behavior, called "anomalies" in the literature, even when all
 

of its relations are in first normal form. The first of these
 

is called the update anomaly. Consider again the "election"
 

relation with the attributes election year, winner, winning
 

party, and electoral votes. Suppose we have the two tuples:
 

<1968, Nixon, Democrat, 301>
 

<1972, Nixon, Democrat, 520>
 

If we discover this mistake while processing the 1972 tuple,
 

for example, we must be careful to change Nixon's party in
 

both tuples. Moreover, we must check the "election losers"
 

relation to look for tuples containing Nixon to correct his
 

party affiliation there as well, or else the data in this hypo

thetical data base would have inconsistent facts about Nixon.
 

Since one of the most important goals of a data base manage

ment system is to maintain data consistency, this is perhaps
 

the most serious of the three anomalies.
 

The second type of anomaly is called the insertion
 

anomaly. If the relations are not well chosen, it may be
 

impossible to represent certain facts in the data base. For
 

example, it is not possible to represent the fact that Ronald
 

Reagan is a Republican or that Scoop Jackson is a Democrat in
 

this data base since these men were not their party's candidate
 

in 1976. More seriously, between August, 1974,and November,
 

1976, it was not possible to represent the fact that Gerald
 

Ford is a Republican in the hypothetical data base, since he
 

was not a candidate for either the presidency or vice presidency
 

until the 1976 election. This could be a serious problem if
 

the point of the data base was to supply data about presidents.
 

The final anomaly, the deletion anomaly, is harder to
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illustrate. Suppose that 
a data base exists to support a
 
manufacturing or wholesaling activity, with a relation having
 
the name "item reorder" and attributes "item number", "supplier",
 
"supplier address", and "minimum reorder qty". Suppose fur
ther that supplier XYZ is a supplier for item W, and that W is
 
the only item XYZ supplies. If the firm decides not to order
 
any more of item IVand deletes this tuple then, since the ruple
 
has the only occurrence of supplier XYZ in the entire relation,
 
we also lose XYZ's address. If the firm ever intends to deal
 
with XYZ in the future, this loss of information will be an
 

unwanted side effect.
 

Second and third normal forms were developed as tools
 
to help data base designers select good sets of relations,
 
relations which avoid the three anomalies described above.
 
Second normal form is primarily of historical interest, as a
 
step towards development of third normal form. Let A and B
 
be two attributes in a relation R. If knowledge of the value
 
of A uniquely determines the value of B, (e.g., "supplier"
 
determines "supplier address" and "winner" determines "winning
 
party") then we can call A a determinant. R will be in third
 
normal form if it is in first normal form and every determinant
 

is a candidate key.
 

Recently a fourth normal form has been defined to handle
 
yet another type of problem. If an attribute A determines a
 
set of values for attribute B, then the relation is in fourth
 
normal form if A is a determinant of all remaining attributes
 
in the relation. There is no specific anomaly associated
 
with relations in third but not fourth normal form, but such
 
relations are not 
as easy to maintain properly as fourth normal
 

form relations.
 

These higher normal forms are simply formal ways to 
structure sets of relations so that each relation expresses a
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single concept. It should be emphasized that these higher
 
normal forms are not required for a relational data base to
 

function. 
 For that, only first normal form is required.
 

Rather, these normal forms should be considered by a data base
 
designer to be guidelines for selecting sets of tables and
 

table layouts that 
are easy to work with and easy to maintain..
 

In particular, the design of the Integrated Data Base Manage

ment System will allow it to function quite well without
 

necessarily having the data in any normal form higher than first
 

normal form. The features which permit this are:
 

(1) Use of higher level data sublanguages, 

(2) Allowance for null attributes in tuples, and 

(3) Non-necessity for keys and random ordering for 

stored tuples in data files. 

Higher level languages are particularly useful for finessing
 

the update anomaly. Instead of looking up the 1968 and 1972
 

tuples in the hypothetical "elections" relation to change
 

Nixon's party affiliation to Republican, a command in our
 

system's query language would say:
 

UPDATE ELECTIONS
 

(WINNING PARTY = REPUBLICAN)
 

WHERE ELECTIONS.WINNER EQ NIXON#
 

(This would still require looking for Nixon in the "losers"
 

relation.)
 

Since keys are not an integral part of the storage and
 
retrieval operations in the system's physical interface, and
 

since null values are permitted for any attribute of a tuple
 

(the latter feature is not possible without the former), it is
 
possible to store facts in a relation maintained by this system
 
even though a tuple cannot properly be defined for the fact.
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For example, tuples such as < -, Reagan, Republican, - > and
 

< -, Jackson, Democrat, - > could be added to the "losers" 

relation described earlier. While this does not provide a
 

complete solution to the insertion and deletion anomalies, it
 

does partially mitigate their effect.
 

A.3 Relational Operations and Query Languages
 

There were three views of relations offered previously
 

and each of these views suggests a series of basic opera

tions which ought to be applicable to relations in a relational
 

data base.
 

One of-the views was mathematical, the perception of
 

the relations as sets of n-tuples. Hence, it follows that
 

the common set operations such as union, intersection, and
 

difference should be performable on relations provided, of
 

course, that the two sets to be operated on are compatable
 

(i.e., that the two relations are defined over the same set of
 

domains taken in the same sequence).
 

The.view of a relation as a table implies that table
 

look-up operations are applicable to relations. A basic set
 

of tabular operations can be defined: select a column or set
 

of columns ("project"), select a row or set of rows based on
 

some logical criterion ("restrict"), and create a new, larger
 

table by cross-referencing two tables of lower degree over a
 

common domain ("join"). Just as the set theoretic operators
 

take two sets as input and yield a single set as output, these
 

tabular operations take one or two (in the case of "join")
 

tables as input and produce a new table as output. Finally,
 

the view of a relation as a file of records suggests that
 

data manipulation commands such as insert, delete, and update
 

shoula be supported (data retrieval, of course, is equivalent
 

to a restriction, or a restriction followed by a projection
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over the desired attributes). These nine operations con
stitute a relational algebra for manipulating relations, and
 
this relational algebra provides the foundation for query
 

languages to support information handling in a relational data
 
base. We say that a data sublanguage is relationally com
plete if it is possible to perform all relational operations
 

in the relational algebra using that language.
 

A rather different point of view is adopted by query
 
languages based on relational calculus. It is possible to view
 
a relation as a proposition in the first order predicate
 

calculus, and to view the individual n-tuples as "axioms."
 
.In languages based on relational calculus a user formulates
 

his or her query as a statement in the first order predicate
 

calculus defining a new relation, where that statement may
 
well include universal and existential quantifiers (V, "for
 
all," and 3, "there exists", respectively). Codd8 was the
 

first to propose the relational calculus, and he went on to
 
demonstrate that the relational calculus is relationally complete.
 

The advantage of relational calculus over relational algebra
 
is nonprocedurality, that is, the user formulates a query by
 
defining the results of the retrieval and not as a series of
 
processing steps. It 
is left for the system to interpret
 
the query statement and to formulate its own retrieval procedures.
 
Nonetheless, the unfamiliar and highly mathematical notation used
 

by the relational calculus appears to have been an 
impediment
 
to its widespread acceptance. Recently, however, a relational
 

calculus-based language named QUEL has been developed by
 
Stonebraker, et. al.3 7 ,which dispenses with the need for the
 

quantifiers and which makes heavy use of English key words.
 

Such a language would presumably have a higher degree of 
user
 

-acceptance.
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Another approach to a nonprocedural query language
 
made palatable to casual users by use of English key words
 

is embodied in IBM's experimental SEQUEL language4, which is
 
based on the concept of "mapping." In a mapping, known
 

quantities -- specified in a Boolean predicate 
-- are mapped
 

into an unknown quantity -- the data items to be retrieved
 

by means of the relations in the data base, much as mathe
matical functions may be viewed as mapping sets into other
 

sets. 
 In SEQUEL,mappings may be nested inside other mappings.
 
This feature gives SEQUEL its power and yet its most
 

significant drawback; although the language is purportedly
 

"directed at the nonprogramming professional,",3 examples in
 
4 10Chamberlin and Date suggest that formulating queries in
 

SEQUEL would be difficult for users not trained in recursive
 

programming languages such as Algol.
 

A fill-in-the blanks language call Query-by-Example
 
40
has been developed by Zloof4 . The user enters the names
 

of the relations against which a query is to be made on 
a
 
graphics CRT terminal and the system responds by drawing in
 
a skeleton table with columns and headings. At that point
 
the user fills in one or more rows with examples of the desired
 
result. The known values are keyed in directly while unknowns
 

are represented by arbitrarily-chosen sample values which are
 
flagged in some way. Psychological studies of user interact

ions with Query-by-Example3 8 demonstrate that Query-by-Example
 
is easy to use, particularly for the casual or novice user;
 
has a high degree of retention for infrequent users; and is
 
"behaviorly extendable," that is, 
a user can start by learning
 

just enough of the language to get by and add to his or her
 

knowledge as necessary. However, although a "linearized"
 

version of Query-by-Example exists for use with batch input
 

or non-graphics terminals, that form of 
the language is more
 
bulky to use and not nearly as convenient.
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Finally, there has been much interest in the use of
 
natural language (specifically English) as a very high level
 
query language. In particular, there has been much research
 
on the part of artificial intelligence theorists on develop
ment of a natural language interface for relational data base
 
management systems (the consensus among researchers is that
 
the relational data model facilitates natural language inter
face development to such a degree that if a natural language
 
front end cannot be developed for a relational system, then
 
it cannot be developed for a data base management system at
 
all). 
 There has also been much work done on automatic trans
lation of questions into first order predicate calculus, 
so
 
that & relational calculus-based system may yet be commercially
 
feasible. 
 But a true natural language interface is still a
 
long way off.
 

A.4 History
 

The late 1960's saw the development of several arti
ficial intelligence-oriented systems based on the storage of
 
data as a set of binary relations (such as MOTHER-OF<JACK,MARY>).
 
However, textbooks on data base management systems (e.g., Date 10
 

Martin2) and survey articles (Chamberlin3 ) are unanimous in
 
pointing to the 1970 article by E. F. Codd 6 
as the seminal
 
paper providing the impetus for the theoretical and practical
 
development of the relational model of data. 
 A subsequent
 
series of articles by Codd continued to develop the theoretical
 
foundations of the.relational data model, including definition
 
of a "relational algebra" and specification of prototype data
 
sublanguages based on 
first order predicate calculus and on
 
the relational algebra8 , development of the theory of normaliza
tion7 , and conceptual design of 
an English language interface
 
between a casual user and a relational data base management
 

system99 . It is rare in any science for a single individual
 
to provide nearly all of the theoretical basis for a major new
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branch of technology, and rarer still in computer science.
 

Nonetheless, it is clear that Codd is the founding father of
 

the relational model of data.
 

Curiously enough, Codd does not appear to have made a
 

direct contribution to the implementation of any working proto

type relational data base management system. Most prototype
 

systems have been constructed in a university environment or
 

in IBM research laboratories (for a list and description of
 
3
these systems and the following two see Chamberlin or Datel0 ).
 

General Motors implemented a system called RDMS in 1972 (not
 

to be confused with MIT's system of the same name) and RISS
 

was 
built for Forest Hospital in Des Plaines, Illinois. Two
 

of these systems - RISS and INGRES - are commercially available
 

for use on DEC PDP-ll's. The vast bulk of research on
 

relational data base management systems has been conducted
 

under IBM auspices (all of the people mentioned in this sec

tion. Chamberlin, Codd, Date, and Martin, are IBMers, as is Zloof
 

the person who developed Query-by-Example). However, IBM has
 

been careful to label all of its work on the relational data
 

model as "experimental", and it is not likely that an IBM pro

duct in this area will soon be forthcoming.
 

A.5 The Advantages of the Relational Model of Data
 

There are two competitive data models, the "hierarchical"
 

model typified by IBM's IMS system and the "network" model
 

.
devised by the Data Base Task Group of the CODASYL committee5
 

It is sufficient, however, to compare the relational data
 

model to the CODASYL model since the hierarchical data model
 

is not general - there are data relationships which can be
 

represented in the relational data model and in the CODASYL
 

model which cannot be represented in the hierarchical model.
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The primary advantage of the relational data model viz
a-viz the CODASYL model is data independence. There are two
 
forms of data independence - physical independence and logical
 
independence. Physical independence means that the user
 
should be shielded from details of the physical storage of the
 
data, including character representation methods, byte size,
 
record blocking, physical access method, etc. 
 The relational
 
model functions quite well in this respect, 
since the user
 
sees only the tables and attributes and sees nothing of the
 
underlying physical implementation. In the CODASYL model,
 
the files may be envisioned as labeled vertices of a directed
 
graph with labeled arcs, where the labels on 
the arcs define
 
relationships between the entities of 
one file and the entities
 
of another. 
 Typically, a CODASYL model is implemented with
 
pointers from one record in a file pointing to 
a record or
 
linked list of records in another file, and so 
the user must
 
often be aware of decisions made by the Data Base Administrator
 
concerning physical record placement and access paths. 
 In the
 
CODASYL model,both structural and nonstructural features,
 
e.g., details of storage structure and access szrategy,.are
 
interwoven with the logical structure. Physical structure
 
changes which would be transparent to a user of a relational
 
data base would not be transparent to the user of a CODASYL
 

data base.
 

Logical independence is generally defined to mean
 
that, within reason, application programs which operated prop
erly before a change to the logical structure of the data base
 
should continue to work after the change. 
 Here, again, the
 
relational model has a major advantage over the CODASYL model.
 
Changes such as 
adding a column cause no problem to the user,
 
although small changes in information can cause the data to
 
be unnormalized and require major restructuring of the data
 
base. 
 However, it is equally possible that small changes,
 
for example changing a one-to-one relationship to a one-to
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many or, especially, a one-to-many relationship to a many-to
many, can also cause nontrivial restructuring of a CODASYL
 
data base. Consequently, it is generally conceded that the
 
CODASYL data model has considerably less logical independence
 

than the relational data model.
 

Another major advantage of the relational data model
 
over the CODASYL model is its flexibility, although it is not
 
so much that the relational model is flexible as that the
 
CODASYL model is inflexible. Recall that relationships and
 
access paths must be formally specified in the CODASYL data
 
definition schema, and if the data base administrator should
 
happen to overlook some relationship between records in a
 
pair of files, then users of the system will be unable to re
spond to a query which requires that (missing) access path.
 

Two interwined issues are complexity and clarity and,
 
here again, the relational data model has the advantage. The
 
CODASYL model has no fewer than six data constructs, any of
 
which can bear information which could not otherwise be
 
derived. In the relational model there is precisely one
 
such data construct (the n-ary relation). Moreover the set
 
construct, which supports one-to-many relationships, performs
 

three roles:
 

(1) It carries information, 

(2) It defines access paths, and 

(3) It provides a mechanism for integrity constraints. 

The multiplicity of information-bearing constructs and the
 
multiplicity of roles make it hard to present the contents and
 
interrelationships in a CODASYL data base consisely. 
 This is
 
reflected in Martin's statemen& 3 that "a badly drawn schema
 

can confuse rather than clarify, and one often sees badly
 

drawn schemas" (pg. 83).
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The simplicity and clarity of the relational data
 

model contribute to ease of use, particularly for the untrained,
 

nontechnical, and/or casual user. This is a point conceded
 

by even the most outspoken advocates of the CODASYL model.
 

The reader might well ask why, if there are all of
 

these fore-mentioned advantages of the relational model over
 

the CODASYL model, there should be any advocates of the CODASYL
 

data model at all. One reason may be that the CODASYL data
 

model provides the user with highly visible navigation routes or
 

access paths through the data base and, consequently, the data
 

sublanguages for manipulating data in a CODASYL data base tend to
 
be procedural in nature. That is, a query is input to a CODASYL
 

data-base management system as a series of steps to be taken
 

which will derive the intended answer. While this will hold
 

back the untrained or trained but casual user, direct control
 

of data access provides a feeling of intimacy with the system
 

which can be very important to some classes of user.
 

Associated with this is the generally-accepted (though
 

not backed up by hard proof) point of view that CODASYL data
 

base management systems are more efficient than relational
 

systems. The CODASYL data model trades off data independence
 

for efficiency's sake and, in some implementations, the quest
 

for machine efficiency has been taken to the point where a
 

user may be accessing a record while it-is being updated to
 

save the overhead involved in testing, setting, and releasing con

currency control locks. However, there are perils in evaluating
 

system efficiency without consideration of whether the users
 

are capable of making the most efficient use of their own
 

time. Everyone understands that there is a tradeoff between
 

main memory and execution time in designing a system, but fewer
 

people seem prepared to grasp the fact that there is a tradeoff
 

between system efficiency and user efficiency. The latter is,
 

granted, hard to quantify since it includes not only the time
 

a user must spend devising and inputting his query, but~also
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hidden costs in demands on the Data Base Administrator's time
 

and ingenuity, training time to teach new users how to use the
 

system, etc. However, problems with user efficiency can cause
 

a system to be under-utilized and, oftentimes, abandoned (see
 

Lucas 2 2). It is believed that this system will be competitive
 

with existing commercial CODASYL data base management systems
 

in terms of system efficiency, and that the many user-oriented
 

advantages offered by the relational data model will help the
 

user and system together achieve their fullest potential.
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APPENDIX B - ADDITIONAL TOPICS
 

B.l Dynamic Memory Allocation
 

B.l.1 Approaches to Dynamic Memory Allocation
 

In order to maintain the User Control Blocks, Relation
 

Control Blocks, the command queues,buffers for processing
 

large tape files and on-line data files, etc., with any
 

degree of efficiency it might be necessary for the Integrated
 
Data Base Management System to hold a large, contiguous block
 

of memory and to allocate and deallocate portions of this
 

"free space" for control blocks, buffers, and so forth as
 
needed. There are three basic approaches to managing this
 

free-space: fixed-size pages, variable-sized allocation
 

with a free space list, and "buddy" methods. Each of these
 
methods is discussed below. Whether or not one of these
 

techniques will be included as part of the Integrated Data
 

Base Management System will depend upon the operating system
 

on which it is implemented.
 

Paging is the easiest approach to implement and its
 
memory overhead -- a single bit map with one bit per page 


.is quite low. However, even when the system supports more
 
than one page size there will normally be a certain amount
 

of wasted space within a page where the space required is
 
less than the size of the page. This wasted space is called
 

"internal fragmentation", and it can be a serious problem
 

leading to system degradation.
 

A very different approach is to allocate precisely as
 

much memory as is required to service any given request.
 

-Such an approach results in the free space being checker
boarded into blocks or areas which are in use 
and blocks
 

which are available for allocation, where it is rare for
 
any pair-of blocks to be the same size. Typically the
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available blocks are chained together on some sort of linked
 
20
 

list. Knuth2,Section 2.5 describes algorithms for maintain

ing free space lists and allocation strategies for selecting
 

which available block to allocate to a given request for
 

memory. This class of dynamic memory management schemes
 

has only negligible internal fragmentation, but it suffers
 

from the more subtle problem of external fragmentation.
 

External fragmentation describes a situation where the free
 

space becomes choked with tiny available blocks, each too
 

small to satisfy a typical request for memory. External
 

fragmentation not only raises the cost of searching the
 

free list of available blocks, but in the limit it can re

sult in a system blockage where no pending request for
 

space can be satisfied, even though sufficient free space
 

exists to satisfy them, because the avail-able memory is
 

scattered in pieces too small to be of use.
 

The "buddy" methods represent a compromise between the
 

above two approaches. In the binary buddy method all
 

blocks -- allocated or available -- are of size 2 k for some
 

integral value of k . If a request for a block of size 


comes in,then the system would determine the smallest j
 

such that 23 ; x If there is a block of that size
 

available,then it would be allocated immediately. If not,
 

then the system locates the smallest available block larger
 

than x and splits it in half (repeatedly, if necessary)
 

until a block of size 2 results. Since each allocated
 

block in the system must have been created by splitting a
 

larger block in half, when a block is released the system
 

checks to see whether the other member of the pair -- the
 

buddy -- is also free. If so then the two are combined to
 

reconstitute the original, larger, block and then the system
 

looks for that block's buddy to rebuild even larger free
 

blocks.
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Intuitively, the buddy method approach should be worse
than the other two, since it is susceptible to both in
ternal and external fragmentation. Moreover, it is quite
 
possible to have a large, contiguous block of unallocated
 
memory which cannot be used in its entirety because it is
 
composed of two smaller blocks which, though available, are
 
not buddies and cannot be coalesced. Nonetheless, theoretical
 
calculations and simulation studies 20,26suggest that buddy
 
methods do, in fact, outperform the variable-sized allocation
 
method both from the point of view of total fragmentation and from the
 
point of view of efficiency of the allocation and dealloca
tion operations. 
A recent study by Nielsen29 suggests that
 
the fragmentation problems of the binary buddy method are
 
too severe when used in simulation systems, but that study
 
confirmed the execution efficiency of the buddy methods
 

noted by KnuthM.
 

B.1.2 The Fibonacci Buddy Method
 

A variation on the binary buddy method proposed by
 
Hirschberg uses the Fibonacci numbers instead of powers of
 
two. 
 Table B-1 shows the Fibonacci sequence, where each i 
nfimber in the sequence (after the second) is the sum of the
 
previous two. The binary buddy method is based on 
the
 
equality 2 k = 2 k-1 + 2 k-l 
while the Fibonacci buddy method
 
is based on the equality Fk 
= Fk 1 + Fk- 2 , where Fk is 
the kth Fibonacci number. Table B-2 shows the most
 
important advantage of the Fibonacci approach over the
 
binary approach, namely, that the Fibonacci method presents
 
the user with a greater variety of block'sizes for a given
 
limit -- particularly at 
the low end of the spectrum.
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0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
 

Table B-i: The Fibonacci Numbers
 

Range Fibonacci Binary
 

I - 100 10 7 

100 - 1100 5 4 

1100 - 12000 5 3 

Table B-2: Count of Numbers in Various Ranges
 

For a while, the Fibonacci method was an academic curious

ity. Hirschberg's calculations and his simulation study
 

(using the data of Minker, et. al. 26 ) demonstrated that the
 

Fibonacci buddy method outperformed the binary buddy method,
 

but he was not able to produce an efficient algorithm for
 

implementing it. Then Thomas and Cranston 9 came up with an
 

.efficient method for implementing the Fibonacci scheme that
 

they were able to prove was within one bit of the absolute
 

minimum storage overhead needed to implement any buddy method.
 

Each block -- freed or in use -- wastes one word (or one byte,
 

for an eight-bit byte-oriented machine). This overhead word
 

(byte) has four fields: a one-bit "A" ("allocated") field, a
 

one-bit "B" field, a one-bit "M" field, and a "k-value"
 

(indicating that the block is of size Fk' the kt h Fibonacci
 

number). The B bit tells whether this is a left buddy or a
 

right buddy, and the M bit saves half of the original block's
 

B and M byte. If B = 0 , then the M bit is the original 

block's B bit and if B = 1 , the M bit is the original 

block's M bit. 
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The Fibonacci sequence is stored in an array (starting
 
with 2 and 3 to generate the sequence) and associated with
 

each number is a pointer to a linked list where free blocks
 

of that size are chained together. If a block of size x
 

is requested, then the array is searched to find the smallest
 

block size (strictly) larger than x. If that list is empty,
 

then the array is searched to find a larger block which can
 

be split (and resplit, if necessary) to create a block of the
 

appropriate size. When a block is freed, the B bit, its size,
 
and its address are used to compute the address of the buddy.
 

If the buddy's A bit shows that it, too, is free, then the
 

two are combined to reconstitute the original block, and then
 

the address of the original block's buddy is computed and the
 

process repeats itself.
 

Not only does the Fibonacci method have the considerable
 
advantage of permitting a variety of block sizes, but it lends
 

itself to generalization and extension to permit a system designer 

to fine tune for a specific purpose. One approach to general
ization is to define Fk = Fk_ 1 + ii , where the first i 

numbers in the sequence are specified. Such a sequence is even
 

denser than the usual Fibonacci sequence, as shown in Table B-3. 

Clearly, the more different block sizes that are available, 

the smaller the internal fragmentation will be. Another 

extension of this technique is to use different generating 

sequences. There is no particular reason why the sequence 
should begin 1, 2; 3, 5, ... and not 2, 4, 6, 10, ... or 3, 7, 

10, 17, ... Therefore, if a system designer knows in 

advance that requests of certain particular sizes will be very 

frequent in the system he can try different values of i and 

different starting sequences to optimize for those sizes. 

Note that i = 1 and F1 = 1 defines the binary buddy approach.
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There is further evidence, beyond Hirschberg's own calcula
tions and simulation to support the suggestion that a Fibonacci
 

buddy method is likely to be the best choice for a dynamic memor
 

allocation algorithm. This expectation is reinforced by
 

Nielsen's study 29 although Nielsen did not test the Fibonacci
 

buddy method directly, since the Fibonacci buddy method com

bines the best features of the top-rated "multiple free list"
 

algorithm and the high-razed binary buddy method. Moreover,
 

the efficacy of the Fibonacci buddy method in the face of an
 

unknown distribution of request sizes and durations is supported
 
.
by the conclusions of Peterson and Norma 0


Range i =1 i = 2 i = 3 1i = 4
 

2-100 7 10 12 14
 

100 - 1100 4 5 6 7
 

1100 - 12000 3 5 6 8
 

Table B-3: 	 Count of Numbers in Various Ranges
 

for Fk =F + F

k k-i k-i
 

B.2 Data Integrity, Consistency, and Quality
 

B.2.1 Sources of Erroneous Data
 

Sibley and Fry 3have identified five sources of poor quality
 

data in a data base. The data might be incorrect because it
 

was:
 

(1) never any good (garbage in equals garbage out) 
(2) altered by human error 

(3) altered by a program bug 

Generated by first i numbers in the sequence 1, 2, 3, 4.
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(4) altered by a machine error
 

(5) destroyed by a major system catastrophe.
 

In addition to these five problems, one can add problems relat

ing to data consistency. Consider the effect of a system
 

crash during an update. It is seldom possible to restart the
 

update procedure at precisely the instant where the system
 

malfunctioned, and simply restarting the update without some
 

mechanism to recreate the data as it was before the crash will
 

not often give the required results. For example, suppose
 

the machine crashes while processing an update to give all
 

systems analysts a 10% raise. If the update is simply
 

restarted after the system comes back up without restoring the
 

data base to its initial state, some systems analysts will get
 

a 21% raise. A second source of consistency problems occurs
 

when two users update the same table simultaneously. These
 

problems will be addressed at greater length in another section
 

dealing with user concurrency.
 

Ensuring data quality and consistency requires both the
 

ability to detect erroneous data and the ability to restore
 

affected portions of the data base to a previous state. To
 

-aid in the detection of erroneous data, there will be provision
 

for user-input data validation rules through an integrity sub

system and procedures for automatic backout and recovery.
 

B.2.2 Backup and Restoration
 

B.2.2.1 Audit Trails
 

An audit trail (also called a "journal" or "log file")
 

is a tape file which records:
 

(1) Beginning and end of all commands 

(2) User-id for each command 

(3) "Before" and "after" images of all changed records 
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(plus) images of inserted and deleted records
 

(4) Time and command identifier for each change.
 

The audit trail plays three roles. First, an audit trail is
 

convenient for a quality audit of the data base, to detect
 

data which is erroneous, but semantically plausible. Second,
 

an audit trail helps detect the source of errors (whether
 

discovered during a formal quality audit or detected informally
 

by a human user). Finally, and probably most important,
 

is the role of the audit trail in recovery from a system
 

crash. The entries in the tape file can determine which
 

commands have been initiated but not completed prior to the
 

crash, and backout procedures can be initiated to recover the
 

contents of those tables to their state prior to the initia

tion of the incomplete command. Moreover, if the data base
 

has been checkpointed then the audit trail can help roll for

ward from that checkpoint to recover from major system mal

functions.
 

B.2.2.2 Internal Backout Provisions
 

It is very important that the system be able to undo any
 

-changes made to a table for two reasons: (1) the command
 

may be blocked from completion by an I/O error or a semantic
 

error, or (2) the system may crash during the course of execut

ing a transaction. The latter can be handled by resorting to
 

the audit trail, but there may be a more efficient method for
 

restoring a table.
 

There are a variety of techniques in current use for pro

viding backup and restore capabilities. The simplest but least
 

efficient approach is to create and maintain a second copy of
 

the original state of the file. This makes restoration an easy

/ 

matter, but it is expensive and time-consuming. Differential
 

files have been espoused as a means of getting around the dump

ing of entire files to provide backup copies. "After" images
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of all changed records are kept in a separate file -- the
 

differential file -- and record accesses begin by searching for
 

the required record in the differential file, using the original
 

file only if searching the differential file comes up empty.
 

Then only the somewhat smaller differential file must be copied
 

before a change transaction begins. Differential files have
 

their drawbacks, most notably-with respect to restoring deletions
 

and due to the two-pass record access requirements. Severance
 

and Lohman33describe a method for alleviating some of the latter
 
difficulties, but deletions would still be a problem.
 

An approach with some similarities to differential files
 

is taken in this system. This approach makes use of a linked
 

list in the tabular data storage area of "before" images of
 

chahged physical pages and another linked list in main storage
 

that is attached to a Command Control Block and which contains
 

the page id of each page for which a "before" image has been
 

recorded during processing of the associated command. While
 

a physical page is being rolled in prior to being changed, the
 

system scans the list of page ids to see whether this page is
 

recorded on it. If not, then the first order of business
 

once this page is in core is to select an empty page slot,
 

create an entry in the list which records the physical id for
 

the page to be changed and the page id for the empty slot, and
 

then, before doing any further processing, copy the page in
 

core into the slot. After the page is updated, it can go
 

back into its proper location on the disk. Backing out the
 

effects of a command and restoring a table to its state before
 

initiation of the command is simple enough. The system
 

merely scans down the list connected to the Command Control
 

Block, entry by entry, and for each entry in the list it rolls
 

in the before image of the physical page and writes it back to
 

its proper location. Notice that this scheme preserves the
 

pointer mechanism for the linked list of physical pages. If
 

the command goes through to completion with no problems (hope

fully the normal casel) then the entire list of "before" images
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in the tabular data storage area can be freed up with no
 
noticeable overhead providing they themselves are maintained
 

in a linked list.
 

It will be necessary to record the new free page head
 
pointer and backup page pointer in the audit trail when a free
 
page is selected for copying.
 

B.2.3 The Integrity Subsystem
 

B.2.3.1 Integrity Assertions
 

When data base management systems designers and computer
 
scientists refer to the "iTtegrity" of data in a data base, they
 
usually are referring to semantic correctness. Examples of
 
semantically incorrect data would be a temperature less than
 

°
-273.16' Celsius, a latitude greater than 90 , an employee
 
record where the first name is "William" and the sex is "'F".
 
etc. In the days when data management systems consisted of a
 
room full of filing cabinets and several clerks, the human be
ings responsible for data entry could catch most such errors
 
with no perceptible overhead. In modern, computerized, data
 
base management systems certain errors become very difficult
 
to catch (e.g., "female" employees with obviously masculine
 
names) and any data validation software included in the system
 
must exact overhead penalties in the form of extra time to
 
perform the tests and extra space to store the knowledge base
 
and the code itself. Designing a space and time-efficient
 
structure for the knowledge base, and resolution of the
 
trade-offs between the expense of performing the tests and
 
the utility of catching the errors, are major problems which
 
confront the designer of a data base management system.
 

The normal approach to data validation in a relational
 
data base management system is the "integrity assertion" (also
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called an "integrity constraint"). An integrity assertion
 
is a true/false predicate whose value will be "true" if and
 
only if the records of the updated table are semantically cor
rect. Suppose SPACECRAFT-DATA and EMPLOYEE are tables con

taining satellite data and personnel records, respectively.
 

Then typical assertions might be defined as:
 

DEFINE ASSERTION Al ON SPACECRAFT-DATA: TEMP > -273.16
 

DEFINE ASSERTION A2 ON SPACECRAFT-DATA: LAT < 1.5708.
 

DEFINE ASSERTION A3 ON EMPLOYEE: AVG(SALARY) < 30000
 

(where temperatures are stored in degrees Celsius and latitudes
 

in radians north latitude). Eswaran and Chamberlin 2identify
 

five ways to classify integrity assertions:
 

(1) record vs. set 

(2) state vs. transition 

(3) immediate vs. delayed 

(4) invoked on all changes vs. invoked only for 

specific types of changes (e.g., deletions only) 

(5) hard vs. "soft" 

Not all of the thirty-two (= 25) combinations of these labels
 
are likely to be useful, and some of these are expensive to
 
support. The Integrated Data Base Management System will sup

port precisely the following combinations, with "hard" and
 
"soft" variations 
on each:
 

(1) imnediate-record-state-update only
 

(2) immediate-record-transition-update only
 

(3) immediate-record-state-insert only
 

(4) immediate-record-state-both insert and update
 

What is to be performed by the above assertion classes can be
 

determined by the description below.
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Immediate-type assertions are tested each time a data
 
item is changed. Delayed assertions are tested at the end of
 
a command or sequence of commands. The value of delayed
 
assertions is that a proper and correct sequence of updates
 
can cause a temporarily invalid state of the data base to occur.
 
For example, consider a personnel data base with an assertion
 
that the "number of employees" data field in a record of the
 
"department" table must equal the sum of the number of records
 

in the "employee" table with that department number. Adding
 
or 
deleting a record in the "employee" table would cause this
 
assertion to be violated until the appropriate data field in
 
the "department" table was 
also updated. Delayed assertions
 
are not necessarily expensive to implement, but analysis of
 
projected user requirements suggests that their utility in 
a
 
scientific environment, no matter how useful they are in 
a
 
business environment, would not be worth the cost of implementing
 

and supporting such a feature.
 

Set-type integrity assertions are distinguished from record
 
assertions in having predicates which are 
functions of the
 
entire table (e.g., assertion A3, above). 
 These are expensive
 
to perform since every record must be accessed when any tuple
 
is changed. For that reason the Integrated Data Base
 

Management System shall not support set assertions. It is
 
not clear whether there would be any benefit to allowing the
 
owner of a table to 
specify that certain assertions be tested
 
only on insertion or only on 
update of a record, although this
 
is simple enough to support and will be, in fact, supported by
 
the system. One type of assertion which applies only to up
dates and which may be useful is the transition assertion, which
 
relates allowable values of a data field in an updated record
 
to the former 
 value (e.g., DEFINE ASSERTION A4 ON EMPLOYEE: 
AGE > OLD AGE). Again this would be simple enough to 
implement and inexpensive to perform, and it will be implemented 

within the system. 
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One enhancement whose value is clear is the "soft" asser

tion. Unlike "hard" assertions, which abort commands when
 
semantic errors are detected, a soft assertion would merely
 

issue a warning.
 

One final consideration is the allowable complexity of
 
predicates for immediate assertions. Clearly, the simpler
 
the predicates are, the easier it will be to store, decode,
 
and apply them. If we assume that predicates have the form:
 

<predicate>:: =<field name> <comp> <value>
 

where <field name> is the name of a data field in the table
 
and <comp> is a comparison operator (i.e., , <, >, LT, LE, 

EQ, GE, GT, or NE), then the allowable forms for <value> are 

(1) 	a constant
 

(2) 	another data field
 

(3) 	a data field plus or minus a constant
 

(4) 	a data times or divided by a constant
 

(5) 	a data field times or divided by a constant .plus
 

or minus a constant
 

The "field name" will be either another data field of the same
 

table or (if transition assertions are supported) the 
same
 
field name as on the left side of the predicate, preceeded by
 

the word "OLD". Some examples are:
 

DEFINE ASSERTION A5 ON EMPLOYEE: AGE = OLD AGE + 1
 

DEFINE ASSERTION A6 ON SPACECRAFT-DATA: START-DATE > END-DATE
 

By restricting the complexity of the predicates and the
 
scope of the assertions it is possible to support immediate
 

integrity assertions by a fairly simple table, attached to the
 

Relation Control Block in main storage much as the Domain
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Extension. The fields of this table would include;
 

(1) assertion name 

(2) data field name (left side of comparison) 

(3) applicability code (insertion only, update only, 

both) 

(4) comparison operator 

(5) constant 

(6) data field name (right side of comparison) 

(7) multiply/divide flag 

(8) constant 

(9) add/subtract flag 

By a suitable choice of null entries, this set of fields is
 

sufficient to describe all valid predicates.
 

B.3 A Locking Mechanism to Support Concurrency
 

B.3.1 Problems Introduced by Concurrent Updates
 

One major objective of a data base management system is
 

to provide for the quality and integrity of the data. There

fore, it makes sense that the system should not itself introduce
 

inconsistencies into the data. One source of system-induced
 

inconsistencies are problems which can arise from permitting
 

concurrent processing of the same files (tables) of data by
 

two or more users.
 

There are two broad categories of problems which can arise
 

due to concurrent processing. The first of these is called the
 

"lost update", and it is a consequence of the fact that data in
 

a data base management system is stored on external media (disk,
 

drum) but must be copied into main memory before being read and/
 

or edited. Suppose that user 1 initiates process 1 to update
 

Record R, and suppose that user 2 simultaneously initiates pro

cess 2 to edit the same record. A possible sequence of events
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is: 

(1) Process 1 copies R into main memory and begins 

to update the record. 

(2) Process 2 copies R into main memory and begins 

its own update. 

(3) Process 1 finishes and copies R back to disk. 

(4) Process 2 finishes and copies R back to disk. 

Thus, the results of the first user's efforts are overwritten,
 
hence the name "lost update". Fortunately, the design of the
 

proposed Integrated Data Base Management System (which uses a
 

common buffer pool and begins any data retrieval by searching
 
for the required physical page in the buffer pool before initiat

ing'any disk I/O request) will alleviate the lost update problem
 

to some extent. However, the case of a "pipelined CPU" or
 
multi-CPU environment would still pose difficulties.
 

A more insidious problem is the so-called "phantom
 

record". Suppose that user 1 is increasing the salary field
 
of some set of records in a personnel file (e.g., giving all
 

systems analysts a 10% raise) while user 2 is listing all
 

records in the personnel file where the salary is above a
 

certain threshold. If these two processes run concurrently,
 

then depending upon the relative order in which the records
 

were accessed some systems analysts whose salaries were in

creased above the threshold might be listed and some might not -
these are the phantom records. Note that this type of problem
 

is not a loss of data integrity, but a loss of process integrity.
 
One feels, intuitively, that the second process' results should
 

list all the systems analysts where salary changed from below
 
the threshold to above the threshold, or else none should be
 

listed -- anything else is inconsistent.
 

The standard approach to retaining data consistency with
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concurrent users is through the use of some sort of locking
 

The basic rule is that data consistency
mechanism on the data. 


can be maintained if and only if the results of two concurrent
 

processes are indistinguishable from the results of the same
 

some order. Considering
two processes run sequentially in 


again the example used to describe the phantom record problem,
 

it is acceptable to have all of the systems analysts whose
 

salaries were lifted over the threshold included in the listing,
 

since this is equivalent to executing process 1, followed by
 

process 2. It. is equally acceptable to have none of the systems
 

analysts included, as that is equivalent to executing process
 

2, followed by process 1. As that exhausts the possibilities,
 

nothing else is acceptable. Notice that the rule is always
 

satisfied if the two processes in question only read the data
 

and do not change it. However, if a process wishes to change
 

some piece of data, it will be necessary to wait until all other
 

processes operating on that piece of data finish, then that
 

process must have sole access to the data. Normally, this is
 

-- a
accomplished by means of two different types of locks 


"share" lock for processes which do not intend to change the
 

Processes
data, and an "exclusive" lock for processes which do. 


which request a piece of data are allowed to proceed only if (a)
 

no other process has a lock on that data, or (b) this process
 

wishes to lock the data in shared mode and the data has
 

already been locked in a shared mode (depending upon system
 

strategy, the request may have to check for pending exclusive
 

use requests). If neither criterion is satisfied then the
 

request must be placed in some sort of "pending" queue.
 

B.3.2 High Level vs. Low Level Locking
 

There are two issues -- not entirely separable -- which must
 

be clarified in the description of any locking mechanism. The
 

first of these is whether the locks shall be set by some sort
 

or
of high-level logical mechanism (e.g., predicate locks) 
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whether the locks should be physically attached to single, in
divisible, units of data. 
The high-level approach to locking
 
in a relational system is seductive. 
 In the command language
 
of most relational systems, the set of records to be accessed
 
is implicitly defined by a logicai predicate (the "WHERE clause"
 
of SEQUEL and QUEL). The predicate of the incoming request
 
and the predicates for active requests are combined into a
 
Boolean expression (usually in disjunctive normal form) and
 
tested for satisfiability. 
 An expression is satisfiable if
 
there exists some consistent assignment of "true" 
or "false"
 
to each term in the expression which makes the whole expression
 
true. 
 Consider the following pair of requests against a personnel
 

file:
 

(1) NAME = SMITH AND SALARY > 20000 

(2) TITLE = MGR OR SALARY < 19000 

The resultant expression is:
 

(NAME = SMITH AND SALARY > 20000 AND TITLE = 
MGR)
 
OR (NAME = SMITH AND SALARY > 20000 AND SALARY < 19000)
 

The second parenthesized subexpression is always false, since
 
a salary cannot simultaneously be greater than $20,000 and less
 
than $19,000. 
 However, the entire expression is satisfiable
 
since the first subexpression is satisfiable if there is 
a
 
manager named Smith making more than twenty thousand dollars.
 
Therefore, the two requests conflict and one must be blocked.
 
Note that this says nothing about whether there is such a record
 
in the personnel file -- satisfiability does not guarantee that
 
a conflict exists, only that there is 
a potential for problems.
 
Rather, it is the unsatisfiability which is desirable, since
 
it guarantees that conflict will not exist.
 

Certainly the high level logical locking approach is mathe
matically elegant. 
However, at a higher mathematical level it
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is known that satisfiability is an NP-complete problem. Barring
 
a major mathematical break-through of unprecedented proportions,
 

there exists no efficient means for testing for satisfiability.
 

Testing for satisfiability with r transactions and an 
average
 

of n terms per predicate must take time proportional to
 
n
r'2 . (In fact, r. 2n is a lower bound.) Stonebraker, one
 

of the designers of the INGRES system, has proposed a similar
 

approach3 6 .
 It is easy enough to show that if the incoming
 
predicate passes Stonebrakerts test, than the resultant Boolean
 

expression must be unsatisfiable, and in fact the test may be
 

more restrictive than is necessary to detect potentially non

conflicting requests. Moreover, it is not clear whether there
 
exist efficient procedures to perform the tests required for
 

Stonebraker's algorithm.
 

B.3.3 Granularity
 

Granularity refers to the size of a lockable unit, and
 
once the decision is made to use physical locks, the size of the
 

data "granules" to be locked must be specified. Should the
 
locks be set at the record level? 
 Lower still, at the data field
 

level? Or higher -- at the physical page or even data base
 

level?
 

Gray, et al.,16 have proposed a scheme which allows the
 
user to place locks at a variety of different granule sizes,
 

depending upon the needs of the particular transaction. This
 
approach viewsthe structure of a data base, conceptually, as
 

a directed acyclic graph structure (see FigureB-1). The system
 

may place explicit locks at any vertex in the graph, and an explicit
 
lock at a vertex implicitly locks all descendants in the
 

graph. These implicit locks do not have to be formally specified
 
anywhere -- to prevent possible lock conflicts between an ex

plicitly-set lock at 
a lower vertex in the graph from conflict

ing with an implicitly-set lock created by an explicit lock on
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Figure B-I: Hierarchy of Lockable Units in a Data Base
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an ancestor vertex, all lock requests are required to begin by
 

walking down the graph from the top vertex placing "intention"
 

locks at every ancestor of the vertex to be locked. This
 

permits.conflicts to be detected at the very highest level.
 

The advantage of being able to select a fine granularity
 

is that it permits the maximum possible concurrency. If the
 

system places locks on units of data which are larger than
 

necessary, then there is the danger of blocking a second request
 

which needs the unused portion of the locked data, but which
 

request.
otherwise does not conflict with the original 


The disadvantage of using a fine granularity is clear, however 


the more granules which can be locked, the more overhead to
 

test, set, and maintain these locks will be required. In an
 

effort to examine the tradeoffs, Stonebraker and Ries performed
 

simulation study to explore the desirable size 
of a,"granule".32


a 


Their study can be critiqued on the grounds that it assumes that
 

the transactions are uncorrelated, and thus it ignores the
 

"80-20" law.* The study demonstrated that splitting the data
 

base in ten equal-sized granules performed surprisingly well,
 

particularly when transactions requested large portions of the
 

data or when the number of I/0 channels was restricted. Using
 

fifty granules appeared to do best for multiple I/0 paths (and
 

it performed as well as ten granules for a single I/O path) and
 

for requests for small portions of the data base.
 

B.3.4 A Physical Locking Mechanism
 

The results of Ries and Stonebraker's study suggest that
 

the table should be the basic lock granule. Several factors
 

have influenced this choice, most notably the fact that it is
 

easy to determine which tables are needed for a command in
 

advance of executing that command -- something not known for
 

The 80-20 law for commercial data processing applications states
 
that 80% of the transactionsagainst a file deal with at most 20%
 
of the records in the file, and the same applies to this 20%.
 
Therefore, when the 80-20 law holds, a miniscule 4% of the records
 
account for approximately 64% of the transactions.
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records or physical pages -- and the Relation Control Block is
 
always in core, making it easy to keep the list of pending
 
requests queued at 
the RCB (again, not possible for records or
 

physical pages).
 

Figure B-2 
depicts the basic system elements included
 
in the locking scheme. The monitor selects Command Control
 
Blocks from the Command Queue and passes them to the Logical
 
Interface for execution. The Monitor is an asynchronous process
 
which is awakened by 
one of three sources, the Application
 
Program Interface, the Interactive Command Processor, and the
 
Logical Interface, depending upon circumstances. Although the
 
Relation Control Blocks (RCB) are the "property" of the Logical
 
interface, they are 
also used by both the Monitor and Physical
 

Interface.
 

Both the Application Program Interface and the Interactive
 
Command Processor can activate the Monitor by passing it 
a
 
Command Control Block (CCB). 
 The Monitor examines the CCB to
 
determine what action to take. 
The Monitor determines which
 
tables the'command will access 
and the type of'lock needed to
 
support that access 
(shared for reads, exclusive for insertions,
 
updated, and deletes) (note that any CCB will need at most one
 
exclusive lock). 
 For each table needed by the CCB, the Monitor
 
will locate the RCB and save a pointer to it. The Monitor can
 
pass this CCB to the Logical Interface only if:
 

(1) 	Each RCB needed has an empty "pending" queue, and
 
(2) 	Either the RCB is unlocked or else it is locked in
 

shared mode and the requested lock is also shared
 

mode.
 

If any table fails either test then the CCB will not 
be
 
placed on the Initiator Queue for execution and each lock re
quest will also be enqueued at the RCB. 
The CCB will be given
 
a copy of the list of pointers to RCB's.
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To support this locking mechanism the RCB must have
 
three fields: a bit indicator for lock mode (0= shared,
 
1 = exclusive), a counter for the number of CCB's using this
 
table (equals zero when the table is unlocked), and a
 
pointer to a queue of pending requests. The queue will be a
 
circularly-linked list, so that front and rear are 
equally
 
accessible (since FRONT = LINK (REAR)). Entries in the queue
 

will consist of the mode of the pending lock request plus a
 
pointer to the CCB which is waiting for that table.
 
Accepted lock requests are handled by setting the lock mode bit
 

to the appropriate value and incrementing the counter. Rejected
 
requests cause the system to create a queue entry and to 
add it
 

to the queue.
 

When the Logical Interface completes the execution of a
 
command, it decrements the count fields of each RCB referenced
 
by the command (this may happen incrementally, while the command
 
is executing, as the system finishes using each RCB). If the
 
count field on any RCB goes to zero during this step and the
 

queue of pending lock requests is not empty then the Logical
 
Interface will wake the Monitor and pass it the CCB address
 

-for the first entry in the queue.
 

When the Monitor is awakened by the Logical Interface, it will
 
begin by examining the RCB's needed by that CCB. The require
ments for activating the CCB are slightly different. First,
 
each RCB needed must be unlocked or else locked in shared mode
 
and the pending CCB's lock request must also be shared mode.
 
Second, the CCB's queue entry must be at the head of the queue,
 
or else the lock request must be for a shared lock and all lock
 
requests ahead of it in the queue must also be for shared locks.
 

If the above requirements are met then the queue entry is d6
leted for each RCB, following which the CCB is deleted from the
 
Command Queue and placed on the Initiator Queue for processing
 

by the Logical Interface.
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Whether or not the CCB is activated at this point, all
 

remaining CCB's which follow it in the Command Queue are tested
 

to see whether they, too, can now be activated. Note that
 

nothing ahead of the CCB whose address was passed back to the
 

Monitor to initiate this procedure need be considered.
 

It is important to note that the proposed approach re

quires the Monitor to do no more work than the minimal amount
 

necessary since the Monitor is only activated at points when
 

there is a possibility of changing the contents of the Command
 

Queue.
 

B.3.5 Scheduling Strategies
 

There are two approaches to scheduling which can be used.
 

One approach is to initiate any new command which can be in

itiated, even if this siezes a table needed by a pending
 

command in the Command Queue. This increases total system
 

throughput, but it has the potential to leave one transaction
 

stranded in the Command Queue while commands entered later get
 

processed sooner. The second strategy, which is the strategy
 

embedded in the previous section's procedure, maintains a
 

strict first in, first out discipline. As a result, no single
 

command will spend an inordinate amount of time in the Command
 

Queue, but total system throughput may suffer. If the
 

test for an empty "request pending" queue when the Monitor is
 

activated by the Interactive Command Processor or the Applications
 

Program Interface and the similar test for queue entry at the
 

head of the queue when the Monitor is activated by the Logical
 

Interface are deleted this will result in the initial strategy
 

described in this section being employed, rather than the second
 

strategy. As these are easy changes to make, it is possible that
 

the Data Base Administrator could experiment with both strategies
 

over a period of time and use whichever ,seems best. The DBA
 

could also adapt the strategy to changing system requirements.
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It should be pointed out that some sort of hybrid
 

approach, following the first strategy of letting commands
 

begin when relations were available regardless of pending
 

requests, but preempting an active command if any CCB waits
 

too long in the queue, would be expensive to implement. The
 

preempted command would have to be backed out (cheap enough
 

for a read, but otherwise expensive) and the work done to
 

.that point would be nullified. Moreover, the Monitor would
 

have to start keeping track of the length of time each CCB spent
 

in the Command Queue.
 

B.3.6 Deadlock
 

Deadlock is a condition where two or more processes
 

permanently block each other. The simplest example is when
 

command C has an exclusive lock on table R1 but cannot
 

do any further processing without accessing table R2
 
Meanwhile, command C2 has an exclusive lock on R2 but cannot
 

go on without accessing R1 * Obviously, both are blocked and
 
neither command can proceed unless one or the other is preempted.
 

.It can be demonstrated that deadlock can occur only if
 
all of the following conditions are met:
 

(1) 	Concurrency - two or more processes can run at the
 

same time.
 

(2) 	Locking - a process can have exclusive access to
 

some data.
 

(3) 	No Preemption - no data can be taken from a process
 

which has locked that data.
 

(4) 	Expansion - a process may request additional locks 

without relinquishing locks already held. 

If any of the above conditions are disallowed then deadlock
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can occur, except that allowing preemption is insufficient by
 

itself and must be used in conjunction with some algorithm
 

for detecting a circular chain of blocked processes and a
 

strategy for choosing the process to be preempted. The pro

cedure outlined in the previous section prevents deadlock by
 

disallowing expansion. No command is permitted to begin until
 

it has available all tables which will be needed by that command.
 

B.4 Data Compatibility
 

B.4.1 The Scope of the Problem
 

One problem which is perhaps unique to scientifically

oriented data bases is the question of data units. If a data
 

item representing a distance is stored,in some table, that
 

distance may be expressed in angstroms, microns, millimeters,
 

centimeters, inches, feet, yards, meters, rods, kilometers,
 

miles, earth radii, astronomical units, or light years. The
 

problems with weight are even worse, as there are two different
 

kinds of ounces and three different tons -- not to mention the
 

difference between pounds as weight, pounds as mass and pounds
 

as force. If two items in different tables, both represent

ing the same measured quantity (e.g., distance, time, mass,
 

area, volume) are to be compared or mathematically combined,
 

it is imperative that they have the same units attached or be
 

converted to equivalent units. This should be handled automat

ically by the data base management system.
 

A related problem occurs when data items representing dif

ferent measured quantities are to be combined to produce a
 

third quantity, as for example, if a mass is to be divided by
 

a volume to produce a density. In such cases, it is important
 

that the units all be part of the same system of measurements
 

(cgs,kms, English), and the data base management system should
 

see to it that they are.
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B.4.2 An Approach to Data Compatibility
 

The problems outlined in the preceding section can be
 

handled within the system with the aid of the following pair
 

of tables:
 

(1) 	 a system table, indicating the measurement system
 

(cgs, kms, English) to which the units belong, and
 

(2) 	 a conversion table, listing pairs of commensurate
 

units and the conversion factor.
 

These two tables might be laid out as depicted in Figure B-3.
 

If the Integrated Data Base Management System is called upon
 

to compare the values of two data items or to add or 
subtract
 

them, it will begin by examining the definition of these items
 

in the appropriate Data Dictionary. If the data items are
 

alphanumeric, then comparison will be allowed, but 
not addition
 
or subtraction. If the data items are 
numeric, then comparison
 

operations, additions, and subtractions will be allowed if and
 

only if the data items have the same units or can be converted
 

to the same units. If the units do not agree, then the system
 

will try to retrieve a conversion factor from the conversion
 

table and the operation will be aborted if no conversion factor
 
can be retrieved. It an
should be noted that internal data
 

type conversion may also be necessary (integer to real, real
 

to double precision), as well as a numeric conversion with the
 

conversion factor. 
 It should also be noted that retrieving
 

the conversion factor would use standard search and access
 

software. It is equivalent to the following retrieval command:
 

USE 	C FOR CONVERSION
 

SELECT (C. FACTOR)
 

WHERE C.GIVEN-UNITS unitsl
 

AND 	C.TARGET-UNITS = units2 
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CONVERSION
 

GIVEN-UNITS TARGET-UNITS FACTOR
 

INCHES CM 2154
 

CM INCHES 0.3937
 

YARDS INCHES 36.0
 

MILES FEET 5280.0
 

SEC DAYS .0000198
 

UNITS-SYSTEM
 

UNITS SYSTEM QTY
 

FEET - ENG DISTANCE 

FPS ENG SPEED
 

KG KMS MASS
 

Figure B-3: Tables To Support Data Compatibility
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The system table would be used to support multiplication
 
and division. Multiplication and division would be permitted
 
only if the two data items agreed as to measurement system.
 
If the system does not agree (e.g., mass measured in grams but
 
volume in cubic meters when computing a density) then the
 
system will have to convert one or both data items until they
 

agree as to measurement system. Again, standard system
 
software could be used to handle the search and access, which
 

would be equivalent to the following query:
 

USE C FOR CONVERSION
 

USE S, X, Y FOR UNITS-SYSTEM
 

SELECT (X.UNITS)
 

WHERE S.UNITS = unitsl
 

AND X.QTY = S.QTY
 

AND Y.UNITS = units2 

AND X.SYSTEM = Y.SYSTEM 

SELECT (C.FACTOR)
 

WHERE C.GIVEN-UNITS = unitsl
 

AND C.TARGET-UNITS = W.UNITS
 

Again, care must be taken to make certain that the data types
 
data units.
agree, as well as 


The above approach will not handle all possible data con
versions -- one type of conversion which cannot be handled by
 
a multiplicative scale factor is temperature. 
 It is possible
 

to convert Centigrade to Kelvin (or back), Centigrade to
 
Farenheit, or Farenheit to degrees Rankine. 
 If desired,
 

temperatures could be handled as 
a special case.
 

A third table -- relating abbreviations to unit names 

might also be useful for purposes of parsing queries (includ

ing DEFINE commands).
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B.5 System Security
 

One goal of a data base management system is prevention of
 

the dissemination of data to unauthorized recipients. Within
 

a data base management system this requires three steps:
 

identification of the user accessing the data base, authentica

tion of that user, and validation of each operation requested
 

by the user subsequent to logging on to the system. In the
 

Integrated Data Base Management System, the identification and
 

authentication steps will be handled by the ENTER command and
 

the validation step will be embedded within the affected com

mands (e.g., ATTACH, DEFINE, SELECT, INSERT, etc.). Provided
 

the user remains within the system, the weakest link in the
 

system's security is the identification/authentication step
 

since the system will only be capable of determining whether
 

the password input as part of the ENTER command agrees with the.
 

specified user-id, and not whether the user logging on with
 

the ENTER is, in fact, the user identified by the user-id.
 

The onus will be on the user community to protect their pass

words from becoming known by other users and to change them
 

with some frequency.
 

If an unauthorized user bypasses the system, then the
 

situation will be much more difficult. Since no known operat

ing system can be guaranteed to prevent a knowledgeable and
 

determined user from reading files which he or she is not
 

authorized to access, it behooves the system to provide pro

tection against this possibility. One important piece of
 

information which must be protected is the list of user-ids
 

and passwords in the SYSUSER table. The key to providing
 

such protection is the one-way "trapdoor" encoding functions
 

of the public key encryption systems discovered by Hellman and
 

Diffie1 1 . Public key encryption systems are such a fundamental
 

and important advance that the topic has begun to receive
 

attention outside scholarly circles in popular scientific
 
14
 

journals such as Scientific American and from there into
 

B-30
 



news media such as TIME " and The Washington Post6L. Such
 
/ 

systems rely on "one-way", or "trapdoor", encoding functions, 
where the mathematical manipulations which encipher the data
 

are so very different from the mathematical manipulations that
 
decipher the data that knowledge of the enciphered data and
 

the key used to encipher it is insufficient to decode the
 

data. Thus, the system could store the user-id for each user
 

(unencoded), the user's password (encoded), and the encoding
 

key (assigned by the system) in SYSUSER, and yet if an unauthorized
 

user should break the operating system's security and read
 
the SYSUSER table he would not be able to determine the pass

words ,of any users on the system. Since all the system has
 

To do to authenticate the user is to encode the input password
 

using the stored key and match the result against the encoded
 

password stored in the SYSUSER table, the scheme is not only
 

fail-safe but efficient.
 

The problem of encrypting the data stored in other tables,
 

including user-created tables as well as other system tables,
 

poses more difficulties since the system will have to decode
 
the data before using it (or presenting it to the user). Thus,
 
the decoding keys will have to be stored somewhere and they, them

selves, must be secured. One public key encryption scheme which
 
might be used is the one proposed by Rivest32 , where the encipher

ing and deciphering keys are based on two secretly chosen prime
 

numbers p and q The decoding key is a pair of integers
 

(d,n), where n = p-q and d satisfies cerzain conditions
 
based on p and q Finally, the encoding key is a pair
 
of integers (e,n), where e-d satisfies certain criteria in

volving p and q. Since e and n are always known, this
 
encryption method can only be compromised if d is discovered
 

or, with some extra effort, if p and q can be deduced.
 

The system could avoid the latter by selecting m triples
 

(e,d,n) in advance and saving the (e,n) pairs in one table
 
T1 and the d's in another table T2' where the order of the
 

d's in T2 is different from the order of their corresponding
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encoding keys in T and where the size of T2 is much
 

greater than the size of T (i.e., many "red herrings" are
 

scattered through T2). The system would employ a hash
 

function h, such that h(e,n) would be the address in T2
 

where the decoding d for that particular encoding key can
 

be found. Since p and q are never stored in the system,
 

they are safe unless an intruder, upon discovering n, can
 

find the prime factors of n -- a process which can always
 

be done but which is computationally infeasible for large
 

values of n. The alternative is to discover d, which is
 

stored in the system. If the encoding key for a secure
 

table is stored with that table's entry in SYSREL, then an
 

unauthorized intruder would have to copy not only the data in
 

the table, but also SYSREL and T2 to compromise the table's
 

security. Even that would not be enough without either know

ing the hashing function or else trying all entries in T. until
 

one is found which provides an inverse function for the encoding
 

key. For that matter, SYSREL and TO could themselves be encrypte
 

using a secret key embedded in the software of the system.
 

Unless the physical security of the tape files could be
 

guaranteed, there would be no point in encrypting the on-line
 

data files also maintained by the system.
 

Encryption of tabular data is not a necessity for an
 

initial implementation of the Integrated Data Base Management
 

System, given the proposed uses to which it is expected to be
 

put. But it is not improbable that some time in the future
 

there will be a need to protect the security of certain data
 

maintained by the system, and this subsection provides an
 

indication of how that might be done. One issue which must
 

be resolved before this scheme could be implemented is the
 

status of Rivest's patent application on his method.
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B.6 The Macro Command Facility
 

The Macro Command Facility would permit an interactive
 

user to enter a sequence of commands, specify a name for the
 

sequence and, subsequently, execute the sequence by simply
 

specifying its name. While this feature is not a necessity,
 

it would provide users with a method of executing often used
 

command sequences with a minimum of effort. To implement
 

this feature, two additional commands, END and EXECUTE, would
 

have to be added to the Interactive Command Language and the
 

DEFINE and REMOVE commands would have to be extended with a
 

SEQUENCE option. Each of these commands is described briefly
 

below.
 

The DEFINE command with the SEQUENCE option would intro

duce the command sequence and place the Integrated Data ,Base
 

Management System into macro mode. The name to be assigned
 

to the command sequence would be included in the DEFINE
 

SEQUENCE command. The syntax for the DEFINE SEQUENCE command
 

would be as follows.
 

DEFINE SEQUENCE <sequence name>
 

The sequence name specified in the CREATE command must
 

be unique among command sequence names already known to the
 

system. If it duplicates an existing command sequence name,
 

the command will be rejected. The DEFINE SEQUENCE command
 

could be issued by an interactive user at any time.
 

Additionally, it could be used in the input stream for the
 

Batch Command Reader, thus permitting command sequences .to
 

be created via the Batch Command Reader facility.
 

The END command would terminate the sequence of commands
 

initiated by the last DEFINE SEQUENCE %ommand issued by the
 

user. If no previous DEFINE SEQUENCE command issued by the
 

user is active, the END command would be rejected. The syntax for
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the END command is as follows.
 

END
 

All commands issued following a DEFINE SEQUENCE command
 

and preceeding its matching END command would be included in
 

the command sequence named in the DEFINE SEQUENCE command.
 

If no interactive commands were issued between the DEFINE
 

SEQUENCE and END commands, no command sequence would be
 

created and an error message would be displayed.
 

As stated previously, the DEFINE SEQUENCE command would
 

place the system in macro mode. While in this mode, all
 

commands received from the user issuing the DEFINE SEQUENCE
 

command would be parsed and syntax checked but would not be
 

executed. Each error free command entered while in the
 

macro mode would be stored in the Macro Library. Any comman(
 

containing an error would be rejected, but the user could
 

immediately reenter the command. The Macro Library might be
 

implemented as a new system table with an inverted index
 

created on the sequence name field in each record of the tabl
 

The REMOVE command with the SEQUENCE option would remove
 

an existing command sequence from the system. The command
 

sequence name would have to be included in the REMOVE
 

SEQUENCE command. The syntax for the REMOVE SEQUENCE command
 

would be as follows.
 

REMOVE SEQUENCE <sequence name>
 

This command would remove all records associated with
 

the command sequence named in it from the Marco Library. If
 

no such sequence exists, the command would be rejected.
 

The EXECUTE command would cause an existing command
 

sequence to be retrieved from the Marco Library and to be
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executed as if entered interactively by the user. The sequence
 
name of the command sequence must be included in the EXECUTE
 
command. If no such command sequence exists in the Macro
 
Library, the EXECUTE command will be rejected. The syntax
 
for the EXECUTE command is as follows.
 

EXECUTE <sequence name>
 

The EXECUTE command would cause each record containing
 
the sequence name specified in the command to be retrieved
 
from the Command Library. Each record might contain a command
 
or partial command in the command sequence as it was originally
 
entered when the sequence was created. It would be displayed
 
on the remote terminal of the interactive user and executed
 
by the system. An alternative approach might be to save the
 
Command Control Block for each command in the sequence in the
 
Macro Library instead of an image of each command as it was
 
originally entered. This would be possible since a Command 
Control Block is created when a command is parsed. This
 
approach would alleviate the need for parsing the command
 
sequence each time that it was executed. In either case,
 
execution of the command would be carried out in exactly the
 
same mamner 
as if the command had been entered interactively
 
from the remote terminal. The EXECUTE command could also be
 
included in the input stream processed by the Batch Command
 
Reader. Thus, command sequences could be initiated via the
 
Batch Command Reader facility.
 

-VItmight also be possible to permit EXECUTE commands to
 
be included in newly defined command sequences. Thus, exist
ing command sequences could be easily incorporated into other
 

command sequences.
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