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PREFACE

Three-dimensional fully self-consistent computer models were used to deter-
mine the evolution of galaxies consisting of 100 000 simulation stars. One
series of computer experiments used initially balanced flattened galaxies with
an exponential radial density variation. Comparison of two-dimensional (infin-
itesimally thin disk) simulations with three-dimensional (disk with finite
thickness) simulations showed only a very slight stabilizing effect due to the
additional degree of freedom. The addition of a fully self-consistent, nonro-
tating, exponential core/halo component resulted in considerable stabilization.
The most pronounced instabilities present were those due to the Jeans' insta-
bility in the outer regions of the disk, while at the same time a relatively
slowly growing bar instability appeared. A second series of computer experi-
ments was performed to determine the collapse and relaxation of initially spher-
ical, uniform density and uniform velocity dispersion stellar systems. The
evolution of the system was followed for various amounts of angular momentum
in solid body rotation. For initially low values of the angular momentum satis-
fying the Ostriker-Peebles stability criterion, the systems quickly relax to
an axisymmetric shape and resemble elliptical galaxies in appearance. The max- -
imum flattening for these systems is equivalent only to an E2 system. For
larger values of the initial angular momentum, bars develop and the systems
undergo a much more drastic evolution. The apparent rotational and random
velocities of the bar systems are very sensitive to the viewing direction. An
additional complication is the frequent misalignment of the apparent major axis
with the direction that reflects the maximum rotation.
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INTRODUCTION

In recent years, large-scale N-body computer simulations (refs. 1 and 2)
have become an important tool in investigating the structure of spiral galax-
ies, especially in determining the development of large-scale instabilities
resulting in spiral and bar formation. Until recently, most of these simula-
tions used essentially two-dimensional models with the "stars" confined to the
plane of the galactic disk (refs. 3 and 4). These simulations have shown that
the disks of stars tend to develop fast-growing nonaxisymmetric instabilities
resulting in bar formation. The bar instabilities occur even for velocity dis-
persions that are considerably larger than those found in the solar neighbor-
hood or those predicted by Toomre (ref. 5) as being locally stabilizing. Global
stability studies of disks of stars have been primarily numerical large-scale
N-body simulations. Some limited analytical work has been done primarily for
uniformly rotating disks (refs. 6 and 7), but generally linear stability anal-
yses were used in these analytical studies of disks of stars.

Any spiral structure in computer-generated galaxies is generally short
lived and the final state is a rotating bar. The bar thus obtained rotates
more slowly than the stars. For a typical case investigated by Hohl (ref. 4),
the bar rotates at 2.25T and the stars rotate at 1.5T where T 1is the rota-
tional period of the initial disk.

It has been argued by Ostriker and Peebles (ref. 8) that core/halo compo-
nents have a stabilizing effect on galaxies and result in longer lived spiral
structures. However, numerical experiments with large fixed stellar components
representing the core/halo component (refs. 9 and 10) show that a multiarmed
spiral structure develops and persists for many rotations but only in an evolv-
ing manner. That is, the spiral structure is either wound up into a tight pat-
tern or it is wound up and then reappears again. A recent study of the effect
of fixed core/halo components using two-dimensional N-body simulations (ref. 11)
does show that the bar instability is indeed inhibited by a sufficiently large
fixed component.

The purpose of the present study of initially balanced flattened galaxies
is twofold. First, we want to determine the effect of a self-consistent (rather
than a fixed nonresponding) core/halo component. This will show whether there
are any instabilities (such as "two-stream”) or other important interactions
present that may be suppressed with a fixed nonresponding core. Second, we
want to determine the effects of finite thickness of the disk and of three-
dimensional essentially spherical core/halo components.

The second part of the present study, using initially spherical collapsing
galaxies, is aimed at resolving the dynamics of the formation of galaxies. It
is likely that galaxies arise directly from the gravitational collapse and sub-
sequent relaxation of portions of the expanding universe. After initially col-
lapsing, the system expands and undergoes additional oscillations with ampli-
tudes and damping depending on the dissipative mechanisms operating. According



to this script, elliptical galaxies result if the gaseous component is largely
exhausted by the end of the first collapse. The various physical processes
involved in this simple collapse picture, as well as some nonconventional alter-
natives, have been discussed in the reviews by Larson, by Jones, and by Gott
(refs. 12 to 14). For situations in which very little gas is left by the time
of first collapse, a collisionless system of stars appears to be an appropriate
model. Numerical experiments studying the effect of dynamical mixing in such
systems with spherical symmetry were carried out by Bouvier and Janin (ref. 15)
and by Henon (ref. 16).

Less restricted simulations aimed specifically at modeling the formation
of elliptical galaxies by collisionless stellar dynamics were performed by Gott
(refs. 17 and 18), who included rotation and relaxed the imposed symmetry condi-
tions from spherical to axial. These uniformly rotating models produced flat-
tened, oblate systems. In later work, Gott (ref. 18) added the effects of cos-
mological infall and tidal interactions and obtained good agreement with the
ellipticity profile and light distributions of ellipticals. However, Gott's
calculations have remained somewhat suspect since his method did not permit the
development of the fierce bar instabilities and the associated large-scale
momentum transfer that have been so common in simulations of disk galaxies
(refs. 4, 8, and 11).

Recently Miller (ref. 19) and Miller and Smith (ref. 20) have produced
some fully three-dimensional simulations of the collapse of stellar systems.
Their earlier examples produced prolate bars rather than oblate systems like
those obtained by Gott. This striking difference, however, seems attributable
more to the colder initial conditions used by Miller and by Miller and Smith
than to their removal of the constraint of axial symmetry.

But even leaving aside this concern about possible suppressed nonaxisym-
metric instabilities, the merits of the oblate models of ellipticals have been
called into question by the recent observations of the rotational and random
velocities of elliptical systems by Illingworth (ref. 21) and by Peterson
(ref. 22). As discussed by Illingworth, data for numerous elliptical galaxies
seem to indicate that the ratios of rotational to random velocities are typi-
cally a factor of 2 or 3 smaller than those predicted by the oblate models.

It may well be that more exotic models of the formation of elliptical gal-
axies are required. Nevertheless, it seems a pity to give up too soon on the
simple collapse model, especially since the range of initial conditions covered
by the fully three-dimensional calculations of Miller and of Miller and Smith
is limited. We report here some extensive results of three-dimensional models
of the collisionless collapse and relaxation of rotating stellar systems with
initial random velocities patterned after those of Gott (ref. 17). This per-
mits an assessment of the importance of his requirement of axial symmetry. At
the same time, these initial conditions cover a markedly different range from
those of other three-dimensional experiments.



SYMBOLS

c constant, 3Mg/(4mr2 p(0,0))

c velocity, defined in equation (5)

G gravitational constant

H Green's function

h defines z-dimension of n x n x h active array
I moment of inertia

K gravitational field

Mg mass of galaxy

Mg mass of Sun

m mass of simulation star

N dimension of array used in potential calculation
n defines n x n x h active array, N/2
P angular momentum

Q = 0r/%¢,min

R radius of galaxy

r,$,0 spherical coordinates

T random kinetic energy

Toir kinetic energy in rotation

Trand random kinetic energy

t time

U = Vp/Oy(0)

v velocity

Vi peak rotational velocity



W total potential energy

X,Y:2 Cartesian coordinates

€ ellipticity

T radius, x2 + y2 + (7z/5)2

K epicylic frequency

H surface mass density

p volume mass density

P (0) mass density at center of galaxy

a velocity dispersion

Or ,min velocity dispersion defined by equation (3)
Oy line-of-sight velocity dispersion

¢ gravitational potential

Q angular velocity of spherical model
Q0 = Jaug/R3

w angular velocity of disk model

Wy angular velocity of cold balanced disk
Subscripts:

i,j,k summation indices

f,¢,9 radial, azimuthal, and colatitudinal component
X,¥:2 X-, y-, and z-component

£,M,C summation indices

Notation:

~

Fourier transformed quantity

MODEL

The model used for the present galaxy simulations consists of 100 000 rep-
resentative stars of equal mass that move inside an active 64 x 64 x 16 (or
33 x 33 x 33) three-dimensional array of cells., For the disk simulations the
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stars are confined to the plane of the disk represented by a 64 x 64 active
array. The number of stars inside a particular cell defines the mass density
at the center of each cell. Fast Fourier transform methods are used to obtain
the gravitational potential at the center of each cell for a given mass density
distribution. Thus the potential calculation actually requires an array larger
than the 33 x 33 x 33 active array so that the periodicity associated with the
Fourier transform can be eliminated. The force acting on a particular star is
determined by trilinear interpolation from the gravitational field at the sur-
rounding eight cell centers. After the force acting on a star is determined,
its position and velocity are advanced by a small time step using the time-
centered leap-frog method. Details of the two-dimensional model are given by
Hohl and Hockney (ref. 2) and by Hohl (ref. 23). The extension of the model

to three dimensions is described in the appendix. Collisional effects in this
model become important only after hundreds of rotations (ref. 24).

DISK-CORE SIMULATIONS

Observational evidence (refs. 25 to 27) indicates that the luminosity (and
presumably the density) in the outer regions of many spiral and S0 galaxies
decreases exponentially with radius. Also, previous simulations (ref. 4) showed
that initially unstable stellar disks evolved into stable systems with radial
density variations that closely approximated the sum of two exponentials. The
inner exponential with a scale length of about 1 kpc describes the nonrotating
or slowly rotating spheroidal, or core, component and the remaining exponential
with a scale length of about 8 kpc describes the extended disk population.
Thus, it seems reasonable to use an exponential density variation for the disk
in the present computer simulations. Similarly, the central core used is
described by an exponential density variation.

Figure 1 illustrates the evolution of a disk of 100 000 stars with an ini-
tially exponential surface mass density distribution U (r) = U (0) e /2 yith
a cutoff at r = 10 kpc. The initial angular velocity of the disk was obtained
from

1 3 1
w2 = w2 + —[u(r) 0,2(r)} + —|0,.2(r) - 0p2(r (1)
° r u(r) ar[( ) Or (ﬂ tz[r ¢ (ﬂ
with
(r) 0, (r) (2)
Og (L) = =———— r
¢ 2 wo(r)

Here, wg(r) is the angular velocity required to balance the cold (zero veloc-
ity dispersion) disk, w(r) is the actual angular velocity, and Kk (r) is the
epicyclic frequency. The initial value of the radial velocity dispersion O,



was taken to be that determined by Toomre (ref. 5) as the minimum required to
stabilize all local axisymmetric instabilities,

O (r) = Or,min = 3.36G u(r)/K(r) (3)

The time t 1is given in rotational periods (2m/w,) of the cold disk at a radius
of 5 kpc, that is, halfway to the edge of the initial disk.

As expected (refs. 4 and 9), only the small-scale instabilities are pre-
vented by Or = Or pmin and the system quickly forms a two-arm spiral which
eventually tends to evolve into a rotating bar. The evolution of the azimuthally
averaged radial density variation for this system is shown in figure 2. As pre-
viously observed (refs. 4 and 9), the eventual density variation approaches one
which can be closely approximated by the sum of two exponentials. One exponen-
tial describes the central core component and the other describes the extended
disk. The evolution of the radial and azimuthal velocity distributions as a
function of radius is shown in figure 3. It is obvious that the system has not
reached an equilibrium condition. Note that there are still large outward veloc-
ities in the outer regions of the system. This can be seen more clearly in fig-
ure 4 where the evolution of the azimuthally averaged, mean radial velocity is
plotted as a function of radius. This figure displays considerable systematic
radial flows. The radial and azimuthal velocity dispersions displayed in fig-
ure 5 show that there is some heating near the center and that the velocity dis-
persion for stars expanding into the extended disk component increases consider-
ably. The increases in the central mass density and heating near the center
result in large changes in the rotation curve. Figure 6 shows the evolution
of the rotation curve, :

Vbo = r Welr) = \rKy

and the corresponding mean rotation of the stars <V4>. In the central region
of the system the galaxy is now balanced to a large extent by increased pressure
due to the higher velocity dispersion. The mean rotation has been reduced in
this region by transferring momentum to larger radii. This is illustrated in
figure 7 which shows that as the bar instability develops (compare with fig. 1),
much of the angular momentum is transferred to larger radii.

Various other diagnostics have been performed on the system. For example,
figure 8 shows the evolution of the moment of inertia I and the angular momen-
tum P divided by their values at t = 0. As can be seen, P is conserved in
the simulation, but I 1is still increasing at a nearly linear rate after three
rotations. The evolution of various components of the total kinetic energy
divided by the total potential energy is shown in figure 9. The components
T and 3% represent the random kinetic energies due to the velocity disper-
sions in the r- and ¢-directions, respectively, while T j, 1is the kinetic
energy of rotation. Note that the ratio of the kinetic energy in rotation to
the absolute value of the total gravitational energy of the system is approach-




ing the value 0.14 predicted by Ostriker and Peebles (ref. 8) for stability.
This indicates that considerable heating of the system occurs.

One of the aims of the present study is to determine the effect of adding
the third degree of freedom by allowing the exponential disk to have a finite
thickness. Using again an exponential projected surface mass density variation
p(r) = u(0) e"I/2, the stars are now distributed in the z~direction according
to the one-dimensional distribution sech? (z/C). The parameter C 1is deter-
mined from p(0) = 3Mg/4nR2C (ref. 28) where Mg is the total mass of the
galaxy and R = 10 kpc 1is the radius of the disk. The central thickness of
the disk is 2 kpc and the density is cut off at zy given by

r\2 2]
1 - <-) sech? (-—) = 0.1 (4)
R C

The radial and azimuthal velocity components are determined in a manner similar
to that for the infinitesimally thin disk and the z-component of the velocity
dispersion is determined by a force balance in the z-direction. Note also that
all initial velocities are truncated so that stars have kinetic energies no
greater than those which would allow them to reach the boundary of the system
in the gravitational potential at t = 0.

Figure 10 shows two side views of the initial disk and the evolution for
up to 3 rotations. The differences in the projections as the evolution proceeds
are due to the bar formation. Note also the.rapid expansion in the plane of the
disk. This is the result of the bar instability, as shown in figure 11 which
gives the evolution of the disk projected in the x-y plane. Note that the evo-
lution is very similar to that shown in figure 1 for the thin disk. The simi-
larities in the evolution of the two systems are even more accentuated by com—
paring the evolution of the surface mass density distribution and the velocity
distribution in figures 12 and 13 with those in figure 2 and 3. For complete-
ness figures 14 to 19 show the evolution of the various other parameters for
comparison with figures 4 to 9. For the finite thickness system, the additional
variable of z-component velocity or kinetic energy remains small compared with
the r- or ¢-components. Thus, one would expect little difference in the evolu-
tion of the finite thickness disk when compared with the infinitesimally thin
disk.

As shown in figures 1 and 11, exponential disks with velocity dispersion
(Q ~ 1) are violently unstable to the bar-forming mode. Previous work (ref. 11)
with a superimposed fixed (non-self-consistent) central mass distribution indi-
cated a stabilizing effect toward the bar-forming instability. A more realistic
simulation is to allow core-disk interaction; thus, we are presently interested
in the stabilizing effects of a completely self-consistent core, or spheroid,
component. Again, the effect is investigated for both the infinitesimally thin
disk (two-dimensional) and for the three-dimensional disk.

For the core-disk system, 50 percent of the mass (50 000 stars) is con-
tained in the nonrotating core and the remaining mass (50 000 stars) is con-



tained in the disk. The disk component is again given the surface density vari-
ation Hgjgk(r) = Ugisk(0) e—r/2, whereas the initial nonrotating core compo-
nent is given a density variation |Jgore(r) = Ucore (0) e"2I, Note that the
disk and core densities are cut off at r = 10 kpc and r = 3.5 kpc, respec-
tively. The initial velocity dispersion and rotation of the disk are obtained
by again using equations (1), (2), and (3) with U = ygigk. Similarly, as
before, the z-dimensions of the disk are determined from equation (4). The
initial velocity dispersion of the nonrotating core component was obtained by
taking Op = O and simply balancing the core in the presence of the disk. 1In
order to ensure that the core component was in a stable equilibrium state at

the start of the core-disk simulation, the core was allowed to evolve for sev-
eral rotational periods (2n/wg at 5 kpc) with the disk stars held fixed. Start-
ing from these initial conditions, the system evolved as shown in figure 20.
Note that even though a two-arm spiral structure still forms, the system as a

a whole evolves in a much less violent manner than that displayed in figure 1.
This can also be seen in figure 21 which shows the evolution of the surface mass
density for both the core and the disk components. Nevertheless, the spiral
instability in figure 20 is leading toward the formation of a bar structure.
Note also that with the exception of a slow outward diffusion of stars near the
edge, the core remains essentially stationary, while the disk component displays
the outward shift of mass generally associated with bar formation. Figure 22
shows the evolution of the radial and azimuthal velocity distributions as a
function of radius. When comparing the results with figure 3, two features
stand out. One feature is, of course, the large-velocity stars in the core near
the center and the other is the much more violent instability at larger radii in
figure 3. The mean radial velocity shown in figure 23 also displays a consider-
able reduction in the net radial flow when compared with figure 4. Similar
information is contained in figure 24 which displays the evolution of the radial
and azimuthal velocity dispersions for the core and disk components. Note the
sharp increase in the radial velocity dispersion at r = 3 kpc which is associ-
ated with a marked reduction in the angular momentum of the disk in this region.
This outward shift of the angular momentum is displayed in figure 25 which shows
the evolution of the angular momentum distribution. In general, the simulations
show that the formation of bars or two—-armed spirals results in moving angular
momentum outward to larger radii. The evolution of the rotation curve displayed
in figure 26 shows that for up to 3 rotations the disk component continues to
have a high rotational velocity in the central region of the system.

As shown in figure 27, the addition of the core component markedly reduced
the rate of increase in the moment of inertia. Similarly, the ratios of kinetic
energy to potential energy shown in figure 28 change considerably less than
those of the disk without a central core component, This reflects the sizable
differences in the initial values of these ratios.

The final system investigated in this series is a three-dimensional expo-
nential disk with a three-dimensional core, or spheroid, component. The spa-
tial distribution of the stars for the disk component is obtained as was done
for the disk shown in figures 10 and 11 except that now the disk contains only
50 000 stars. For the nonrotating central core, the density is given by
p(C) = p(0) e‘zC, where 52 = x2 + y2 + (7z/5)2. The density is cut off at
z = 7. Thus, the central core or spheroid has an axis ratio of 7:5. Again



the Gaussian velocity dispersion for the core is obtained by a simple balance

of the self-gravity of the total system. The velocity dispersion for the disk
component is generated as was done for the system shown in figure 11. Before
initiating the simulation of the combined core-disk system, the core was allowed
to evolve for several rotations (with fixed disk stars) to ensure that no insta-
bilities or other problems associated with the core component were present.

Figure 29 shows the evolution of the system perpendicular to the equatorial
plane. Note the remarkable stability of the system when compared with the disk
without the central core in figure 10. Figure 29 does show a slight bulging of
the disk at t = 3.0 indicative of spiral-type instabilities. The evolution of
the system in the equatorial plane is shown in figure 30 and displays the devel-
opment of a comparatively weak spiral structure initiated by Jeans' type insta-
bilities in the outer region of the disk. Although it is not apparent from fig-
ure 30, an analysis of the azimuthal density variation for the disk stars at
t = 3.0 shows that a bar structure is forming. For example, in the region from
2 to 5 kpc, which is near the center away from the visible spiral structure dis-
played in figure 30, the peak density along the bar is 2.5 times the density 90°
away from the major bar axis. It should be noted that because of the allowed
initial relaxation, the core components of the two core-disk systems investi-
gated here are expected to closely satisfy the collisionless Boltzmann equation.
The same is not necessarily true for the disk component since satisfying equa-
tion (1) only ensures a balance of forces at t = 0. Also, for a stellar disk,
Or =0yr,min does not ensure stabilization of global nonaxisymmetric instabili-
ties (refs. 29 and 30). However, since one would hardly expect nature to gener-
ate a galaxy initially in an exact stable stationary state and since we are
interested in the future development of instabilities and the final state toward
which the system evolves, an exact stationary and stable initial state is not
necessary.

The evolution of the radial, azimuthal, and axial velocity distributions
as a function of radius is shown in figure 31. Note that now there is even
less change visible than for the two-dimensional system shown in figure 22,
This is illustrated more clearly in figure 32 which shows very little net mass
motion in the radial direction. ’

The evolution of the azimuthally averaged projected surface mass density
for the three-dimensional disk-core system is shown in figure 33 and is nearly
identical to that of the two-dimensional disk-core system shown in figure 21.
Note that there is very little change in the density for the core with the
exception of a slight outward diffusion near the edge. Azimuthally averaged
values of the total density variation in the z-direction are shown in figure 34
for various values of r. Note that the density follows an essentially exponen-
tial variation. Same of the fluctuations shown may be due to the relatively
small sampling volume used. The evolution of the radial velocity dispersion
shown in figure 35 indicates that (as expected) the velocity dispersion for the
two-dimensional core (shown in fig. 24) is higher. BAlso, the large increase in
the velocity dispersion of the thin disk near r = 3 kpc does not occur for
the three-dimensional disk. Associated with this is the fact that there is very
little change in the radial angular momentum distribution (fig. 36) during the
evolution of the three-dimensional disk-core system, whereas considerable out-
ward shift of angular momentum occurs for the two-dimensional disk-core system
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(fig. 25). These results indicated that the global bar instability is much
weaker for the three-dimensional system than for the two-dimensional system,
as is obvious by comparing figures 20 and 30.

The evolution of the moment of inertia and of the kinetic energy ratios
for the three-dimensional disk-core system is shown in figures 37 and 38. As
can be seen, there is little change in the value of the various components dur-
ing the evolution. Note that the ratio of the kinetic energy in rotation to
the total potential energy of the system is slightly higher than the value of
the 0.14 predicted for stability by Ostriker and Peebles (ref. 8). Also, the
moment of inertia increases by only about one-third of that shown in figure 27
for the two-dimensional system. As was the case for all four systems investi-
gated, the angular momentum was conserved to a high degree of accuracy.

SPHERICAL (QOLLAPSE SIMUIATIONS
The initial locations of the stars for this series of simulations were

obtained by distributing them at random inside a sphere of radius R = 10 kpc
to produce a uniform mass density. The total mass of the system was taken to

be = 2 x 10'M,. Solid body rotation about the vertical axis with angular
velocity
GM
Qo ={|— = 29.3 km-sec™'-kpc™!
R3

balances the cold (zero velocity dispersion) system in the equatorial plane.
The initial velocities of the stars were selected from an isotropic Maxwellian
distribution superimposed upon solid body rotation with angular velocity

2 = wg. The amounts of rotation and the radial velocity dispersion o, used
for each of the five models are listed in table I. Also given are the initial

TABLE I.- INITIAL OONDITIONS

. Model
I II IIT IV v
U o o e . 0 0.500 0.707 0.866 1.159
Op, km/sec . . . 92.8 92.8 92.8 65.7 41.5
Teand/|Wl . . | 1/4 1/4 1/4 1/8 1/20
Teir/|W ... 0 1/12 1/6 1/4 4/9
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ratios of the random kinetic energy Tpanq and the rotational kinetic energy
Tciy to the total gravitational energy W. The random kinetic energy is given

by

105
2 2 2
m (cr,i + cq,i + C¢’i>

i=]

Trand =

N—=

where m is the mass of a star and

2 = (v - <2

2

ch = (Vg - <Vg>)2 (5)
ch = (Vp = <Vp>)2

Note that initially (at t = 0)
V> =¢Vg>y =0 Vp> = (r sin 6)Q

The rotational kinetic energy is given by

The first four models in table I have precisely the initial conditions used by
Gott (ref. 17).

Main Features

The collapse and relaxation of the five models are illustrated in fig-
ures 39 through 43. For reasons of computational efficiency, the snapshots
of the three orthogonal projections shown at each time in these figures were
actually taken a time step apart. This accounts for the apparent lack of sym-
metry at certain stages. Since the initial configurations of each of these
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models were far from equilibrium, the initial evolution is characterized by the
collisionless violent relaxation process described by Lynden-Bell (ref. 31).

In this process the distribution function tends, albeit incompletely, toward

a Maxwellian form through the influences of the rapidly fluctuating gravita-
tional field. The effectiveness of this process is expected to decrease with
radial distance from the center since the duration of the rapidly fluctuating
field is a decreasing fraction of the orbital time scales.

For models I, II, and III (the hotter and less rapidly rotating ones), this
violent relaxation is the principal effect which determines the final, equilib-
rium configuration. On the other hand, in models IV and V an additional effect
occurs, the development of a pronounced bar-shaped structure. For this reason,
model IV is selected for special attention; not only is its evolution followed
through 5 rotations rather than 3, but also the full time development of its
properties is displayed rather than just the final properties, as for the
remaining models. Because of difficulties in preserving the resolution of the
nonaxisymmetric structure during the photographic processing, models IV and V
in figures 42 and 43 are actually shown twice. Figure 42(a) shows model IV in
three projections of 100 000 stars, each. For figure 42(b), the projections are
printed much lighter and the x-y projection contains only 50 000 stars with
100 000 stars for the x-z and y-z projections. The same procedure is used for
the two displays of model V in figures 43(a) and 43(b).

From the final frames of figures 42 and 43, it is apparent that a bar sys-
tem appears quite flattened for certain viewing angles. The degree of flatten-
ing can be estimated from projected isodensity contours (see the discussion of
fig. 66 subsequently). The eccentricities of the contours in the bar models
decrease with increasing radius. The axial ratios of 1.0 to 0.39 to 0.54 and
1.0 to 0.19 to 0.28 for models IV and V were obtained from the innermost iso-
density contours. The vertical axis is the last item listed for each model.
Thus, even an apparent E8 system can be obtained from a collisionless model
without invoking any dissipation. Notice also that the shortest of the three
axes for the bar models lies in the equatorial plane rather than along the axis
of rotation. These are thin bars rather than flat ones, as indeed is evident
from figures 42 and 43. On the other hand, the isodensity contours for the
axisymmetric models II and III are noticeably more eccentric in the outer
regions than in the center. The maximum eccentricities found are 0.18 for
model II and 0.25 for model III.

Figures 44 through 47 are useful in describing the general features of the
collapse of the models. Both the moment of inertia and the various kinetic
energy ratios reflect the oscillations occurring during the collapse phase.
Although the moment of inertia oscillates only near its initial value for
model I, for models II to IV it displays a steady increase after undergoing one
or more oscillations reflecting the initial collapse in the horizontal direc-
tion, that is, in the direction perpendicular to the rotation axis. Model V,
of course, initially expands in the horizontal direction since the centrifugal
forces alone are sufficient to overcome the gravitational attraction. The
eventual steady increase in the moment of inertia is due to a comparatively
small number of escaping stars rather than to any failure to achieve equilib-
rium. The constancy of the total angular momentum, which is shown in figures 44
and 45, is reassuring evidence of the accuracy of the numerical simulation.
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For models IV and V (shown in figs. 42 and 43), the first indications of
the developing bar occur at t = 1.5 and t = 0.75, respectively, in the form
of vertical "flares" at both ends of the two side projections. In subsequent
frames the nonaxisymmetric structure is clearest in the equatorial (top) pro-
jection. With the exception of the vertical flares, the transitory development
of the bar is similar to the bar formation process in the three-~dimensional
simulations of equilibrium, but unstable, flattened galaxies discussed earlier.
Bar formation appears to become significant during or after the second collapse.
For example, in figure 43, the peak of the second collapse, as indicated by the
maximum of the z-component of the kinetic energy, occurs shortly before
t = 0.75. At that time, large-scale axisymmetric structures have appeared.
Prior to the emergence of this instability it is evident that the evolution is
dominated by simple, axially symmetric collapse dynamics.

The amount of time taken by the initial collapse may be compared with that
required for the collapse of the corresponding pressure-frée, uniformly rotating
Maclaurin spheroid. This simple model was described by Lynden-Bell (ref. 32)
and has been used for comparison with stellar dynamic results by Gott and Thuan
(ref. 33) and by Miller and Smith (ref. 20). It predicts that the end of the
first collapse in the vertical direction is reached at t = 0.18, 0.19, 0.20,
0.20, and 0.21 for models I, II, III, IV, and V, respectively. The location of
the first peak in the vertical kinetic energy ratios (figs. 46 and 47) suggests
that the initial collapse is completed near t = 0.25 for models I to III and
near t = 0.20 for models IV and V. Notice that in the four rotating models
the horizontal components of the kinetic energy reach their first maximum dis-
tinctly later than the vertical components, as expected. Di Pazio and
Occhionero (ref. 34) add pressure and relaxation effects to the Maclaurin
spheroid model. Both of these effects increase the estimated collapse time, -a
result which appears needed for the three hottest models. However, a detailed
comparison seems unwarranted in view of the uncertain relation between stellar
velocity dispersion and the specific form of pressure employed by them.

The kinetic energy ratios suggest that models I to III have fairly well
relaxed by t = 1. They also suggest that the collapse phase of model IV is
largely completed by then. There appears to be a distinct interval between the
end of the collapse process and the onset of the bar formation. For model V,
however, it is more difficult to tell when the collapse stops and the bar forma-
tion begins. The duration of the collapse in models I to IV conforms to Gott's
result showing that the violent relaxation occurs in roughly 3 collapse times.
In the present units, the reference collapse times used by Gott are 0.27, 0.32,
0.40, and 0.36 for models I to IV and 0.49 for model V. A further comparison is
available of the total maximum kinetic energy achieved during the collapse:
for models I to IV, the maximum values of T/|W| are 0.65, 0.61, 0.57, and 0.58
compared with 0.66, 0.62, 0.58, and 0.60 obtained in the axially symmetric cal-
culation by Gott,

A more detailed critique of the axially symmetric simulations can be made
by comparing the distribution of the stars with respect to their energy. The
results for the three-dimensional simulations are shown in figures 48 and 49.
The final distributions of non-bar-forming models I to III are essentially the
same as those obtained previously by Gott. The basic feature of a separation
into a low energy core and a high energy halo is apparent. Even the locations
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and strengths of these two components correspond closely to those found by Gott.
As might be expected from the rapid equilibration of the kinetic energy ratios,
the energy distributions of the first three models at t = 3 differ only mar-
ginally from those at t = 2, Although the similarity of the present energy
distributions to those obtained by Gott does not preclude a redistribution of
angular momentum, there is no evidence that any redistribution occurs. 1Indeed,
for each of these three axisymmetric models, the initial and final angular
momentum distributions are virtually indistinguishable.

The occurrence of a bar in models IV and V has a marked effect upon the
energy distributions. Although there do appear to be separate core and halo
components in model IVat t =1 and t = 2, this distinction disappears as
the bar develops. By t = 5 the energy distribution is nearly uniform over
a substantial range. The similarity between the energy distributions at t = 4
and t = 5 indicates that the latter distribution has essentially reached an
equilibrium state. Such is not the case for the energy distribution of model V
shown in figure 48. It is clear from the kinetic energy ratios that this exam-
ple has not yet reached equilibrium at t = 3., 1Indeed the energy distribution
at t = 2 is substantially different from the one at t = 3. Although the
bar is well developed, several more rotations appear to be needed to achieve
equilibrium.

From figures 39 through 43 it is sometimes difficult to determine whether
a bar is forming in the central region of the system. A convenient method for
obtaining more quantitative information on nonaxisymmetric behavior is to plot
the projected surface mass density for a number of cylindrical shells with dif-
ferent radii as a function of longitude. This is done in figure 50 for models 1
to V. It can be seen that at t = 3 no barlike nonaxisymmetry is present for
models I to III, whereas for models IV and V a pronounced bar structure is
observed.

N-body calculations and other data used by Ostriker and Peebles (ref. 8)
indicate that galaxies with Tcir/lwl > 0.14 are unstable to the bar-forming
mode. The empirical evidence for this criterion has been gathered for systems
near equilibrium. For the present calculations it makes more sense to inquire
about the value of Tcir/|w after the collapse phase rather than at t = 0,
especially since the first evidence of bar formation seems to appear during the
second collapse. The ratios Tcir/|w| for models 1, II, 1V, and V (figs. 46
and 47) are either well below or well above the value 0.14 and they behave
accordingly. The ratio for model III reaches a low of 0.13 at t = 0.75, and
subsequently oscillates between 0.14 and 0.15. Nevertheless, this system
remains axially symmetric as indicated most convincingly by figure 50. This
apparent disagreement could easily be due to the crudeness of the empirical
criterion or to slight numerical errors in the computation of the ratio. The
most likely cause of such numerical errors is an underestimate of the potential
energy. This occurs because the interaction potential used in these calcula-
tions is cut off (and thus much lower than the actual Newtonian interaction
potential) for distances less than one cell dimension (ref. 24). This effect
becomes more pronounced for systems with high central mass concentrations.

Such an effect may also be responsible for the slightly high ratio obtained in
the three-dimensional disk-core case.
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Detailed Features

We now turn to the more detailed diagnostics of these simulations. The
volume density P is shown in figure 51 as a function of the spherical radius
r for three values of the colatitude 6. This density represents an azimuthal
average for a ring with radial thickness of 1 kpc and angular width of 10° in
colatitude. The data points at r = 10 kpc for t = 0 appear to be a factor
of 2 too small because the initial uniform density configuration fills only half
of the ring centered at 10 kpc.

For models I to III, the final density plots display the same separation
into a core and a halo that was evident in the energy distributions. 1In the
density plots, this property manifests itself as a change in slope between
6 and 8 kpc. As before, this distinction becomes less sharp in the more rap-
idly rotating example., In the case of model I, and to a lesser extent for
model II, it is tempting to describe the density as the sum of two exponentials.
This feature is displayed more clearly in plots of the density projected onto
the equatorial plane as shown in figures 52 and 53.

In the two bar models, the azimuthally averaged density in the equatorial
plane maintains an exponential form up to at least 12 kpc. At higher inclina-
tions, model V departs sooner from the exponential shape. This model, however,
has not yet equilibrated. The exponential density profiles observed here have
also habitually resulted from the evolution of flat galaxies into bars (ref. 4).

A different perspective of the densities is offered by figures 54 and 55,
which show the variation in the vertical direction. Here, too, are the signs
of a core-halo structure in the first three models and of a well-developed expo-
nential profile in the last two.

The rotation curves in the equatorial plane Voo = Wo = \’rKr and the mean

circular velocity are displayed in figures 56 and 57. The mean circular veloc-
ity represents the mean velocity in a cylindrical shell covering all z. Note
that heating, transfer of angular momentum to larger radii, and the increasing
central density result in large reduction of the mean circular velocity when
compared with the rotation curve rwg.

The mean rotation curves for various colatitudes are displayed in fig-
ures 58 and 59. The azimuthal velocities shown there were averaged in the same
manner as the densities given in figure 51. Model I, of course, has no net
rotation. Models II and III have rotation curves which are linear for the
inner 4 or 5 kpc and which turn over near 8 kpc. The location, shape, and
magnitude of the peak in these two sets of rotation curves resemble closely
those obtained by Gott (ref. 17). At both 6 = 90° and © = 45°, the present
peak rotational velocities are within 10 km-sec™! of those obtained by Gott.
The reader who wishes to make his own comparison with figure 4 of Gott (ref. 17)
should note that the virial velocity to be used there is 227 km-sec™! and recall
that the initial radius is 10 kpc.

The final rotation curve for model 1V is substantially different from the
earlier axisymmetric work. The region of solid body rotation here extends for
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only 1 or 2 kpc from the center rather than for a half dozen. Moreover, the
peak in the rotational velocity occurs near 11 kpc rather than 6, and it is at
least 20 km—sec~! lower. None of this is at all surprising, considering the
vastly different shape assumed by this model when the nonaxisymmetric forces
are unleashed. On the other hand, the t = 2 version of the model IV rotation
curve is quite similar to Gott's result. After only 2 rotations the bar is
still in its infancy while the collapse phase is nearly completed. As Gott
noted, the violent relaxation of the axially symmetric collapse does tend to
produce an extended region of solid body rotation. A comparison between the
model IV rotation curves at t =2 and t =5 1illustrates that the violent
relaxation of the bar-forming stage produces quite a different result. The
other bar system, model V, appears to be tending toward a rotation curve with
properties similar to that of model IV. Given the additional integrals of
motion that are likely to be present in a bar system, the theoretical interpre-
tation of the last two rotation curves in terms of violent relaxation presents
more difficulties. Note here that the rotation rates of the bars in models IV
and V are 16 km-sec~l-kpc~! and 14 km-sec™'-kpc~!, respectively.

Some of the data obtained for the velocity dispersions are presented in
figures 60 to 65. The radial velocity dispersions for models I to III are again
similar to those of Gott. They indicate a small isothermal region in the center
and larger dispersions perpendicular to the equatorial plane than in it. Curi-
ously, the present velocity dispersions have the same local maxima, for example,
near r = 7 for model I, that were exhibited by Gott's results.

These local maxima also appear in the vertically averaged velocity disper-
sions, which are a cruder but more statistically reliable measure than the one
presented here. For model IV, a comparison of the various velocity dispersions
at t =2 and at t = 5 gives some indication of the difference between the
velocities produced by the collapse itself and those that result from the bar
formation. At least in the azimuthally averaged sense displayed here, the bar
is seen to have relatively little effect upon the velocity dispersions in the
vertical direction while increasing those in the horizontal direction by 30 to
40 percent near the center.

We conclude this section with a discussion of some crucial observable
quantities. Recent measurements of rotational velocities in ellipticals by
Illingworth (ref. 21), Peterson (ref. 22), and others suggest a substantial
disagreement between the relatively high rotational velocities that arise in
the collisionless models which remain oblate, that is the models of Gott
(refs. 17 and 18) and Wilson (ref. 35), and the surprisingly low rotational
velocities which have actually been observed. Models I to III, which behave
just like the corresponding models of Gott, share this deficiency.

The bar models, on the other hand, offer some hope, as has been noted by
Miller and Smith (ref. 20) and by Illingworth (ref. 21). We provide here some
pertinent data on model IV, a case for which the bar is nearly equilibrated.
The projected isodensity contours shown in figure 66 are especially illuminat-
ing. There we have established a coordinate system relative to the rotating
bar which retains the z-axis as the rotation axis but which aligns the y-axis
with the largest axis of the bar (and, accordingly, places the x-axis along the
shortest axis). The line-of-sight direction is thus specified by the usual
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spherical angles. For instance, a viewing direction along the rotation axis

has 6 = 0° while a line of sight in the equatorial plane is specified by

0 = 90°. Moreover, a viewing direction which sees the bar broadside is speci-
fied by ¢ = 0° and one which sees the bar along the long axis is ¢ = 90°,

As noted earlier, if the long axis of the bar is taken to have unit length, then
the vertical axis has length 0.54 while the short axis in the equatorial plane
has length 0.39.

The six views shown in figure 66 certainly give the impression of an ellip-
tical of high eccentricity. The apparent ellipticity for these and a number of
other viewing directions is listed in table II. The definition € =1 - b/a,

TABLE II.- ELLIPTICITY AND VELOCITY RATIC AS A FUNCTION QOF

VIEWING ANGLE FOR MODEL IV

9, o, /Oy (0) /Oy (0)
deg deg € for slit along for slit in
major axis equatorial plane
30 0 o.Nn 0.61 0.61
30 .70 .54 .63
45 .70 .47 .64
60 .70 .35 .66
90 .7 .10 .65
45 0 .68 .92 .92
30 .67 .80 .91
45 .66 .67 .89
60 .64 .49 .87
90 .65 .10 .83
60 0 .65 1.20 1.20
30 .62 1.07 1.1
45 .58 .89 1.07
60 .57 .71 1.01
90 .54 .10 .97
90 0 .61 1.48 1.48
30 .56 1.29 1.29
45 .51 1.15 1.15
60 .28 1.07 1.07
90 .29 .10 1.03

where a and b are the measured long and short axes, is used. The values of
€ listed in table II are the average of the ellipticities for the two innermost
isodensity contours. For viewing directions near the rotation axis, the ellip-
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ticity is rather insensitive to the azimuthal orientation. When viewed from

the equatorial plane, however, there is a substantial dependence on ¢. This
effect is more dramatic for the thin bar which arose in model 1V than it would
be for a flat bar, one for which the vertical axis is the smallest. In the
present case the projection effects also include a sudden switch of the apparent
long axis.

An important consequence of the triaxial nature of this bar is that the
projected long axis of the bar can be quite misaligned with the equatorial plane.
Figure 66 provides several vivid examples. - All but the ¢ = 90° and ¢ = 0°
cases have the apparent major axis substantially misaligned with the equatorial
plane. This can have a sizable effect upon the observed velocities if the mea-
surements are made only with the slit aligned along the apparent major axis. We
have imposed a rectangular slit upon many projected views of model 1IV. This
slit was 6 kpc wide and 32 kpc long and was centered upon the center of the sys-
tem. The average line-of-sight velocities were computed in 1 kpc x 6 kpc por-
tions along the slit. The peak rotational velocity Vp and the central line-
of-sight velocity dispersion 0y (0) were then computed. These measurements
were performed for slits oriented both along the apparent major axis and perpen-
dicular to the rotation axis. The results for the ratio U = Vp/0y(0) are
given in table II. The slit oriented perpendicular to the rotation axis picks
up the maximum rotation. As the viewing direction varies, the changes in the
average line-of-sight velocities reflect not only the geometric effects which
occur even in oblate models, but also the noncircular streaming motions along
the bar. When just these two effects are considered, the ratio U still seems
to be fairly high for most orientations. But when the shifted orientation of
the apparent major axis is also taken into account, the ratio U seems much
closer to observed values. Note that the ellipticities for these orientations
of model IV are all on the high side so that a U =~ 0.50 to 0.70 appears con-
sistent with reported measurements. Nevertheless, a rough estimate suggests
that a randomly chosen viewing direction will have U < € about 40 percent of
the time.

The same six projections are shown for model V in figure 67. Weak spiral
features are still evident at t = 3, indicating that the bar has not yet
reached equilibrium. Note again how thin the bar is,

Figure 68 displays polar and equatorial projections for models I to III.
These show both the increased flattening and the decreased central concentration
caused by increasing amounts of initial rotation.

DISCUSSION AND CONCLUSIONS

Comparison of the evolution of an infinitesimally thin stellar disk with
a three-dimensional stellar disk for an initially exponential radial density
variation shows that the primary effect of finite thickness is a reduction in
the initial growth rate of the spiral or bar instability. Vandervoort's
(ref. 36) formula for the thickness correction to the dispersion relation for
an infinitesimally thin disk suggests that the effective Q for the three-
dimensional system is the range 1.3 to 1.4 compared with roughly 1.0 for the
infinitesimally thin disk. Nevertheless, after a time of three rotational
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periods the systems have evolved to essentially the same general structure.
Thus, two-dimensional disk models of galaxies are appropriate for the investi-
gation of various global, spiral structure, or instability problems associated
with flat galaxies. Adding a fully self-consistent central, nonrotating, expo-
nential core/halo component has a considerable stabilizing effect on the system.
The effective Q for this second three-dimensional system is in the range 1.5
to 1.6 from r = 5 kpc outward and considerably higher inward. While for the
two~-dimensional system an outer spiral and central bar structure quickly forms,
the three-dimensional system's most apparent instability is a weak spiral struc-
ture evolving from Jeans' type instabilities in the outer regions of the disk.
The spiral structure for the three-dimensional disk-~core/halo system is tending
to dissipate by the time bar formation is well in progress, as determined from
the azimuthal density variation. Thus, even for systems with large core/halo
components, two-dimensional disk models appear sufficient to simulate evolution
of spiral and other global structures of disklike galaxies. The primary effect
of performing the simulation in three dimensions is a reduction in the growth
rate of global instabilities.

The range of initial conditions for this study of the fully three-
dimensional, collisionless collapse of uniform spheres of stars covered some
models which remained axisymmetric and others which developed bar-shaped struc-
tures. The first four models had been treated previously by Gott in a manner
which precluded the development of nonaxisymmetric features. Our results for
models I to III showed that where large-scale axial symmetry was retained, even
the detailed features were well represented by the strictly axisymmetric calcu-
lations. The energy distributions, density profiles, systematic velocities,
and random velocities were all similar to those obtained by Gott. Moreover,
no significant redistribution of angular momentum occurred, even though per-
mitted in principle by the numerical treatment. Nevertheless, the present
results for models IV and V illustrate the limitations of the axisymmetric
calculation. These limits had been predicted reliably by Gott himself using
the Ostriker-Peebles criterion. For model III, the ratio of kinetic energy in
rotation to total potential energy was too close to the Ostriker-Peebles sta-
bility limit of 0.14 to make a definitive judgment. The present results sug-
gest once again that the natural outcome of strong nonaxisymmetric instabilities
is bar formation.

The flattest oblate system obtained here was model III, which resembles
the appearance of an E2 galaxy. The bar instability of model IV prevented the
development of an oblate system as flat as an E5, such as Gott had done with
his constrained model. On the other hand, bar formation led to even flatter,
albeit triaxial, systems. Model V, which can appear as flat as an E8, is the
more extreme example.

The bar~forming models display a distinct separation between the collapse
and the bar phases. The bars appear to form during or after the second collapse
along the rotation axis. Prior to this time the evolution is dominated by axi-
ally symmetric collapse dynamics. Model IV provides an excellent example of
this since a good deal of similarity prevails between the properties of the
present model IV at t = 2 and the final form of the axially constrained ver-
sion. This same comparison made at t = 5 suggests the following effects of
the bar upoﬁ the detailed properties: (1) the distinct core and halo components
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produced by the collapse are obliterated by the bar; (2) the density is more
clearly represented as a combination of two exponentials; (3) the central region
of solid body rotation is substantially reduced; (4) the dispersions of the hori-
zontal velocity components are increased by 30 to 40 percent while the disper~
sions of the vertical component are nearly unaffected.

Given the recent observational data on the apparent low systematic veloci-
ties in ellipticals, the bar models seem much more viable for galaxy formation
than the oblate ones. We have explored extensively the equilibrium properties
of only one bar model. Although there are many viewing directions which are
reconcilable with the observations (at least observations made solely along the
apparent major axis), there are uncomfortably many others which would suggest
high rotation. No doubt, a more satisfactory model could be constructed by
using different initial conditions than those employed in model IV. Certainly
less rotation should be applied and perhaps even slightly greater initial veloc-
ity dispersion.

It is clear that there is one observational test which even a finely tuned
triaxial model must pass. The data in table II indicate how sensitive the mea-
sured rotation of the bar models can be to the slit orientation. Thus, for many
real triaxial systems of the type modeled by the final two examples, there ought
to be some slit orientations which produce substantially greater measured rota-
tion than a slit orientation corresponding to the apparent major axis.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 6, 1979
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APPENDIX

COMPUTER PROGRAM FOR GENERATING THE THREE-DIMENSIONAL GRAVITATIONAL
POTENTIAL DISTRIBUTION OF ISOLATED GALAXIES
Mathematical Summary

The scaled gravitational potential at the center of cell (x,y,z) is defined
by the triple summation over the three~dimensional array of cells

2n-1 2n-1 2h-1

¢x'le = Z Z Z pi,j,kni—x,j—y,k-z (Al)
i=0 j=0 k=0

where

Hi,j,k = (12 + 32 + k)2 for i+ 3+ kFO

Ho,0,0 =1
and pi,j,k is the mass density in cell (i,j,k). Because direct summation
is much too time consuming to be practical, the triple summation is evaluated
by the convolution method using fast Fourier transforms (ref. 2). That is, the

Fourier transform of the potential equals the product of the PFourier transforms
of p and H:

¢z ,n,c = Pg,m,cHE N, L (a2)

The gravitational potential ¢x, ,z 1is obtained by taking the inverse Fourier
transform of equation (A2). Rather than the usual complex Fourier series, a
real expansion is used here. For example, the Fourier transform of the density
Px,y,z 1s given by

2h-1 2n-1 2n-1

Bglnlc = Z z z c(x,n) c(y,n) C(Z,h) pX,Y,Z f(ngrn)
z=0 y=0 x=0

x £(M,y,n) £(C,z,h) (A3)
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where

cos (mEx/n) 02 <n
£(E,x,n) ={
sin w(f{ - n)x/n n<¢gs2n-1
1/V2 if x=0 or x=n
c(x,n) '{
1 Otherwise

The symbols n and h define the n x n x h active array and alsé the

(2n) x (2n) x (2h) 1larger array over which the Fourier transform must be taken
so that the potential for an isolated galaxy is obtained (see fig. 69). Note
that the density may be nonzero only in the smaller n x n x h array. Because
of the symmetry of Hy,y,z7 the Fourier transform HCrn:C can be obtained by a
finite cosine transform

h n n

H = c2(x,n) c2(y,n) c2(z,h) H

Emlc ! Y 4 Xe¥Yer2
2=0 y=0 x=0

x cos (MEx/n) cos (mny/n) cos (mZz/h) (A4)

for 0£&,mnmsn and 0 £ ¢ £ h, and

Heyn,n,z = BE+n,n+n,z = Hg4n,n,z+h = HE4n,n+n,z+n

= ngn‘*'nrc = HE:n+n,C+h = HE MC+h = HE:U:C

The next step in obtaining the potential is to multiply Sgran by ﬁ&.n,c
to obtain ¢E,H,C {eg. (A2)).

The gravitational potential for an isclated galaxy correctly defined over
the n x n x h array is obtained by the Fourier synthesis

2h-1 2n-1 2n-1

1 ~
¢’x,y,z = _3 E z z ¢£,n,g £&€,x,n) £(n,y,n) £(¢,z,h) (AS)
N =0 n=0 =0
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Note also, that since

HE,n,C = HEICI“ = HH:E:C Soe e

different permutations of the same set of indices need not be stored. Thus,
the transformed Green's function can be converted to a one-dimensional array

~

HE:H:C = Fp

where different permutations of &,n,L are stored in the same location n
given by

g

i n
Z—(i-1)+-(n—1)+z
2 2

i=2

=]
]

E(E -1 ~-NNN12+EE-1/4+N0MM-1)/2+7T

Computer Program Subroutine Which Uses Only Core Storage

At the end of this appendix, FORTRAN listing I is given of computer program
GETPHI which may be used to obtain the potential ¢ by use of a (2n) x (2n) x h
array of cells. The variable I2A defines the x and y dimensions, and I3A
the 2z dimension of the array used for the potential calculations. When the
subroutine GETPHI is called, RHO(I,J,K) contains the mass density and GETPHI
places the values of the corresponding gravitational potential in RHO(I,J,K).
The subroutine FTRANS(I,I2B), written by R. Hockney (ref. 37), performs a finite
Fourier analysis or synthesis on the common input array 2 and places the
result in the common output array Y. The subroutine performs a cosine analysis
for I = 2, a periodic analysis for I = 3, and a periodic synthesis for I = 4.
The subroutine GETSET(I,I2B) initializes FTRANS and is called every time the
arguments of FTRANS (I,I2B) are changed. The Fourier transform Hg,n,r is cal-
culated on an (n + 1) x (n + 1) x (h + 1) array only the first time that the
subroutine is called and is kept in storage for subsequent use.

The Fourier transform of Px,v,2 in the x-direction is generated by obtain-
ing the partial transform pg,, , for 0 s€f&<2n-1, 0ys$n-1, and

Px,y,z is nonzero only over the n x n x h active array. Next, the Fourier
transform of PE,y,z is performed in the y-direction obtaining the x-y partial
transform PE,n,z for O £f¢<2n-1, 0sn$<2n-1,and 052 z5 h-1.
Since oL ,n,z is zero for h £ z £ 2h - 1, by use of one-dimensional arrays Y

0 zSh-=-1. The transform BE,y,z is zero outside of this region because
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and 2 the Fourier transform of Dg n, can be taken in the z-direction to
obtain the total transform Pg R Fof 0SC S 2n-1. Next, Of n ,L is
multiplied by Hg n,; to obtain ot mn,; and the inverse Fourier transform
is performed in the z-direction. The result1ng partial x-y transform ¢g n,z
is placed in the 2n x 2n x h RHO(I,J,K) array for 0 = § 2n - 1, "
0sns<2n-1,and 0S5 z£ h-1 with values for h S z £ 2h - 1 discarded.
(The use of these one-dimensional arrays was first presented in ref. 23 for a
two-dimensional potential solver.) Next, the inverse Fourier transform of

¢€,n,z is generated in the y-direction to obtain the x partial transform

WA 1IN

¢g,y,z for 0sE€<2n-1, 0SySn-1,and 0% z%h-1. The final
step is to perform the inverse Fourier transform in the x-direction for
0SySsn-1 and 052 z5 h-1 to yield the correct grav1tat10nal potential
¢x,y,z for an isolated galaxy over the n x n x h array.,

Overlayed Computer Program Which Uses Core and Disk Storage

Use of program GETPHI, with the 64 x 64 x 16 active density/potential array
used in this report would have necessitated the dimensioning of the RHO array
at 128 x 128 x 16 and the H array at 65 x 65 x 17. Since such large dimen-
sions would have precluded use of the CDC 6600 computer, program GETPHI was
modified to include use of overlayed programs and disk storage resulting in a
maximum core storage requirement at any one time equal to about five-fourths
of the active array. The listing of this program (listing II) includes (1) a
section of an initializing overlay in which relevant constants are computed,
(2) a section of the star advancing overlay in which "chunks" of the density
array are written on appropriate disk files, (3) another section of the star
advancing overlay in which chunks of the computed potegtial array are read
from disk files, (4) the GETH overlay which computes H, and (5) the GETPHI
overlay which computes the potential array from the density array. Figures 70
through 74 are presented to facilitate description of the overlayed program.
For clarity, figures 69 through 74 are drawn for an active array dimensioned
nxnx h=8x 8 x 4; table III compares the array dimensions of these figures
with those of the overlayed program.

The method used is the alignment in the direction of transformation of four
identical arrays named RHO1, RHO2, RHO3, and RHO4, each of which is dimensioned
(n/2) x (n/2) x h within the GETPHI overlay. (See figs. 70 and 73.) The active
array is dimensioned as the PHI array within the initializing and star advancing
overlays (see figs. 69 and 71) but is not dimensioned within the GETPHI overlay.
As figure 70 suggests, the chunks RHO1, RHO2, RHO3, and RHO4 may be visualized
as forming either a row or a column of the lower half (0 £ z £ h - 1) of the
extended array. Switching the lineup to a different row or column is accomp-
lished by storing the array associated with each chunk location on a separate
file; these eight files are also indicated in figure 70.

As shown in figure 71, one chunk size array named OI is dimensioned in
the initializing and star advancing overlays. Chunks of the active array are
transferred between the PHI array of these overlays and the arrays RHO1, RHO2,
RHO3, and RHO4 of the GETPHI overlay via "do loop" transfer to/from the OI
array and storage on files 1, 2, 5, and 6.
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At the beginning of a program run, the GETH overlay computes H in the
(n+ 1) x (n+ 1) x (h + 1) H array in the same manner as 1isting I. All of
Hg n,zr except for two boundary planes of elements (€E=n,05nsn, 05T < n,
and 0 S E<n,nNn=n, 052 2% h) is then transferred in portions via "do loop"
to the (n/2) x (n/2) x (h + 1) HH array from which it is wrltten on disk
file 9 (see fig. 72). Elements of one boundary plane of Hg (€ =n,
0<nsn, 0SS h) are transferred to the (n + 1) x (h + 1) HN21 array
which is in common with the GETPHI overlay; the C{-N transpose of that boundary
plane is equal to the other boundary plane (0 £ & $n, N =n, 02Z S h) because
of the symmetry of H across the E=n diagonal plane. During each poten-
tial solution the portions of H on file 9 are read sequentially 1n§o an
(n/2) x (n/2) x (h + 1) HH array of the GETPHI overlay from which H elements,
along with those in the HN21 array, are multiplied with p. This sequence
(listed in table IV) utilizes the symmetry and periodicity of H (eg. (A4)) to
provide a full set of (2n) x (2n) x (2h) H elements to the GETPHI overlay
in a manner which minimizes the reading of file 9.

TABLE IV.- STORAGE OF THE FOURIER TRANSFORMED GREEN'S FUNCTION H
ON DISK FILE 9

@rogram of listing II_]

Record no. Storage sequence within Use sequence within GETPHI
of file 9 GETH overlay overlay
(a) (b)

1 A (1,1, (1,3)

2 B (.2, 0,4, (3,2), (3,4

3 A (3,1), (3,3)

4 C 2,M, (2,3)

5 D (2,2), (2,4), (4,2), (4,49

6 c (4,1), (4,3)

@Within the GETH overlay, this is the location in the H array (as
designated by letters A-D of fig. 72) from which "do loop" transfer is
made to the HH array followed by writing on the indicated record of
disk file 9.

bFollowing reading of the indicated record of disk file 9 into the
HH array within the GETPHI overlay, this is the sequence of locations
in the extended PHI array (as designated by "chunks" (IROW,JCOLUMN) of
fig. 70) upon which z-direction one-dimensional array operatlons are
performed. These operations include multiplications by H, the appro-
priate portion of which is now contained in the HH array. This me thod
minimizes reading of file 9 by using the periodicity and symmetry of H.
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The GETPHI overlay consists of subroutines ANLX(JCOLUMN), ANLSYN (IROW),
and SYNX(JCOLUMN) which dimension in common the arrays HH, HN21, RHO1, RHOZ2,
RHO3, and RHO4, as pictured in figure 73. Figure 74 indicates the lineup of
chunks associated with each call to a subroutine. The potential solution is
mathematically identical with that described for listing I. Calling ANLX(1)
and ANLX (2) performs the Fourier transform of Oy Yoz in the x-direction to
form pg Vez* Calling ANLSYN(1), ANLSYN(3), ANLSYN(Z), and ANLSYN(4) in
sequence performs the following: (1) a Fourier transform of pg Yoz in the

y- and z-directions to form pg n,gi (2) multiplication with Hg n,z to form
¢g n,z: and (3) the inverse Fourler transform of ¢€,n,C in the z- and
y—dlrectlons to form ¢g Vezo. Calllng SYNX (1) and SYNX(2) performs the
inverse Pourier transform of ¢g in the x-direction to form ¢x,y,z-

The GETPHI overlay is outlined in more detail in table V.

Comparjison of the Two Computer Programs

The overlayed program (listing II) is preferable to the original program
(listing I) because the addition of some peripheral processing time and a
small increase in central processing time are much more than compensated by a
75-percent decrease in the required core storage. The maximum number of active
array elements dimensionable on the CDC 6600 with the original program is 16384
(e.g., 32 x 32 x 16) and with the overlayed program, 65536 (e.g., 64 x 64 x 16);
the latter program can have other potentially useful active array dimensions
of 32 x 32 x 8, 32 x 32 x 16, and 32 x 32 x 32, Solution of the 64 x 64 x 16
active array by the CDC 6600 requires about 300 000 (octal) words of core stor-
age and with H already computed takes about 75 seconds of central processing

time.
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TABLE V.- OUTLINE OF THE GETPHI OVERLAY OF THE PROGRAM OF LISTING II

Refer to figure 74 for orientation of arrays RHO1, RHO2, RHO3,
and RHO4 and to figure 70 for file numbers corresponding to
the locations of these arrays

Listing II
line nos.
A. CALL ANLX(1) (fig. 74 (a))
1. Read files 1 and 2 into RHO1 and RHO2, respectively . . . . . 299-302
2. Set RHO3 = RHO4 = 0 . & o 2 « o o o s o s o s o o s o« o o s 316-317
3. Perform Fourier transform in x-direction over RHOl1, RHO2,
RHO3, and RHO4: Py g,z > DE,y,z = + + » » + + » « + » - o 310-323
4. Write RHO1, RHO2, RHO3, and RHO4 onto files 1, 2, 3,
and 4, respectively .« . o o o o o o o o o o o o s e s s e 325-332

B. CALL ANLX(2) (fig. 74 (b))
1. Read files 5 and 6 into RHO1 and RHO2, respectively . . . . . 305-308
2., Same as steps A.2 and A.3
3. Write RHO1, RHO2, RHO3, and RHO4 onto files 5, 6, 7,
and 8, respectively . . « ¢ ¢ 4 o ¢ ¢ o o e o o s s 4 s s s 335-342

C. CALL ANLSYN(1) (fig. 74(c))
1. Read files 1 and 5 into RHOl1 and RHO2, respectively . . . . . 353-356
2. Set RHO3 = RHO4 = 0 & & ¢ o o o o o o o o o o o s o o s o o 382-383
3. Perform Fourier transform in _y-direction over RHO1, RHOZ,
RHO3, and RHO4: pr .y, , pE,n,z c e e s e o o s s e o s a 376-389
4. Read record 1 of file 9 1nto HH s s s e s s s e e e e s e 393
5. For each one~dimensional array in z-direction of which
RHO1 is compoSed =« + o o s o 2 s o s o o o s s o s o s o« o 394-407,
477-483
a., Transfer to one-dimensional array Z, dimensioned at
least 2h + 1
b. Set Z =0 for z2 h
c. Perform Fourier transform in z-direction over 2 for
05z =2h-1 with the result appearlng in one-
dimensional array VY: p&,n,z pg n,Z

d. Multiply Y by HE ,L to form ¢g N.Z pg'nlg E n, C
e. Perform inverse Fourler transform in z-direcfion over

and store result for 0 £ z £h-1 in RHOl:

¢§:n,¢§ > ¢§:mz
6- Repeat Step C.S for RHO3 e o e o o @ o o o o & o o e e o o o 426-454,

471-483
7. Read record 2 of file 9 into HH . . . « ¢« ¢ ¢+ ¢ v o o o o o & 410
8. Repeat step C.5 for RHO2 and RHO4 . . . « . ¢ ¢ ¢ ¢ ¢ ¢ & o & 411-424,
456-469,
477-483
9. Perform inverse Fourier transform in y—direction over
RHO1, RHO2, RHO3, and RHO4: ¢f, n,2 ¢£,y,z e e s e 4 s 486-497
10. Write RHO1 and RHO2 onto files 1 and 5, respectively . . . . 500-503
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TABLE V.- Concluded

CALL ANLSYN (3) (fig. 74(e))
1. Read files 3 and 7 into RHO1 and RHO2, respectively . . . .
2, Same as steps C.2 to C.9 except for sequencing of reading
tape 9 into HH and the z-directional operations.
Table IV details this sequencing.
3. Write RHO1 and RHO2 onto files 3 and 7, respectively . . .

CALL ANLSYN(2) (f£ig. 74(4))

1. Same as step D except that files 2 and 6 correspond to
RHO1 and RHO2, respectively, for read and write
Ooperations

CALL ANLSYN (4) (fig. 74(£f))

1. Same as step D except that files 4 and 8 correspond to
RHO1 and RHO2, respectively, for read and write
operations

CALL SYNX(1) (fig. 74(a))
1. Read files 1, 2, 3, and 4 into RHO1, RHO2, RHO3,

and RHO4, respectively . ¢ o ¢ ¢ o « o o o « o o « o « &
2. Perform inverse Fourier transform in x-direction over

RHO1, RHO2, RHO3, and RHO4: Of,y z > Ox,y,z = + « « + o
3. Write RHO1 and RHO2 onto files 1 and 2, respectively . . .

CALL SYNX({(2) (fig. 74(b))
1. Read files 5, 6, 7, and 8 into RHO1, RHO2, RHO3,
and RHO4, respectively .« « o« &+ o « o o o o o o o 2 o « &
2, Same as step G.2
3. Write RHO1 and RHO2 onto files 5 and 6, respectively . . .

Listing

II

line nos.

365-368

512-515

530-537

550-560
562-565

540-547

568-571
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LISTING I.- SUBROUTINE GETPHI FOR CALCULATING THE THREE-DIMENSIONAL

GRAVITATIONAL POTENTIAL USING ONLY CORE STORAGE

SUBROUT INE GETPHI
COMMON Z(1025)+4Y(1025)+sRHO(64:64+161s12A4+13A1TEST
DIMENSION H(33¢33417)
IF(ITESTeEQeV)Y GO TO 11
1TEST=0

12B=12A-~1

N=22%#]2A

NO2=N/2

N21=NO2+1

I38=13A-1

NH=22#3A

NHO2=NH/2

NH21=NHO2+1

RNTI=16¢/ (N#N#NH)

DO 1 K=1+NH2]

DO 1 J=1.N21

DO 1 1=1esN21
RI=(K-1)#(K=1)4(J=1)%(J-1)4(1~-1)#*(I-1)
IF(RIeLTele) RI=1e
H(1eJeK)=RNI/SART(R1)
CONT INUVE

CALL GETSET(2+128B)

DO 2 K=1eNH21

DO 2 J=1+N21

DO 3 I=1.N21
Z(]y=H(1+JK)

CALL FTRANS(2.128B)

DO 4 I=14N21
H{TeJeK =Y (1)

CONT INUE

DO 5 K=]1+NH21

00 5 1=1+N21

DO 6 J=1.N21
ZCJI=H(] « JeK)

CALL FTRANS(2+128)

DO 7 J=1sN21
H(TeJeK)=Y(J)

CONT INUVE

CALL GETSET(2+138)

DO 10 JU=1N21

DO 10 I=1N21

DO 8 K=1..NH21
ZIK)=H{]+JsK)

CALL FTRANS(2+13B)

DO 9 K=1+NH21
H{l+JeK)=Y(K)

CONT INUE

CONT INVE

WRITE(6+43)

FORMAT (10H H((l+JeK))
DO 42 K=1+NH21

DO a2 J=14N21
WRITE(6+41) JsK
WRITE(S6:40) (H(lsJeK)el=14N21)

FORMAT (14H =1 +N21 J=13+.5H K=13)
FORMAT(2H BE168)
CONT INUE

CALL GETSET(3+12A)
00 14 K=14NHO2

0O 14 J=1..NO2

DO 12 I=1.N
Z(1)1=RHO(]+JsK)
CALL FTRANS(3.12A)
DO 13 I=14N
RHO(1eJeK)I=Y (1)
CONT INVE




16
17

18

22

23

24

25

26

27

21

28
20

30

31

29

33

Ja
22

DO 17 K=1.NHO2

DO 17 1=14N

DO 15 J=14N

Z(JI=RHO (T s JeK)

CALL FTRANS(3.12A)

DO 16 J=1N

RHO(1 «JeKI=ZY (JU)

CONT INUE

DO 20 I=14N

DO 20 J=1N

DO 18 K=1.NHO2

Z(K)I=RHO ([ eJeK)

Z(K4+NHO2)=0,

CALL GETSET(3.134)

CALL FTRANS(3+13A)

IF(1eGTeN21 JANDeJsLEN21) GO TO 22
IF (1eLEeNZ21,ANDeJeGT«N21) GO TO 24
IS (1e5TeN21 4 ANDeJeGTN21) GO TV 26
DO 19 K=14NH02
ZIKYSY(KYRH (T sJ oK)
Z(K4NHO2) =Y (K+NHO2 ) #H( 1+ JeK)
ZO1)=Y (1 )*H(TeJel)
ZINH21)=Y (NH21 ) #¥H (1 e JeNH21)

GO TO 21

DO 23 K=2NHO2

Z(K)=Y (K)*H(1~-NO2+JeK?)
Z(K4NHO2) =Y (K+NHO2 ) #H (1 -NO2 + J sK )
ZOII=Y (LI RHI~NO2e¢Js 1)
Z(NH21)=Y (NH21 ) #H ([ -NO2+ JsNH21 )
GO TO 21

DO 25 K=2+NHO2
Z(K)I=Y (KIRH( [+ J-NO2 +K)
Z(K+NHO2) =Y (K+NHO2 ) #H (1 « J-NO2 +K)
Z(1)=Y(1)IRH ([ e J-NO2+1)
Z(NH21)=Y(NH21 ) *H (] ¢ J=NO2NH21)
GO TO 21

DO 27 K=2 «NHO2
ZIK)=YIK)FH (I =NO2+J-NO2+K)

Z (K4NHO2) =Y (K+NHO2 ) #H (1 -NO2 + J=-NO2 +K )
Z(1)SY (1 )I%H(I=NO2¢J=NC2+1)
Z(NH21)=Y (NH21)*H ([ -NO2 ¢ J-NO2 «NH21 )
CONT INUE

CALL GETSET(44!3A)

CALL FTRANS(4.13A)

DO 28 K=1+NHO2

RHO(1 s JeK)=Y (K)

CCONT INUE

CALL GETSET(4+12A)

DO 29 K=1+NHO2

DO 29 J=1N

DO 30 I1=1.N

Z(I)=RHO (] eJeK)

CALL FTRANS (4+12A)

DO 31 I1=1N

RHO(1+JeK)=Y (1)

CONT INUE

DO 32 K=14NHO2

DO 32 1=1.NO2

DO 33 J=1eN

Z(JI=RHO(1+J4K)

CALL FTRANS(4.12A)

DO 34 J=1.NO2

RHO(1sJeK)=Y(J)

CONT INUE

RE TURN

END

APPENDIX
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LISTING II.- OVERLAYS FOR CALCULATING THE THREE-DIMENSIONAL GRAVITATIONAL

POTENTIAL USING CORE AND DISK STORAGE

C THE FOLLOWING IS THe SECTION OF AN INITIALIZING OVERLAY IN WHICH CONSTANTS 0Ol
C RELATED TO THE DIMENSIONS OF THE Pril (DENSITY/POTENTIAL) ARRAY ARE COM- o002
C PUTEDe IT 1S CALLED ONCE AT THE BEGINNING OF A PROGRAM RUNe IN THIS 003
C LISTING THE VALUES OF 12As I3A AND THE DIMENSION AND LABELED COMMON 004
C STATEMENTS ARE ST FOR AN ACTIVE PHI ARRAY DIMENSIONED 64 BY 64 BY 16 005
124=7 006

13A=5 007
I28=12A-1 oo8
138=13A~1 009
N=2*¥%]2A olo
NO2=N/2 ol1
N21=N02+1 o012
NO4=N/4 013
N34=NOZ +NO4 ola
NH=2##% ] 3A 015
NHO2=NH/2 ols
NH21=NHO2+1 017

[ o018
C 019
C 020
C **{»*l’**iﬂ-*l**i;}l-***l{i}*i*}i{****i*i**ii***{li*ill{i{*}ii&{i*{ii{*{llii*l} 021
[ 22T S22 22222 SRS R R R R A XSS R SRR TR SZSEL RS R LR LT SRR RRERT EPE FREEEEE 022
C THE FOLLOWING IS THE SECTION OF THE STAR ADVANCING OVERLAY IN WHICH CHUNKS 023
C OF THE PHI ARRAY (CONTAINING THE DENSITY MESH) ARE WRITTEN ONTO DISK FILES o024
C 1¢2¢5 AND 6 THE STAR ADVANCING OVerRLAY 1S CALLED UNCE PER TIME STEP. 025
DIMENSION PHI (64¢64416)1+01(32:432416) 026

DO 520 K=1+NHO? 027

DO 520 J=14NO4 o028

DO 520 1=1+NOG 029

520 Ol (1+JeKI=PHL(1+JsK) 030
WRITE(1) Ol 031
REWIND 1 032

DO 52% K=14+NHO2 033

DO 525 J=14NO4% 03a

DO 52% 1=1+NO4 035

525 O1(1eJeKIZPHI (] +NOG+J+K) 036
WRITE(S) Ol 037
REWIND 5 038

DO 530 K=1+NHOZ2 039

DO 530 J=1+NO4 040

DO S30 1=1.NO4& nal

530 O1(1eJesKI=PHI (NOS+TeJeK) 042
WRITE(2) Ol 043
REWIND 2 044

DO 535 K=1+NHO2 045

DO 535 J=1+NO4 046

DO 535 I=1+NO4 087

535 Ol (1eJeKI=PHI (NOG+] «NOG+J+K) 0a8
WRITE(6) Ol 049
REWINC 6 050

c o<1
C 052
C 053

L T e e a e R R L T e Y-0
CHRBR AR IR AR A IR R AT FEREH AR RR R RS FRATE R IR R IR AAR AN SRR R R NI AR AL SR AR HRERERRE S 055
C THE FOLLOWING IS THE StCTION OF THE STAR ADVANCING OVERLAY IN wHICH CHUNKS 056
C OF THE PHI ARRAY (CONTAINING THE POTENTIAL MESH) ARE READ FROM DISK FILES 097
C 14245 AND 6o 058
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DIMENSION PHI(64¢64+16)+01(32:32416)
READ(1) OI
REWIND 1
DO 30 K=14NHO2
DO 30 J=1,.NO4
DO 30 1=1.NO4
30 PHI(IsJeK)I=0§(1eJeK)
READ(5) 01
REWIND 5
DO 40 K=1 +NHO2
DO 40 U=1.NO4
DO 40 1=14+NO%
40 PHI(1eNOA+JeK)I=0I (1eJeK)
READ(2) Ol
REWIND 2
DO 50 K=1.NHO2
DO 50 u=1NO4
DO S0 I=1+NO4
S0 PHI(NOG+1:JsK)=01 (1 +JsK)
READ(6) Ol
REWIND 6
DO 60 K=14NHO2
DO 60 J=1..NO4
DO 60 I=]1.NO4
60 PHI(NOG+] «NOG+JeKI=ZOI (1 eJeK)

THE FOLLOWING IS THE GETH OVERLAYs WHICH COMPUTES AND STORES THE TRANS-
FORMED GREENS FUNCTIONe 1T 18 CALLED ONCE AT THE BEGINNING OF A PROGRAM
RUN

OVERLAY(IFILE+4+0)

PROGRAM GETH
THIS OVERLAY PERFORMS A COSINE ANALYSIS OF THE THREE-DIMENSIONAL GREENS
FUNCTION ARKRAYs IT THEN WRITES CHUNKS OF THIS ARRAY ON DISK FILE 9 IN THE
ORDER IN WHICH THEY wlLL BE READ INTO THE HA ARRAY DURING THE GETPHI
OVERLAY. VALUES FOR I=N/2+1 AND J=N/2+1 ARE TRANSFERRED TO TrHE rN21 ARRAY
WHICH IS IN COMMON WITH THE GETPHI OVERLAY.

COMMONZALLCOM/NINOZ2aN21 «NO4 +N34 +NHeNHO2+NH21 « 1244 1 2B+ 13A+ 138

COMMON/HN21COM/HN21 (65417)

COMMON Z(1025)+ Y(1025)

DIMENSION H({65:65417)sHH(22432417)

RNI=1e/(N*N#NH)

DO 1 K=]NH21

DO 1 J=1.N21

DO 1 I=14N21

RI=(K=1)#(K=1)4+(J=1)%(J=1)+(I-1)%(]-1)

IF(RIeLTele) RI=10

H{] «JsKI=RN[/SQRT(RT)

1 CONTINUE

CALL GETSET(2+12B)

DO 2 K=1+NH21

DO 2 J=1sN21

DO 3 I=1sN21

3 Z(IY=H(1+JeK)

059
060
061

062
063
064
06S
066
067
068
069
070
071

072
073
074
075
076
077
078
079
080
o081

082
083
084
085
086
o087

088
089

090
091

092
093
094
095
096
ne7
0ov8
099
100
101

102
103
104
105
106
107
108
109
110
111

112
113
114
115
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34

N b

30

35

40

a5

S0

55

15

CALL FTRANS(2,128B)
DO 4 I=1.N21
H(loeJeKI=Y(])
CONTINUE

DO 5 K=1+NH21

DO 5 I=1eN21

DO 6 J=1eN21
Z(J)=HT e JeK)

CALL FTRANS(2.128)
DO 7 J=1«N21

H(T o JeK)IZY(J)
CONTINUE

CALL GETSET(2.13B)
DO 10 u=1.N21

DO 19 1=14N2!

DO 8 K=1+NH21
ZIK)=HU] e JeK)?

CALL FTRANS(2.138B)
DO 9 K=1+NH21
H{leJeK)IZY(K)

CONT INUE

DO 30 1=1.NO%

DO 30 J=1+NO4

DO 30 K=1+NH21
HH(T ¢+ JeK)=H(I s JeK)
WRITE(9) HH

DO 35 1=1+NO4

DO 35 J=1..NOS

DO 35S K=1«NH21
HH(l s JoeKI=H(] +NOG+JsK)
WRITE(9) HH

DO 40 1=1.NO4

DO 40 J=1,,NO4

DO 49 K=1«NH21

HH (T« JaKI=H( 1 s J¢K)
WRITE(9) HH

DO 45 1=1+NOS

DO 45 J=1+NOS&

DO 45 K=} «NH2!
HH(T ¢+ JeK)I=HI(NOG+] ¢+ J+K)
WRITE(9) HH

DO SO I=1.NOS%

DO 59 J=1+NO4

DO 50 K=1+NH21

HH{1+JeK)=H(NO4A+] +NOgG+JsK)

WRITE(S) HH

DO 55 1=14NO4&

DO S5 J=1«NO4&

DO 55 K=1+NH21

HH ] s JeK)=HINDG+] ¢ JeK)
WRITE(9) HH

REWIND 9

DO 15 K=]14+NH21

DO 1S5 1=1+N2)

HN21 (1 +K)=H( I N2 oK)
RETURN

END

APPENDIX
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119
120
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122
123
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125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
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146
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148
149
150
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THE FOLLOWING

STER.

1S THE GETPHI
1T REPLACES CHUNKS OF DENSITY STORED ON DISK FILES
CORRESPONDING CHUNKS OF THE POTENTIAL MESH.

OVERLAY(GFILE+54+0)
PROGRAM GETPHI

THIS OVERLAY SOLVES FOR THE POTENTIAL MESH
DUE TO A DENSITY MESH

NH/72)

OVERLAY .

1¢2+5 AND 6 WITH

IT IS CALLED ONCE PER TIME

(OIMENSIONED N/2 BY N/72 BY NH/2)

(DIMENSIONED N/2 BY N/2 BY

BY DOING A

PERIODIC ANALYSIS OF THE DENSITY AND THEN A PERIODIC SYNTHESIS OF THE
PRODUCT OF THE TRANSFORMED GREENS FUNCTION (

BY (NH/2+1))
TRANSF ORMS
PERFORMEL

IN THE GETH COVERLAY)

AND THE TRANSFORMED DENSITYe
(EXCEPT THE COSINE ANALYSIS OF THE GREENS FUNCTIONG
REUUIRES AN ARRAY DIMENSIONED N BY N 3Y

OIMENSIONED

FORMALLY SPEAKING¢

(N/2+1) BY (N/2+1)
EACH OF THE
WHICH IS

Nrie  TO REDUCE COREZ STORAGE THIS OVERLAY PERFORMS THESE TRANSFORMS IN

CHUNKS 8Y THE AL IGNMENT OF FOUR SMALLER ARRAYS NAMED RHO! .
EACH OF wHICH IS DIMENSIONED N/4a BY N/4 BY NH/Z2e
CF THE EXTENDED ARRAY NOT

RHO4 »
LOWER HALF (1

oLEe Z
ONE TIME ARE STCRED ON DISK FILES 1
VIEWS OF THE ILLOWER HALF OF THE EXTENDZID ARRAY,.

sLEs NH/2)

THROUGH

RHOZ+« RHO3+ AND
THE CHUNKS OF THE
IN CORE AT ANY

8¢ THE FOLLOWING ARE TWO TOP

8074 OF

THESE VIEWS

DESICGNATE THE CHUNKS AS

1 AND 2 CONSTITUTE THE ACTIVE MESH.

IROW AND JCOLUMN,

1ROW

1 AND 2 OF JCOLUMN

IN THE DIAGRAM ON THE LEFT THE

NUMBERS WITHIN THE CHUNKS OF JCOLUMN 1
WHICH THOSE CHUNKS ARE STORED.
REFERRING TO THE DIAGRAM ON THE RIGHT.

OR 4.)

AND 2

{NO DISK STORAGE

INDICATE THE DISK FILES ON

IS REQUIRED FOR JUCOLUMN 3
THE NUMBERS WITHIN THE

CHUNKS ARE THE ORDER IN WHICH CHUNKS OF THE TRANSFORMED DENSITY ARE

MUTIPLIED

ARRAY HH(N/4 «N/74 «NH/241 Ye
FUNCTION BOUNDARY VALUES FOR
IN THE ARRAY HN21(N/2+1«NH/2+1)0)

IN COMMON
THAT NEwW VALUES
BY HHe

(ELEMENT BY ELEMENT)

MUST  BE READ

1=N/2+1

AND J=N/2+1

A PLUS

PERIOCDICITY OF THE TRANSFORMED GREENS FUNCTION.

TWO TOP VIEWS OF LOWER HALF OF EXTENDED
AND 2 OF JCOLUMN 1 AND 2 CONSTITUTE

MESH(N BY N

BY THE APPROPRIATE PORTION OF THE
TRANSFORMED GREENS FUNCTION WHICH HAS BEEN READ FROM DISK FILE 9
(AN EXCEPTION IS THE SET OF TRANSFORMED GREENS
WHICH REMAIN AT ALL TIMES
IN A CHUNK
INTO ARRAY HH BEFORE THAT CHUNK
THIS SYSTEM MIMIMIZES PERIPHERAL PROCESS TIME BY UTILIZING THE

INTO

INDICATES
IS MW TIPLIED

BY NH/2) ~ IROW 1

THE ACTIVE MESH(N/2 BY N/2 BY

NH/2)e THE DIRECTIONS ARE X(1) AND OMEGAX(I) — DOWN ON PAGEs
Y(J) AND OMEGAY(J) - TO RIGHT ON PAGE. Z(K) AND OMEGAZ(K) - OUT OF
PAGE
JCOLUMN JCOLUMN
1 2 3 a 1 2 3 a
9 3 I3 I % E N E 3 33 3 3 3 R
* * * * * * 4+ 4+ % * *
IROW=1 % 1| % 5 % % % IROW=1 % 1 % 3 % 2 % 4 *
32X 22T S22 XL 2 XTSI S22 L L
* * * * * * 4 ® ¢ * *
IROW=2 * 2 * 6 % *» % IROW=2 # 9 %11 %10 *12 *
35 3 I I I IR R TS X222 F22 22X T
* * * * * * o R * * *
JROW=3 * 3 * 7 % %  * IROW=3 * 7 * 5 % 8 % & *
3 3 36 I 36 3 36 K kX% 9 3 9 W I I IR R
* * * * * * 4+ R * * *
IROW=4 % 4 % 8 *# % IROW=4 %15 *13 %16 *14 *
222222222 X2 XX ] (222222222 E22 222X )
DISK FILES ON WHICH CHUNKS ORDER IN WHICH CHUNKS ARE
ARE STORED MULTIPLIED BY APPROPRIATE
PORTION OF TRANSFORMED
GREENS FUNCTION

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
131
192
193
194
195
196
197
198
199
200
201
202
2¢3
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

35
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APPENDIX

COMMON/ALLCOM/NsNO2 s N21 +NDG ¢« N34 ¢« NHeNHO2eNH21 ¢ 124128+ 13A+13B

COMMON/TRANCOM/RHO1 (324324161 1RHO2(32¢32¢16)1+RHO3 (32432416«

1 RHO4(32+324+16)+HH(32¢32417)

COMMON/HN21COM/HN21 (65417)
THE INITIALIZING OVERLAY OR STAR ADVANCING OVERLAY STORES THE DENSITY
CHUNKS OF IROW 1 AND 2 FOR JCOLUMN=] ON DISK FILES 1 AND 2 RESPECTIVELY
AND FOR JCOLUMN=2 ON DISK FILES 5 AND 6 RESPECTIVELY. THE GETPH1 OVERLAY
REPLACES THE DENSITY ON THESE DISK FILES WITH THE CORRESPONDING VALUES OF
POTENTIAL WHICH ARE THEN USED IN THE STAR ADVANCING OVERLAY. THIS IS
ACCOMPLISHED THROUGH CALLING SUBROUTINES ANLX(JCOLUMN)e ANLSYN(IROW) AND
SYNX (JCOLUMN) AS OETAILED BELOWe

SUBROUTINE ANLX(JCOLUMN) READS RESPECTIVELY IROW 1 AND 2 FROM THE
FOLLOWING DISK FILES — 1§ AND 2 FOR JCOLUMN=1+ - S5 AND 6 FOR JCOLUMN=2,
IT THEN PERFORMS A PERIODIC ANALYSIS IN THE X DIRECTION OVER JCOLUMN FOR
I=1eN AND WRITES THE RESULTS RESPECTIVELY FOR JROW 1+2+¢3¢ AND 4 ON THE
FOLLOWING DISK FILES = 1+2+3¢ AND 4 FOR JCOLUMN=1les = Se647¢ AND 8 FOR
JCOLUMN=2e

CALL ANLX(1)

CALL ANLX(2)
SUBROUTINE ANLSYN(IROW) READS RESPECTIVELY JCOLUMN 1 AND 2 FROM THE
FOLLOWING DISK FILES - 1 AND S FOR [ROw=1ls - 2 AND 6 FOR [ROW=2e - 3 AND
7 FOR IROW=3. - 4 AND 8 FOR [ROW=4. IT THEN PERFORMS A PERIODIC ANALYSIS
IN THE Y DIRECTION OVER [ROW FOR J=1+Ne FOR EACH CHUNK IT THEN PERFORMS A
PERIODIC ANALYSIS IN THE Z DIRECTION FOR K=1eNHe ELEMENT BY ELEMENT
MULTIPLICATION WITH A SIMILARLY SHAPED CHUNK OF THE TRANSFORMED GREENS
FUNCTION AND THEN A PERIODIC SYNTHESIS IN THE 2 DIRECTION FOR K= +NHe THE
RESULT FOR K=1+NH/2 15 THEN PERIODICALLY SHYNTHESIZED IN THE Y DIRECTION
OVER IROW FOR J=1sNe THIS LAST RESULT FOR JCOLUMN | AND 2 1S WRITTEN
RESPECTIVELY ON THE FOLLOWING DISK FILES - I AND 5 FOR IROW=1le¢ - 2 AND 6
FOR [ROwW=2. - 3 AND 7 FOR IROW=3s - 4 AND 8 FOR IROW=4s« THE ORDER IN
WHICH ANLSYN S CALLED FOR IROW I THROUGH 4 MINIMIZES READING FROM DISK
FILE 9 OF CHUNKS OF THE TRANSFORMED GREENS FUNCTION AS MENTIONED ABOVE.

CALL ANLSYN(1)

CALL ANLSYN(3)

CALL ANLSYN(2)

CALL ANLSYN(4)
SUBROUTINE SYNX(JCOLUMN) READS RESPECTIVELY IROW 1+¢2+3s AND 4 FROM THE
FOLLOWING DISK FILES ~ 1+2¢3¢ AND 4 FOR JCOLUMN=ls = Se¢647¢ AND 8 FOR
JCOLUMN=2 1T THEN PERFORMS A PERIODIC SYNTHESIS IN THE X DIRECTION OVER
JCOLUMN FOR J=1 eNe 1T THEN WRITES THE RESULT RESPECTIVELY FOR IROW .1 AND
2 ON THE FOLLOWING DISK FILES - 1 AND 2 FOR JCOLUMN=1s =~ 5 AND 6 FOR
JCOLUMN=2,.

CALL SYNX(1)

CALL SYNX(2)

RETURN

END

SUBROUT INE ANLX ( JCOLUMN)

COMMON/ALLCOM/NsNO2 eN21 +NO4 «N34 s NHyNHO2 «NH21 ¢ 12A412B4+13A4 138

COMMON/TRANCOM/RHO1 {32¢32¢16)+sRHOZ2(32+32+¢16 )¢ RHO3(32+32+¢16)

1 RHO4(32+32416)HH(32432417)

COMMON 2(1023). Y (1025)

IF (JCOLUMNSEQs2) GO TO 2

READ(1) RHOI

REWIND 1

READ(2) RHO2

REWIND 2

GO 1O 3

2 CONTINUE

READ(S) RHO}

REWINC S

READ(6) RHO2

REWIND 6

3 CONTINUE

CALL GETSET(3.12A)

DO 10 K=1 ¢NHOZ

00 10 J=1NOS

D0 S I=1.NO4

Z(11=RHOL1 (leJeK)

Z(NO4+]1)=RHO2 (] +J+¢K) ‘

244
245
246
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291

292
293
29a
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
311

312
313
314
3i5
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Z(NO2+1)=0e
Z(N3a+1)=0e

CALL FTRANS(3.12A)
DO 10 I=1.NO4

RHO1 (1 eJeK)=Y (1)
RHO2 (1 e JsKISY(NOA+1)
RHO3 (1 e JeK)=Y (NO2+1)
RHOG (1 JeK)SY(N3G+1)
IF (JCOLUMNSEQe2) GO TO 12
WRITZ (1) RHOI1

REWIND 1

WRITZ(2) RHO2
REWIND 2

WRITE(3) RHO3
REWIND 3

WRITE(4) RHOG
REWIND 4

GO TO 15

CONTINUE

WRITE(5) RHO1

REWIND 5

WRITE(6) RHO2
REWIND 6

WRITE(7) RHO3
REWIND 7

WRITE(8) RHO4
REWIND 8

RETURN

END

SUBROUT INE ANLSYN(IROW)

COMMON/ALLCOM/NsNO2+N21 ¢sNOG + N34+ NHeNHO2 «NH21 +12A+ 128+ 13A+ 138
COMMON/TRANCOM/RHO! (32¢32416)vRHO2(32+32¢16)+RHO3(32¢32416)

RHO4 (3232016 )¢ HH{32432417)
COMMON/HNZ21 COM/HNZ21 (6517
COMMON Z1(10253« Y (1025)
GO TO(1+243¢3) IROW
CONT INUE
READ(1) RHOI
REWIND 1
READ(S) RHOZ2
REWIND 5
GO TO S
CONT INUE
READ (2) RHO1
REWIND 2
READ(5) RHO2
REWIND 6
GO 70 5
CONT INVE
READ(3) RHO1
REWIND 3
READ (7) RHO2
REWIND 7
GO TO S
CONTINUE
READ(4) RHO1
REWINC 4
READ(8) RHOZ2
REWIND 8
CONTINVE
CALL GETSET(3.12A)
DO 10 K=14+NHO2
DO 10 I=1+NO4
DO 7 J=1.NO4
Z(JI=RHO1 (1 4JsK)
Z(NO4+J)I=RHO2 (1 +JK)
Z(NO2+J)=0s
Z(N34+J)=0.

CALL FTRANS(3s+12A)

316
317
318
319
azo
321

322
323
324
325
326
327
328
329
330
331

332
333
33a
3as
336
337
338
339
340
341

342
343
3aa
345
346
347
348
349
350
3s1

352
353
354
355
356
as7
3s8
359
360
361

362
363
364
365
366
367
368
369
370
an

3r2
373
374
375
376
377
378
379
380
381

382
383
ass

37
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10

49
30

S0

52

5S4
70

74

75

77

79
95

100

101

103

105

107

109

11s

117
120

125

DO 10 J=14NOS
RHO1 (1 s JeK)ZY ()
RHO2 (1+sJeK)I=Y(NOA+Y)
RHO3 (s JeK)IZY(NOZ2+J)
RHOA (T e JeK)IZY N3G+
GO TO(30+849+75475) IROW
CONT INVE

CONT INUE

READ(9) HH

JCOLUMN=1

DO 70 1=1.NOS

DO 70 J=1.NO4

DO s52 K=1+NHO2
Z(K)=RHO1 ([ ¢+ JeK)
Z(NHO2+4K ) =0

CALL GETSET(3+13A)
CALL FTRANS(3.13A)
IF(IROWeNE«3) GO TO 300
IF(1«NEe11GO TO 300
L=y

GO TO 200

DO 70 K=1+NHO2

RHOL (1eJeK)}IZY(K)

GO TO 100

CONT INUE

READ(9) HH

JCOLUMN=2

DO 95 1=1.NO4

DO 95 J=1eNOS

DO 77 K=1eNHO2
Z(K)=RHO2 (1 4 JsK)
Z{NHO2+K)=0e

CALL GETSET(3+13A)
CALL FTRANS(3+13A)
IF (JIROWeNE«3) GO TO 300
IF (1sNE+1)GO TO 300
LL=NO4+J

GO YO 200

DO 95 K=1 «NHO2
RHO2 (1eJeK)=Y(K)
GO TO 125
JCOLUMN=3

DG 120 I1=1«NO4

DO 120 J=1+NO4Q

DO 101 K=1+NHO2
Z(K)=RHO3 ([l ¢ J oK)
Z(NHO2+K =0,

CALL GETSET(3.13A)
CALL FTRANS(3.13A)
GO TO(103410541074115)
IF(JeNEe1)GO TO 300
Li=1

GO TO 200
IF(JeNE1)GO TO 300
LL=NO4+1

GO TO 200

IF({I1eNEe]l sANDeJeNE«1)GO TO 300

IF(1eEQel eANDeJeEQe1)GO
IF(1+EQel1)GO TO 109
LL=1

GO 7O 200

L=y

GO TO 200

LL=N21

GO 10O 200

IF(JeNEs1) GO TO 300
LL=NOG+ |

GO TO 200

DO 120 K=1+NHO2

RHO3 (I +JsKI=Y(K)

IROW

TO0

GO TO(74474+44004390) IROW

JCOLUMN=4

111

APPENDIX

285
386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
a01

402
403
404
405
406
407
ansg
409
a10
all

al12
413
414
als
416
417
418
419
420
421

422
423
a2a
a2s
426
427
428
429
430
a3}

432
433
434

435
436
437
438
439
440
a4

442
443
aaaq
445
446
447
448
449
450
asi

452
453
454
455
456



127

129
145

200

205

300

305

310

390
400

405

310

415

420

42s

430

435

1
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DO 145 1=1.NO4

DO 145 J=1+NO4

DO 127 K=1+NHO2
Z(K)I=RHO4(l+JeK}
Z(NHO2+K)=0,

CALL GETSET(3+13A)

CALL FTRANS(3+13A)
IF(IROWeNE«3) GO TO 300
IF(1.NE«1)GO TO 300
LL=NOS+J

GO TO 200

DO 145 K=1+NHO2

RHOG (1 ¢JeK)ZY(K)

GO TO (4004400,49449) IROW
DO 205 K=2+NHO2
Z(K)=Y(K)Y®HN2] (LL +K)
Z(NHOZ+K I =Y (NHOZ2+K)#HN2Z21 (LI +K)
Z1)=Y (L) RHN2L (LiLLel)
ZUINH21 )=SY INH2] ) #HN2 1 (LL o+ NH2Y
GO TO 310

DO 305 K=2:NHO2
Z(K)=Y(K)#HH (] 4JeK)
Z(NHO2+K)=Y (NHO2+K)#HH (1 +JsK)
Z(1)=Y (1) #HH (e Jel))

ZINH21 )Y (NH2]1 ) *HH( [ +JeNH21)
CALL GETSET(4.13A)

CALL FTRANS(44+13A)

GO TO(54+79¢1174129) JCOLUMN
REWIND 9

CALL GETSET(4.12A)

DO 410 K=1eNHO2

DO 410 [=1+NO4

DO 405 J=1.NO4
Z(J)=RHOL (1 eJeK)
Z(NO4+J)I=RHO2 (1 eJeK)
Z(NO2+J)=RHO3(1+J¢K)
ZI(N34+J)I=RHOA (I +J K

CALL FTRANS(44+]12A)

DO 410 J=14+NO4

RHO1 (T e JeK)=Y ()

RHO2 (14 JeK)I=YINOA+I)

GO TO0(415¢3204425+4430) IROW
CONT INVE

WRITE(1) RHO1

REWIND 1

WRITE(S) RHO2

REWIND S

GO TO 435

CONT INUE

WRITE(2) RHOI

REWIND 2

WRITE(6) RHO2

REWIND 6

GO TO 43S

CONTINUE

WRITE(3) RHOI

REWIND 3

WRITE(7) RHO2

REWIND 7

GO TO 435

CONTINUE

WRITE(4) RHOI

REWIND 4

WRITE(8) RHO2

REWIND 8

RETURN

END

SUBROUT INE SYNX (JCOLUMN)

COMMON/ALLCOM/N«NO2 +N21 +NO4G ¢+ N34 s NHyNHO2 s NH21 « 12A+ 12B+ 13A4 138
COMMON/TRANCOM/RHO1 (32+32¢16)+RHO2.(32+324+16)+RHO3(32¢32416)

RHO4(32432416)sHH(32432417)
COMMON Z(1025)4Y(1025)
[F(JCOLUMNSEGe2) GO TO !

457
458
a59
460
46!

a62
463
263
465
466
67
468
a69
470
a7l

472
473
474
475
a76
477
478
479
480
481

482
483
a4B8a
485
486
487
488
489
490
491

492
493
494
495
a96
497
498
499
500
501

502
503
504
505
506
507
508
509
510
S

512
513
514
s15
516
S17
518
519
520
521

522
523
524

525
526
527
528
529
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10

12

READ (1) RHOI

REWIND 1

READ(2) RHO2

REWIND 2

READ(3) RHO3

REWIND 3

READ(4) RHO4

REWIND 4

GO TO 2

CONTINUE

READ(S) RHO1

REWIND 5

READ (&) RHO2

REWIND 6

READ(7) RHO3

REWINC 7

READ(8) RHO4

REWIND 8

CONT INUE

CALL GETSET(4.12A)
D0 10 K=1 NHO2

DO 10 J=14NOS

DO S I=1.NO4
Z(1)=RHO1 (leJsK)
Z(NO4+1 )=RHOZ2 ([ +JsK)
Z(NO2+1)1=RHO3 (1 eJsK)
Z(N3A+]1)=RHOA (1 s JeK)
CALL FTRANS(4+12A)
DO 10 1=14NO4

RHO1 (e JeK)=Y(])
RHO2(1+¢JeK)=Y (NOG+1)

IF (JCOLUMNGEQ42) GO TO 12

WRITE (1) RHO1
REWIND 1
WRITE(2) RHO2
REWIND 2

Go TO 1%

CONT INUE
WRITE(S) RHOI
REWIND S
WRITE(6) RHO2
REWIND 6
RETURN

END

APPENDIX

530
531

532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551

552
553
554
555
556
557
553
559
560
561

562
563
s64
565
566
567
568
569
570
571

s72
573
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t=0 t=0.50 t=0.75

t=25 t=2.75 t = 3,00

Figure 1.- Evolution of an initially balanced, infinitesimally thin disk
of 100 000 stars with an exponential radial density variation. The
stars have an initial velocity dispersion given by Toomre's criterion
(ref. 5). Time is given in units of 2m/w,.
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Figure 11.- Evolution of an initially balanced, three~-dimensional disk
system of 100 000 stars with an exponential radial density variation.
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t=0 t=050

t=0.75

t=1.00 t=1.25

t=1.50

t =2.50 t=2.15

t=3.00

Figure 20.- Evolution of an infinitesimally thin exponential disk
with a self-consistent exponential core component. Note that
the evolution is considerably less violent than that displayed

in figure 1.
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t=0  t=050 C1=0.75

t =1.00 t=1.25 t=1.50

t =2.00 t=2.25

t=250 t=275 t=3.00

Figure 30.- Evolution of the three-dimensional exponential disk-core
system viewed in the equatorial (x-y) plane. Note the development
of the comparatively weak spiral structure.
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Figure 39.- Orthogonal views of the evolution of an initially non-
rotating spherical system of 100 000 stars (model I). Time is
given in units of 2n/,. Note that the system remains spheri-
cally symmetric.



t=0
t=1
t=2
t=3

Figure 40.~- Evolution of an initially spherical system of 100 000 stars
with an initial solid body rotation given by = 0.5Q, (model II).
Note that the final state is an oblate system.
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Figure 41.- Evolution of an initially spherical system of 100 000 stars
with an initial solid body rotation given by € = 0.707Q, (model III).
The system remains axisymmetric and acquires an oblate shape.



(a) Evolution with each projection containing 100 000 stars.

Figure 42,- Evolution of initially spherical system with an initial
solid body rotation given by £ = 0.866{y (model IV). The
initial energy in random motion is 1/2 that of the systems shown
in figures 39 through 41. WNote that the system quickly forms a
bar and has reached an essentially steady state at t = 5.
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(a) Concluded.

Figure 42.- Continued.
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1.5

(b) Evolution with x-y projection containing 50 000 stars.

Figure 42.- Continued.
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| X X y
t=2
t=3
t=4
t=5

(b) Concluded.

Figure 42.- Concluded.

102



t=0
t=.05
t=.10
t=.15

(a) Evolution with each projection containing 100 000 stars.

Figure 43.- Evolution of an initially spherical system with an initial
solid body rotation given by £ = 1.159%, (model V). The initial
energy in random motion is 1/5 that of the systems shown in
figures 39 through 41. Again the system forms a bar.
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(a) Continued.

Figure 43.- Continued.



y X z X Z y

t=1.00
t=1.50
t=175
t=2.00

(a) Continued.

Figure 43.- Continued.
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t=225

t=2.50

t=275

t=3.00
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(a) Concluded.

Figure 43.- Continued.



SIS L

. ‘

(b) Evolution with x-y projection containing 50 000 stars.

Figure 43.- Continued.
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.25

Figure 43.- Continued.

(b) Continued.




t=1.0
t=1.5
t=175
t=20

(b) Continued.

Figure 43.- Continued.
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t=225
t =250
t = 2.75
t=3.00

y

4

{b) Concluded.

Figure 43.- Concluded.
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Figure 50.- Azimuthal variation of projected star density at
t = 3 taken at three cylindrical radii.
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Figure 51.- Concluded.



0z

‘A pue ‘111 ‘II ‘1 STopou
i03 L31Suap Ssew aopIIns pajoslfoid ‘pabeisae ATTeyanurze Teurg -°zg inbig

ady ‘4 ady 1 ady ‘4 ady ‘4

oL 0 oC oL 0 0¢ o1 0 oC (1]} 0
r T I T f T p— T

“1 - 9
] ] E 3
] ; ] 1
. [ ] J Y B -
%o ] % 1 ooo : oooo :
% * 7 LR 7 ° Q
~, . o ] .
% # ¢ . L . N
[} 4 [ i ° 4 L .
001._ ooo . e ] ®
P .. 4 o A
%
A _muos_w 11 1spo 1" _ovos_w | IPPON ]

g0l
L0l
=
e
8%
he]
(1]
N
60l

123



F t=0 t=1 F t=2
L 'K
109T~\ — e - .0.
N 8 [} L
N }- .. o S L
2 i i ° i ¢
< Y ..O
Eo 108 * - oo - %
L - 8 ®
- - - .. 8 .
3 | | ® | [
107:' — —
106 | 1 | ] 1 ]
1o1°£t=3 Et=4 t=5
e 3 ) - ®
9 [ ) [ ] - [
10F e apl ) S ]
- [ ] - ® o L]
i ° L ° N °
NO ® ® ®
g i % i y i .o
°
O 108+ % - . - .
= r % i % i .’.
R 5 ° - ° -
- I () i o. i 0.
107 - =
106 | ) ] I ] 1
0 10 20 0 10 20 O 10 20
r, kpc r, kpc r, kpc

Figure 53.- Evolution of the azimuthally averaged projected surface
mass density for model 1IV.

124



‘A pue
‘III ‘II ‘I ST®POW 103 TTPel TeOTIPUTTAD 98IYy3j 3Je UOTIOBITP
TeTIxXe SYyjl UT UOoTjeTJeA A3TSu3p SSew IUNTOA TRUTJ -°pg 2Inbrg

ody ‘z ody ‘z
9l 8 0 8 9l- 91 8 0 8- 91-
f T T T N T T T mO—.
v - ¢ &
oy A 18po] 49 * 11l 1epo -
oV Ve Ve ¢
% v 4000 7 v o' 90t
d(( v @ E 400 %. =
00“ “0“ LA 0004 [
o o ] o, v
v P 3 o ¢ 00 ve 1,01
o N v %0ene® o ¢
[ ] ‘.’.’ v ® ~ L4 v v [ ] -
v +° 4 o v v -
o ° 3 *y v ¢ 3
° 444 ° - 00441110 ooo — wcp
o o ) oo i}
e
.
: EPY
r . T T T ﬁ f T T ! . # mOw
.u. 11 18pol .... o | BPON o
o i d
440 0044 3 v oo * <<.|r wop
P e v % oy |
L 00 “co i ® 444 ‘00 qcoo 1
‘( f.‘ v, d -4 ‘4 {\ 41. .
*y v?® 3 bl 1Y Yy ve 3,01
° [ ] hd v v L
.‘C 41 ) e (4 ¢ ]
oy v ® ] ° 441 v ¢ ]
o w ® = . voe 3 gol
ody oL =1 & °,  ° ; . -
ody G = 1 ® % ] ., ... ]
0 =1 ® 3 d - mo—.

g2dYOn ‘o

g°d’VOW ‘g

125



Al Topow I0J TTpeld TeOTIPUITAD 231y3y 3e
UOT3IOAATP TeTXe 3yl UT UOoTIBTIERA AJTSUSP SSew SUMTOA 3Y3 JO UOTINTOAT -°GG 2anbBTg

ady ‘2z ody ‘z od) ‘2
9l 8 0 8- 9l- 91 8 0 8- 91- 91 8 0 8- 91-
r — T T ry e T T v r T T T mo—.
m = u. * =1 v =
< PR ' S 0% £=? ot
vTe 0’ » K . v® Oy -
e ) o 3 % ot S M &y 3401
o by A o*,7 - &' 9
" 0004 ° h o Yy 00 00 44 o ° 00 o o ®
1% Sve ] sV e * v, ) ® o’ e . 2
\ 4 ' & ° ] ° v 00 00 v ] R 00 00 v . OF O
ov A ~ oy G00* o - v 0‘0 v® 1L =
o Yo 7 ®v ve . oV ve . 3
v v < Sy ve . oy ve » w
* 44444 ¢ 3 * Yegv ® 3 hd 14444 ) 3 wc—
[ ] L | [ ] Y 4 L E
¢ o o o 4 o o
*e® ] L) 3 %es ]
3 e 601
f —T T T 3 S T T T = T T T mOP
() " _ ve - - 4
V% ¢=1 ~N0 ] o L=13 4001 0=13 J
M o ] o, R ’
» ~ 3 . ) o= 3901
.ﬂv T ! Lm. i J >
‘. .‘: -1 ?’{%‘“ 1 L4 ® “1 lw
1. .“ ( ] “ v v “ “ ° O
o 40(0 v? T . ° ] o o 01 %
oy ve T o ve . L9 ° 4 .M
o v’ b 00“4 4100 ] % ] w
..144‘(. 3 v 4‘. u 3 woF
ax °P =2 . .. Y 7 ..u [ ] -~ -
)
odyG=1w ] ] y
0=10 = = “60L

126




‘111 ‘II ‘1 stepouw 103 <bp> A3100T5A TEYINWIZE UueBDW
1(0=2)*4N = ®ma A3710019a 1eTNOITO TeUTF 8y3z Jo uosyieduwo)

OQV—~._ Oﬁv_~h
91 [A% 8 ) 4 0 9i cl 8
[ T T —T r~ T T
A 13pow ° 111 19poN
v
..... B -
* ote,,
. .. v ......
.... . v A -
vVy
vev? Yvee" 44441141444
— T T T - T T
11 19POW ¢ I 18pow
ey

eooo ® -
°

®¢0000®

v

(“44 v
v
v

Yevw?

1

L

oot

00z

00g

ooL

00z

00¢

‘A pue .
Y3 y3TA
-*9G 2Inb1g

Jos/wy ‘¢/\

sas/wy ‘P

127



-AI Topouw 103 <Pp> A3t1o0TeA Tey3jnurze
ueauw 8yl pue uﬁonﬁux\/ = Oma X3100T2A 1BTNOITO 3yl JO UOTINTOAT -°L§ 3InbTd

ady ‘4 ody ‘4 ody ‘4
91 [4" 8 4 0 9L [4" 8 14 0 91 L 8 14 0
r 1 1 T I T T L T v T 1
G=1 §l v=2 . £=3 . .
e oV i e v1001 ¢A
oooo ooo } o .uﬂ
[ ]
ooooooooo v ®%eqe00°’ v ooooooooooo Y 4002z 3
B 7 8
4414 v 14141141 v 4141444144114 1]
11114‘41 i VeoveV? i loom
| T T T I L T T I T T T °
v
2=1 ' L=1 ) 0=1 °
' s o o
..... .. ... i .« =
v v
*fees . *teeceee’ - o {00z m
v v °
v v v (¢}
44444 v 444441 v 4444“4
Tvee” - vy - Joog
Om s w
<®A> o

128



*A Topou Bulwioj-ieq aYyjz 103 uoizezox Apoq pPITOS

Jo uotbai paonpal 2yl 330N ‘A pue

‘IITI ‘I1 ‘I sT®pouw 103

P snipea

Teotrasyds ay3 JO uoTIdUNI B Se A3TOOT2A Teyjnwize uesw Jeurd -°gg danbrg

ady ‘4
0z 91 ¢l 8 v 0
N O
o« ooooouuuunoo 41001
nom«««o c«au
{00z
400¢€
;ocv
r T T T T °
(1 I18pon . ]
«00 oo ooqonom
oouqu<<Hooooooo ve
e, ", .7 1001
o« vv°' .
OMMHM % oooooooo o5t
) = v
06=0 o |

002

ady ‘4
0c 91 2L 8 v

r T T T

il 12PoN .

*
[ X 4
N“fddd

e ® v

[ ]
[
I

| 13pow

*heleg LYPErd Yl SV ¢

i

0
N
0S <
\
oot .
=~
3
0s1L Py
3
00C
oot-

0S

o
ses/uy < ®A >

001

129



*uoTiejox Apoq PITOS Y3jTm uoibax
TeI3uad JTews e ATUO SMOys Tapow Butwioj-ieq STY3 Uuieby °AI Tspow 103 1 snipel
Teotasyds ay3z jo uoTlduny e Se AJTOOT2A [eyINWIZE UBdW 3Y3 JO UOTINTOAT -*65 2anbtg

ady ‘4 ady ‘i ady ‘i

0 91 ¢l 8 L4 00 9L ¢L 8 v 00 91 <2 8 14 0 A

oou P4 _ e
e*t e AT . mm

°* *®e vVe 4 @ i o® v 4 o v |
nnm«m<<00“”<<«u“ooo ummu«uoounuouﬂuuooo mmm«««««ooooooﬂu““o oot \%
. vy oo "7 Ve . v _evle -
G =1 Y =1 € =1 w
: . loog ©

— T T T T r T T T T r T T T T O
00« 004 OOO“M’ D
2212 TITTONNRARRAS IE 5 ST LA ee® 7% door ®
0000004441000 vVe ¢ oou«oo 0400 * 1400 \
[P vev? vy e v v v’ -

O ML . {00z
eece® e e % o . Wu
z =1 L =13 . 0=1 5
GZ=6 @ - - -00€ o
V=0 »

130



A pue ‘III ‘II ‘I sTopouw uom I snipea Teotraayds
3yl jJo uoijouni e se uoisisdsip A3TOOT2a [eIpex Teutrd --(09 o2iInbid
ady ‘4
0 9L 2L 8 14 00C 91
r 1

ady ‘i
2L 8 14 0

Q
MALTRT A IBPOW 4 e H1 19POW 10§ -
mooooﬁ.momm«.« <“no v =~
i, »8 L 'R 3
. Yo o1 s1ind, 100L g
. 4«10 N““ . o
L] o “0
Coet - 06l
- T T T T r T T T T o
dases ePow 1 | 18poW 108
.“. L 4 Q
$ * -
Ao« . Seng, {001l .
Hesoon, O o x
g A deet T 3 3
GC=0 & ¥9.1 3 Wy 05L&
t & PN Mw
Jar=0 v “4‘ v
06=0 o ) -

002

131



*S9pPN3TILTOO JUBIBIITP I0J sanTea Tenba Araesu ayjz 230N

‘Al T9pow 103 I

snipex

Teotrasyds sy3z jo uorjzouny e se uorsaadsip A3ToO0TSA TRIPEI Y3 JO uoIInTOoAag -° |9 danbrg

ady ‘4 ady ‘4 ady ‘4
0 9L 2L 8 14 00 9L ¢l 8 14 00 9L ¢L 8 4 oo
=1 =1 ot =1
SRSV L (R A I MO R [
. \ &4 'S & 1 o
uoo ouﬁumg $ Ooooo “ﬂ . oumﬁoﬂﬁqn
r.* - " - 823, .1001
¢ °
o««« ¢ o««oww oo\od*«
oyl Ceod’ 1 o5t
f T T T T _* Y T T T r T T T T 0
t3v
. z=1 | Fdlette, 1o 0=1
siegeay,, ) ‘el 1 e 109
See sty ¢ .
A St T3 MS 1001
*, 0000 24
GCc=0 & - - - 0S6L
Gr=0 w
06=0 o

sasjwy ‘ 4o

sasjwy ¢ 4o

132



‘A pue ‘T

II ‘11

‘] sTopow 103 1

snipea Teotasyds

aYy3 3O uorlounjy e se uorsiadsTp A3TOOTAA TeyINWIZE TRUIL -°Z9 °iInbid

ady ‘s ady ‘4
0c 9t i 8 14 0 0C 91 [4" 8 v 0
:..r_. ARPOW |, 111 13poW
6«“0 . QQW“««Q . 4 0§
<o«<<q 00¢Mouoo
¢ se®"Vwy t e ﬁﬁMoo
...0.0000““1 ““““ l°°P
00“-
1 4081
- - 00¢C
— T T T T — T T T T 0
PO
. Il [9PON mJV | I°PON o
® - ~
. ~<0. ~‘
*lis. 1 1, 1001
40
: 7 te
do «9
=0 @ 7 3v ,,  1ost
oGV =0 w ¢
J“.»
06=0 e ] 1 ooz

28s/W) “®o

28s/Wy 9

133



*AI T9pow io03 1

snipea TeoTaayds

3Yy3 JO uOoT3IOoUNy B Se uoTsIadsTp A3ITOOTSA TRYINWIZE SY3 JO UCTINTOAT -°g9 2Inbra

ady; ‘4 ady ‘4 ady "4
(174 91 ¢l 8 14 00 91 (4} 8 v 00c 9L ¢l 8 14 0
M G=1 v=1 | $¢ €=1
...n:. ] «m..".r-. | .émmn los
"$ot o 33
LA} Y &mutl
~“¢ B &W"ﬂ B * ﬂ“ 4
onmo *ee 0000‘% oot
+dy i, oo ly
et gd Jog1
r T T T T T T T T T f T T T — 0
S z=1 S =1 0=
o33 o«ﬂqo . i p 3 Pr33inia 3 i log
1idey *Tivet
33 . . 1001
09C=0 & _
oSPh=0w J - - 0S1
006=0 o

Jas/wy Py

J9s/ W)y by

134



‘A pue ‘IITI ‘II ‘I sTSpow 107 I snipex Teotaayds

3y} 3JO uoT3IdUN3 ® SP UOTSIadSTP A3TOOT8A TeRTIXe TBUTd -°§9 ainbtg

ady ‘z ady ‘z
9l 8 0 8 9l- 91 8 0 8- 9l-
N T T T _1 T T T O
A 13pop (i1 [9polN
Yy o o 4 ¢ 0S
6‘ [ ] N ] 0‘ ® 0004
&. * v oo v
400 ° 000 v v 0?0 000‘”14
(]
RO T A I S W L
v v Vovvy ¢ 1144
ML 000144(4410
. .
4 R 4 0St
[
..
J -4 002
— T T T | T T T °
v i 12pon b4 | 13pO
" Y Nl ® T 8
o«ooo o o ¢ \
o Lot 1 e v oo 0000000000 o%t g 001
10000000‘ v 100‘00 & 0“(
v 4“0 (44&014 ve ® v
. v v 4.4 vy,
ody oL = 1 @ .Hl.... ] ...«.“ AL R
av— G = F IR 4 o®% o, L4
0=41090 -

- 002

ses/wy ‘Zp

sas/wy ‘%o

135



ady 0L
ady g

‘Al TepoOu 103

1

snipea Teorisayds

9y3z JO uor3jouny e se uoisiadsIp L3TOOT9A TRIXE 9y3 JO UOTINTOAY -°Gg 2Inbrg

ady ‘z

ady ‘z ady ‘2
91 8 0 8- 91- 9l 8 0 8- 91- 91 8 0 8- 9lL-
r T Y T r T T T T T T T 0
m =1 00 =1 =1
[ 4
- e Yy 900. 0g
0“’ v W 00 ® * o' ° 00 v
40%00 o v NNQ O? NQQ ® 004‘ i
-4 \4 - -
v «‘éz v, Qp . 000;1(4_ G 001
0‘“« v it qﬂﬂo
(o § J«anuu«.ro § «ﬂ«««o Jost
T T T T r T Y T r T T T 0
¢ =1 i 1l =1 v =1
mxv )hr uuw
. o 0 *odr & - o 08
1441 00 000 v &0 ~ igoﬂod ve
44040000 ‘0’0 414 ] 40000'000{ ) {00
LA T "“(ch 44000 00”4 7 l
oy
= 4 . @ Y “q.“
ML . : Jost
=4 @

sas/wy ‘%o

oas/wy ‘%o

136



137

©189°0

3@ T9A®T INO3UOD 3ISOWMIBUUT Y3 YITM Q| JO I030®F iad STSA8T INOJUOD g 3dI° 3I3Y]

*A31susp pojoefoad ay3 3o uwyaraebol oYz ut psoeds ATuaAd I SINOJUOD Y .Nomx

19d sie3ys Jo A3tsusp iaqunu pa3zoafoiad ayjz ur yead ayz sjusssiadar ©1 g = 3 13e
AI TopoOll JO SUOT3IDS3ATP BUIMOTA SNOTIRA I10J SINOJUOD AJTSULPOST pajoeloig --99 2anbig

ad
A 0L

8502 = ° 86/1 = 9] v8LE = 9
09 =¢ .09 =9 09 =9 °0€ =9 06 = ¢ “06 = ¢
7
)
Q
LLLL = O 861 = O} ogzL = 9

SV = ¢ ‘Gp =9 0E =0 °'0g =g 00 =9¢°06=9



*2anb13 HBurpooaad 9yl UT Se HUTUERSW BWRS SY3J SARY STOADT INOJUOD YL .Nomx
13d siejs jo A31susp Iaqunu pajodfoiad ayz ur yead syjz sjusssadex ©1 g = 3 3e
A TopoW JO SUOTIDDITP HBUTMITA SNOTIRA IOF SAINOIUOD A3TSUspost pajosfoag ~°,9 2inbig

ady 0L

138



*s2inbt3y burpsosaad oMl S9Y3z UT Se butuesw dwes syl ARY
ST9A9T 1INOJUOD 3dYJ, °€ =
Tetaojenba pue (g

3 3' III O3 I STOpOW JO SUOT3IDRITP Burmata (g6 = g)
= g) Ierod yjzoq 103 SINO3UOD A3TSUIPOST pajoaloirg -°gg9 ainbrg

ody 0oL
—_d
//

@ O
=

=N

L6LL = ° otoL = 1512 = °)
06 = 6 Il |12PON 06 =60 |1l |13pon

06 = 6 | ISPO

J
M

k
v

vzoL = ©f
o0 = 6 11l 19pow

zogez = 9}
20 = 0 | I3poW

139



*(A 3T9®3) 91 x 9 x p9 pauoTSUAWIP ST ‘uni ATren3oe se ‘(] BurysIT) weab

-01d 8y3 STTYM p x g x 8 =

9y3l pue STY3 UT AjrIelo 104

10 ‘=K ‘-x 9y3 (g) pue ‘z 10
Terjeds-z 10 ‘-& ‘-x ay3y (1)

‘K

‘2

10

‘u

Y x U x U pduorsusurp st Aeire IHG ¥Y3l ‘sainbr3y BuimOTTO3I

'3 3driosqns Aeiie pawiojsueil UOTIOBITP-Z
‘x 3draosqns Aeile pawiojsueljun ayjy (z) ‘uot3o09a1pP

:bUTMOTTOF 9Yy3 sjuesaidai sTxe-z 10 ‘-X ‘-x yoeg

*Kxeteb

DP93BTOST ue JO UOTINTOS Terjusjod I3TINOZ Byl 103 pearnbai st yotym ‘Kexre IHg papus3lxd
9Yy3 pue ‘ysaw Terjudjod/A3TSusp OT3oRTED BY3 SUTRUOD YITYM ‘(9a1308) Keaize IHg -°69 anbrg

Aelie |Hd pepusixe
(4zZ) x (ug) x (uz)

Sl=L—uz=A
(u)’A

(3)'x

m—,HPICN"x

Al-""""
\\\_ '
/ — —
\\ | |
/ { _
) \Yl"lnl *
i ;2 (0°'0°0)
'
|\ 7
\ 7
fl\"ll'"" N
- — — Aeue |Hd (aanoe)
€=1l—Yy=12 Yyxuxu
L=L—-Yyz=12

()2

140



*obe1o3ls STTIJF YSIP 21Tnbaa j0u op § pue

€ NWOTIODL 3O ,.Syunyd, oyl °pP2I03S 2JB Sjunyd 3soyl YOTyM uo SITTF YSTP dY3 JO Ssadsqunu

2yl 93BOTPUT g Pu® | NWATOOL 3O ,Syunyd, uo sisqunu Yy *Ae1ie TH4 °ATIOR BY3 33IN3I3S

-uoD z Pu® | NWQTIODL 3O Z Pue | MOYI °(II buryst jo weiboid) ,‘sjunyd, 3O suorieubysap
uunToo pue Mox butmoys Aeiie IHg PapPUSIXd BYY JO (€ = L - Y > 2 > 0) JTeYy I9MOT --L @anbig

(3) 'x

(6°0°sL)

(0°sL ‘0) )
(u) ‘A

# & & Ve (€°0°0)
N 709 (3) ‘2

14



_ *pao1o3s @ae Aayj yoiym uo
S9TT3 YSTP 8Y3l 93eOTPUT ,SYUNYD, 3Y3 U0 sadqumu YL *(IT BUT3ISIT Jo ureaboad)
sAeT1sA0 butdueApR IB3S puR BUTZTTRTITUT BY} UT PIUOTSUdWIP SAeily -* L @Inb1g

Aesse |Hd X

(0'0°L)
Aewnse |0

(€°L"0) 1z

98G°'C’LSaY
y¥stp uo abeiorg

19)suely , dooj op,,

142



(*AI @1qe3 Aq paouaidjar aie q pue ‘) ‘g ‘y si19
. , 3397)
(11 Bur3syTT 3o weiboid) 2°U’3y BuriTnses ayy seio3s pue Z2‘A'xy UoTIOUNI S,Usdl1n ay3

3O w103zsueil JISTInog B swiojiad UOTuM ‘ABTIBAO HIHD UT pouoTSUSWIpP sAeily ~*ZL 2inbrg

/ Aeue H (3) 'x

(0°0°8)

- "
{uoww09 ut)
Aesse LZNH

J9ysuen

.,400) ov.\ Aesie HH

A

() ' %

(0°0)

ST

v'8’0
5 , 1) 2
6 31 isip
uo abesolg

ajsuely , dooj op,,

143



* (11 but3asiT 3o weaboid) Axeleb poj3eTOST ue 3JO

TeT3uajod 3yl 103 SIATOS YOTUM ‘AeTISA0 IH4AIED 9Yl UT pauotsudwrp sheiay --g, o9i1nbig

(uowwod uy)
Aeste |ZNH

Aelse pOHMH Aeue ¢OHY Aerie ZOHY Aeste LOHYH

T 7

8-1 8|y >sip
uo abesoig

Aesie HH

6 81} xstp
wouy pesy

144



+o3eradoadde se ‘as9yzra 10 ‘(9‘U’3) powrozsueirl ‘(z’/A‘X) pluwIOFSUBIFUN IIB YOTIUM
sjuawaTa Keixe jo sizdraosqns 3udsaiadsa sTaqel saxy A1da1309dssd1 ‘S8UTT PITOS pue
paysep Aq pajusessiadax @ae g =2z pue ‘g = & ‘g = x ssuerd sy3 uo suotrizoaloiad
KAeiie THq popudl1xa dY3l pue Aelle IHJ 2ATIOR 8yl ‘Ae1I9a0 JH4LAD 9Y3 YITM pPIUOTS
—usutp jou oxe KoYz ybnoyity - (II DburasiT Jo weiboiad) saurjznoigqns s3t 03 ArTIBAO

IHAIED 9Y3 Aq sTieo butrinp pOHY PU®R ‘fOHY ‘ZOHY ‘ lOHY sieaae jo judwubiTy -*§. 2anb1g

. (3) (2) (P)
() NASTINY 1TVI ; (€) NASTINW 11VD (2) NASTINY 11VD
OHYH EOHY ZOHYLOHY 3 3
YOHY £ LOHY
g £OHY ZOHY \
YOHHEOHHZOHY LOHY
/
(U) ‘A s g. (L) ‘A (&) ‘A
m \\ ﬂ \\ -
r'||lx\ rl'll\\ | 7
(§) ‘2 ()2 (5) ‘z¥
(9) (a) (e)
(Z) XNAS 11V2 , (L) XNAS 11VD ,
(1) NASINY 11VD (@) XINV1IVD (37X (1) XINV 1D ()X
POHY POHY
€OHY EOHY ]
———— —
. YOHHEOHHZOHY LOHY/| COHY _ _ZOHH
(4)°A . ) A LOHY J A LOHY
‘.“\ /7 / T
iy 4 |
\NN\ "l‘\ r _
2 2

(3) ‘2

145



1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA RP-1037
4. Title and Subtitle 5. Report Date
April 1979
COLLISIONLESS GALAXY SIMULATIONS 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Frank Hohl, Thomas A. Zang, and John B. Miller L-12730
10. Work Unit No.
9. Performing Organization Name and Address 506-25-33-04

NASA Langley Research Center

. Contract or Grant No.

Hampton, VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Reference Publication

National Aeronautics and Space Administration 14, Sponsaring Agency Code
Washington, DC 20546

15. Supplementary Notes
Frank Hohl:
Thomas A. Zang:
John B. Miller:

Langley Research Center, Hampton, Virginia.
The College of William and Mary, Williamsburg, Virginia.
01d Dominion University, Norfolk, Virginia.

16. Abstract
Three-dimensional fully self-consistent computer models were used to determine the
evolution of galaxies consisting of 100 000 simulation stars. One series of com-
puter experiments used initially balanced flattened galaxies with an exponential
radial density variation. Comparison of two-dimensional (infinitesimally thin
disk) simulations with three-dimensional (disk with finite thickness) simulations
showed only a very slight stabilizing effect due to the additional degree of free-
dom. The addition of a fully self-consistent, nonrotating, exponential core/halo
component resulted in considerable stabilization. The most pronounced instabil-
ities present were those due to the Jeans' instability in the outer regions of
the disk, while at the same time a relatively slowly growing bar instability
appeared. A second series of computer experiments was performed to determine
the collapse and relaxation of initially spherical, uniform density and uniform
velocity dispersion stellar systems. The evolution of the system was followed
for various amounts of angular momentum in solid body rotation. For initially
low values of the angular momentum satisfying the Ostriker-Peebles stability cri-
terion, the systems quickly relax to an axisymmetric shape and resemble ellipti-
cal galaxies in appearance. The maximum flattening for these systems is equiva-
lent only to an E2 system. For larger values of the initial angular momentum
bars develop and the systems undergo a much more drastic evolution. The apparent
rotational and random velocities of the bar systems are very sensitive to the
viewing direction. An additional complication is the frequent misalignment of
the apparent major axis with the direction that reflects the maximum rotation.

18. Distribution Statement
Unclassified - Unlimited

17. Key Words (Suggested by Author(s))

Galactic dynamics
Spiral structure
Computer experiments

Subject Category 89

22. Price’
$7.25

20. Security Classif. {of this page) 21. No. of Pages

Unclassified 147

19. Security Classif. (of this report)

Unclassified

* For sale by the National Technical Information Service, Springfield. Virginia 22161
NASA-Langley, 1979




National Aeronautics and THIRD-CLASS BULK RATE Postage and Fees Paid
Space Administration National Aeronautics and

Space Administration
: NASA-451

Washington, D.C.

20546

Official Business
Penalty for Private Use, $300

P M : If Undeliverable (Section 158
w PP LN Postal Manual) Do Not Return






