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SUMMARY

An alternating direction implicit algorithm is presented for solving
the conservative, full potential equation for unsteady, transonic flow.
A new development is the time linearization of the density function. This
linearization reduces the solution process from solving a system of two
equations at each mesh point to solving just a single equation. Two
sample cases are computed. First, a one dimensional traveling shock wave
is computed and compared with the analytic solution. Second, a two
dimensional case is computed of a flow field which results from a thicken-
ing and subsequently thinning airfoil. The resulting flow field, which
includes a traveling shock wave, is compared to the flow field obtained
from the low frequency, small disturbance, transonic equation.
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speed of sound
characteristic length, e.g. chord length
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reduced frequency

Mach number

pressure

pressure coefficient
velocity, speed

time

x component of velocity
y component of velocity
specific heat ratio
velocity potential
density

circular frequency

gradient operator

jump or difference in the quantity Q on the two sides

of a surface of discontinuity

indicator of free stream values, e.g. M; denotes free

stream Mach number



I. INTRODUCTION

Unsteady transonic flows are one of the most important yet least
understood areas in fluid mechanics.! For example, dips in flutter
boundaries are often observed in the transonic Mach number range.z’3 An
especially pronounced dip was observed for a supercritical w:'Lng.L+ However,
the mechanism for this dip is not yet understood. Other important problems
in unsteady transonic flows are the flow about helicopter rotor blades,>
gust alleviation at transonic speeds, active control for dynamic stability
at transonic speeds and transonic flow in turbines.

This work is intended to provide a computational tool for the study
of unsteady transonic flow and especially for the prediction of unsteady
loads on aerodynamic bodies. We present an algorithm which solves the two
dimensional conservative, full potential equation for unsteady flow. This
equation will properly account for nonlinear effects, such as moving shock
waves, under the assumptions that the viscous and rotational aspects of
the flow are negligible. However it may be possible in the future to take
into account those aspects in the case of a shock wave boundary layer '

interaction by coupling this algorithm with an unsteady boundary layer
algorithm.

This algorithm uses methods similar to those used to solve the low
frequency, small disturbance equation.ﬁ'8 As in that earlier development,
certain criteria were used in choosing the methods.

First, the algorithm should have fast computer run times, so that it
can be routinely used for engineering applications. Hence the choice was
made to develop a finite difference, alternating direction implicit
algorithm. Such implicit algorithms permit large time steps; consequently
the consideration of step size is based more on accuracy than on stability.

Second, the algorithm should properly treat unsteady nonlinear effects,
including moving shock waves. Presently, there is no well established
method of shock fitting for unsteady flow. However, shock capturing
methods are in common use.’?? Therefore we choose the method of solving
the governing equation in conservation form to ensure that the captured
shock speed is the theoretically correct one. Calculations® 10 based on
equations in nonconservative form can produce captured shock speeds which
depend on nonphysical parameters, such as mesh spacing or time step size.

Third, the algorithm should properly handle aerodynamic shapes,
arbitrary motions of those shapes, and arbitrary free stream Mach numbers.
We choose the full potential equation as the governing equation. This
equation removes three limitations® 721! on this third criterion which
are assumed by low frequency, small disturbance, transonic, potential
theory. These limitations are (1) that the flow field can be represented
as a small perturbation about the free stream velocity, (2) that only low
frequencies occur in the motion of the fluid and (3) that the free stream
Mach number is close to one. This removal is especially necessary for the



accurate flutter analysis of supercritical airfoils. Such airfoils are
thick and blunt nosed, and full potential theory properly handles these
features.

The fourth criterion considered was that the algorithm should be
extendible to the three space dimensions. Alternating direction implicit
methods are generally extendible.®>12713

Hence by the use of these criteria, we have decided to solve the
unsteady, conservative, full potential equation by an alternating direction
implicit method. This equation has two variables, viz. density and potential.
So for a well posed problem we must augment the full potential equation with
the unsteady Bernoulli equation to form a system of two equations.

A new algorithm development is reported in this paper which simplifies
the solution process for the resulting system of two finite difference
equations at each mesh point. This development is the linearization back-
ward in time of the nonlinear density function in the full potential
equation. The linearization uses the unsteady Bernoulli equation and
reduces the solution process to one which requires only the solution of
a single equation at each mesh point for the potential.

In Section II the assumptions made in deriving the governing equations
are stated and those equations are presented in a general curvilinear
coordinate system. In Section III the algorithm is tested on a one di-
mensional traveling shock wave, for which the analytic solution is known.
In Section IV a two dimensional flow is computed. Here a thickening
and subsequently thinning airfoil produces a flow field with a rich
structure, including a shock wave that travels in a large excursion. The
computed results are found to be in close agreement with computed results
from low frequency, small disturbance, transonic theory, as expected for
this special case.



IT. FORMULATION OF THE GOVERNING EQUATIONS

The following assumptions are made on the flow of a perfect gas and
the resulting nondimensionalized governing equations are given.

1. Mass is conserved.

k== +7 +pq=0. €))

9p
ot

2 The flow is irrotational.
q="9 . (2)
3. The flow is isentropic.

1 2
p=—2-oY , Tt (3)
M 5

[eo]
4. The flow is inviscid.

From assumptions 2, 3 and 4, the momentum equation can be integratedlu
to yield the unsteady Bernoulli equation.
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Here the constant of integration is chosen so that for steady flow, Eq. (4)
reduces to the steady Bernoulli equation. The variables have been non-
dimensionalized in cartesian coordinates (t, x, y) as follows: x by c,

y by ¢, € 'by d, ¢ by g.c, a by 4., P by pe and p by pwqg. If there is a
characteristic frequency w in the problem, then d = 1/w and k is the
reduced frequency;

k = we/q, . (5)

Otherwise, k = 1, d = ¢/qeo and time is measured in characteristic lengths
travelled at free stream speed q,. Here c¢ 1is a characteristic length,
which we choose as the chord length of the airfoil.

Eq. (1) is in conservation form and hence has weak solutions,15 which
conserve mass across surfaces where the flow variables are discontinuous.
The jump condition, which is built into Eq. (1), is given by
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where the surface of discontinuity is given by S(x,y,t) = 0, and [ ]
denotes the difference of the enclosed quantity on opposite sides of S.

Computations of solutions to the flow equations about aerodynamic
bodies are made more efficient by the use of a coordinate system that is
adapted to the shape of the body and its motion. Hence we wish to write
the flow equations, Eqs. (1) and (4) in a general coordinate system. Let
(t1,£,n) be related to cartesian coordinates (t,x,y) by the transformation

E=& (x.y,t), nm=n {Xyst)s T = ¢t (7)

Then the conservation of mass equation in covariant form is given by

5 (157) * 3¢ (957) + o (fa7) -0 ©

See Appendix A for the derivation of Eq. (8). |J| is the absolute value
of the Jacobian of the transformation (7), where

J=En_ -&n_. 9)

U and V are the contravariant components of the velocity q in the ¢
and n directions respectively, where

U = gt + gxu + Eyv -
(10)
V=nt+nxu+nyv,
and g = (u,v) in Cartesian coordinates. From Eq. (2), q = . ¢y),
hence by the chain rule for differentiation,
U=¢_ +Ad +A ;
3 1¢£ 2¢n s
V = nt < A2¢E ot A3¢n =
where,
A1 - gx . ’
A, =&+ Eyny , (12)



Using Eqs. (3) and (4) and q2 = ¢}2( + ¢}27, one obtains

1

= 2 (y-1) y-1
P = [Higs {1 2¢, = (B +1)¢, "(“t+V)%1}] R )
Equations (8) and (13) form the system of equations which will be solved
in the domain of the variables (t,&,n).

To complete the formulation of the problem, we specify the boundary
and initial conditions. For inviscid flow, the boundary condition on an
aerodynamic body is given by the physical requirement that the motion of
the fluid is tangent to the body as the body moves. We will describe the
body by

@m0 . (14)

Mathematically, this boundary condition is that the physical component16
of the velocity along n = 0 is zero; this condition is equivalent to

R (15)

In the sample computation of a two-dimensional nonlifting flow presented
in this report, the far field boundary condition is that the flow variables
have their steady free stream values. The initial conditions are obtained
from the steady flow field, which is assumed to exist for t =0.

Note that in a general flow problem, one can use an n equals con-
stant surface to describe the location of an outer boundary. An example
is flow in a wind tunnel, where an n -equals-constant surface locates a
wall. Another advantage of using a general coordinate system is the
ability to cluster mesh pointsl7 in regions of interest, such as shock
waves or stagnation points, without disrupting the smoothness of the mesh.

The two dimensional calculations will be studied by plotting the
resulting pressure coefficients, Cp, versus position on the airfoil. The
formula for Cp is

Cp = -%'(pY - 1) . (16)
YM

(=]

Recall, before nondimensionalization Cp = (p - pw)/Q, where
Q = (1/2) pwqg is the free stream dynamic pressure.



ITI. ONE DIMENSIONAL SHOCK WAVE MOTION

First, we will compute the one dimensional case of a travelling shock
wave. The shock wave travels downstream and separates supersonic flow
upstream from subsonic flow. Here the state of the fluid is measured
relative to the coordinate system and not relative to the moving shock.
The exact analytic solution is known, so by comparison with the computed
results, the shock capturing properties of the algorithm can be examined.
In particular, we can verify that the algorithm is computing the correct
shock speed, which is given by the jump condition, Eq. (6).

a) Model Problem

For this problem, we use cartesian coordinates, (x,t). Equations (8)
and (13) simplify to

Pt (oo ) =0, (17a)
1
o= 1+ (Y (1-26, -02) Jy-1 (17b)

The flow is along a finite interval and the length, L, of the interval is
used for the characteristic length. Also, k = 1. The initial and boundary
conditions are

¢ (0,t) =0, . 0,t) = U = 35 ¢ (1,t) = Up = 0.8,

‘ x sy OEx= s (18)
¢ (X,O) =1
xso+ (x-—xso) UR’

Xs = 0.045 and is the initial position of the shock.

Here the velocity is nondimensionalized by the upstream (i.e., left side)
velocity; Figure 1 shows the initial conditions.

The solution to Egs. (17) and (18) is

¢ (Ost)'= 0
u , 0<x<xs (t), (19a)
. (x,t) = u , xs (t) £X<1,
3 o) =8, 3N &, Tt 270, (19b)
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Figure 1.— Initial Conditions for One Dimensional Problem.

where Xs(t) 1is the shock location at time t and Vg 1is the shock
velocity. Vg 1is determined by the shock jump condition, Eq. (6), which
for this case becomes

(pg = pp) Vg =pgip ~ P19 (20)
where pp and pp are the upstream and downstream values of p. Using

Eq. (17b) for pp, and pr in Eq. (20), we see that Vg is determined
by the parameters, M , u s Ups (q>t)L and (¢t)R, where (¢t)L and (d)t)R



are the upstream and downstream values of ¢;. In our nondimensionalization
of the variables in this one dimensional problem, we normalize by upstream

values, so that u, = 1 and Pp = 1. From Eq. (17b), it follows that (¢t)L = 0.

L

In smooth regions of space time (x,t), the potential function ¢(x,t)
satisfies

by = 4. - (21)

At a discontinuity, the shock jump condition which follows from Eq. (21) is

39S _ 98
where S(x,t) = 0 dis the curve of discontinuity in (x,t). Since
3S 9S _
Vs 9% i ot 0, (23}

up = 1 and (¢t)L = 0, we have

(g + Vg (g - 1) =0. (24)

Using Eq. (24) in Eq. (17b),
1

pp = (1410 (G - wp? - 27 (1 -upb] ¥ (25)

Using Eq. (25) in Eq. (20), we obtain a transcendental equation for Vg
as a function of M, and ug. Since pp = up =1, Eq. (20) simplifies to

ik - (26)

(p, =~ 1) Vo =0

u -

R R R
The following iterative scheme was used to determine Vg for the

sample case computed, for which Msx = 1.2 and ug = 0.8. First, an initial
guess of Vg was made. Next, Eq. (25) was used to compute pgR. Then
Eq. (26) was used to compute a new value of Vg. By a few choices of the
initial guess for Vg, one was found which would generate a convergent
sequence for Vg by iteration, using Eqs. (23) and (24) as described.
The resultant Vg wused was Vg = 0.4474296609271. This value of Vg 1is
used in Egqs. (19) to complete the description of the analytic solution.

b) 1-D Algorithm

Next we present the algorithm used to compute this flow. First
order accurate in time, implicit Euler, finite difference approximations
to Eqs. (17) at the mesh point (i,n), located at the point (x,t) =
(iAx,nAt) in the flow domain are
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Eqs. (27) form a system of two implicit equations at each mesh point

(i, n + 1) for the dependent variables

ptl and ¢otl,

A key idea

developed in this report is the approximation of Eq. (27a) by an equation
in which only the unknowns ¢2+1 occur and they occur in a linear manner.
The technique used for this approximation is the time linearization pro-

cedure commonly used for the analysis and numerical solution of nonlinear

differential equations.10

Although it is common practiceG’IO

to time

linearize the nonlinear functions occurring in the space differences,
here we will time linearize the nonlinear function occurring in the time

difference in Eq.
that the density possesses in Eq.

(27a) as well, by use of the special algebraic structure
(27b) (see acknowledgement).

The resulting

equation will preserve the property of conservation form, which is possessed

by Eq. (27a).

First we will time linearize the nonlinear function in the space

difference in Eq.

10

(27a) by the following substitution for the density.



n+l n

P 4+1f2 = Pipuyp ¥ OGE) . (28)

Next we will time linearize the nonlinear function in the time difference
in Eq. (27a) by the following Taylor series expansion for p§+l. We have

T 9p \n 2
Py —pi+(8t)iAt+0(At)'

Using Eq. (27b) for p?, we calculate (Bp/at)g and substitute into the
previous equation to obtain
(29)

o7 = of - an (1) (Bl {ad Hleal ™ < 0 ach

Substitution of Eqs. (28) and (29) into Eq. (27a) yields the first order
accurate in time equation

S {oh - ool ()T Felbet™) ol Bl o
i gx (pril+1/2 _gxqb;ﬂ) Fal

Note Eq. (30) is in conservation form, ¢j occur at level n + 1 in a
linear manner and p4 do not occur at level n + 1.

Using Eq. (27b) to determine pg, we now proceed to solve the scalar
Eq. (30) at each mesh point. By algebraic operations, Eq. (30) is con-
verted to the form

ntl | ~ n+l = n < ntl\ _ ~
o -+ Ko ¢f 4 BGx(pi+l/2 N ) =G (31)
where
~ n
K=nts_ o)
8w Al <p‘,‘) 2
o i

sl oo N1 n-1 n\2 22 2—Y)~
C =267 - ¢} +At<6x¢i) +(At /M (pi) D,

]
he

50 4o (), (5 48) +He L (o, )]

Next we discuss our method of adding artificial dissipation. Numerical
experiments indicate that Eq. (32) is a.stable finite difference scheme

11



for subsonic regions of flow. In supersonic regions we shall add an
artificial dissipation term in order to damp numerical instabilities.!®
The manner in which we add dissipation is to retard the evaluation of
the densit:y”’lg"20 in the upwind direction, for the density term which
occurs in the space difference. Hence in Eq. (31), pg+l/2 is replaced
by ﬁ?+l/2, an upwinded evaluation given by

- " _ ot = n_n
P2 = (2 Vi) otnsn ¥ Vi0 Ty i

The upwind weighting factor v? strongly affects the stability and
accuracy of the computation. Insufficiently large values of vl can
result in overshoots at shock waves or even unstable calculations. Too
large values of VI! result in solutions in which the shock profile is
greatly smeared. lExperience has shown that for unsteady flows, the
proper values for vg depend on the computational mesh, the time step,
the shock speed, and the shock strength. Currently the procedure for
choosing v} is trial and error. In this example,

¥, max{O,((M;_l)z - 1)c }] ) (33)

where ¢ 1is a positive constant, which for the case shown was tuned to
7.5 and M? is the local Mach number,

(Mr.l)2=(<5 03)% 1 (a1)° - (34)

x 3

n ¢
V.. & e
il

Using Eq. (4), one obtains

(ari‘)z =M—12+(I;—l)(1— 2§t¢2 L (qu;‘il)z) x (35)

In Eq. (33) the purpose of the min function is to retain an interpolation
form in Eq. (32); otherwise unstable calculations can occur. For example,
in the case presented here, removal of the min restriction caused the
calculation to become unstable.

Also, guided by the differencing of the low frequency, small dis-
turbance, transonic equation6'7, certain 0§y¢; terms were replaced by
§x$i terms in order to enhance the stability properties of the method.
The final algorithm is given by

n+l « nt
¢i * AGxq)i

1

+ 85, (60,,/,8 “*1) = C, (36)

B ostye Puty

where
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e) Calculated Results

The results of a calculation of the model problem are compared with
the analytic solution in Figure 2. For the calculations, 101 equally
spaced mesh points were used on the unit interval in the x direction.
Also, since the velocity of the shock is known, the time step, At, was
chosen so that the shock moves one-half mesh space per time step. The
shock was initially located half-way between mesh points i = 5 and
i = 6; x5(0) = 0.045. Equation (36) involves four levels of ¢4, so that
three initial levels of data are required to start off the calculation.
Equation (19b) was used to locate the shock at times xg (-At) and xs(-2At).

The results are plotted for 49, 50, 99, and 100 iterations. Here

(o) ierr2 = (#141 - 05 )/ x

and Ax = 0.01. The solid vertical lines show the shock position of the
exact analytic answer. The results give numerical evidence that the
algorithm is stable for VgAt < Ax/2, computes the correct shock speed
and by the addition of the proper amount of artificial dissipation will
produce a sharp shock profile. The ability to take a time step in which
the shock moves one-half mesh spacing shows that the method allows the
use of large time steps, by which we mean on the order of time steps
allowed by the implicit algorithm of Ref. 6 for the low frequency, small
disturbance equation. No determination of a limit on the time step size
was made.

13
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Figure 2.— Shock Profiles for One Dimensional Problem.
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IV. TWO DIMENSIONAL UNSTEADY TRANSONIC FLOW

In this section we will present the results of a sample two dimen-
sional calculation. The case presented will have no lift. However a
strong shock wave will develop and subsequently travel rapidly upstream
in a large excursion. Meanwhile the flow will become completely sub-
sonic. The results will be compared with computed results from low
frequency, small disturbance, transonic theory.6

a) Problem Formulation

We will compute the flow that results from a thickening and sub-
sequently thinning airfoil. Here time is measured in chord lengths
travelled, k=1, and x and y are nondimensionalized by the chord
length. A parabolic arc airfoil thickens from zero to 10 percent
thick as a fluid particle travels 15 chord lengths, relative to the
airfoil, at the free stream velocity q_. The airfoil then thins to
zero thickness at 30 chord lengths of travel. Figure 3 shows the mid-
chord thickness function &(t), given by

2 3
0.1 [10-15(1%) + 6(1—2—) ] ('1%) ,05t<s15,
(37)
o) = o o2 A3
0.1 [10-15(23%) + 6(2%3E) [(35=E) , 152 & < 30,
0 s E2 30 .
For our problem we can choose a simple, sheared coordinate system
(E,n,T) to fit the airfoil and its motion. Equations (7) become
E=x, n=y-S(x,t) , T=t, (38)

where

y = S(x,t) , 02 x51 ,

is the equation of the airfoil upper surface boundary in (x, y, t)
space. S(x,t) = 0 for x < 0 and x > 1. Since the flow is symmetrical
about y =0, we restrict the domain of flow to n 2 0. The governing
equations simplify. J = 1, so the conservation of mass equation,

Eq. (1), becomes

3p , 9 9. -
_;+ ot (QU) o an (QV) =0, (39)
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where, using Eqs. (10) and (11)
Ui= u = P =5S_9¢ = ¢, =S, ¢_ ,
ETwxin € B (40)

_ . 2 e 2
==Sp -Sutv=-5, =50, +(1+5)¢, =-5 =S 0.+ (1459,

The last equalities in Eqs. (40) follow from Eqs. (38); S(x,t) =S(&,1),
so Sx=SE; and St = ST. The unsteady Bermoulli equation, Eq. (4),
becomes

1
Yy-1

o = [ 2058 - (62508, + DY T

16



The initial condition is q = aw for T £ 0. The body boundary con-
dition, Eq. (15), becomes

v = St = qu »

or
S.. + S 9
¢n = _T—gz_g . (42)
(L+S.)
€
fo Ehe airfoil for n = 0, ¢n = 0 from symmetry. In the far field
q=4g,6 = (uv) = (1,0). From Egs. (40)
Wi =8 =, (43)
From Egs. (38), ¢n = ¢y, SO ¢n = ¢y = v = 0. Substituting into
Eq. (43), we have ¢€ = 1 din the far field.
For our computations, we approximate the flow on the infinite
domain with the flow on a finite domain,
-30 £ £ 230, 0<£ns50. (44).

On the far boundaries, n = 50 and £ = + 30, we impose Dirichlet con-
ditions, viz. ¢ is specified with the result that ¢_= 0 on

g =+ 30 and ¢€ =1 on n = 50. The problem formulation is now
complete.

b) Implicit Factorization Algorithm

The 2-D algorithm is a generalization of the 1D differencing.
Let (i,j,n) denote the indices of a mesh point located at the coordi-
nates (£,n,t) in the flow domain. Here we use a stretched computa-
tional mesh; see Fig. 4 for a sketch of the mesh. First order time
accurate, implicit Euler, finite difference approximations of Egs. (39)
to (41) are

= ko g ( n+l = ntl n+l n+l
Se Pi,it S Pi+1/2, 3 l‘sg 1,37 S % ¢i+1/2,j])
(45a)
+ 6 ?+% 1+ Sn+l s ottl _ gntl n+1 _ oWt}
n (01,J+1/2 ( g )% %,5 " Sc g% 541/27 St =10

ik
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8, = (i -0y (- E
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n+l n+l
= S » .
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n+l

n+1 ¢ )
1,3kl 2

1,3 (45d)

(45e)

0(AT)
0(aAE)
0(Ag)
0(ag%)
0(an)
0(An)

0(an?)

Equations (45a) and (45b) form a system of two implicit equations

at each mesh point (i,j, n+l) for the unknowns pg+% and ¢2+%.
3 b

As in

the one dimensional problem we linearize backward in time the density
functions in Eq. (45a), so that only the unknowns ¢g+§ occur and they
b

occur in a linear manner.
for p2+§ that
b
RN (§g>n
: iy | 3555 ot i,3
b
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Again by a Taylor series expansion we have

At + 0(At2>.



Using Eq. (45b) for pz i we calculate (Bp/at)? 5 and substitute into
b

3
the previous equation to obtain

2=y

n+1 n n S e 0 ntl < n+1
R BN ey : é : -

o Ry W TM’°2°(pi,3) { T(ST ¢ ‘) ¥ 6T(Gn ¢i,j)

o Sn+l s n+l

rr S0 81,9 %+ (8 ¢2,j)lgr(6£ ¢2T§)]

S [ GO T3 R CH TR
S5, o, )i o %)

"52+1@£¢2,j)ﬁ¥(%1¢gfﬁﬂ

+ (1 + s?*lJz)(an ¢§’j>

%= n+1l
S (8 ¢i,j)]
n+l _n+l

S )6, 5 oued

Also, in Eq. (45a) let

n+1 n

| P32, ™ Piaayg.y T OEE)

| (47)
n+l n + 0(AT)

Pi,341/2 = P1,4+1/2

As in the one, dimensional case, the &g ¢j j terms in Eq. (46) are
replaced by Gg ¢i,j terms, in order to enhance the stability of the
difference scheme.

The manner of adding artificial dissipation is similar to that in
‘ the one dimensional case. Again, we add an artificial dissipation
| term!® by retarding upwind the density evaluation.l7519=20  For this
sample case, only densities occurring in the & difference term, viz,
the second term in Eq. (45a), were retarded in the upwind direction.
However, in general, one can retard densities upwind in both space
difference terms in Ege manner shown innreference 19 and these aghieve
a rotated difference scheme. Here p . 1s replaced by »p s
an upwinded evaluation given by ;] 1+1/2,3
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~N = - n n n n
Pi+1/2, ] (l "i,j) Pit1/2,5 * Vi,5 Pi-1/2,5 ° (48)
where
n = -
Vi,j = min [lq max{O,(l ll/Mg,j])c}] 5 (49)

where c¢ 1is a positive constant, which for the computation shown was
turned to 2.0 and M? j is the local Mach number. Recall M = q/a,
2

SO
n 2 _ n 2 n 2
(Mi,j) § (qi,j) ’(ai,j) ’ (50)
n 2 n 2_ n n n 1 g 2\ (s n 2 ,
(qi,j) - (Gaq’i,j) 28 (6£¢i,j)(6n "’i,j) k ( et ( n 4,3 o

and using Eq. 4
2 . 2
n o ok Y -1 L n _on n (.0
(ai,j) i +( 2 ){1 4 (61¢i,j CER ¢i,j) (qi,j) } (52)

The (£,n,T) coordinate system is sheared and therefore nonorthogonal.
Hence in Eq. (39), there are two cross derivative terms, viz -(S ¢n)
and '(SE ¢£)n . In an implicit factorization algorithm, the question
arises as to how to handle these terms. One would like to difference
them implicitly on the assumption that such differencing would enhance
the stability properties of the algorithm. However, here we will
difference them explicitly. Recall that in alternating direction
implicit schemes, each implicit difference equation is replaced by
intermediate equations, which are typically implicit only along a
single coordinate line. By differencing the cross derivative terms
explicitly, the resulting intermediate equations in our algorithm will
also link unknowns ¢2 % only on the same coordinate line. Hence the
3

resulting algorithm will retain the structure of being completely
vectorizable. This feature is desirable for the use of an algorithm
on computers which are architecturally vector array processors. Hence

in Eq. (45a) let

P21 n+l n+1 n+l _ % s.am n+l 2

e(iH1/2,3(%  °n ¢i+1/2,j]) =8¢(Pi41/2,5 (5% °n ¢i+1/2,j]) +0(s1)
(53)

- n+1l n+l n+1 - n n+l 0

6n(pi,j+1/2[si 6& ¢i,j+l/2|> = % (pi,j+l/2 Sg 6€¢i,j+l/2]) + 0(21) .

Substituting Eq. (46) to (48) in Eq. (45a), we have
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T

n NPy £ (‘ n+1) n+l n+l n+1 n+l
K ATMi(pi,j) GT 4 ¢i,3 St <6 ¢i ) T Gn¢i,j

* (8o, g) Bl o) -2t |6 ¢‘£,j) (40 #573) * (e #175) (00 #2,5)]

- Sg+l(6n ¢2’j> §T<gg¢zfl)l _ Sg+1 I(S n+l ]
(54)
i (1+(s§+l) )(dn ¢111,j) 5, (6 ¢2+1)J + sgﬂ s‘g:l(an ¢ri‘,j)< ¢fi”'1)”
+ 563 P141/2,5 |5 ¢ 1,? - S5 e, ¢;.1+l/2,j])
8 (P pusa |4 (Snﬂ)z) DR e .

Note Eq. (54) is in conservation form and ¢2+§ occurs in a linear
3

manner. We now shall factor Eq. (54). Note Eq. (45b) is used to
evaluate the density at the previous time levels.

By algebraic operations, Eq. (54) is transformed into the form:

ol I'l+l -~ n - n+l
- 1, s
IR AR T E D i e(P1+1/2,1 %6 %1, 5)
(55)
o7 n n+l )* nt+l
% C‘Sn("i,jﬂ/z(l +(s ) Sn ¢y ) udy
where
A= Al + A2 ,
_ n n+l n )
Al = A"(% N Sg 8,95 5)
A2 = a2 1 g0 g 40
paa = 2 (i 2
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B2 = ATz(sn+-l<sn+-l n J) 1
2

n n+l
gt \°g On % ') s

TT

C = -At /M( ,J)Z‘Y

A=Al + A2

- E_—rl(Al), A = E;l(AZ), B = E;I(Bl)
e _l — _l

B2 = E_ (B2), C=E_(C) ,

o n Eeen ol i n
R 2 ¢i,j ¢i,j + (A1)6€ ¢i,j + (Bl)Gn ¢i,j

1 At [ n n-1 n-1\2-y |.n n-1
+h —_— -
( n )2-y 2 (pi,j pi,j) + (pi,j
g . M
1:3

6 B

o]

BEl < (E n ) —= S ( n )
+
03,3 + AL (a7) ST(GE(bi,j +BL(T) 8 (8, 47
A28, ¢" . +B26_o" ] + (*“"‘1 gt*tl 5 n ,
4,3 T P00 C 8. (P /2,1 5% n¢i+1/2,3)
= n+l/2 n+l n n+l
+C5n(iJ+U2k e gy +52 |

Equation (55) is an implicit equation that determines ¢2+§ .

We wish to factor the operator L? . to obtain two intermediate
b

equations at each mesh point. Each intermediate set of equations

will be implicit in only one coordinate direction. The resulting

matrix equations will be tr1d1agonal and can be easily inverted by

use of the Thomas algorithm. 21 The factorization of the operators Li 3
will be approximate; however, the resulting additional terms will ’
only be error terms that are of higher order error in time than the
discretization errors already made. Also, some of the error terms will
not be in conservation form. Therefore additional terms will be added at
the nth time level to recover the conservation form for the factored
equation.
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The factorization of Eq. (55) is

£ implicit sweep

4. FEE +C8
i,]

*
£%,3 ( 1+1/2,1 %€ ‘*’1,3)

. (56a)
e B S o pm n+l = N
S REDR PN G (S Gy J8aeh,) + o0

n implicit sweep

n+l < (n n+l 2> ~ n+l)
. +B3S S . 1+ (S 8 y
(pi,J & T1¢1,J e Tl(pi,J"'l/?.( (E ) Tl¢i,J
(56b)
%= +1\2\+ n
= ¢% 4 B oared ek . 1+ {g¥ 8 ,
¢1,5 T B8 %4,; n\P1,3+1/2 £ nti,3)
where the term CD is added to the right side in the £ sweep in
order to maintain conservation form and
D TN R P (1 & (sn)Z)gg ol ) 1 (56¢)
T &l ntTig n\"i,j+1/2 & Ll B

Note that the & dimplicit sweep is not a consistent ap roximation to
Eq. (39) because of the replacement of the term BS ¢n i3 in Eq. (55) by

the term BG ¢ 4 in Eq. (56a). Equations (56) are a generalization of

the alternatlng dlrection implicit (ADI) algorithm of Lees.?! Equation

(56b) can be solved for ¢; i The resulting expression can be substi-
k]

tuted into Eq. (56a) to yield

n+l R n+l % n+l)
¢l,J * &8 qbi B6n¢1,3 +06€( i+1/2,j g¢i
- n n+l, 2 n+1
+ . 1+ S 6

< (n n+l 2)* ~  n+l ‘
1, . 1+ (s} i3 :
+41C8 ( i+1/2, § ng‘S ; 4’1 £y (pi,J+1/2( G 1P, r¢i,J)

S in n+1 r
+ AT A = +
AT 65[B6 6 ¢i Cdn(p il (S ) )6 § ¢i

i,j+l/2( )T
= Rk €D .
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Equation (57) is an approximation to Eq. (55); there are two ad-
ditional terms on the left side, which resulted from the splitting and
there is the additional term CD on the right side. Division Eq. (57)
by the factor C and rearrangement of the terms results in the equation:

TL+ T2+ T3=0, (58)

where T1 dis all the terms on the left side of Eq. (54),

St m = ot
T2 = Até, (pi_‘_llz,j 6‘5[3 8.6 9% 5
< ( n n+l)\2\> <« o+l
+
c5n(pi’j+1/2 (1 e (sg ) )6n GT¢i;j)]) gt o, £090
and
(60)
” A, +  ntl = [ n ntl)2) = < n+l
T3 = AT 5g [B Gn 5. ¢i’j + CGn(pi’j+1/2 (1 * (SE ) )GnGT ¢1,J)] - D.
Using Eq. (56c) (61)
< [ n ntl) 2\ > « ntl
(AT) {C £ [B sn 5T ¢1,J csn (pi,j+1/2 (1 + (SE ) )Gnachl J)]}

From the difference form of the terms T1, T2, T3, given in Eqs. (54),
(59) and (61), we see that Eq. (58) is in conservation form, including the
error terms, T2 and T3. Solutions of Eq. (57) are identical to solutions
of Eq. (58), since only arithmetic operations are required to go from

one equation to the other. Hence solutions of Eq. (57) will satisfy the
conservative form, finite difference approximation, Eq. (58), to the con-
servation of mass differential equation.

Since A = 0 (A1), B =0 (At) and C = 0 (At2), it follows from Egs.
(59) and (61) that T2 = 0 (At2) and T3 = 0 (A12), So the additional
error terms in Eq. (58) do not affect the first order accuracy in time of
the finite difference approximation.

The addition of the term CD in Eq. (56a) is required because the
term AT AS ¢* . in that equation produces error terms which are in
nonconservaglve %or One alternative, which would eliminate that term
from Eq. (56a), is to replace the term &g ¢n+1 in Eq. (46) by &g ¢1 "
However in the problem under consideratlon, tgat replacement resulte
in an unstable algorithm. Another alternative is to interchange the order
of the sweep directions in Eqs. (56) and also to replace &y ¢n+1 by
n ¢n . in Eq. (46). The rationale is that the £ coordinate ‘dfrection
1s approx1mately the flow direction in the supersonic region about an air-
foil. For stability, in such regions, the ¢ ¢1,J term must be differenced
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implicitly. However the & ¢i,j term might be differenced explicitly

and yet the algorithm would remain stable. The change in order of the &

and n sweeps results in Sfil/Z,j appearing in both sweeps. Hence the

test for supersonic flow, Eq. (49), must be applied in both sweeps with
resulting additional computations. However, in a rotated difference scheme,18
the density pfﬁj+l/2 appearing in the 0, difference term would also be
upwind biased, so that interchanging the order of the sweeps would not
introduce any additional testing. This second alternative has not yet

been tested.

c) Calculated Results

The calculations were performed by solving Eqs. (45b) and (56) on
the computational mesh. For the case shown, the mesh had 151 points in
the & direction and 41 points in the n direction. There were 101
mesh points in the & direction between & = -1 and £ = +1 at a uniform
spacing of AZ = 0.02. The remainder of the £ mesh on either end was
smoothly exponentially stretched to the boundaries at & = *30 chord
lengths. The mesh in the n direction was smoothly, exponentially stretched
to the far field boundary at n = 50 chord lengths. At j = 7, nj = 0.18
and Any = (n 4+1 - Ny 1)/2 = 0.05. So this mesh is very similar to the
mesh used in Ref 6 %or the low frequency, small disturbance, transonic
equation calculations. See Appendix B for a list of the computational
mesh.

As in the one dimensional case, three levels of initial data are
required to advance the potentlal in time. The initial values ¢i,3

were determined by settlng ¢ = 0 and requiring 6 ¢ = 1. Then we
1,3 e T

set ¢1 = ¢1,J ¢1 e The boundary condition on the airfoil, Eq. (42)
was 1mposed by the first order accurate approximation.
Sn+l § Sn+l s ¢u
(¢ )n+l o =% £ et sl (62)
g 2
s 1+ (Sn+l)2

where j = 1 mesh points lie on the coordinate line on the airfoil. Note
that Eq. (62) is explicit in ¢5,1. Off the airfoil, (¢n)n+% = 0 was
applied. At the far field boundaries, i = 1, i = 151 or j = 41, ¢4 J was
not changed from the 1n1t1al values, with the result that 6 ¢n )3 0 on

=1 and i = 151 and Gg¢ i =1 on j = 41 for all values of n.> In our
calculations M = 0.85 anf A = 0.0625.

The pressure coefficients resulting from the calculation are plotted
in Figs. 5 and 6. The airfoil is thickening for T < 15, as shown in Fig. 3,
and in Fig. 5 we see that the effect of that thickening is the initial
formation and downstream propagation of the shock wave. By 1 = 8.5, the
flow has a small region of supersonic flow but there is no shock wave yet.
By t = 11.5 a shock wave has formed; it is growing stronger and is moving
downstream as the airfoil continues to thicken. At t = 18.25 the shock
has slowed down and is nearly stationary. The local Mach number upstream
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Figure 5.— Plot of Pressure Coefficients for Formulation
and Downstream Propagation of the Shock Wave.
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of the shock, measured relative to the airfoil frame of reference, is
approximately 1.38. Notice that the shock profiles are captured sharply
by the algorithm. There was a time lag of about At = 3.25 between the
time of the maximum thickness of the airfoil at T = 15 and the time of
the shock strength reaching its maximum.

The subsequent upstream movement of the shock wave is shown in
Fig. 6. At Tt = 26.875 the flow has just become completely subsonic
and the shock is now traveling rapidly upstream. The rapid excursion
is shown by the plots at T = 29 and t© = 32. 1In Fig. 6, the shock wave
is from subsonic to subsonic flow and its strength is very weak compared
to the shocks in Fig. 5. Since the computation of the density is no
longer upwind biased during this later completely subsonic flow, the
result is that the algorithm increasingly smears the shock profile. A
calculation with a time step reduced to AT = 0.03125 sharpened these
weak shock profiles at T = 29 and 32. They appeared similar in shape
to the low frequency, small disturbance profiles plotted in Fig. 6 but
they were positioned near the centers of the full potential shock pro-
files. At T = 11.5 and 18.25, the smaller time step calculation showed
minor changes in the Cp profiles from the larger time step full potential
calculation. The shock positions were moved slightly rearward and the
shock strengths were slightly increased for the smaller time step case.

Another view of the solution is given in Fig. 7, which is a plot of
the midchord pressure coefficient as a function of time. There is a lag
of about AT = 2.75 ©between the maximum airfoil thickness and the
maximum flow expansion time. The sharp drop in the curve occurs as the
shock wave propagates upstream past the midchord point at about Tt = 26.6.

There are no published results on unsteady, conservative, full potential,
transonic calculations with which we can compare. Therefore we have com-
pared our results with low frequency, small disturbance, transonic theory.6
The purpose of the comparison is twofold. First, for this problem, the
two theories should be in close agreement. By comparison in Figs. 5, 6
and 7, we conclude that they are in close agreement and therefore that
there are no gross errors in the full potential calculations.

The second purpose of the comparison is to see how the results of
the two theories differ. Notice that at times T = 11.5 and 71T = 18.25,
the low frequency, small disturbance, transonic shocks are rearward of
the full potential shocks, whereas at T = 26.875 they are in close
agreement. Solutions in small disturbance, transonic theory can be adjusted
in various ways, such as by Krupp, Von Karman-Spreiter, or Cp*
s<:aling.7’22‘2L+ In our comparisons, Cp* scaling was used in the small
disturbance calculations. In that scaling, the small disturbance critical
pressure coefficient, Cp*, is equal to the steady full potential critical
pressure coefficient. The result is that for steady flows that are barely
supercritical, the resulting shock strengths and positions should be in
close agreement. In Ref. 25, a plot shows a comparison of shock positions
versus airfoil thickness for steady flows at a fixed Mach number between
full potential theory and small disturbance theory. There Cp* scaling
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M_ = 0.85 == «— Low Frequency, Small Disturbance,
Transonic Equation, Ref. 6
AT=0.125

Figure 7.— Plot of Midchord Pressure Coefficient Versus Time.
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was also used. That plot shows that the small disturbance shock position

is rearward of the full potential shock position and that the separation
increases as the thickness increases. Our comparison at T = 11.5 and 18.25
shows the same relative position of the shocks. Also there is an increase
in the separation of the two shocks at the later time, which can be
attributed to a greater thickness effect if one allows for the time lag
between the motion of the airfoil and the reaction of the fluid. At

T = 26.875, the small disturbance flow is barely supercritical and the
shocks have essentially the same strength and position, which is what

would be expected from using Cp* scaling in a steady flow.

A more detailed comparison of the two theories is made in Appendix C.
There the effects on the pressure coefficient plots are shown for various
approximations made to full potential theory in going to small disturbance
theory. The approximations studied are modelling the airfoil as a slit,
linearizing the boundary condition and linearizing the formula for Cp.
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V. CONCLUDING REMARKS

An algorithm has been developed which solves the two dimensional,
conservative, full potential equation for unsteady, transonic flow by a
finite-difference, alternating-direction implicit method. This develop-
ment was motivated by the desire to remove three limitations of low-
frequency, small-disturbance, transonic theory while retaining the
computational efficiency and shock-capturing features of algorithms
developed for that equation. This removal is necessary for an accurate
treatment of thick, blunt nosed supercritical airfoils. A noteworthy new
feature of the algorithm is the reduction of the system of two equations
to be solved at each mesh point for the velocity potential and density
functions to one equation involving only the unknown velocity potential.

By first testing the algorithm on a one-dimensional traveling shock
wave, we found, as shown in Figure 2, that the algorithm is stable,
captures the weak solution shock motion correctly and allows relatively
large time steps, similar in size to those permitted by the small-
disturbance algorithm. Next we calculated a two-dimensional flow that
was produced by a thickening and thinning airfoil. That test case, as
shown in Figures 5-7, also is stable, allows large time steps, and is
in close agreement with low-frequency, small-disturbance transonic
equation calculations as required for this test case.

Further work is underway. (1) A pilot code for use in the aero-
dynamic community, is being prepared which treats arbitrarily shaped
airfoils using an efficient body fitted mesh!” and which allows for pitch-
ing and plunging airfoil motions. This code will be capable of providing
the unsteady loads for flutter and other aeroelastic calculations on both
conventional and supercritical airfoils. (2) The algorithm is being
extended to three space dimensions. (3) A modification to the algorithm
is being investigated which would make the body boundary condition
computation implicit. This modification could permit the use of even
larger time steps.
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APPENDIX A
DERIVATION OF THE GOVERNING EQUATION IN A GENERAL
CURVILINEAR COORDINATE SYSTEM

The conservation of mass equation, Eq. (1) is written in cartesian
coordinates (t,x,y) as:

3(kp) , 3(pu) , 3(pv) _
e e

) (A1)

where q = (u,v) is the velocity vector in (x,y) space. We shall use
tensor analysiszs‘28 to write this equation in a general coordinate
system. In Euclidean space time, the line element ds2 in the Euclidean
coordinates (t,x,y) is

Ght = il s s dadt (A2)

To simplify the expressions that follow, we introduce tensor notation,
for use in this appendix only. The coordinates of a point in space time
will be denoted xH, where the superscript u takes values 1, 2 or 3.
Hence (t,x,y) = (xl,xz,x3). In tensor notation the line element ds2
has the form

2

ds = B

gadeadx y (A3)

where gug = duB; here Jyg 1s the Kronecker delta function, and

g =1 if a =8 and 63z = 0 if o#B. In Eq. (A3) we have used the
Einstein summation convention, which assumes summation on '"an index
which appears twice in the general term."2® Hence in Eq. (A3) we sum on
both o and B through the values 1 to 3. g,g are the components of
the metric tensor.

Now consider the general transformation of coordinates
T o= nlE, Xy, & = Blt,xy),, 0 =nltx,y) . (A4)

Let XM denote the coordinates of a point in this coordinate system, so
(x1,%2,%3) = (t,&,n) and Eq. (A4) simplifies to X" = 7 (xY). Then the
line element ds2 in the XM coordinate system is

2 = o T
ds”™ = guv d¥" dxX . (A5)

Eq. (A5) follows from the use of the inverse transformation x" = x*(XV)
so that
a
ax® = 05 gg¥ | (A6)
ox
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Using Eq. (A6) in Eq. (A3) gives Eq. (A5) with

3
- o Bxa axB 4 22 A% xq (A7)
Buv T Bag S oy 3%H 3%V

Now we shall write the conservation of mass equation in a general coordi-
nate system. Using the velocity vector q = (u,v) we form the contra-
varient components VM of the velocity vector in space time in Euclidean
coordinates (t,x,y).

Vo= (kpa, v (A8)
Also the gradient operator in (t,x,y) space time is defined by

au = (at,ax,ay) = (A9)

So in tensor notation, Eq. (Al) becomes

3, (pV") = 0 . (A10)

Under the general transformation XM = XM (xV), Eq. (Al0) takes the co-
varient form

du (|Jl ) 08, (A1l1)

where [Jl is the absolute value of the Jacobian of the transformation.
%"
J = det (————) . (A12)

- uo - - .
Bxulax is the transformation matrix. v are the contravarient components
of the space time velocity vector in the XM coordinate system,

~ <M
Vo= =y, (A13)
A\
9X

Note that Eq. (All) is in conservation form. This form follows from an
application of the fundamental Ricci theorem?® to the equation that results
when the transformation of coordinates, Eq. (A4), is applied to Eq. (A1l0Q).
The Ricci theorem states that the covarient derivative of the metric tensor
is identically zero.
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If T (t,x,y) = t, then the following simplifications result.

Ji= Exny =LEn

\_l'l

y X

U=V =F,t+Exu+£yv,

<

l]
<
Il

and Eq. (All) becomes

Egs.

kd_ (—[‘3—]) +9, (L—

U
N

) <2 (i

t * v
nt nxu ny s

v
|31

)=o.

(A14)

(A15)

(Al4) and (Al5) are the desired equations and are used in Section II.
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APPENDIX B

COMPUTATIONAL MESH

§ — Direction Mesh Distribution

i

O 0O WA WN—

[ —
—_—0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

£
-.300000 E+02
-.237062 E+02
-.187520 E+02
—-.148554 E+02
-.117937 E+02
-.939063 E+01
-.750718 E+01
—-.603333 E+01
-.488218 E+01
-.398506 E+01
-.328770 E+01
-.274720 E+01
-.232969 E+01
-.200837 E+01
-.176209 E+01
-.157411 E+01
-.143122 E+01
-.132297 E+01
-.124112 E+01
-.117913 E+01
-.113186 E+01
-.109522 E+01
-.106601 E+01
-.104167 E+01
-.102020 E+01
-.100000 E+01

-.980000 E+00
-.960000 E+00
-.940000 E+00
-.920000 E+00
-.900000 E+00

-.880000 E+00
-.860000 E+00
-.840000 E+00
-.820000 E+00
-~.800000 E+00
-~.780000 E+00
-~.760000 E+00
-~.740000 E+00
-~.720000 E+00
~.700000 E+00
-~.680000 E+00
-.660000 E+00
-~.640000 E+00
-.620000 E+00
-.600000 E+00
~.580000 E+00
~-.560000 E+00
-.540000 E+00
~.520000 E+00

i
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74

3

-.500000 E+00

480000 E+00
460000 E+00

-.440000 E+00
-.420000 E+00

400000 E+00
380000 E+00

—-.360000 E+00

340000 E+00

.320000 E+00
.300000 E+00

-.280000 E+00
-.260000 E+00
-.240000 E+00
-~.220000 E+00
-.200000 E+00
-~.180000 E+00
-~.160000 E+00

.140000 E+00
.120000 E+00
.100000 E+00

-~.800000 E-01
~.600000 E-01
~.400000 E-01
~.200000 E-01

0.
.200000 E-01
.400000 E-01
.600000 E-01
.800000 E-01
.100000 E+00
.120000 E+00
.140000 E+00
.160000 E+00
.180000 E+00
.200000 E+00
.220000 E+00
.240000 E+00
.260000 E+00
.280000 E+00
.300000 E+00
.320000 E+00
.340000 E+00
.360000 E+00
.380000 E+00
400001 E+00
420000 E+00
.440000 E+00
.460000 E+00
.480000 E+00

87

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
§29
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

£

.500000 E+00
.520000 E+00
.540000 E+00
.560000 E+00
.580000 E+00
.600000 E+00
.620000 E+00
.640000 E+00
.660000 E+00
.680000 E+00
.700000 E+00
720000 E+00
.740000 E+00
.760000 E+00
.780000 E+00
.800000 E+00
.820000 E+00
.840000 E+00
.860000 E+00
.880000 E+00
.900000 E+00
.920000 E+00
.940000 E+00
.960000 E+00
.980000 E+00
.100000 E+01
.102020 E+01
.104167 E+01
.106601 E+01
.109522 E+01
.113186 E+01
117913 R+01
124112 E+01
.132297 E+01
.143122 E+01
.157411 E+01
.176209 E+01
.200837 E+01
232969 E+01
.274720 E+01
.328770 E+01
.398506 E+01
.488218 E+01
.603333 E+01
.750718 E+01
.939063 E+01
117937 EF02
.148554 E+02
.187520 E+02
.237062 E+02
.300000 E+02



b)

n — Direction Mesh Distribution

n=y-8(x,t)

j

Y

-.283650 E-14
.188308 E-01
412027 E-01
677793 E-01
993481 E-01
.136843 E+00
.181370 E+00
.234240 E+00
297005 E+00
371501 E+00
459898 E+00
.564756 E+00
.689097 E+00
.836476 E+00
101107 E+01
J28779 B+01
146236 E+01
.175148 E+01
.209290 E+01
.249562 E+01
296999 E+01
.352782 E+01
418255 E+01
494926 E+01
.584473 E+01
.688734 E+01
.809692 E+01
949432 E+01
.111010 E+02
129379 E+02
.150249 E+02
A73791 E+02
.200129 E+02
.229332 B+02
261386 E+02
296182 E+02
.333506 E+02
.373030 E+02
414318 E+02
456841 E+02
.500000 E+02
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APPENDIX C

EFFECTS OF VARIOUS APPROXIMATIONS TO FULL
POTENTIAL THEORY ON PRESSURE COEFFICIENTS

We have made additional computations of the flow field about a
thickening and subsequently thinning airfoil. These computations use
two modifications to full potential theory which are intermediate in
going to the complete approximations made by low frequency, small dis-
turbance, transonic theory. The results of the two modifications are
shown in Figures 8 and 9 for two different times of the flow.

The modification 1 results were obtained by replacing the actual
airfoil shape boundary y = S(x,t) by the line segment y = 0, for
0 £ x <1, On that line segment, the airfoil boundary condition, Eq. (42)
was replaced by the equation,

¢y = St + SX¢X - (C1)

Modification 2 made the following assumptions. It also replaced the
airfoil shape by the line segment y = 0. The airfoil boundary condition
here became

by, =S, 8, - (c2)

Also the formula for Cp, Eq. (16), was replaced by the low frequency,
small disturbance, transonic formula

Cp = -2 (o, - 13

here ¢y is the full potential and not the perturbation potential. Both
modifications used the full potential equation, Eq. (18), as the governing
equation.

In Figure 8, we see that both modifications give shock locations in
good agreement with full potential theory. However Modification 2, with
its small disturbance boundary conditions, yields the least expansion
upstream of this shock and the weakest shock. In those two aspects, the
intermediate theory, Modification 2, has less agreement with full potential
theory than complete small disturbance theory has. Modification 1 only
lacks the physical displacement of the fluid caused by the thickness of
the airfoil. Modification 1 has good agreement with full potential theory,
although on the first 60% of the airfoil Modification 1 gives slightly
more negative values of Cp.
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D Full Potential Equation
— wmm == Modification 1 of
Full Potential Equation

— e Modification 2 of
Full Potential Equation
o = === | ow Frequency, Small

" Disturbance, Transonic
Equation, Ref. 6

M, = 0.85
7=18.25

1.0 ] 1 1 1 '

Figure 8.— Plot of Pressure Coefficients for Various Approximations to
Full Potential Theory. Strong Shock Case.



In Figure 9, the modifications are plotted at a later time when the
shocks are now weak. Again, Modification 1 is in close agreement with
full potential theory; now the airfoil has almost no thickness. Modifi-
cation 2 again has less agreement with full potential theory in the
shock region than the complete small disturbance approximation has.
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FD. Full Potential Equation

ER.

S.D.

-0.3
— —Madification 1 of 1 .
1 Full Potential Equation I
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02 Full Potential Equation Y
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Equation, Ref. 6 A \
0.1}
=
—
q— —
0 + : .
M_ =0.85
7 = 26,875 1 '—_:z\
0.1 l/l
0.2 ! | | .
-1.0 -0.5 0 05 1.0

Weak Shock Case.

Figure 9.— Plot of Pressure Coefficients for Various Approximations to
Full Potential Theory.
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