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SECTION I

INTRODUCTIONW

This is the final report of research under Grant NSG 1128, awarded
to the University in December 1974. The project is-concerned princi-
pally with the angle-tracking problems in Microwave Landing System (MLS)
receivers, the goal of the research being a receiver design capable of
optimal performance in the multipath enviromments found in air terminal
areas. The scope of the work included various theoretical and evalua-
tive studies associated with the project goal, e.g.

i. Signal model development

ii. Derivation of optimal receiver structures

iii. Development and use of computer simulations for receiver
algorithm evaluation

and also, at least initially, the development of an experimental re-
celver for flight testing. Reference is made to the progress reports
[1-5] for details of the research. This report provides am overview of
the work and a summary of principal results and conclusions.

.- During the 1976-77 annum a study of the DME was also undertaken
along wilth the ongoing angle receiver research. The DME work included
some preliminary theoretical analysis but mostly simulation studies of
the various designs, i.e. fixed threshold, adaptive threshold and delay
and compare DME receivers. The simulations showed the delay and compare
receiver to be the most robust of the three designs simulated. The DME
study was peripheral to the focal research on the angle receiver and is
not discussed furthér in this report. Reference is made to [4, pp.

51-100] for more detail.



The early study established that multipath propagation in air
terminal areas is due principally to reflections from hangars and other
buildings, other aircraft and the ground -- all cases where the multi-
path interference is very nearly specular in nature and either an actual
or virtual specular point can be identified. A math model for the
received signal in such a case contains parameters which, together with
selected time derivatives, constitute a vector which is eas;ly concep-
tualized intoc the "state" of a state space model of the problem dy-
namics. And the latter provides the mathematical framework necessary
for applying recursive state estimation technigques to the optimal
receiver design problem. This was the approach taken in ‘the rgsearch.

Two algorithms resulting were studied extensively:

i. An bptimal recejver: The state vector included signal-to-noise
ratios, angular coordinates, angular rates, the phase dif-
ference and scalloping frequéncy parameters.

ii. A Suboptimal receiver: A structure similar in some respects to
the optimal receiver but the phase difference and scalloping
frequency parameters were not estimated.

Both algorithms generally oﬁtperformed in simulation a "threshold
receiver" design which was approximately representative of the current
Phase III Receiver. The Optimal design generally was the best, at least
when the scalloping rate was less than half the angle function repe-
tition rate ané hence the phase difference parameter could be tracked
successfully. The suboptimal design, at least in the simulation, suf-
fered from extremely complex and 1length computaiions. The optimal

‘Qdésignt(and presumably the suboptimal design, would also) exhibited a



high sensitivity to error in the (presumed) beam width of the MLS ground
antenna. These and other simulation results are discussed at length in
the report, and approaches are suggested for possible improvements in

performance.

Some considerations relating to an experimental receiver design are

also offered.






SECTION IT

SIGNAL MODEL AND ESTIMATOR DESIGNS

The signal available to the processor is a log video signal with
bandwidth approximately half that of the i-f channel of the receiver.
We begin at this point with the adaptation of this signal, in part A
below, for use by the processor. Part B presenté a state space model of
the evolving problem geometry. Part C describes the general approacﬁ
used to optimal receiver design, and Part D develops specific designs
studied in the research. The reader is assumed to be familiar with the
MLS system concepts and signal formats; for this orientation, refer to
[61, [7] and [8].

A. THE AMPLITUDE-SQUARED ENVELOPE SIGNAL

The receiver log-envelope signal, a continuous-time signal within a
scan, is sampled throughout a window on each semi-scan (centered on the
expected centroid of the direct path pulse) at a sampling rate approxi-
mately equal to the i-f bandwidth and then suitably exponentiated and
squared; the resulting J samples of the amplitude-squared envelope taken
within a given scan are then normalized to a suitable measure of
receiver noise powex and assembled into an observations, or measurement,
vector u, which clearly is nonlinear in the problem parameters of in-
terest and also corrupted non-additively by receiver noise. Specifi-
cally, for the kth scan, k = 0,1,2,-~--, and in terms of a discrete-time
variable tj local to the scan, and assuming the presence of a direct-
path component, a single multipath component and receiver noise, the jth

component of u, say uj, i=1, ---, J is modeled as follows:

5  FRYGEEWR pAGE BLAYR NUT Kihiaks,



u, = {ap[6 - BA(Ij)] + aRP[BR - BA(Ij)]cos éj + nc.}2

J J
+ {aRp {BR - BA(tj)] sin Bj + nsj}z (2.1)
where
‘d = o(k) = direct path signal-to-neise ratio (2.2)
8 = 8(k) = angular coordinate of own A/C (2.3)
ap = aR(k) = mnultipath signal-to-noise ratio (2.4)
GR = GR(k) = angular coordinate of reflector specular point (2.5)
Bj = B(k,tj) = direct path-to-multipath phase difference at the
jth sample of the kth scan, propagating as follows:
w
By = BUR) +w T, + - - (2.6a)
where

B(k) = phase difference at the start of the kth scan,

propagating similarly, i.e.

B(kt1) = B(k) +w_ T, +—= T2 + -—- (2.6b)
in which

Tk = time interval, kth-to-(k+1)th scans. (2.7

wo. the sgﬁlloping rate (also derivatives may be
present) (2.8)

BA (.) = the transmitting antenna scanning function {2.9)

(see equation (2.124) below)
pl-] = the transmitting antenna selectivity Ffunction - (2.10)

(square root of power density at a constant radius) and

n_,n  are independent Gaussian random variables
3j j with mean zero, variance 0.5. (2.11)



This model neglects second-order effects ([3], p. 9) chiefly

a. Doppler effects not influencing the scalloping rate

b. Differential propagation delays (e.g. c

tend to distort the mirror symmetry that exists between the
T0-, FRO-scan signals.
B, THE STATE-SPACE MODEL
The wvarious parameters appearing in uj, (2.1) above, together with
time derivatives of interest, are assembled into an Ns-dimensional state
vector, x, modeled as the solution of a suitable linear difference
equation evolving in discrete-time, from scan-to-scan, and excited by a
white, =zero-mean random process, <xepresenting externmal influences.
Hence, the composite generator-of-observations model is taken as a state

space formulation with form as follows:

x(k+1} = F(k)x(k) + 6(k)z(k)

u(k) = h(x(k),n(k)) {2.12)
where
x(k) = state Ns-vector (2.13)
z(k) = a representation of the various external influences on the
modeled environmment, taken as an M-vector random process,
white with mean zero and covariance matrix Q(k),
where ' (2.14)
QK £ <z ()2’ (1)> (2.15)
F(k) = state 1-step transition matrix (2.16)

G{k) = an Nsx ¥ input comstraint matrix of rank M, where--

M <N (2.17)

u(k) = obsexrvations J-vector (2.18)

( ‘reflect ~ rdirect), which



n(k) = a 2J-vector of the quadrature components .,
o of receiver noise associated with the J sampiles
othhe noisy envelope (n(j) and n(k) are independent
if j # k). (2.19)
h(+,+) = a nonlinear vector-valued function of its arguments,
constructing u(k) as a J~vector of envelope samples.
uj, equation (2.1). ‘ (2.20)
C. THE ESTIMATION APPROACH
In developing a procedure for estimating the angular coordinate 6,
it was clear from (2.1) that performance would be better if more of the
state variables than just ® were estimated. It was also clear that not
all of the state variables influence the vector u(k) of observation's
taken within a single scan: in the‘present formulation, for example, O
and BR are considered éonstants during the active scan, hence 8 and éR
are absent from (2.1), nevertheless they are necessarily included as
variables in the state vector to afford.modeling tractably a wvarying
geometry over a sequence of scans. The functional dependence of‘u{k) on

only a subset of the state variables posed a choice:

1. Estimate only the subset of state variables associated
with u(k).

2. Estimate the full state vector x(k). ¢+
The first option very likely would result in severe~dg§eneration in
performance, éuring signal fades, including possibly loss of lock. The
benefits promised by a modest filter memory, however, (represented by

rate estimates in a receiver state estimator, e.g.) prompted the second

choice, and we began to consider the criterion under which a suitable



estimate of the full state x(k) could be calculated recursively, given
the complexity of the observations.

Ideally, given a sequence of observations u, (2.12b), say from some

initial: scan through the present (kth) scan, represented as follows:

U0 £ fu(),u(@), -, w3, @.21)

we might adopt as a candidate criterion of performance the mean square
error criterion and seek to calculate the conditional mean <x(k)|U(k)>
as a basis for an optimal MLS receiver design. Without loss of general-
ity, however, the conditional mean can be written as

@[> = x| uk-1)> + <E(1)| U(K)> (2.22)

where

<x(k)|U(k-1)> = F(k+1)<x(k—1){U(k—1)> . (2.23)

is the extrapolation of the prior estimate to the present, and
<E(k)|U(k)> is the conditional mean of the error

(k) £ x(0) - <x(k)[U(k-1)> | (2.24)

in the extrapolated estimate (2.23). Hence, via (2.22), a conditional
mean receiver is essentially equivalent to a calculation of <E{(k)(U(k)>,
a task which, génerally,

1. As the notation suggests, may involve individually each and
every observation .constituting the sequence U(k), and in
addition,

2. May not even be computable in a finite number of operatiomns,
or even easily approximated.

A class of notable exceptions exists in which not only is <E(k)lU(k)>
computable or easily approximated, but all the historical informatiaﬁ in
dated observations necessary for the calculation of <E(k)| U(k)> is

9



carried in the extrapolated prior state estimate <x(k)|U(k-1)>, (2.23);
that is <E(k)1U(k)> can be written

€| V(0> = £(<x()| Vk-1)>, u(®)), for some £(,*). (2.25)
Two examples are the following:

1. The Kalman filter, applicable when h{x,n) is linear in both x
and n, gives an exact calculation of (<E(k)lU(k)>;

2. The Extended Kalman filter, applicable when h(x,n) represents an
additive corruption of the observations by n, gives an approximat
calculation of <E(k)|U(k)> when h(x,n) is nonlinear in x.

éecause of the complexity of the observation h(x,n) [recall hj’

(2.1)] and the computability requirement (for simulation and also,
potentially, hardware), the estimation approach used in this research
was, of necessity, an approximation. An adaptation of the preceéding
was used, producing a state estimate (generally now suboptimal), denoted
ﬁ(klk) to distinguish it from the exact conditional mean, and obtained,
as follows:

}’E(k' k) = }'E(k,k-l) + g(klk) ‘ (2.26)

where

R(k[k-1) = FO-DR(k-1[k-1) (2.27)

and g(klk) is a "'suitable" estimate to be defined below, of the érror
£(k) in ﬁ(k[k—l), given ﬁ(klk-l) and u(k), where

E(k) 8 x(x) - i‘:(k[k—n (2.28)

The estimate %(kfk) will be functionally dependent only upon i(k]k-l)
and u(k). A final error definition needed and an easilyféébved result
of interest are, as follows:

£(k) - é(kl k) (2.29)

x(k) - ﬁ(klk) (2.30)

e(k)

10



i.e., the error in theuestimate %(klk) is the residual error in the
updated state estimate ﬁ(klk).

Since the obsexrvations u(k) are functionally dependent upon only a
subset of the state wvariables, the calculation of g(krk), i.e. the
estimation of the errvor £(k) in ﬁ(klk~1), given ﬁ(k]k—l) and u(k)y was
accomplished in 2 stages, characterized respectively as the Scan Data
Processor (SDP) and the Tracking Loop Filter. The SDP essentially does
a curve-fitting of a noiseless, internal version of the observations
with the noisy, actual ones, calculating perturbations (error estimates)
of the associated elements of X(k|k-1) to improve the fit. The Tracking
Loop, closed around the SDP in a conventional recursive structure,
develops on estimate of the full error vector £(k), taking the assumed
state evolution dynamics into account. A detailed discussion of these
two stages is given below.

The approach taken was modified, in part, by two factors, as

follows:

1. The presumed low-bandwidth of the state evolution model wrt
the repetition rate, implying, quantitatively,

x(k) ~ F(k~Dx(k-1) (2.31)

(i.e. 6(k-1Dw(k-1) in {2.12) is small).

2. The "tracking" nature of the estimation task implying, pre-
sumably,
x(k) © %(kjk) (2.32)

(i.e. the estimation error e(k), (2.31), is "small™).
Eguations (2.27), (2.28), (2.30) and (2.31) above imply that £(k) may be

approximated, as follows:

11



g(k)‘ﬁ F(k-1)e(k-1) {2.33)
and this, with (2.32) above implies that

E(k) is "small", (2.34)
a result important to the design of the SDP described next.

Scan Data Processor

Let ¥ denote the parameter vector comprising the subset of NG state
variables on which uj, (2.1), is functionally dependent. The general
relation

y = Hx (2.35)
then defines a masking matrix H,-NG X NS, having rank NG < Ns_and con-
sisting appropriately of 1's and 0's. Other NG-vector quantities of
interest are obtained, as follows:

Extrapolated Prior Est: Y(kik-1) = BR(k{k-1) (2.36)

Error in ¥(k|k-1): e(k) = HE(Kk) (2.37)

By (2.34), e(k) in (2.37) is '"small", and Murphy's Locally Optimum
Estimation (LOE) theory, [9], was brought to bear on the calculation of
an estimate which, around &=0, should be optimal in an intuitivelﬁ
appealing sense. The LOE criterion is summarized, in the notation of
the SDP, as follows:

Locally Optimum Estimation: The estimate £ of the error € (in

the present estimate ¥ of the parameter Y) is locally optimum

308

at the point &=0, if and only if giﬁ%)i the following two

conditions are satisfied:

1) £ is a locally unbiased estimate of £ at the point

of =0, and

12



2) £ is a locally minimum mean-squared error (MMSE)

estimate of € at the point &=0,

where ‘'locally unbiased' and 'locally MMSE' estimations are defined as

follows:

and

Locally Unbiased Estimation: Defining the error ‘in the
estimate £ of the quantity & as follows:

n(x) & B(K|K) - e(x) (2.38)
and then defining the bias of the estimate £ of the error €
(in the estimate ¥ of the parameter ¥), as follows:

b(e) 4 <n(k)ly -3 =8> ‘ (2.39)

then the estimate € of the error & (in the estimate ¥ of the

parameter y) is locally unbiased at the point &=0 iff the

following two conditions are satisfied:

1) b(0) =0, on NG—vector (2.40a)
db(g) _ .
2) i o 0, on N x N, matrix (2.40b)

in terms of n, (2.38) above, as follows:

Z (&) 4 <ﬂ(k)nT(k) y-¥=g, ( )T = transpose, (2.41)
g

then the estimate £ of the error £ (in the estimate ¥ of the

parameter y) is locally MMSE at the point &=0 iff, for any

estimate, 6, if & locally unbiased at &€=0, the mean-squared

errors of £ and § satisfy, in the usual non-negative definite

sense,

13



Z-(0) > X (0), NG x NG matrices (2.42)
] T8

The error n{k) is induced by the noise n(k) which is white (recall
(2.11) and (2.19)); hence, clearly, local to the point &=0, when <n> = 0
via (2.39), it is true also that n(k) is white, i.e.

@ K> =0, j#k (2.43)
We take note, in passing, of the important and beneficial property given
in (2.40b), requiring that errors made in estimating the various com-
ponents of the vector £ be decoupled when £=0. In addition to making
the estimate unique, this. is probably effective in extending the pro-
perties in (2.40a) and (2.42) into the open region around the point £=0.

Murphy has meticulously expounded the theory and solution of the
locally optimum estimation problem in his scholarly work {9] and illus-
trated his results in diverse examples in communications. The solution,
applied to the SDP design problem at hand, involves, first, the defini~
tion of several additional quantities:

1. The noiseless quadratic envelope vector q with element qj.

2. The linear envelope vectors m and v (and associated elements),
corresponding respectively to quadratic envelopes ¢ and u.

3. The conditional probability density function (pdf) p(vlm)
4. The likelihood ration A(uly) Let m and mg respectively be
k| 3
the linear envelope functions associated with a cosine and sine ortho-

gonal decomposition of the noiseless i-f (or r-f) signa}:

=]
Il

apl6 - BA(IJ.)] + &’Rp[GR - BA(tj)]cos BJ. _ (‘ (2.44a)

=
|

= aRp[B - BA(Ij]sin Bj (2.44b)
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various parameters of which are as defined, following (2.1). Then, in
the same manner that the J-vector u of observations uj was éonstructed,
a noiseless quadratic envelope vector q is defined with elements qj,
i=1,2,...,J, where

— 2 2
qj mc:j + msj (2.45)

= v2n2 . 2 .2

= o pj(e) + ZaaRPj(G)pj(BR)cosBj + ooy Pj (GR) (2.46)
in which pj(e) is short-hand for p[S—BA(tj)], and similarly for pj(BR).
The observations sample uj, (2.1} may then be written as

= 2 2
uj (mc‘ + nc.) + (ms. + ns’) (2.47)
J J J ]
or, equivalently

1
_ L2 2
uj qj + 2nc'[qj] tal o+ n? (2.48)

J J J

Now, let m and v respectively represent noiseless and noisey linear

envelope vectors with elements mj and vj, respectively, for j=1,2,...,7,
where
1 3
m, 8 q.%= [m2 +n2)® (2.49)
J J C. s,
J J
A 2 21%
v.Zu,*=Jm +n )2+ {m +an )?) (2.50)
7o 5% 5%

Since the sampling rate within the scan equals the i-f bandwidth, the
noise samples are all nearly independent (and zero mean, Gaussian with
variance 0.5; recall (2.11)). Hence, referring to [10, eq. (8-115)] for

the conditional pdf p(vj mj), the conditional pdf p(vlm) can be written

J
p(v’m) = H_lp(vj,mj) (2.51)
J-—
3 ;
= 2 o 2 ‘
=2 ?zlvjlo(2mjvj)exp( mj Vj) {2.52)
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where Io(-) is the modified Bessel function of the first kind, zeroth

order. The likelihood ratio of interest is the following:

J
_plvim) _
= %f;+57 = ?:110(2mjvj)exp(—mj2) _ {2.53)

or, defining a new function MO(°): R+ > R+, as follows, in relation to
the even function Io(°) ({37, p. 13):
Mo(x2) =I(x), x¢ Rl (2.54)

then, in terms of qj and uj, we may write

J

Muly) = 1o Uagugexp(-ay) (2.55)
J

- ?zlaj(uj]qj) (2.56)

where the conditioning variable on the left is shown as y, rather than
q(=q(y)), to emphasize the parameter values.

The theory provides, further, that if one of the parameters upon
which q is dependent is, in fact, a random variable, say {, in which
there is no estimation interest, then it is té be averaged out before

proceeding, i.e. the average likelihood ratio
J
Auly) =<1 Ao e, (4,0) v,y (2.57)
j=1J 31

is unsed in the work below. In this approach (which formed the basis of
one variant of MLS receiver design studied) cleaxly the noiseless enve-
lope vector g has no further significance.

The Scan Data Processor design by the LOE approach can now be
completed. In the notation of the SDP design problem (but otherwise

quite generally) the estimate §(k|k) of the error £€(k) (in the estimate
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?(klk-l) of the parameter vector 7y) which is locally optimum at &=0 is
given by

Bk = o7 DA (2.58)
where, recognizing u(k) = u(y{k),n(k)),

o) & AClr,n) [P Qe D |v = P (2.59)
denoted as the LOE (Fisher) Information Matrix, and

9
e 1o ACa|®) Any) # 0 (2.60)
Aalp 2y ¥ | |

=]

s otherwise
Further, the mean-squared error, X, (2.41), of this estimate local to
the point &=0 is

(o) = &7(y) (2.61)

As indicated above, several 'variants to the basic MLS receiver
design using this approach were studied, differing initially in their
definitions of the state and/or parameter vectors, x and ¥y éespectively.
Detailed development of the LOE quantities defined above is deferred
until the next section of this chapter where the wvarious designs
specific to particular state and/or parameter vector formulations will
be described. We conclude this discussion of the Scan Data Processor by
noting that, in view of (2.58) and (2.61) above, the principle calcula-
tions done by the SDP are those of ®(¥) and A(u|?). These, in fact, are
the quantities passed to the Tracking Loop Filterxr, discussed next.

Tracking Loop Filtex

Inputs to the Tracking Loop Filter from the Scan Data Processor are

the quantities A(ul?(klk-l)) and ¢(?(klk~1)). If we form the estimate

17



§(k1k), as prescribed in (2.58), that is:

Ek|k) = REPA@|D (2.62)
where = ?(k‘k—l) (2.63)
and R 2 o7 (gk|k-1)) *(2.66)

and then tentatively form a "pre-estimate", ?(k[k), in the following

manner:
k[0 = YD) + Ew, (2.65)

we find that ¥ can be written
§ = ?(k[k-l) + e(k) + ﬁ(klk) - &(k) (2.66)
= y(k) + n(k) (2.67)
= Hx(k) + n(k) (2.68)

i.e. the pre-estimate §(k[k), in a néighborhood of €¢=0, is in fact, a
"pseudo-cbservation" which is both linear in x and corrupted additively by the
zero mean, white noise ﬁ(k) with covariance R(?(k,k-l)), (2.63).

Following conventional Kalman filter theory and forming the innova-
tions process, ?(k]k—l) - %(k[k), gives

§Cefr-1) - §(k|k) = £(k|i) (2.69)
i.e. the innovations process is the estimate §(klk), (2.62), produced
(effectively) by the LOE—theory—baged Scan Data Processor. The filter
state update equation has the form

R(c|k) = &(k[k-1) + k(K)E(k|K) (2.70)
where K{(k), the Kalman gain, is calculated by cycling through 3 equa-
tions for each value of k, k = 1, 2,..., usually as follows:
Extrapolated Error Covariance:

P(k{k-1) = F(k-1)P(k-1]k-1)FL (k-1) + G(k-1)Q(k-1)6T(k-1)  (2.71)
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http:R&)A(u-1Y)D(2.62

Kalman Gain:

k(k) = P(klk-I)HT{HP(ka-l)HI + R (2.72)
Updated Error Covariance:

Pkl k) = (I-K(k)H)P(k]k-l)(I-K(k)H)T + KCORYK (k) (2.73)
In the present application some simplification is possible, however.
Comparing (2.26) and (2.70) above indicates that

g (k|

i

k(K2 (k| k) (2.74)
K(KR(PA(n

1) (2.75)
and substituting from (2.72) into the latter gives

g(k|k) = P(klk—l)HT[HP(k|k—1)HT + REDITRDAQ|D) (2.76)
or, after simpliﬁyiﬁg,

E(k|K) = TAQ(|D _ . (2.77)
where

Fk) = P(e|k-DET + o(EP (k] k-1 (2.78)
is a new NS X NG gain matrix not requiring the inversion of the matrix
(¥} (produced by the SDP) for its calculation (by (2.64), R—1(§)
appearing in the simplification, was replaced by ®(¥)). The refined
state-estimate update equation, corresponding to (2.70) is the follow-
ing:

20 1) = 2(k|k-1) + FOOAG|D) (2.79)

Comparing (2.75) and (2.77) indicates that

K(KJR(Y) = T(k) {2.80)
or that
k(k) = TAOR () = F)6(§) (2.81)

Substituting this dinto (2.73) and simplifying gives the following:
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http:4(i)KP(kk-1)H(2.78

Updated Error Covariance:

P(k|K) = (I-T(QBHBP(|k-1) T-TESHMT + T () (2.82)
which also does not require the inversion of &(y).

In summary, the MLS receiver design developed, a tracking receiver,
will operate as a recursive state estimator and begin the (kth) data
processing cycle by extrapolating the prior state estimate X(k-1}k-1) to
the present, producing the

Extrapolated 