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NOMENCLATURE

A matrix for rotation about the y-axis

B matrix for/rotation about the z-axis

b wing span, m

c chord, m

c mean aerodynamic chord, m

i_ propeller or nacelle incidence (body centerline reference) , deg

i_ propeller or nacelle yaw angle, deg (see fig. l(b))

M Mach number

N nacelle with simulated jet exhaust

P propeller

R radius of propeller disc, m

r radial distance along propeller blade, m

t airfoil thickness, m

U column vector (see appendix A)

u velocity in the x-direction, m/sec

Ul,U2,U 3 components of the U-column vector

V transformed column vector, V = AU

V free-stream velocity, m/sec

v velocity in the y-direction, m/sec

vN (see fig. 4)

Vl,V2,V 3 components of the V-column vector

W transformed column vector, W = BV

W 1 rectangular wing

W2 swept wing

W3 tapered wing with a crank trailing edge
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W4 twisted and cambered wing

w velocity in the z-direction, m/sec

Wl,W2,W 3 components of the W-column vector

x,y,z Cartesian coordinates

_r

angle of attack, deg

r

_L propeller blade angle of attack at _ = 0.75, deg\

r

propeller blade pitch angle at _ = 0.75, deg

A L difference between maximum and minimum values of _L

azimuth angle, deg (see fig. 3)

(see fig. 4)

rotational velocity, rad/sec

_,_,_ (see fig. 3)
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INTERFERENCE EFFECTS OF AIRCRAFT COMPONENTS ON THE

LOCAL BLADE ANGLE OF ATTACK OF A WING-MOUNTED PROPELLER

J. P. Mendoza

Ames Research Center

- SUMMARY

A brief theoretical study was conducted at M = 0.6 to obtain an under-

standing of the aerodynamic interference effects on a propeller operating in
the presence of different wing-body-nacelle combinations. The study was
directed toward minimizing the unsteady blade angle-of-attack variation with

azimuth angle by varying the pitch and yaw of the nacelle. For the particular
configuration of interest the minimum blade angle-of-attack variation occurred
with the nacelle pitched downward 4.5 ° and yawed inward 3.0 °.

INTRODUCTION

Since 1973, the fuel fraction of the direct operating cost for air trans-
ports has been steadily increasing, thus creating the need for fuel-efficient

airplanes (ref. i). Studies have indicated that a turboprop-powered airplane
operating at M = 0.8 could achieve a 10-20% savings in fuel relative to a

comparable turbofan-powered airplane. For this reason, research efforts are

currently underway in categories such as advance propellers, propeller noise

and fuselage noise attenuation, propeller and gearbox maintenance, and

airframe-propulsion systems integration. In this last category, both theoret-
ical (ref. 2) and experimental (ref. 3) investigations have been conducted to

determine the propeller slipstream effects on wing-body-nacelle- and wing-
body combinations, respectively. One aspect of airframe-propulsion systems
integration that has not been widely investigated is the problem of the inter-

ference effects on the propeller blade attributed to the presence of airplane
components such as wings and bodies. In particular, the problem that has not

been previously addressed is that of minimizing the cyclic bending moments

applied to the propeller blade caused by the local blade angle-of-attack

variation with azimuth angle. As a result, the present investigation was
conducted: (i) to obtain a better understanding of the interference effects

on the propeller blade due to the presence of wings and bodies and (2) to

minimize the blade angle-of-attack variation with azimuth angle for a given
turboprop transport model.



AIRPLANE COMPONENTS

The five different configurations used in the present theoretical study
are shown in figures 1 and 2. They include an isolated nacelle with a simu-

lated jet exhaust (fig. i) and four different wing-body-nacelle configurations,
also with simulated jet exhausts (figs. 2(a) through 2(c)). As noted in

figure 2(c), two of the configurations (PBW3N and PBW4N ) were identical except
for wing camber and twist. The wing sections for the configurations with the

rectangular and swept wings had the same thickness distribution. The airfoil "

coordinates are presented in table I. The coordinates for the tapered wing
with the crank trailing edge are shown in table 2 for four span stations.

The coordinates at four span stations for the cambered and twisted wing which '
had the same planform as the tapered wing are presented in table 3. Each of

the four wings had 2° of dihedral. The nacelle was pitched and yawed about
the fixed reference point shown in figure i.

METHOD

Because a generalized method is not presently available, an approximate

method was developed for estimating the interference effects of nearby air-
plane components on the local angle of attack of a propeller blade. The

method is based on the assumption that the inflow into the propeller disc is

dominated by the aircraft configuration and is essentially independent of the
propeller and its slipstream. Under this assumption, the local inflow veloc-

ities can be combined vectorially with the rotational velocity of the propel-
ler blade to define a local blade angle of attack as a function of azimuth

angle. The method used to predict the local flow velocities was the Douglas-
Neumann Potential Flow Program (ref. 4) which is a linear panel method capable

of analyzing complete aircraft configurations. Using this method, velocities
are computed at off-body points corresponding to points at r/R = 0.75 on

the propeller blade at different azimuth angles. The point at r/R = 0.75

coincides with the centroid of the load distribution of the propeller blade
and the flow at this point is considered to be representative of that for the
entire blade.

The problem of minimizing the cylic bending moments of the propeller
blade caused by the variation in the local angle of attack of the blade is a

difficult problem in itself. The difficulty is increased at higher subsonic

Mach numbers where transonic effects are present and no adequate transonic
analysis is presently available. To simplify the problem and allow the use of

linear methods, it was assummed that the local angle-of-attack variation of
the propeller blade at M = 0.8 is essentially the same as that at M = 0.6 -

for the same velocity ratio which is the ratio of the tip velocity to the free-

stream velocity. The velocity ratio was 1.0. The design blade pitch angle,
B0.75 R, of 56.5 ° at M = 0.6 was used throughout the present study.

Shown in figures 3(a) and 3(b) are the flow velocities at a point on the

propeller blade. The propeller, unless otherwise noted, has right-hand
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rotation (counterclockwise as seen by an observer in front of the airplane)
and is installed on the right wing panel. The flow velocities which are

computed by the method of reference 4 are transformed by the procedure

described in appendix A into the wl, w2, and w3 components shown in

figure 3(a). These components, in turn, are resolved into velocity components

along the axes of a coordinate system that rotates with the propeller. Two of
the three components are shown in figure 3(b). The third component that is
parallel to the radius of the propeller does not contribute to the blade bend-

ing moment and, therefore, is not included in the analysis. From figure 3(b)

vN = r_ - w2 sin _ - w3 cos

• Since

= tan-l(wl/VN)

then aL, the local angle of attack of the blade is given by

_L = B -

where 6 is the propeller pitch angle•

RESULTS

Component Buildup

To obtain a better understanding of the interference effects on the

propeller blade attributed to the presence of nearby airplane components such

as wings and bodies, an airplane component buildup was conducted starting with

an isolated propeller and continuing on to wing-body-nacelle configurations
with varying wing geometry• Blade angle-of-attack variations with azimuth

angle were compared for the different configurations. By using the results of

the isolated propeller study as a basis for comparison, the effects of adding

or changing various airplane components can be assessed. The local angle of
attack of the propeller blade is understood to be computed at r/R = 0.75.

• Figure 4 shows the variation of the local angle of attack of the propeller
blade with azimuth angle for an isolated propeller in a uniform flow field•

The solid line represents the condition where the propeller axis of rotation

is aligned with the free-stream velocity vector, while the dashed line repre-

sents the condition where the propeller axis of rotation is pitched upward 2°
which is observed to produce a AeL of 2.5 °.

Figure 5 shows the results for an isolated propeller P and for a pro-
peller in the presence of a nacelle with a simulated jet exhaust PN. In both

cases the propeller axis is at ie = 0°. The asymmetry of the nacelle induces

nearly i ° of unsteady blade angle-of-attack variation. Figure 6 shows the
effects of pitch angle on the PN configuration• Note the variation in

AeL with varying ie. The smallest value of Ae L is at ie = -0.5 °.
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Comparison of the blade angle-of-attack characteristics for the con-

figuration buildup is shown in figure 7 starting with an isolated nacelle and

continuing on to a rectangular wing-body-nacelle configuration, PBWIN. For

this comparison the body and wing are at 2° angle of attack and the nacelle

is pitched downward 2.5 ° relative to the body centerline (-0.5 ° relative to

the free stream). Note the small contribution of the body to the overall level

of _L which is in sharp contrast to the effect due to the wing with its
attendant upwash field.

Figure 8 shows the effects of varying nacelle pitch angle on the blade

angle-of-attack characteristics for the rectangular wing-body-nacelle
configuration, PBWIN. The wing and body are at 2° angle of attack while

the nacelle is pitched from -2.5 ° to -4.0 °. The smallest value of AeL

occurs at i_ = -3.5 °.

Figure 9 shows the effect of wing sweep. Blade angle-of-attack character-

istics for wing-body-nacelle configurations with a rectangular wing (PBWIN)

and a swept wing (PBW2N) are compared. The wings and bodies are at 2° angle

of attack and the nacelles are at i_ = -3.5 °. The sweep angle for the swept

wing was 35 °. Wing sweep is shown to produce a substantial increase in

A_L because of the sidewash that is induced by a wing sweep. To compensate
for the effects of sidewash induced by wing sweep, the nacelle for the swept-

wing configuration (PBW2N) was yawed from 0° to 2.5 °. The results are shown

in figure i0. The wing and body are at 2° angle of attack and the nacelle is

at i_ = -3.5 °. The smallest value of A_L is at iB = 2°.

The effects of wing planform on the blade angle-of-attack characteristics

were investigated using the swept wing-body-nacelle configurations PBW2N and

PBW3N. The results that are shown in figure ii show a small change in the
blade angle-of-attack characteristics as a result of the change in wing plan-
form. A comparison of the blade angle-of-attack characteristics for the

tapered wing-body-nacelle configuration with and without camber and twist is
shown in figure 12. The significant changes shown in the blade angle-of-attack
characteristics for the cambered and twisted wing are produced by the change

in the induced upwash field of the wing.

Blade Angle-of-Attack Minimization

In the present investigation, the procedure used to minimize the cyclic

bending moments applied to the propeller blades of a turboprop transport model

is to minimize A_L. Except for the addition of nacelles and simulated jet
exhausts, the PBW4N configuration is the same as that used in the investiga-

tion reported in reference 3. Since it has been shown that A_L can be ..

minimized by varying the pitch and/or yaw of the nacelle, the nacelle of the

PBW4N configuration was yawed from 2° to 3.5 ° in 0.5 ° increments. At each

yaw angle the nacelle was pitched from -2.5 ° to -5.5 ° in i° increments. The
results of this study are shown in figures 13(a) through 13(d) and the data

for these figures are summarized in figure 14. This shows values of A_L for
each combination of pitch and yaw angles. The minimum value was found to be

2° and corresponds to i_ = -4.5 ° and iB = 3.0 °•



To determine the effect of reverse propeller rotation which corresponds

to a propeller with right-hand rotation mounted on the left wing panel, blade

angle-of-attack characteristics for the PBW4N configuration are compared for
the propellers with counterclockwise and clockwise (reverse) rotations. The

body and wing are at e = 2° and the nacelle is at iS = -4.5 ° and i8 = 3.0 °

which are the optimum pitch and yaw angles for minimum A_L for the counter-
clockwise rotating propeller. Figure 15 shows that in addition to the expected

change in phase angle there is an increase in AeL from 2° to 3° (reverse
rotation).

CONCLUSIONS

The interference effects on the propeller attributed to the presence of

different airplane components such as wings and bodies (including nacelles

with simulated jet exhausts) were found to affect the blade angle-of-attack

characteristics significantly. Compared to the effect of varying the inclina-
tion of the propeller axis of rotation, however, these effects are not as

large. Each component is shown to affect the blade angle of attack to some

extent. The largest component effect came from the wing. The minimum value
of _L for the PBW4N configuration was obtained with a nacelle orientation

of is = -4.5 ° and iB = 3.0 °.



APPENDIX A

As previously described, the nacelle can be pitched and yawed about a

fixed reference point (fig. i). For given values of ie and i6, velocities
can be computed (using the method of reference 4) at off-body points corre-

sponding to points on the propeller blade. To compute the local blade angle
of attack, these velocities are resolved into components along the axes of a
rotating orthogonal system of coordinates (_,_,_) shown in the inset in ""

figure 3. Let (x,y,z) be the coordinates of a point on the propeller blade

at r/R = 0.75 for a given azimuth angle. The column vector U represents
the velocity components. Matrix A is the i_ rotation matrix and V _

represents the transformed vector. The transformation is given by

V = AU (i)

If B represents the i 6 rotation matrix, the final transformed vector is W.
This transformation is given by

W = BV (2)

The final transformed vector W is related to U by

W = BAU (3)

Equation (i) may be written as

iv]vVsn0°ossn0]E]u
The uI, u2, and u3 are the x, y, and z velocity components given by the
method of reference 4 at the point (x,y,z). Equation (2) may be written as

lWll Ic°i i6 sini6 ilIVl I

w2 = si i6 cos i6 v2

w3 . 0 v 3

Here the wI, w2, and w3 are the velocity components that are shown in
figure 3. -"
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APPENDIX B
• o

To verify the results of the present investigation, velocities at off-

body points that were computed by the method of reference 4 were compared to
those computed by two different methods, one of which was the transonic
potential flow solution of Jameson (ref. 6) and the other was the modified

small disturbance theory program (ref. 7). Since the Jameson method cannot

treat wing-body configurations, a wing-alone case was computed using each of

the three methods. The geometric characteristics of the wing alone is identi-
cal to the wing of the PBW4N configuration from the 12% to the 100% semi-

span stations. The wing area of the wing-alone configuration is approximately
equal to the exposed wing area of the PBW4N configuration. The Jameson

computer program was modified to print velocities at off-body mesh points in

the sheared parabolic coordinate system. The mesh points were in a region in
front of the wing, above and below the wing chord plane. The coordinates of
the selected mesh points were used as inputs to the method of reference 4

which has the capability of computing velocities at arbitrarily specified off-
body points, so that a direct comparison of the velocities can be made. Like

the Jameson program the method of reference 7 does not have the capability of

computing velocities at arbitrary off-body points. This computer program,
however, was similarly modified to print velocities in a given region of the

wing-alone flow field. Since the program has been designed to generate its

own coordinate system, it was necessary to interpolate between mesh points to

obtain velocities at given "Jameson mesh points." Shown in figures 16(a-c)
are comparisons of the various velocity components. The Ax/_ indicates the

distance ahead of the wing leading edge. The coordinates have been normalized

by the mean aerodynamic chord and the semispan of the PBW4N configuration.

All three methods agree fairly well with one another with the exception of

the method of reference 7 which predicts lower values of the w/V than the
other two methods.

Shown in figure 17 are the velocities at off-body points corresponding
to points in the propeller disc at r/R = 0.75 for the wing-alone cases

computed by the three different methods. Note that, as in the previous com-

parisons (fig. 16(c)), the overall level of the w/V_ component computed by
the method of reference 7 is lower than the w/V= levels computed by the

methods of references 4 and 6. The effect of the differences in w/V= on the

blade angle-of-attack characteristics is shown in figure 18. The wing-alone

velocities were adjusted for the effects of the body and nacelle using incre-
ments computed by the method of reference 4. The blade angle-of-attack char-
acteristics based on the velocities computed by the methods of references 4

and 6 are shown to be in good agreement with each other while eL based on
w the results of reference 7 shows a different overall level.
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TABLE i.-- AIRFOIL COORDINATES FOR WINGS W 1 AND W2

t/c

x/c Upper Lower

surface surface

0.00000 0.00000 0.00000

.00961 .02406 -.02406

• .02153 .03579 -.03579

.03806 .04677 -.04677

.05904 .05650 -.05650

•08427 .06450 -.06450

•11350 .07045 -.07045

•14645 .07432 -.07432

•18280 .07638 -.07638

.22222 .07695 -.07695

•26430 .07635 -.07635

•30866 .07476 -.07476

•35486 .07231 -.07231

•40246 .06908 -.06908

•45099 .06520 -.06520

•50000 .06074 -.06074

•54901 .05579 -.05579

•59755 .05047 -.05047

•64514 .04490 -.04490

•69134 .03918 -.03918

•73570 .03345 -.03345

•77770 .02782 -.02782

•81720 .02243 -.02243

•85355 .01744 -.01744

•88651 .01297 -.01297
•91574 .00912 -.00912

•94096 .00597 -.00597

•96194 .00353 -.00353

•99039 .00067 -.00067

1.00000 .00000 .00000



TABLE 2.--AIRFOIL COORDINATES FOR WING W3

y/(b/2) = 0.12 y/(b/2) = 0.35 y/(b/2) = 0.70 y/(b/2) = 1.00

t/c t/c t/c t/c

x/c Upper Lower Upper Lower Upper Lower Upper Lower
surface surface surface surface surface surface surface surface

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

.00961 .02406 -.02406 .01721 -.01721 .01675 -.01675 .01576 -.01576

.02153 .03579 -.03579 .02492 -.02492 .02425 -.02425 .02281 -.02281

.03806 .04677 -.04677 .03198 -.03198 .03112 -.03112 .02927 -.02927

.05904 .05650 -.05650 .03834 -.03834 .03730 -.03730 .03509 -.03509

.08427 .06450 -.06450 .04398 -.04398 .04279 -.04279 .04026 -.04026

.11350 .07045 -.07045 .04891 -.04891 .04759 -.04759 .04477 -.04477

.14645 .07432 -.07432 .05316 -.05316 .05173 -.05173 .04866 -.04866

.18280 .07638 -.07638 .05678 -.05678 .05526 -.05526 .05198 -.05198

.22222 .07695 -.07695 .05980 -.05980 .05819 -.05819 .05474 -.05474

o .26430 .07635 -.07635 .06219 -.06219 .06052 -.06052 .05693 -.05693

.30866 .07476 -.07476 .06390 -.06390 .06218 -.06218 .05850 -.05850

.35486 .07231 -.07231 .06486 -.06486 .06311 -.06311 .05937 -.05937

.40246 .06908 -.06908 .06497 -.06497 .06322 -.06322 .05947 -.05947

.45099 .06520 -.06520 .06412 -.06412 .06239 -.06239 .05869 -.05869

.50000 .06074 -.06074 .06217 -.06217 .06050 -.06050 .05691 -.05691

.54901 .05579 -.05579 .05902 -.05902 .05743 -.05743 .05403 -.05403

.59755 .05047 -.05047 .05464 -.05464 .05316 -.05316 .05001 -.05001

.64514 .04490 -.04490 .04915 -.04915 .04783 -.04783 .04499 -.04499

.69134 .03918 -.03918 .04284 -.04284 .04169 -.04169 .03922 -.03922

.73570 .03345 -.03345 .03610 -.03610 .03513 -.03513 .03304 -.03304

.77779 .02782 -.02782 .02931 -.02931 .02852 -.02852 .02683 -.02683

.81720 .02243 -.02243 .02285 -.02285 .02224 -.02224 .02092 -.02092

.85355 .01744 -.01744 .01701 -.01701 .01656 -.01656 .01557 -.01557

.88651 .01297 -.01297 .01204 -.01204 .01172 -.01172 .01102 -.01102

.91574 .00912 -.00912 .00809 -.00809 .00787 -.00787 .00740 -.00740

.94096 .00597 -.00597 .00515 -.00515 .00501 -.00501 .00472 -.00472

.96194 .00353 -.00353 .00310 -.00310 .00302 -.00302 .00284 -.00284

.99039 .00067 -.00067 .00080 -.00080 .00078 -.00078 .00073 -.00073

1.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000



TABLE 3.-- AIRFOIL COORDINATES FOR WING W4

y/(b/2) = 0.12 y/(b/2) = 0.35 y/(b/2) = 0.70 y/(b/2) = 1.00

t/c t/c t/c t/c

x/c Upper Lower Upper Lower Upper Lower Upper Lower
surface surface surface surface surface surface surface surface

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

.00961 •02362 -•02450 •01672 -.01771 •01625 -.01725 .01525 -.01626

.02153 •03485 -.03673 •02391 -.02594 •02323 -.02527 .02179 -.02383

•03806 .04496 -.04859 .03045 -.03351 .02958 -.03265 .02774 -•03081

.05904 .05354 -.05947 .03644 -•04024 .03540 -.03921 .03319 -.03700

•08427 •06063 -.06838 .04194 -.04601 .04076 -.04483 •03822 -.04230

•11350 •06600 -•07490 .04698 -.05083 .04567 -.04951 •04284 -.04670
.14645 •06952 -.07913 •05157 -.05476 .05014 -.05333 .04707 -.05026

.18280 •07135 -.08140 •05568 -•05788 .05416 -.05036 .05088 -.05308

.22222 07190 -.08201 05931 -.06029 .05770 05868 .05425 .05523• • --. _

•26430 .07161 -.08110 .06238 -•06201 •06070 -.06034 .05711 -.05675

•30866 •07075 -.07878 •06480 -.06301 .06308 -•06129 .05939 -•05760

.35486 •06939 -.07522 .06651 -•06321 •06476 -.06146 .06102 -.05772

.40246 •06750 -•07067 .06748 -.06246 •06573 -.06071 •06198 -.05696

.45099 .06504 -.06537 .06769 -•06054 .06597 -.05882 .06227 -•05512

•50000 •06197 -.05951 .06713 -•05721 .06546 -.05554 .06187 -.05195

•54901 .05830 -.05329 .06576 -•05228 •06417 -.05069 .06077 -.04728

.59755 .05406 -.04688 .06355 -.04572 .06208 -•04425 .05893 -.04110

•64514 .04932 -•04047 •06047 -•03782 .05915 -.03650 .05632 -.03366

•69134 •04416 -.03421 .05658 -.02911 •05542 -.02796 .05295 -.02548

.73570 •03868 -•02822 .05194 -.02025 .05097 -.01928 .04889 -.01720

•77779 •03304 -.02260 •04671 -.01192 •04592 -.01113 .04423 -.00944

.81720 •02739 -.01747 •04102 -.00468 •04040 -•00407 •03909 -.00275

.85355 .02193 -•01295 •03507 •00104 •03461 .00150 .03363 .00248

.88651 •01683 -.00911 •02903 .00495 .02871 .00527 .02801 .00597

•91574 .01223 -•00602 •02305 .00688 .02284 •00710 .02237 •00756
.94096 .00828 -.00366 •01726 .00696 •01712 .00710 •01683 .00740

•96194 •00508 -•00198 •01184 .00564 .01176 .00573 .01158 •00591

.99039 •00109 -.00026 .00333 .00173 .00331 .00175 .00326 •00180

1.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000



PITCHAND/OR
YAW CENTER
NACELLE STATION
84.53 2y/b = 0.481

REFERENCELINE

SIMULATED
EXHAUST

_. _ 4.87

:

I I I I j
0 11.43 26.92 35.81 44.70 62.48 80.26 98.86 109.22

NACELLE STATIONS,cm

PROFILESAT THE VARIOUS NACELLE STATIONS

(a) Geometric characteristics.

Figure i.-- Nacelle geometry.
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/
REFERENCE _/ ,CENTER OF

WING LEADING EDGE

LINE I/Y / ROTATION

/
CENTER OF
ROTATION

(b) Pitch and yaw sign convention.

Figure i.-- Concluded.
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597.15 _[

(a) PBWIN configuration.

Figure 2.-- Three-view drawing of model.
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98.86 I_ ]"= 597.15

(b) PBW2N configuration.

Figure 2.--Continued.
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f W3 -- NOCAMBER & TWIST _ 1W4 -- CAMBER& TWIST

i246.56 _ 98.86 I
597.15

(c) PBWsN and PBW4N configuration.

Figure 2.-- Concluded.
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w3

(a) Transformed velocities.

Figure 3.-- Velocity diagram.
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w 1

ZERO-LIFT
DIRECTION

J_ vN = roJ- w2sin_ - w3 cos_J =!

I

I

(b) Propeller section velocities.

Figure 3.-- Concluded.
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Figure 4.-- Effect of propeller incidence on blade angle-of-attack

characteristics for an isolated propeller; iB = 0°.
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Figure 5.-- Effect of the nacelle on the blade angle-of-attack

characteristics of the propeller (P); i_ = 0°, iB = 0°.
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Figure 6.- Effect of nacelle incidence on the blade angle-of-attack

characteristics of a propeller (PN); iB = 0°.
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Figure 7.-- Effect of configuration build-up on the propeller blade

, angle-of-attack characteristics; ia = -2.5 ° , ig = 0 °.
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Figure 8.-- Effect of nacelle incidence of the blade angle-of-attack

characteristics for the PBWIN configuration; iB = 0o.
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Figure 9.--Effect of wing sweep on the propeller blade angle-of-attack

characteristics for the wing-body-nacelle configuration;
i_ = -3.5 °, iB = 0°. = 20,

24



I I I I I I I I I
0 40 80 120 160 200 240 280 320 360

4, deg

Figure i0.-- Effect of nacelle yaw on the propeller blade angle-of-attack

characteristics for the PBW2N configuration; a = 2 °, i = -3.5 °.
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Figure ii.-- Effect of wing planform taper on the blade angle-of-attack

characteristics on the wing-body-nacelle configurations; e = 2°,

i = -3.5 ° iB = 2°_ •

L
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Figure 12.-- Effect of wing camber and twist on the blade angle-of-attack
characteristics for the wing-body-nacelle configuration; e = 2°

ie = -3.5 °, iB = 2.5 °.
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(a) iB = 2.0 °

Figure 13.-- Effect of nacelle incidence on the blade angle-of-attack

characteristics for the turboprop transport model (PBW4N); _ = 2°"
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(b) i_ = 2.5°

Figure 13.-- Continued.
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(c) iB = 3.0 °

Figure 13.-- Continued.
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(d) iB = 3.5°

Figure 13.-- Concluded.
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Figure 14.-- Summary curves for the PBW4N configuration.
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Figure 15.--Effect of reverse rotation on the propeller blade angle-of-attack

characteristics for the turboprop transport model (PBW4N) ; e = 2°,

i_ = -4.5 °, iB = 3.0 °.
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(a) x-component of velocity.

Figure 16.-- Velocity components at off-body points for a wing alone
computed by three different methods; M = 0.6, _ = 2°.
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(b) y-component of velocity.

Figure 16.-- Continued.
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(c) z-component of velocity.

Figure 16.-- Concluded.
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Figure 17.-- Velocities in the plane of the propeller disc for a wing alone

computed by three different methods; _ = 2 ° , ia = -3.75 ° , iB = 2 ° .
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Figure 18.-- Blade angle-of-attack characteristics computed by three
different methods.
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