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1.0	 PRIN 'IPAI. CONSIDERATION'S IN EXPERIMENTAL DESIGN AND DATA

The purpose of this section is to present the main steps taken in setting

up an experiment to furnish data on a hypothesis and then analyzing these data

in order to obtain inforniaticn leading to acceptance or rejection of the hypo-

thesis.

Figure 1 shows the main quantitative factors which affect the result of

a statistical hypothesis test on the data furnished by an experiment. These are:

1. Measurement error

2. Subject-to-subject variation

3. Day-to-day variation

4. Sample size (number of subjects)

5. Number of measurements on a subject

G. Number of measurements taken over a period of days.

Figure 1 shows schematically the effect of these factor:- on the outcome

of the experiment and of the post-experiment analysis. That is. after an

experiment is performed, a statistical analysis is generally carried out to test

one or more hypotheses. The results of this analysis are, for each such hypo-

thesis, (1) a decision to accept or reject the hypothesis, and (2) a numeric

"confidence" in the correctness of this acceptance or rejection. This confi-

dence is expressed by two sets of parameters: the significance level of the
i

hypothesis, and confidence intervals about the parameters used in the statement

of the hypothesis. The significance level is the probability of rejecting the

hypothesis when it is true.

Tho measurement error is usually normally distributed about a mean,

which is ideally equal to zero. This means that individual errors of meas-

urement vary randomly, sometimes above the mean and sometimes below.

The average of a sequence of measurements will tend to he closer to the
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mean, as the number of such measurements increases. Thus, if successive

measurements on a single subject are statistically independent of each other

and normally distributed with rnean of zero, and if it lk> possible to make a

series of b,ach measurements, the probability that the average of all such meas-

urements has error quite close to zei,: is higher than for the case of only one

such measurement.

Following is a table of such probabilities for the case of a measuring

device whose errors are normally distributed with mean of zero and standard

deviation (denoLed by the symbol a ) equal to 1:

No. of Measurements P (I error ri I <1) P O error n l<0. 1)

1 0. 6826 0.0796

2 0.8414 0. 1114

3 0,9164 0. 1350

4 0.9544 0. 1586

5 0.9742 0. 1742

10 0.9984 0.2510

30 > 0. 9999 0.4176

100 >0. 9999 0.6826

200 >0. 9999 0.8414

400 >0. 9999 0.9544

1000 >0. 9999 >0. 9999

Here the term error 11 is defined as follows: If e 1 , e2 , ..., e  are

the errors of the first, second,... , kth measurements, respectively, then

error  = e l ; error  = (e 1 + e2 )/2, ... , error 	 (e 1 + e2 +.. , +C )/n.

The second nuantitative factor mentioned above, viz, subject-to-

subject variation, is the natural variation between subjects of any quantity.

^W,
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For instance, some subjects may lose more bone than others, or more body

water than others, under the influence of bed rest or space flight. It seems

reasonable to assume that this variation is an expression of the variance of a

normally distributed random variable. For example, the loss of trabecular

bone sustained by male subjects of a certain age and physical condition after

three weeks of space flight may average 16 c;( with a standard deviation of 3%,

with the losses normally distributed about the mean . The same type of

loss for female subjects is likely also normally distributed, quite possibly with

a different mean, but with nnuch the same standard deviation.

More generally, any statistical parameter, such as average total body

water (TBW1 toss or bone loss, may be estimated from any sample of one or

more subjects. I1' the numbers X 1 , ... , X  represent TBW losses or bone

losses for each of n subjects, the estimate of average TBW or bone loss for

the population from which the subjects were taken is calculated as

X	 (X1 + X2 + ... + Xn)i n.

The experimenter may naturally wish to know how close to the true value

of mean TBW loss, or bone loss he or she has come by making; this est (mate.

This question is answered statistically by means of confidence intervals. That

is, for a given number n of observations:

X 1 , X2 , ... , X11,

the experimenter can calculate intervals about the quantity X which contain

the true mean value (of the observed quantity) with any known Probability.

Specifically, given n independent observations X 1 , X2 , ... , X  of a normally

distributed random variable X, a 100 (1 — o ) `7c confidence interval about

X=(X1+X2+... + X c^)ln is
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1	 ^.
X- S t	 t-' X	 c ^1--̀

1\\	
`,

n-1n	 ='}	 n	 n-1	 M

That is, the probability is 1 -a that the true mean value (denoted by v ) for
Yi

\ is contained in this interval. Here the to-I values may be found in any

table of the t distribution. 	 The qua  ity S is defined by

1/2

n I	 —X 
2

1 (,\r	 /

n-1

An example may make this clearer: If n = 10 and the ten observed values are

4. 8, 5. 2, 5. 0, 5. 5, 4. 7, 4. 9, 5. 4, 5. 1, 4. 8, 4. 6, then

X - 5.0 and S 0.298.

Thcn if we want the W% confidence anterval for , µ , we set a	 0.05 and look up

t 9 (0.975): this value is 2.262. 	 Thus. we have

S	
to-I (1 - ^)

3.162 (2.262) = 0.2132.

Therefore, we have 95% confidence that the true value of the nican µ of the ran-

dom variable X is in the interval

(5 - 0. 2132, 5 + 0. 2132), or (4. 7868, 5.2132).

In other words, the probability that the mean of X is in this interval is 0.95.

If, however, we had had only five observed values, say 4. S. 5. 2. 5. 0,

Vii. 3, 4. 7, we would have X= 5.0 as before, and S = 0.255. This time, since

t 4 (0. 975) - 2. 776, we would get
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S t 	 1 - a ) - 0.255	 (2. 77(i
J
	0. 3166,

j
f	 2 I 2.236

and our 957 confidence interval is now (4. 6834, 5. 3166). So the 95'T confi-

dence interval has widened with decreased number of observations. This is

trae in general of confidence intervals; as the sample size gets smalle 	 the

interval gets wider. Or, if the interval is held constant, the confidence level

decreases. It is, of course, intuitively clear that this should be so; the greater

the number of observations we make, the higher should he our confidence that the

true mean will fall into a given interval about our estimate, and the narrower

should be the interval about our estimate for a given confidence level.

The next quantitative factor is day-to-dav variation.	 Most physio-

logical quantities are subject to some variation from day to day ( examples are

blood pressure, TIM', etc.) These variations appear to be random, and thus such

physiological quantities may be treated as random variables in the same waY as

above; confidence intervals may aga°:i be calculated for the true mean of a quan-

tity over a period of days, if we can make the assup-ption that the variation is

only statistical and does not indicate a time change in the mean itself.

Each of the three quantitative factors just described will have an adverse

effect on the confidence the experimenter may have in the conclusions he or she

may draw from analyzing the data obtained by experiment. The greater the factors

(f. e., the larger the v of the corresponding (listributions) the more adverse this

effect will be.

Conversely, the next three factors to be discussed, viz. sample size

(number of subjects), number of measurements (repetitions), and the number of

measurements taken each on successive da ys have a favorable effect on the con-

fidence the experimenter may have in the conclusions drawn. This effect counter-

acts the adverse effect of the first three factors, and if the sample size and the

number of repetitions and daily measurements can be raised high enough, the

experimenter can achieve any desired level of confidence in these conclusions.



T

here the concept of "confidence in conclusions drawn" is denoted on the

right of Figure l; it is usually expressed by confidence limits on means, since

means are usually used In expressing statistical Kvpotheses.

To matte this clearer, an example will he presented, using TBW loss

as the subject of a statistical hypothesis. Here there are only two treatments,

zero-g and 1-g, and hence a (-test is appropriate For the present case the t

statistic has the form

4(' „) /
where n is the number of subjects, X is the sample mean of the TBW losses

for n different subjects:

-	 X \ X1 + X2 4."' + X
n
 /n,

and S is the sample standard deviation:

2	 1/2
S	 (X, — X) /(n — 1)

t

The question the experimenter desires to answer is: Is there a real loss in TBR',

and if so, how much, and what confidence can I have in these conclusions, given

my set of data, sample size, etc. ? (Either there is a real loss, or any apparent

loss is really only due to random variation in the data. ) This question is trans-

lated into statistical language as a hypothesis, namely:

µ = mean TBW loss due to zero-g environnient)

"	 = 0.



The hypothesis is clearly equivalent to stating that there is no loss.

It is statistically tested by calculating the t statistic X/(Si n ) and

a.	 rejecting the hypothesis if X/(S/r) ) t	 0- a )
n-1

or

h,	 accepting the hypothesis if X/(S/F ) < to-1 0 - a )•

As an example, suppose we have TBW loss values for three subjects

of 0.6 liters, 1, 1 liters and 0.5 liters. These data give

X = 0. 7333, S - 0.3215, X/(SV5- 1 - 3.9511.

For a = 0. 05, we have to-1 (1- a ) = t2 (0. 95) = 2. 920.	 Thus we would, in this

case, reject t he hypothesis at the 0. 05 significance level. i.e. , we would reject

the assertion that average loss of TRW in the zero-g environment is zero or

less. This is equivalent to concluding that there is a real loss in TBW, induced

by zero-g conditions, for the general population from which we drew the subjects

for the experiment.

For such a case we also have 100 (1 - a ) % confidence that the true mean

TBW loss satisfies the following ine(limlity:

X -	 t	 0-a 1.n	 n-1

For a	 0. 05, this is translated into saying that

P 
C 

p > 0. 7333 - (0. 1856) (2. 920)

Probabi'.ity that h > 0, 1913 is equal to 0. 95.	 'Thus, given the three

measurements 0. 6, 1. 1, 0. 5, without even knowing the true mean or standard

deviation of the distribution, we can say with 95% confidence that the true mean

is at least 0. 1913.
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More generally, given a particular true mean for a change in a para-

meter 'e.g. bone loss or TBW loss) induced by spacefl i ght, and given partic-

ular values for the first three values on the left-hand side of the block diagram,

the experimenter may wish to o.v : ►cw many measurements ho must have (1)

`	 to ensure that the results of a hypothesis test will call the chang.- statistically

significant (i. e, reject the statistical hypothesis of no change, mentioned

above), and (2) assure the experimenter of a particular level of confidence

that the true mean is greater than a given value. The answer to the question

f	 posed by (1) is given by the set of curves in Figure 2, and the -swer to theF

question posed by (2) is given by the curves in Figure 3.

The abscissa of the curves in Figure 2 is the ratio µ /a , where u is

the mean of the quantity being measured, and o is the composite standard

deviation of this quantity. That is, this value of o is the standard deviation

for measurements of a quantity pertaining to one subject, measured possibly

several times each day over a number of days. We define the following quan-

tities:

al	 =	 Subject-to-subject variance of the quantity

E,	being measured.

a2	 =	 Variance introduced by the measuring device,

or "reproducibility.

3	 = Variance i ntroduced by day-to-day variation of a

measured quantity in the same subject.

n 1	=	 Number of subjects.

n2	- Number of times a measurement is taken on

one subject in one day.

n3	= Number of days on which measurements are

taken on one subject. It is assumed that n 2 is

the same for all these days.

s

t^

f
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PROBABILITY THAT N o :p5O WILL BE REJECTED, AS A FUNCTION nFy/oAND SUBJECT SAMPLE SIZE, n 
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It the quantities are averaged over all measurements on each day, the

variance due to measurement error is reduced to #2 /n2 . If these quantities

are averaged over the total number of days on which measurements are taken,

the combined variance due to both measurement and day-to-day variation is

2
o` a`

2 :3

n2 n,l
n:3

Thus, the quantity measured for one subject and averaged as described

above :s normally distributed with Wi gan v and standard deviation equal to

	

02	 v^	 1142

2
1	 ^ ► Y n3
	 ►^:3

This is tht a used in the abscissa value µ /o in Figure 2. The values

labeled n 1 in the figure represent the number of subjects, 
n 

The ordinate of the curves in Figure 2 represents the probability that

the hypothesis test will call a change significant; i.e. , reject the hypothesis

that µ <_0. For example, if average TBW lose; has the same mean equal to I

(i.e. , p = 1) over three days and over: ► II n  subjects (note that this does not

say that actual TBW loss is the same for all subjects; it simply says that the

-subjects may he considered as belonging to the same statistical population for

the three days, anti that the mean for this population is equal to µ ), but

o I	 a - 3 - 0. S, then	 from the formula for a above, we have

u	 (0.5) 2 + 095	 + o. 5	 (0. 5 ) (1.20) = 0.6.



Thus, p /p = 1. 6667, and the curves in Figure 2 sho%% that the {c ^j 0

hypothesis will be rejected with a probability of about 0. 55 if n l = 3, 0, 45 if
J<

11 1 	7). 0.94 if n l : 7, and 0.98 if n  - 9,

On the other hand, if a is still 0 .5, bu ll 	 take so many measurements 	 1

over so many days that the effect from a2 , a3 may he neglected, we sha!1 have

a ncnv approximately equal to 0, 5, so that p 'a = 2. For this case the probabil-

ities rise to about 0.6'2, 0. 90, 0. 97, and 0. 995 for n l = 3, 5, 7, 9, respectively.

Or, if the a's all decreased to 0. 4167 for the first case of three meas-

urements and three days these latter numbers would again result.

The following conclusion is evident from the second example-, the

probability that can be obtained by increasing n 2 and n3 is bounded by the value

of n l . ,I'he second example is tantamount to assuming that n2 , n3 = ac .	 The

only way to raise the probabilities higher than these values is to raise n l . On

the other hand, it is clear that we can achieve as high a probabilit y as we like

by increasing n 

The curves in figure 3 represent the confidence that p 2 X- a, where

X is the sam;,!v mean of measurements on n  subjects and a is some positive

number. Here the confidence is entirely independent of the actual value of X;

the only deli ,.fence is on the values of a, a and n l , where a is defined as

above.

If we suppose that µ - 1 and o - 0. 6 as in the first example above, and

that a = 1, then we have that a = 0.6a and thus, the confidence lies between the

curves a = 0. 5a and a= a. Therefore, it is about 95 %k , even for a sample of

only one subject.	 That is, the confidence that µ 20 is about 957f.

On the other hand, if a = 0. 5 and a = 1%2, we get a = a, and thus the

confidence that µ ? 1/2 is 84%, 92%, 96 ►7(, and 97. 51/ for n l = 1, 2, 3, 4,

respectively. For this carne case if a increases to 1. 0, then a = 2a, and

the confidence that µ 2 1/2 will be 697, 76%, 80%, 84%, 87%, and 89% for

n 	 1, 2, 3, 4, 5, and 6, respectively.

In this way, the confidence values may be determined by using; the curves

for any given values of %, n l , n1' al , a2 , 03.
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u	 APPLICATION OF MEASURE:NIE'NT E J(HOR ANALYSIS TO S1'AC':•: -
FLIGHT STUDIES

1	 COJIPUTEA TOMOGAAPlt1' MEASUItE N1E:NT ERAORS

Background

In the work by Elsasser *, the author presents results from two types of

experiments designed to give an indication of the accuracy that can be expected

from measurements by computed tomogr:i phy. The first type of experiment con-

, ists of measurements on objects designed to simulate actual bone both as to shape

and as to absorptive properties relative to the radiation used in computed tomo-

graphy. The materials used are aluminum and plexiglas, which are also used in

models for the photon absorption method. The author writes that these materials

provide a aatisfaclory approximation of physiological conditions. For modeling

of trabecular hone and marrow, a mixture of aluminum powder and PMMA cement

("heracryle ") is used. The author also presents considerable detail on the actual

structure of these objects for modeling bones, but these will not be given here.

The advantages of carrying out measurements on such a model are, of

course, that the accuracy of the method may he tested by comparing the results

with the known density of the object being measured.

The results of the tests for these models are given on p. 86 of Elsasser's

dissertation, in Tables 5, 16, Vii. 17, 5. 18, 5. 19, and 5.'20. 	 In Table 5. 16 are

given results for the following models:

a) Model to simulate the total bone: Plexiglas, aluminum tubing and PMMA/

aluminum Winder, an illustration of which is given in Figure 5.7.

b) Model without "compact bone": The aluminum tubes in a) are replaced by

plexiglas tubes of the same dimensions,

C)	 Model without any "soft tissues": The outer plexiglas cylinder is omitted,

and only the aluminum tuhing, with file PMNL4 /aluminum cylinders inserted,

is measured,

(1)	 "Compact bone" alone: Only the aluminum tubes are measured,

*Quantifi •r.ierun`; der Spongiosadichte an Rohrenknechen mittels computer tomo-
graphic (C,)uar,tification of Trabecular Bone Density in Tubular Bones by Com-
puted Tomography).

a
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C)	 Models without "spongy bone": Instead of the PMMA/aluminum mixture,

the interior of the aluminum tubing contains Plexiglas cylinders. The thick-

ness of the alunAnurri tube W,11I, i.e. , the "compact bone" thickness, varies

as follows

el)	 Wall thickness of tubing	 1.5 mm.

e2) = 3.0 mm.

e3) = 4.0 mm.

e4) "	 = 5.0 mm.

The numbers given in the table are not densities, but rather "mean linear

absorption coefficients" of the materials being measured. These coefficients have

units of cm -1 . "l'he model configuration a) (line a) in the table) gives trabecular

hone density in these units for the model of an actual bone. The measured result

is the value 0.677 ` 0.007 for a "true value" of 0.675 ± 0. 005. '1 he author notes

that the ± 0. 005 is included because the "true" value of the linear absorption

coefficient for the PMMA/aluminwn powder mixture cannot be precisely determined.

Comparing this measured value with the "true value" shows that for simula-

tion of the actual hone by the alwninum/plexiglas/PMMA/aluminum powder model,

the method of computed tomography appears to measure trabecular bone density to

a very high degree of accuracy; the relative error is only +0.3`7c.

Models b) and c) correspond to trabecular bone without any compact bone

and without any tissue outside the compact bone, respectively. These are, of

course, deviations from physiological conditions so severe that they will never

arise in applications with astronauts as subjects. Nevertheless, even with such

severe deviations, the relative error is bounded in absolute val ue by the level of

2.1%. Models el) through e4) simulate the case where there is no trabecular

bone; nevertheless, the given results are still labeled "trabecular bone density"

(Spongiosa-Dichte) in the dissertation. It is not explicitly stated what trabecular

bone density means for this case.
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Table 5. 18 shows the results of measurements to determine "rcprvxiu(-i-

hility. " This is simply a compilation of results of repeated measurements on the

same object 10 successive times without changing the position of the plane of meas-

urement. Thus, an idea of the variability of the measurement is provided, with the

result that here the estimate, S, of the standard deviation of the measured density

is 0.9'r of the density. These measurements were all carried out on the

same day.

Table 5. 19 shows results of 10 measurements taken at intervals of 10 mm

along the longitudinal axis of the model. 	 Here the author cites a standard devia-

tion of 1.2;, (on p. 88), which he attributes to inhomogeneities of the density of the

PIN1NIA/aluminum powder mixture.

Long range reproducibility (over 12 months or more) is given by Table 5.20.

The author comments that there is no systematic error detectable due to age of

the radiation source used in the measurements.

The Increased standard deviation of these measured values is attributed to

density variations in the model and a decreasing statistical accuracy as a function

of age of the radiation source (p, 88, , section Vii. 2 5)

Before goi ig on to general measurements on human subjects, we mention a

remark of the author on p. 97 to the effect that the observed difference between

the digital tomographically determined trabecular bone densities of normal and

osteoporotic femurs are greater by a factor of 10 than the total observed mineral

content.

'The second type of experiments which were carried out were those on human

subjects. Ilere the location of measurement wait on the radius of the right arm at

a distance of 10( of the ulna length from the ulna styloid process. The density of

trabecular bone is defined as the mineral value of all matrix elements of the area

located in the interior of the radius, equidistant from the outer edge of the bone,

and comprises 50 1 , of the total bone cross-sectional area.
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The first experiment discussed was carried out on to.; subjects, of which

the majority fall in the two categories 5-16 years and 20-40 years of age. The

author says that the presence of most of the subjects in these two age groups is

random.

The results of this experiment are presented in Figure 6.4 and Table 6.5.

The latter gives numerical estimates for mean and standard deviation of the sub-

groups: 14 girls, 2:3 bays : 13 women, 46 men ; 37 boys and girls, 59 men and

women, 27 girls anti women, 69 boys and men, and, finally, the total of 96 sub-

jects. The ► wean trabecular hone density is found to be about 0. 765, with an

estimated standard deviation of 0. 120.	 Perhaps the most significant result is

that there is no apparent difference in the measured results as a function of age.

The reproducibility experiments in human subjects yield the results of most

concern to planners of the Space Shuttle experiments. 'These results are pre-

sented and discussed in Section 6.3. 3 on p. 11:3 of Elsasser's dissertat ion. The

author mentions in a general way that the reproducibility error is, as in the case

of the nonhuman models, a function of the positioning of the plane of measurement

along the arm. He cites some examples of measurements made on humans where

the reproducibility was of the same order of magnitude for both humans and the

models; i.e. , about 1. 5%. He then mentions that for all subjects one may na,

necessarily hope for such a good reproducibility. He cites two prerequisites for

good reproducibility: (1) a high degree of cooperation on the part of the subject,

and (2) the trabecular bone density in the area being investigated must not change

by more than two percent for each one percent change in measuring position along

the longitudinal axis of the ulna.

In the experience of the author, the proper measurement location can seldom

he found with an accuracy of less than 2, 5 mm. This means that the reproduci-

bility depends not only on the length of the arm, but also on the density gradient

along the longitudinal axis of the bone. As an example of a sharply changing

trabecular bone density, he presents Figure 6. 1.4. Here a shift of 3 mm in one

r,r
n
wf
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direction or another leads to a change in trabecular bone density from 4-6`; to

-7'; of the value at lo ll of ulna length.

The author sums up by stating that under optimal conditions the trabecular

bone density has a reproducibility of about `- 1. 5 1k, but under less favorable con-

ditions two measurements on the same subject may differ by more than 10 1J. A

more precise estimate of reproducibility for a single subject may only be made with

knowledge of the axial density gradient; this requires several measurements. One

possible way to improve reproducibility is to take a plaster cast of the arm and to

locate the measurement plane by use of this cast on each subsequent measurement.

The only drawback the .author sees with this methyl is in measuring children, pri-

marily because their arms tend to grow in size between measurements over a periad

of months. Thus, there appear to be no foreseeable problems in taking; measure-

ments in Space Shuttle astronauts,

In Section 6.3. 4 (p, 117) the author mentions another problem which tends

io decrease the accuracy of the measurements: movements of the subject during

the time in which measurements are being taken. He states that it is impossible

to eliminate entirely this source of error, and says that the two sources of error:

positioning and movement result in about 107 of all measurements being tern;ed

worthless.

r.
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Apill icat ion

It seems clear that the primary source of error in the computed tomography

measurement metho<1 is due to reproducibilit y , primarll y because of uncertainty	 !

in positioning the inane of measurement along the arm. However, as the author

notes, the likely magnitude of the reproducibil`ty may be estimated by making

several measurements 1 mm apart along the arin of the subject. Thus, if the

accuracy cannot be improved, at least the experimenter may obtain an idea of the

magnitude of the error, for each subject.

However, measurement errors are commonly assumed to be normally dis-

tributed about some mean. If this assumption is made, it implies that any number

of successive measurements on the same subject may be used to approximate the

true value of trabecular bone density more accurately than a single measurement.

Under this assumption, the mean of a number n of such measured values, i, e, ,

the quantity

X + X + ... + Xl	 2	 n

n

is distributed with the same mean as the X,, but with standard deviation o / n,
i

where or is the standard deviation of a single measurement.

Thus, theoretically the standard deviation of an estimate of trabecular bon-

density may be brought arbitrarily close to zero, simply by taking a sufficiently

large number of successive, mutually independent measurements.

One problem with this approach is that the estimate thus obtained for the

mean error may have some bias: i.e. may not be zero, but may tic on one side

or the other of zero. In the case of a plaster cast (to help in determining the

location of the measurement plane), a small bias could easily ensue for the meas-

urement of density, but since it would be essentially the same for preflight and

postflight, it would vanish for the measurement of the spaceflight-induced change

in density. If the position for measurement is always selected by only one person,
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it is conceivable that some bias could be present, but here too, It would tend to 	 A

cancel out if the same person makes the selection for both preflight anti postflight

measurements.	 1

However, if one person selects the position for preflight measurements and

another for postflight measurements, and their location biases (if any) reinforce

each other (e.g. , the prefl ight person tends to locate the measurement plane one

mm too close to the wrist and the postflight person tends to locate it too close to

the elbow), then serious systematic errors in measured density change may well

result, especially for arms with high density gradients. Bence, it appears advis-

able either to have location done by the same person on both occasions, or to make

several measurements with the location done by different persons for each meas-

urement, both before and after.

Because of this and other considerations (e, g. Elsasser states that the statis-

tical properties of the radiation source change slightly with time; by this he means

apparently a progressive increase of the standard deviatior, of measureincnts; i, C.

reproducibility error; his statement of no systematic error means that the mean

is zero), it seems reasonable to assume that while we can bring the standard devia-

tion of successive measurements quite close to zero, we probably cannot, in real

life, bring it arbitrarily close to zero, as was mentioned above for the theoretical

case. Another practical consideration supporting this reservation is that we only

have a relatively short time in which to perform postflight measurements, since

the bone density is expected almost immediately to start increasing back toward

the 1-g level.

So to be conservative, we might assume that by taking 9 or 10 preflight

measurements and 9 or 10 postflight measurements (both under such conditions

that we may be sure that density change during meascrement is negligible; prob-

ably all measurements on a subject should be taken on the same day), we could

reduce the variance of the mean of the measurements by a factor of at least 8

(instead of 9 or 10, as in the theoretical case), which means a reduction in the
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standard deviation of each (preflight/postflight) density estimate by a factor of

2^. If o represents reproducibility, or standard deviation of the actual

densities, then the standard deviation of the difference between the densities is

given by s times VF  Thus, this assumpli(,n implies a reduction in the standard 	 !

de- iation of the actual difference between zero-g and 1-g densitieE by a factor of

two.

While this factor ma-7 seem to be low, it should be kept in mind that experi-

ments on actual subjects may show it to be somewhat higher. Also, since good

estimates of reproducibility error may be obtained by taking computed tomographic

estimates at several adjacent points on the arm spaced equidistant from the desired

measuring point, subjects who will have very large reproducibility a's can be

identified. It seems likely that measurements can be carried out on a sufficiently

large randomly selected sample of the population from which subjects are chosen

to determine the distribution of density gradients in the radius over the total popu-

lation with a high level of confidence. If this distribution then indicated that, say,

only 2 clo of the population have gradients implying Cr of more than 9%, such people

could be excluc,.cd from the experiment without strongly impinging on the represen-

tativeness of the sample finally chosen; i.e. , it would still represent at least 98rk

of the population.

Examples

An example of trabecular bone density differences between an immobilize

(for three weeks, due to a fracture) arm and the opposite arm of 14 children is

given in the reference: Dynamics of Trabecular and Compact Bone Mineral of the

Radius after Immobilization -A the Upper Arm in Children, by Elsasser, Exner,

Prader and Anliker. Here there is a rather large sample standard deviation (13%

of trabecular bone density in the healthy arm) for trabecular bone density loss;

this leads to a 95°x; confidence interval of ± 6.21 about the sample mean of 17`ic;

i, c. , the probability is 0. 95 that f;rE true mean of the population lies somewhere
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	in the interval (10. 79, 2:1, 21). 	 Further, the fact that comparisons were made

with the healthy arm of the same subject tends to confuse deviations in hone loss

of the type which would occur in a zero-g environment with deviations which occur

as a consequence of the variation :n physical activity of the healthy arms of the

subjects in this experiment. Also, unless care was taken in selection of the sub-

jects, some of the variation may be due to the possibility that some of the arms

fractured were dominant, and others nondominant.

Nonetheless, it seems instructive to see what the results of a t-test would

be for a population having a true mean of 171 and 13 `7n standard deviation. Here,

if we assume that the reproducibility standard deviation is (after we have reduced

it as much as we can) 2%, then the a for the curves in Figure 2 is

r	 .,	 1
a = 1132	

J
+- 2	

^2
	

1
117:1 J ^l — 13. 15,

anti hence, u / u , the abscissa of these curves, is about 17/1:1. 15 x 1.29. The

curves then show that for such a high standard deviation for the population, the

probabilities that a t-test will deliver a verdict of p > 0 for the general popula-

tion are 0. 39, 0. 67. 0. 84 and 0. 94 for number of subjects equal to 3, 5, 7, 9,

respectively, where the significance level of the test is 0.05 (probability of reject-

ing the hypothesis µ < 0 when it is true). If the reproAucibility of the computed

tomography method should be so bad that its standard deviation is 10%, then the

v becomes

o 113 2 + 102 ]
	 l	 JJ

1/2	 ^= [269]'12	 16. 4,

so that fC /a s:z 1. 07, and the probabilities for the t-test are now 0. 33, 0. 56, 0. 77

and 0. 89 for number of subjects equal to 3, 5, 7, and 9, respectively.

These results indicate that for such a large a due to subject-to-subject

variation, even errors introduced by what is close to the worst possible reproduci-

bility (10% + only one measurement) make relatively little difference in the
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probability of rejection /acceptance of the hypothesis that the average loss ii,	 I-

becular none over the entire population is greater than zero.

To get an idea how the t-test will behave if the a clue to subject-to-suhject

variation is somewhat less than in the example above, we present another

example.

In the introduction to his dissertation, Elsasser says that total trabecular

bone loss seems to vary from 107- to 417 for subjects who are inactive for 3 to 4

weeks.	 If these are extremes, I. c. , if 9917f, of all subjects suffer losses over this

period between these limits, and if, further, the losses are normally distributed,

then typical values for o , and mean loss are 6% and 257, respectively, of total

trabecular bone density. Ilere if measurement standard deviation is again rather

high (=10%;) and we can reduce it by a factor of two, then the a value for Figure 2

becomes

s = (0, Oa) 2 + (0.05) 2 0. 0778.

Since p is 25q we get p /s = 0.25/0. 0778 x 3. 22, and Figure 2 shows then that

the t-lest will say N > 0 with probabilities 0. 89, 0. 98, 0. 999, 0. 999 — for numbers

of subjects 3, 5, 7, 9, respectively. Again the computed tomographic reproduci-

bility error pla ys a relatively minor role in determining what the test will do.

Next, consider a single subject with rather high reproducibility o2 , say

a2 = 0. 09, or 9(i of total density, and suppose we can only reduce this by a factor

of 2 by repeated measurements, etc. It may be of interest to know, under these

circumstances, the probability that the measured value is at least equal to 9071, of

µ (the actual value which would be returned by computed tomography if there were

no reproducibility error) or 7550;, 50 `k, 25% of p , or simply the probability that the

measured value is greater than zero. Curves for these probabilities are given in

Figure 4. The abscissa here is the value of p ( )A =0. 1 means p is 10% of tra-

becular bone density), the mean hone loss.
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We see from Figure 4 that If the trite loss is 5%, the probability that the

measured loss will be at least 51, 4. 57,  :t. 75%. 2. 5%, 1, 25 , or 0 is 0. Mutt,

0, 520, u, 609, 0. 709, 0. 800, and 0. 870, respectively. For a 10% true loss, the	 1

corresponding numbers are 0. Vii, n, 587, u. 712, 0. 867, 0. 95:1, and 0. 98. Thus,

for a single suhject %% ith a2 = V, we could feel quite confident (95. WX confidence)

that the measured value would be at least 1.25%.

If on the other hand we have a subject with s., = 2`Xr. or one for whom we car,

bring; o,, down to 2q by repeated meat uretnents, etc. the curves %k ill look as in

Vivurw =. llnrt, nn -svtwil Inca of WZ Avey probabillti ca of measured values at Lens'

A 0. 500. 0, 579, 0. 7:14, 0.894, 0.969, and

ilit y that measured value >_ 1.25` is here

reliabl y detectable.
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2.2 BASAL I<)ETABOLISM MEASUREMENT EAL(OHS

The following questions have been posed on this subject:

In order to detect, at the 95' 7( confidence level, a 5%, 10%, 20'7(, or 30'%

difference in basal metabolic rate, how many subjects do i need, how many

repetitive measurements should 1 make on a single subject, how many times over

a period of days should 1 repeat the measurements, and what statistical analysis

techniques should I use?

The answer to these questions is given in terms of the parameters n I , n),

n3 ; al , a2 , a3 , all of which were previously defined. 	 First, the question of

detecting the above mentioned changes with 95 1T confidence will be discussed,

using some curves presented below, and then the question of analysis will be

discussed using curves in figure 2, presented previously.

For basic metabolic rate, the quantities oI , 2 0 
OF  may, of course, have

different values for each of the parameters which define this rate. We s.,all dis-

cuss the problem of detecting a change in one of these parameters and mention

that the statistical features of this problem are identical for any one of the para-

meters.

The quantities a 1 , a2 , 0.1 represent standard deviations due to (1) sub-

ject-to-subject variation, (2) measurement-to-measurement variation, and

'3) day-to-day variation, respectively. Since we are here only Interested in

changes in a parameter, we may expect to he measuring values applying to post-

flight conditions (i. e, conditions which obtain at the end of flight, not those for a

day or two after completion of flight). and those applying to preflight conditions.

The measurements will presumably be made over a sufficiently short period as

to preclude any significant variation with time, because time varialions will affect

the 11ILasured value of a difference. Hence, the value of o 3 here is zero, and

5
	 n,t = 1.
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If such parameters have never previously been measured during spaceflight, 	 r

the experimenter has no way of knowing the value of a I , although he may be able

to obtain a fairl y close estimate for this through bedrest studies. If there are

data available from previous flights, the value of e I / the composite a given by

	

contributions from a i ,	 42 , a3 and particular values of n 2 , n3 ; i.e, a

r1•
2 - s22/n` n ';	 o .; 2 	 X2

1 
for the change in it parameter from I -g to zero-g

may be estimated by the formula for S given previously. This formula is also

used, of course, in estimating 
nI 

from bed rest data.
I

The user should usually have a fairl y good estimate for a 2 from the manu-

facturer of the measuring; instrument, or some other source.

The procedure for measurements is to take the measurements of all subjects

'	 under conditions which the experimenter considers to represent satisfactorily the

f1-g environment, and then tike identical measurements of the same parameters

immediately after return from spaceflight, while the parameters still are as close

as possible to the zero-g values. Or, if it is feasible to take measurements daily

aboard the spacecraft, this may be done. It affords the advantages of permitting

detection of any appreciable time trends in the parameters under the influence of

spaceflight.

Before the actuai experiments, if measurements are to be taken as described

above, for any given values of µ (to be defined below) and o (already mentioned

above), certain things may be said about the like!y outcome of the experiment, and

the confidence the experimenter ma y have in his or her results. For this case,

o	 alt + 
a2l l 

n2l 12, andif 	 µ is the true mean change in a paraineter for
J

the population from which the subjects were selected, then a particular number

n of subjects will I,e required for 95% confidence that the sample mean A n of the

measured values of a parameter:

X  _ ( X 1 + X 2 + ... + Xn)/n

(where the X I , X2 , ... are the measured values and the total number of such values

is n) is at least 90%, 75%, 50%, or 25 %r of the true mean p . It can be shown

66i
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mathematically that this number n depends only on the ratio p /7 . The func-

tional dependence of n on µ /o is depicted in Figure 6. Here it is assumed the

measured value is a normal random variable with mean zero and standard devia-

tion o2 . so that the standard deviation of the sample mean of n 2 measurements

is o. /,n2.

The tables from which the curves in Figure 6 were plotted are the following:

0.9p:

	

µ%,o	 0.5	 1.0	 1.5	 2.0	 2.5	 3.0	 3, 5	 4 . 0	 8.0	 10

	

n	 1() 89 	 27:3	 121	 68	 44	 31	 22	 17	 4	 3

0. 75 µ_

	

µ/o	 0.5	 1.0	 1.5	 2.0	 2.5	 3.0	 3.5	 4.0
175	 44	 20	 11	 7	 5	 4	 :3

	

#1/0	 0.5	 1.0	 1.5	 2.0	 2,5	 3.5

	

n	 44	 11	 5	 3	 2	 1

0.25P :

	

µ/o	 0 . 5	 1,0	 1.55	 2.2

	n	 20	 5	 2	 1

0:

	

µ/'o	 0.499	 0.522	 0.55	 0.58	 0.623	 0.67	 0.74	 0.8:3	 0.96 1.17	 1.05

	

n	 11	 l0	 9	 8	 7	 6	 5	 4	 3	 2	 1

It is thus seen that for a case where µ -- o (i. e. a rather large standard

deviation o ) we have 95% confidence that if five subjects are chosen (n 5), then

x5 wilI be at least equal to 0.25µ, where µ is the true population change for the

parameter we are estimating, and that even with only three subjects we still may

have about 95`k confidence that X3 will at least not be negatAve.

n ;
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As for "trade-off" between repeated measurements and number of subjects,

it is clear from the form of the tables and the curves that making the number of

subjects large enough will enable us to detect any change, no matter how small

It /a may be. For example, even if n2 (number of measurements) is only 1, and

if a2 is quite large, say o2 = 3, and al is 4, so that

,11
o - 3 2 • 42] '/2 = 5,

and if p is only 2. 5, so that u /a =0. 5, then we can still achieve a 95%. confidence

level that the measured X
n 

'e0. 9 ,u by increasing n to 1089 subjects. however,

if we hold al , and n constant at 3 and increase the number n 2 of measurements

to 1000, 2000, or 5000, we see by the formula

 1/2
a=

[J1 2

 , 
a2

2 
/n,, J

that our o will still be at least 3. Thus, µ /a is no more than 0.8333. 	 and

thus the lowest curve applies; we may then only say that X3 will ne greater than or

at least equal to zero.

As for statistical analysis techniques, the data from an experiment are often

used to test the hypothesis that the true mean change in a parameter for a population

(e. g. the population of all healthy subjects between 28 and 38 years of age) is greater

than zero or < 0. This is done by a. "t-test, " which is explained in the text accom-

panying Figure 2. This figure prE3ents the number of subjects necessary to ensure

a particular probability that the hypothesis of no change, or of a change in opposite

direction to that of the true change, will be rejected.

As an example of the use of these curves, suppose we have µ la = 0. 5, as

mentioned above. Here it is clear from the curves in Figure 2 that many more than

9 subjects would be necessary to ensure a probability of 0.95 that a hypothesis con-

trary to the real change would be rejected. If, however, µ ; a -=2, then only about
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six subjects would be necessary for this, and with p /a = 4. 3, then only three

subjects would be necessary. Again, we emphasize that such estimates for µ a
and a might be obtained from bed rest studies or, if available, data for changes 1
in the parameters of interest from past space flights.

E"
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::.3	 BODY WATER MEASUREMENT EitHORS

Problem-

A new method * is proposed to measure total body water inflight based on 	 1

ethanol dilution and non- invasive breath analysia. Assuming the changes in total

body water during Shuttle Spacelab missions are similar to those observed in the

nine Skylab crewinembers (see Figures 7 and 8), will this method provide the

precision necessary to detect the expected water losses?

These data (Figure 7 and 8) serve to illuminate the problem of estimating

what can be expected from future experiments to measure this parameter. We

summarize these data below, and then apply them to the problem of estimating

sample size and making other considerations for future experiments.

Data for TBW loss for a single crewman:

Here the mean change seems to be about 0, i) liter. Since 95k of the day-

to-day measurements seem to fall within ± 0. 5 liter of this postulated mean, it

might be reasonable to assume that 2 0, ; ;^ 0. 5 liter, or a3 :zz 0. 25 liter, since

this is the case if the day-to-day variation is normally distributed about the mean.

T'ata for TBW losses for the entire Skylab crew:

It looks here as if the mean TBW loss is equal to 1.4 liters, and as if o is

around 0. 3 (since the vertical line for two days after launch is about 0. 6 liters in

length).

Since these values are radically different from the case of a single crewman,

it appears possible that TBW loss might vary quite strongly with a person's normal

(1-g) TBW level; i.e. , change in TBW level might be quite strongty correlated with

the 1-g TBW level. Thus, it might be advisable to use percentage of the 1-g TBW

level as the parameter of interest for statistical analysis, rather than absolute

*
Loeppky, et al (1977) Appl. Physiol. Respirat. Environ. Exercise Physiol.42:
803-808.

61;
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change in liters. If there is such a correlation, the measurement results might

he appreciably changed, since the numbers in Table 1 of the article by Loeppky,

et at (Total Body Water and Lean Body Mass Estimated by Ethanol Dilution) show

a TBW range of 36.2 liters to 67.2 liters for a sample of 35 human subjects.

However, even the measurements in Figure 8 appear to show a striking

uniformity in the individual TBW change, as indicated by the apparent standard

deviation of 0.3 liter, If we suppose that these data yield sample standard devia-

tion S 0.3, then a 95`x; confidence interval for p , the actual mean of the popu-

lation, is

1. 1694, 1.6306 ) .

Furthermore, with these values a t-test at the 0.5 level would reject the

hypothesis of change contrary to the true change, since

X	 1.4	 = 14.0,
S/ n

0.3/3

which is greater than 1. 860 = t 8 (0.95).

A study by Culebrat, et al (A Conmaratiye Stacie of TBW as Measured by

jsotooe lPhllic^n and Body Uessication in the Rat, Federation Yroc. 35(3):450,

1976) reports TBW/wt = 0. 702 by dessication and 0. 714 by HTO. From Table 1

of the article by Loeppky, et al, the ETH measured value is 0. 717 and that for

HTO is 0. 735, for a sample of 35 subjects. 'Therefore, there appears to be no

significant difference in accuracy between the ETH and HTO methods, since the

HTO methods deviates positively from dessication by about 1, 68%,and the ETH

method deviates negatively from the HTO method by about 2, 45 —C , or from dessi-

cation negatively by about 0. 77`k;, so that the ETH method may be slightly more

accurate, if we regard dessication as a sort of absolute norm.
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For purposes of predicting how future experiments might turn out in using

the ETH method (assuming that the parameter values to 1, 4, o = 0.3 mentioned

above are valid), we may apply first the tables used in generating Figure 6, Here

the graph of changes in TBW of the Skylab crew of 9 indicates that the o value

mentioned above incorporates both subject-to-subject and day-to-day variation,

so that µ /a - 1.4/0. 3 = 4. 67. If to be conservative: we drop this to 4. 00, we

see that we need 17 subjects to attain 95% confidence that the measured estimate

will be at least 90`,( of the true value of µ . To attain this level of confidence

that the estimate will be 0, 75 µ , we need only three subjects. For 0. 5 µ

U. -9 5,u , or 0 we need only one subject.

In other words, given a population TBW loes of 1. 4 liters, and o due to

subject-to-subject variation and day-to-day variation of a little over 0, 3 liters,

the question, g hat loss could I detect, and how many subjects do I need to do It"?

is answered by saying: "I would he able, with 951 confidence, to estimate a loss

of at least 0, y (1. 4)	 1. 26 liters with 17 subjects, at least 1. Uri liters with three

subjects, and 0, 70 liters with only one subject."

Now let us postulate a less favorable scenario; namely, all parameters the

same as before, but to = 0. 7 liters, rather than 1. 4 liters, as previously. With

this assumption, u /o will be a hit higher than 2, 0. If we conservatively assume

µ /o	:'.0, the tables will now give 68, 11, :3, 2, 1 subjects needed in order to

assert with 95% confidence that we shall obtain at least 0. 63, 0. 53, 0, :35, 0. 18,

and 0 for the estimated population TBW losses, respectively.

Turning to the problem of estimating the outcome of the t-test, let us assume

again the former case where the parameters are µ = 1. 4 and o = 0.:3. If we

again suppose that p /o = 4. 0, the curves in Figure 2 give a probability of about

0.93 that the t-test will reject the hypothesis that P < 0.	 For 5, 7, or 9 subjects,

this probability rises above 0, 99.
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With the second assunipti(:n made above, viz. that N is only 0.7 liters, but

the other parameters ure unchanged, so that µ i o may be taken to be 2. 0, the

curves give probability around 0.66 that the t-test will reject the hypothesis that

µ < 0.	 For 5, 7, or 9 subjects, this probability rises to about 0, 92, 0, 98, and

0, 99, respectively.

yes
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:3, 0 CONCLUSION

In conclusion, the foregoing work represents a detailed discussion, first of

the general nspects of experimental design as applicable to the Space Shuttle

experiments, and then of statistical aspects particular to each of several of the

proposed biomedical experin ►ents for Space Shuttle, in retrospect, one impression

seems to stand out somewhat more than any other. This is that, in the literature

which was furnished to air' in statistical analysis, there was only one sett of infor-

►nation which described results from previous actual flights in enough detail to

form an idea of the statistical behavior which might be expected for spaceflight -

induced changes in the parameters of interest. This Is the set of information per•-

taining to TBW levels. As a result, the statistical commentary for all the other

experiments had to assume a rather general character , largely in the form of

curves and other information which should enable the experimenter to predict

results for planned experiments only if he or she supplies statistical parameter

values based either on previous spaceflight data or bed rest studies, or on the

experin ► enter's subjective judgement.

For the TBW experiments, on the other hand, the information supplied per-

mitted some fairly definite predictions to be made about what the results night ho,

for future experiments. Here too, of course, the information presented for the

other experiments can still he used to evaluate a variety of hypothetical scenarios

which the experiment. er may find useful in making predictions or decisions- It is

hoped and suggested that past available data will be closely investigated (if this

has not alreach, been done) for any possible application in future experimental

desit;:ns,


